
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2018

Conversion of a Simulator Written in C++ to JS and
Optimizing the Simulation Parameters Using
Evolutionary Algorithms
Venkata Sivasai Pavan Kumar Lottala
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Lottala, Venkata Sivasai Pavan Kumar, "Conversion of a Simulator Written in C++ to JS and Optimizing the Simulation Parameters
Using Evolutionary Algorithms" (2018). Theses and Dissertations. 1998.
https://dc.uwm.edu/etd/1998

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1998&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1998&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1998&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1998?utm_source=dc.uwm.edu%2Fetd%2F1998&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

CONVERSION OF A SIMULATOR WRITTEN IN C++ TO JS AND

OPTIMIZING THE SIMULATION PARAMETERS USING

EVOLUTIONARY ALGORITHMS

by

Sai Pavan Kumar Lottala Venkata Siva

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

December 2018

ii

ABSTRACT

CONVERSION OF A SIMULATOR WRITTEN IN C++ TO JS AND OPTIMIZING THE

SIMULATION PARAMETERS USING EVOLUTIONARY ALGORITHMS

by

Sai Pavan Kumar Lottala Venkata Siva

The University of Wisconsin-Milwaukee, 2018

Under the Supervision of Professor Dr. Mukul Goyal

A discrete event simulator written in C++ is converted in to Java Script, that tracks the

blood glucose level of a person in response to a timed sequence of diet and exercise activities. Its

main objective is to capture the average impact of the various diet/exercise activities on the blood

glucose level. The main aim for translation of the code in to Java Script is that the simulator can

be hosted on the Google Firebase Cloud and can be available for the public use. The optimization

of the simulator parameters such as excretionKidney_impact, glut4Impact_,

glycolysisMinImpact_, gngImpact_, peakinsulinLevel_, glycolysisMaxImpact_,

liverGlycogenBreakdownImpact_ and liverGlycogensyntheis_Impact is done using evolutionary

algorithms, where the simulator is given base blood glucose level and peak blood glucose level as

the input parameters to the simulator. The output produced from the evolutionary algorithms are

compared and the best one is recommended.

iii

Dedicated to my parents

for their love, motivation and support

iv

TABLE OF CONTENTS

1 Introduction………………………………………………………………………………. 1

2 Overview of the Process followed in the conversion of code from C++ to JS………... 3

 2.1 Implementation of the Organs in JS…………………………………………………. 4

 2.2 Input Food And Exercise Parameters Description…………………………………... 5

 2.3 Types of problems Encountered……………………………………………………... 5

 2.4 Recommendations for Effective Conversion………………………………………... 7

3 Overview of the Optimization Process………………………………………………….. 8

 3.1 Overview of Particle Swarm Optimization………………………………………….. 9

 3.2 Implementation of Particle Swarm Optimization……………………………………. 12

 3.3 Overview of Backtracking Search Optimization……………………………………. 14

 3.4 Implementation of Backtracking Search Optimization……………………………… 18

 3.5 Objective Function…………………………………………………………………... 19

4 Results…………………………………………………………………………………….. 20

5 Discussion and Conclusion………………………………………………………………. 48

 5.1 Future Research……………………………………………………………………… 49

6 References………………………………………………………………………………… 50

v

LIST OF FIGURES

Figure 1. Optimization Process. 9

Figure 2. Flow chart of Practical Swarm Optimization . 13

Figure 3. Flow chart of Backtracking Optimization. 17

vi

LIST OF TABLES

Table 1. Default Parameters For PSO…………………………………………………… 20

Table 2. PSO Results for Peak Insulin Level Vs Base BGL for Normal Persons……….. 21

Table 3. PSO Results for Peak Insulin Level VS Base BGL for Diabetic Persons……... 21

Table 4. PSO Results for Glut4Impact VS Base BGL for Normal Persons…………….. 22

Table 5. PSO Results for Glut4Impact VS Base BGL for Diabetic Persons……………. 22

Table 6. PSO Results for Excretion_KidneysImpact VS Base BGL for Normal Person 23

Table 7. PSO Results for Excretion_KidneysImpact VS Base BGL for Diabetic Person 23

Table 8. PSO Results for Glycolysis Max Impact VS Base BGL for Normal Person…... 24

Table 9. PSO Results for Glycolysis Max Impact VS Base BGL for Diabetic Person…. 24

Table 10. PSO Results for Glycolysis Min Impact VS Base BGL for Normal Persons….. 25

Table 11. PSO Results for Glycolysis Min Impact VS Base BGL for Diabetic Persons… 25

Table 12. PSO Results for GngImpact VS Base BGL for Normal Persons………………. 26

Table 13. PSO Results for GngImpact VS Base BGL for Diabetic Persons……………... 26

Table 14. PSO Results for Liver glycogen breakdown impact VS Base BGL for normal 27

Table 15. PSO Results for Liver glycogen breakdown impact VS Base BGL for Diabetic 28

Table 16. PSO Results for Liver glycogen synthesis impact VS Base BGL for normal…. 28

Table 17. PSO Results for Liver glycogen synthesis impact VS Base BGL for Diabetic... 29

Table 18. PSO Results for All parameters VS Base Insulin Level for Normal Person 1… 30

Table 19. PSO Results for All parameters VS Base Insulin Level for Normal Person 2… 31

Table 20. PSO Results for All parameters VS Base Insulin Level for Diabetic Person 1... 32

Table 21. PSO Results for All parameters VS Base Insulin Level for Diabetic Person 2... 33

vii

Table 22. Default Parameters For BSO…………………………………………………… 34

Table 23. BSO Results for Peak Insulin Level Vs Base BGL for Normal Persons………. 35

Table 24. BSO Results for Peak Insulin Level VS Base BGL for Diabetic Persons……... 36

Table 25. BSO Results for Glut4Impact VS Base BGL for Normal Persons…………….. 36

Table 26. BSO Results for Glut4Impact VS Base BGL for Diabetic Persons……………. 37

Table 28. BSO Results for Excretion_KidneysImpact VS Base BGL for Normal Person 37

Table 29. BSO Results for Excretion_KidneysImpact VS Base BGL for Diabetic Person 38

Table 30. BSO Results for Glycolysis Max Impact VS Base BGL for Normal Person….. 38

Table 31. BSO Results for Glycolysis Max Impact VS Base BGL for Diabetic Person…. 39

Table 32. BSO Results for Glycolysis Min Impact VS Base BGL for Normal Persons…. 40

Table 33. BSO Results for Glycolysis Min Impact VS Base BGL for Diabetic Persons… 40

Table 34. BSO Results for GngImpact VS Base BGL for Normal Persons……………… 41

Table 35. BSO Results for GngImpact VS Base BGL for Diabetic Persons……………... 41

Table 36. BSO Results for Liver glycogenbreakdownimpact VS Base BGL for normal 42

Table 37. BSO Results for Liver glycogenbreakdownimpact VS Base BGL for Diabetic. 42

Table 38. BSO Results for Liver glycogen synthesis impact VS Base BGL for normal…. 43

Table 39. BSO Results for Liver glycogen synthesis impact VS Base BGL for Diabetic.. 43

Table 40. BSO Results for All parameters VS Base Insulin Level for Normal Person 1… 44

Table 41. BSO Results for All parameters VS Base Insulin Level for Normal Person 2… 44

Table 42. BSO Results for All parameters VS Base Insulin Level for Diabetic Person 1... 45

Table 43. BSO Results for All parameters VS Base Insulin Level for Diabetic Person 2... 46

viii

LIST OF ABBREVIATIONS

ES ECMAScript 4

BGL Blood Glucose Level 5

JS Java Script 5

LLVM Low Level Virtual Machine

PSO Particle Swarm Optimization

BSO Backtracking search Optimization

1

1. INTRODUCTION

According to the latest report by the Centers for Disease Control and Prevention, more than

100 million U.S adults are now living with diabetes or prediabetes. As per the report in 2015,

around 9.4 percent of the U.S. population has diabetes. Another 84.1 million have prediabetes,

which if not treated will lead to type 2 diabetes within five years [12]. People with type-2 diabetes

have a minimum capacity to produce insulin, but their bodies develop insulin resistance and hence

are not able to react strongly to keep their blood glucose level under control, even when the insulin

is present in their blood. The people with Type-1 diabetes must receive insulin by external means

since they cannot produce the insulin endogenously at all. The presence of a high level of BGL in

blood for a long time will result in heart/kidney failure, blindness and limb amputations. People

with diabetes should plan their food and exercise carefully so that they can keep there BGL under

control and lead a happy life. This simulator aims towards helping people to plan their activities

carefully and monitor their BGL minute by minute so that they can keep the BGL under control.

This simulator is based on the discrete event model where the time increments, in units called ticks,

are one minute long and at the beginning of each tick, the simulator will use the food/exercise

events that are present and directs the organs to do work similar to the organs in the human body

during this tick. All the food/exercise events are given by the user to the simulator.

The entire Thesis is divided in to two parts. The first part deals with the translation of a simulator

written in C++ in to Java Script, process followed in the conversion of the code, problems faced

during the conversions were discussed in detail. The type of Java Script used is ES 6 which gives

us more features likes array functions, classes, methods which are more readable and like objected

oriented programming. The main problems faced during the translation are language problems,

updating problems, debugging problems and availability of the packages for the simulator.

2

The next part is to find the best values for the simulation parameters such as

excretionKidney_impact, glut4Impact_, glycolysisMinImpact_, gngImpact_, peakinsulinLevel_,

glycolysisMaxImpact_, liverGlycogenBreakdownImpact_ and liverGlycogensyntheis_Impact so

that when a user gives his target base blood glucose level and peak blood glucose level the

algorithms find the optimum values for the above parameters in minimum time to get the output

within the stipulated range. The normal brute force methods are not useful and so in order to

achieve our targets we need to make sure to limit our search space and reach our target in less time.

The general strategy is that we give the input values randomly and check the output with an

optimization strategy to help search for the optimal solution. This will guide the change in the

input parameters in to the simulation model so that we can reach our targets in less time. The

normal optimization methods that are performed are Gradient based search methods, stochastic

optimization, response surface methodology, Heuristic Methods, A-teams and statistical methods.

The best results for the simulator can be achieved by the Heuristic Methods, which are the latest

developments and best suited for the simulator.

The simulator uses Evolutionary algorithms which imitate the principal of natural evolution

as a method to solve the parameter optimization problems. Two optimization algorithms were used

in order to achieve the best results. Particle swarm optimization and Back tracking search

optimization, which are some of the best optimization algorithms and are simple, take less time to

achieve the result and perfectly satisfy our constraints. Towards the end both the algorithms were

compared and the best one is recommended to optimize the parameters in the simulator.

3

2. Overview of the Process followed in the conversion of

Code from C++ in to JS

The entire process of conversion of the code is divided in to three parts. The first part is

the conversion of all the body organs such as Blood, Kidneys, Adipose Tissue, Brain, Heart, Portal

Vein, Stomach, Intestine, Liver and Muscles were done except Human body. Once all the organs

were translated then the Human body was translated since it is the gateway from which we call all

the organs, specific methods for adding, reading and processing the food, exercise events were

implemented in the human body which were not present in the original code because of the

elimination of the simctl object. All the methods that are present in the simctl object in the original

code were implemented in the human body object.

The overview of the human body object which is the most important part of the simulator

is as follows. The human body object contains three parts. The first part takes the input data in the

form of food event, exercise even and process them in to the priority queues. The second part of

the human body maintains the time and fires the events in the priority queue in the order of their

firing times. The third part maintains the other objects such as Intestine, blood, stomach, portal

vein, liver, kidney, muscles, adipose tissue, brain, heart which are activated at the beginning of

each simulation. At the beginning of each simulation after the first and second parts does their

work, this object reads the different values from the food and exercise events, including the

different parameters that affect the different objects and calls the other objects. The third part also

contains methods that cause the food to be added to the stomach and update the energy needs,

when the first part fires an exercise event. Human body has the cognitive ability to see if the

stomach has some undigested food or not, If the body is doing some exercise or not. There are

4

four variables to determine the above states: Fed Resting, Fed Exercising, Post Absorptive Resting

and Post Absorptive Exercising. These four variables allow the configurable parameters to take

different values which instate help in controlling the other organs. The priority queue object was

changed when compare to its original code so that it can be used in hosting the project on google

firebase.

The third part is the use of packages which are needed for the simulator. Since there are

only limited number of packages available in java script some of the packages are implemented

manually. In other cases, like pseudo random generator even if we implement the code in java

script it is not efficient so C++ addons were used when the packages required were not available

in Java script. All the parts were combined in to a single file so that it can be easily hosted on the

firebase and eliminates the usage of import statements in all the files. All the above were

implemented using the ES6. ES6 was used since it has simple syntax, more readable, and more

features were added like arrow functions, string functions, map objects, classes etc., It is like

objected oriented language syntax which makes it very easy to read, understand and debug.

2.1 IMPLEMENTATION OF THE ORGANS IN JAVA SCRIPT

All the organs such as Blood, Kidneys, Adipose Tissue, Brain, Heart, Portal Vein,

Stomach, Intestine, Liver, Muscles and Human body were implemented using the standard ES6

class implementation. Each class consists of three parts. The first part contains constructor, here

all the values for a class are initialized. The second part contains process Tick method from which

all the remaining methods in the class are called. The third part contains additional methods in the

class which are not part of the first and second parts which can be called from inside and from

outside of the class, provided the class is initialized. In the third part setParams method can be

taken as the best example which can be used in changing the default parameters of the class.

5

2.2 INPUT FOOD AND EXERCISE PARAMETERS DESCRIPTION

For this simulator, the input food parameters are described in terms of item number, name

of the food, serving size, amount of rapidly available glucose, slowly available glucose, protein

and fat per serving. The addFoodType method in the human body is used for inputting the

parameters in to the simulator. The rapidly available glucose contains sugars and rapidly digestible

starch. The slowly available glucose contains slowly digestible starch. The exercise parameters are

given in terms of exercise number, name of the exercise and its intensity in units, of METs with 1

MET is 1 kcal of energy expenditure per kg of body weight per hour. The addExerciseType method

in Human Body is used for inputting the Exercise parameters in to the human body.

2.3 TYPES OF PROBLEMS ENCOUNTERED

There were mainly four types of problems experienced while converting the code from

C++ in to Java Script. They are language problems, updating problems, debugging problems and

availability of packages. The language problems stem from the simulator are from the use of

biological names which sometimes leads to confusion for example glut4Impact and glutImpact

where only number four is missing in the second variable. The presence of many comments in the

code, use of underscores for some variables also contributed to the confusion in the code. There

were some problems from the naming of the variables in the original code because the use of same

names in the Java Script is not allowed and might lead to the crashing of the code. While the code

is being translated in to Java Script, updating the original code has led to some of the major

problems.

The updating of the translated code has become particularly hard since there was no

documentation on the changes made in the original code. So, for each updating entire code has to

be compared with the complete C++ code to get the Java Script code up to date. In some cases,

6

more methods were added in the code which uses some standard packages in C++ which are not

available in Java script. There was no effective debugger available to debug the entire code when

the code is being translated part by part. The only method available is the use of print statements

to see if the code translated is correct or not. It was harder to debug since some of the packages

which were not available in Java Script were compensated with the use of the C++ Addons which

were practically almost impossible to debug. Since the code runs for a long amount of time to get

the result and prints a ton of statements it is also impossible to find the error if the error occurs

after hundred iterations. The built-in debuggers in browsers also are not useful because of the

above reasons.

The availability of the packages for the Java Script has become the major problem in the

conversion of the code. Some of the libraries in C++ like math library, stdlib, apache library are

not available in Java Script. In order to compensate for the missing libraries some of the libraries

were manually implemented. In some cases, like the pseudo random generator is the biggest

problem since the implementation similar to C++ will be more time consuming and not efficient

at all. More than 20 to 25 npm packages were used to get the similar result produced by the random

generator in C++ but to no avail. The similar problem occurred for the use of poisson distribution

from the apache library.

In order to overcome the above problems C++ addons were used. The C++ addons have

higher performance, can have access to all the C++ libraries. nbind package is used in calling the

C++ files that contains the pseudo random generator, then the files are compiled to asm.js which

in turn can be run on the browsers or node JS server. The files are compiled to asm.js using

emscripten, it is built using the LLVM, that lets user run C and C++ on the web at a good speed

without any plugins.

7

2.4 RECOMMENDATIONS FOR AN EFFECTIVE CONVERSION

In order to overcome the above problems, the following steps are recommended so that it

can be easy for a code to be converted from one platform to another. The language problems can

be removed by using simple names and by using of good symbols which are less confusing. The

comments in the middle can be eliminated instead of that a good documentation will provide more

help for solving the language problems and when there is an update, we can simply give

information in the document which will greatly reduce the time for updating the new code. A

separate documentation for the packages will help in finding the packages that are not available in

cross platform library, which can then be obtained either by writing the complete package in the

new platform or finding a work around way like C++ addons. If the dependency on the packages

and libraries is decreased, then the debuggers will help in finding out the problem quickly. Instead

of depending on traditional debuggers like browsers it is useful to use cross platform debuggers

like visual studio, brackets etc.,

If the packages or libraries are not available in the other platform it is better to see if it is efficient

to implement them in the missing platform since if it is not efficient there might be other options

like addons that are available which will help in solving the problem, only after trying all the other

possibilities it is better to implement if there is no other option available. It is always better to use

simple data structures that are easy to implement and that are efficient than those that are complex

and not efficient. If the above recommendations are followed it is easy to convert a code from one

programming language to another programming language efficiently in a small amount of time.

8

3.OVERVIEW OF THE OPTIMIZATION PROCESS

Optimization is the process by which one finds the maximum or minimum value of a function.

Maximization of a function 𝑓 is similar to minimization of the opposite of this function, −𝑓 [11]

.In mathematically a minimization task and maximization task is referred as follows [10, 11]:

Minimization Task:

𝐺𝑖𝑣𝑒𝑛 𝑓 ∶ 𝑅𝑛 → 𝑅

 Find 𝑥̂ ∈ 𝑅𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥̂) ≤ 𝑓(𝑥), ∀ 𝑥 ∈ 𝑅𝑛

Maximization Task:

 𝐺𝑖𝑣𝑒𝑛 𝑓 ∶ 𝑅𝑛 → 𝑅

 Find 𝑥̂ ∈ 𝑅𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥̂) ≥ 𝑓(𝑥), ∀ 𝑥 ∈ 𝑅𝑛

From the above the domain of 𝑓 is 𝑅𝑛 which can be called as parameter space or search space.

there can be many solutions to the function 𝑓 but 𝑥̂ is the best optimal solution in the search space

𝑅𝑛. The value n refers to number of dimensions of the search space and thus the number of

parameters involved in the optimization problem. The function 𝑓 from the above is called the

objective function which takes the input parameters and gives out the result, which is usually a one

dimension.

The optimality for the set of the parameters depends on this fitness value. For a

differentiable function 𝑓, maxima and minima can be easily found out but since the simulator is a

black box it is not possible to find the maximum and minimum values in the normal way. It is to

this black box that we apply the input parameters and the result we get from the black box is value

that needs to be optimized.

9

Figure 1. Optimization Process

3.1 OVERVIEW OF PARTICLE SWARM OPTIMIZATION

Particle swarm optimization is one of the best optimizations and simple evolutionary

algorithm that helps in exploring the search space of a given problem to find the parameters that

achieve the global maximum or global minimum in an optimal amount of time. The main idea for

the algorithm is the idea of swarm intelligence based on the observation of swarming objects by

certain kinds of animals and the field of evolutionary computation.

Initially PSO algorithm randomly chooses the candidate solutions (best parameters) in the

search space, the number of candidate solutions depends on the user. During each iteration of the

algorithm the candidate solution is evaluated by the objective function being optimized,

determining the fitness of that solution. Each candidate solution can be taught as a particle flying

through the fitness landscape (curve generated by the objective function) finding the maximum

and minimum of the objective function. It should be taken in to consideration that PSO has no

information about the underlying curve generated by the objective function hence there is no way

of predicting whether any of the candidate solutions are near to or far away from the local or global

maximum/minimum.

Input Parameters
Simulator / black

box
Output values

Optimization

Algorithm
Stop criteria met Optimization

best results

Yes

No

10

The PSO algorithm simply uses the objective function to evaluate the candidate solutions

and operates up on the resultant fitness values. Each particle of PSO has three main parts that it

maintains. They are the particle position, fitness value and particle velocity. Particles also

remembers the best fitness value it has achieved so far which is referred to as the individual best

fitness value and the corresponding position is referred to as the individual best position so far.

PSO algorithm also maintains the global best fitness value achieved so far from all the particles so

far and the corresponding global best position.

The algorithm performs three main steps until the stop conditions are met. The three main steps

are as follows [11]:

A. Calculate the fitness value (obtained from the objective function) of each particle

B. Change the individual, global best fitness values and positions after each iteration

C. Update the velocity and the position of each particle based on the above calculations.

From the above the first two steps are as follows: fitness evaluation is obtained by the giving the

candidate solution as the input parameters to the objective function. Individual and global best

fitness values and positions are obtained by comparing the newly found fitness values against the

previous individual and global best fitness values and replacing the best fitness and positions as

necessary.

The velocity and the position update of each particle is done in the following ways. The velocity

of each particle in the swarm is updated using the following equation:

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑥̂𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)]

The above equation is used by each particle with index i representing the index of each particle.

The 𝑤 (0.8 ≤ 𝑤 ≤ 1.2), 𝑐1 (𝑐1 ≃ 2), 𝑐2 (𝑐2 ≃ 2) are user defined constants and 𝑟1, 𝑟2 (0 ≤

 𝑟1 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝑟2 ≤ 1) are random values regenerated for each velocity update.

11

 𝑣𝑖(𝑡) ∶ velocity of particle i at time t

𝑥𝑖(𝑡) : position of particle i at time t

𝑤𝑣𝑖(𝑡) : It is called the inertia component which is responsible for making the particle move in

the same original direction. The coefficient 𝑤 is responsible for either dampening or accelerating

the particle movement in its original direction. The lower values helps in getting the result quickly

and the higher values are better for exploring the search space.

𝑐1𝑟1[𝑥̂𝑖(𝑡) − 𝑥𝑖(𝑡)] ∶ It is called the cognitive component. It is used as the particle’s memory,

causing it to return to the regions of search space in which it has experienced high individual fitness

and generally affects the particle’s step size towards its best individual position or candidate

solution.

𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)] : It is called the social component makes the particle to move to the best region

of the search space found so far.

In order to make sure that the particles do not move beyond the boundaries or constraints of the

search space, velocity clamping needs to be done by limiting the maximum velocity of each

particle. For search space bounded by the range [−𝑥𝑚𝑎𝑥, 𝑥𝑚𝑎𝑥], the velocity clamping limits the

velocity to the range [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥], 𝑣𝑚𝑎𝑥 = 𝑘 × 𝑥𝑚𝑎𝑥. The value of the k can be in the range of

0.1 and 1.0 which is generally user defined.

The particle position can be updated as follows:

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)

The above steps are repeated until the stopping conditions are met as shown in the figure below.

The general stopping conditions include limiting the number of iterations, difference in the result

obtained from the candidate solutions is within the preferred range. The algorithm is written in

12

python and the result is calculated in this simulator by combining both the stopping conditions

ways that is described above.

3.2 IMPLEMENTATION OF PARTICLE SWARM OPTIMIZATION

The entire particle swarm optimization is implemented by python. Only NumPy package

was used. All the initial constants that are given at the start of the program are number of particles,

omega, c1, c2, max_iterations, minstep, minfunc, lowerbound, upperbound. All the above

discussed values are given default but can be changed in order to suit the user. For each particle,

the velocity clamping is given at the start of the program and each particle velocity, position and

the best position and the corresponding function values are stored in the separate NumPy arrays.

Then the particles are moved along the curve of the objective function with velocity (calculated as

discussed in the modelling section) to get to the new positions along the curve with the best

position and best fitness value achieved so far is stored by the particle. Once the iterations are done

the best position and the corresponding best fitness value achieved by each particle are returned at

the end from which the target value and the corresponding position values are selected.

13

 Figure 2. Flow chart for Particle Swarm Optimization

Start

Initialization of PSO

particles

Generation of the fitness Solutions

Evaluate the Fitness of all the particles

Find the personal best fitness value for all

the particles

Find the global best particle

Is Stopping

condition for

swarm met?

Stop

No

Update the velocity

of the particles

Update the position

of the particles

Yes

14

3.3 BACKTRACKING SEARCH OPTIMIZATION ALGORITHM

Backtracking search optimization algorithm is an iterative population based evolutionary

algorithm used to find the global minimum. BSA can be divided in to five steps: Initialization,

selection-I, mutation, crossover, selection-II [2, 3, 4]. There are two types of population in the

BSA: evolution population and trial population. The historical information regarding the evolution

population is composed in the trial population. There is a search direction matrix is built by the

trial population and the evolution population to update the positions of individuals. The general

structure of the BSA is as follows:

A. Initialization: BSA initializes the initial population P and the historical population 𝑜𝑙𝑑𝑃 as

follows:

𝑃𝑖𝑗 ∼ 𝑈(𝑙𝑜𝑤𝑗, 𝑢𝑝𝑗)

𝑜𝑙𝑑𝑃𝑖𝑗 ∼ 𝑈(𝑙𝑜𝑤𝑗, 𝑢𝑝𝑗)

Where i = 1,2, 3,…,N (N is the population Size) and j = 1,2,3,4,………,D(D is the problem

dimension or parameter dimension), U is the uniform distribution and each 𝑃𝑖 is the target

individual in the population P.

B. Selection-I: In this stage the 𝑜𝑙𝑑𝑃 is introduced in BSA by the following conditions:

𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 𝑜𝑙𝑑𝑃 ∶= 𝑃|𝑎, 𝑏 ~ 𝑈(0,1)

Where: = is the update operation that the population belonging to a randomly selected previous

generation as the historical population to be used in the generation of a search direction matrix,

which allows taking advantages of old experiences to generate a trial population and remembers

the historical population until it is changed, which resulting BSA to have memory. Once 𝑜𝑙𝑑𝑃 is

calculated then the order of the values in 𝑜𝑙𝑑𝑃 is randomly changed.

𝑜𝑙𝑑𝑃 ∶= 𝑝𝑒𝑟𝑚𝑢𝑡𝑖𝑛𝑔(𝑜𝑙𝑑𝑃)

15

C. Mutation: The initial trail population mutant is calculated using the following equation:

𝑀𝑢𝑡𝑎𝑛𝑡 = 𝑃 + 𝐹 × (𝑜𝑙𝑑𝑃 − 𝑃)

F controls the amplitude of the search amplitude with value being set by user. Since BSA uses

the historical population to calculate the search direction, BSA generates a trail population by

taking advantage from the previous generations. The value of F can be found out by trying

repeated values and selecting the best value from the options that have been tried.

D. Crossover: In this stage the final form of the trial population T is generated. Mutant from

the mutation process is the initial value for the cross over. Two strategies are used in the crossover

to define the BSA’s map. A binary integer-valued matrix (map) of size N X D is calculated which

indicates the individuals of the trial population T that needs to be manipulated by using the relevant

individuals of current population P, the individuals of T are updated only when the following

condition is satisfied:

𝑖𝑓 𝑚𝑎𝑝𝑛,𝑚 = 1 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ {1,2,3,4, … … . , 𝑁}𝑎𝑛𝑑 𝑚 ∈ {1,2,3,4, … . . 𝐷}, 𝑇𝑛,𝑚 ≔ 𝑃𝑛,𝑚

the first strategy is the use of mix rate parameter that controls the number of elements of individuals

that will mutate in a trial, the other strategy uses only one randomly chosen individual to mutate

in each trial. In order to make sure that the trial population values obtained at the end of the

crossover process is within the search space checks are performed at the end to see if the trial

populations generated by the crossover is within the limits if not then those trial population values

are regenerated.

E. Selection-II: In BSA’s second selection process, if the fitness value of trail population

individual 𝑇𝑖 is better than that of original population 𝑃𝑖 then 𝑇𝑖will update 𝑃𝑖 , once the above

process is repeated for all the current population, we select the 𝑃𝑏𝑒𝑠𝑡 . Towards the end final check

16

is done 𝑃𝑏𝑒𝑠𝑡 is compared with the current global minimum value if 𝑃𝑏𝑒𝑠𝑡 is better than the global

minimum value then this value is returned with the corresponding 𝑃𝑏𝑒𝑠𝑡 fitness value.

The flow chart for the backtracking optimization is as follows:

17

 Figure 3. Flow chart for Backtracking Search Optimization

Start

Initialization

Selection-I

Generation of Trial

Population: Mutation

-

Crossover

Selection-II

Is Stopping

condition

met?

Stop

Yes

No

18

3.4 IMPLEMENTATION OF BACKTRACKING SEARCH OPTIMIZATION

The backtracking search optimization algorithm uses the following packages: NumPy,

random, math. The initial parameters given by the user are the objective function, population,

lower bound, upper bound, max iterations and the mixrate. All the above parameters are default

but can be changed by the user. At the start the size and the dimension variable are initialized with

the population and length of the upper bound. The remaining variables are initialized with the zero

values with the corresponding length depending on the type of the variable. In the first part the

Initial_parameter_values variable and the old_parameter_values variable is filled with the

random values within the constraints as explained in the previous section. The fitness_p variable

has the values obtained by calling the objective function with the initial_parameter_values and the

param_values as the input variables. The selection-I stage starts with the initialization of four

variables a, b, c, d with random values and then the old_parameter values are changed with the

initial_parameter_values when value of a is than b. Then the permutation of the

old_parameter_values take place and the mutant variable is calculated as discussed in the previous

section. For the crossover stage map variable is initialized with the NumPy array with size and

the dimension as its input parameters.

In the crossover stage, generation of trail population is performed as discussed in the previous

section. The boundary control mechanism is implemented as follows: every value in the trail

population is checked to see of it is lower than the lower bound or higher than the higher bound if

it is, new values are produced to replace the current values in the trail population. Finally,

selection-II stage takes place in which the fitness_t is initialized with the target values which are

obtained by calling the objective function with trail population as the input parameters. Then every

fitness_t value is checked with fitness_p value to see if it is less than the later, if so then that

19

particular value is copied in to fitness_t value and the corresponding Trail population value is

copied in to the Initial_parameter_values variable. Then the best minimum and the corresponding

parameters values are returned.

3.5 OBJECTIVE FUNCTION

The packages used in the objective function are subprocess, OS. The objective function is the

one that calls the simulator with input parameters from the evolutionary algorithms and gives out

the target values. The main methods in the objective function are run_simulator, read_file and

modify_params. The run_simulator takes names of the parameters and the corresponding values

as the input parameters. In the run_simulator the modify_params method is called with each

parameter name, corresponding value and the file where the modification of the value needs to

take place. The above process is done until all the values in the input parameters file are changed.

Once the modifications of the input parameters file is complete the diabetic simulator is called

with food, exercise, input parameters and events text files as the input. The output text file

produced by the simulator contains the target values.

If the text file is present, then there is a method called read_file reads the file from the directory

which checks for the target values in the file and returns them. The target values are converted in

to float data types so that they can be used by the evolutionary algorithms. If the text file is not

present, then input values to the run_simulator is changed by incrementing each value by 0.01 and

the run_simulator method is called with the new input values; the above process is repeated until

the simulator produces a valid text file.

20

4. RESULTS

The optimization algorithms used in the previous section were used in order to achieve

the best optimized values to the simulation parameters. Different default values are taken and

tried on different target values to test which algorithm will give the best result. The below Table

1 describes the default parameters taken for PSO algorithm.

DEFAULT PARAMETERS DEFAULT VALUES

Number of Particles 20

omega 0.8

C1 0.8

C2 0.8

Max_iterations 30

Objective function run_Simulator

Lower bound [0,0,0,0,1,1,1,0]

Upper bound [1,1,1,1,2.6,2,3,2]

Table 1: Default Parameters For PSO

The above parameters from Table 1 can be changed as per the user requirement but the

values above are selected after extensive testing to see which will work best in small amount of

time and gives out the best result possible. The other default variables like min step, min function

is left to the user discretion. The below Table 2 and Table 3 represents the best values for the peak

insulin level parameter when trying to optimize the parameter and the corresponding base blood

glucose level obtained. The default values from Table 1 were used. four base BGL values were

21

tested with two normal person readings with target base BGL values as 85, 65 and two for diabetic

person readings with target base BGL values as 210, 220

Peak Insulin Level

For Person 1

Base BGL Peak Insulin Level

For Person 2

Base

BGL

1.0 90.097 1.0 70.256

1.0 90.097 1.0 70.256

1.0 90.097 1.0 70.256

1.0 90.097 1.0 70.256

1.0 90.097 1.0 70.256

1.0 90.097 1.0 70.256

 Total Time Taken in Seconds 76.88 Total Time Taken in Seconds 84.019

Table 2: PSO Results for Peak Insulin Level VS Base BGL for Normal Persons

Peak Insulin Level

For Person 3

Base BGL Peak Insulin Level

For Person 4

Base

BGL

1.0 216.315 0.45131204 221.153

1.0 216.315 0.2841238 221.153

1.0 216.315 0.00515574 221.153

1.0 216.315 0.09473472 221.153

1.0 216.315 0.39059779 221.153

1.0 216.315 0.29715696 221.153

 Total Time Taken in Seconds 82.281 Total Time Taken in Seconds 47.500

Table 3: PSO Results for Peak Insulin Level VS Base BGL for Diabetic Persons

22

The following Table 4, Table 5 gives the optimized results for the parameter glut4Impact

and the corresponding result obtained for the target value Base BGL for two normal persons and

two diabetic persons

Glut4Impact_

For Person 1

Base BGL Glut4Impact_

For Person 2

Base

BGL

1.0 90.097 0.94376497 70.147

1.0 90.097 1.0 70.256

1.0 90.097 s0.93539366 70.15

1.0 90.097 0.93647323 70.15

1.0 90.097 0.91961868 70.156

1.0 90.097 0.91264966 70.158

 Total Time Taken in Seconds 77.21 Total Time Taken in Seconds 76.820

Table 4: PSO Results for Glut4Impact VS Base BGL for Normal Persons

Glut4Impact_

For Person 3

Base BGL Glut4Impact_

For Person 4

Base

BGL

1.0 216.315 0.43352566 70.147

1.0 216.315 0.13864778 70.256

1.0 216.315 0.11110498 70.15

1.0 216.315 0.29124837 70.15

1.0 216.315 0.470699 70.156

1.0 216.315 0.56624767 70.158

 Total Time Taken in Seconds 83.99 Total Time Taken in Seconds 48.785

Table 5: PSO Results for Glut4Impact VS Base BGL for Diabetic Persons

23

The following Table 6, Table 7 gives the optimized results for the parameter

ExcretionKidneysImpact and the corresponding result obtained for the target value Base BGL for

two normal persons and two diabetic persons

Excretion_Kidneys_Impact

For Person 1

Base

BGL

Excretion_Kidneys_Impact

For Person 2

Base

BGL

0.29096885 90.097 0.21918861 70.256

0.55928564 90.097 0.07241679 70.256

0.73581576 90.097 0.07326758 70.256

0.61736362 90.097 0.0286695 70.256

0.23467464 90.097 0.09186598 70.256

0.72257251 90.097 0.97044313 70.256

 Total Time Taken in Seconds 75.279 Total Time Taken in Seconds 81.251

Table 6: PSO Results for Excretion_Kidneys_Impact VS Base BGL for Normal Persons

Excretion_Kidneys_Impact

For Person 3

Base

BGL

Excretion_Kidneys_Impact

For Person 4

Base

BGL

1.0 216.315 1.0 221.154

1.0 216.315 1.0 221.154

1.0 216.315 1.0 221.154

1.0 216.315 1.0 221.154

1.0 216.315 1.0 221.154

1.0 216.315 1.0 221.154

 Total Time Taken in Seconds 82.009 Total Time Taken in Seconds 49.19

Table 7: PSO Results for Excretion_Kidneys_Impact VS Base BGL for Diabetic Persons

24

The following Table 8, Table 9 gives the optimized results for the parameter Glycolysis

Max Impact and the corresponding result obtained for the target value Base BGL for two normal

persons and two diabetic persons

Glycolysis Max Impact_

For Person 1

Base BGL Glycolysis Max Impact_

For Person 2

Base

BGL

0.50266605 90.096 0 69.93

1.0 90.097 0 69.93

0.11100267 90.069 0 69.93

0.74868698 90.097 0 69.93

0.21673699 90.055 0 69.93

0.41997839 90.096 0 69.93

 Total Time Taken in Seconds 68.093 Total Time Taken in Seconds 82.908

Table 8: PSO Results for Glycolysis Max Impact VS Base BGL for Normal Persons

Glycolysis Max Impact_

For Person 3

Base BGL Glycolysis Max Impact_

For Person 4

Base

BGL

0.65076068 216.313 0.05193917 220.879

0.83420672 216.314 0 219.739

0.67716967 216.313 0.67609391 221.154

0.71747981 216.314 0.67977369 221.154

0.61424417 216.313 0.84438597 221.153

0.4137003 216.312 0.64155555 221.154

 Total Time Taken in Seconds 84.066 Total Time Taken in Seconds 51.148

Table 9: PSO Results for Glycolysis Max Impact VS Base BGL for Diabetic Persons

25

The following Table 10, Table 11 gives the optimized results for the parameter Glycolysis

Min Impact and the corresponding result obtained for the target value Base BGL for two normal

persons and two diabetic persons

Glycolysis Min Impact_

For Person 1

Base BGL Glycolysis Min Impact_

For Person 2

Base

BGL

2.6 49.394 2.48 47.371

2.6 49.394 2.48 47.371

2.6 49.394 2.48 47.371

2.6 49.394 2.48 47.371

2.6 49.394 2.48 47.371

2.6 49.394 2.48 47.371

 Total Time Taken in Seconds 72.44 Total Time Taken in Seconds 82.941

Table 10: PSO Results for Glycolysis Min Impact VS Base BGL for Normal Persons

Glycolysis Min Impact_

For Person 3

Base BGL Glycolysis Min Impact_

For Person 4

Base

BGL

2.6 153.33 2.6 161.398

2.6 153.33 2.6 161.398

2.6 153.33 2.6 161.398

2.6 153.33 2.6 161.398

2.6 153.33 2.6 161.398

2.6 153.33 2.6 161.398

 Total Time Taken in Seconds 82.63 Total Time Taken in Seconds 60.522

Table 11: PSO Results for Glycolysis Min Impact VS Base BGL for Diabetic Persons

26

The following Table 12, Table 13 gives the optimized results for the parameter Gngimpact

and the corresponding result obtained for the target value Base BGL for two normal persons and

two diabetic persons

Gngimpact_

For Person 1

Base BGL Gngimpact_

For Person 2

Base BGL

1.07602018 90.244 1.0 70.256

1.28072756 90.365 1.05609868 70.199

1.01509422 90.203 1.16960161 70.422

1.68485988 90.437 1.0 70.256

1.80299544 90.51 1.0 70.256

1.20764332 90.298 1.03315241 70.252

 Total Time Taken in Seconds 82.30 Total Time Taken in Seconds 79.353

Table 12: PSO Results for Gngimpact VS Base BGL for Normal Persons

Gngimpact_

For Person 3

Base

BGL

Gngimpact_

For Person 4

Base BGL

1.07602018 90.244 1.23520293 226.07

1.28072756 90.365 1.0 221.154

1.01509422 90.203 1.22361401 226.016

1.68485988 90.437 1.47523068 229.151

1.80299544 90.51 1.59664566 230.302

1.20764332 90.298 1.09205639 224.246

Total Time Taken in Seconds 82.30 Total Time Taken in Seconds 59.28

27

Liver glycogen breakdown impact_

For Person 1

Base

BGL

Liver glycogen breakdown

impact_

For Person 2

Base BGL

3.00 90.74 1.55387236 70.426

3.00 90.74 1.85836697 70.176

2.1608399 90.268 3.0 70.556

3.00 90.74 3.0 70.556

1.03977021 90.241 1.14304327 70.447

3.00 90.74 3.0 70.556

 Total Time Taken in Seconds 79.172 Total Time Taken in Seconds 82.886

Table 14: PSO Results for Liver glycogen breakdown impact

VS Base BGL for Normal Persons

The above Table 14 and the following Table 15 gives the optimized results for the parameter Liver

glycogen breakdown impact and the corresponding result obtained for the target value Base BGL

for two normal persons and two diabetic persons

28

Liver glycogen breakdown

impact_

For Person 3

Base

BGL

Liver glycogen breakdown impact_

For Person 4

Base

BGL

2.04016265 224.71 1.64817374 233.243

1.00 216.315 1.36553881 232.479

2.09629051 224.914 1.15301331 230.699

1.78265385 224.476 2.22368001 232.952

1.11847139 221.845 1.56818727 233.476

1.11038572 221.7 1.8516473 232.498

 Total Time Taken in Seconds 89.551 Total Time Taken in Seconds 54.93

Table 15: PSO Results for Liver glycogen breakdown impact VS Base BGL for Diabetic Persons

Liver glycogen synthesis impact_

For Person 1

Base

BGL

Liver glycogen synthesis

impact_ For Person 2

Base

BGL

1.06266536 90.097 1.6248759 70.256

1.6029004 90.097 0.27343285 70.256

0.15922384 90.097 1.86066542 70.256

0.51183072 90.097 1.39346859 70.256

0.63642105 90.097 0.84694322 70.256

0.83930959 90.097 0.19794895 70.256

 Total Time Taken in Seconds 87.407 Total Time Taken in Seconds 78.521

Table 16 : PSO Results for Liver glycogen synthesis impact VS Base BGL for normal Persons

29

The above Table 16 and the following Table 17 gives the optimized results for the

parameter Liver glycogen breakdown impact and the corresponding result obtained for the target

value Base BGL for two normal persons and two diabetic persons

Liver glycogen synthesis impact_

For Person 3

Base

BGL

Liver glycogen synthesis

impact_ For Person 4

Base

BGL

1.31854762 216.315 1.15006378 221.154

1.74282836 216.315 1.38608173 221.154

0.92724289 216.315 0.43499451 221.154

1.41644504 216.315 1.49906613 221.154

1.54382273 216.315 0.19208556 221.154

0.49920034 216.315 0.17476342 221.154

 Total Time Taken in Seconds 76.455 Total Time Taken in Seconds 50.386

Table 17 : PSO Results for Liver glycogen synthesis impact VS Base BGL for Diabetic Persons

The following Table 18, Table 19,Table 20, Table 21 gives the optimized results for all the

parameters when they are optimized simultaneously, and the corresponding result obtained for the

target value Base BGL for two normal persons and two diabetic persons.

30

ALL PARAMETERS For Person 1

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[1.00, 1.00, 1.00, 1.00, 2.6, 2.00,

 3.00, 2.00]

91.233

[1.00, 0.48026442, 0.7328305, 0.53927757, 2.22460243, 1.28185344,

 1.06039945, 1.6489434]

90.269

[1.00, 1.00, 1.00, 1.00, 2.6, 2.00,

 3.00, 2.00]

91.233

[1.00, 1.00, 1.00, 1.00, 2.6, 2.00,

 3.00, 2.00]

91.233

[1. 00, 0.43167145, 0.85076422, 1.00, 2.50903026, 1.00,

 1.05164298, 1.61682025]

87.764

Total Time Taken in Seconds 114.994

Table 18: PSO Results for All parameters VS Base Insulin Level for Normal Person 1

31

ALL PARAMETERS for Person 2

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[1.00, 0.80267567, 0.19140465, 0.26503051, 1.01214847,

1.64748161,

 1.00, 0.00]

70.676

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

72.77

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

72.77

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

72.77

[1.0, 1.0, 1.0, 0.3248848, 2.6, 2.0,

 2.2013757, 2.0,]

70.901

Total Time Taken in Seconds 100.690

Table 19: PSO Results for All parameters VS Base Insulin Level for Normal Person 2

32

ALL PARAMETERS for Person 3

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[1. 0.80267567 0.19140465 0.26503051 1.01214847 1.64748161

 1. 0.]

225.791

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

225.791

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

225.791

[0.83744434, 0.44545871, 0.5694835,1 0.11961833, 1.23480395,

1.42902886,

 2.5970932, 1.37833681]

225.6

[1. 0, 0.38977069, 0.50943915, 0.70592026, 1.47440696, 1.08025955,

 2.14941114, 0.66348723]

225.571

Total Time Taken in Seconds 116.103

Table 20: PSO Results for All parameters VS Base Insulin Level for Diabetic Person 1

33

ALL PARAMETERS for Person 4

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

234.746

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

234.746

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

234.746

[1.0, 0.0, 0.46320527, 0.34247484, 2.19886617, 1.75386451,

 1.91659592, 0.5154897]

234.242

[1.0, 1.0, 1.0, 1.0, 2.6, 2.0,

 3.0, 2.0]

234.746

Total Time Taken in Seconds 76.8700

Table 21: PSO Results for All parameters VS Base Insulin Level for Diabetic Person 2

Once the results from PSO are completed, then backtracking search optimization algorithm is

used. The default parameters used for BSO are as follows:

34

DEFAULT PARAMETERS DEFAULT VALUES

Number of Particles 20

mixrate 1

Max_iterations 30

Objective function run_Simulator

Lower bound [0,0,0,0,1,1,1,0]

Upper bound [1,1,1,1,2.6,2,3,2]

Table 22: Default Parameters For BSO

The number of particles for the BSO are kept same as for PSO so that the results obtained from

them can be compared and the best result can be selected. Explanation about the remaining

parameters were already discussed in the previous section.

The below Table 23 and Table 24 represents the best values for the peak insulin level parameter

when trying to optimize the parameter and the corresponding base blood glucose level obtained.

The default values in the set-1 from Table 22 were used. four base BGL values were tested with

two normal person readings with target base BGL values as 85, 65 and two for diabetic person

readings with target base BGL values as 210, 220

35

Peak Insulin Level

For Person 1

Base

BGL

Peak Insulin Level

For Person 2

Base BGL

0.63045641 93.105 0.71532218 72.233

0.7847314 91.567 0.11377095 110.043

0.41083913 97.522 0.8235889 71.419

0.51611326 94.837 0.44512869 76.55

0.62261828 93.207 0.89195959 70.749

0.8975474 91.097 0.94819649 70.517

 Total Time Taken in Seconds 68.6358 Total Time Taken in Seconds 93.6015

Table 23: BSO Results for Peak Insulin Level VS Base BGL for Normal Persons

Peak Insulin Level

For Person 3

Base

BGL

Peak Insulin Level

For Person 4

Base BGL

0.94243926 216.585 0.84182194 221.154

0.59247127 219.478 0.07552246 221.153

0.49397011 219.706 0.35856075 221.153

0.39532866 220.426 0.5585874 221.153

0.95388153 216.529 0.41672234 221.153

0.32538228 220.647 0.9605197 221.153

 Total Time Taken in Seconds 74.325 Total Time Taken in Seconds 75.501

Table 24: BSO Results for Peak Insulin Level VS Base BGL for Diabetic Persons

The following Table 25, Table 26 gives the optimized results for the parameter glut4Impact and

the corresponding result obtained for the target value Base BGL for two normal persons and two

diabetic persons

36

Glut4Impact_

For Person 1

Base

BGL

Glut4Impact_

For Person 2

Base

BGL

0.5622236 90.238 0.5458499 70.264

0.1625295 90.336 0.2554479 70.285

0.8878838 90.294 0.011499 70.282

0.2630831 90.325 0.7072489 70.308

0.5449272 90.277 0.3206086 70.349

0.2578622 90.183 0.5938540 70.338

 Total Time Taken in Seconds 64.6696 Total Time Taken in Seconds 86.6575

Table 25: BSO Results for Glut4Impact VS Base BGL for Normal Persons

Glut4Impact_

For Person 3

Base

BGL

Glut4Impact_

For Person 4

Base

BGL

0.33791689 220.438 0. 97413509 221.154

0.48805967 219.698 0. 91728942 221.153

0.3030013 220.599 0. 246709754 221.153

0.70604479 218.601 0. 78809182 221.153

0.10267349 220.598 0. 74656145 221.153

0.57273568 219.627 0. 69836465 221.154

 Total Time Taken in Seconds 67.2530 Total Time Taken in Seconds 88.785

Table 26: BSO Results for Glut4Impact VS Base BGL for Diabetic Person

The following Table 27, Table 28 gives the optimized results for the parameter

ExcretionKidneysImpact and the corresponding result obtained for the target value Base BGL for

two normal persons and two diabetic persons

37

Excretion_Kidneys_Impact

For Person 1

Base BGL Excretion_Kidneys_Impact

For Person 2

Base BGL

0.18096885 90.097 0.26118861 70.256

0.1915564 90.097 0.16241679 70.256

0.92881576 90.097 0.27326758 70.256

0.72136362 90.097 0.0391795 70.256

0.11467464 90.097 0.81664551 70.256

0.61148251 90.097 0.89294145 70.256

 Total Time Taken in Seconds 62.8907 Total Time Taken in Seconds 81.251

Table 27: BSO Results for Excretion_Kidneys_Impact VS Base BGL for Normal Persons

Excretion_Kidneys_Impact

For Person 3

Base

BGL

Excretion_Kidneys_Impact

For Person 4

Base BGL

0.38940983 221.277 0.56186546 227.106

0.4425218 221.037 0.00302721 231.467

0.49845855 220.661 0.58969395 226.836

0.94523439 216.771 0.343568 229.736

0.8773414 216.771 0.67875115 226.005

0.03246337 222.082 0.18582175 230.617

 Total Time Taken in Seconds 65.343 Total Time Taken in Seconds 89.19

Table 28: BSO Results for Excretion_Kidneys_Impact VS Base BGL for Diabetic Persons

The following Table 29, Table 30 gives the optimized results for the parameter Glycolysis Max

Impact and the corresponding result obtained for the target value Base BGL for two normal persons

and two diabetic persons

38

Glycolysis Max Impact_

For Person 1

Base BGL Glycolysis Max Impact_

For Person 2

Base

BGL

0.65815454 90.096 0.3394361 70.255

0.6094395 90.097 0.71569252 70.255

0.98363614 90.069 0.5295703 70.255

0.35445705 90.097 0.53466406 70.255

0.76690436 90.055 0.44092094 70.255

0.61743304 90.096 0.37332785 70.255

 Total Time Taken in Seconds 70.994 Total Time Taken in Seconds 67.9721

Table 29: BSO Results for Glycolysis Max Impact VS Base BGL for Normal Persons

Glycolysis Max Impact_

For Person 3

Base BGL Glycolysis Max Impact_

For Person 4

Base

BGL

0.2460428 217.028 0.21007382 220.588

0.71400805 216.314 0.91649989 221.154

0.27060409 216.777 0.613974 221.154

0.75672746 216.314 0.39886162 221.154

0.96789538 216.315 0.5365226 221.153

0.91492068 216.314 0.479396 221.154

 Total Time Taken in Seconds 66.528 Total Time Taken in Seconds 97.178

Table 30 : BSO Results for Glycolysis Max Impact VS Base BGL for Diabetic Persons

39

Glycolysis Min Impact_

For Person 1

Base BGL Glycolysis Min Impact_

For Person 2

Base

BGL

1.2350804 90.034 1.2350804 70.255

1.55232713 89.532 1.55232713 68.255

2.18514348 86.196 2.18514348 72.255

1.89016624 87.666 1.87168754 70.255

1.1494015 86.198 2.12926955 70.255

1.14508933 85.725 2.25173747 70.255

 Total Time Taken in Seconds 62.2660 Total Time Taken in Seconds 62.5660

Table 31: BSO Results for Glycolysis Min Impact VS Base BGL for Normal Persons

The above Table 30, Table 31 gives the optimized results for the parameter Glycolysis Min Impact

and the corresponding result obtained for the target value Base BGL for two normal persons and

two diabetic persons.

Glycolysis Min Impact_

For Person 3

Base BGL Glycolysis Min Impact_

For Person 4

Base

BGL

1.61100046 212.04 1.22611737 220.485

1.91374013 209.362 1.85033173 210.753

2.13807488 203.876 1.87787603 209.641

2.33676765 184.948 1.47584879 219.947

2.26638149 194.294 2.09180469 203.866

1.79370349 210.49 1.08190227 220.955

 Total Time Taken in Seconds 64.38 Total Time Taken in Seconds 60.85

Table 32: BSO Results for Glycolysis Min Impact VS Base BGL for Diabetic Persons

40

The following Table 32, Table 33 gives the optimized results for the parameter Gngimpact

and the corresponding result obtained for the target value Base BGL for two normal persons and

two diabetic persons

Gngimpact_

For Person 1

Base BGL Gngimpact_

For Person 2

Base

BGL

1.13596161 90.258 1.24683801 70.377

1.34572531 90.306 1.4982994 70.484

1.94268336 90.689 1.86728336 70.588

1.36386042 90.406 1.66719412 70.652

1.29540806 90.329 1.28813649 70.38

1.28665140 90.401 1.00020243 70.256

 Total Time Taken in Seconds 68.588 Total Time Taken in Seconds 75.812

Table 33: BSO Results for Gngimpact VS Base BGL for Normal Persons

Gngimpact_

For Person 3

Base BGL Gngimpact_

For Person 4

Base

BGL

1.58950327 222.315 1.64083281 230.236

1.4074984 221.415 1.21210221 226.246

1.96931886 223.315 1.90708991 231.642

1.91335093 223.228 1.08491702 224.398

1.25512664 220.073 1.85595124 231.334

1.22685545 219.46 1.81086172 231.362

 Total Time Taken in Seconds 79.082 Total Time Taken in Seconds 67.163

41

Liver glycogen breakdown

impact_

For Person 1

Base BGL Liver glycogen breakdown

impact_

For Person 2

Base

BGL

2.92133056 90.974 1.1179864 70.373

1.33333666 90.88 1.4076446 70.639

1.13284268 90.59 2.1996278 70.476

2.31684984 92.49 2.4544109 70.709

1.38185836 90.703 2.7662488 72.282

2.54369610 92.564 2.13396425 70.415

 Total Time Taken in Seconds 61.866 Total Time Taken in Seconds 80.6623

Table 35: BSO Results for Liver glycogen breakdown impact

VS Base BGL for Normal Persons

The above Table 34 and the following Table 35 gives the optimized results for the parameter Liver

glycogen breakdown impact and the corresponding result obtained for the target value Base BGL

for two normal persons and two diabetic persons.

42

Liver glycogen breakdown

impact_

For Person 3

Base BGL Liver glycogen breakdown

impact_

For Person 4

Base

BGL

1.49880163 223.956 1.50892756 232.68

1.10626734 221.588 2.36839415 233.905

2.21001199 224.898 1.44381775 232.755

2.17085486 224.825 2.8106602 234.408

2.020817 224.695 1.82751893 233.444

2.98296008 225.529 1.64842339 233.136

 Total Time Taken in Seconds 64.4300 Total Time Taken in Seconds 62.651

Table 36: BSO Results for Liver glycogen breakdown impact VS Base BGL for Diabetic Persons

Liver glycogen synthesis

impact_

For Person 1

Base BGL Liver glycogen synthesis

impact_

For Person 2

Base

BGL

1.86266536 90.097 1.4348759 70.256

0.4019004 90.097 1.17343285 70.256

0.25922384 90.097 0. 59954435 70.256

1.41183072 90.097 0.9812132 70.256

0.73642105 90.097 0.29953322 70.256

0.63730959 90.097 1.70706263 70.256

 Total Time Taken in Seconds 91.1500 Total Time Taken in Seconds 86.4083

Table 37: BSO Results for Liver glycogen synthesis impact VS Base BGL for normal Persons

43

The above Table 36 and the following Table 37 gives the optimized results for the parameter Liver

glycogen breakdown impact and the corresponding result obtained for the target value Base BGL

for two normal persons and two diabetic persons.

Liver glycogen synthesis impact_

For Person 3

Base

BGL

Liver glycogen synthesis

impact_

For Person 4

Base

BGL

1.81854762 216.315 1.25006378 221.154

0.74282836 216.315 1.08608173 221.154

1.92724289 216.315 0.13499451 221.154

0.21544504 216.315 1.49906613 221.154

0.18660652 216.315 0.09208556 221.154

1.25846948 216.315 0.17476342 221.154

 Total Time Taken in Seconds 62.21487 Total Time Taken in Seconds 71.3017

Table 38 : BSO Results for Liver glycogen synthesis impact VS Base BGL for Diabetic Persons

The following Table 38, Table 39,Table 40, Table 41 gives the optimized results for all the

parameters when they are optimized simultaneously, and the corresponding result obtained for the

target value Base BGL for two normal persons and two diabetic persons.

44

ALL PARAMETERS for Person 1

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[0.94254, 0.58480, 0.71906, 0.67798, 2.11756, 1.61109,

 1.78030, 0.95920]

90.881

[0.99135, 0.56380, 0.45853, 0.40605, 2.22007, 1.32425,

 1.1440, 0.96767]

90.684

[0.96791, 0.75857385, 0.58628911, 0.23586533, 2.15352894, 1.08876751,

 1.16764261, 0.90296606]

90.694

[0.98634, 0.96031976, 0.74735705, 0.25968725, 1.21214801, 1.23935211,

 1.91508426, 1.14723646]

90.456

[0.980175, 0.7276766, 0.3323185, 0.54250536, 2.35426185, 1.04140811,

 1.61993372, 1.55566482]

90.634

Total Time Taken in Seconds 92.155

Table 39: BSO Results for All parameters VS Base Insulin Level for Normal Person 1

45

ALL PARAMETERS for Person 2

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[9.78643382e-01, 3.18088777e-01, 4.45493787e-01, 5.27859647e-01,

 1.88629497e+00, 1.22351083e+00, 1.99397313e+00, 3.12201057e-01,]

70.56

[9.93035522e-01, 2.41867442e-01, 3.64171981e-01, 6.33956118e-01,

 2.34656099e+00, 1.27942521e+00, 1.83020194e+00, 4.51538614e-01]

70.278

[9.59482279e-01, 8.33195338e-01, 7.77417489e-01, 9.20324891e-01,

 2.53647130e+00, 1.13251156e+00, 2.33404441e+00, 1.78472220e+00]

70.456

[9.62826678e-01, 2.11538332e-01, 6.00544496e-01, 7.18996412e-01

 2.03607768e+00, 1.23125882e+00, 1.82734242e+00, 1.80158187e-01]

70.547

[9.65270790e-01, 4.50256748e-01, 6.84622208e-01, 3.36105549e-01,

 2.34437592e+00, 1.06165120e+00, 1.97112233e+00, 1.51435798e+00]

70.448

Total Time Taken in Seconds 93.875

Table 40: BSO Results for All parameters VS Base Insulin Level for Normal Person 2

46

ALL PARAMETERS for Person 3

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[0.986640, 0.971946, 0.9172778, 0.7854954, 2.1168844, 1.1776016

 1.0645389, 0.89262833]

216.561

[0.980419, 0.7495797, 0.8647664, 0.7924713, 2.0678876, 1.1540305

 1.2190351, 0.88072326]

222.995

[0.927892, 0.9631095, 0.92440285, 0.7903968, 2.03728157, 1.2053211,

 1.0623311, 0.9873743]

218.411

[0.687966, 0.936486, 0.6948846, 0.81807955, 2.39094365, 1.21073746,

 1.0072162, 0.7355212]

213.323

[0.752939, 0.760464, 0.5754805, 0.88900648, 2.25934356, 1.03649003,

 1.0155326, 1.3218796]

214.24

Total Time Taken in Seconds 84.20

Table 41: BSO Results for All parameters VS Base Insulin Level for Diabetic Person 1

47

ALL PARAMETERS for Person 4

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_",

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_",

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"]

Base BGL

[0.90235644, 0.77128509, 0.99439871, 0.63518877, 2.1449474

,1.06722795,

 1.04790122, 0.32443425]

216.544

[0.95047154, 0.75134496, 0.22164981, 0.72177402, 2.40014228,

1.03905967,

 1.02929895, 0.98930637]

218.866

[0.85813637, 0.90876273, 0.56849679, 0.64790913, 2.02484856,

1.02909449,

 1.02163069, 0.29078909]

221.13

[0.93903119, 0.67705747, 0.40288944, 0.71089436, 2.08522135,

1.21630063,

 1.02152426, 0.38985107]

229.841

[0.91220444, 0.76790614, 0.46314111, 0.4017865, 1.84763729,

1.18510195

 1.0280084,8 1.02211823]

231.751

Total Time Taken in Seconds 86.8700

Table 42: BSO Results for All parameters VS Base Insulin Level for Diabetic Person 2

48

5. Discussion and Conclusion

In the preceding chapter, we presented the results of the parameters from the particle swarm

optimization and backtracking search optimization algorithms. If we take particle swarm

optimization algorithm in to consideration the results obtained for all the parameters for normal

persons are within the margin of error except for parameter glycolysis_Min_Impact_, here we are

obtaining the margin of error as 50 percent which is not acceptable. when we are trying to optimize

all the parameters at the same time the best result from the Table 18 is 90.269 for person 1 and

70.676 for person 2 , which are in the acceptable margin of error, But for the two diabetic persons

we get the values of about 225.65 and 234.242 which are greater than the margin of error and are

not acceptable .The average time taken for single parameter optimization is about 75 seconds and

for all the parameters is 100 seconds. There are two problems with PSO: three constants need to

be given which are calculated after experimenting with different range of values, which is not

efficient. The second problem is that there might be a case when there is a global minimum which

is not our target value as in the case of glycolysis_Min_Impact_ which might result in a large

margin of error. Hence a more advanced and simpler algorithm backtracking search optimization

algorithm was used which would address those issues.

The results produce by the back-tracking search optimization from the previous section are

almost similar to the results produced by the brute force method values. The back-tracking search

optimization algorithm is efficient and there is only one constant that needs to be given at the

starting of the algorithm which is far better than the three constants in the particle swarm

optimization algorithm. From the results point of view, it will never stuck at any local minimum

and the graphs produced are similar to the brute force method graphs. From the Table 38, Table

39, Table 40 and Table 41, the margin of error is also very small when compared to the particle

49

swarm optimization algorithm. Therefore, it is better to use the backtracking search optimization

algorithm for optimizing the parameters. The results produced from the simulator are within the

permissible error limits. Hence the objective of conversion and optimization of the simulator is

achieved.

5.1 FUTURE RESEARCH

Since the computing power has increased at a great pace, it is better to venture in to the

world of machine learning and deep learning for optimizing the parameters. If there is a good

amount of data available, then using the machine learning algorithms like polynomial regression,

support vector machines and decision trees will achieve a better result in less amount of time. Since

the data is structured, we can also use deep neural networks to train on the data, to achieve the

correct results, but using the deep neural networks takes a lot of time and is less recommended.

If better optimization is required then it is recommended to use teacher learner model, learning

back tracking search optimization and hybrid back tracking search optimization to achieve the

better results, since these are better when the search space increases in the number of dimensions.

If there is a need for multi objective optimization the above discussed algorithms can be used with

the application of pareto principle, if more efficiency is required for multi objective optimization

problems non-dominated ranked genetic algorithms 1 and 2 are recommended which gives the

result within the permissible range and are also efficient [6].

From the efficiency point of view when releasing the simulator to the public, it is strictly

recommended not to use any optimizing algorithms as they would take a lot of time. It is

recommended to use online learning algorithms which will result in better speed, efficiency and

less computing power.

50

 REFERENCES

[1] Backtracking Search Algorithm with three constraint handling methods for constrained

optimization problems Chunjiang Zhang-Qun Lin-Liang Gao-Xinyu Li - Expert Systems

with Applications – 2015

[2] Backtracking Search Optimization Algorithm for numerical optimization problems

 Pinar Civicioglu - Applied Mathematics and Computation – 2013

[3] A differential invasive weed optimization algorithm for improved global numerical

optimization Aniruddha Basak-Dipankar Maity-Swagatam Das - Applied Mathematics and

Computation – 2013

[4] Learning backtracking search optimisation algorithm and its application

 Debao Chen-Feng Zou-Renquan Lu-Peng Wang - Information Sciences – 2017

[5] Backtracking search optimization algorithm based on knowledge learning

 Debao Chen-Feng Zou-Renquan Lu-Suwen Li - Information Sciences – 2019

[6] Multi-objective backtracking search algorithm for economic emission dispatch problem

 Mostafa Modiri-Delshad-Nasrudin Rahim - Applied Soft Computing – 2016

[7] A review on simulation-based optimization methods applied to building performance

analysis Anh-Tuan Nguyen-Sigrid Reiter-Philippe Rigo - Applied Energy – 2014

[8] Simulation optimization Yolanda Carson-Anu Maria - Proceedings of the 29th conference

on Winter simulation - WSC 1997

[9] An Improved Particle Swarm Optimization for Optimal Power Flow Dieu Vo-Peter

Schegner - Meta-Heuristics Optimization Algorithms in Engineering, Business,

Economics, Finance.

[10] Particle Swarm Optimization Riccardo Poli-James Kennedy-Tim Blackwell - Swarm

Intelligence – 2007

[11] An Analysis of Particle Swarm Optimizers, Frans van den Berg, PhD thesis, University of

Pretoria – 2001

[12] National Diabetics Statistics Report, Estimates of Diabetes and Its Burden in the United

States - 2017

	University of Wisconsin Milwaukee
	UWM Digital Commons
	December 2018

	Conversion of a Simulator Written in C++ to JS and Optimizing the Simulation Parameters Using Evolutionary Algorithms
	Venkata Sivasai Pavan Kumar Lottala
	Recommended Citation

	tmp.1551362413.pdf.twmlk

