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ABSTRACT 
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A discrete event simulator written in C++ is converted in to Java Script, that tracks the 

blood glucose level of a person in response to a timed sequence of diet and exercise activities. Its 

main objective is to capture the average impact of the various diet/exercise activities on the blood 

glucose level. The main aim for translation of the code in to Java Script is that the simulator can 

be hosted on the Google Firebase Cloud and can be available for the public use. The optimization 

of the simulator parameters such as excretionKidney_impact, glut4Impact_, 

glycolysisMinImpact_, gngImpact_, peakinsulinLevel_, glycolysisMaxImpact_, 

liverGlycogenBreakdownImpact_ and liverGlycogensyntheis_Impact is done using evolutionary 

algorithms, where the simulator is given base blood glucose level and peak blood glucose level as 

the input parameters to the simulator. The output produced from the evolutionary algorithms are 

compared and the best one is recommended. 
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1. INTRODUCTION 

According to the latest report by the Centers for Disease Control and Prevention, more than 

100 million U.S adults are now living with diabetes or prediabetes. As per the report in 2015, 

around 9.4 percent of the U.S. population has diabetes. Another 84.1 million have prediabetes, 

which if not treated will lead to type 2 diabetes within five years [12]. People with type-2 diabetes 

have a minimum capacity to produce insulin, but their bodies develop insulin resistance and hence 

are not able to react strongly to keep their blood glucose level under control, even when the insulin 

is present in their blood. The people with Type-1 diabetes must receive insulin by external means 

since they cannot produce the insulin endogenously at all. The presence of a high level of BGL in 

blood for a long time will result in heart/kidney failure, blindness and limb amputations. People 

with diabetes should plan their food and exercise carefully so that they can keep there BGL under 

control and lead a happy life. This simulator aims towards helping people to plan their activities 

carefully and monitor their BGL minute by minute so that they can keep the BGL under control. 

This simulator is based on the discrete event model where the time increments, in units called ticks, 

are one minute long and at the beginning of each tick, the simulator will use the food/exercise 

events that are present and directs the organs to do work similar to the organs in the human body 

during this tick. All the food/exercise events are given by the user to the simulator. 

The entire Thesis is divided in to two parts. The first part deals with the translation of a simulator 

written in C++ in to Java Script, process followed in the conversion of the code, problems faced 

during the conversions were discussed in detail.  The type of Java Script used is ES 6 which gives 

us more features likes array functions, classes, methods which are more readable and like objected 

oriented programming. The main problems faced during the translation are language problems, 

updating problems, debugging problems and availability of the packages for the simulator.  
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The next part is to find the best values for the simulation parameters such as  

excretionKidney_impact, glut4Impact_, glycolysisMinImpact_, gngImpact_, peakinsulinLevel_, 

glycolysisMaxImpact_, liverGlycogenBreakdownImpact_ and liverGlycogensyntheis_Impact so 

that when a user gives his target base blood glucose level and peak blood glucose level the 

algorithms find the optimum values for the above parameters in minimum time to get the output 

within the stipulated range. The normal brute force methods are not useful and so in order to 

achieve our targets we need to make sure to limit our search space and reach our target in less time. 

The general strategy is that we give the input values randomly and check the output with an 

optimization strategy to help search for the optimal solution. This will guide the change in the 

input parameters in to the simulation model so that we can reach our targets in less time. The 

normal optimization methods that are performed are Gradient based search methods, stochastic 

optimization, response surface methodology, Heuristic Methods, A-teams and statistical methods. 

The best results for the simulator can be achieved by the Heuristic Methods, which are the latest 

developments and best suited for the simulator.  

The simulator uses Evolutionary algorithms which imitate the principal of natural evolution 

as a method to solve the parameter optimization problems. Two optimization algorithms were used 

in order to achieve the best results. Particle swarm optimization and Back tracking search 

optimization, which are some of the best optimization algorithms and are simple, take less time to 

achieve the result and perfectly satisfy our constraints. Towards the end both the algorithms were 

compared and the best one is recommended to optimize the parameters in the simulator.  
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2. Overview of the Process followed in the conversion of 

Code from C++ in to JS 

The entire process of conversion of the code is divided in to three parts. The first part is 

the conversion of all the body organs such as Blood, Kidneys, Adipose Tissue, Brain, Heart, Portal 

Vein, Stomach, Intestine, Liver and Muscles were done except Human body. Once all the organs 

were translated then the Human body was translated since it is the gateway from which we call all 

the organs, specific methods for adding, reading and processing the food, exercise events were 

implemented in the human body which were not present in the original code because of the 

elimination of the simctl object. All the methods that are present in the simctl object in the original 

code were implemented in the human body object.  

The overview of the human body object which is the most important part of the simulator 

is as follows. The human body object contains three parts. The first part takes the input data in the 

form of food event, exercise even and process them in to the priority queues. The second part of 

the human body maintains the time and fires the events in the priority queue in the order of their 

firing times.  The third part maintains the other objects such as Intestine, blood, stomach, portal 

vein, liver, kidney, muscles, adipose tissue, brain, heart which are activated at the beginning of 

each simulation. At the beginning of each simulation after the first and second parts does their 

work, this object reads the different values from the food and exercise events, including the 

different parameters that affect the different objects and calls the other objects. The third part also 

contains methods that cause the food to be added to the stomach and update the energy needs, 

when the first part fires an exercise event. Human body has the cognitive ability to see if the 

stomach has some undigested food or not, If the body is doing some exercise or not. There are 
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four variables to determine the above states: Fed Resting, Fed Exercising, Post Absorptive Resting 

and Post Absorptive Exercising. These four variables allow the configurable parameters to take 

different values which instate help in controlling the other organs. The priority queue object was 

changed when compare to its original code so that it can be used in hosting the project on google 

firebase.   

The third part is the use of packages which are needed for the simulator. Since there are 

only limited number of packages available in java script some of the packages are implemented 

manually. In other cases, like pseudo random generator even if we implement the code in java 

script it is not efficient so C++ addons were used when the packages required were not available 

in Java script. All the parts were combined in to a single file so that it can be easily hosted on the 

firebase and eliminates the usage of import statements in all the files. All the above were 

implemented using the ES6. ES6 was used since it has simple syntax, more readable, and more 

features were added like arrow functions, string functions, map objects, classes etc., It is like 

objected oriented language syntax which makes it very easy to read, understand and debug.  

2.1 IMPLEMENTATION OF THE ORGANS IN JAVA SCRIPT 

All the organs such as Blood, Kidneys, Adipose Tissue, Brain, Heart, Portal Vein, 

Stomach, Intestine, Liver, Muscles and Human body were implemented using the standard ES6 

class implementation. Each class consists of three parts. The first part contains constructor, here 

all the values for a class are initialized. The second part contains process Tick method from which 

all the remaining methods in the class are called. The third part contains additional methods in the 

class which are not part of the first and second parts which can be called from inside and from 

outside of the class, provided the class is initialized. In the third part setParams method can be 

taken as the best example which can be used in changing the default parameters of the class.  
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2.2 INPUT FOOD AND EXERCISE PARAMETERS DESCRIPTION 

For this simulator, the input food parameters are described in terms of item number, name 

of the food, serving size, amount of rapidly available glucose, slowly available glucose, protein 

and fat per serving. The addFoodType method in the human body is used for inputting the 

parameters in to the simulator. The rapidly available glucose contains sugars and rapidly digestible 

starch. The slowly available glucose contains slowly digestible starch. The exercise parameters are 

given in terms of exercise number, name of the exercise and its intensity in units, of METs with 1 

MET is 1 kcal of energy expenditure per kg of body weight per hour. The addExerciseType method 

in Human Body is used for inputting the Exercise parameters in to the human body.  

2.3 TYPES OF PROBLEMS ENCOUNTERED 

There were mainly four types of problems experienced while converting the code from 

C++ in to Java Script. They are language problems, updating problems, debugging problems and 

availability of packages. The language problems stem from the simulator are from the use of 

biological names which sometimes leads to confusion for example glut4Impact and glutImpact 

where only number four is missing in the second variable. The presence of many comments in the 

code, use of underscores for some variables also contributed to the confusion in the code. There 

were some problems from the naming of the variables in the original code because the use of same 

names in the Java Script is not allowed and might lead to the crashing of the code. While the code 

is being translated in to Java Script, updating the original code has led to some of the major 

problems.  

The updating of the translated code has become particularly hard since there was no 

documentation on the changes made in the original code. So, for each updating entire code has to 

be compared with the complete C++ code to get the Java Script code up to date. In some cases, 
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more methods were added in the code which uses some standard packages in C++ which are not 

available in Java script. There was no effective debugger available to debug the entire code when 

the code is being translated part by part. The only method available is the use of print statements 

to see if the code translated is correct or not. It was harder to debug since some of the packages 

which were not available in Java Script were compensated with the use of the C++ Addons which 

were practically almost impossible to debug. Since the code runs for a long amount of time to get 

the result and prints a ton of statements it is also impossible to find the error if the error occurs 

after hundred iterations. The built-in debuggers in browsers also are not useful because of the 

above reasons.  

The availability of the packages for the Java Script has become the major problem in the 

conversion of the code. Some of the libraries in C++ like math library, stdlib, apache library are 

not available in Java Script. In order to compensate for the missing libraries some of the libraries 

were manually implemented. In some cases, like the pseudo random generator is the biggest 

problem since the implementation similar to C++ will be more time consuming and not efficient 

at all. More than 20 to 25 npm packages were used to get the similar result produced by the random 

generator in C++ but to no avail. The similar problem occurred for the use of poisson distribution 

from the apache library.  

In order to overcome the above problems C++ addons were used. The C++ addons have 

higher performance, can have access to all the C++ libraries.  nbind package is used in calling the 

C++ files that contains the pseudo random generator, then the files are compiled to asm.js which 

in turn can be run on the browsers or node JS server. The files are compiled to asm.js using 

emscripten, it is built using the LLVM, that lets user run C and C++ on the web at a good speed 

without any plugins.  
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2.4 RECOMMENDATIONS FOR AN EFFECTIVE CONVERSION  

In order to overcome the above problems, the following steps are recommended so that it 

can be easy for a code to be converted from one platform to another. The language problems can 

be removed by using simple names and by using of good symbols which are less confusing. The 

comments in the middle can be eliminated instead of that a good documentation will provide more 

help for solving the language problems and when there is an update, we can simply give 

information in the document which will greatly reduce the time for updating the new code. A 

separate documentation for the packages will help in finding the packages that are not available in 

cross platform library, which can then be obtained either by writing the complete package in the 

new platform or finding a work around way like C++ addons. If the dependency on the packages 

and libraries is decreased, then the debuggers will help in finding out the problem quickly. Instead 

of depending on traditional debuggers like browsers it is useful to use cross platform debuggers 

like visual studio, brackets etc.,  

If the packages or libraries are not available in the other platform it is better to see if it is efficient 

to implement them in the missing platform since if it is not efficient there might be other options  

like addons that are available which will help in solving the problem, only after trying all the other 

possibilities it is better to implement if there is no other option available. It is always better to use 

simple data structures that are easy to implement and that are efficient than those that are complex 

and not efficient.  If the above recommendations are followed it is easy to convert a code from one 

programming language to another programming language efficiently in a small amount of time.  
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3.OVERVIEW OF THE OPTIMIZATION PROCESS  

Optimization is the process by which one finds the maximum or minimum value of a function. 

Maximization of a function 𝑓  is similar to minimization of the opposite of this function, −𝑓 [11] 

.In mathematically a minimization task and maximization task is referred as follows [10, 11]: 

Minimization Task: 

𝐺𝑖𝑣𝑒𝑛 𝑓 ∶ 𝑅𝑛  → 𝑅 

      Find 𝑥̂  ∈ 𝑅𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥̂) ≤ 𝑓(𝑥), ∀ 𝑥 ∈  𝑅𝑛 

Maximization Task: 

     𝐺𝑖𝑣𝑒𝑛 𝑓 ∶ 𝑅𝑛  → 𝑅 

      Find 𝑥̂  ∈ 𝑅𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥̂) ≥ 𝑓(𝑥), ∀ 𝑥 ∈  𝑅𝑛 

From the above the domain of 𝑓 is 𝑅𝑛 which can be called as parameter space or search space. 

there can be many solutions to the function 𝑓 but 𝑥̂ is the best optimal solution in the search space 

𝑅𝑛. The value n refers to number of dimensions of the search space and thus the number of 

parameters involved in the optimization problem. The function 𝑓 from the above is called the 

objective function which takes the input parameters and gives out the result, which is usually a one 

dimension.  

The optimality for the set of the parameters depends on this fitness value. For a 

differentiable function 𝑓, maxima and minima can be easily found out but since the simulator is a 

black box it is not possible to find the maximum and minimum values in the normal way. It is to 

this black box that we apply the input parameters and the result we get from the black box is value 

that needs to be optimized.   
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Figure 1. Optimization Process  

3.1 OVERVIEW OF PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization is one of the best optimizations and simple evolutionary 

algorithm that helps in exploring the search space of a given problem to find the parameters that 

achieve the global maximum or global minimum in an optimal amount of time. The main idea for 

the algorithm is the idea of swarm intelligence based on the observation of swarming objects by 

certain kinds of animals and the field of evolutionary computation.  

Initially PSO algorithm randomly chooses the candidate solutions (best parameters) in the 

search space, the number of candidate solutions depends on the user. During each iteration of the 

algorithm the candidate solution is evaluated by the objective function being optimized, 

determining the fitness of that solution. Each candidate solution can be taught as a particle flying 

through the fitness landscape (curve generated by the objective function) finding the maximum 

and minimum of the objective function. It should be taken in to consideration that PSO has no 

information about the underlying curve generated by the objective function hence there is no way 

of predicting whether any of the candidate solutions are near to or far away from the local or global 

maximum/minimum.  
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The PSO algorithm simply uses the objective function to evaluate the candidate solutions 

and operates up on the resultant fitness values.  Each particle of PSO has three main parts that it 

maintains. They are the particle position, fitness value and particle velocity. Particles also 

remembers the best fitness value it has achieved so far which is referred to as the individual best 

fitness value and the corresponding position is referred to as the individual best position so far. 

PSO algorithm also maintains the global best fitness value achieved so far from all the particles so 

far and the corresponding global best position.  

The algorithm performs three main steps until the stop conditions are met. The three main steps 

are as follows [11]: 

A. Calculate the fitness value (obtained from the objective function) of each particle 

B. Change the individual, global best fitness values and positions after each iteration 

C. Update the velocity and the position of each particle based on the above calculations. 

From the above the first two steps are as follows: fitness evaluation is obtained by the giving the 

candidate solution as the input parameters to the objective function. Individual and global best 

fitness values and positions are obtained by comparing the newly found fitness values against the 

previous individual and global best fitness values and replacing the best fitness and positions as 

necessary.  

The velocity and the position update of each particle is done in the following ways. The velocity 

of each particle in the swarm is updated using the following equation: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑥̂𝑖(𝑡) −  𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔(𝑡) −  𝑥𝑖(𝑡)] 

The above equation is used by each particle with index i representing the index of each particle. 

The 𝑤 (0.8 ≤  𝑤 ≤ 1.2 ), 𝑐1 (𝑐1 ≃ 2), 𝑐2 (𝑐2 ≃ 2) are user defined constants and 𝑟1, 𝑟2 (0 ≤

 𝑟1 ≤ 1 𝑎𝑛𝑑 0 ≤  𝑟2  ≤ 1 ) are random values regenerated for each velocity update. 
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 𝑣𝑖(𝑡)   ∶  velocity of particle i at time t  

𝑥𝑖(𝑡)   :  position of particle i at time t 

𝑤𝑣𝑖(𝑡) : It is called the inertia component which is responsible for making the particle move in 

the same original direction. The coefficient  𝑤 is responsible for either dampening or accelerating 

the particle movement in its original direction.  The lower values helps  in  getting the result quickly 

and the higher values are better for exploring the search space.  

𝑐1𝑟1[𝑥̂𝑖(𝑡) −  𝑥𝑖(𝑡)] ∶ It is called the cognitive component. It is used as the particle’s memory, 

causing it to return to the regions of search space in which it has experienced high individual fitness 

and generally affects the particle’s step size towards its best individual position or candidate 

solution. 

𝑐2𝑟2[𝑔(𝑡) −  𝑥𝑖(𝑡)]  : It is called the social component makes the particle to move to the best region 

of the search space found so far.  

In order to make sure that the particles do not move beyond the boundaries or constraints of the 

search space, velocity clamping needs to be done by limiting the maximum velocity of each 

particle. For search space bounded by the range [−𝑥𝑚𝑎𝑥, 𝑥𝑚𝑎𝑥], the velocity clamping limits the 

velocity to the range [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥], 𝑣𝑚𝑎𝑥 = 𝑘 × 𝑥𝑚𝑎𝑥. The value of the k can be in the range of 

0.1 and 1.0 which is generally user defined. 

The particle position can be updated as follows:  

    𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) +  𝑣𝑖(𝑡 + 1) 

The above steps are repeated until the stopping conditions are met as shown in the figure below. 

The general stopping conditions include limiting the number of iterations, difference in the result 

obtained from the candidate solutions is within the preferred range. The algorithm is written in 
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python and the result is calculated in this simulator by combining both the stopping conditions 

ways that is described above.  

3.2 IMPLEMENTATION OF PARTICLE SWARM OPTIMIZATION 

The entire particle swarm optimization is implemented by python. Only NumPy package 

was used. All the initial constants that are given at the start of the program are number of particles, 

omega, c1, c2, max_iterations, minstep, minfunc, lowerbound, upperbound. All the above 

discussed values are given default but can be changed in order to suit the user. For each particle, 

the velocity clamping is given at the start of the program and each particle velocity, position and 

the best position and the corresponding function values are stored in the separate NumPy arrays. 

Then the particles are moved along the curve of the objective function with velocity (calculated as 

discussed in the modelling section) to get to the new positions along the curve with the best 

position and best fitness value achieved so far is stored by the particle. Once the iterations are done 

the best position and the corresponding best fitness value achieved by each particle are returned at 

the end from which the target value and the corresponding position values are selected. 
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3.3 BACKTRACKING SEARCH OPTIMIZATION ALGORITHM 

Backtracking search optimization algorithm is an iterative population based evolutionary 

algorithm used to find the global minimum. BSA can be divided in to five steps: Initialization, 

selection-I, mutation, crossover, selection-II [2, 3, 4]. There are two types of population in the 

BSA: evolution population and trial population. The historical information regarding the evolution 

population is composed in the trial population. There is a search direction matrix is built by the 

trial population and the evolution population to update the positions of individuals. The general 

structure of the BSA is as follows: 

A. Initialization: BSA initializes the initial population P and the historical population 𝑜𝑙𝑑𝑃 as 

follows: 

𝑃𝑖𝑗  ∼  𝑈(𝑙𝑜𝑤𝑗, 𝑢𝑝𝑗) 

𝑜𝑙𝑑𝑃𝑖𝑗  ∼  𝑈(𝑙𝑜𝑤𝑗, 𝑢𝑝𝑗) 

Where i = 1,2, 3,…,N (N is the population Size) and j = 1,2,3,4,………,D(D is the problem 

dimension or parameter dimension), U is the uniform distribution and each 𝑃𝑖 is the target 

individual in the population P. 

B. Selection-I: In this stage the 𝑜𝑙𝑑𝑃 is introduced in BSA by the following conditions: 

𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 𝑜𝑙𝑑𝑃 ∶= 𝑃|𝑎, 𝑏 ~ 𝑈(0,1) 

Where: = is the update operation that the population belonging to a randomly selected previous 

generation as the historical population to be used in the generation of a search direction matrix, 

which allows taking advantages of old experiences to generate a trial population and remembers 

the historical population until it is changed, which resulting BSA to have memory. Once 𝑜𝑙𝑑𝑃 is 

calculated then the order of the values in 𝑜𝑙𝑑𝑃 is randomly changed.  

𝑜𝑙𝑑𝑃 ∶= 𝑝𝑒𝑟𝑚𝑢𝑡𝑖𝑛𝑔(𝑜𝑙𝑑𝑃) 
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C. Mutation: The initial trail population mutant is calculated using the following equation: 

𝑀𝑢𝑡𝑎𝑛𝑡 =  𝑃 + 𝐹 × (𝑜𝑙𝑑𝑃 − 𝑃) 

F controls the amplitude of the search amplitude with value being set by user. Since BSA uses 

the historical population to calculate the search direction, BSA generates a trail population by 

taking advantage from the previous generations. The value of F can be found out by trying 

repeated values and selecting the best value from the options that have been tried.  

D. Crossover: In this stage the final form of the trial population T is generated. Mutant from 

the mutation process is the initial value for the cross over. Two strategies are used in the crossover 

to define the BSA’s map. A binary integer-valued matrix (map) of size N X D is calculated which 

indicates the individuals of the trial population T that needs to be manipulated by using the relevant 

individuals of current population P, the individuals of T are updated only when the following 

condition is satisfied: 

𝑖𝑓 𝑚𝑎𝑝𝑛,𝑚 = 1 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ {1,2,3,4, … … . , 𝑁}𝑎𝑛𝑑 𝑚 ∈ {1,2,3,4, … . . 𝐷}, 𝑇𝑛,𝑚 ≔  𝑃𝑛,𝑚 

the first strategy is the use of mix rate parameter that controls the number of elements of individuals 

that will mutate in a trial, the other strategy uses only one randomly chosen individual to mutate 

in each trial. In order to make sure that the trial population values obtained at the end of the 

crossover process is within the search space checks are performed at the end to see if the trial 

populations generated by the crossover is within the limits if not then those trial population values 

are regenerated. 

E. Selection-II: In BSA’s second selection process, if the fitness value of trail population 

individual 𝑇𝑖 is better than that of original population 𝑃𝑖 then 𝑇𝑖will update 𝑃𝑖 , once the above 

process is repeated for all the current population, we select the 𝑃𝑏𝑒𝑠𝑡 . Towards the end final check 
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is done 𝑃𝑏𝑒𝑠𝑡 is compared with the current global minimum value if 𝑃𝑏𝑒𝑠𝑡 is better than the global 

minimum value then this value is returned with the corresponding 𝑃𝑏𝑒𝑠𝑡 fitness value. 

The flow chart for the backtracking optimization is as follows: 
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3.4 IMPLEMENTATION OF BACKTRACKING SEARCH OPTIMIZATION 

The backtracking search optimization algorithm uses the following packages: NumPy, 

random, math. The initial parameters given by the user are the objective function, population, 

lower bound, upper bound, max iterations and the mixrate. All the above parameters are default 

but can be changed by the user.  At the start the size and the dimension variable are initialized with 

the population and length of the upper bound. The remaining variables are initialized with the zero 

values with the corresponding length depending on the type of the variable. In the first part the 

Initial_parameter_values variable  and the old_parameter_values variable is filled with the   

random values within the constraints as explained in the previous section. The fitness_p variable 

has the values obtained by calling the objective function with the initial_parameter_values and the 

param_values as the input variables. The selection-I stage starts with the initialization of four 

variables a, b, c, d with random values and then the old_parameter values are changed with the 

initial_parameter_values when value of a is than b. Then the permutation of the 

old_parameter_values take place and the mutant variable is calculated as discussed in the previous 

section. For the crossover stage map variable is initialized with the NumPy array with  size and 

the dimension as its input parameters.  

In the crossover stage, generation of trail population is performed as discussed in the previous 

section. The boundary control mechanism is implemented as follows: every value in the trail 

population is checked to see of it is lower than the lower bound or higher than the higher bound if 

it is, new values are produced to replace the current values in the trail population. Finally, 

selection-II stage takes place in which the fitness_t is initialized with the target values which are 

obtained by calling the objective function with trail population as the input parameters. Then every 

fitness_t value is checked with fitness_p value to see if it is less than the later, if so then that 



 

19 

 

particular value is copied in to fitness_t value and the corresponding Trail population value is 

copied in to the Initial_parameter_values variable. Then the best minimum and the corresponding 

parameters values are returned.  

3.5 OBJECTIVE FUNCTION 

The packages used in the objective function are subprocess, OS. The objective function is the 

one that calls the simulator with input parameters from the evolutionary algorithms and gives out 

the target values. The main methods in the objective function are run_simulator, read_file and 

modify_params. The run_simulator takes names of the parameters and the corresponding values 

as the input parameters. In the run_simulator the modify_params method is called with each 

parameter name, corresponding value and the file where the modification of the value needs to 

take place. The above process is done until all the values in the input parameters file are changed. 

Once the modifications of the input parameters file is complete the diabetic simulator is called 

with food, exercise, input parameters and events text files as the input. The output text file 

produced by the simulator contains the target values.   

If the text file is present, then there is a method called read_file reads the file from the directory 

which checks for the target values in the file and returns them. The target values are converted in 

to float data types so that they can be used by the evolutionary algorithms. If the text file is not 

present, then input values to the run_simulator is changed by incrementing each value by  0.01 and 

the run_simulator method is called with the new input values; the above process is repeated until 

the simulator produces a valid text file.   
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4. RESULTS 

The optimization algorithms used in the previous section were used in order to achieve 

the best optimized values to the simulation parameters. Different default values are taken and 

tried on different target values to test which algorithm will give the best result. The below Table 

1 describes the default parameters taken for PSO algorithm. 

DEFAULT PARAMETERS DEFAULT VALUES 

Number of Particles 20 

omega 0.8 

C1 0.8 

C2 0.8 

Max_iterations 30 

Objective function run_Simulator 

Lower bound [0,0,0,0,1,1,1,0] 

Upper bound [1,1,1,1,2.6,2,3,2] 

Table 1: Default Parameters For PSO 

 

The above parameters from Table 1 can be changed as per the user requirement but the 

values above are selected after extensive testing to see which will work best in small amount of 

time and gives out the best result possible. The other default variables like min step, min function 

is left to the user discretion. The below Table 2 and Table 3 represents the best values for the peak 

insulin level parameter when trying to optimize the parameter and the corresponding base blood 

glucose level obtained. The default values from Table 1 were used. four base BGL values were 
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tested with two normal person readings with target base BGL values as 85, 65 and two for diabetic 

person readings with target base BGL values as 210, 220 

Peak Insulin Level 

For Person 1 

Base BGL Peak Insulin Level 

For Person 2 

Base 

BGL 

1.0 90.097 1.0 70.256 

1.0 90.097 1.0 70.256 

1.0 90.097 1.0 70.256 

1.0 90.097 1.0 70.256 

1.0 90.097 1.0 70.256 

1.0 90.097 1.0 70.256 

 Total Time Taken in Seconds  76.88  Total Time Taken in Seconds 84.019 

Table 2: PSO Results for Peak Insulin Level VS Base BGL for Normal Persons 

 

Peak Insulin Level 

For Person 3 

Base BGL Peak Insulin Level 

For Person 4 

Base 

BGL 

1.0 216.315 0.45131204 221.153 

1.0 216.315 0.2841238 221.153 

1.0 216.315 0.00515574 221.153 

1.0 216.315 0.09473472 221.153 

1.0 216.315 0.39059779 221.153 

1.0 216.315 0.29715696 221.153 

 Total Time Taken in Seconds  82.281 Total Time Taken in Seconds 47.500 

Table 3: PSO Results for Peak Insulin Level VS Base BGL for Diabetic Persons 
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The following Table 4, Table 5 gives the optimized results for the parameter glut4Impact 

and the corresponding result obtained for the target value Base BGL for two normal persons and 

two diabetic persons  

Glut4Impact_ 

For Person 1 

Base BGL Glut4Impact_ 

For Person 2 

Base 

BGL 

1.0 90.097 0.94376497 70.147 

1.0 90.097 1.0 70.256 

1.0 90.097 s0.93539366 70.15   

1.0 90.097 0.93647323 70.15   

1.0 90.097 0.91961868 70.156 

1.0 90.097 0.91264966 70.158 

 Total Time Taken in Seconds  77.21 Total Time Taken in Seconds 76.820 

Table 4: PSO Results for Glut4Impact VS Base BGL for Normal Persons 

Glut4Impact_ 

For Person 3 

Base BGL Glut4Impact_ 

For Person 4 

Base 

BGL 

1.0 216.315 0.43352566 70.147 

1.0 216.315 0.13864778 70.256 

1.0 216.315 0.11110498 70.15   

1.0 216.315 0.29124837 70.15   

1.0 216.315 0.470699 70.156 

1.0 216.315 0.56624767 70.158 

 Total Time Taken in Seconds  83.99 Total Time Taken in Seconds 48.785 

Table 5: PSO Results for Glut4Impact VS Base BGL for Diabetic Persons 
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The following Table 6, Table 7 gives the optimized results for the parameter 

ExcretionKidneysImpact and the corresponding result obtained for the target value Base BGL for 

two normal persons and two diabetic persons  

Excretion_Kidneys_Impact 

For Person 1 

Base 

BGL 

Excretion_Kidneys_Impact 

For Person 2 

Base 

BGL 

0.29096885 90.097 0.21918861 70.256 

0.55928564 90.097 0.07241679 70.256 

0.73581576 90.097 0.07326758 70.256 

0.61736362 90.097 0.0286695 70.256 

0.23467464 90.097 0.09186598 70.256 

0.72257251 90.097 0.97044313 70.256 

 Total Time Taken in Seconds  75.279 Total Time Taken in Seconds 81.251 

Table 6: PSO Results for Excretion_Kidneys_Impact VS Base BGL for Normal Persons 

Excretion_Kidneys_Impact 

For Person 3 

Base 

BGL 

Excretion_Kidneys_Impact 

For Person 4 

Base 

BGL 

1.0 216.315 1.0 221.154 

1.0 216.315 1.0 221.154 

1.0 216.315 1.0 221.154 

1.0 216.315 1.0 221.154 

1.0 216.315 1.0 221.154 

1.0 216.315 1.0 221.154 

 Total Time Taken in Seconds  82.009 Total Time Taken in Seconds 49.19 

Table 7: PSO Results for Excretion_Kidneys_Impact VS Base BGL for Diabetic Persons 
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The following Table 8, Table 9 gives the optimized results for the parameter Glycolysis 

Max Impact and the corresponding result obtained for the target value Base BGL for two normal 

persons and two diabetic persons  

Glycolysis Max Impact_ 

For Person 1 

Base BGL Glycolysis Max Impact_ 

For Person 2 

Base 

BGL 

0.50266605 90.096 0 69.93 

1.0 90.097 0 69.93 

0.11100267 90.069 0 69.93 

0.74868698 90.097 0 69.93 

0.21673699 90.055 0 69.93 

0.41997839 90.096 0 69.93 

 Total Time Taken in Seconds  68.093 Total Time Taken in Seconds 82.908 

Table 8: PSO Results for Glycolysis Max Impact VS Base BGL for Normal Persons 

Glycolysis Max Impact_ 

For Person 3 

Base BGL Glycolysis Max Impact_ 

For Person 4 

Base 

BGL 

0.65076068 216.313 0.05193917 220.879 

0.83420672 216.314 0 219.739 

0.67716967 216.313 0.67609391 221.154 

0.71747981 216.314 0.67977369 221.154 

0.61424417 216.313 0.84438597 221.153 

0.4137003 216.312 0.64155555 221.154 

 Total Time Taken in Seconds  84.066 Total Time Taken in Seconds 51.148 

Table 9: PSO Results for Glycolysis Max Impact VS Base BGL for Diabetic Persons 
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The following Table 10, Table 11 gives the optimized results for the parameter Glycolysis 

Min Impact and the corresponding result obtained for the target value Base BGL for two normal 

persons and two diabetic persons  

Glycolysis Min Impact_ 

For Person 1 

Base BGL Glycolysis Min Impact_ 

For Person 2 

Base 

BGL 

2.6 49.394 2.48 47.371 

2.6 49.394 2.48 47.371 

2.6 49.394 2.48 47.371 

2.6 49.394 2.48 47.371 

2.6 49.394 2.48 47.371 

2.6 49.394 2.48 47.371 

 Total Time Taken in Seconds  72.44 Total Time Taken in Seconds 82.941 

Table 10: PSO Results for Glycolysis Min Impact VS Base BGL for Normal Persons 

Glycolysis Min Impact_ 

For Person 3 

Base BGL Glycolysis Min Impact_ 

For Person 4 

Base 

BGL 

2.6 153.33 2.6 161.398 

2.6 153.33 2.6 161.398 

2.6 153.33 2.6 161.398 

2.6 153.33 2.6 161.398 

2.6 153.33 2.6 161.398 

2.6 153.33 2.6 161.398 

 Total Time Taken in Seconds  82.63 Total Time Taken in Seconds 60.522 

Table 11: PSO Results for Glycolysis Min Impact VS Base BGL for Diabetic Persons 
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The following Table 12, Table 13 gives the optimized results for the parameter Gngimpact  

and the corresponding result obtained for the target value Base BGL for two normal persons and 

two diabetic persons  

Gngimpact_  

For Person 1 

Base BGL Gngimpact_  

For Person 2 

Base BGL 

1.07602018 90.244 1.0 70.256 

1.28072756 90.365 1.05609868 70.199 

1.01509422 90.203 1.16960161 70.422 

1.68485988 90.437 1.0         70.256 

1.80299544 90.51 1.0         70.256 

1.20764332 90.298 1.03315241 70.252 

 Total Time Taken in Seconds  82.30 Total Time Taken in Seconds 79.353 

Table 12: PSO Results for Gngimpact VS Base BGL for Normal Persons 

Gngimpact_  

For Person 3 

Base 

BGL 

Gngimpact_  

For Person 4 

Base BGL 

1.07602018 90.244 1.23520293 226.07 

1.28072756 90.365 1.0 221.154 

1.01509422 90.203 1.22361401 226.016 

1.68485988 90.437 1.47523068 229.151 

1.80299544 90.51 1.59664566 230.302 

1.20764332 90.298 1.09205639 224.246 

Total Time Taken in Seconds 82.30 Total Time Taken in Seconds 59.28 
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Liver glycogen breakdown impact_ 

For Person 1 

Base 

BGL 

Liver glycogen breakdown 

impact_ 

For Person 2 

Base BGL 

3.00 90.74 1.55387236 70.426 

3.00 90.74 1.85836697 70.176 

2.1608399 90.268 3.0        70.556 

3.00 90.74 3.0         70.556 

1.03977021 90.241 1.14304327 70.447 

3.00 90.74 3.0         70.556 

 Total Time Taken in Seconds  79.172 Total Time Taken in Seconds 82.886 

Table 14: PSO Results for Liver glycogen breakdown impact 

VS Base BGL for Normal Persons 

The above Table 14 and the following Table 15 gives the optimized results for the parameter Liver 

glycogen breakdown impact and the corresponding result obtained for the target value Base BGL 

for two normal persons and two diabetic persons  

 

 

 

 

 

 

 

 



 

28 

 

 

Liver glycogen breakdown 

impact_ 

For Person 3 

Base 

BGL 

Liver glycogen breakdown impact_ 

For Person 4 

Base 

BGL 

2.04016265 224.71 1.64817374 233.243 

1.00 216.315 1.36553881 232.479 

2.09629051 224.914 1.15301331 230.699 

1.78265385 224.476 2.22368001 232.952 

1.11847139 221.845 1.56818727 233.476 

1.11038572 221.7    1.8516473 232.498 

 Total Time Taken in Seconds  89.551 Total Time Taken in Seconds 54.93 

Table 15: PSO Results for Liver glycogen breakdown impact VS Base BGL for Diabetic Persons 

Liver glycogen synthesis impact_ 

For Person 1 

Base 

BGL 

Liver glycogen synthesis 

impact_ For Person 2 

Base 

BGL 

1.06266536 90.097 1.6248759 70.256 

1.6029004 90.097 0.27343285 70.256 

0.15922384 90.097 1.86066542 70.256 

0.51183072 90.097 1.39346859 70.256 

0.63642105 90.097 0.84694322 70.256 

0.83930959 90.097 0.19794895 70.256 

 Total Time Taken in Seconds  87.407 Total Time Taken in Seconds 78.521 

Table 16 : PSO Results for Liver glycogen synthesis impact VS Base BGL for normal Persons 
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The above Table 16 and the following Table 17 gives the optimized results for the 

parameter Liver glycogen breakdown impact and the corresponding result obtained for the target 

value Base BGL for two normal persons and two diabetic persons  

Liver glycogen synthesis impact_ 

For Person 3 

Base 

BGL 

Liver glycogen synthesis 

impact_ For Person 4 

Base 

BGL 

1.31854762 216.315 1.15006378 221.154 

1.74282836 216.315 1.38608173 221.154 

0.92724289 216.315 0.43499451 221.154 

1.41644504 216.315 1.49906613 221.154 

1.54382273 216.315 0.19208556 221.154 

0.49920034 216.315 0.17476342 221.154 

 Total Time Taken in Seconds  76.455 Total Time Taken in Seconds 50.386 

Table 17  : PSO Results for Liver glycogen synthesis impact VS Base BGL for Diabetic Persons 

The following Table 18, Table 19,Table 20, Table 21 gives the optimized results for all the 

parameters when they are optimized simultaneously, and the corresponding result obtained for the 

target value Base BGL for two normal persons and two diabetic persons.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

 

ALL PARAMETERS For Person 1 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[1.00,        1.00,         1.00,        1.00,        2.6,        2.00, 

  3.00,         2.00] 

91.233 

[1.00,         0.48026442, 0.7328305, 0.53927757, 2.22460243, 1.28185344, 

  1.06039945, 1.6489434] 

90.269 

[1.00,        1.00,         1.00,        1.00,        2.6,        2.00, 

  3.00,         2.00] 

91.233 

[1.00,        1.00,         1.00,        1.00,        2.6,        2.00, 

  3.00,         2.00] 

91.233 

[1. 00,   0.43167145, 0.85076422, 1.00,   2.50903026, 1.00, 

  1.05164298, 1.61682025] 

87.764 

Total Time Taken in Seconds 114.994 

Table 18: PSO Results for All parameters VS Base Insulin Level for Normal Person 1 
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ALL PARAMETERS for Person 2 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[1.00,         0.80267567, 0.19140465, 0.26503051, 1.01214847, 

1.64748161, 

  1.00,        0.00     ] 

70.676 

[1.0,         1.0,         1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

72.77   

[1.0,         1.0,        1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

72.77   

[1.0,         1.0,         1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0        ] 

72.77   

[1.0,         1.0,         1.0,         0.3248848,  2.6,        2.0, 

  2.2013757,  2.0,      ] 

70.901 

Total Time Taken in Seconds 100.690 

Table 19: PSO Results for All parameters VS Base Insulin Level for Normal Person 2 
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ALL PARAMETERS for Person 3 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[1.         0.80267567 0.19140465 0.26503051 1.01214847 1.64748161 

  1.         0.      ] 

225.791 

[1.0,         1.0,         1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

225.791 

[1.0,         1.0,        1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

225.791 

[0.83744434, 0.44545871, 0.5694835,1 0.11961833, 1.23480395, 

1.42902886, 

  2.5970932, 1.37833681] 

225.6 

[1. 0,        0.38977069, 0.50943915, 0.70592026, 1.47440696, 1.08025955, 

  2.14941114, 0.66348723] 

225.571 

Total Time Taken in Seconds 116.103 

Table 20: PSO Results for All parameters VS Base Insulin Level for Diabetic Person 1 
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ALL PARAMETERS for Person 4 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[1.0,         1.0,         1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

234.746 

[1.0,         1.0,         1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

234.746 

[1.0,         1.0,        1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

234.746 

[1.0,         0.0,         0.46320527, 0.34247484, 2.19886617, 1.75386451, 

  1.91659592, 0.5154897] 

234.242 

[1.0,         1.0,        1.0,         1.0,         2.6,        2.0, 

  3.0,         2.0       ] 

234.746 

Total Time Taken in Seconds 76.8700 

Table 21: PSO Results for All parameters VS Base Insulin Level for Diabetic Person 2 

Once the results from PSO are completed, then backtracking search optimization algorithm is  

used. The default parameters used for BSO are as follows: 
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DEFAULT PARAMETERS DEFAULT VALUES 

Number of Particles 20 

mixrate 1 

Max_iterations 30 

Objective function run_Simulator 

Lower bound [0,0,0,0,1,1,1,0] 

Upper bound [1,1,1,1,2.6,2,3,2] 

Table 22: Default Parameters For BSO 

The number of particles for the BSO are kept same as for PSO so that the results obtained from  

them can be compared and the best result can be selected. Explanation about the remaining  

parameters were already discussed in the previous section. 

The below Table 23 and Table 24 represents the best values for the peak insulin level parameter 

when trying to optimize the parameter and the corresponding base blood glucose level obtained. 

The default values in the set-1 from Table 22 were used. four base BGL values were tested with 

two normal person readings with target base BGL values as 85, 65 and two for diabetic person 

readings with target base BGL values as 210, 220 

 

 

 

 

 

 

 



 

35 

 

Peak Insulin Level 

For Person 1 

Base 

BGL 

Peak Insulin Level 

For Person 2 

Base BGL 

0.63045641 93.105 0.71532218 72.233 

0.7847314 91.567   0.11377095 110.043 

0.41083913 97.522   0.8235889 71.419   

0.51611326 94.837   0.44512869 76.55   

0.62261828 93.207 0.89195959 70.749 

0.8975474 91.097 0.94819649 70.517   

 Total Time Taken in Seconds  68.6358 Total Time Taken in Seconds 93.6015 

Table 23: BSO Results for Peak Insulin Level VS Base BGL for Normal Persons 

Peak Insulin Level 

For Person 3 

Base 

BGL 

Peak Insulin Level 

For Person 4 

Base BGL 

0.94243926 216.585 0.84182194 221.154 

0.59247127 219.478 0.07552246 221.153 

0.49397011 219.706 0.35856075 221.153 

0.39532866 220.426 0.5585874 221.153 

0.95388153 216.529 0.41672234 221.153 

0.32538228 220.647 0.9605197 221.153 

 Total Time Taken in Seconds  74.325 Total Time Taken in Seconds 75.501 

Table 24: BSO Results for Peak Insulin Level VS Base BGL for Diabetic Persons 

The following Table 25, Table 26 gives the optimized results for the parameter glut4Impact and 

the corresponding result obtained for the target value Base BGL for two normal persons and two 

diabetic persons  
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Glut4Impact_ 

For Person 1 

Base 

BGL 

Glut4Impact_ 

For Person 2 

Base 

BGL 

0.5622236 90.238 0.5458499 70.264 

0.1625295 90.336 0.2554479 70.285 

0.8878838 90.294 0.011499 70.282 

0.2630831 90.325 0.7072489 70.308 

0.5449272 90.277 0.3206086 70.349 

0.2578622 90.183 0.5938540 70.338 

 Total Time Taken in Seconds  64.6696 Total Time Taken in Seconds 86.6575 

Table 25: BSO Results for Glut4Impact VS Base BGL for Normal Persons 

Glut4Impact_ 

For Person 3 

Base 

BGL 

Glut4Impact_ 

For Person 4 

Base 

BGL 

0.33791689 220.438 0. 97413509 221.154 

0.48805967 219.698 0. 91728942 221.153 

0.3030013 220.599 0. 246709754 221.153 

0.70604479 218.601 0. 78809182 221.153 

0.10267349 220.598 0. 74656145 221.153 

0.57273568 219.627 0. 69836465 221.154 

 Total Time Taken in Seconds  67.2530 Total Time Taken in Seconds 88.785 

Table 26: BSO Results for Glut4Impact VS Base BGL for Diabetic Person 

The following Table 27, Table 28 gives the optimized results for the parameter 

ExcretionKidneysImpact and the corresponding result obtained for the target value Base BGL for 

two normal persons and two diabetic persons  
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Excretion_Kidneys_Impact 

For Person 1 

Base BGL Excretion_Kidneys_Impact 

For Person 2 

Base BGL 

0.18096885 90.097 0.26118861 70.256 

0.1915564 90.097 0.16241679 70.256 

0.92881576 90.097 0.27326758 70.256 

0.72136362 90.097 0.0391795 70.256 

0.11467464 90.097 0.81664551 70.256 

0.61148251 90.097 0.89294145 70.256 

 Total Time Taken in Seconds  62.8907 Total Time Taken in Seconds 81.251 

Table 27: BSO Results for Excretion_Kidneys_Impact VS Base BGL for Normal Persons 

Excretion_Kidneys_Impact 

For Person 3 

Base 

BGL 

Excretion_Kidneys_Impact 

For Person 4 

Base BGL 

0.38940983 221.277 0.56186546 227.106 

0.4425218 221.037 0.00302721 231.467 

0.49845855 220.661 0.58969395 226.836 

0.94523439 216.771 0.343568 229.736 

0.8773414 216.771 0.67875115 226.005 

0.03246337 222.082 0.18582175 230.617 

 Total Time Taken in Seconds  65.343 Total Time Taken in Seconds 89.19 

Table 28: BSO Results for Excretion_Kidneys_Impact VS Base BGL for Diabetic Persons 

The following Table 29, Table 30 gives the optimized results for the parameter Glycolysis Max 

Impact and the corresponding result obtained for the target value Base BGL for two normal persons 

and two diabetic persons  
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Glycolysis Max Impact_ 

For Person 1 

Base BGL Glycolysis Max Impact_ 

For Person 2 

Base 

BGL 

0.65815454 90.096 0.3394361 70.255 

0.6094395 90.097 0.71569252 70.255 

0.98363614 90.069 0.5295703 70.255 

0.35445705 90.097 0.53466406 70.255 

0.76690436 90.055 0.44092094 70.255 

0.61743304 90.096 0.37332785 70.255 

 Total Time Taken in Seconds  70.994 Total Time Taken in Seconds 67.9721 

Table 29: BSO Results for Glycolysis Max Impact VS Base BGL for Normal Persons 

Glycolysis Max Impact_ 

For Person 3 

Base BGL Glycolysis Max Impact_ 

For Person 4 

Base 

BGL 

0.2460428 217.028 0.21007382 220.588 

0.71400805 216.314 0.91649989 221.154 

0.27060409 216.777 0.613974 221.154 

0.75672746 216.314 0.39886162 221.154 

0.96789538 216.315 0.5365226 221.153 

0.91492068 216.314 0.479396 221.154 

 Total Time Taken in Seconds  66.528 Total Time Taken in Seconds 97.178 

Table 30 : BSO Results for Glycolysis Max Impact VS Base BGL for Diabetic Persons 
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Glycolysis Min Impact_ 

For Person 1 

Base BGL Glycolysis Min Impact_ 

For Person 2 

Base 

BGL 

1.2350804 90.034 1.2350804 70.255 

1.55232713 89.532 1.55232713 68.255 

2.18514348 86.196 2.18514348 72.255 

1.89016624 87.666 1.87168754 70.255 

1.1494015 86.198 2.12926955 70.255 

1.14508933 85.725 2.25173747 70.255 

 Total Time Taken in Seconds  62.2660 Total Time Taken in Seconds 62.5660 

Table 31: BSO Results for Glycolysis Min Impact VS Base BGL for Normal Persons 

The above Table 30, Table 31 gives the optimized results for the parameter Glycolysis Min Impact 

and the corresponding result obtained for the target value Base BGL for two normal persons and 

two diabetic persons. 

Glycolysis Min Impact_ 

For Person 3 

Base BGL Glycolysis Min Impact_ 

For Person 4 

Base 

BGL 

1.61100046 212.04 1.22611737 220.485 

1.91374013 209.362 1.85033173 210.753 

2.13807488 203.876 1.87787603 209.641 

2.33676765 184.948 1.47584879 219.947 

2.26638149 194.294 2.09180469 203.866 

1.79370349 210.49   1.08190227 220.955 

 Total Time Taken in Seconds  64.38 Total Time Taken in Seconds 60.85 

Table 32: BSO Results for Glycolysis Min Impact VS Base BGL for Diabetic Persons 
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The following Table 32, Table 33 gives the optimized results for the parameter Gngimpact  

and the corresponding result obtained for the target value Base BGL for two normal persons and 

two diabetic persons  

Gngimpact_  

For Person 1 

Base BGL Gngimpact_  

For Person 2 

Base 

BGL 

1.13596161 90.258 1.24683801 70.377  

1.34572531 90.306 1.4982994 70.484 

1.94268336 90.689 1.86728336 70.588 

1.36386042 90.406 1.66719412 70.652 

1.29540806 90.329 1.28813649 70.38 

1.28665140 90.401 1.00020243 70.256 

 Total Time Taken in Seconds  68.588 Total Time Taken in Seconds 75.812 

Table 33: BSO Results for Gngimpact VS Base BGL for Normal Persons 

Gngimpact_  

For Person 3 

Base BGL Gngimpact_  

For Person 4 

Base 

BGL 

1.58950327 222.315 1.64083281 230.236 

1.4074984 221.415 1.21210221 226.246 

1.96931886 223.315 1.90708991 231.642 

1.91335093 223.228 1.08491702 224.398 

1.25512664 220.073 1.85595124 231.334 

1.22685545 219.46 1.81086172 231.362 

 Total Time Taken in Seconds  79.082 Total Time Taken in Seconds 67.163 
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Liver glycogen breakdown 

impact_ 

For Person 1 

Base BGL Liver glycogen breakdown 

impact_ 

For Person 2 

Base 

BGL 

2.92133056 90.974 1.1179864 70.373 

1.33333666 90.88 1.4076446 70.639 

1.13284268 90.59   2.1996278 70.476 

2.31684984 92.49   2.4544109 70.709 

1.38185836 90.703 2.7662488 72.282 

2.54369610 92.564 2.13396425 70.415 

 Total Time Taken in Seconds  61.866 Total Time Taken in Seconds 80.6623 

Table 35: BSO Results for Liver glycogen breakdown impact 

VS Base BGL for Normal Persons 

The above Table 34 and the following Table 35 gives the optimized results for the parameter Liver 

glycogen breakdown impact and the corresponding result obtained for the target value Base BGL 

for two normal persons and two diabetic persons. 
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Liver glycogen breakdown 

impact_ 

For Person 3 

Base BGL Liver glycogen breakdown 

impact_ 

For Person 4 

Base 

BGL 

1.49880163 223.956 1.50892756 232.68 

1.10626734 221.588 2.36839415 233.905 

2.21001199 224.898 1.44381775 232.755 

2.17085486 224.825 2.8106602 234.408 

2.020817 224.695 1.82751893 233.444 

2.98296008 225.529 1.64842339 233.136 

 Total Time Taken in Seconds  64.4300 Total Time Taken in Seconds 62.651 

Table 36: BSO Results for Liver glycogen breakdown impact VS Base BGL for Diabetic Persons 

Liver glycogen synthesis 

impact_ 

For Person 1 

Base BGL Liver glycogen synthesis 

impact_ 

For Person 2 

Base 

BGL 

1.86266536 90.097 1.4348759 70.256 

0.4019004 90.097 1.17343285 70.256 

0.25922384 90.097 0. 59954435 70.256 

1.41183072 90.097 0.9812132 70.256 

0.73642105 90.097 0.29953322 70.256 

0.63730959 90.097 1.70706263 70.256 

 Total Time Taken in Seconds  91.1500 Total Time Taken in Seconds 86.4083 

Table 37: BSO Results for Liver glycogen synthesis impact VS Base BGL for normal Persons 
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The above Table 36 and the following Table 37 gives the optimized results for the parameter Liver 

glycogen breakdown impact and the corresponding result obtained for the target value Base BGL 

for two normal persons and two diabetic persons. 

Liver glycogen synthesis impact_ 

For Person 3 

Base 

BGL 

Liver glycogen synthesis 

impact_ 

For Person 4 

Base 

BGL 

1.81854762 216.315 1.25006378 221.154 

0.74282836 216.315 1.08608173 221.154 

1.92724289 216.315 0.13499451 221.154 

0.21544504 216.315 1.49906613 221.154 

0.18660652 216.315 0.09208556 221.154 

1.25846948 216.315 0.17476342 221.154 

 Total Time Taken in Seconds  62.21487 Total Time Taken in Seconds 71.3017 

Table 38  : BSO Results for Liver glycogen synthesis impact VS Base BGL for Diabetic Persons 

The following Table 38, Table 39,Table 40, Table 41 gives the optimized results for all the 

parameters when they are optimized simultaneously, and the corresponding result obtained for the 

target value Base BGL for two normal persons and two diabetic persons.  
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ALL PARAMETERS for Person 1 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[0.94254, 0.58480, 0.71906, 0.67798, 2.11756, 1.61109, 

  1.78030, 0.95920] 

90.881 

[0.99135, 0.56380, 0.45853, 0.40605, 2.22007, 1.32425, 

  1.1440, 0.96767] 

90.684 

[0.96791, 0.75857385, 0.58628911, 0.23586533, 2.15352894, 1.08876751, 

  1.16764261, 0.90296606] 

90.694 

[0.98634, 0.96031976, 0.74735705, 0.25968725, 1.21214801, 1.23935211, 

  1.91508426, 1.14723646] 

90.456 

[0.980175, 0.7276766, 0.3323185, 0.54250536, 2.35426185, 1.04140811, 

  1.61993372, 1.55566482] 

90.634 

Total Time Taken in Seconds 92.155 

Table 39: BSO Results for All parameters VS Base Insulin Level for Normal Person 1 
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ALL PARAMETERS for Person 2 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[9.78643382e-01, 3.18088777e-01, 4.45493787e-01, 5.27859647e-01, 

  1.88629497e+00, 1.22351083e+00, 1.99397313e+00, 3.12201057e-01,] 

70.56 

[9.93035522e-01, 2.41867442e-01, 3.64171981e-01, 6.33956118e-01, 

  2.34656099e+00, 1.27942521e+00, 1.83020194e+00, 4.51538614e-01] 

70.278 

[9.59482279e-01, 8.33195338e-01, 7.77417489e-01, 9.20324891e-01, 

  2.53647130e+00, 1.13251156e+00, 2.33404441e+00, 1.78472220e+00] 

70.456 

[9.62826678e-01, 2.11538332e-01, 6.00544496e-01, 7.18996412e-01 

  2.03607768e+00, 1.23125882e+00, 1.82734242e+00, 1.80158187e-01] 

70.547 

[9.65270790e-01, 4.50256748e-01, 6.84622208e-01, 3.36105549e-01, 

  2.34437592e+00, 1.06165120e+00, 1.97112233e+00, 1.51435798e+00] 

70.448 

Total Time Taken in Seconds 93.875 

Table 40: BSO Results for All parameters VS Base Insulin Level for Normal Person 2 
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ALL PARAMETERS for Person 3 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[0.986640, 0.971946, 0.9172778, 0.7854954, 2.1168844, 1.1776016 

  1.0645389, 0.89262833] 

216.561 

[0.980419, 0.7495797, 0.8647664, 0.7924713, 2.0678876, 1.1540305 

  1.2190351, 0.88072326] 

222.995 

[0.927892, 0.9631095, 0.92440285, 0.7903968, 2.03728157, 1.2053211, 

  1.0623311, 0.9873743] 

218.411 

[0.687966, 0.936486, 0.6948846, 0.81807955, 2.39094365, 1.21073746, 

  1.0072162, 0.7355212] 

213.323 

[0.752939, 0.760464, 0.5754805, 0.88900648, 2.25934356, 1.03649003, 

  1.0155326, 1.3218796] 

214.24   

Total Time Taken in Seconds 84.20 

Table 41: BSO Results for All parameters VS Base Insulin Level for Diabetic Person 1 
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ALL PARAMETERS for Person 4 

["peakInsulinLevel_", "glut4Impact_", "excretionKidneysImpact_", 

"glycolysisMaxImpact","glycolysisMinImpact_","gngImpact_", 

"liverGlycogenBreakdownImpact_","liverGlycogenSynthesisImpact_"] 

Base BGL 

[0.90235644, 0.77128509, 0.99439871, 0.63518877, 2.1449474 

,1.06722795, 

  1.04790122, 0.32443425] 

216.544 

[0.95047154, 0.75134496, 0.22164981, 0.72177402, 2.40014228, 

1.03905967, 

  1.02929895, 0.98930637] 

218.866 

[0.85813637, 0.90876273, 0.56849679, 0.64790913, 2.02484856, 

1.02909449, 

  1.02163069, 0.29078909] 

221.13 

[0.93903119, 0.67705747, 0.40288944, 0.71089436, 2.08522135, 

1.21630063, 

  1.02152426, 0.38985107] 

229.841 

[0.91220444, 0.76790614, 0.46314111, 0.4017865, 1.84763729, 

1.18510195 

  1.0280084,8 1.02211823] 

231.751 

Total Time Taken in Seconds 86.8700 

Table 42: BSO Results for All parameters VS Base Insulin Level for Diabetic Person 2 
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5. Discussion and Conclusion 

In the preceding chapter, we presented the results of the parameters from the particle swarm 

optimization and backtracking search optimization algorithms. If we take particle swarm 

optimization algorithm in to consideration the results obtained for all the parameters for normal 

persons are within the margin of error except for parameter glycolysis_Min_Impact_, here we are 

obtaining the margin of error as 50 percent which is not acceptable. when we are trying to optimize 

all the parameters at the same time the best result from the Table 18 is 90.269 for person 1 and 

70.676 for person 2 , which are  in the acceptable margin of error, But for the two diabetic persons 

we get the values of about 225.65 and 234.242 which are greater than the margin of error and are 

not acceptable .The average time taken for single parameter optimization is about 75 seconds and 

for all the parameters is 100 seconds. There are two problems with PSO: three constants need to 

be given which are calculated after experimenting with different range of values, which is not 

efficient. The second problem is that there might be a case when there is a global minimum which 

is not our target value as in the case of glycolysis_Min_Impact_ which might result in a large 

margin of error. Hence a more advanced and simpler algorithm backtracking search optimization 

algorithm was used which would address those issues.  

The results produce by the back-tracking search optimization from the previous section are 

almost similar to the results produced by the brute force method values. The back-tracking search 

optimization algorithm is efficient and there is only one constant that needs to be given at the 

starting of the algorithm which is far better than the three constants in the particle swarm 

optimization algorithm. From the results point of view, it will never stuck at any local minimum 

and the graphs produced are similar to the brute force method graphs. From the Table 38, Table 

39, Table 40 and Table 41, the margin of error is also very small when compared to the particle 
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swarm optimization algorithm. Therefore, it is better to use the backtracking search optimization 

algorithm for optimizing the parameters. The results produced from the simulator are within the 

permissible error limits. Hence the objective of conversion and optimization of the simulator is 

achieved. 

5.1 FUTURE RESEARCH 

Since the computing power has increased at a great pace, it is better to venture in to the 

world of machine learning and deep learning for optimizing the parameters. If there is a good 

amount of data available, then using the machine learning algorithms like polynomial regression, 

support vector machines and decision trees will achieve a better result in less amount of time. Since 

the data is structured, we can also use deep neural networks to train on the data, to achieve the 

correct results, but using the deep neural networks takes a lot of time and is less recommended.  

If better optimization is required then it is recommended to use teacher learner model, learning 

back tracking search optimization and hybrid back tracking search optimization to achieve the 

better results, since these are better when the search space increases in the number of dimensions. 

If there is a need for multi objective optimization the above discussed algorithms can be used with 

the application of pareto principle, if more efficiency is required for multi objective optimization 

problems non-dominated ranked genetic algorithms 1 and 2 are recommended which gives the 

result within the permissible range and are also efficient [6]. 

From the efficiency point of view when releasing the simulator to the public, it is strictly 

recommended not to use any optimizing algorithms as they would take a lot of time. It is 

recommended to use online learning algorithms which will result in better speed, efficiency and 

less computing power. 
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