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ABSTRACT

VERSION CONTROL INTEGRATION OF BUILD
MAINTENANCE TOOLS WITH FORMIGA

by

Reed Johnson

The University of Wisconsin-Milwaukee, 2015

Under the Supervision of Professor Ethan V. Munson

The task of build maintenance consists of creating, configuring, and updating the

build system of a software engineering project. A project of sufficient size and scope

is likely to have some sort of build system due to the complexity and time required

to create a finished product. Build maintenance has been shown to greatly increase

the cost of developing software due to the common need to modify a build system

at the same time as the source code. Unfortunately, there is little in the way of tool

support to assist developers with build maintenance.

Formiga is a build maintenance and dependency discovery tool developed by

Hardt [1]. Formiga provides support for build refactoring, dependency identification,

and automatic build updating based on modifications to source code. This thesis

expands upon the original Formiga tool by investigating what kind of hurdles would

be involved in integrating it with a production-quality version control system. An

initial implementation of version control integration is built on top of the Formiga

IDE plugin. It makes use of a mock version control system to keep track of file and

file dependency history. This work, while not integrating with a production-quality

ii



version control system, lays a basis on which to perform that full integration in

future iterations of Formiga.
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Chapter 1

Introduction

When working on a software project of any appreciable size, a build system can save

hours of work that would be spent manually creating various kinds of output files. A

build system can be used to automate the construction of libraries and executables,

among other things, from source files and other resources. It can run test suites and

create executables for multiple kinds of environmental configurations. While au-

tomation allows for a wide range of artifacts to be produced with relatively minimal

effort to most developers, creating and modifying builds can be a time-consuming

effort itself. As a build system adds different capabilities, it grows in complexity,

which can make it difficult for the average developer to maintain. Unfortunately,

regardless of complexity, build system maintenance simply cannot be ignored. Re-

search has shown that as source code grows in size and complexity, so must the

build system [2].



2

One of many difficulties associated with modifying a build system is understand-

ing dependencies between tasks and dependencies between files. The size of a build

system can make this worse as the tasks used to create a project artifact can be

spread over hundreds or even thousands of lines of code. In addition, most build

files use variables whose content may consist of metacharacters such as wild cards

or regular expressions used to match a range of files. It can be difficult to com-

pletely understand all the metacharacters in a build system. The time required to

understand the structure of a build system can discourage developers from updat-

ing it when needed and may lead them to introduce errors as they modify the build

system.

Version control is also a necessity in any software project of sufficient size. A ver-

sion control system allows multiple developers, potentially separated by significant

distance, to work together on a single code base. Additionally, a version control

system maintains a history of development work and allows developers or other

stakeholders in a project to view or build a software project at multiple points in

its development history.

When talking about version control systems there are two main styles that have

to be considered. One of the two styles is known as Centralized Version Control

Systems (CVCS), such as CVS[3] and Subversion [4]. CVCS repositories are char-

acterized byhaving a single canonical repository for each project. Any development

done on a project stored in a CVCS is performed through a “checkout” taken from

the repository which is essentially a snapshot of that repository (or a part of the
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repository) at a given point in time [5]. In addition to working on a snapshot of a

repository, another key characteristic is that write-access to a repository is usually

restricted to a known set of developers. Write-access must be restricted because

committing a change to the repository will update the canonical version of the

project. Finally, a common practice when using CVCS is to designate and maintain

a “main” branch, creating new branches based on the main branch as needed in

order to release new versions of a piece of software [5].

The second type of version control system is known as a Distributed Version

Control System (DVCS), such as Git[6] or Mercurial [7]. As its name implies, the

biggest difference between a DVCS and a CVCS is that repositories are distributed.

When dealing with a DVCS, each checkout is itself a repository. That means that

each checkout from a DVCS contains all of the included resources and the complete

commit history. Write-access is not as critical with a DVCS because commits are

made to a developers’ own local repository and can later be merged with other

repositories. A consequence is that, unlike a CVCS, there is no enforced “main”

branch. Often times, a project will identify a canonical branch, but it is not the

same as the canonical repository found in CVCS [5].

Formiga is a tool developed by Hardt in 2014 that visualizes build dependencies

and assists developers with Ant build system maintenance. It is implemented as an

Eclipse plugin which allows it to use workspace listeners to monitor a project and

detect when changes have been made to a project or the project’s build system. One

of the major features of Formiga is that it provides refactoring capabilities similar
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to that of Eclipse. When changes are made to a project (such as a file addition

or removal), Formiga alerts the developer about which targets within the build

system will be affected and how. Formiga calculates the file-to-file dependencies

by simulating the Ant build process in memory. File dependencies can then be

displayed in a directed graph where nodes represent files and the edges between

them represent a generator-generatee relationship.

As difficult as it can be to understand the dependencies within a build system at

any given time, it can be equally difficult to understand how dependencies change

over the lifetime of a project. Formiga helps a developer understand the myriad

dependencies in an Ant build system, but not their history. Because Formiga is

only able to operate on a software project within a given workspace it can only

provide information about a single version of a project. In order for Formiga to

understand and visualize historical information about dependencies it would need

to interact with a version control system. Build dependencies could be used to inform

developers of what library versions are needed to run a given version of software.

This information would be useful to developers who want to use or develop for a

certain version of a software project. This thesis seeks to lay the groundwork for

integrating Formiga with a production-quality version control system by capturing

and storing dependency history.

The remainder of this thesis is organized as follows. Chapter 2 presents back-

ground information on some commercially available version control systems. Chap-

ter 3 briefly discusses features of the original implementation of Formiga. Chapter
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4 describes the implementation of the updated “Formiga” tool and how it captures

and records dependency history. Chapter 5 discusses potential future improvements

and Chapter 6 concludes the paper.
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Chapter 2

Survey of Commercial Version

Control Systems

This section describes the two major paradigms in version control systems. Section

2.1 provides a brief introduction to some terminology that is common to nearly

all version control systems. Section 2.2 briefly discusses the history of centralized

version control systems before going over some of their key characteristics. Section

2.3 gives a similar treatment to distributed version control systems, mentioning some

of the factors that contributed to the birth of the popular DVCS Git and covering

what makes distributed version control different from centralized version control.
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2.1 Introduction to Version Control Ideas and Ter-

minology

A key concept in all types of version control systems is that of the repository. The

repository is a combination of a file structure, metadata, and some list of changes

made to the contents of the repository’s file structure. Most repositories have some

internal model to represent the file structure they are storing and this internal

file structure is used to perform operations that developers associate with version

control systems such as merging and branching [8]. The files themselves are generally

represented as a sequence of lines or a blob of bits when dealing with text files and

binary files respectively. When something makes a change to one of the files being

stored in the repository and records that change by making a commit, this modifies

the internal model held by the repository.

Modifying the internal model of the repository is referred to as a “patch” or a

“revision”. The history maintained by a version control system is actually just a

sequence of the patches or revisions that led to the current state of the repository’s

inner model. A developer can retrieve any previous version of a file because the

repository can apply or reverse the patches necessary to return the repository to

any desired version [8]. Adding a patch to a repository can also cause a conflict if

the internal model assumed by the patch is different than the actual internal model

of the repository. An example of such a situation would be if a patch deletes a file

that doesn’t exist in the current repository. Such conflicts can sometimes be merged



8

automatically, but often they require human intervention in order to be resolved [8].

Many version control systems also support some form of branching. A branch

is itself a complete repository, but it is special because it is made as a snapshot

of another repository at a given point in time. Though a branch is based off one

repository, making changes in it will not affect the original repository [8]. Branches

can also be merged into other repositories, which makes them especially useful for

working on features without disrupting the “main” repository.

2.2 Centralized Version Control Systems

One of the first version control systems to be developed is known as Source Code

Control System (SCCS), which was developed at Bell Labs in the early 1970s [9].

In SCCS all files in the repository are stored on a central server, and developers

access the repository by working on workstations that are connected to that central

server. When a developer wants to make changes to a file then that file is locked

on the server and no other developers can work on it until the original developer is

finished and the lock is removed [8].

In the early 1980s the Revision Control System (RCS) was released by Tichy [10].

RCS’s implementation is based on the Unix diff utility and stores a series of deltas

rather than complete revisions. RCS stores revisions using a series of backwards

deltas, whereas SCCS stores a series of forward deltas. Backwards deltas make

retrieving the current state of the repository faster in RCS than in SCCS. Another
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key difference is that SCCS stores two files for each file under version control: a file

with the first version and a series of deltas, and a lock file. RCS stores the file locks

within the version file. If a user were to leave a team using SCCS without releasing

his file locks, then root privileges would be required to remove the lock files because

they belonged to the user who set the locks.

Concurrent Versions System (CVS) gained popularity over SCCS and RCS and

maintained popularity until the turn of the century. In a departure from SCCS,

which was oriented to individual files, developers using CVS “check out” the current

version of the entire repository from the central server which creates a local copy

of the repository. Perhaps the biggest advantage of this system over SCCS is that

more than one developer can make tentative changes to a file at a given time because

each developer gets a complete writeable copy of the repository [8].

The Subversion (SVN) system was developed in 2000 in order to address some

of the problems that developers had experienced with the CVS tool. Some im-

provements over CVS include using a database backend instead of a collection of

RCS files, atomic commit operations, and branching and tagging as cheap oper-

ations [11]. Subversion does not provide a radical departure from CVS in terms

of the underlying version control system. By the developers’ own admission, they

were not looking to radically change how the underlying systems worked, they just

wanted a version control system without the bugs present in CVS. The Subversion

project joined the Apache Software Foundation in 2010 and it remains one of the

most popular open-source CVCSs [4].
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The defining characteristic of a Centralized Version Control System (CVCS) is

that it takes a client-server approach to revisions [12]. SCCS, CVS, and Subversion

all clearly take a centralized approach to version control. A result of taking a client-

server approach is that most CVCSs have a single canonical repository [5]. This

single, central repository is the authority on the current state of the repository

along with its history. An important benefit of this is that if for some reason code

needs to be completely removed from the repository, such as when a project is legally

required to remove some code, this is completely possible. If everyone had their own

local copy of the complete repository, that might not be possible. Having a central

authority means that leadership in a project can have very tight control over which

developers can push changes to the main repository and over the changes they can

make. This can work as double edged sword on a software project. As a positive,

project leadership does not have to worry about unknown or untested developers

pushing, for example, untested changes to the central repository. But a disadvantage

is if the ratio of “approved committers” to “unapproved committers” is low, then

the approved committers may spend a disproportionate amount of time verifying

the quality of potential changes.

A second requirement of CVCSs is a network connection to the repository. When

a developer checks out a snapshot of the repository, the only thing they get is a

copy of the file system stored within the repository. If a developer wants to check

the history of the repository, see comments about individual commits, or commit

their own changes to the repository they must have a connection to the repository



11

server [13]. Developers can still work when they are without an Internet or intranet

connection, but they are limited to programming.

All of these characteristics indicate that there are certain situations in which a

CVCS may be the preferred method of version control for a development team. If

it is important that access to the repository is tightly controlled, then a CVCS may

be a good choice. If it is important that there is only one copy of the repository,

for example if some code needs to be completely expunged from that repository for

legal reasons, then a CVCS may be a good choice. If most developers working with

a repository can be expected to have Internet or intranet access to the repository

server, then a CVCS may be a good choice. No single one of these factors means a

team has to use a CVCS, but they do indicate that using one may not be detrimental

to development efforts.

2.3 Distributed Version Control Systems

Distributed version control systems (DVCS) have been growing in popularity since

the mid 2000s. Mercurial, Bazaar[14], BitKeeper[15] and Git are examples of this

newer paradigm for version control systems. Git itself was developed by Linus

Torvald to aid in the development of the Linux kernel. Torvald began development

of Git in 2005 because of his dissatisfaction with previous DVCSs available at the

time –BitKeeper specifically[16]. Though dissatisfied with BitKeeper, he also felt

strongly that CVCSs were a flawed approach to version control. He felt so strongly
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about this that he stated if they had too many issues developing their own version

control software he would sooner stick with BitKeeper than use a CVCS[16]. In

particular, one of his larger issues with CVCSs were that he felt the “approved

committer” model proved to be too big of a bottleneck on productivity. Thus, in

2005 Torvald began development on what would become one of the more popular

DVCSs[16].

As its name implies, the defining characteristic of distributed version control

systems is its distributed nature. Rather than taking a server-client approach, each

developer that uses a DVCSs has a complete copy of the repository (history and all)

on the local machine [5]. Because each developer has a complete local copy of the

repository, there is no “main repository” in the same sense as a CVCS. Generally

what happens instead is that developers choose one or more “principle” branches

that are treated similarly to the master repository found in a CVCS [5]. By having

no single canonical branch, developers have the ability to pick and choose which

revisions or patches they want to merge into their local repository [13]. Not only can

developers be selective about what they merge into their local repositories, they also

have the ability to be selective about which of their committed revisions they push

back to the “principle” branches. Furthermore, most DVCSs give developers the

ability to choose how they present their changes to other developers by combining

and splitting individual commits [17]. When used properly this capability allows

developers to organize their changes by the issue solved or by some other logical

structure.
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The local repository removes the need for developers to be “approved commit-

ters” to get the benefit of using a version control system. With minimal effort,

any developer can clone a public repository, make changes, and then commit those

changes back to the repository. Because the repository is local to each developer’s

machine, developers are able to commit as often as they want [5]. They may not be

able to push patches back to a principle branch without approval, but at the very

least, they can get the benefit of using a version control system without needing

approval by another person.

The issue of productivity with a lack of connectivity is also solved by DVCSs.

Having a local repository with a complete version history means that a developer

can still view past versions of a project even when not connected to the Internet [13].

An interesting difference between CVCSs and distributed version control systems

(DVCS) is the granularity in what a developer is able to commit to the repository.

When it comes to CVCSs, the atomic unit of commitment is an individual file [17].

While at first it may not seem important, this fact has an interesting effect on the

commit habits of developers. According to a research survey, the average size of

a commit in terms of lines of code is larger for CVCSs [17]. This can largely be

attributed to the fact that the atomic unit of commitment for DVCSs is individual

lines instead of whole files.

As a result of the atomic commit unit being an individual line, commits made

in DCVSs tend to have fewer lines of code than commits made in CVCSs[17]. One

thing not touched on previously, however is that because individual lines can be
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committed, changes to an individual file can be recorded over multiple commits.

This would be useful if a developer wanted to try to group commit contents based on

the intent of the commit, such as fixing a bug, implementing a new feature, tweaking

the efficiency of a function and so on. In fact, the research survey conducted by

Brindescu et al. [17] shows that, at least among the surveyed developers, a DVCS is

used to do exactly that: organize changes to be committed together based on their

intent.

Another interesting difference between CVCSs and DVCSs is their perceived

‘ease of use’. According to the research survey conducted by Brindescu et al. [17]

although CVCSs are waning in popularity among the development teams surveyed,

CVCS was more popular the larger the team was. Additionally, teams using CVCSs

overwhelmingly indicated that their continued use was due to perceived ‘ease of use’

and to familiarity with the tools. Perhaps this should not be surprising considering

that many of the most popular version control systems up until roughly 2005, such

as CVS and Subversion, were CVCSs.

Based on the characteristics mentioned previously, there are certain situations

where a DVCS seems like the more attractive solution. If developers of a project are

largely separated by geography, then using a DVCS is potentially a smart choice. If

developers anticipate often having long stretches with no sort of Internet or intranet

connection then using a DVCS is probably a smart choice. These are by no means

the only considerations that should take place, just like how section 2.2 did not touch

on all the things that should be considered before going with a CVCS. However, at
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the very least the scenarios mentioned indicate when a DVCS should be a strong

candidate when choosing a version control system.
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Chapter 3

Formiga

3.1 Introduction

Before discussing how I changed Formiga, I will discuss what Formiga does as it

was originally developed by Hardt [1].Formiga is a tool for the Ant build system

that aids in build maintenance and dependency discovery. It is implemented as an

Eclipse plugin and the work in this thesis builds upon that plugin. This chapter will

go over the main features of Formiga:

• assisting developers with build maintenance due to external changes

• assiting in the identification of build dependencies in software projects

• assisting in build maintenance due to internal changes
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3.2 Build Maintenance Due to External Changes

Often during the lifetime of a software project files will be added, removed, renamed,

and moved. When these events occur, developers may need to make corresponding

changes to the build system. Formiga, which is implemented as an Eclipse plugin, is

capable of recognizing when these events occur within a project. Additionally, it can

detect when these actions are performed outside of Eclipse and directly on the file

system. When these operations are detected by Formiga, it can update appropriate

tasks and properties within the build system. It can do it both automatically or by

it asking the user if the build system should be updated. The manner in which it

updates the build system in the face of file refactoring depends on the operation is

performed (add, remove, rename, move), the build tasks referring to the refactored

file, and whether the related references to that file are considered direct or indirect.

Hardt considers a direct reference to be a build system reference that can only be

resolved to a single file or directory [1]. An indirect reference is a build system refer-

ence that might refer to multiple directories through the use of wildcard characters

in a task or property.

When a file is added, Formiga reports to the user which targets and tasks will

be “directly” affected by the new file. A task is considered to be “directly” affected

by a file if the task acts on all files in the directory the file was added to or if the

task has an indirect reference to that file.

When a file is renamed or moved, Formiga’s behavior differs depending on
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whether a task has a direct or indirect reference to the file. If a task directly refer-

ences a renamed or moved file, the reference is updated because it would otherwise

be invalid. If the reference is indirect and the reference still refers to the modified

file, then no change happens and the user is not notified of anything. If the indirect

reference no longer refers to the modified file, then either a new reference is added

to the existing reference or a new reference is included as a nested task.

When the file is removed, Formiga’s behavior again differs based on whether a

task has a direct or indirect reference to the file. If the task has a direct reference,

then the reference is removed. If the removed file was the only file referenced by the

affected task, then the task is also removed. If the file is indirectly referenced by a

task, then nothing happens.

3.3 Build Dependency Identification

One major feature of Formiga is the identification of “build dependencies”, which

are relationships between two files that are specified as part of a task in a build

system. Formiga starts its dependency analysis by first identifying all the targets in

a build file that no other targets depend on. Executing each of these targets would

cause the Ant build system to eventually execute all targets, producing a set of what

Hardt calls “target chains” [1]. By identifying build dependencies while executing

all target chains, Formiga ensures that it finds dependencies for all possible chains

within the build.
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Formiga uses a modified version of Ant in order to discover a software project’s

build dependencies. Formiga’s Ant implementation allows it to execute all tasks in

a build system in nearly the same way as the regular Ant implementation. However,

instead of having tasks execute their effect on the user’s file system, Formiga’s Ant

implementation works on a virtual filesystem in memory that Hardt refers to as the

“filespace”. The filespace maps filesystem locations to all the files that are found

in that location. Because Formiga works on a virtual filesystem, it contains models

that represent the files within that filesystem. Formiga has models for the following

file types:

• Source files

• Class files

• External libraries

• Build files

• Deliverables

• All other files

The class file model contains a set of class files and external libraries. These

sets represent the files that are directly used to generate the containing file. The

deliverable model contains a set for each of the files identified in the list above. As

with the class file, each of the sets in the deliverable model represent the files that
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are used to generate the deliverable. The files in these sets are the dependencies

identified by Formiga when it executes the Ant build process. When executing the

Ant build, Formiga gives each target chain its own filespace. However, Formiga also

can identify when target chains have overlapping target subsets and reuses build

dependencies that have already been identified.

Formiga may attempt to identify and record build dependencies when either a

build file is modified and saved or when a file is added, removed, moved, or renamed.

If the build file is modified by a user, Formiga makes no attempt to determine the

differences in dependencies between two build system versions and instead recalcu-

lates all dependencies. If a file is added, removed, moved, or renamed then Formiga

will wait to determine if dependencies need to be reprocessed until it checks for

build maintenance updates. As in the previous case, if Formiga needs to recalculate

dependencies then it will recalculate all of the dependencies for a project. Depen-

dencies are recorded in an embedded Apache Derby database by using Hibernate.

Apache Derby is a Java-based SQL database [18]. Hibernate is a popular Java object

relational mapping framework [19]. When Formiga comes across conditionally set

properties, it executes the target chain both with and without the property defined

in order to ensure that Formiga investigates all possible configurations.

Formiga displays build dependencies as a directed graph. Within the graph nodes

represent files and edges represent a dependency between them. It can display both

forward and backwards dependencies. File A is a forward dependency of file B if

A can only be produced if B is present. In this scenario, B is also considered a
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backward dependency of A. When calculating dependencies, Formiga records the

line number in a build file that is responsible for constructing a given dependency.

When a user clicks on an edge between two nodes on the graph, Formiga uses this

information to open the build file at the appropriate line within Eclipse. Users can

access the graph through a ’Formiga’ option that has been added to the context

menu generated when a user right-clicks a file or directory within the Eclipse file

explorer.

3.4 Build Maintenance Due to Internal Changes

The final major feature of Formiga is that it provides build system refactoring

options similar to what a developer would find in a modern IDE. Formiga provides

these refactoring operations because they can be error prone if performed manually

and may require a large number of updates.

The first refactoring operation provided by Formiga is target removal. A user

can highlight the name of the target at its declaration and select “Remove Tar-

get” from its context menu. Formiga will then remove the target and all references

to it within the build file. The second refactoring operation is target renaming.

The renaming operation is triggered by highlighting the name of the target at the

target’s declaration and selecting “Rename Target” from the context menu. This

causes Formiga to rename all references to the target throughout the build file. The

final two refactoring operations are “Property Renaming” and “Property Removal”.
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These operations are triggered in the same way as target removal and target renam-

ing, however the user has to highlight the name of a property instead of a task. One

behavior that is also similar between all four refactoring operations is that upon

completion Formiga will report the number of updated property or target references

to the user.



23

Chapter 4

Implementation

4.1 Introduction

FormigaV2 is the name of the updated version of Formiga presented along with this

thesis. FormigaV2 differentiates itself from the original Formiga by tracking how

dependency history changes over time within a project. It does this with a mock

version control system that is made up of two databases:

• Uncommitted File Database - The database that stores modified but uncom-

mitted files and build dependencies

• Committed File Database - The database that stores committed files and build

dependencies along with an identifier that shows when changes were committed

Each database has a table for the file models identified in Chapter 3 as well as

a table for all build dependencies.
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This chapter addresses the design choices made in this thesis and the rationale

behind those choices.

4.2 DVCS or CVCS

The first question coming into this thesis was whether work would be done against a

mock version control system of the distributed or centralized paradigm. Ultimately

centralized version control seemed to be the best option for a few reasons:

• Having one central authority removes the need to reconcile databases between

multiple developers. Because the mock version control system also assumes

there is only one authoritative ’committed file’ database, transitioning from

the mock system to a production-quality system can be relatively painless.

• There isn’t as much need to worry about how the state of the committed file

dependency database has to be transmitted to developers. The committed file

dependency database can just be stored on the repository server and accessed

via a connection to that server. Even though the dependency history cannot

be retrieved without a connection to the repository server, this behavior is

consistent with how most CVCSs function.

• Merging the committed file dependency databases can be ignored in the initial

version of the FormigaV2 enhancements. This is not to imply that branching

and merging is not important in a CVCS. However, it would be impossible to
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present a project that does not solve the issue of merging because the com-

mitted file dependency database has to be available to all developers offline.

Requiring developers using a DVCS to have an internet connection in order

to use all features of FormigaV2 would go against the spirit of DVCSs. By

choosing to mock a CVCS we can make the simplifying assumption that all

developers are working with one committed file dependency database and not

their own potentially different version of that database.

The choice to create a mock CVCS was made mostly out of convenience. Using

a CVCS allowed some simplifying assumptions to be made that shifted focus onto

the question of how to capture and commit dependencies instead of how to merge

the dependencies.

4.3 Database Interaction

One of the technologies used by Formiga is the Hibernate Object/Relational Map-

ping framework[19]. Hibernate is a data persistence framework that maps Java

objects to database tables. Ultimately, I chose not to use Hibernate in FormigaV2

and instead used JDBC which is a database API for the Java programming lan-

guage. In order to explain why I chose to use JDBC over Hibernate, I will briefly

discuss the benefits of both and the reasoning behind my decision.

There are a number of features of Hibernate that make it a fairly popular choice

among Java developers. It has multiple options for table initialization and data
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fetching that make it relatively simple to tune database performance. Hibernate

is built to be scalable which means it fits well into projects of any size. Wide

use among Java developers has lead to an abundance of offline and online learning

material and help information, which can make it significantly easier to learn how to

use Hibernate. Also, the Hibernate Java API abstracts away the choice of database

(MySQL, Derby, etc.) from the developer. This abstraction allows the developer to

write code that can be reused regardless of what database Hibernate is connecting

to.

There are multiple benefits to using JDBC as well in a project. Developers

use a structured query language (SQL) to interact with a database when using

JDBC. Because SQL is a standard topic in university curriculums, many developers

have some level of experience with it. JDBC is also quick to set up because its

API is included in the Java SDK. Thus, no extra JAR files need to be included

in the build path when using JDBC. Additionally, developers do not need to set

up configuration files to interact with their database through JDBC. A developer

simply uses the database’s URI to create a connection and then uses the JDBC API

to execute SQL queries. The result is a set of database table rows whose columns

can be accessed either by their name or by their position.

Ultimately, the decision to use JDBC over Hibernate stemmed from the desire

to do as little to the original Formiga plugin as possible. Because Hibernate directly

maps all the fields of a class into columns in a table, storing new information would

mean tampering with the original classes. Modification was avoided primarily out
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of fear that modifying Formiga might accidentally break it. Other design choices

were motivated by a desire to only add code to Formiga, except when needed to

fix bugs. One such design choice was to use wrappers around certain data classes

instead of modifying those classes to hold extra data.

4.4 Mock Version Control System

The mock version control system is primarily represented by two embedded Apache

database tables. One database table is referred to as the “uncommitted files database”

and keeps track of the modified but uncommitted files. This table emulates how a

version control system will tell the developer which files have been changed since

the last time files were committed. The easiest way to keep track of the files within

the project is to record each addition, removal, or modification. In addition, by

storing the uncommitted files and their dependencies in the database, dependencies

only need to be calculated when the relevant files are first modified. The database

itself has a table for each type of file identified by Formiga: class file, source file,

deliverable, library, and other. Build dependencies also have their own tables based

on the type of the two files involved in the dependency. The primary key for each

type of file within the database is a combination of file name, file path, and file

“version”–a value which is intended to represent a file iteration but currently is un-

used. Additionally each file is associated with its containing project, but the project

is never part of the primary key and, therefore, not required to uniquely identify a
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file.

The second database is referred to as the “committed file database”. This com-

mitted file database has all the same tables as the “uncommitted” table, but with

one exception. In order to mimic the “revision” concept from real version control an

extra table that records a “commit record” exists within the committed file database.

Using this table, each file is uniquely identified by a combination of file name, file

path, file version, and “commit record”. Additionally, file-to-file dependencies, in

addition to being identfied by the two files that comprise the dependency, also have

their own associated “commit record”.

Eclipse workspace listeners, already used by the original Formiga, are also used

to help keep track of the file dependency history. When a file change is detected

by the workspace listener, a new row is inserted into the uncommitted file database

with one of three values for the update type column:

• ADD - The associated file has been added to the project

• REM - The associated file has been removed from the project

• MOD - The associated file’s contents were updated and saved

In general, once a file has been recorded in the uncommitted file database, no

further changes are recorded for that file until it is committed. There is one exception

to this rule, which happens when a given file exists within the database with the

“ADD” update type and FormigaV2 tries to add the same file to the database with

a “REM” update type, then the “ADD” row is removed completely and the “REM”
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row is never inserted. This exception is intended to mirror the situation in which

a developer adds a new file to a project but deletes it before it is ever committed.

If a file is added to a version control system and removed before it is committed,

the version control history records nothing instead of recording both an add and a

remove.

The inverse scenario to the one described above does not display any special

behavior. If a file is recorded in the uncommitted file database with a “REM”

update type, and FormigaV2 attempts to add a new database entry for the same

file but with the “ADD” update type, then the “REM” row is not deleted. If a

developer were to remove a file from a project, there is no reason they could not

add a completely new and completely different file with the same name to the same

location. In this case, it would not be appropriate for the add operation to cancel

out the remove operation because adding a file in this scenario does not guarantee

it has undone the remove operation.

4.5 Dependency Calculation

Formiga, without any modification, calculates the interfile dependencies for all

projects in an Eclipse workspace. The difficulty in determining the interfile de-

pendencies for “uncommitted” files lies mostly in identifying the dependencies for

uncommitted files from the objects generated by Formiga’s Ant build simulation.

Unfortunately, there was originally no way to access the results of simulating Ant’s
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build process. I modified FormigaV2 to identify the interfile dependencies of un-

committed files over a multi-step process, detailed below:

1. When a change is detected by the Eclipse workspace listeners, Formiga simu-

lates the Ant build process to determine if any file dependencies have changed.

During this Ant build simulation, the filespace of each target chain is merged

into one universal filespace.

2. FormigaV2 iterates through every file in the filespace, looking for ClassFiles

and Deliverables. All of the build dependencies that are recorded within the

FormigaV2 databases are ClassFile-to-file dependencies or Deliverable-to-file

dependencies, which is why FormigaV2 looks for ClassFiles and Deliverables.

When a ClassFile or Deliverable is identified, then FormigaV2 iterates over the

list of added, removed, and modified files identified by the Eclipse workspace

listener.

3. If the file from the filespace is a Deliverable, then FormigaV2 checks if the

relevant file is in one of the file sets for that Deliverable. If the file from the

filespace is a class file, then FormigaV2 checks if the relevant file is in one of

the two file sets within that model. When a file is in one of these sets within

the Deliverable or class file then that file is directly used to generate that

deliverable or class file.

4. If the added or removed file is found within one of the “generated files” set

for either the deliverable or class file, then the deliverable or class file and the
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added or removed file form a valid file-to-file dependency. The two files are

then added as a new row to the uncommitted files database based on what

the type of the two files are, with the update type corresponding to whether

the second file was added or removed.

In this way, when file changes are detected by the Eclipse workspace listener,

appropriate file dependencies are identified and recorded in the uncommitted file

database. Files and file-to-file dependencies stay in the uncommitted file database

until the developer decides to commit the work. When a user decides to commit

a set of changed files using the mock version control system, they can access the

“Uncommitted Changes” window. As shown in Figure 4.1, the uncommitted changes

window shows all uncommitted files for each project in the workspace. The developer

specifies the files to be committed by checking the checkbox next to the desired files

and selecting the ’Ok’ button at the bottom of the window.

When a developer selects ’Ok’ in the uncommitted changes window, in addition

to moving the selected files to the committed files database, the appropriate file

dependencies are also recorded in this database. When moving individual files to

the committed file database, if the selected file is not a part of any file-to-file-

dependencies or if the only associated dependency is also going to be committed

then the file is completely removed from the uncommitted file database.

When individual files are committed, all relevant file-to-file dependencies are

also committed as well. If a selected file is either a deliverable or a class file, then
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Figure 4.1: Uncommitted Changes Window
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some extra calculations are performed to determine whether there are any relevant

dependencies to commit. FormigaV2 first creates a commit record to associate with

all the files about to be committed. After that, it iterates over all the files that

are about to be committed, and searches the uncommitted file database for any

dependencies that file might be involved in. This process creates two maps, one

from a class file to all the files used to generate it and the other is from a deliverable

to all the files used to generate it. The combination of a deliverable or class file

with one of the files within the mapped sets is how FormigaV2 represents the build

dependencies before they are recorded. Next, all uncommittable dependencies are

pruned from these two sets. Dependencies are considered committable in three

situations:

1. If both the generator file and the generated file are being committed in the

current revision, the dependency can be safely committed.

2. If the generator file is being committed, but the generated file is not being

committed, FormigaV2 checks the committed file database to see if there is a

record of the generated file being added or modified. If such a record is found,

then the dependency is committable.

3. If the generated file is being committed but the generator file is not being

committed, FormigaV2 checks the committed file database to see if there is a

record of the generator file being added or modified. If such a record is found,

then the dependency is committable.



34

If a dependency does not meet one of these three criteria then it is removed from the

file dependency map. In other words, a dependency is considered uncommittable if

only one of the two files in the dependency is being committed and the other file

has never been committed. Dependencies should not be recorded if both files are

not stored in the commmitted files database. Finally, after all the uncommittable

dependencies have been removed, all the remaining dependencies are recorded in

the committed file database and removed from the uncommitted file database.

4.6 Completeness of Solution

When talking about the completeness of FormigaV2, it seems appropriate to ask if

it captures file dependencies in all the same ways as Formiga. In its original im-

plementation, Formiga recognizes that the build dependencies of a software project

may change in two distinct situations:

1. A file is added, removed, renamed, or moved

2. The build system is manually modified by a developer

It is fair to say that FormigaV2 captures all the dependencies generated by the first

situation. Formiga treats renamed files and moved files as a sequence of additions

and removals, where either the name or the path of the file respectively has changed.

FormigaV2 also treats a rename or move operation as a sequence of addition and

removal operations. Then, to verify that all four operations in FormigaV2 capture
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the same dependencies as Formiga, it is sufficient to verify that the addition and

removal operations work the same. I have verified that both operations work as

expected by comparing the Derby database used by Formiga to the uncommitted

file database used by FormigaV2. When a file is added to a software project, I

verified that FormigaV2 captures all the correct dependencies by confirming that

all dependencies for the added file in embedded Formiga database are also found in

the uncommitted file database. I verified that the remove operation captures the

appropriate dependencies in FormigaV2 in a similar manner. When a file is removed

from the project, I determined that all the dependencies listed as “removed” in the

uncommitted files database are not present in Formiga’s embedded database.

Unfortunately, FormigaV2 does not capture new dependencies generated when

the build system is manually modified. The reason this situation is not covered is

because there is no intuitive way to capture new dependencies identified by Formiga

after the build system is manually modified. When dependencies are identified by

Formiga in this situation, instead of determining the differences and committing

only new dependencies Formiga clears out the entire database and commits the

entire filespace. In order to capture these dependencies FormigaV2 would have to

do one of two things. FormigaV2 could compare the dependencies between the in-

memory filespace and the Hibernate database, but the computational cost of this

method is why Hardt avoided it in the first place. The second option would be to

modify Formiga’s implementation of Ant to check each identified dependency for

existence inside the Hibernate database. If the dependency is not already recorded
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then it must be new. The second option would have been my choice to handle this

dependency generation scenario. However, as mentioned in Section 4.3, I tried to

avoid modifying Formiga in order to avoid potentially breaking it and so I chose to

capture dependencies generated by the first dependency generation scenario instead.

The only remaining question is whether or not the interface is a sufficient re-

placement for a production-quality version control system. Referring back to Figure

4.1, note first that all files are listed beneath their project. Additionally, each file

specifies its path so that there is no confusion between multiple files that may have

the same name within a project. Added, removed, and modified files are represented

in a manner similar to a production-quality version control system. However, files

that are moved or renamed could be improved upon. Because a renamed or moved

file is treated as a sequence of removal followed by addition, when one of these two

operations is performed two items show up within the uncommitted changes win-

dow. To commit a file that is modified by either the rename or or move operations

a user has to choose to commit both the removal of the old file and the addition of

the new file. This is not the same behavior as a production-quality version control

system, so it would not be very intuitive to the average developer.

4.7 Issues with Implementation

The most troublesome issue I encountered while developing FormigaV2 was dealing

with Hibernate. As mentioned in Section 4.3, Formiga uses Hibernate to interact
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with an embedded database. When I began working on FormigaV2 I contacted

Hardt and he gave me the JFreeChart project (the Java project he used in his us-

ability studies) [1]. When calculating the dependencies of the JFreeChart project,

Formiga was unable to record the filespace. The issue was that Hibernate was

throwing a NonUniqueObjectException in the middle of recording the filespace. In-

vestigation showed that this exception is thrown by Hibernate if a program attempts

to save multiple objects that represent the same component (based on the compo-

nent’s overwritten Java equality methods). Based on my own conversations with

Hardt[20], he had struggled with similar issues when implementing Hibernate in

Formiga. After multiple weeks of correspondence between myself and Hardt, we

were still unable to solve my NonUniqueObjectException. Because Hibernate does

not throw a NonUniqueObjectException when it calculates the dependencies of my

toy project, I decided that my time was better spent working on FormigaV2 rather

than resolving my issue with the original Formiga implementation.
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Chapter 5

Future Work

5.1 Production-Quality Version Control Integra-

tion

The initial effort to integrate Formiga with a version control system was done using

a mock version control system. The next logical step would be to integrate Formiga

with a production-quality version control system. It is likely that the easiest way

to go about this would be to choose a CVCS such as Subversion for integration.

As noted in chapter 4, the mock version control system in this thesis was designed

to be similar to a traditional CVCS. Integrating with a production-quality version

control system would allow Formiga to use the revision identifier used by the version

control system. Additionally, it might be possible for Formiga to only track file-to-

file dependencies and stop tracking individual files because a version control system
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already keeps track of file history. An integrated Formiga might require the least

changes if it is integrated with a version control system that is also integrated into

Eclipse, such as Eclipse Subversive[21]. Ultimately, Formiga will be most useful to

developers if it is integrated with a real version control system instead of a mock

system.

5.2 Distributed Version Control System

After integrating Formiga with a CVCS, it could be worthwhile to also integrate it

with a DVCS. As noted in chapter 2, within the past decade DVCSs have begun to

gain popularity with developers at least in part due to having a complete repository–

history included–available locally. Having complete version information available

locally means that in order to integrate Formiga with a DVCS it would also have

to be able to transmit partial information about the change of the committed file

dependencies. As mentioned in section 5.1, Formiga would likely be most useful if

integrated with a DVCS that is also integrated into Eclipse, such as EGit[22].

5.3 Visualization

One big component of Formiga that is ignored by this thesis is the task of visualizing

dependency history. One important feature of Formiga is the ability to visualize

dependencies within a build system and make it easier for a developer to understand
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the structure of that build system. The first issue that would need to be resolved

is building routines that can retrieve all of the file dependencies from a given point

in a repository’s history. When all the dependencies for a given repository version

have been gathered then they can be used by the routines responsible for displaying

dependencies. A developer might also be interested to see how the dependencies of

one file have changed over time. The biggest hurdle showing this for a given file

is finding an intuitive representation for the dependencies. It could be difficult to

cleanly represent the dependency between two files if, for example, one of the two

files has been added and removed to and from a project multiple times.
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Chapter 6

Conclusion

Formiga helps developers to better understand their Ant build system by providing

automated build maintenance tools and visualization capability, but it does not

necessarily help a developer understand how the build system has changed over

time. This thesis begins to fill that void by laying the groundwork for integration

with a production-quality version control system.

Formiga is modified to use mock CVCS in order to determine how dependen-

cies should be represented over time and how user interaction with version control

would record those dependencies. Using Eclipse workspace listeners, the Formiga

plugin can track when files in a project are added, removed, or modified and record

the interfile dependencies specified by the Ant build system. Though developers

are not yet able to interact with the dependency history in a meaningful way, the

dependencies are available for future developers to use if they choose to expand the

Formiga Eclipse plugin.
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