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ABSTRACT 

 
DATA MINING REVISION CONTROLLED DOCUMENT HISTORY METADATA 

FOR AUTOMATIC CLASSIFICATION 
 

by 
 

Dustin Maass 
 
 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Munson 

 

 

Version controlled documents provide a complete history of the changes to the document, 

including everything from what was changed to who made the change and much more.  

Through the use of cluster analysis and several sets of manipulated data, this research 

examines the revision history of Wikipedia in an attempt to find language-independent 

patterns that could assist in automatic page classification software.  Utilizing two sample 

data sets and applying the aforementioned cluster analysis, no conclusive evidence was 

found that would indicate that such patterns exist.  Our work on the software, however, 

does provide a foundation for more possible types of data manipulation and refined 

clustering algorithms to be used for further research into finding such patterns. 
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1 Introduction and Motivation 
 In the nearly 13 years since it was launched, Wikipedia has grown to include over 

30 million articles in 287 different languages.  In order to assist people looking for certain 

topics of information, Wikipedia was designed with a categorization system in place.  

Despite this system, many pages are still either not categorized or poorly categorized.  

Given the size of the knowledge base, manual categorization and validation of the 

existing categorizations for all Wikipedia's pages are not feasible. 

 This thesis describes research that attempts to identify patterns within the revision 

histories of Wikipedia articles.  The goal of the research is to demonstrate that patterns in 

the version history metadata (frequency of changes, number of active authors, size of 

changes, etc.) could be used as part of a larger system for automatic categorization of 

Wikipedia pages.  The research limits the classification task to the version history 

metadata and ignores the specific content of the changes because such an approach holds 

the promise of providing language-independent information for automatic classification. 

 

1.1 Thesis Layout 
 The remainder of this paper is organized as follows:  Section two presents 

previous work relating to either automated categorization methods or to data mining 

techniques applied to Wikipedia.  Section three describes the data mining techniques used 

and techniques for assessing their effectiveness.  Section four deals with setting up the 

data set selection, as well as our custom software we used for the data acquisition and 

manipulation.  Section five discusses how the revision data was processed to produce the 

values used in data mining.  Section six explains the results and findings of the data 
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mining analysis.  Section seven describes the conclusions drawn from the results of the 

analysis.  Finally, section eight describes some possible avenues for further research and 

possible software enhancements. 

 

2 Related Work 
 Wikipedia has already been the basis for considerable research.  Many of the 

works focus on utilizing the content of Wikipedia to aid researchers in performing 

research regarding other media.  For example, Ayyasamy et al. used the existing 

classification system in Wikipedia to classify weblogs [2].  They sought to use articles in 

Wikipedia to build a mapping of terms to concepts to topics.  They then used the mapping 

to better categorize the weblogs based on key terminology used in it. 

 Of more relevance to this research are several papers that used the revision history 

of Wikipedia as the primary focal point.  Max and Wisniewski [10] utilized the revision 

history to build a resource corpus that can be used for identification of linguistic 

phenomena.  Their research aimed to provide a resource for building improved language-

based applications, such as more advanced spell-checkers and paraphrasing utilities.  

They attempted to accomplish this by examining and categorizing the revisions 

themselves.  Their work expanded on research by Nelken and Yamangil [13], whose work 

had the same premise but on a more limited scope.  Nelkin and Yamangil sought to 

identify “eggcorns”, or pairs of words that are correctly spelled and phonetically similar. 

 In addition to the Wikipedia aspects of this research, we also investigated the use 

of clustering algorithms.  In this direction, we pulled heavily from the techniques 

described by Berkhin [3] and Pang-Ning, Steinbach, and Kumar [14].  Pang-Ning et al. 

wrote a thorough book on data mining, including a good reference on several different 
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analysis algorithms.  Berkhin provides a more in-depth survey of clustering algorithms 

including k-means clustering, which is the primary type of analysis used in our research.  

Nazeer and Sebastian [5] delve into ways to improve the accuracy and efficiency of 

clustering algorithms, specifically the k-means algorithm.  They revised the k-means 

algorithm slightly, creating a more efficient and accurate algorithm.  Goutte and Gaussier 

[6] and Powers [15] have performed research into measuring the precision, recall, and F-

Score of various algorithms.  Goutte and Gaussier studied the confidence levels of 

precision, recall, and F-Score.  Powers investigated various replacement measurements 

that aimed to be a more comprehensive means of measuring accuracy. 

 

3 Data Mining and Clustering 
 In order to locate patterns within Wikipedia's revision history metadata, we turned 

to the sub-discipline of data mining.  Data mining is the analysis of large quantities of 

data in an effort to identify interesting patterns.  It includes several different types of 

analysis that can be used to this end.  For instance, association rule analysis seeks rules to 

govern relationships between different variables, while anomaly detection aims to 

identify records that could represent erroneous or otherwise interesting data.  In our 

research, we focused solely upon cluster analysis for pattern identification. 

 

3.1 Clustering Algorithms 
 Cluster analysis is performed by grouping objects into classes through the 

proximity to one another using one or more characteristics of the objects.  Given our 

desire to identify groupings among pages, cluster analysis was the logical option for our 

research.  There are two basic types of clustering algorithms available for use. 
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 In hierarchical clustering, the entire data set is plotted in a high dimensional space 

and the two closest points are “clustered” together.  The central point of the new cluster is 

calculated and considered as a point.  Then the next two closest points (or clusters) are 

combined to form a new cluster.  This process is repeated until all the points and clusters 

are merged into a single cluster.  The resulting pairings can then be drawn out to create a 

hierarchical tree showing the breakdown of related (closely-positioned) pairs. 

 The other basic type of clustering algorithm is k-means clustering.  In a k-means 

clustering algorithm, all the data points are plotted in a high dimensional space, based on 

the values of interest.  Next, centroid points are arbitrarily chosen for each of the k-

clusters, with an emphasis on spacing them as far apart as feasibly possible.  Then, all 

points are assigned to their nearest k-cluster centroid.   

 After all the points have been assigned to a cluster, the centroid point of each k-

cluster is recalculated based on the potentially new set of points.  Then all of the points 

are reassigned to their nearest centroid.  The centroids are then recalculated again.  This 

process of reassignment and recalculation repeats until none of the centroids move when 

they are recalculated, meaning that no points were reassigned to a different cluster after 

the previous recalculation.  In order to prevent any situations where a point bounces 

perpetually between two clusters, the algorithm is usually limited to a predetermined 

number of iterations. 

 For our research, since the goal is a simple detection of groupings, we chose to 

use the k-means clustering algorithm.  After we processed our data sets using the k-means 

clustering algorithm, we then attempted to generate a formula for determining which 

grouping/category a random piece of data, or possibly a new piece of data, belongs to. 
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3.2 Rapid Miner Data Mining Tool 
 When it came to executing the cluster algorithm analysis, it was decided to use a 

pre-existing commercial piece of software.  This allowed more time to be invested in the 

deciding upon which manipulations of data should be considered as well as on the 

analysis of the results.  The software selected for performing our cluster analysis is Rapid 

Miner, created by the Rapid-I company.  Rapid Miner offers an open-source data mining 

solution that provides a graphical interface for building processes that can be executed 

upon multiple sets of data.  In addition, Rapid Miner provides a set of direct APIs that 

allow it to be hooked directly into custom software.  It also provides a great deal of 

flexibility in terms of data sources and data output formats, providing for much leeway in 

the other software components that are needed. 

 

3.3 Measuring Effectiveness 
 The effectiveness of a cluster analysis is typically assessed by three different 

metrics: Precision, Recall, and F-score.  These metrics are closely related and are based 

on a categorization of each data point's cluster assignment into one of four result 

categories: true positives, false positives, false negatives, and true negatives.  We 

calculate each of the four values, for each cluster, as follows: 

• true positive (tp) – the number of objects in this cluster which belong here 

• false positive (fp) – the number of objects in this cluster which should not have 

been placed here 

• true negative (tn) – the number of objects not placed in this cluster which should 

not have placed here 
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• false negative (fn) – the number of objects not placed in this cluster which belong 

here 

 

 The determination of which predefined group belongs to each calculated cluster 

was achieved by taking the group with the highest number of objects in each cluster as 

the group that is associated with that cluster. 

 Each of the different styles of data manipulation was run through the same 

clustering algorithm.  Each one was then measured in terms of all three effectiveness 

measures. 

 

3.3.1 Precision 
 The precision, or confidence, of a particular cluster is a measure of how 

successful the clustering algorithm is at including only objects of the cluster's pre-

grouping into that cluster.  This is calculated by taking the number of true positives and 

dividing them by the number of true positives plus the number of false positives, i.e. the 

total number of objects in the cluster. 

 

Precision= tp
tp+ fp  

Figure 1: Precision Formula 

 
 Precision was measured for each of the k-clusters that were generated.  The 

individual cluster precisions were averaged together to obtain the precision for the entire 

analysis. 
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3.3.2 Recall 
 The recall, or sensitivity, of a particular cluster is a measure of how successful the 

clustering algorithm is at obtaining all of the objects expected to be contained within the 

cluster, i.e. the objects from the grouping that belongs to a particular cluster.  This is 

calculated by taking the number of true positives and dividing by the number of true 

positives plus the number of false negatives. 

 

Recall= tp
tp+ fn  

Figure 2: Recall Formula 

 
 Recall was measured for each of the k-clusters that are generated.  The individual 

cluster recalls were then averaged together to obtain the recall for the entire analysis. 

 

3.3.3 F-Score 
 When researchers want to give a single score to a cluster analysis they typically 

use the F-Score, which is the weighted harmonic mean of both precision and recall.  The 

weighting of the F-Score is used to focus on either the accuracy of correctness (i.e. 

precision) or the completeness (i.e. recall) of the clustering.  In the F-Score formula, the 

value of β is the weighting of the precision over recall.  It is calculated by dividing the 

product of the precision and recall scores by the sum of the recall and weighted precision.  

This is then multiplied by one plus the weight squared. 

 

F β= (1+ β β)× Precision× Recall

( β2
�Precision)+ Recall  

Figure 3: F-Score Formula 

 
 Since, in our research, we wanted the algorithm to be both as correct as possible 
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and as complete as possible, we used the balance-weighted F-Score (referred to as an F1-

Score).  This uses a β of 1, which results in: 

 

F1= 2× Precision× Recall
Precision+ Recall  

Figure 4: F1-Score Formula 

 
 The final value is a number between zero and one, with a value of one 

representing a perfect clustering algorithm.  Unlike the recall and precision 

measurements, the F1-Score was calculated using the averaged recall and precision 

scores and was only calculated once for the entire clustering algorithm. 

 

4 Data Set Selection 
 We chose two data sets to execute our analysis upon.  Data set #1 of our research 

contained small groups of articles assigned to very specific categories.  Each grouping 

was comprised of 20 different pages chosen haphazardly, each closely coupled to the 

others by a very specific type of topic, e.g. famous historical battles, mammals.  A total of 

14 groups were selected.  This data set provided 1,030,661 revision entries for use in the 

analysis. 

 
Birds Comedy Television Shows 

Historical Battles Historical Leaders 

Megacities Movie Stars 

Rabbis Scientists 

Theorems World Music Award Winners 

Fortune 500 Companies Mammals 

Northern Europe Countries Software People 

Table 1: Data Set #1 Categories 
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 With concerns that the small number of articles from the first data set would 

prevent more general trends from possibly appearing, we decided that a second data set 

would be useful.  Data Set #2 was intended to provide a larger article count which would 

allow us to look for general trends of three different, broader categories.  Each category 

of articles was comprised of between 1685 and 1707 pages, with each group representing 

a broad type of topics.  A total of 3 groups were used, providing 859,831 revision entries 

for use in the analysis. 

 
Category # of Articles 

Greek Mythology 1,707 

Quantum Science 1,685 

US Olympic Gold Medalists 1,690 

Table 2: Data Set #2 Categories 

 
 

4.1 Metriki Data Extraction and Manipulation Software 
 In order to obtain the revision history data from Wikipedia, we made use of the 

Metriki software, originally designed by Peine [15].  His software accesses the revision 

history of Wikipedia by sending the request to Wikipedia's server via a URL.  Wikipedia 

then returns a XML file that contains all the requested information.  It also provided a 

starting point for manipulating the data for further analysis. 

 Metriki was also expanded upon by Shah [17].  That expansion provided a more 

developed database structure as well as a further expansion upon the data manipulation.  

Shah also executed some preliminary data analysis upon a small data set. 

 Above and beyond what Peine and Shah had developed, further modifications to 

the database layout were needed.  One additional field was necessary in the page 
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information table to track which group the page belonged to for post-analysis reference.  

Also, the entirety of the user information table was discarded as everything we needed to 

know about the users was accounted for in the revisions table.  This latter modification 

was made in order to improve the performance of the database. 

 New modules were also added to the Metriki software.  The first one was used to 

manipulate the revision information into the various formats and measurements we used 

in the cluster analysis.  This converted the raw MySQL data into an easier-to-import CSV 

format.  Another module that was added was a module to take the output from Rapid 

Miner and compute measurements of effectiveness on the data output. 

 In addition to these upgrades, it was noted during the execution of the Metriki 

software that excessive time was required to parse the downloaded Wikipedia data and 

place it into the MySQL database.  It was discovered that the existing design of the 

database used proper foreign key setups which, in conjunction with a defensively-coded 

MySQL custom Insertion function, caused many redundant SELECT SQL statements.  As 

a result, the duration of the basic INSERT statements grew into human-perceivable 

durations for relatively small batches of information (in the realm of a few hundred 

revisions).  To remedy this problem, the custom Insertion function and the foreign key 

constraints were removed from all the tables.  In general database practices the foreign 

key constraints would be left in place.  However, given that the data would only be 

inserted by a single user and that the dependent data was ensured to be present by the 

Metriki software, the decision was made to remove the foreign key constraints in order to 

reduce the download and processing time. 
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5 Data Preparation 
 An important goal we hoped to achieve in creating and choosing measurements 

was to identify metrics that showed higher variability among the articles.  This was 

important because metrics that show little variation can't be used to distinguish the 

articles.  We identified four distinct measurements and one combination of those 

measurements to analyze. 

 

5.1 Edits Over Fixed Time 
 The first data measurement that we looked into was the distribution of edits over a 

fixed amount of time from the page's creation.  This could identify basic trends such as 

articles being edited repeatedly right after their creation or articles being edited routinely 

over a longer time span.  This could also identify if a category of pages was updated 

several times and then never updated again. 

 To measure this information, all the edits for each article were broken into buckets 

based on when the edit occurred in relation to the creation date of the article.  Edits 

outside of the predefined number of time periods were ignored for the purposes of this 

analysis.  Each bucket represented a single period of time (e.g. one week or one month).  

Once all of the edits were assigned to their respective buckets, or discarded if necessary, 

then the percentage of edits in each bucket relative to the total number of edits in all the 

buckets, and not the total edit count, was calculated for each bucket.  These percentages 

became the data that was provided to the Rapid Miner process for analysis. 

 For example, in the 90-Day measurement, 90 buckets were created.  The first one 

was for all edits performed the day that the article was created; The 90th bucket was for 

all the edits performed on the 90th day after the article was created.  All edits after the 90 
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days would be ignored for this measurement.  The percentages would be calculated based 

on the number of edits that occurred within the first 90 days. 

 Here are the time periods and number of periods that were measured: 

 
Time per Period Quantity of Periods 

Days 90, 180, 360 

Weeks 13, 26, 52 

Months 6, 12 

Table 3: Edits Over Fixed Time 

 

5.2 Edits Over Lifetime 
 The second measurement that was analyzed was the number of edits over the 

lifetime of the article.  Very similar to the first measurement, it used the entire set of edits 

performed on an article.  This allowed us to look for trends similar to those found by the 

Edits Over Fixed Time measurement, but allowed for adjustment based on the length of 

time the article has been around.  The articles' lifetimes needed to be taken into account 

since newer articles may not have had the same number of edits performed to them as 

older articles.  This could potentially mask certain articles from being clustered correctly 

now, or prevent certain articles from being clustered correctly later, since this data is 

perpetually dynamic. 

 To measure this information, the same technique that was used in the Edits Over 

Fixed Time was used, with one alteration.  The edits were assigned to each bucket based 

on what percentile of the article's lifetime the edit occurred in (e.g. first 1%, the 75th 1%).  

Each bucket represented a predefined number of percentiles.  This bucket sizes were one 

of the following sizes: 
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Bucket Size Number of Buckets 

1% 100 

2% 50 

4% 25 

10% 10 

Table 4: Edits Over Lifetime 

 

5.3 Authors Over Fixed Time 
 The next measurement that was investigated was the number of authors over a 

fixed time.  This allowed us to see if all the edits were performed by a small select group, 

or if the group of individuals performing the edits was larger or changed/grew/shrank 

over time. 

 To measure the author count, all the edits for each article were placed again into 

one of a number of buckets based on when the edit occurred in relation to the creation 

date of the article.  Similar to the Edits Over Fixed Time, each bucket represented a single 

period of time.  Once all of the articles were assigned to their respective buckets (or 

discarded), the number of unique authors in each bucket was counted.  These raw counts 

became the data that was provided to the Rapid Miner process for analysis. 

 For the Authors Over Fixed Time, the only bucket size we looked at was a one-

month sized bucket.  We analyzed this data for 12, 24, and 36-month durations. 

 

5.4 Average Edit Size Over Time 
 Another potentially useful measurement was the average edit size over time.  This 

measurement was also done over different fixed time frames. This would identify 

differences between articles that have large chunks of data that were added early on with 
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only minor edits later, versus articles that grew in small amounts over the entire time 

frame, versus articles that had large chunks of data continuously added/removed. 

 To measure the edit size, all the edits for each article were placed again into one of 

a number of buckets based on when the edit occurred in relation to the creation date of 

the article.  Similar to the Edits Over Fixed Time, each bucket will represent a single 

period of time.  Once all of the revisions were assigned to their respective buckets (or 

discarded), the average size of all the edits in each bucket was calculated.  These averages 

became the data that was provided to the Rapid Miner process for analysis. 

 Here are the time periods and number of periods that were measured: 

 
Time per Period Quantity of Periods 

Days 90, 180, 360 

Weeks 13, 26, 52 

Months 3, 6, 12 

Table 5: Average Edit Size Over Time 

 

5.5 Combined Measures 
 In addition to the four previously noted trends, we also examined a few 

combinations of multiple trends.  Each of the individual trends involved in the 

combination measurements were calculated independently.  Then the data was 

concatenated into a single set of values.  Those concatenated sets were provided to Rapid 

Miner.  The combinations that we explored were: 

 

Trend 1 Period # of Periods Trend 2 Period # of Periods 

Edits Over 
Lifetime 

10% 10 
Authors Over 
Fixed Time 

Month 12 

Edits Over 10% 10 Authors Over Month 24 
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Lifetime Fixed Time 

Edits Over 
Lifetime 

10% 10 
Authors Over 
Fixed Time 

Month 36 

Table 6: Combined Measures 

 

6 Results – Data Set #1 
 The results of the processing on the first Data Set were modest.  The resulting F1-

Scores ranged from 0.0095 up to 0.3557, with an average of .1882.  Given the resultant 

F-scores range from 0.0 to 1.0, these results were far from conclusive.  The result 

information is provided in Appendix A. 

 We took note of two particular findings in our results.  The first was that both the 

3-Month Edits Over Fixed Time and the 3-Month Average Size Over Fixed Time caused 

the Rapid Miner software to crash.  The cause of these crashes remains unknown. 

 The second, and more interesting, observation was that two particular 

measurements provided all-around higher results than all of the others.  All of the Edits 

Over Lifetime measurements and all of the Authors Over Fixed Time measurements 

scored between .2035 and .3557 with an average of .2973, while other data points ranged 

from .0095 to .2558 with an average of .1481.  It was this observation that prompted the 

further examination of a combined measurement of the Edits Over Lifetime with the 

Authors Over Fixed Time. 

 

7 Results – Data Set #2 
 The second data set provided much better F1-Scores on the average.  They ranged 

from .1676 to .4357 with an average of .3096.  Again, given the possible F1-Score range, 

this did not appear to be very conclusive.  The full set of results is listed in Appendix B. 
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 There were again two notable observations regarding these results.  First, 

similarly to the first data set, the 3-Month Edits Over Fixed Time and the 6-Month Edits 

Over Fixed Time both caused the Rapid Miner software to crash during the analysis.  The 

cause is again unknown. 

 The second, and again more interesting, observation was that seven of the 

measurements resulted in an unusual anomaly where Rapid Miner placed all of the 

articles into the same cluster.  All seven data measurements were re-executed in the Rapid 

Miner software two additional times, with Rapid Miner returning the same anomaly each 

time for all seven measurements.  This is being treated as an error on the Rapid Miner 

software.  Under this presumption, when the results for this data set were re-examined, 

the F1-Scores ranged from .2821 to .4357 with an average of .3727. 

 

8 Discussion 
 Given that the F1-Scores in our findings never exceeded .5000, there is no way to 

claim that we have any conclusive patterns within the data.  There are several issues that 

could be interfering with the possibility of better results. 

 Firstly, there are automated scripts, or bots, that continuously parse Wikipedia's 

articles performing automatic changes to pages.  Some of these bots look for potential 

vandalism to flag and/or correct.  Others look for and correct spelling and grammar 

errors.  Still more will parse a pages content looking for words/phrases that could link to 

other pages making those links.  Because of this uncontrolled autonomous behavior, the 

edits from the various bots could be skewing the data and hiding any true patterns from 

the revision history metadata. 

 Secondly, our research has intentionally disregarded all language-specific context.  
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It may be that there exists trends within that context that were overlooked.  A 

combination of some revision history metadata measurements with some limited 

language-specific context could lead to trends. 

 Lastly, while our research performed analysis on several different data 

measurements, there are many more possible data measurements that could be calculated 

and analyzed.  Since all revision history entries also contain a flag indicating if the author 

of the edit is working anonymously, it is possible to analyze anonymous versus logged-in 

users.  It would also be possible to analyze minor versus major edits since they are also 

tracked via a flag in the metadata.  In place of looking at the percentages of Edits Over 

Fixed Time, it could be worthwhile to look at the raw edit counts over those fixed times.  

In addition to these and other data measurements, there are numerous possible 

combinations of measurements that could reveal trends. 

 

9 Conclusion 
 Though we were not able to make any definitive conclusions, we were able to 

observe several other points that are worth noting from the results of this research. 

 Firstly, the use of more general categorizations appears to yield significantly 

better results.  Though far from conclusive, there may be justification to perform further 

investigation into looking at even more broad categories, such as the basic person, place, 

thing, and idea groupings.  This could provide a more hierarchical approach to 

determining more specific page categorizations by allowing different algorithms to be 

used upon different subsets of data. 

 The second conclusion that can be drawn from these results is that it may be 

necessary to perform the cluster analysis upon a wider array of data measurements, 
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including different combinations of two or more of the basic measurements being used. 

 

10 Future Work 
 There are three main routes that can be explored via future research at this 

juncture.  There are also two additional software optimizations to the Metriki software 

that could be used to expedite data processing. 

 The first main route of exploration could be to obtain different types of data for 

processing.  This could be done in two different ways.  It could be achieved by using a 

greater number of articles from additional broad categories.  Making the categories even 

broader still could also be used to accomplish this task. 

  The second main route could be to add additional data measurements.  Both new 

types of measurements and different periods/period counts of existing measurements 

would suffice for this.  It could also be achieved through additional combinations of the 

existing and new data measurements. 

 Another potential route of exploration could be focusing on removing potentially 

noisy data.  This would include things such as vandalism and vandalism corrections.  

These edits could be causing a skew in the data that may be obfuscating more interesting, 

and subsequently useful, patterns.  It is also possible that the vandalism and their 

corrections could be, in and of itself, a interesting pattern.  Though this avenue of 

research is not a trivial task, it could definitely aid in the search for patterns in the 

revision history of articles. 

 The first software optimization for Metriki would be to obtain bot status with 

Wikipedia.  This would permit Metriki to download the revision history data in larger 

chunks, permitting a significantly faster download and processing time.  The second 
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optimization that could be done to Metriki would be to incorporate the Rapid Miner 

module directly into Metriki itself.  This would allow the cluster analysis to be controlled 

from Metriki, thus improving the overall performance of the analysis software. 
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Appendix A: Data Set #1 Results 
 

Measurement Period Length Period Count Precision Recall F1-Score 

Edits Over Fixed 
Time 

Month 

3 N/A N/A N/A 

6 .1131 .1607 .1327 

12 .1087 .1607 .1297 

Week 

13 .0445 .1107 .0635 

26 .1337 .1857 .1555 

52 .1383 .1750 .1545 

Day 

90 .1450 .1035 .1208 

180 .1853 .1321 .1543 

360 .2095 .1464 .1723 

Edits Over 
Lifetime 

1% 100 .1938 .2142 .2035 

2% 50 .5595 .2607 .3557 

4% 25 .5472 .2607 .3531 

10% 10 .3923 .2750 .3233 

Authors Over 
Fixed Time 

Month 

12 .5501 .1999 .2933 

24 .4693 .1964 .2769 

36 .4839 .1928 .2758 

Average Size 
Over Fixed Time 

Month 

3 N/A N/A N/A 

6 .0051 .0714 .0095 

12 .0051 .0714 .0095 

Week 

13 .0051 .0714 .0095 

26 .2161 .2178 .2170 

52 .2043 .2071 .2057 

Day 

90 .2846 .1964 .2324 

180 .2539 .1892 .2168 

360 .2300 .1928 .2098 

Edits Over 
Lifeime / 

Authors Over 
Fixed Time 

10% / Month 

10 / 12 .1315 .1892 .1552 

10 / 24 .2118 .2071 .2094 

10 / 36 .2748 .2392 .2558 
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Appendix B: Data Set #2 Results 
 
Measurement Period Length Period Count Precision Recall F1-Score 

Edits Over 
Fixed Time 

Month 

3 N/A N/A N/A 

6 N/A N/A N/A 

12 .1119 .3333 .1676 

Week 

13 .1119 .3333 .1676 

26 .1119 .3333 .1676 

52 .1119 .3333 .1676 

Day 

90 .1119 .3333 .1676 

180 .1119 .3333 .1676 

360 .1119 .3333 .1676 

Edits Over 
Lifetime 

1% 100 .4116 .3941 .4027 

2% 50 .2698 .3897 .3189 

4% 25 .2667 .3901 .3168 

10% 10 .3931 .3933 .3932 

Authors Over 
Fixed Time 

Month 

12 .1119 .3333 .1676 

24 .4109 .3777 .3936 

36 .2389 .3441 .2821 

Average Size 
Over Fixed 

Time 

Month 

3 .2730 .3995 .3243 

6 .3746 .3767 .3757 

12 .4262 .4199 .4230 

Week 

13 .3953 .3893 .3923 

26 .4101 .4122 .4124 

52 .3726 .3686 .3706 

Day 

90 .4270 .3458 .3821 

180 .2711 .3437 .3031 

360 .4176 .3644 .3892 

Edits Over 
Lifeime / 

Authors Over 
Fixed Time 

10% / Month 

10 / 12 .4667 .4087 .4357 

10 / 24 .4388 .3940 .4152 

10 / 36 .3959 .3625 .3785 
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