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ABSTRACT

H -CFA: A SIMPLIFIED APPROACH FOR

PUSHDOWN CONTROL FLOW ANALYSIS

by

Fei Peng

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Tian Zhao

In control flow analysis (CFA), call/return mismatch is a problem that

reduces analysis precision. So-called k -CFA uses bounded call-strings to ob-

tain limited call/return matching, but it has a serious performance prob-

lem due to its coupling of call/return matching with context-sensitivity of

values. CFA2 and PDCFA are the first two algorithms that bring push-

down (context-free reachability) approach to the CFA area, which provide

perfect call/return mathcing. However, CFA2 and PDCFA both need sig-

nificant engineering effort to implement. The abstracting abstract machine

(AAM), a configurable framework for constructing abstract interpreters, in-

troduces store-allocated continuations that make the soundness of abstract

interpreters easily obtainable. Recently, two related approaches (AAC and
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P4F) provide call/return matching using AAM by modeling the call-stack

as a pushdown system. However, AAC incurs high overhead and is hard to

understand, while P4F cannot compute monovariant analysis. To overcome

the above shortcomings, we developed a new method, h-CFA, to address the

call/return mismatch problem. h-CFA records the program execution history

during abstract interpretation and uses it to avoid control flow merging that

causes call/return mismatch. Our method uses AAM and is very easy to

implement for ANF style program. ANF is a popular intermediate represen-

tation of programs that converts all complex intra-procedural control flows

to linear let-bindings and sets a syntactic variable to each sub-expression. In

addition, our method reveals an essential property of any pushdown CFA,

which we exploited in the development of a static analyzer for JavaScript,

named JsCFA. This application of the essential property avoids recording the

program execution history, so source programs are no long required being the

ANF form. Meanwhile, JsCFA adopts a technique to solve the environment

problem or fake rebinding, which eliminates more defects of monovariant

analysis. This, in cooperation with exact call/return matching, yield more

precise analysis and better performance. Moreover, JsCFA supports a con-

figurable interface to add context-sensitivity to selected areas of programs.

JsCFA applies the interface to improve the analysis precision for runtime

object extensions. Finally, we quantitatively evaluated the performance of

JsCFA.
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1 Introduction

Dynamic programming languages, such as JavaScript, Python, and Ruby,

play a significant role in computing areas, such as system management, web

development, and scientific computing. Therefore, developers who are us-

ing these languages increasingly demand tools for improving code quality,

such as security auditing, error- checking, debugging, refactoring, and more.

However, certain features of dynamic languages (e.g. duck-typing, first-class

functions, and highly dynamic object models) make achieving these require-

ments difficult. For example, static programming languages are able to report

certain semantic errors before executing programs, but in dynamic languages

all the semantic errors just can be found during runtime, which is too risky

for large-scale commercial software. To this end, control flow analysis [18]

(CFA) has been used to detect deep semantic information before the actual

running of programs written in dynamic languages.

CFA is a class of algorithms that give conservative approximation to

inter-procedural information of programs before running them. Statically

detecting the precise target of a function call is difficult for programs written

in higher-order (functional) languages. To illustrate this problem, consider

the following example in Scheme.
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(let* ((id (lambda (x) x))
(a (id 1)1)
(b (id #t)2))

. . .)

Figure 1.1: An example program showing imprecision of 0-CFA

(let* ((f (lambda (x) (x 1)))

(g (lambda (y) (+ y 2)))

(h (lambda (z) (+ z 3))))

(+ (f g) (f h)))

In the body of function f, the call site (x 1) will transfer control to function

bodies that variable x potentially refers to. However, the next step in the

control flow is not obvious because x is the formal parameter of function

f and will be bound to unknown values. Shivers invented k -CFA [26] as

the first popular solution to the control flow problem. k -CFA applies an

abstract interpretation [2] approach to simulate program execution statically

and provides conservative approximations with a configurable hierarchy of

precision. Shivers chose finite call-strings [25] to represent runtime contexts

for the abstract interpretation. Call-strings with length of k record latest k

call sites, which make the state space of k -CFA finite, and longer call-strings

yield more precise analysis with higher overhead. 0-CFA is a special case of

k -CFA that uses empty call-strings (k is zero).
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(let* ((id (lambda (x) x))
(f (lambda (y) (id y)1))
(a (f 1)2)
(b (f #t)3))

. . .)

Figure 1.2: An example program showing imprecision of 1-CFA

Problems of CFA The 0-CFA and k -CFA without enough context infor-

mation are imprecise for realistic programs. For example, call/return mis-

match is always a problem in k -CFA that dramatically reduces the precision

of analysis. Consider the trivial example in Figure 1.1, where, in 0-CFA, the

id function is called twice and #t eventually flows into variable a because

there is a spurious flow from call site (id #t) to (id 1).

In 1-CFA (k = 1), the values of the local variable x are distinguished

by different call site environments. In this example, the two calls to the

id function are labeled with 1 and 2 respectively. Different versions of the

variable x in different calls are separated by the call site labels. For example,

(x, [2]) 7→ {#t} because the value of x is #t at call site 2. Original k -CFA also

uses the variables’ environment to filter inter-procedural control flows, which

means that the value of x from call site 2 only can be returned to (id #t).

In this case (a non-recursive program), call-string with size 1 is enough to

provide precise call/return flow (both data and control flow). However, longer

call sequences or recursive calls propagate spurious information to the whole

program.
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Consider the example in Figure 1.2, the id function is called by f, and

there are two calls to function f. 1-CFA is no longer precise for this pro-

gram because (x, [1]) can be generated by call site 2 and 3 both. Then

abstract value {1, #t} eventually flows into variable a and b. In this

example, 2-CFA can distinguish the two call sites, which (x, [2, 1]) 7→ {1}

and (x, [3, 1]) 7→ {#t} indicate correct data and control flows. Therefore,

we can achieve precise call/return matching with a large enough k on non-

recursive programs. However, recursive function invocations can make any

call-string “overflow”, which call-strings will be filled by duplicated recursive

call sites and lose earlier context information. Particularly, the recursion is

ubiquitously existing in functional programs. Meanwhile, the performance

of k -CFA is unacceptable even when k = 1 [29].

In addition, k -CFA is tightly bound with call-site sensitivity, other context-

sensitivity strategies [1, 21, 27, 17, 32] is hard to be applied.

Existing techniques There is a family of algorithms that attempt to per-

fectly match return flows with their true call site entries in static analysis,

which is referred to as pushdown or context-free approach [23, 24]. CFA2 [31]

is the first attempt that brings precise call/return matching to monovariant

analysis in exponential time complexity. Because monovariant analysis still
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merges too many data flows even if it has accurate inter-procedural con-

trol flows, CFA2 introduces stack filtering to eliminate the imprecision of

local variables. Additionally, there are other three approaches (PDCFA [6],

AAC [15], and P4F [11]) that provide accurate call/return matching by mod-

eling the call-stack as a pushdown system. However, PDCFA and CFA2 need

significant engineering effort to implement [11]. AAC and P4F is easy to im-

plement in the abstracting abstract machine (AAM) [30] framework, but

AAC incurs high overhead (see Section 2 and Section 4.3) and is difficult

to understand while P4F cannot compute monovariant analysis and just has

limited call/return matching strength.

A simplified approach In this paper, we introduce a new method to

address the call/return mismatch problem. In terms of implementation,

this method is as simple as writing concrete interpreters in CESK machine

style [9]. It provides perfect call/return matching for monovariant and poly-

variant control flow analysis. Since this method records program execution

histories through the abstract interpretation process and uses it to encode

continuation addresses, we name it h-CFA. The program execution history

can be regarded as call-strings with automatically determined length. For

non-recursive calls, the execution history always provides enough context in-

formation, no matter how deep the call sequence is. Moreover, the history
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automatically stops growth for recursive calls while the worklist iteration

(Section 3.1) is responsible for finding the fixed-point of recursive computa-

tion.

Application To verify the practicability of our theory, we implemented a

static analyzer for a subset of JavaScript (ECMAScript 3) in Scala, and we

call it JsCFA. JsCFA not only uses pushdown CFA but also adopts other

techniques to improve analysis precision for real-world programs. JsCFA usu-

ally computes monovariant control-flow facts that incurs critical imprecision

for realistic programs and libraries that are written in dynamic higher-order

languages. For example, even the abstract interpreter can perfectly match

call/return flows, monovariant or polyvariant analysis without enough con-

text information may also generate spurious data flows from false environ-

ments, which is referred to as environment problem [26, 19]. To illustrate

this problem, consider the analyzing process of Figure 1.1 again: assuming

the analyzer always matches return flows with correct call sites, which func-

tion id called by call site 1 only returns to a and call site 2 only returns

to b. Variable a will get abstract value {1}, but {1, #t} flows into vari-

able b because the local variable x retains the value from call site 1 during

abstractly interpreting call site 2. This spurious data flow injures the practi-

cability of pushdown CFA and causes other control flow problems (see details
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in Section 5.6). We solved this problem by introducing abstract garbage col-

lection [20] on the value store into JsCFA. JsCFA works with abstract GC to

remove those local bindings that pollute subsequent data flows, but abstract

GC collaborating with k -CFA is not safe [20]. Meanwhile, we also applied

abstract GC on the continuation store, which indirectly implements h-CFA

without recording program execution histories. Finally, a benchmark test is

provided to show the practicability of h-CFA.

Outline In the rest of the thesis, Section 2 describes the state-of-art tech-

niques for CFA, which tend to improve the precision and reduce the overhead

of k -CFA. It also discusses existing pushdown approaches. Section 3 presents

the abstracting abstract machine (AAM) technique in detail, including ab-

stract syntax, semantics of the abstract machine, and store widening. This

section provides necessary preliminary knowledge to help readers understand

our techniques because h-CFA is also developed in the AAM framework.

Moreover, it summarizes advantages and disadvantages of AAM and reveals

an essential drawback that introduces spurious return flows. Section 4 formal-

izes h-CFA and explains how it works with a simple example. Meanwhile,

we compare our technique with other related works in several dimensions

and give a performance evaluation via benchmark results. Section 5 details

the design and implementation of JsCFA, which applies our techniques in

7



a JavaScript static analyzer. This implementation not only uses pushdown

CFA, but also adopts techniques such as abstract garbage collection. Then

we describe an approach for implementing h-CFA without recording the pro-

gram execution history, which simplifies the intermediate representation and

semantics of JsCFA. At the end of this section, a benchmark test of JsCFA is

provided. Finally, we list several potential approaches for improving h-CFA

and JsCFA in Section 6, and Section 7 concludes.
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2 Related Work

In order to address the precision problem of original k -CFA, many techniques

are introduced from different perspectives. Some algorithms tend to find bet-

ter contexts for context-sensitive (polyvariant) analysis. For example, call-

site sensitivity [26], argument sensitivity [1], object sensitivity [21, 27], and

field sensitivity [17] contribute different benefits to precision or performance

for different situations. Other techniques attempt to improve both monovari-

ant and polyvariant in alternative ways. One of the most popular method

of this group is pushdown-based CFA (a.k.a. context-free language reacha-

bility), which introduces pushdown system into abstract interpretation. The

original k -CFA algorithm abstracts each program as a finite-state machine

so that the abstract interpreter is guaranteed to terminate. The abstraction

of k -CFA is only precise for programs with bounded call stacks. However,

many language constructs (i.e. function invocation, exception handling, and

first-class continuation, etc.) can generate recursive control flows. Since the

abstraction of k -CFA is not precise for recursive structures, pushdown-based

CFA is a better choice. The first contribution of this paper is a new method

for implementing pushdown-based CFA, referred to as h-CFA, that provides

perfect call/return matching. Before describing our technique, we discuss
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the existing algorithms for the pushdown CFA and preliminary knowledge of

h-CFA.

Pushdown CFA Algorithms The core idea of pushdown CFA is to mimic

function call/return as an unbounded call stack for ordinary calls and sum-

marizing call stacks to finite height for recursive calls because an unbounded

call stack is not computable in static analysis. CFA2 [31] is the first algorithm

that employs a pushdown system for CFA. CFA2 models the call stack as an

implicit pushdown system, and summarizes the call stack with a tabulation

algorithm for recursive functions. PDCFA (pushdown control flow analy-

sis [6]) is another strategy that approximates unbounded stack model to be

computable. PDCFA analyzes programs using a Dyck state graph [6], and

tracks all of the reachable states in the graph. Meanwhile, edges of the Dyck

state graph that connect program states are annotated with stack actions

(push, pop, and no action). These stack actions explicitly represent a push-

down system and summarize recursive structures of the graph. Both CFA2

and PDCFA introduce extra semantics for target languages, which makes

the abstract interpreter hard to implement. For this drawback, Van Horn

and Might invented the Abstracting Abstract Machine (AAM) [23, 30] as a

configurable framework for constructing abstract interpreters in the CESK

abstract machine [9] style. Since AAM not only allocates values in the store

10



(as the original k -CFA does), but also represents control flow using store-

allocated continuations. In AAM, each CESK state does not directly carry

any continuation, but a continuation address that refers to a set of concrete

continuations. Merging several continuations in one continuation address

achieves the effect of approximating control flows. Meanwhile, AAM brings

two benefits to control flow analysis. On the one hand, it makes the sound-

ness of abstract interpreters easily prove because values and continuations

are both in the store and the store size is fixed. Hence, the number of ma-

chine states that abstract interpreters generate is always finite. On the other

hand, store-allocated continuations separate the context-sensitivity (poly-

variance) strategy from the call/return matching technique. Additionally,

implementing a static analyzer in AAM style is as easy as writing concrete

interpreters. AAC (Abstracting Abstract Control [15]) and P4F (pushdown

control flow analysis for free [11]) are both pushdown CFA techniques based

on AAM, which convert the call/return matching problem to a continuation-

address allocation problem. In other words, AAC and P4F just modify the

continuation-allocation function of AAM to acquire call/return matching.

However, AAC has high asymptotic upper bound O(n9) in monovariance

(this complexity is claimed in [11] that cites to an unpublished article) and

converges slowly in practice (see Section 4.3). P4F has better performance

in polyvariant analysis but it has limited call/return matching strength and

11



is not useful for monovariant analysis.
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3 Pushdown CFA in AAM

The AAM methodology considerably simplifies the implementation of ab-

stract interpreters by introducing store-allocated values and continuations.

At the same time, the soundness of AAM is relatively easy to prove. There-

fore, we also use this theory as the foundation to develop h-CFA and a

JavaScript analyzer, JsCFA. In this section we will review abstract interpre-

tation in the setting of AAM to help readers to understand our techniques.

3.1 Abstracting Abstract Machine

In this section, we describe pushdown CFA algorithms using lambda calculus

in the style of Administrative Normal Form (ANF) [10].

e ∈ Exp ::= (let ((x (f æ))) e)

|(let ((y æ)) e)

| æ

[expressions]

f,æ ∈ AExp ::= x | lambda [atomic expressions]

lambda ∈ Lambda ::= (λ (x) e) [lambda abstractions]

x, y ∈ V ar is a set of identifiers [variables]

13



Above syntax definition just focuses on three kinds of expressions, calls,

declarations, and returns. Other syntactic components, such as tail calls,

conditional branching, do not complicate our semantics, so we leave them

out. ANF sets a unique label for every intermediate expression, and these

unique labels help we to implement and express h-CFA easily. Moreover,

all of the intra-procedural control flows (the order of operations) are already

compiled into let forms, which simplifies the semantics and accelerates our

implementation.

Abstracting abstract machine (AAM) describes abstract interpreters that

run and approximate a language on CESK abstract machine style. The

abstract interpreter operates over CESK machine states ς̃.

ς̃ ∈ σ̃ , Exp× Ẽnv × S̃tore× K̃Store× K̃Addr [states]

ρ̃ ∈ Ẽnv , V ar → Ãddr [environments]

σ̃ ∈ S̃tore , Ãddr → Ṽ alue [stores]

ṽ ∈ Ṽ alue , P(C̃losure) [abstract values]

c̃lo ∈ C̃losure , Lambda× Ẽnv [closures]

σ̃k ∈ K̃Store , K̃Addr → K̃ont [continuation stores]

k̃ ∈ K̃ont , P(F̃ rame) [abstract continuations]

φ̃ ∈ F̃ rame , V ar × Exp× Ẽnv × K̃Addr [stack frames]

14



ã ∈ Ãddr is a finite set [value addresses]

ãk ∈ K̃Addr is a finite set [continuation addresses]

Environments (ρ̃) map variables to their binding address (ã) in the scope.

The original AAM paper uses just one store in a state to contain values

and continuations both, but we prefer to separate it to value store (σ̃) and

continuation store (σ̃k) to clarify our algorithm. Value stores save every

value (ṽ) into a slot encoded by an address. Environments cooperate with

values implementing the semantics of variable access. Closure (c̃lo) is the

only value form of pure lambda calculus, which pairs a lambda abstraction

with the environment form its defining point to implement static scoping.

In our semantics, continuations (k̃) just represent call stack frames because

intra-procedural continuations are already converted to let sequences. Each

frame (φ̃) includes: (1) a return point that is a variable to accept and bind the

result of current application, (2) an expression the control flow returns to, (3)

an environment to restore, (4) a continuation address that points to “next”

continuations and builds up the linked stack structure. Therefore, each state

carries a continuation address (ãk) to replace the continuation component

of concrete CESK machine state, which the a continuation address point to

the actual continuations (frames) inhabiting in the continuation store. This

technique is referred to as store-allocated continuation.

Transition rules of CESK abstract machine operate over an input state

15



and generate a success state. However, an abstracting abstract machine has

to output a set of states due to the non-deterministic semantics of abstract

interpretation. Function application transition rule is defined below.

ς̃︷ ︸︸ ︷
((let ((y (f æ)) e)), ρ̃, σ̃, σ̃k, ãk) (e′, ρ̃′, σ̃′, σ̃k ′, ãk ′), where

((λ (x) e′), ρ̃λ) ∈ ẽval(f, ρ̃, σ̃)

ρ̃′ = ρ̃λ[x 7→ ã]

σ̃′ = σ̃ t [ã 7→ ẽval(æ, ρ̃, σ̃)]

ã = ãlloc(x, ς̃)

φ̃ = (y, e, ρ̃, ãk)

σ̃k ′ = σ̃k t [ãk ′ 7→ φ̃]

ãk ′ = k̃alloc(ς̃ , e′, ρ̃′, σ̃′)

When we start to analyze call sites, ẽval firstly extracts closures from f that

is always an atomic expression in ANF programs. The helper ẽval directly

computes values of atomic expressions that is either a variable access point

or lambda abstraction in pure lambda calculus.

ẽval : AExp× Ẽnv × S̃tore→ Ṽ alue

ẽval(x, ρ̃, σ̃) , σ̃(ρ̃(x))

ẽval(lambda, ρ̃, σ̃) , {(lambda, ρ̃)}

16



Then argument is also evaluated and stored in a corresponding address. En-

vironments restored from closures are extended by the formal parameter and

actual parameter’s address. In monovariant analysis, the address is only de-

termined by expression’s syntactic label, so the value addresses are always

context-insensitive. Furthermore, we can use certain context information of

program execution to separate values into different dimensions of addresses.

For example, following definition of ãlloc1 encodes the closest call site into

value addresses to implement 1-call-site sensitive analysis (1-CFA).

ãlloc : V ar × Σ̃→ Ãddr

ãlloc0(x, ς̃) = x

ãlloc1(x, ς̃) = (x, ς̃)

Following the semantics of call-by-value lambda calculus, after achieving val-

ues of callees and arguments, a call stack frame (φ̃) is pushed on the top (ãk)

of stack (continuation store, σ̃k). Meanwhile, a new stack top (ãk ′) is allo-

cated by k̃alloc. The standard method of allocating continuation addresses

in AAM is shown below, which represents the function entry point by its own

syntactic label. Then, the entry point representation will be propagated to

return states of the application.

k̃alloc : Σ̃× Exp× Ẽnv × S̃tore→ K̃Addr

k̃alloc((e, ρ̃, σ̃, σ̃k, ãk), e′, ρ̃′, ς̃ ′) = e′

17



Additionally, AAM implements over-approximation of abstract interpreta-

tion by a join operation over value and continuation stores. The join is

defined as follows.

σ̃ t σ̃′ = λã. σ̃(ã) ∪ σ̃′(ã)

σ̃k t σ̃k ′ = λãk. σ̃k(ãk) ∪ σ̃k ′(ãk)

The declaration transition rule is very simple, which just spreads context

information of abstract interpretation along let forms.

ς̃︷ ︸︸ ︷
((let ((y æ) e)), ρ̃, σ̃, σ̃k, ãk) (e, ρ̃′, σ̃′, σ̃k, ãk), where

ρ̃′ = ρ̃[y 7→ ã]

σ̃′ = σ̃ t [ã 7→ ẽval(æ, ρ̃, σ̃)]

ã = ãlloc(y, ς̃)

The transition of return point is another crucial rule.

ς̃︷ ︸︸ ︷
(æ, ρ̃, σ̃, σ̃k, ãk) (e, ρ̃′, σ̃′, σ̃k, ãk ′)

(x, e, ρ̃k, ãk ′) ∈ σ̃k(ãk)

ρ̃′ = ρ̃k[x 7→ ã]

σ̃′ = σ̃ t [ã 7→ ẽval(æ, ρ̃, σ̃)]

ã = ãlloc(x, ς̃)
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The top frame is retrieved in continuation store with the current continuation

address (ãk). Firstly, we acquire a return point variable x to refer the return

value of current application, and extend environment ρ̃k with the return point

to ρ̃′. Then, computation keeps going on expression e with environment ρ̃′,

store σ̃′, stack σ̃k, and “next” continuation address ãk ′.

When we launch AAM on a program, inject takes the program to create

an initial state.

inject : Exp→ Σ̃

inject(e) = (e,∅,⊥,⊥, ãkinit)

The abstract interpreter starts to analyze a program from the initial state

with empty environment, bottom stores, and a special continuation address.

The address ãkinit represents the bottom of call stack.

The transition relation we defined above is a monotonic function that is

used by a worklist algorithm. Because AAM saves everything (values and

continuations) in store, the number of Σ̃ is finite if store size is limited.

Therefore, the worklist algorithm is always able to terminate even though

the input program cannot terminate in concrete semantics.
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Algorithm 1 Worklist Algorithm

initState← inject(program)
todo← initState :: Nil
seen← initState :: Nil
while todo 6= Nil do

state← head(todo)
todo← tail(todo)
nexts← transitionAAM(state)
for n ∈ nexts do

if n /∈ seen then
seen← n :: seen
todo← n :: todo

3.2 Store-widening

Theoretically, naive implementations of AAM take exponential time in the

input program size. The time complexity of worklist algorithm is determined

by the number of reachable machine states.

O(

|Exp|︷︸︸︷
n ×

|Ẽnv|︷︸︸︷
n ×

|S̃tore|︷︸︸︷
nn ×

|K̃Store|︷︸︸︷
nn ×

|K̃Addr|︷︸︸︷
n )

In monovariant analysis, values are always stored in locations that are only

determined by syntactic positions of expressions. Meanwhile, environments

map each variable to only one corresponding address. Because monovariant

analysis does not carry any execution context during abstract interpretation,

each expression always take only one environment. Likewise, continuation

addresses are also allocated on syntactic positions. Thus, a tighter bound is:

O((

|Exp|︷︸︸︷
n +

|Ẽnv|︷︸︸︷
n +

|K̃Addr|︷︸︸︷
n )×

|S̃tore|︷︸︸︷
nn ×

|K̃Store|︷︸︸︷
nn )
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This complexity bound is still obviously exponential. Consequently, AAM

implementations usually adopt widening on stores. Store widening uses a

global store (single-threaded store, Shivers [26]) rather than per-state stores

for values and continuations respectively. Global-store widening reduces the

number of combinations of possible bindings in a store to O(n2), which is

proved in [30, 11].

O((

|Exp|︷︸︸︷
n +

|Ẽnv|︷︸︸︷
n +

|K̃Addr|︷︸︸︷
n )× (

|S̃tore|︷︸︸︷
n2 +

|K̃Store|︷︸︸︷
n2 ))

Eventually, the time complexity of AAM is O(n3) in monovariance.

3.3 A Defect of AAM

Although, AAM imports store-allocated values and store-allocated continu-

ations that make call/return matching orthogonal from context-sensitivity,

k̃alloc (continuation address allocating strategy) cannot depend upon context

information to implement limited call/return matching (like k -CFA does).

P4F attempts to narrow the gap between original k -CFA and AAM, so it

defines the very simple ˜kallocP4F :

˜kallocP4F ((e, ρ̃, σ̃, σ̃k, ãk), e′, ρ̃′, σ̃′) = (e′, ρ̃′)
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Continuation addresses are represented by (e′, ρ̃′) that the most obvious

change is it packing callee function with “target environment” (ρ̃′) of the cur-

rent application. Firstly, environments (V ar → Ãddr) map variable names

to value addresses in CESK abstract machines, and AAM encodes poly-

variant strategy (e.g. call-site sensitive, object-sensitive, argument-sensitive,

etc.) into value’s addresses. Thus, P4F can be regarded as an adaptive

pushdown control flow analysis algorithm that automatically achieves finite

call/return matching support from values’ polyvariant strategy. Secondly,

P4F also reveals a significant fact why original AAM misses call/return flow

matching. One of the most important contributions of AAM is that separates

analysis context requirements from termination of abstract interpreters. All

things (values and continuations) allocated in the store make termination

of abstract interpreters easily reached because the fixed size of stores lead

finite number of abstract machine states, so any implementation of ãlloc and

k̃alloc is sound. However, the original k̃alloc function of AAM that mimics

generating call stack frames of concrete interpreters does not acquire any

benefit from values’ polyvariance for getting more precise call/return flows.

P4F fixed the problem by introducing polyvariance into continuation store,

which brings context information in target environment to distinguish con-

tinuations under different contexts. Although P4F cannot infinitely match
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call/return flows, it still discovers the essence of pushdown control flow anal-

ysis in AAM: continuations also need to be polyvariant (context-sensitive) to

achieve more precise static analysis results.
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4 Pushdown CFA based on

Program Execution History

Inspired by P4F, we deem that pushdown analysis (polyvariant continuation

store) is orthogonal from polyvariant store. In other words, control flow

analysis can achieve call/return matching without polyvariant values. At the

same time, we try to find the proper contexts for polyvariant continuations.

This section describes CESKH machines that record “program execution

history” into each abstract machine state. The program execution history

records and summarizes execution path from the beginning of program to the

current state. During the evaluation of function calls, the program execution

history can be used to uniquely represent current call site in the continuation

store.

4.1 Program Execution History

First, we modify the CESK machine defined in Section 3.1 to CESKH ma-

chine. Data types and notations of CESKH are defined below. We changed
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parts of CESK definitions and indicate them with superscript H.

ς̃H ∈ Σ̃H , Exp× Ẽnv × S̃tore× ˜KStoreH × ˜KAddrH × H̃istory [states]

ρ̃ ∈ Ẽnv , V ar → Ãddr [environments]

σ̃ ∈ S̃tore , Ãddr → Ṽ alue [stores]

ṽ ∈ Ṽ alue , P(C̃losure) [abstract values]

c̃lo ∈ C̃losure , Lambda× Ẽnv [closures]

σ̃Hk ∈ ˜KStoreH , ˜KAddrH → K̃ontH [continuation stores]

k̃H ∈ K̃ontH , P( ˜FrameH) [abstract continuations]

φ̃H ∈ ˜FrameH , V ar × Exp× Ẽnv × H̃istory × ˜KAddrH [stack frames]

h̃ ∈ H̃istory , V ar → Ãddr [histories]

ã ∈ Ãddr is a finite set [value addresses]

ãHk ∈ K̃Addr is a finite set [continuation addresses]

In ANF programs, environment naturally maintains intra-procedural execu-

tion history because ANF explicitly extracts intra-procedural control flows

in let-bindings and saves each intermediate result in a local variable. Conse-

quently, the program execution histories can be implemented as propagating

environments by H̃istory field of CESKH machine states. We consider ex-

ecution histories as call-strings with automatically determined length. For
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non-recursive calls, execution history always provides enough precise context

information, no matter how deep the call sequences. On the other hand, pro-

gram execution histories can automatically stop growing for recursive calls,

and the worklist algorithm will be responsible for finding the fixed-point of

recursive computation.

The following definitions describe the abstract semantics of CESKH ma-

chine.

Calls

ς̃H︷ ︸︸ ︷
((let ((y (f æ)) e)), ρ̃, σ̃, σ̃Hk , ã

H
k , h̃) (e′, ρ̃′, σ̃′, σ̃Hk

′, ãHk
′, h̃′), where

((λ (x) e′), ρ̃λ) ∈ ẽval(f, ρ̃, σ̃)

ρ̃′ = ρ̃λ[x 7→ ã]

σ̃′ = σ̃ t [ã 7→ ẽval(æ, ρ̃, σ̃)]

ã = ãlloc(x, ς̃H)

φ̃H = (y, e, ρ̃, h̃, ãHk )

σ̃Hk
′ = σ̃Hk t [ãHk

′ 7→ φ̃H ]

ãHk
′ = k̃alloch(ς̃ , e′, ρ̃′, σ̃′)

h̃′ = h̃[x 7→ ã]
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The semantics of function calls propagate execution history by adding current

“intermediate variable” to h̃, but execution history extension is different from

environment extension, which recovers the base environment from function

definition point.

Declarations

ς̃H︷ ︸︸ ︷
((let ((y æ) e)), ρ̃, σ̃, σ̃Hk , ã

H
k , h̃) (e, ρ̃′, σ̃′, σ̃Hk , ã

H
k , h̃

′), where

ρ̃′ = ρ̃[y 7→ ã]

σ̃′ = σ̃ t [ã 7→ ẽval(æ, ρ̃, σ̃)]

ã = ãlloc(y, ς̃)

h̃′ = h̃[y 7→ ã]

Declarations are let forms that just binds atomic expressions to variables.

Its semantics is very straightforward that propagates environments (ρ̃) and

histories (h̃) through the linear control flow.

Returns
ς̃H︷ ︸︸ ︷

(æ, ρ̃, σ̃, σ̃k, ãHk , h̃) (e, ρ̃′, σ̃′, σ̃Hk , ã
H
k
′, h̃′)

(x, e, ρ̃k, h̃k, ãHk
′) ∈ σ̃Hk (ãHk )

ρ̃′ = ρ̃k[x 7→ ã]
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σ̃′ = σ̃ t [ã 7→ ẽval(æ, ρ̃, σ̃)]

ã = ãlloc(x, ς̃H)

h̃′ = h̃k[x 7→ ã]

In return’s definition, an abstract interpreter restores up-level’s history from

the frames referred by the current continuation address, which is similar

to restoring the environment. The k̃alloch takes the execution history to

compute the unique continuation address for corresponding call site.

k̃alloch((e, ρ̃, σ̃, σ̃Hk , ã
H
k , h̃), e′, ρ̃′, σ̃′) = (e, e′, h̃)

˜KAddrH in CESKH machines is encoded by: (1) the call site e, (2) the callee

function e′, (3) and current execution history h̃. 0-CFA-like analysis in AAM

just adopts e′ to refer abstract continuations, so all the potential call sites

that may invoke e′ will merge with each others. Therefore, the ˜KAddrH

definition distinguishes as many as possible call sites of e′ via the very last

call site e and the rests encoded by h̃.

4.2 Polyvariant Continuation

In this section, we use a simple example in Figure 4.1 to explain the analysis

process of h-CFA.

For simplicity, the execution histories are represented as variable se-

quences, and the called function (the second part of ˜KAddrH) is replaced
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(letrec ((fib (lambda (n)
(let ((res1 (< n 3)))

(if res1
1
(let* ((res2 (− n 1))

(res3 (fib res2))
(res4 (− n 2))
(res5 (fib res4))
(res6 (+ res3 res5)))

res6))))))
(let ((a (fib 10))

(b (fib 20)))
(fib 30)))

Figure 4.1: An example written in ANF style defines a recursive function
and calls it multiple times. For convenient demonstrating, we use complete
Scheme language with numbers and booleans instead of pure lambda calculus.

by its function name wearing a hat. This simplification improves readability

without modifying the abstract semantics of CESKH machine.

Through steps of the abstract interpretation, the first call site (a (fib 10))

carries the history {fib}, which means that, at this program point, we have

only finished computing the declaration of the function fib—. Thus, the con-

tinuation (call stack frame) of the call site is allocated at ((fib 10), f̂ ib, {fib}),

and the stack frame looks like (a, (let (b (fib 20)) . . . ), ẽnv1, {fib}, ãHk init),

which is the only element in the continuation store so far.

The stack frame expresses that after completing this invocation, (1) the

return value will be stored in variable a, (2) the computation will shift to

(let (b (fib 20)) . . . ) with environment ẽnv1, (3) and the continuation address

ãHk init, a fake one for the top-level continuation, will be recovered.
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After diving into the callee function, the second call appears at (res3 (fib res2)).

At this point, the execution history {fib, res1, res2} is different from the

history of last call site, so the continuation store contains two abstract con-

tinuations with distinct addresses.

ãHk 1 = ((fib 10), f̂ ib, {fib})

ãHk 2 = ((fib res2), f̂ ib, {fib, res1, res2})

σ̃Hk = {ãHk 1 7→ {(a, (let (b (fib 20)) . . . ), ẽnv1, {fib}, ãHk init)}

ãHk 2 7→ {(res3, (let (res4 (− n 2)) . . . ), ẽnv2, {fib, res1, res2}, ãHk 1)}}

As above illustration shows, the continuation store is a stack with linked-

list structure. Each frame has a ãHk that points to the next frame in the stack.

This stack-like structure perfectly mimics call stacks of concrete interpreters.

Certainly, the call site (fib res4) will also gets its own execution history after

computation of (fib res2) completes (i.e. after reaching its fixed-point).

ãHk 3 = ((fib res4), f̂ ib, {fib, res1, res2, res3, res4})

However, (res3 (fib res2)) is a recursive call site. So the execution his-

tory at this point will not add new element to distinguish (res3 (fib res2))

from its variations at different recursive levels. Thus, control flows from mul-

tiple recursive levels of a call site are merged into one continuation address.

Eventually, there are three frames merged into ãHk 2, but this merging does
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not lead “static” call/return mismatch. All of the frames merged into ãHk 2

can bring control flow back to set res3.

ãHk 2 7→ {(res3, (let (res4 (− n 2)) . . . ), ẽnv2, {fib, res1, res2}, ãHk 1),

(res3, (let (res4 (− n 2)) . . . ), ẽnv3, {fib, res1, res2}, ãHk 2)}

The merging expresses a fact that the invocation of fib— at point (fib res2)

may be made by (a (fib 10)) or (res3 (fib res2)). Moreover, the second frame

in the above illustration has the “next” pointer ãHk 2 that refers to itself. This

cycle makes the continuation store no longer stack-like, but a graph.

After computing (a (fib 10)), the function fib is called again by (b (fib 20)).

At this point, k̃alloch generates a new continuation address.

ãHk 4 = ((fib 20), f̂ ib, {fib, a})

The execution history of this point becomes {fib, a} that summarizes the

execution path of computing (a (fib 10)) to a. In other words, the program

execution history just cares about which portions of the program we have

done, but it ignores how we got them. This summarization limits the length

of the execution histories under O(n) (the size of input program) in the worst

case.

Then the abstract interpreter restarts to execute the function and encoun-

ters call site (res3 (fib res2)) again. At this time, the continuation address
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Algorithm
Match

Strength
Mono

-variance
Poly

-variance
Implementation

Complexity on
Monovariance

CFA2 Infinite X Difficult Exponential
P4F Limited X Easy O(n3)

PDCFA Infinite X X Difficult O(n6)
AAC Infinite X X Easy O(n9)

h-CFA Infinite X X Easy Exponential

Table 4.1: Comparison of pushdown CFA algorithms in terms of analysis
precision, time complexity, and ease of implementation.

(ãHk 5) allocated for call site (res3 (fib res2)) differs from last time, which

makes sure that there are two distinct “call stacks”. Consequently, function

fib called from (b (fib 20)) will never return to (a (fib 10)) and vice versa.

ãHk 5 = ((fib res2), f̂ ib, {fib, a, res1, res2})

4.3 Complexity and Precision of h-CFA

We have applied store-widening to h-CFA for both the value store and the

continuation store. However, we have not obtained a polynomial time com-

plexity for h-CFA. A comparison of the related pushdown CFA algorithms

with h-CFA is shown in Figure 4.1. According to this table, our technique

seems be worse than AAC in asymptotic upper bounds. However, in prac-

tice the performance of h-CFA is better than AAC for most cases. We have

run both the h-CFA implementation and AAC on test cases from Larceny
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performance comparison
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Figure 4.3: 1-call-site sensitive anal-
ysis performance comparison

R6RS benchmark suite and some other examples. Figure 4.2 compares the

number of states that h-CFA and AAC explored in monovariant analysis and

Figure 4.3 shows the test with 1-call-site sensitivity.

Moreover, AAC has a major drawback, which is its space complexity in

real world applications. The essential strategy of AAC is defined below [11].

k̃allocAAC((e, ρ̃, σ̃, ãk), e′, ρ̃′, σ̃′) = (e′, ρ̃′, e, ρ̃, σ̃)

The function k̃allocAAC encodes an unique continuation address for the call

site with a target closure (e′, ρ̃′), a source closure (e, ρ̃), and store σ̃. This

strategy would work well if we use purely functional data structures to im-

plement stores. However, in realistic analyzers, functional data structures

usually incurs considerable performance cost, and imperative stores will sig-

nificantly increase the space complexity of AAC.
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Furthermore, we compared the call/return matching precision of several

CFA algorithms in AAM, including k -CFA-like, P4F, AAC, and h-CFA. Fig-

ure 4.4 shows percentages of mismatching returns in monovariant analysis,

where mismatching return states retrieve several different return points from

their continuation address. These different return points immediately pro-

duce spurious return flows, so the statistic data can represent the precision of

call/return matching. This figure indicate that h-CFA does not have any mis-

match return flows on all the programs (mismatching return percentages are

0%), and P4F does not benefit to monovariant analysis due to its precision

always same with 0-CFA-like analysis. Figure 4.5 provides the comparison on

1-call-site sensitive analysis, and h-CFA is also the most accurate solution.

To visually illustrate the call/return matching strength of P4F, PDCFA,

PDCFA with abstract Garbage Collection (GC), and h-CFA, we have imple-

mented them for Scheme language. We ran the four algorithms on a small

program that is similar to the program showed in Figure 4.1. The resulting

state-transition graphs are shown in Figure 4.6. As the h-CFA graph shows,

there are three similar subgraphs in the state transition process, which obvi-

ously illustrates no call/return flow merged in h-CFA due to three subgraphs

connected by single transition edges. PDCFA graph also illustrates the simi-

lar pattern. To compare, P4F that just supplies limited call/return matching

merges too many control flows in this recursive program.
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Figure 4.6: State transition graphs of: (1) P4F (pushdown CFA for free)
with 1-CFA; (2) PDCFA (pushdown CFA); (3) PDCFA with abstract GC;
(4) h-CFA. (2–4) are run with 0-CFA.
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5 Design of JsCFA

JavaScript has become a ubiquitous computing environment in browsers, sev-

ers, desktops, even mobile devices. Developers are attracted by its effective

and convenient features, such as duck typing, first-class functions, and run-

time changeable objects, etc. However, these flexible features also makes

large JavaScript programs to be increasingly unreliable. As one of the soft-

ware engineering tools, static analysis has become an effective choice to help

detect deep semantic information and defects, but the static analysis algo-

rithms in JavaScript is still not comparable to those of the static languages

such as Java.

One of the most difficult challenges is that JavaScript is a higher-order

programming language that treats functions as first-class values. First-class

functions can be referred by variables, passed in function arguments, and

emitted as return values of other functions. In static analysis of higher-order

programming languages, control flow analysis plays a significant role because

we often cannot determine which function is called at a specific call site. At

the same time, JavaScript heavily relies on first-class functions to implement

certain high-level semantics, such as methods, block scoping, and module

import/export. Consequently, we developed JsCFA, an abstract interpreter
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for a subset of JavaScript (ECMAScript 3) based on h-CFA to perform a

more precise control flow analysis. Although JsCFA computes monovariant

and context-insensitive results by default, its AAM allows users to obtain

context-sensitivity easily. To demonstrate this, we also implemented context-

sensitive analysis for selected situations.

This section describes the essential pieces of JsCFA design, including ab-

stract syntax, abstract semantic rules, context-sensitivity, analysis improve-

ment, and usage of h-CFA.

5.1 Syntax Interface

In JsCFA, we convert the standard semantics of JavaScript to small-step

abstract machine with an unbounded stack in CESK style. The CESK ma-

chine operates directly over the abstract syntax tree (AST) yielded from the

parser. The AST interface is shown in Figure 5.1, Figure 5.2, and Figure 5.3

in Scala code. Most of the data structure is separated to two categories

that inherit from abstract class Statement and Expression respectively.

JsCFA distinguishes left values from right values at the syntactic level to

simplify the implementation of CESK machine so that the expressions that

are subclasses of LValue are eventually reduced to left values, The trait

AbstractSyntaxTree defines the field id to hold an unique label for each
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AST node. It also implements the method generateFrom that spreads

the static information from the AST nodes to local continuations and values.

The top-level program is a sequence of statements wrapped in the statement

Script.

5.2 Transition Rules

The core data structure of the AAM of JsCFA is the class State (denoted

by ς̃ in formal definitions), which has six components e (control string),

env (environment), localStack (intra-procedural continuation stack), a

(inter-procedural continuation address, or called stack frame pointer), store

(value store), and stack (continuation store). Among them, “store” and

“stack” are packed into the memory object that encapsulates certain meth-

ods to manipulate the value and continuation store.

case class State(e: AbstractSyntaxTree,

env: Environment,

localStack: LocalStack,

a: StackAddress,

memory: Memory)

case class Memory(store: mutable.Map[JSReference, Set[JSValue]],

stack: mutable.Map[StackAddress, Set[Frame]]) {

. . .
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sealed abstract class Statement extends AbstractSyntaxTree

case class Script(stmts: List[Statement]) extends Statement
case class BlockStmt(stmts: List[Statement]) extends Statement
case class VarDeclListStmt(decls: List[Statement]) extends

↪→ Statement
case class EmptyStmt() extends Statement
case class ExprStmt(expr: Expression) extends Statement
case class VarDeclStmt(name: IntroduceVar, expr: Expression)

↪→ extends Statement
case class FunctionDecl(name: IntroduceVar, fun: Expression)

↪→ extends Statement
case class ReturnStmt(expr: Expression) extends Statement
case class IfStmt(cond: Expression, thenPart: Statement,

↪→ elsePart: Statement) extends Statement
case class SwitchStmt(cond: Expression, cases: List[CaseStmt],

↪→ defaultCase: Option[CaseStmt]) extends Statement
case class CaseStmt(expr: Expression, body: Statement) extends

↪→ Statement
case class ContinueStmt(continueLabel: String) extends

↪→ Statement
case class DoWhileStmt(cond: Expression, body: Statement)

↪→ extends Statement
case class WhileStmt(cond: Expression, body: Statement)

↪→ extends Statement
case class ForStmt(init: ForInit, cond: Option[Expression],

↪→ increment: Option[Expression], body: Statement) extends
↪→ Statement

case class ForInStmt(init: ForInInit, expr: Expression, body:
↪→ Statement) extends Statement

Figure 5.1: Abstract syntax tree data types of statements
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sealed abstract class Expression extends AbstractSyntaxTree

case class EmptyExpr() extends Expression
case class FunctionExpr(name: Option[IntroduceVar], ps: List[

↪→ IntroduceVar], body: Statement) extends Expression with
↪→ ObjectGeneratePoint

case class VarRef(name: String) extends Expression with
↪→ VariableAccess

case class ThisRef() extends Expression
case class DotRef(obj: Expression, prop: String) extends

↪→ Expression
case class BracketRef(obj: Expression, prop: Expression)

↪→ extends Expression
case class MethodCall(receiver: Expression, method: Expression

↪→ , args: List[Expression]) extends Expression
case class FuncCall(func: Expression, args: List[Expression])

↪→ extends Expression
case class NewCall(constructor: Expression, args: List[

↪→ Expression]) extends Expression with ObjectGeneratePoint
case class AssignExpr(op: AssignOp, lv: LValue, expr:

↪→ Expression) extends Expression
case class NullLit() extends Expression
case class BoolLit(value: Boolean) extends Expression
case class NumberLit(value: Double) extends Expression
case class StringLit(value: String) extends Expression
case class RegExp(regexp: String, global: Boolean,

↪→ case_insensitive: Boolean) extends Expression with
↪→ ObjectGeneratePoint

case class ObjectLit(obj: List[ObjectPair]) extends Expression
↪→ with ObjectGeneratePoint

case class ArrayLit(vs: List[Expression]) extends Expression
↪→ with ObjectGeneratePoint

case class UnaryAssignExpr(op: UnaryAssignOp, lv: LValue)
↪→ extends Expression

case class PrefixExpr(op: PrefixOp, expr: Expression) extends
↪→ Expression

case class InfixExpr(op: InfixOp, expr1: Expression, expr2:
↪→ Expression) extends Expression

case class CondExpr(cond: Expression, thenPart: Expression,
↪→ elsePart: Expression) extends Expression

case class ListExpr(exprs: List[Expression]) extends
↪→ Expression

Figure 5.2: Abstract syntax tree data types of expressions
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sealed abstract class LValue extends AbstractSyntaxTree

case class LVarRef(name: String) extends LValue with
↪→ VariableAccess

case class LDot(obj: Expression, field: String) extends LValue
case class LBracket(obj: Expression, prop: Expression) extends

↪→ LValue

Figure 5.3: Abstract syntax tree data types of lvalue expressions

}

The above definition shows two differences from the original AAM and

h-CFA. The class State does not contain “History” field because we imple-

ment h-CFA indirectly for JsCFA, and this modification will be discussed in

Section 5.7.2. Meanwhile, there is an extra field localStack that plays the

role of intra-procedural continuation stack, but does not exist in AAM and

h-CFA. In h-CFA, before the actual analysis, ANF transformation already

flattens all the intra-procedural control flows to the let-bindings, so it just

requires inter-procedural continuations in stores. Besides, the original AAM

saves all of the continuations (inter and intra-procedural) into continuation

stores, but actually only inter-procedural control flows have to be retrieved

non-deterministically while the intra-procedural continuations are always de-

terministic. Therefore, we separate the inter-procedural continuations from

the intra-procedural ones, which clarifies the semantics and improves the

performance.
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JsCFA distinguishes three types of transition states: evaluation, contin-

uation, and application.

Evaluation transition accepts a state and matches its control string

component to generate successors. If the control string is a value (instance

of class JSValue), analysis would be dispatched to a continuation transi-

tion that depends upon the following control flow step retrieved from the

top of local stack. Then the continuation transition determines how to use

the value. If the control string is an expression/statement with no reducible

sub-components, the abstract machine applies one of the application tran-

sitions. If the control string is an expression/statement with reducible sub-

components, the abstract machine picks a reducible sub-component according

to the evaluation order of JavaScript and generates a new continuation for

the rest of the expression/statement. The new continuation is pushed onto

the local stack and the abstract machine proceeds to evaluate the selected

sub-component. Finally, there is a special case in dispatching to the contin-

uation transitions. If the local stack is empty (no valid cont in Figure 5.2),

then there is no “next step” in current execution context and the function

does not have a return statement along the current execution path. In this

case, we return undefined value to the return point restored from the stack

frames.

43



def transitEvaluation(state: State): Set[State] = state match {
case completeState if isComplete(completeState) =>

transitApplication(state)
//dispatch to application transition

case State(v, env, localStack, a, memory) if isJSValue(v) =>
if (localStack.nonEmpty) {

val cont = topOfLocalStack(localStack)
val newStack = popLocalStack(localStack)
transitContinuation(cont, v, env, newStack, a, memory)
//dispatch to continuation transition

} else {
. . . \\return

}

//statements
case State(Script(Nil), env, localStack, a, memory) =>

Set(State(Halt, env, localStack, a, memory))
case State(Script(stmt :: ss), env, localStack, a, memory) =>

val k = KScript(ss)
k.generateFrom(state.e)
val newStack = pushLocalStack(localStack, k)
Set(State(stmt, env, newStack, a, memory))

case State(ReturnStmt(e), env, localStack, a, memory) =>
val k = KReturn()
k.generateFrom(state.e)
val newStack = pushLocalStack(localStack, k)
Set(State(e, env, newStack, a, memory))

case State(IfStmt(cond, t, e), env, localStack, a, memory) =>
val k = KIfCond(t, e)
k.generateFrom(state.e)
val newStack = pushLocalStack(localStack, k)
Set(State(cond, env, newStack, a, memory))

. . .
}

Figure 5.4: Parts of evaluation transition rules for dispatching and statements

44



//expressions
case State(FuncCall(func, args), env, localStack, a, memory) =>

val k = KFuncCallF(args)
k.generateFrom(state.e)
val newStack = pushLocalStack(localStack, k)
Set(State(func, env, newStack, a, memory))

case State(AssignExpr(op, lv, expr), env, localStack, a, memory) =>
val k = KAssignR(op, lv)
k.generateFrom(state.e)
val newStack = pushLocalStack(localStack, k)
Set(State(expr, env, newStack, a, memory))

case State(InfixExpr(op, e1, e2), env, localStack, a, memory) =>
val k = KInfixL(op, e2)
k.generateFrom(state.e)
val newStack = pushLocalStack(localStack, k)
Set(State(e1, env, newStack, a, memory))

. . .

Figure 5.5: Parts of evaluation transition rules for expressions

Continuation transition works on the six components of the state ob-

ject and an extra next continuation (referred to as cont in Figure 5.6 and

Figure 5.7). Control strings in these transition states are always values, so

the abstract machine dispatches transitions via matching cont and plug the

value into the next continuation. If the next continuation is an expression/s-

tatement with no reducible sub-component, the next machine states will

move to application transitions. In this case, the new continuation is placed

on the control-string position of next state. If the next continuation contains

reducible sub-components, then the abstract machine takes the same actions

as it did for the evaluation transitions.
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def transitContinuation(cont: Continuation,
value: JSValue,
env: Environment,
localStack: LocalStack,
a: StackAddress,
memory: Memory): Set[State] = cont match {

case KScript(Nil) =>
Set(State(Halt, env, localStack, a, memory))

case KScript(s :: ss) =>
val k = KScript(ss)
k.generateFrom(cont)
val newStack = pushLocalStack(localStack, k)
Set(State(s, env, newStack, a, memory))

case KReturn() =>
val k = KReturnComplete(value)
k.generateFrom(cont)
Set(State(k, env, localStack, a, memory))

case KIfCond(t, e) =>
val k = KIfComplete(value, t, e)
k.generateFrom(cont)
Set(State(k, env, localStack, a, memory))

. . .

Figure 5.6: Parts of continuation transition rules for statements
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case KFuncCallF(Nil) =>
val k = KFuncCallA(value, Nil, Nil)
k.generateFrom(cont)
val newStack = pushLocalStack(localStack, k)
Set(State(cachedUndefined, env, newStack, a, memory))

case KFuncCallF(arg :: args) =>
val k = KFuncCallA(value, Nil, args)
k.generateFrom(cont)
val newStack = pushLocalStack(localStack, k)
Set(State(arg, env, newStack, a, memory))

case KFuncCallA(func, before, Nil) =>
val k = KFuncCallComplete(func, before ++ List(value))
k.generateFrom(cont)
Set(State(k, env, localStack, a, memory))

case KFuncCallA(func, before, arg :: args) =>
val k = KFuncCallA(func, before ++ List(value), args)
k.generateFrom(cont)
val newStack = pushLocalStack(localStack, k)
Set(State(arg, env, newStack, a, memory))

case KAssignR(op, lv) =>
val k = KAssignL(op, value)
k.generateFrom(cont)
val newStack = pushLocalStack(localStack, k)
Set(State(lv, env, newStack, a, memory))

case KAssignL(op, rv) =>
val k = KAssignExprComplete(op, value, rv)
k.generateFrom(cont)
Set(State(k, env, localStack, a, memory))

case KInfixL(op, e2) =>
val k = KInfixR(op, value)
k.generateFrom(cont)
val newStack = pushLocalStack(localStack, k)
Set(State(e2, env, newStack, a, memory))

case KInfixR(op, e1) =>
val k = KInfixExprComplete(op, e1, value)
k.generateFrom(cont)
Set(State(k, env, localStack, a, memory))

. . .
}

Figure 5.7: Parts of continuation transition rules for expressions
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Application transition just accepts its state to generate the subsequent

states. Function isComplete exams whether the passed-in state is com-

plete by matching its control string. A complete control string represents

an expressions/statement with no reducible sub-components. It is either an

AST node from the parser or a continuation object generated by the contin-

uation transitions. The application transitions described in Figure 5.8 and

Figure 5.9.

Once the abstract interpreter of JsCFA launches, the parser reads in-

put program and converts it to an AST wrapped in a Script object at

the top level. Then an inject function takes the AST to generate the

initial machine state that contains all JavaScript built-in variables, objects,

and functions into ˜initEnv and ˜initMemory. Lastly, the worklist algorithm

starts an evaluation transition from the initial state.

injectJsCFA : AbstractSyntaxTree→ State

injectJsCFA(script) = State(script, ˜initEnv,∅, ãkinit, ˜initMemory)

5.3 Store and Stack

The class Memory packs the value store and the continuation store in one

object and provides four main methods for interacting with the abstract
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def transitApplication(state: State): Set[State] = state match {
case State(KReturnComplete(v), env, localStack, a, memory) =>

val newMemory = memory.copy(state)
for {

Frame(returnPoint, oldStack, savedEnv, newGlobalAddress)
<- newMemory.getFrames(a) //get the stack frame

} yield {
if(oldStack.isEmpty ||

!oldStack.head.isInstanceOf[KUseValue]) {
//make sure the current invocation is not
//a "new call"
for(vs <- newMemory.getValues(v)) {

newMemory.putValue(returnPoint, vs)
}

}
State(returnPoint, savedEnv,

oldStack, newGlobalAddress, newMemory)
}

case State(KIfComplete(cond, t, e), env, localStack, a, memory) =>
for {

obj <- memory.getValues(cond)
boolValue = ToBoolean(obj)
res <- boolValue match {

case JSBoolean(ConstantBoolean(true)) =>
Set(State(t, env, localStack, a, memory))

case JSBoolean(ConstantBoolean(false)) =>
Set(State(e, env, localStack, a, memory))

case JSBoolean(VariableBoolean) =>
Set(State(t, env, localStack, a, memory),
State(e, env, localStack, a, memory))

}
} yield res

. . .

Figure 5.8: Parts of application transition rules for statements
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case State(VarRef(x), env, localStack, a, memory) =>
val newMemory = memory.copy(state)
val xRef = lookup(env, x)
for(vs <- newMemory.getValues(xRef)){
newMemory.putValue(JSReference(state.e.id), vs)

}
Set(State(JSReference(state.e.id), env, localStack, a, newMemory))

case State(LVarRef(x), env, localStack, a, memory) =>
val xRef = lookup(env, x)
// lvalues are addresses
Set(State(xRef, env, localStack, a, memory))

case State(f@FunctionExpr(name, ps, body), env, localStack, a, memory) =>
val newMemory = memory.copy(state)
val functionObject = createFunctionObject(f, env, newMemory)
val value = newMemory.save(functionObject)
Set(State(value, env, localStack, a, newMemory))

case State(NumberLit(num), env, localStack, a, memory) =>
val newMemory = memory.copy(state)
val number = JSNumber(ConstantNumber(num))
number.generateFrom(state.e)
val value = newMemory.save(number)
Set(State(value, env, localStack, a, newMemory))

case State(KAssignExprComplete(op, lv, rv), env, localStack, a, memory) =>
val newMemory = memory.copy(state)
for(value <- newMemory.getValues(rv)) {

newMemory.putValue(lv.asInstanceOf[JSReference], value)
}
Set(State(rv, env, localStack, a, newMemory))

case State(KInfixExprComplete(op, rv1, rv2), env, localStack, a, memory) =>
val newMemory = memory.copy(state)
for {

v1 <- newMemory.getValues(rv1)
v2 <- newMemory.getValues(rv2)

} yield {
val res = infixFunc(op, v1, v2, newMemory)
res.generateFrom(state.e)
val address = newMemory.save(res)
State(address, env, localStack, a, newMemory)

}
. . .

}

Figure 5.9: Parts of application transition rules for expressions
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machine.

putV alue : Memory × JSReference× JSV alue→ Unit

getV alues : Memory × JSReference→ P(JSV alue)

pushFrame : Memory × StackAddress× Frame→ Unit

getFrames : Memory × StackAddress→ P(Frame)

The method putValue and pushFrame imperatively updates value

store and continuation store respectively. They will join any given value

or frame to the existing values or frames that inhabit the same address.

m.putV alue(a, v) = this.store[a] := this.store(a) ∪ {v}

m.pushFrame(a, f) = this.stack[a] := this.stack(a) ∪ {f}

The method getValues and getFrames retrieve values and stack frames

non-deterministically.

m.getV alues(a) = this.store(a)

m.getFrames(a) = this.stack(a)

5.4 Functions, Methods, and Constructors

The semantics of function invocation in JavaScript is more complex than

many other programming languages. There are at least three patterns of
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invocations, function call, method call, and new call.

Application transition rule of function call is shown in Figure 5.10, which

extracts called functions (closures in function objects) and arguments by

getValues, and extends the closure environment with the arguments. The

variable this is regarded as an implicit parameter and we map this to the

address of the global object (window in browser environment and global

in “node.js”). Next, we save the current computation context (return point,

local stack, evaluation environment, and stack pointer) to a frame and push

it onto the stack (continuation store). The address of the top of stack is

generated by the function allocStackAddress, which implements the

call/return strategy of JsCFA and we will describe it in Section 5.7.2. Fi-

nally, the abstract interpreter will evaluate the function bodies with extended

environments and an empty local stack.

Because JavaScript is a also prototype-based object-oriented language, it

uses first-class functions to implement methods and constructors of objects.

Therefore, the only difference between function calls and method calls is that

a method invocation extracts function object from the receiver and explic-

itly brings this arguments. So we need to set this to the “receiver” in

the method environment. New call (to functions named as constructors) is

another type of function invocation form in JavaScript, which generates an
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case State(KFuncCallComplete(funcRef, args),
env, localStack, a, memory) =>

val newMemory = memory.copy(state)
for {

f <- newMemory.getValues(funcRef)
//get function objects
if isCallable(f)
JSClosure(func@FunctionExpr(name, ps, funcBody),

savedEnv) = f.code
//get closures from the function object

} yield {
val psAddress = ps.map(alloc(_))
//allocate addresses for formal parameters
val thisAddress = biGlobalObjectRef
// address of global object
var newEnvPart =

("this" -> thisAddress) ::
ps.map(x => x.str).zip(psAddress)

//extend environment with "this" and other parameters
name match {

case Some(x) =>
newEnvPart = (x.str -> alloc(x)) :: newEnvPart
//extend environment with the function name

case None =>
}
val newEnv = savedEnv ++ Map(newEnvPart: _*)

for(p <- psAddress.zip(args)) {
for(vs <- newMemory.getValues(p._2)) {

newMemory.putValue(p._1, vs)
//pass actual parameters to formal parameters

}
}
val nextAddr = allocStackAddress(state, funcBody, newEnv)
//allocate the stack frame

newMemory.pushFrame(nextAddr,
Frame(alloc(state.e),localStack, env, a))

State(funcBody, newEnv, emptyLocalStack,
nextAddr, newMemory)

}

Figure 5.10: Application transition rule for global function calls

53



empty object at the “new call site”, and passes the object as this parame-

ter. Finally abstract interpreter returns the generated object as the result of

the new call. In JsCFA, we implement the “return the generated object” by a

trick, which puts an extra local continuation object KUseValue(obj) into

the new localStack. KUseValue(obj) represents a low-level instruc-

tion that indicates: if the constructor function returns primitive values (not

objects), the abstract interpreter should throw away constructor’s original

return values and use the specific object obj that is created at the “new call

site” to replace.

5.5 Configurable Context-Sensitivity and Adap-

tive Object-Sensitivity

Context sensitivity is an effective approach to improve the precision and

the performance of static analysis. Different context choices yield different

analysis results and performance. On the one hand, each kind of context sen-

sitivity strategy (e.g. call-site sensitive [26], argument sensitive [1], object

sensitive [21, 27], field sensitive [17]) contributes considerable precision in-

fluence on specific problems. On the other hand, certain contexts can select

different precision levels with different performance costs, such as call-site

sensitivity in k -CFA. One of the most crucial contributions of AAM is that
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it makes context sensitivity configurable. The contexts of polyvariant values

are only determined by ãlloc and the data type of Ãddr. We can even mix

several context sensitivity strategies in one analyzer. For example, JsCFA

allocates context insensitive addresses for most of the values using ˜allocJsCFA

as shown below.

ãllocJsCFA(expression) = JSReference(expression.id)

Each expression stores its result (values) in the slot indicated by its syntactic

label (expression.id). However, the context insensitive addresses will

dramatically reduce the precision due to the dynamic features of JavaScript.

The object model of JsCFA is similar to that of λJS [12], which regards

each JavaScript object as a map.

JSObject : JSString → JSReference

The keys of an object are strings mapping to addresses that point to actual

values in the store. Additionally, each object contains two special key/value

pairs, "__proto__" and "constructor", which are used to implement

prototype-based inheritance of JavaScript.

Consider the following example, which dynamically adds an field to an

object.

obj["p"] = el //"p" is not in obj
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In monovariant analysis, if several objects flow into obj from branch or

sequential paths, after the expression is evaluated, all of the objects would

have a field "p" that points to the values allocated in JSReference(l).

However, if another expression assigns to field "p" for one of these objects,

this modification will propagate to any other objects that flowed into obj.

To address this problem, we apply object-sensitive allocation for the dy-

namic object extension.

ãlloc
o

JsCFA(expression, object) = JSReference(expression.id, object.id)

The object-sensitive allocation function separates dynamically added fields in

different dimensions for each object. Only the application transition rules for

LDot and LBracket use ãlloc
o

JsCFA for adding fields, while other transitions

are context insensitive. Ultimately, JsCFA achieves more precision dynamic

objects without significant overhead.

5.6 Abstract Garbage Collection as Stack Fil-

tering

In practice, perfect call/return matching with monovariant analysis is not

too useful. Let’s revisit the simple example in Section 1. If our abstract

interpreter can match call/return flows perfectly, the variable a would get
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value 1 after executing call site 1. Then, when call site 2 invokes function id

again, the new argument #t merges with 1 that was passed into x by call

site 1. Finally, the merged abstract value {1, #t} returns to variable b.

This kind of spurious result may flow into the rest of abstract interpretation

and its accumulative effect will dramatically impact the analysis precision of

higher-order programs.

For example, in the following function compose-same, the local variable

f is called twice.

function compose-same(f, x) {

return f(f(x));

}

In runtime, these two call sites always invoke the same function. However

0-CFA or k -CFA without enough context length may compose different clo-

sures for these two call sites when compose-same is called multiple times

and several different functions flow into f. This spurious control flow prob-

lem (a.k.a. fake rebinding [31]) not only yields bad analysis result, but also

increases the running time of the analysis. This is also known as the environ-

ment problem [26]. Traditional k -CFA attempts to resolve this problem via

introducing context-sensitive (polyvariant) analysis. However, polyvariance

is neither efficient nor a sufficient solution to this problem.

The reason why different actual parameters merge into the same formal
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parameters is that the monovariant abstract interpreters breaks the concrete

semantics. Concrete interpreters never merge parameters from different call

sites because local variables will be deleted when the interpreter exits from

the function. To solve this problem, CFA2 invented an approach named

“stack filtering”, which simulates the semantics of popping the stack frames

to remove useless values of local variables. However, stack filtering has two

limitations so that it cannot be ported to AAM. On one hand, AAM adopts

reference model for all of the values (all things in stores), but CFA2 has stack

allocated values. On the other hand, we cannot always pop stack frames after

a function call returns because continuation stores may become graphs that

contain cycles rather than stacks (see Section 4.2).

Earl et al. described introspective pushdown control flow analysis in [7]

that integrates abstract garbage collection [20] in PDCFA to implement stack

filtering. JsCFA also adopts this strategy to improve analysis precision and

makes call/return matching more useful. The semantics of abstract garbage

collection is the same as its counterparts in concrete interpreters. We first

scan the current state to acquire the root set and trace from the root set to

reach all the objects’ fields and closures’ non-local variables. Each address

reached in the last phase (computing root set and tracing) is recorded in a

“mark set”, and values referred by the addresses that do not appear in the

mark set are regarded as garbage.
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However, the effect of abstract garbage collection is relatively weak in

global store because the values referred by the unexecuted paths have to

stay in the store even though the current state cannot reach them. There-

fore, Earl et al. implemented PDCFA with abstract GC with per-state stores

to achieve the full power of abstract GC. Although AAM with per-state

stores theoretically has exponential time complexity, in practice, its perfor-

mance is much better than AAM with global store but without abstract GC.

Consequently, we also implement JsCFA with per-state stores. Moreover, we

used two techniques to optimize the performance of abstract GC with per-

state stores. Firstly, JsCFA implements the stores with copy-on-write since

only the application states may change the store, so evaluation and con-

tinuation states interpreted between two application states share one store.

Secondly, abstract GC never directly deletes values even if they are detected

as garbage. When the abstract interpreter requires a new copied store, we

just copy values that are referred by mark set (reached values) to eliminate

the overhead of imperative deleting elements in stores. The class Memory

provides the method copy that launches GC and returns a new memory

instance only containing reachable elements.

copy : Memory × State→Memory
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5.7 Pushdown CFA without Program Execu-

tion History

h-CFA is an effective and easy-to-implement method for perfect call/return

matching in monovariant analysis on ANF-styled programs. However, ANF

transformation limits the improvement of precision of highly dynamic lan-

guages such as JavaScript. Although, static analysis techniques already ob-

tain acceptable perform for higher-order languages in theory, they are still not

good enough for actual dynamic languages. For example, because JavaScript

is a prototype-based language that has no native “inheritance” semantics,

programmers usually implement their own “inherit” or “extend” functions

to simulate inheritance.

function extend(target, source) {

for(var propName in source) {

if(source.hasOwnProperty(propName)) {

target[propName] = source[propName];

}

}

return target;

}

The function extend accepts two objects as parameters, target and source.
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Then all fields of object source are copied into target. If we apply tra-

ditional static analysis (points-to analysis) techniques to programs that ex-

tensively use this function, the precision would be dramatically decreased.

In a monovariant analysis on function extend, all field names (strings) of

source flow into propName and merges to a “variable string” (top value

of string in JsCFA), and all the field values of source are merged in this

field of target.

Traditional monovariant analysis does not handle the high-level seman-

tics that copy the fields from one object to another. Fortunately, there are

techniques that attempt to recognize this kind of high-level semantics. Corre-

lation tracking [28] is one of these techniques that matches correlated dynamic

property access patterns that are often used to implement extend. That

approach injects local context using the values of the propName in the body

of the for-loop so that the field values of source is never merged in target.

To implement this strategy in JsCFA, we have to retain the code patterns

of the input programs in the intermediate representations (IR) for the ab-

stract interpreter. This is the most significant reason why we adopted AST

as the IR of JsCFA rather than some low-level forms such as ANF. However,

if we revise h-CFA to work with AST in JsCFA, it would require extra effort

to record the program execution history. For this reason, JsCFA implements

h-CFA using an indirect approach that can still achieve perfect call/return
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matching without recording execution histories.

5.7.1 The Essence of h-CFA

Before adjusting h-CFA for JsCFA, we should discuss the most significant

reason why abstract interpreters require program execution history for push-

down CFA. Consider the example in Figure 4.1 again: after analyzing

(a (fib 10)), function fib is invoked again and we have to recompute

the recursive call site (fib res2) in a new analysis environment. At this

point, the continuation store σ̃Hk looks like below.

ãHk 11 = ((fib 10), f̂ ib, {fib})

ãHk 12 = ((fib res2), f̂ ib, {fib, res1, res2})

ãHk 21 = ((fib 20), f̂ ib, {fib, a})

ãHk 22 = ((fib res2), f̂ ib, {fib, a, res1, res2})
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σ̃Hk = {ãHk 11 7→ {(a, (let (b (fib 20)) . . . ), ẽnv1, {fib}, ãHk init)}

ãHk 12 7→ {(res3, (let (res4 (− n 2)) . . . ), ẽnv2, {fib, res1, res2}, ãHk 11)

(res3, (let (res4 (− n 2)) . . . ), ẽnv3, {fib, res1, res2}, ãHk 12)

. . . }

ãHk 21 7→ {(b, (. . . ), {fib, a}, ãHk init)}

ãHk 22 7→ {(res3, (let (res4 (− n 2)) . . . ), ẽnv2, {fib, a, res1, res2}, ãHk 21)

(res3, (let (res4 (− n 2)) . . . ), ẽnv3, {fib, a, res1, res2}, ãHk 22)

. . . }

. . .

}

As seen above, when the CESKH machine finishes analyzing the function

call from (fib res2) at certain recursive level, control flow will back to

the return point b along the stack . . .→ ãHk 22 → ãHk 21 → ãHk init. There is no

mismatch between returns and corresponding calls.

Then, we show what would happen if we remove program execution his-

tories from K̃Addr and the new continuation address has just the current

call site and called function.

˜kallocnon−h((e, ρ̃, σ̃, σ̃k, ãk), e′, ρ̃′, σ̃′) = (e, e′)

This continuation allocation is similar to 1-CFA that characterizes function
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entries by the last call site. Unfortunately, in the 1-CFA-like analysis, we

cannot distinguish ãHk 22 from ãHk 12, which is the stack frame pointer of the

states that go into (fib res2). In this case, the frames referred by ãHk 22

and ãHk 12 are merged into the slot in the continuation store.

ãk11 = ((fib 10), f̂ ib)

ãk21 = ((fib 20), f̂ ib)

ãk2 = ((fib res2), f̂ ib)

σ̃k = {ãk11 7→ {(a, (let (b (fib 20)) . . . ), ẽnv1, ãkinit)}

ãk21 7→ {(b, (. . . ), ãkinit)}

ãk2 7→ {(res3, (let (res4 (− n 2)) . . . ), ẽnv21, ãk21)

(res3, (let (res4 (− n 2)) . . . ), ẽnv11, ãk11)

(res3, (let (res4 (− n 2)) . . . ), ẽnv2, ãk2)

. . . }

. . .

}

After (fib res2) is analyzed, the abstract interpreter will be confused by

merged stack, which returns through either . . .→ ãk2 → ãk21 or . . .→ ãk2 →

ãk11. In other words, the analysis result of (fib 20) also can flow into a.

The reason why removing program execution history causes mismatching

call/return flows is that old call stacks of finished computation can impact
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later call stacks. This call stack merging is also due to abstract interpreters

violating concrete semantics. As shown in Section 5.6, call stack frames ought

to be reclaimed after a function call completes, but the cycles in the stack

graph do not allow us to simply pop the stack frames.

5.7.2 Abstract Garbage Collection as Popping Call Stack

Frames

Inspired by the abstract garbage collection on value stores (see Section 5.6),

we implemented JsCFA using abstract GC to achieve call/return match-

ing without program execution history. The continuation address in JsCFA

removes the h̃ field from ˜KAddrH and the function entry points are only

encoded by the call site’s label (e.id) and callee’s label (e′.id).

˜kallocJsCFA(State(e, env, localStack, a,memory), e′) = StackAddress(e.id, e′.id)

Before copying memory, JsCFA starts abstract GC that eliminates unreach-

able elements in the stack (continuation store). When JsCFA begins to an-

alyze the call site (fib 20) in the example shown in Figure 4.1, old stack

frames generated by previous computation are already reclaimed.

ãk21 = ((fib 20), f̂ ib)

σ̃k = {ãk21 7→ {(b, (. . . ), ãkinit)}}
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Then the abstract interpreter dives into this call site. When the call

completes, there is no garbage data in the stack to confuse the return flows.

ãk21 = ((fib 20), f̂ ib)

ãk2 = ((fib res2), f̂ ib)

σ̃k = {ãk21 7→ {(b, (. . . ), ãkinit)}

ãk2 7→ {(res3, (let (res4 (− n 2)) . . . ), ẽnv21, ãk21)

(res3, (let (res4 (− n 2)) . . . ), ẽnv2, ãk2)

. . . }

. . .

}

Therefore, the control flow can only go back to the return point b through

the stack . . .→ ãk2 → ãk21 → ãkinit.

Using abstract garbage collection, JsCFA can realize perfect call-return

matching by analyzing programs without ANF transformation.

5.8 Evaluation

JsCFA is written in Scala and executed with Scala 2.11. We tested its per-

formance on a personal computer that is equipped with Intel Core i7 (2.3

GHz), 16GB RAM with OSX operating system. This performance evalua-

tion was based on SunSpider benchmark suit [22] and the result is shown
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Figure 5.11: JsCFA benchmarks

in Figure 5.11. We also collected the statistics of mismatching returns (see

Section 4.3), which shows JsCFA has no any spurious return flows on these

test programs.
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6 Future Work

Performance The most serious problem of JsCFA is that it uses a naive

implementation of AAM framework, which causes the abstract interpreter to

be relatively inefficient. Although AAM provides a systematic approach for

constructing correct abstract interpreters, the performance is much slower

than traditional hand-optimized analyzers. Therefore, our implementation

of JsCFA spends too much time analyzing large-scale programs. Fortunately,

there are several existing optimizations for accelerating the computation in

AAM. Johnson, Labich, Nicholas, Might, and Van Horn introduced OAAM

(optimizing abstracting abstract machine [14]), which is a series of techniques

to refine the performance of AAM. This includes timestamped frontier, log-

based store deltas, laziness, and abstract compilation that all can dramati-

cally promote AAM in practice or theory. Thus, in the further research we

are going to apply these optimizing techniques for JsCFA.

Interface Although, h-CFA and JsCFA are much easier to implement and

understand than traditional abstract interpreters, they still have a com-

mon disadvantage that complicates development of static analyzers. The

described details show that implementing JsCFA is very similar to writing a

concrete interpreter so that programmers can directly convert their compiler
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or interpreter knowledge to static analysis. However, h-CFA and JsCFA are

both based on CESK abstract machine that is a small-step semantic model.

For realistic programming languages that have relatively complex syntax,

the implementation of small-step semantics has to introduce many “continu-

ation” components. Manually operating various continuations is tedious and

the code of abstract interpreter is also not as intuitive as the code that imple-

ments big-step operation semantics. Consequently, in future work, we plan

to design a domain specific language (DSL) that describes abstract seman-

tics in the big-step style, and abstract interpreters written in the DSL can

be compiled to small-step CESK or CESKH machines. Olivier [4] discovered

that there is an essential connection between big-step operational semantics

and small-step CESK machine [8]. A big-step interpreter can be translated

to an equivalent small-step interpreter though CPS transformation [3], de-

functionalization [5], and fusion. Therefore, we will continue to design the

DSL and the compiler to make abstract interpreters closer to concrete ones.

Precision Because JavaScript is a prototype-based and highly dynamic

language that heavily relies upon objects, traditional control flow analysis

is not enough for realistic JavaScript programs and libraries. Various pre-

vious works applied different techniques to analyze JavaScript or subsets
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of it, such as pointer analysis, string analysis, and numeric range analy-

sis. JSAI [16] is a static analyzer for JavaScript based on AAM that uses

more sophisticated models for abstract objects, abstract strings, and con-

stant propagation. TAJS [13] is another theory providing a well-designed

type system to JavaScript static analysis. Since objects in JavaScript are

maps from strings to values, precise string analysis benefits dynamically ex-

tended objects. Then, object analysis also impacts control flow analysis

because methods are fields of objects. Additionally, arrays are just a kind of

special object in JavaScript, a better string/number analysis also improves

analysis for arrays. Consequently, we plan to mix these existing techniques

with our control flow analysis solution to improve JsCFA.
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7 Conclusion

We have described h-CFA, a simplified approach for implementing pushdown

control flow analysis. This algorithm is based on abstracting abstract ma-

chine and it precisely matches returns with corresponding calls. It achieves

this effect by adding program execution histories as context to continua-

tions. We also showed the advantages of h-CFA compared with the existing

pushdown CFA algorithms (i.e. PDCFA, AAC, P4F). We designed and imple-

mented JsCFA, a control flow analyzer for JavaScript, which demonstrated

that h-CFA is a practical approach for realistic programs. In addition, we

discussed the reason why pushdown CFA requires polyvariant continuations

to achieve call/return matching, and we used this essential property of push-

down CFA to implement h-CFA for JsCFA without recording program ex-

ecution histories. Moreover, JsCFA adopted other techniques (i.e. abstract

garbage collection) in collaboration with perfect call/return matching to im-

prove the precision of the static analysis for JavaScript. In conclusion, we

believe that h-CFA is a simple and precise technique of control flow analysis

for real-world programming languages.

71



Bibliography

[1] Ole Agesen. The Cartesian Product Algorithm. In European Conference

on Object-Oriented Programming, pages 2–26. Springer, 1995.

[2] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Uni-

fied Lattice Model for Static Analysis of Programs by Construction or

Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, pages

238–252. ACM, 1977.

[3] Oliver Danvy and Andrzex Filinski. Representing Control: A Study of

the CPS Transformation. Mathematical structures in computer science,

2(04):361–391, 1992.

[4] Olivier Danvy. Defunctionalized Interpreters for Programming Lan-

guages. In ACM Sigplan Notices, volume 43, pages 131–142. ACM,

2008.

72



[5] Olivier Danvy and Lasse R Nielsen. Defunctionalization at Work. In Pro-

ceedings of the 3rd ACM SIGPLAN international conference on Prin-

ciples and practice of declarative programming, pages 162–174. ACM,

2001.

[6] Christopher Earl, Matthew Might, and David Van Horn. Push-

down Control-flow Analysis of Higher-order Programs. arXiv preprint

arXiv:1007.4268, 2010.

[7] Christopher Earl, Ilya Sergey, Matthew Might, and David Van Horn.

Introspective Pushdown Analysis of Higher-Order Programs. In ACM

SIGPLAN Notices, volume 47, pages 177–188. ACM, 2012.

[8] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Seman-

tics Engineering with PLT Redex. Mit Press, 2009.

[9] Mattias Felleisen and Daniel P Friedman. A Calculus for Assignments

in Higher-order Languages. In Proceedings of the 14th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, page

314. ACM, 1987.

[10] Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen.

The Essence of Compiling with Continuations. In ACM Sigplan Notices,

volume 28, pages 237–247. ACM, 1993.

73



[11] Thomas Gilray, Steven Lyde, Michael D Adams, Matthew Might, and

David Van Horn. Pushdown control-flow analysis for free. In ACM

SIGPLAN Notices, volume 51, pages 691–704. ACM, 2016.

[12] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence

of JavaScript. In European Conference on Object-Oriented Program-

ming, pages 126–150. Springer, 2010.

[13] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis

for JavaScript. In International Static Analysis Symposium, pages 238–

255. Springer, 2009.

[14] J Ian Johnson, Nicholas Labich, Matthew Might, and David Van Horn.

Optimizing Abstract Abstract Machines. ACM SIGPLAN Notices,

48(9):443–454, 2013.

[15] James Ian Johnson and David Van Horn. Abstracting Abstract Control.

ACM SIGPLAN Notices, 50(2):11–22, 2015.

[16] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin

Gibbons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. JSAI:

A Static Analysis Platform for JavaScript. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 121–132. ACM, 2014.

74
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