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ABSTRACT 

 

TARGETING OF FLAVOBACTERIUM JOHNSONIAE PROTEINS FOR SECRETION BY 

THE TYPE IX SECRETION SYSTEM 

by 

Surashree S. Kulkarni 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Dr. Mark J. McBride 

 

Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane 

using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal 

peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal 

domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but 

not all T9SS CTDs belong to family TIGR04183 (type A CTDs). This thesis focuses on the 

functional characterization of diverse CTDs for secretion by the F. johnsoniae T9SS. Fusion of 

the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign protein sfGFP that had a 

signal peptide at the amino terminus (SP-sfGFP) resulted in secretion across the outer membrane. 

In each case approximately 80 to 100 amino acids from the extreme carboxy-terminus was needed 

for efficient secretion. Several type A CTDs from distantly related members of the phylum 

Bacteroidetes functioned in F. johnsoniae, supporting secretion of sfGFP by the F. johnsoniae 

T9SS. The F. johnsoniae adhesin SprB is propelled rapidly along the cell surface resulting in 

gliding motility. F. johnsoniae SprB requires the T9SS for secretion but lacks a type A CTD. It 

has a conserved C-terminal domain belonging to family TIGR04131, which we refer to as a type 

B CTD. Type B CTDs are common in the Bacteroidetes but little is known regarding their roles 
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in secretion. The secretion of the foreign protein sfGFP fused to an N-terminal SP and to C-

terminal regions of SprB (SP-sfGFP-CTDSprB) was analyzed. CTDs of 218 AAs or longer resulted 

in secretion whereas a CTD of 149 AAs did not. sprF, which lies downstream of sprB, is known 

to be required for SprB secretion. SP-sfGFP-CTDSprB also required SprF for secretion. Efficient 

secretion only occurred when SP-sfGFP-CTDSprB and SprF were expressed together. Under these 

conditions CTDs of 218 AAs and 448 AAs resulted in secretion of soluble sfGFP, whereas longer 

CTDs (663 and 1182 AAs) resulted in attachment of sfGFP to the cell surface. Most F. johnsoniae 

genes encoding proteins with type B CTDs lie immediately upstream of sprF-like genes. The CTD 

from one such protein, Fjoh_3952, facilitated secretion of sfGFP only when it was coexpressed 

with its cognate SprF-like protein, Fjoh_3951. Secretion did not occur when SP-sfGFP-

CTDFjoh_3952 was expressed with SprF, or when SP-sfGFP-CTDSprB was expressed with Fjoh_3951. 

The results highlight the need for extended regions of type B CTDs for secretion and cell-surface 

localization, and the requirement for the appropriate SprF-like protein for secretion. Since type B 

CTD-containing proteins and associated SprF-like proteins are common among members of the 

phylum Bacteroidetes the unique features required for secretion of these proteins may have broad 

implications. 
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Chapter 1: Introduction 

 

Flavobacterium johnsoniae a Gram-negative rod shaped bacterium that belongs to the 

phylum Bacteroidetes, is commonly found in soil and freshwater environments (1, 2). F. 

johnsoniae digests macromolecules such as complex polysaccharides and proteins (3), a trait that 

it shares with many other members of the phylum Bacteroidetes. F. johnsoniae is a non-pathogenic 

bacterium unlike some of its relatives, including the fish pathogens Flavobacterium columnare 

and Flavobacterium psychrophilum, and the human oral pathogen Porphyromonas gingivalis (4-

6). F. johnsoniae is an excellent model organism to study processes that are shared between many 

members of the phylum Bacteroidetes because of the ease of performing genetic manipulations 

including gene deletions, transposon mutagenesis, and complementation experiments (7-9).  

Members of the phylum Bacteroidetes share many unique features that distinguish them 

from other bacteria. These include unusual transcription and translation signals (10-13) , the ability 

to transport polysaccharides and oligosaccharides across the outer membrane and digest these 

internally (14, 15), the production of numerous periplasmic and cell-surface glycoproteins (16), 

the ability to crawl (glide) rapidly over surfaces using a motility machinery that is restricted to the 

phylum Bacteroidetes (17), and a unique protein secretion system, the type IX secretion system 

(T9SS) (4, 18).  My research has focused on the last two of the features mentioned above, gliding 

motility and the T9SS.  

Gliding motility describes the ability of some bacteria to crawl over surfaces such as agar 

or glass without the aid of flagella or pili (17). Proton motive force (PMF) appears to power 

Flavobacterium gliding motility since uncouplers that dissipate PMF reversibly block gliding (19-
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21). On agar, F. johnsoniae forms spreading colonies and individual cells can also attach to and 

move on glass or Teflon at speeds of 2 to 5 m/sec (22). Myxococcus xanthus and Mycoplasma 

mobile are also extensively studied for their gliding motilities. However, there are no similar 

motility genes between these three gliding bacteria (23, 24). M. xanthus exhibits ‘social gliding’ 

(also referred to as twitching motility), which relies on ATP-powered type IV pilus extension and 

retraction. It also displays ‘adventurous gliding’ that relies on cytoplasmic motors that use PMF 

as energy source to drive motility (23). M. mobile, in contrast, appears to move like a centipede 

with the aid of ‘legs’ that protrude from the outside of the cells. The ‘legs’ bind to surfaces and 

cells move due to attachment and release of the legs from the substratum. The M. mobile gliding 

motor is not known but it is powered by ATP hydrolysis, unlike F. johnsoniae gliding motility 

(24). 

Using genetic and genomic approaches, some of the moving components of the F. 

johnsoniae gliding machinery were identified. Among these is a major cell-surface adhesin, SprB, 

which is a massive protein approximately 660 kDa in molecular mass. On electron microscopic 

analysis SprB was observed as thin filaments projecting from the outer membrane of wild-type F. 

johnsoniae cells and was absent in an sprB mutant suggesting that the filaments are composed of 

SprB (21). Immunodetection using anti-sera against SprB revealed uneven distribution of the 

protein along the cell surface (Fig. 1). sprB mutant cells form round non-spreading colonies on 

agar surfaces because of defects in gliding motility (Fig. 2) (25). Studies with polystyrene spheres 

coated with anti-SprB antibodies indicated that SprB is rapidly propelled along the cell surface 

(25). Immunofluorescence using anti-SprB antibodies confirmed that SprB moves along the entire 

length of the cell and that it appears to follow a helical track (Fig. 3) (26). There are other motility 

adhesins, many of which share some similarity with SprB.  One of these, RemA, is propelled along 
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the cell surface similar to SprB, and has a SUEL-like lectin domain. This domain interacts with 

polysaccharides and contributes to cell-aggregation and group motility (27).  

 

  



4 

 

 

Fig. 1. Localization of SprB by immunoelectron microscopy. Bars = 0.5 μm. (A) Cells of wild-

type F. johnsoniae FJ1. (B) Higher magnification of a wild-type cell in panel A. (C) Cells of sprB 

mutant FJ156. (25) 

 

 

 

 

Fig. 2. Photomicrographs of F. johnsoniae colonies. (A) wild-type F. johnsoniae FJ1 (B) sprB 

mutant FJ156 (C) FJ156 complemented with pSN60 which carries sprB. Bar in panel C = 0.5 mm 

and applies to all panels. (25) 
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Fig. 3. Helical loop-like motion of SprB observed by immunofluorescence microscopy. The 

fluorescent signals in a gliding cell were recorded at 0.1-s intervals for 2 s, colored from red (time 

0) to blue (2 s), and integrated into a single image (Bottom). (26) 

 

 

 

 

Fig. 4. Model of F. johnsoniae gliding motility. Gld proteins anchored in the cell envelope 

presumably form the motors that propel SprB and RemA along the cell surface. 

Exopolysaccharides secreted by the cells provide a substratum and interaction points for the 

adhesin RemA. CM- cytoplasmic membrane; OM- outer membrane; PG- peptidoglycan. (27) 
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Analysis of mutants completely or partially defective in gliding led to the identification of 

nineteen motility genes that are divided into two categories: gld and spr (7, 9, 28-33). Mutations 

in gld genes result in complete loss of motility while spr gene mutations result in less severe 

motility defects. Gld and Spr proteins are thought to be components of the motility machinery that 

propels SprB and RemA along the cell-surface (Fig. 4). Some of these proteins are also part of the 

newly discovered protein secretion apparatus, the T9SS.  

Gram-negative bacteria employ protein secretion systems to deliver proteins across the 

outer membrane. Some secreted proteins are released in soluble form, whereas others become 

attached to the cell surface. Secreted proteins are involved in various bacterial processes such as 

motility, adhesion, evasion of host immune responses, and digestion of macromolecules such as 

polysaccharides and proteins. Protein secretion systems enable the bacteria to survive in various 

ecological niches and provide obvious competitive advantages. There are six well-known bacterial 

secretion systems, classified from Type I to Type VI (Fig. 5). The type-VII secretion system, also 

known as the chaperone-usher pathway (34, 35), and the type-VIII secretion system, the 

extracellular nucleation-precipitation pathway involved in secretion and assembly of curli amyloid 

fibers (36) are also well known, but are not usually referred to using the 'type' designations. 

Another secretion system, the ESX protein export system, was discovered in members of the 

Gram-positive genus Mycobacterium (37). Secretion systems related to the ESX system have also 

been suggested to occur in other groups of bacteria (38). Type I, III, IV and VI secretion systems 

transport proteins directly from the cytoplasm to the outside. Type II, V, VII, VIII and IX secretion 

systems rely on the Sec or Tat systems to export protein across the cytoplasmic membrane and 

only carry out the final secretion across the outer membrane. The secreted proteins are anchored 

to the outer membrane or released in the surrounding medium (34).  
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Fig. 5. Diagram depicting Type I to Type IX secretion systems. Protein export pathway from 

cytoplasm to periplasm is carried out by the Sec and Tat protein export machineries (blue) in type 

II, V, VII, VIII and IX secretion systems. The type I, III, IV, and VI secretion systems transport 

proteins directly from the cytoplasm to the outside. (Modified from (38)).  
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The type IX secretion system or T9SS was recently discovered in both motile and non-

motile members of the phylum Bacteroidetes. It has been extensively studied in F. johnsoniae and 

in the non-motile oral pathogen P. gingivalis (4, 18). The F. johnsoniae T9SS is essential for 

secretion of cell surface motility adhesins SprB and RemA and also for secretion of proteins not 

associated with motility, such as the extracellular chitinase ChiA the amylase AmyB, and 

numerous proteases (39, 40). The P. gingivalis T9SS is involved in secretion of virulence factors 

such as the gingipain proteases (4). The components of the T9SS are unique and are not found 

outside of this phylum (Fig 6). The F. johnsoniae Gld and Spr proteins GldK, GldL, GldM, GldN, 

SprA, SprE and SprT are components of the T9SS (41) and have counterparts in the P. gingivalis 

T9SS (PorK, PorL, PorM, PorN, sov, PorW, and PorT respectively) (4).  
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Fig. 6. Distribution of T9SS and gliding motility genes among members of the phylum 

Bacteroidetes. A colored square indicates the presence of an ortholog and a white square indicates 

the absence of an ortholog. Colors of squares correspond to genes encoding: red, ABC transporter 

components; yellow, peptidylprolyl isomerases; blue, T9SS components; green, other proteins 

required for gliding. Blue and green colored squares are core gliding motility genes. Adapted from 

(17). Rhodothermus marinus and Salinibacter ruber were removed from the figure because they 

have now been assigned to a new phylum, Rhodothermeota (42, 43). 

OrganismsClass Genes T9SS Genes 
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Recent studies demonstrated that P. gingivalis porP, porK porL, porM and porN are co-

transcribed (44). Biochemical analyses revealed that the proteins encoded by these five genes are 

distributed in the cell envelope with PorL and PorM localized to the inner membrane, PorK and 

PorN associated with the inner face of the outer membrane, and the -barrel protein PorP spanning 

the outer membrane. Negative stain electron microscopic analyses revealed the structural details 

suggesting that PorK and PorN form a large ring on the periplasmic side of the outer membrane 

(45). With the aid of bacterial two hybrid and co-immune precipitation assays, it was found that 

PorL and PorM interact with each other likely through their transmembrane helices. PorM also has 

a periplasmic domain that interacts with PorK, PorN and PorP (Fig. 7) (44).  
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Fig. 7. Schematic representation of the PorKLMNP T9SS core complex. The model highlights the 

localizations of the T9SS proteins in the cell envelope. (Modified from (44)). 
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The proteins secreted by T9SSs have N-terminal signal peptides that allow export across 

the cytoplasmic membrane via the Sec machinery and rely on the components of the T9SS for 

secretion across the outer membrane (39, 46, 47). They also have conserved C-terminal domains 

(CTDs), which act as targeting signals for secretion across the outer membrane through the T9SS 

(17, 39, 46-48). The CTDs are cleaved during secretion and the mature proteins either attach to 

the cell surface (4, 41, 46, 49) or are released in soluble form (39, 40). In P. gingivalis CTD 

cleavage is thought to be carried out by PorU, which has been described as a peptidase (50). The 

CTDs of T9SS-secreted proteins differ in sequence and belong to at least two different TIGRFAM 

families, TIGR04183 and TIGR04131 (39, 47). The conserved CTDs allow in-silico predictions 

of proteins secreted by the T9SSs of the members of the phylum Bacteroidetes. Secretion of many 

of these proteins has been verified experimentally in P. gingivalis, Cytophaga hutchinsonii and F. 

johnsoniae (39, 46).  

The first evidence of CTD targeting of proteins in F. johnsoniae was observed with the 

ChiA CTD. Fusing 105 amino acids of ChiACTD to mCherry resulted in secretion of mCherry into 

the culture medium (40). F. johnsoniae T9SS is predicted to secrete 53 CTD- containing proteins 

including SprB and RemA. RemA belongs to TIGR04183 (type A CTD) and SprB belongs to 

TIGR04131 (type B CTD) (39). However, the exact roles of the CTDs in targeting SprB and RemA 

were unknown. P. gingivalis RgpB and HBP35 type A CTDs have been analyzed in detail. 

Deletion of the CTD of RgpB results in accumulation of the protein in the periplasm (51, 52). 

Fusing HBP35 CTD to GFP resulted in its cell surface localization and glycosylation (53). The 

CTDs are thought to be cleaved by PorU. Mutation of porU resulted in accumulation of RgpB at 

the cell surface with an intact CTD (50-52).  Analyses of truncated versions of RgpB indicated 
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that the C-terminal 72 amino acids are necessary for secretion and outer membrane attachment 

(51). The crystal structure of the RgpB CTD was recently resolved and was found to have an Ig- 

like fold with seven antiparallel - strands organized in two - sheets packed against each other in 

a - sandwich (54).  

The SprB CTD is different in sequence, belonging to protein domain family TIGR04131 

(type B CTDs). Proteins with type B CTDs are common in members of the Bacteroidetes. A 

transposon insertion in sprB resulted in the production of truncated SprB protein lacking the C-

terminal 34 amino acids. This protein failed to be secreted to the cell surface (25). This indicated 

a possible role of the type B CTD in aiding secretion of SprB through the T9SS. However, there 

has not been a detailed study on the involvement of type B CTDs in secretion in any bacterium. 

This thesis is focused on understanding the mechanism of targeting of proteins for secretion by the 

F. johnsoniae T9SS (Fig. 8).  

Specifically, this thesis describes the functional characterization of two type A CTDs 

(RemA, AmyB), two type B CTDs (SprB and Fjoh_3952) and ChiA CTD, which differs in 

sequence from type A and type B CTDs. Chapter 2 deals primarily with the type A CTDs, 

including those of RemA, AmyB. ChiA CTD is also examined in chapter 2. A slightly modified 

form of chapter 2 was published in the Journal of Bacteriology. Chapter 3 provides the first detailed 

study of the role of type B CTDs (SprB and Fjoh_3952) in protein secretion. It also examines the 

role of SprF as an adapter or chaperone involved in this process. A manuscript describing these 

data is currently in preparation. Three appendices follow the main text. Appendix 1 describes the 

use of the F. johnsoniae ChiACTD to target a foreign protein for secretion by the T9SS of the fish 

pathogen F. columnare. This is part of a large collaborative study to describe the role of the T9SS 
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in F. columnare virulence and a manuscript describing this work is being prepared for publication. 

Appendix 2 describes the phenotypes associated with F. johnsoniae cells carrying mutations in the 

F. johnsoniae genes related to E. coli chemotaxis genes cheB and cheR. Appendix 3 describes the 

use of a transposon mutagenesis screen to identify novel genes linked to gliding motility.  
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Fig. 8. Members of the genus Flavobacterium, and many related bacteria, secrete proteins across 

the outer membrane using the type IX secretion system (T9SS core proteins in orange). Proteins 

secreted by T9SSs have amino-terminal signal peptides (N) for export across the cytoplasmic 

membrane by the Sec system, and carboxy-terminal domains (CTDs) targeting them for secretion 

across the outer membrane by the T9SS. Most T9SS CTDs belong to either family TIGR04183 

(type A CTDs; blue) or TIGR04131 (type B CTDs; dark green). The CTDs are cleaved off during 

or after secretion of the effector proteins. 

 

 

 

 

 

? 

? 

? 



16 

 

References: 

1. Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, McBride 

MJ, Pope PB. 2016. A polysaccharide utilization locus from Flavobacterium johnsoniae 

enables conversion of recalcitrant chitin. Biotechnol Biofuels 9:260. 

2. Sack EL, van der Wielen PW, van der Kooij D. 2011. Flavobacterium johnsoniae as a 

model organism for characterizing biopolymer utilization in oligotrophic freshwater 

environments. Appl Environ Microbiol 77:6931-8. 

3. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang 

W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL. 2009. Novel 

features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as 

revealed by genome sequence analysis. Appl Environ Microbiol 75:6864-75. 

4. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama 

K. 2010. A protein secretion system linked to bacteroidete gliding motility and 

pathogenesis. Proc Natl Acad Sci U S A 107:276-81. 

5. Declercq AM HF, Van den Broeck W, Bossier P, Decostere A. 2013. Columnaris disease 

in fish: a review with emphasis on bacterium-host interactions. Vet Res 44. 

6. Starliper CE. 2011. Bacterial coldwater disease of fishes caused by Flavobacterium 

psychrophilum. Journal of Advanced Research 2:97-108. 

7. Braun TF, Khubbar MK, Saffarini DA, McBride MJ. 2005. Flavobacterium johnsoniae 

gliding motility genes identified by mariner mutagenesis. J Bacteriol 187:6943-52. 

8. Rhodes RG, Pucker HG, McBride MJ. 2011. Development and use of a gene deletion 

strategy for Flavobacterium johnsoniae to identify the redundant gliding motility genes 

remF, remG, remH, and remI. J Bacteriol 193:2418-28. 

9. Agarwal SD HD, McBride MJ. 1997. Cloning and characterization of the Flavobacterium 

johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci U S A 

94:12139-12144. 

10. Vingadassalom D, Kolb A, Mayer C, Rybkine T, Collatz E, Podglajen I. 2005. An unusual 

primary sigma factor in the Bacteroidetes phylum. Mol Microbiol 56:888-902. 

11. Wegmann U HN, Carding SR. 2013. Defining the bacteroides ribosomal binding site. Appl 

Environ Microbiol 79:1980-9. 

12. Chen S, Kaufman MG, Bagdasarian M, Bates AK, Walker ED. 2010. Development of an 

efficient expression system for Flavobacterium strains. Gene 458:1-10. 

13. Chen S BM, Kaufman M, Walker E. 2007. Characterization of strong promoters from an 

environmental Flavobacterium hibernum strain by using a green fluorescent protein-based 

reporter system. . Appl Environ Microbiol 73:1089–1100. 

14. Anderson KL. SA. 1989. Genetic evidence that outer membrane binding of starch is 

required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 171:3199-204. 

15. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. 2009. Complex glycan catabolism by 

the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284:24673-

7. 

16. Coyne MJ, Fletcher CM, Chatzidaki-Livanis M, Posch G, Schaffer C, Comstock LE. 2013. 

Phylum-wide general protein O-glycosylation system of the Bacteroidetes. Mol Microbiol 

88:772-83. 



17 

 

17. McBride M, and Zhu Y. 2013. Gliding motility and Por secretion system genes are 

widespread among members of the phylum Bacteroidetes. J Bacteriol 195:170-8. 

18. Sato K, Sakai E, Veith PD, Shoji M, Kikuchi Y, Yukitake H, Ohara N, Naito M, Okamoto 

K, Reynolds EC, Nakayama K. 2005. Identification of a new membrane-associated protein 

that influences transport/maturation of gingipains and adhesins of Porphyromonas 

gingivalis. J Biol Chem 280:8668-77. 

19. Duxbury T HB, Marshall KC. 1980. Acetate acts as a protonphore and differentially affects 

bead movement and cell migration of the glinding bacterium Cytophaga johnsonae 

(Flavobacterium johnsoniae). Microbiology 143:3693-3701. 

20. Wolkin RH PJ. 1986. Phage adsorption and cell adherence are motility-dependent 

characteristics of the gliding bacterium Cytophaga johnsonae. J Gen Microbiol 132:355-

367. 

21. Nakane D. SK, Wada H., McBride M. J., Nakayama K. . 2013. Helical flow of surface 

protein required for bacterial gliding motility. . Proc Natl Acad Sci USA 110:11145–11150.  

22. Liu J, McBride MJ, Subramaniam S. 2007. Cell surface filaments of the gliding bacterium 

Flavobacterium johnsoniae revealed by cryo-electron tomography. J Bacteriol 189:7503-

6. 

23. Velicer GJ, Vos M. 2009. Sociobiology of the myxobacteria. Annu Rev Microbiol 63:599-

623. 

24. Miyata M. 2010. Unique centipede mechanism of Mycoplasma gliding. Annu Rev 

Microbiol 64:519-37. 

25. Nelson SS, Bollampalli S, McBride MJ. 2008. SprB is a cell surface component of the 

Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190:2851-7. 

26. McBride MJ, Nakane D. 2015. Flavobacterium gliding motility and the type IX secretion 

system. Curr Opin Microbiol 28:72-7. 

27. Shrivastava A, Rhodes RG, Pochiraju S, Nakane D, McBride MJ. 2012. Flavobacterium 

johnsoniae RemA is a mobile cell surface lectin involved in gliding. J Bacteriol 194:3678-

88. 

28. Braun TF, McBride MJ. 2005. Flavobacterium johnsoniae GldJ is a lipoprotein that is 

required for gliding motility. J Bacteriol 187:2628-37. 

29. Hunnicutt DW, McBride MJ. 2001. Cloning and characterization of the Flavobacterium 

johnsoniae gliding motility genes gldD and gldE. J Bacteriol 183:4167-75. 

30. Hunnicutt. DW KM, McBride MJ. 2002. Mutations in Flavobacterium johnsoniae gldF 

and gldG disrupt gliding motility and interfere with membrane localization of GldA. J 

Bacteriol 184. 

31. Hunnicutt. DW MM. 2000. Cloning and characterization of the Flavobacterium johnsoniae 

gliding motility genes, gldB and gldC. J Bacteriol 182. 

32. Nelson SS, Glocka PP, Agarwal S, Grimm DP, McBride MJ. 2007. Flavobacterium 

johnsoniae SprA is a cell surface protein involved in gliding motility. J Bacteriol 189:7145-

50. 

33. McBride MJ BT. 2004. GldI is a lipoportein that is required for Flavobacterium johnsoniae 

gliding motility and chitin utilization. J Bacteriol 186. 

34. Chagnot C, Zorgani MA, Astruc T, Desvaux M. 2013. Proteinaceous determinants of 

surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein 

secretion perspective. Front Microbiol 4:303. 



18 

 

35. Busch A, Waksman G. 2012. Chaperone-usher pathways: diversity and pilus assembly 

mechanism. Philos Trans R Soc Lond B Biol Sci 367:1112-22. 

36. Barnhart MM, Chapman MR. 2006. Curli biogenesis and function. Annu Rev Microbiol 

60:131-47. 

37. Ligon LS, Hayden JD, Braunstein M. 2012. The ins and outs of Mycobacterium 

tuberculosis protein export. Tuberculosis (Edinb) 92:121-32. 

38. Green ER, Mecsas J. 2016. Bacterial Secretion Systems: An Overview. Microbiol Spectr 

4. 

39. Kharade SS, McBride MJ. 2015. Flavobacterium johnsoniae PorV is required for secretion 

of a subset of proteins targeted to the type IX secretion system. J Bacteriol 197:147-58. 

40. Kharade SS MM. 2014. The Flavobacterium johnsoniae chitinae ChiA is required for 

chitin utilization and is secreted by the type IX secretion system. J Bacteriol 196:961-970. 

41. Shrivastava A JJ, Barren JM, McBride MJ. 2012. Flavobacterium johnsoniae GldK, GldL, 

GldM, and SprA are required for secretion of the cell suraface gliding motility adhesins 

SprB and RemA. J Bacteriol 195:3201-12. 

42. Munoz R, Rossello-Mora R, Amann R. 2016. Revised phylogeny of Bacteroidetes and 

proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. 

nov. Syst Appl Microbiol 39:281-96. 

43. Hahnke RL, Meier-Kolthoff JP, Garcia-Lopez M, Mukherjee S, Huntemann M, Ivanova 

NN, Woyke T, Kyrpides NC, Klenk HP, Goker M. 2016. Genome-Based Taxonomic 

Classification of Bacteroidetes. Front Microbiol 7:2003. 

44. Vincent MS, Canestrari MJ, Leone P, Stathopulos J, Ize B, Zoued A, Cambillau C, 

Kellenberger C, Roussel A, Cascales E. 2017. Characterization of the Porphyromonas 

gingivalis Type IX Secretion Trans-envelope PorKLMNP Core Complex. J Biol Chem 

292:3252-3261. 

45. Gorasia DG, Veith PD, Hanssen EG, Glew MD, Sato K, Yukitake H, Nakayama K, 

Reynolds EC. 2016. Structural Insights into the PorK and PorN Components of the 

Porphyromonas gingivalis Type IX Secretion System. PLoS Pathog 12:e1005820. 

46. Veith PD, Nor Muhammad NA, Dashper SG, Likic VA, Gorasia DG, Chen D, Byrne SJ, 

Catmull DV, Reynolds EC. 2013. Protein substrates of a novel secretion system are 

numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal 

secretion signal, extensive post-translational modification, and cell-surface attachment. J 

Proteome Res 12:4449-61. 

47. Sato K, Yukitake H, Narita Y, Shoji M, Naito M, Nakayama K. 2013. Identification of 

Porphyromonas gingivalis proteins secreted by the Por secretion system. FEMS Microbiol 

Lett 338:68-76. 

48. Nguyen KA, Travis J, Potempa J. 2007. Does the importance of the C-terminal residues in 

the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for 

protein export in a subgroup of Gram-Negative bacteria? J Bacteriol 189:833-43. 

49. Gorasia DG, Veith PD, Chen D, Seers CA, Mitchell HA, Chen YY, Glew MD, Dashper 

SG, Reynolds EC. 2015. Porphyromonas gingivalis Type IX Secretion Substrates Are 

Cleaved and Modified by a Sortase-Like Mechanism. PLoS Pathog 11:e1005152. 

50. Glew MD, Veith PD, Peng B, Chen YY, Gorasia DG, Yang Q, Slakeski N, Chen D, Moore 

C, Crawford S, Reynolds EC. 2012. PG0026 is the C-terminal signal peptidase of a novel 

secretion system of Porphyromonas gingivalis. J Biol Chem 287:24605-17. 



19 

 

51. Seers CA, Slakeski N, Veith PD, Nikolof T, Chen YY, Dashper SG, Reynolds EC. 2006. 

The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and 

belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J 

Bacteriol 188:6376-86. 

52. Slakeski N, Seers CA, Ng K, Moore C, Cleal SM, Veith PD, Lo AW, Reynolds EC. 2011. 

C-terminal domain residues important for secretion and attachment of RgpB in 

Porphyromonas gingivalis. J Bacteriol 193:132-42. 

53. Shoji M, Sato K, Yukitake H, Kondo Y, Narita Y, Kadowaki T, Naito M, Nakayama K. 

2011. Por secretion system-dependent secretion and glycosylation of Porphyromonas 

gingivalis hemin-binding protein 35. PLoS One 6:e21372. 

54. de Diego I, Ksiazek M, Mizgalska D, Koneru L, Golik P, Szmigielski B, Nowak M, 

Nowakowska Z, Potempa B, Houston JA, Enghild JJ, Thogersen IB, Gao J, Kwan AH, 

Trewhella J, Dubin G, Gomis-Ruth FX, Nguyen KA, Potempa J. 2016. The outer-

membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is 

a conserved C-terminal beta-sandwich domain. Sci Rep 6:23123. 

 

 

 

 

 

 

 

 



20 

 

Chapter 2. Diverse C-terminal sequences involved in Flavobacterium johnsoniae protein 

secretion. 

This chapter is a modified version of a paper in Journal of Bacteriology (in press; 

https://doi.org/10.1128/JB.00884-16). This chapter includes some of the online supplemental 

materials of the paper integrated into it.  

Abstract 

Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane 

using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal 

peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal 

domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but 

not all T9SS CTDs belong to family TIGR04183 (type A CTDs). We functionally characterized 

diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. 

johnsoniae RemA, AmyB, and ChiA to the foreign protein sfGFP that had a signal peptide at the 

amino terminus resulted in secretion across the outer membrane. In each case approximately 80 to 

100 amino acids from the extreme carboxy-termini was needed for efficient secretion. Several type 

A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, 

supporting secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS 

for secretion but lacks a type A CTD. It has a conserved C-terminal domain belonging to family 

TIGR04131, which we refer to as a type B CTD. The CTD of SprB was required for its secretion, 

but attachment of C-terminal regions of SprB of up to 1182 amino acids to sfGFP failed to result 

in secretion. Additional features outside of the C-terminal region of SprB may be required for its 

secretion.  
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Introduction 

Many members of the phylum Bacteroidetes secrete proteins across the outer membrane 

using the type IX secretion system (T9SS) (1, 2). The components of the T9SS were first identified 

and characterized in Porphyromonas gingivalis and Flavobacterium johnsoniae (3, 4) and have 

more recently been studied in other members of the phylum Bacteroidetes (5-7). Components of 

the secretion system include GldK, GldL, GldM, GldN, SprA, SprE, SprT, PorU, and PorV 

(referred to as PorK, PorL, PorM, PorN, sov, PorW, PorT, PorU, and PorV respectively in P. 

gingivalis). F. johnsoniae also has a paralog of GldN called GldO, and deletion of the genes 

encoding both proteins is required for complete loss of secretion (8). An additional component, 

PorZ, was also recently described in P. gingivalis (9). Most of the proteins listed above are unique 

to members of the phylum Bacteroidetes. Some of the components of the T9SS were first identified 

in F. johnsoniae as proteins required for gliding motility (10, 11) and were later realized to function 

in protein secretion in both F. johnsoniae and in P. gingivalis (3, 12, 13). The F. johnsoniae cell-

surface motility adhesins SprB and RemA require the T9SS for their delivery across the outer 

membrane (3, 13, 14). Rapid movement of SprB and RemA along the cell surface is responsible 

for cell movement (15, 16). Mutations in the T9SS genes prevent proper assembly of the motility 

apparatus. Some components of the T9SS may also have more direct functions in motility (13, 17). 

Most but not all bacteria that have T9SSs exhibit gliding motility. P. gingivalis is one of the 

exceptions; it has a T9SS but is nonmotile. 

Proteins secreted by T9SSs have N-terminal signal peptides allowing export across the 

cytoplasmic membrane by the Sec system (2, 18, 19). They also typically have conserved C-

terminal domains (CTDs) that are thought to target them to the T9SS for secretion across the outer 
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membrane (2, 18-20). Once delivered across the outer membrane some proteins are released in 

soluble form (18, 21) whereas others are modified and attached to the cell surface (2, 3, 13, 22). 

The CTDs are removed during or after secretion. In P. gingivalis this is thought to involve PorU 

which has been described as a C-terminal signal peptidase (23). The secretion process and 

attachment of secreted proteins to the cell surface is somewhat reminiscent of Gram positive 

bacterial sortase-mediated secretion and cell-surface localization, although the proteins involved 

are not related in sequence (22). T9SS CTDs typically fall into one of two protein domain families 

corresponding to TIGR04183 (here referred to as type A CTDs) and TIGR04131 (here referred to 

as type B CTDs) (18, 19). The conserved CTDs allow predictions to be made regarding the number 

of proteins secreted by the T9SSs of individual bacterial species. For example, F. johnsoniae and 

Cytophaga hutchinsonii are predicted to secrete 53 and 147 proteins respectively using their T9SSs 

(7, 13). Secretion of many of these proteins has been verified experimentally (2, 18). These 

predictions may underestimate the actual number of secreted proteins since some proteins secreted 

by T9SSs, such as F. johnsoniae ChiA, have CTDs that are required for secretion but that exhibit 

no obvious sequence similarity to either type A or type B CTDs (21). 

T9SS CTDs have been functionally characterized for two P. gingivalis proteins, the 

gingipain protease RgpB, and the hemin-binding protein HBP35 (20, 24-26). RgpB and HBP35 

both have type A CTDs. HBP35 required the C-terminal 22 AAs for secretion and cell surface 

attachment (25). Deletion of this region or modification of a conserved lysine within this region 

resulted in decreased secretion. Attachment of C-terminal regions to GFP allowed secretion of the 

foreign protein GFP by P. gingivalis. Analysis of CTDs from F. johnsoniae has been limited to a 

single protein, the soluble chitinase ChiA (21). As indicated above, ChiA requires the T9SS for 

secretion but it lacks a recognizable conserved CTD. Nevertheless, attachment of the C-terminal 
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105 AAs of ChiA to the foreign protein mCherry resulted in secretion of mCherry from the cell 

(21). Here we functionally examine the C-terminal regions of five diverse F. johnsoniae proteins 

that require the T9SS for secretion. These included two type A CTDs, two type B CTDs, and the 

ChiA CTD. We also demonstrate that some CTDs from distantly related members of the phylum 

Bacteroidetes can function with the F. johnsoniae T9SS. 

Materials and Methods 

 Bacterial strains, plasmids and growth conditions. F. johnsoniae ATCC 17061T strain 

UW101 was the wild-type strain used in this study (27-29). F. johnsoniae strains were grown in 

Casitone-yeast extract (CYE) medium at 30C, as previously described (30). Escherichia coli 

strains were grown in Luria-Bertani medium (LB) at 37C (31). Strains and plasmids used in this 

study are listed in Table 1, and primers are listed in Table 2. Antibiotics were used at the following 

concentrations when needed: ampicillin, 100 g/ml; kanamycin, 30 g/ml; erythromycin, 100 

g/ml; streptomycin, 100 g/ml; and tetracycline, 20 g/ml.  

 Generation of plasmids that express sfGFP with signal peptides at the N-terminus 

and with regions of F. johnsoniae T9SS CTDs at the C-terminus. A plasmid expressing the N-

terminal signal peptide of RemA fused to sfGFP, which was in turn fused to the C-terminal 97 

amino acids of RemA (SPRemA-sfGFP-CTDRemA) was constructed as follows. A 511-bp fragment 

spanning the remA promoter, start codon and N-terminal signal peptide-encoding region was 

amplified using Phusion DNA polymerase (New England Biolabs, Ipswich, MA) and primers 1269 

(engineered KpnI site) and 1270 (engineered BamHI site). This fragment was inserted into the 

KpnI and BamHI sites of pCP23 to generate pYT40. A 711-bp region of sfGFP without stop codon 

was amplified from pTB263 using primers 1389 (engineered BamHI site) and 1427 (engineered 
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GGSGGGSG linker and XbaI site). This fragment was inserted into the BamHI and XbaI sites of 

pYT40, generating pYT179. To introduce the 97-amino acid-CTD-encoding region of remA, 339-

bp was amplified using primer 1488 (engineered XbaI site) and 1489 (engineered SphI site). The 

product was cloned into pYT179, to generate pSK30. A similar construct in a vector with a 

different antibiotic resistance marker (ermF) was obtained by amplifying the fragment encoding 

SPRemA-sfGFP-CTDRemA from pSK30 using primers 1269 and 1489, and inserting this into the SalI 

site of pMM105.A that had been made blunt using end-conversion mix from the perfectly-blunt 

cloning kit (Novagen, Madison, WI), to generate pSK97. Orientation of the insert was confirmed 

by restriction enzyme digestion and by DNA sequencing.  

 A plasmid expressing full length RemA with sfGFP inserted immediately after the N-

terminal signal peptide was also constructed. For this purpose, the 4383-bp region spanning all of 

remA including the stop codon, but lacking the region encoding the N-terminal signal peptide was 

amplified using primers 1271 (engineered XbaI site) and 1272 (engineered XbaI site). This 

fragment was inserted into XbaI site of pYT179 and the orientation of insertion was confirmed by 

sequencing, generating pYT180. pSK37, expressing the RemA N-terminal signal peptide fused to 

sfGFP without CTDRemA, was constructed as a control. To construct this plasmid, the gene 

encoding sfGFP was amplified using primers 1389 (engineered BamHI site) and 1390 (engineered 

XbaI site and introduced stop codon) and introduced into BamHI- and XbaI-digested pYT40. A 

similar construct in a vector with a different antibiotic resistance marker (ermF) was obtained by 

amplifying the fragment encoding SPRemA-sfGFP from pSK37 using primers 1269 and 1390, and 

inserting this into the SalI site of pCP11 that had been made blunt using end-conversion mix from 

the perfectly-blunt cloning kit to generate pSK96. Orientation of the insert was confirmed by 

restrictrion enzyme digestion and by DNA sequencing. Fragments encoding CTDRemA regions of 
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87 amino acids and 62 amino acids were cloned in pYT179, generating plasmids pSK71 and 

pSK81 respectively. A 258-bp region encoding 85 amino acids near the C-terminus of RemA but 

lacking the C-terminal 12 amino acids was also cloned into pYT179, generating plasmid pSK79. 

Similarly, a plasmid producing SPRemA-sfGFP fused to the C-terminal 97 amino acids of RemA in 

which a conserved lysine of RemA was replaced with an alanine (K1432A) was constructed. For 

this purpose, a 300-bp fragment was amplified using primers 1488 (engineered XbaI site) and 1962 

(engineered SphI site and engineered alanine codon). This fragment was inserted into pYT179, 

generating pSK91.  

 The RemA signal peptide was replaced by the cytochrome-C (Fjoh_1634) signal peptide 

to determine if the signal peptide from a normally periplasmic protein would be sufficient to allow 

CTD-mediated secretion by the T9SS. A 396-bp region spanning the promoter and N-terminal 

signal sequence of Fjoh_1634 was amplified using primer 1946 (engineered KpnI site) and 1947 

(engineered BamHI site). This fragment was inserted into the KpnI and BamHI sites of pSK30, 

generating plasmid pSK84. 

 Constructs expressing SPRemA-sfGFP fused to CTD-containing regions of F. johnsoniae 

ChiA, AmyB (Fjoh_1208), SprB, and the SprB-like protein Fjoh_3952 were also generated as 

follows. A 735-bp region of sfGFP was amplified from pTB263 using primer 1389 (engineered 

BamHI site) and 1427 (engineered XbaI site). This fragment was cloned into the BamHI and XbaI 

sites of pSSK52 (21), generating pCB3, which encodes sfGFP fused to the 105 amino acid C-

terminal region of ChiA. Similarly, fragments encoding CTDChiA regions of 79 amino acids and 62 

amino acids were cloned in pCB3, generating plasmids pSK89 and pCB4 respectively. For F. 

johnsoniae AmyB, a 390-bp region encoding the C-terminal 99 amino acids was inserted into the 
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XbaI and SphI sites of pYT179, generating plasmid pSK82. Similarly, regions encoding the C-

terminal 73 amino acids and 59 amino acids were also inserted into the XbaI and SphI sites of 

pYT179, generating plasmids pSK85 and pSK86 respectively. For F. johnsoniae SprB, 300-bp, 

657-bp, and 3,549-bp regions encoding the C-terminal 99, 218, and 1182 amino acids were 

amplified and inserted into the XbaI and SphI sites of pYT179, generating plasmids pSK93, 

pSK56, and pSK62 respectively. For the F. johnsoniae SprB-like protein Fjoh_3952, a 687-bp 

region encoding the C-terminal 228 amino acids was inserted into the XbaI and SphI sites of 

pYT179, generating pSK58. 

 Generation of plasmids expressing SPRemA-sfGFP fused to regions of Cellulophaga 

algicola, C. hutchinsonii, and P. gingivalis T9SS CTDs. A 417-bp region encoding the C-

terminal 108 amino acids of Celal_2532 (AmyA) was amplified from the C. algicola DSM 14237 

genome using primer 1885 (engineered XbaI site) and 1886 (engineered SphI site). This fragment 

was inserted into pYT179, generating pSK65. A 294-bp region encoding the C-terminal 97 amino 

acids of CHU_1335 (Cel9B) was amplified from the C. hutchinsonii ATCC 33406 genome using 

primer 1925 (engineered XbaI site) and 1926 (engineered SphI site). This fragment was inserted 

into pYT179, generating pSK76. A 339-bp region encoding the C-terminal 103 amino acids of 

PGN_1466 (RgpB) was amplified from the P. gingivalis ATCC 33277 genome using primer 1923 

(engineered XbaI site) and 1924 (engineered SphI site). This fragment was inserted into pYT179, 

generating pSK75.  

Microscopic observation of binding of cells to protein G-coated polystyrene spheres 

to detect surface-localized SprB or sfGFP. Cells were grown in MM (32) at 25˚C without 

shaking. 1 l of purified anti-SprB (16) or anti-GFP (0.5 mg per ml; GeneScript), 0.5-µm-diameter 



27 

 

protein G-coated polystyrene spheres (1 µl of a 0.1% stock preparation; Spherotech Inc., 

Livertyville, IL), and bovine serum albumin (BSA) (1 µl of 1% solution) were added to 7 µl cells. 

The mixture was introduced into a tunnel slide prepared as described previously (14) using 

Nichiban NW-5 double sided tape (Nichiban Co, Tokyo, Japan) to hold a glass coverslip over a 

glass slide. Samples were incubated for 3 min and observed using an Olympus BH-2 phase-

contrast microscope. Images were recorded using a Photometrics Cool-SNAPcf
2 camera and 

analyzed using Metamorph software. Images were recorded for 30s and 100 randomly selected 

cells were examined for the presence of spheres that remained attached to the cells during this 

time. 

 Analysis of secretion of SPRemA-sfGFP-CTDRemA during different stages of growth. 

200 l F. johnsoniae cells (OD600~1) carrying pSK30 expressing SPRemA-sfGFP-CTDRemA were 

inoculated in 50 ml CYE containing tetracycline (10 g/ml) in side arm flasks and incubated at 

25°C with shaking. In exponential phase (approximately 10 h) and stationary phase (approximately 

22 h) 1 ml cultures were taken from the flasks and centrifuged at 22,000 x g for 15 min. In each 

case the cells (pellet) and the spent medium (supernatant) were flash frozen in dry ice ethanol baths 

and stored at -80°C until needed. The pellet and spent media samples were thawed, cells were 

suspended in the original culture volume of phosphate-buffered saline consisting of 137 mM NaCl, 

2.7 mM KCl, 10 mM Na2PO4, and 2 mM KH2PO4 (pH 7.4), and both samples were subjected to 

SDS-PAGE and Western blot analysis to detect sfGFP as described below. Cells prepared in the 

same way were also examined for levels of the T9SS proteins GldK, GldL, GldM, GldN, SprA, 

and SprE using antisera specific for each.   
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 Western blot analyses. F. johnsoniae cells were grown to early stationary phase in CYE 

at 25°C with shaking. Cells were pelleted by centrifugation at 22,000 x g for 15 min, and the 

culture supernatant (spent medium) and cell pellet were separated. For whole-cell samples, the 

cells were suspended in the original culture volume of phosphate-buffered saline. Equal amounts 

of spent medium and whole cells were boiled in SDS-PAGE loading buffer for 10 min. Proteins 

were separated by SDS-PAGE, and Western blot analyses were performed as previously described 

(8). Equal amounts of each sample based on the starting material were loaded in each lane. For 

cell extracts this corresponded to 10 g protein, whereas for spent medium this corresponded to 

the equivalent volume of spent medium that contained 10 g cell protein before the cells were 

removed. For detection of sfGFP by Western blotting, anti-GFP antibodies (0.5 mg per ml) were 

used at a dilution of 1:3,000.  

 For detection of full length SprB, cells were mixed with SDS-PAGE loading buffer and 

incubated at 98˚C for 10 min. Proteins (25 g protein was loaded per lane) were separated on 3 to 

8% Criterion XT Tris-acetate acrylamide gels (Bio-rad, Hercules, CA) and detected by Western 

blotting using antibodies against SprB at a dilution of 1:2500.  

 GldK, GldL, GldM, GldN, SprA, and SprE were detected by Western blot as previously 

described (8, 11, 13, 33). SprF was detected similarly, using polyclonal antibodies against SprF 

peptides that were produced by Biomatik Corporation (Cambridge, Ontario, Canada) at a dilution 

of 1:4,000. In each case, 10 g of proteins were loaded per lane.  

 Proteinase K treatment of cells to determine the localization of sfGFP-SprB fusion 

protein. Cells of F. johnsoniae were grown in CYE at 25°C with shaking. Cells were collected, 

washed and suspended in 20 mM sodium phosphate-10 mM MgCl2 (pH 7.5) and diluted to an 
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OD600 reading of 1.5. To examine sfGFP-CTDSprB, proteinase K was added to the intact cells to a 

final concentration of 1 mg/ml and incubated at 25°C with gentle inverting. At various times, 150 

µl of cells were sampled, 10 mM phenylmethylsulfonyl fluoride was added and the samples were 

boiled for 1 min to stop digestion. SDS-PAGE loading buffer was added and the samples were 

boiled for another 7 min. Equal volumes were separated by SDS-PAGE and transferred to 

polyvinylidene difluoride membranes, and proteins were detected with anti-serum against GFP. 

As a positive control for digestion of sfGFP by proteinase K an identical cell sample was lysed 

using a French pressure cell, unbroken cells and debris were removed by centrifugation, and 

proteinase K was added as above. Control samples that were not exposed to proteinase K were 

also included. 

 Genome analyses. Genome sequences were analyzed for T9SS genes that encode proteins 

that belong to appropriate TIGRFAM multiple sequence alignment families (34). This was 

accomplished using the Integrated Microbial Genomes (IMG version 4.0.1, 

https://img.jgi.doe.gov/) Function Profile Tool to examine the genomes for sequences predicted to 

encode orthologs of GldK (TIGR03525), GldL (TIGR03513), GldM (TIGR03517), GldN 

(TIGR03523), and SprA (TIGR04189). The genomes were also examined for genes encoding 

proteins with type A CTDs (TIGR04183) and type B CTDs (TIGR04131) in the same way. In each 

case the trusted cutoffs assigned by The J. Craig Venter Institute (JCVI) were used to identify 

family members. These cutoffs allow identification of the vast majority of family members with 

vanishingly few false positives (34). 
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Table 1. Strains and plasmids used in this study. 

 

Strain  Descriptiona Source or 

reference 

E. coli strains   

  DH5mcr Strain used for general cloning Life 

Technologies 

(Grand Island, 

NY, USA) 

  HB101 Strain used with pRK2013 for triparental conjugation (35, 36) 

F. johnsoniae  

strains 

  

  FJ1 wild type F. johnsoniae ATCC 17061T (10) 

  CJ1827 rpsL2; Smr 'wild-type' F. johnsoniae strain used in 

construction of deletion mutants 

(37) 

  CJ2122 gldK (13) 

  CJ2157 gldL (13) 

  CJ2262 gldM (13) 

  CJ1631A gldN-gldO (8) 

  CJ2302 sprA (13) 

  FJ149 sprE (33) 

  CJ2518 sprF (38) 

  KDF002 sprT (3) 

  CJ2116 porU (18) 

  CJ2130 porV (18) 
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  CJ1922 sprB (37) 

  CJ1984 remA (14) 

  FJ117 sprB HimarEm2 mutant (16) 

  FJ156 sprB HimarEm2 mutant (16) 

   

Plasmid  Description Source or 

reference 

   

  pCB3 735-bp sfGFP without stop codon amplified and cloned 

into pSSK52. Encodes SPChiA-sfGFP-CTDChiA(105AA); Apr 

(Tcr) 

This study 

  pCB4 440-bp region encoding 62 amino acids of CTDChiA 

inserted into pCB3. Encodes SPChiA-sfGFP-CTDChiA(62AA); 

Apr (Tcr) 

This study 

  pCP11 E. coli-F. johnsoniae shuttle plasmid; Apr (Emr) (30) 

  pCP23 E. coli-F. johnsoniae shuttle plasmid; Apr (Tcr) (39) 

  pMM105.A E. coli-Capnocytophaga canimorsus shuttle plasmid; 

Apr (Emr) 

(40) 

  pRK2013 Helper plasmid for triparental conjugation; IncP Tra+ Kmr (36) 

  pRR48 1294-bp fragment spanning sprF inserted into pCP23;  Apr 

(Tcr) 

(41) 

  pSK30 339-bp region encoding 97 amino acids of CTDRemA 

inserted into pYT179. Encodes SPRemA-sfGFP-

CTDRemA(97AA); Apr (Tcr) 

This study 

  pSK37 SPRemA-sfGFP with stop codon cloned into pYT40. 

Encodes SP-sfGFP; Apr (Tcr) 

This study 
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  pSK56 657-bp region encoding 218 amino acids of CTDSprB 

inserted into pYT179. Encodes SP-sfGFP- CTDSprB(218AA); 

Apr (Tcr) 

This study 

  pSK58 687-bp region encoding 228 amino acids of CTDFjoh_3952 

inserted into pYT179. Encodes SP-sfGFP- 

CTDFjoh_3952(228AA); Apr (Tcr) 

This study 

  pSK62 3549-bp region encoding 1182 amino acids of CTDSprB 

inserted into pYT179. Encodes SP-sfGFP- CTDSprB(1182AA); 

Apr (Tcr) 

This study 

  pSK65 417-bp region encoding 108 amino acids of CTDCelal_2532 

inserted into pYT179. Encodes SP-sfGFP- CTDCelal_2532; 

Apr (Tcr) 

This study 

  pSK71 312-bp region encoding 87 amino acids of CTDRemA 

inserted into pYT179. Encodes SP-sfGFP- CTDRemA(87AA); 

Apr (Tcr) 

This study 

  pSK75 339-bp region encoding 103 amino acids of CTDPGN_1466 

inserted into pYT179. Encodes SP-sfGFP- CTDPGN_1466; 

Apr (Tcr) 

This study 

  pSK76 294-bp region encoding 97 amino acids of CTDCHU_1335 

inserted into pYT179 Encodes SP-sfGFP- CTDCHU_1335; 

Apr (Tcr) 

This study 

  pSK79 258-bp region encoding 85 amino acids near the C-

terminus of RemA but lacking the C-terminal 12 amino 

acids inserted into pYT179. Encodes SP-sfGFP- 

CTDRemA(lacking final 12 AA); Apr (Tcr) 

This study 

  pSK81 234-bp region encoding 62 amino acids of CTDRemA 

inserted into pYT179. Encodes SP-sfGFP- CTDRemA(62AA); 

Apr (Tcr) 

This study 

  pSK82 390-bp region encoding 99 amino acids of CTDAmyB 

inserted into pYT179. Encodes SP-sfGFP- CTDAmyB(99AA); 

Apr (Tcr) 

This study 

  pSK84 396-bp fragment spanning the Fjoh_1634 promoter, start 

codon, and the N-terminal signal peptide-encoding region 

This study 
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inserted into pSK30. Encodes SPFjoh_1634-sfGFP-CTDRemA; 

Apr (Tcr) 

  pSK85 312-bp region encoding 73 amino acids of CTDAmyB 

inserted into pYT179. Encodes SP-sfGFP- CTDAmyB(73AA); 

Apr (Tcr) 

This study 

  pSK86 270-bp region encoding 59 amino acids of CTDAmyB 

inserted into pYT179. Encodes SP-sfGFP- CTDAmyB(59AA); 

Apr (Tcr) 

This study 

  pSK89 491-bp region encoding 79 amino acids of CTDChiA 

inserted into pCB3. Encodes SPChiA-sfGFP- CTDChiA(79AA); 

Apr (Tcr) 

This study 

  pSK91 300-bp region encoding CTDRemA with K1432A mutation 

inserted into pYT179. Encodes SP-sfGFP- 

CTDRemA(K1432A); Apr (Tcr) 

This study 

  pSK93 300-bp region encoding 99 amino acids of CTDSprB 

inserted into pYT179. Encodes SP-sfGFP- CTDSprB(99AA); 

Apr (Tcr) 

This study 

  pSK96 SPRemA-sfGFP from pSK37 cloned into pCP11. Encodes 

SPRemA-sfGFP; Apr (Emr) 

This study 

  pSK97 SPRemA-sfGFP-CTDRemA from pSK30 inserted into 

pMM105.A. Encodes SPRemA-sfGFP-CTDRemA(97AA); Apr 

(Emr) 

This study 

  pSN48 pCP23 carrying sprA; Apr (Tcr) (11) 

  pSSK30 pCP23 carrying mcherry; Apr (Tcr) (21) 

  pSSK51 484-bp fragment spanning the chiA promoter, start codon, 

and N-terminal signal peptide-encoding region inserted 

into pSSK30. Encodes SPChiA-mCherry; Apr (Tcr) 

(21) 

  pSSK52 566-bp region encoding 105 amino acids of CTDChiA 

inserted into pSSK51. Encodes SPChiA-mCherry-CTDChiA; 

Apr (Tcr) 

(21) 

  pTB263 Plasmid expressing fluorescent protein sfGFP; Apr (42) 
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  pYT40 511-bp fragment spanning the remA promoter, start  

codon, and the N-terminal signal peptide-encoding  

region inserted into pCP23; Apr (Tcr) 

This study 

  pYT179 735-bp sfGFP amplified without stop codon and cloned 

into pYT40. Encodes SPRemA-sfGFP; Apr (Tcr) 

This study 

  pYT180 4383-bp fragment encoding 1386 amino acids of the C-

terminus of RemA inserted in pYT179. Encodes SPRemA-

sfGFP-CTDRemA(1386AA); Apr (Tcr) 

This study 

   

aAntibiotic resistance phenotypes are as follows:  ampicillin, Apr; erythromycin, Emr; 

streptomycin, Smr; tetracycline, Tcr.  The antibiotic resistance phenotypes given in parentheses are 

those expressed in F. johnsoniae but not in E. coli. The antibiotic resistance phenotypes without 

parentheses are those expressed in E. coli but not in F. johnsoniae. 
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Table 2. Primers used in this study. 

   

1269           5' GCTAGGGTACCACGTTCCTGATAGGCACAAAAATGC 3'; forward primer 

used in construction of pYT40; KpnI site underlined 

1270            5' GCTAGGGATCCGCCATTAGTTGGCATTCCAGGAAAA 3'; reverse primer 

used in construction of pYT40; BamHI site underlined 

1389 5' GCTAGGGATCCTCTAAAGGTGAAGAACTGTTCACCG 3'; forward primer 

used in construction of pSK37 and pYT179; BamHI site underlined 

1390 5' GCTAGGCATGCTTATTTGTAGAGCTCATCCATGCCG 3'; reverse primer 

used in construction of pSK37; SphI site underlined 

1399 5’ GCTAGTCTAGAACAGATACGAAAGATTATTACATCGAG 3'; forward 

primer used in construction of pSK93; XbaI site underlined 

1400 5' GCTAGGCATGCTTATCTGTATAAAGTGAAATGTCCAAC 3'; reverse 

primer used in construction of pSK56; SphI site underlined 

1404 5' GCTAGGCATGCTCACCTAATACAATAACTAACCTC 3'; reverse primer 

used in construction of pSSK52; SphI site underlined 

1427            5’ GCTAGTCTAGAGCAACGATAGCTTATTTTAAAAACAAT 3’; forward 

 primer used in construction of pSK89; XbaI site is underlined 

    1488 5' GCTAGTCTAGAGATCGTTTTGCACTTCGTTACACT 3'; forward primer 

used in construction of pSK30; XbaI site underlined 

1489 5' GCTAGGCATGCCTTACTTGGCAAATGGATTTTTTA 3'; reverse primer 

used in construction of pSK30; SphI site underlined 

1599 5' GCTAGTCTAGAGCAACGATAGCTTATTTTAAAAACAAT 3'; forward 

primer used in construction of pSK89; XbaI site underlined 

1600 5' GCTAGTCTAGAGCTTATGCAGCTTATTTCGCATCACAA 3'; forward 

primer used in construction of pSSK52; XbaI site underlined 

1771            5' GCTAGGGATCCCTAACCCGACTATCATAGAACCGAC 3'; forward primer 

used in construction of pYT314; BamHI site underlined 

1772            5' GCTAGGTCGACTGTTGTTACAGCCATGAGTACTAAGG 3'; reverse primer 

used in construction of pYT314; SalI site underlined 

1773            5' GCTAGGTCGACTCGATTAGTAACTGTCCTTGTACGC 3'; forward primer 

used in construction of pYT316; SalI site underlined 



36 

 

1774            5' GCTAGGCATGCTAAAAGTTCAGTTGGCAGTTCTTCG 3'; reverse primer 

used in construction of pYT316; SphI site underlined 

1880 5’ GCTAGGCATGCTGGCGAGGAATTACCTTCTGGTGA 3'; forward primer 

used in construction of pSK62; XbaI site underlined 

1843 5’ GCTAGTCTAGAGTGGTGATTACAATTGATCCAAGC 3'; forward primer 

used in construction of pSK56; XbaI site underlined 

1868 5’ GCTAGTCTAGAGTCGAAGTGCCATCGATTACAGTA 3'; forward primer 

used in construction of pSK58; XbaI site underlined 

1885 5' GCTAGTCTAGAGCTTTAGAGGCTTTTGAAAATGTG 3'; forward primer 

used in construction of pSK65; XbaI site underlined 

1886 5' GCTAGGCATGCTTGTGGGCGTTTCTGAACTATCTC 3'; reverse primer 

used in construction of pSK65; SphI site underlined 

1870 5' GCTAGGCATGCGCTAAGCCATTTTATTGATTTGGA 3'; reverse primer 

used in construction of pSK58; SphI site underlined 

1899 5' GCTAGTCTAGAACATTAGGAACTGGTGATTTTGAG 3'; forward primer 

used in construction of pSK71; XbaI site underlined 

1923 5' GCTAGTCTAGAGAGAGTATCGCTGATGAAACGAAC 3'; forward primer 

used in construction of pSK75; XbaI site underlined 

1924 5' GCTAG GCATGC GCCCTTATTAGAGAATTGCAGTGT 3'; reverse primer 

used in construction of pSK75; SphI site underlined 

1925 5’ GCTAGTCTAGAGTATCGGTAAGTGTGGGAACTCCT 3'; forward primer 

used in construction of pSK76; XbaI site underlined 

1926 5' GCTAGGCATGCCTGTATAGGCTATTCTTTTATAAGGCG 3'; reverse 

primer used in construction of pSK76; SphI site underlined 

1930 5' GCTAGTCTAGAACTTCTGCAAAAGAAAATATTAAAGAA 3'; forward 

primer used in construction of pSK81; XbaI site underlined 

1932 5' GCTAGGCATGCCTATTCAAGATTAACTTTTACAAGCAGCAC 3'; reverse 

primer used in construction of pSK79; SphI site underlined 

1933 5' GCTAGTCTAGAGAACCAACAACTGTTGGAACAGGA 3'; forward primer 

used in construction of pSK82; XbaI site underlined 

1934 5' GCTAGGCATGCCGAATCGAACAATAGCGAACAAGC 3'; reverse primer 

used in construction of pSK82; SphI site underlined 

1940 5' GCTAGTCTAGAGAAGACATTGCTCAGGTTGATGTA 3'; forward primer 

used in construction of pCB4; XbaI site underlined 
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1946 5' GCTAGGGTACCGCTTTGAGCATGAATATTGTATCC 3'; forward primer 

used in construction of pSK84; KpnI site underlined 

1947 5' GCTAGGGATCCATCTTGAGCAAATGAAGTTAGGGA 3'; reverse primer 

used in construction of pSK84; BamHI site underlined 

1948 5' GCTAGTCTAGATATCCAAACCCATCTGTAAACAATGAA 3'; forward 

primer used in construction of pSK85; XbaI site underlined 

1949 5' GCTAGTCTAGACCAGAATTGGAAAGCGGAGAC 3'; forward primer used 

in construction of pSK86; XbaI site underlined 

1962 5' GCTAGGCATGCCTATTTAAAGATCACTGCTCTGGTTATCTG 3'; reverse 

primer used in construction of pSK91; SphI site underline 
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Results 

 Prevalence of T9SSs and T9SS-associated CTDs. Genome analyses indicate that T9SSs 

are found in most but not all members of the phylum Bacteroidetes (Table 3). Individual strains of 

104 different species with complete genome sequences were analyzed. This included members of 

65 genera. Members of 60 genera, and 90 of the 104 species had each of the five core T9SS genes 

(gldK, gldL, gldM, gldN, sprA) that have been assigned to TIGRFAM families. Although most 

members of the Bacteroidetes have T9SSs a few do not. For example, most members of the well-

studied genus Bacteroides lack T9SS genes (Table 3) and use other mechanisms to secrete proteins 

(1, 43, 44).  

 The 104 genomes of Bacteroidetes species were also analyzed for proteins with predicted 

T9SS CTDs belonging to TIGR04183 (type A CTDs) and TIGR04131 (type B CTDs). Of the 90 

species that had each of the T9SS genes all had proteins with type A CTDs, and all but one 

(Arachidicoccus sp. BS20) also had proteins with type B CTDs. Most of these had many T9SS-

CTD-containing proteins. Fluviicola taffensis had the highest number of each with 180 proteins 

with type A CTDs and 50 proteins with type B CTDs. The 14 Bacteroidetes species that lacked 

components of T9SSs were also examined, and none had predicted proteins with type A or type B 

CTDs except for Odoribacter splanchnicus, which indicates presence of 2 type A and 1 type B 

CTD proteins. The results demonstrate a strong correlation between both types of CTDs and the 

T9SS.  

 Members of other phyla of bacteria were also analyzed, including 3777 complete genome 

sequences (Table 4). None had orthologs of gldK, gldL, gldM, or gldN, but seven species had 

orthologs of sprA. These were members of the phyla Rhodothermaeota, Chlorobi, Fibrobacteres, 
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Ignavabacteriae, and Gemmatimonadetes. None of the 3777 non-Bacteroidetes bacterial genomes 

were predicted to encode proteins with type B CTDs but eleven species had predicted proteins 

with type A CTDs. Interestingly, six of the seven species mentioned above that had SprA each had 

many proteins with type A CTDs (ranging from 18 to 147), suggesting a link between type A 

CTDs and the large outer membrane protein SprA. As indicated above there were only five other 

bacterial species that had any predicted type A CTDs. Each of these had a single example. Three 

of the apparent CTDs from these five bacteria were not found at the C-terminus, suggesting that 

they may have been false-positives, or may have functions unrelated to those of the Bacteroidetes 

CTDs. The high prevalence within the phylum Bacteroidetes of orthologs of GldK, GldL, GldM, 

and GldN, and of proteins with type B CTDs, and their complete absence outside of the phylum 

Bacteroidetes is indicative of the extremely low number of false positives obtained using the 

trusted cutoffs of the TIGRFAM assignments. The near absence of type A CTDs in bacteria lacking 

SprA also attests to the low level of false positives, and indicates a strong correlation between the 

presence of the outer membrane protein SprA and proteins with type A CTDs. 

 Members of the archaea and eukarya were also examined for orthologs of T9SS 

components. 218 completed archaeal genome sequences and 36 completed eukaryal genomes were 

analyzed, but none had orthologs of gldK, gldL, gldM, gldN, or sprA, and none had predicted 

proteins with type A or type B CTDs. The eukaryotes examined included protists, fungi, plants 

(Arabidopsis thaliana, Zea mays) and animals (Caenorhabditis elegans, Danio rerio, Homo 

sapiens).  
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Table 3. Prevalence of T9SS genes and CTD-encoding genes in 104 members of the phylum 

Bacteroidetesa. 
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aOnly members of the Bacteroidetes with completed genome sequences were examined and only 

one member of each species was used. Occurrence of genes encoding T9SS components or of 

genes encoding proteins with T9SS-associated CTDs are shown. Red indicates the presence of a 

gene and the number indicates the number of such genes in the genome. Genes were identified 

using the Integrated Microbial Genomes (IMG version 4.0.1) Function Profile Tool and using the 

TIGRFAM terms listed. The trusted cutoffs set by The Institute for Genomic Research were used 

in each case as indicated in the Methods section of the main text. These may underrepresent the 

actual number of proteins secreted by T9SSs. For example, more than 30 proteins are thought to 

be secreted by the P. gingivalis T9SS (2), but only 18 were identified above. 

 



42 

 

Table 4. Prevalence of T9SS genes and CTD-encoding genes in organisms outside of the phylum 

Bacteroidetesa. 

 

 

 

a3777 completed genomes were examined. Only completed genome sequences were examined and 

only one member of each species was used. Since the vast majority of species had no genes 

encoding T9SS proteins or T9SS-associated CTDs, only species with genes encoding T9SS 

components or genes encoding proteins with T9SS-associated CTDs are shown. Red indicates the 

presence of a gene and the number indicates the number of such genes in the genome. Genes were 

identified using the Integrated Microbial Genomes (IMG version 4.0.1) Function Profile Tool and 

using the TIGRFAM terms listed. The trusted cutoffs set by The Institute for Genomic Research 

were used in each case as indicated in the Methods section of the main text. The phyla to which 

the species belong are indicated in parentheses. Note that the CTDs from A. platensis, 

Leptolyngbya sp., and T. erythraeum were not found at the C-terminus and thus may be false 

positives. 
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Characteristics of F. johnsoniae type A and type B CTDs. Multiple sequence alignments 

of F. johnsoniae type A and type B CTDs were assembled to identify conserved features (Fig. 1 

and Fig. 2). The conserved region of type A and type B CTDs extend approximately 70 to 100 

amino acids from the C-termini of the proteins. F. johnsoniae type A CTDs have several highly 

conserved regions, including YPNP at approximately 70 amino acids from the C-terminus, 

G(I/L/V)Y at approximately 20 amino acids from the C-terminus, and (K/R)XXK followed 

immediately by the C-terminal residue. These sequences are also conserved in type A CTDs from 

many other Bacteroidetes (data not shown). F. johnsoniae type B CTDs are quite different in 

sequence, with F(T/S)PNGDGXND at approximately 80 amino acids from the C-terminus, 

IFXR(W/Y)G at approximately 55 amino acids from the C-terminus, and GX(L/F)X(L/I)X(R/K) 

at the C-terminus.
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 Fig 1. Alignment of the C-terminal 100 amino acids of F. johnsoniae proteins that belong to TIGRFAM family TIGR04183 (type A 

CTD). Protein sequences were aligned using MUSCLE. Dark shading indicates identical amino acids and light shading indicates similar 

amino acids. The black arrow indicates the conserved lysine that was mutated to alanine in RemA in the experiment shown in Fig. 11B 

and red rectangular box indicates the last 12 AAs of RemA C terminal region that were deleted in the experiment shown in Fig 11A. 

Individual red boxed amino acid correspond to those that lie 97, 87 and 62 AAs from the RemA C terminus. Individual blue boxed 

amino acid correspond to those that lie 99, 73 and 59 AAs from the AmyB C terminus. Proteins from other bacteria that were examined 

experimentally in this study were Celal_2532 (C. algicola AmyA), CHU_1335 (C. hutchinsonii Cel9B), and PGN_1466 (P. gingivalis 

RgpB).   
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Fig. 2. Alignment of the C-terminal 200 amino acids of F. johnsoniae proteins that belong to TIGRFAM family TIGR04131 (type B 

CTD). Protein sequences were aligned using MUSCLE. Dark shading indicates identical amino acids and light shading indicates similar 

amino acids. Proteins that were examined experimentally in this study were SprB and Fjoh_3952.
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Growth phase of cells affects function of the T9SS. To examine the function of the T9SS 

we fused the C-terminal 97 amino acids of RemA to the C-terminus of the foreign protein sfGFP 

(SPRemA-sfGFP-CTDRemA). The recombinant protein also carried the N-terminal signal peptide 

from RemA to facilitate export across the cytoplasmic membrane by the Sec system. Little sfGFP 

accumulated in the growth medium of wild type cells growing exponentially in rich media whereas 

cells from stationary phase (approximately 8 h post exponential phase) exhibited substantial 

secretion of SPRemA-sfGFP-CTDRemA (Fig. 3). The size of the protein in the culture fluid 

corresponded to that of sfGFP, suggesting that both the N-terminal signal peptide and the CTD 

had been removed. The presence of sfGFP in the spent medium was not the result of cell lysis 

since analysis of total proteins by coomassie staining revealed only trace amounts of protein in the 

culture fluid (Fig. 4). Further, coexpression of SP-sfGFP and SP-mCherry-CTDRemA allowed 

secretion of mCherry but not leakage of sfGFP (Fig. 5), indicating that expression of excess CTD-

containing protein from plasmid did not cause nonspecific T9SS-mediated leakage of periplasmic 

proteins. SPRemA-sfGFP-CTDRemA depended on the components of the T9SS for its secretion, since 

it was not secreted by cells of the gldNO T9SS mutant (Fig. 3B).  

Mutations in genes encoding other core components of the T9SS (gldK, gldL, gldM, sprA, 

sprE, and sprT) also resulted in lack of secretion (Fig. 6). The levels of components of the T9SS 

were examined in an attempt to explain the low level of secretion from exponentially growing 

cells. Exponentially growing cells had similar levels of GldK, GldL, GldM, GldN, and SprE, as 

did stationary phase cells, but they had reduced levels of SprA (Fig. 7). SprA is important for 

secretion, and the low level present in cells growing exponentially in rich media may explain the 

lack of secretion described above. Although lack of a suitable regulatable promoter prevented 

overexpression of SprA in exponential cells, increased levels of SprA in stationary phase cells 



 

47 

 

carrying sprA on a plasmid resulted in apparent increased levels of secretion of SP-sfGFP-

CTDRemA (Fig 8). Because of the lack of secretion during exponential growth, all subsequent 

analyses of secretion involved cells grown to approximately 8 h after exponential phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

48 

 

 

 

Fig. 3. T9SS-mediated secretion of sfGFP fused to the CTD of RemA. Cultures of wild type cells 

or of the T9SS mutant gldNO were incubated in CYE at 25°C with shaking and harvested in 

exponential phase (10 h) and stationary phase (22 h). Samples were centrifuged and the culture 

supernatant (spent medium) and intact cells were analyzed for sfGFP by western blot. Cells carried 

either pCP23 (Empty vector), pSK37 which expresses sfGFP with the N-terminal signal peptide 

from RemA (SP-sfGFP), or pSK30, which expresses SP-sfGFP fused to the 97-amino acid CTD 

of RemA (SP-sfGFP-CTDRemA). Cartoons at the top indicate the plasmid-encoded proteins and 

apply to panels A and B, with '1339-1436' indicating the C-terminal 97 amino acids of RemA, and 

'SP' indicating signal peptide. Whole cell samples corresponded to 10 g protein per lane and 

samples from spent media corresponded to the volume of spent medium that contained 10 g cell 

protein before the cells were removed. Samples were separated by SDS-PAGE, and sfGFP was 

detected using anti-serum against GFP. A) Detection of sfGFP from whole cells and spent media 

for samples harvested from exponential phase of growth. B) Detection of sfGFP from whole cells 

and spent media for samples harvested from stationary phase. C) Growth curves, with arrows 

indicating the points at which cells were harvested. Growth experiments were performed in 

triplicates and error bars indicate standard deviations.  
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Fig. 4. Analysis of secreted proteins by SDS-PAGE. Cultures of wild type cells or of cells of the 

T9SS mutant gldNO were incubated in CYE at 25°C with shaking and harvested in stationary 

phase (22 h). 1 ml samples were centrifuged at 22,000 x g for 15 min. The culture supernatant 

(spent medium) and intact cells were analyzed by SDS-PAGE followed by Coomassie blue 

staining. Cells carried either pCP23 ('Empty Vector'), pSK37 which expresses sfGFP with the N-

terminal signal peptide from RemA (SP-sfGFP; 'No CTD'), or pSK30, which expresses SP-sfGFP 

fused to the 97-amino acid CTD of RemA (SP-sfGFP-CTDRemA; 'RemACTD 97 AA'). Cell samples 

corresponded to 10 g protein per lane and samples from spent media corresponded to the volume 

of spent medium that contained 10 g cell protein before the cells were removed.  
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Fig. 5. Analysis of secreted proteins to 

determine if overexpression of CTD causes 

cell lysis or periplasmic leakage. Cultures of 

wild type cells or of the T9SS mutant gldNO 

expressing SPRemA-sfGFP-CTDRemA 

(pSK30), SPRemA-sfGFP (pSK37), or SPRemA-

sfGFP (pSK96) and SPChiA-mCherry-

CTDChiA (pSSK52) were incubated in CYE at 

25°C with shaking. 'Empty vector' refers to 

pCP23. Samples were processed as in Fig. 3 

analyzed by SDS-PAGE, followed by 

western blot analysis using (A) anti-GFP 

antibodies and (B) anti-mCherry antibodies. 

Identical samples were used in panels A and 

B. (C) To estimate protein expression from 

the remA and chiA promoters, cultures of wild 

type cells or of the T9SS mutant gldNO 

expressing SPRemA-sfGFP-CTDRemA (pSK30; 

PrremA), or SPChiA-sfGFP-CTDChiA (pCB3; 

PrchiA) were incubated in CYE at 25°C with 

shaking. The culture supernatant (spent 

medium) and intact cells were analyzed by 

SDS-PAGE, followed by western blot 

analysis with anti-GFP antibodies. For all 

panels cell samples corresponded to 10 µg 

protein per lane and samples from spent 

media corresponded to the volume of spent 

medium that contained 10 g cell protein 

before the cells were removed.  
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Fig. 6. Components of T9SS required for secretion of SP-sfGFP-CTDRemA. Cultures of wild type 

cells (WT) or of the T9SS mutants were incubated in CYE at 25°C with shaking and harvested in 

stationary phase (22 h). 1 ml samples were centrifuged at 22,000 x g for 15 min. The culture 

supernatant (spent medium) and intact cells were analyzed for sfGFP by western blot. Cells carried 

pSK30, which expresses SP-sfGFP fused to the 97-amino acid CTD of RemA (SP-sfGFP-

CTDRemA). Whole cell samples corresponded to 10 g protein per lane and samples from spent 

media corresponded to the volume of spent medium that contained 10 g cell protein before the 

cells were removed. Samples were separated by SDS-PAGE, and sfGFP was detected using anti-

serum against GFP. 
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Fig. 7. Levels of T9SS proteins in cells grown to exponential and stationary phase. (A) Cultures 

of wild type cells or of cells of the T9SS mutants gldK, gldL, gldM, gldNO,sprA, and of 

the sprE mutant FJ149 were incubated in CYE at 25°C with shaking and harvested in late 

exponential phase (11 h) and stationary phase (22 h) as indicated by the arrows. Growth 

experiments were performed in triplicates and error bars indicate standard deviations. (B) Cells 

were analyzed for T9SS proteins by western blot. Equal amounts (10 µg cell protein) were loaded 

per lane, separated by SDS-PAGE, and antibodies were used to detect the respective proteins.  
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Fig. 8. Overexpression of SprA results in 

increased sfGFP secretion in stationary 

phase. Cultures of wild type cells or of 

cells of the T9SS mutant sprA were 

incubated in CYE at 25°C with shaking 

and harvested in late exponential phase 

and stationary phase as indicated in Panel 

(A) Cells carried pSK97 which expresses 

SP-sfGFP-CTDRemA (97 AA CTD). 

Where indicated cells also carried pSN48 

which expresses SprA. Cells were 

analyzed by western blot using anti-SprA 

antibodies (B) or anti-GFP antibodies (C). 

For Panel B, equal amounts (10 g whole 

cell protein) were loaded per lane. For 

panel C, whole cell samples corresponded 

to 10 g protein per lane and samples 

from spent media corresponded to the 

volume of spent medium that contained 

10 g cell protein before the cells were 

removed. Samples were separated by 

SDS-PAGE, and antibodies were used to 

detect the respective proteins. Growth 

experiments were performed in triplicates 

and error bars indicate standard 

deviations.  
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Identification of regions of the CTDs of F. johnsoniae RemA, AmyB, and ChiA that 

allow secretion of the foreign protein sfGFP. To elucidate the features of type A CTDs that are 

important for secretion we examined the F. johnsoniae proteins RemA and AmyB (Fjoh_1208). 

Different lengths of CTDRemA were attached to sfGFP to determine the minimal region needed for 

secretion. C-terminal regions of 97 and 87 amino acids facilitated secretion of sfGFP, whereas a 

region spanning the final 62 amino acids of RemA did not (Fig. 9A). sfGFP carrying the 62-amino 

acid CTD appeared to be unstable, since decreased amounts of sfGFP were detected. In contrast, 

sfGFP carrying no CTD attachment was stable (Fig. 3B). We do not know the reason for the 

instability of sfGFP carrying the final 62 amino acids of RemA. It might be due to improper folding 

of the fusion protein resulting in degradation by periplasmic proteases, although other explanations 

are possible.  

In wild type cells, RemA is found both on the cell surface and in soluble form in the spent 

medium (18). We examined cells expressing sfGFP fused to various regions of RemA to determine 

if sfGFP was targeted to the cell surface. This was done by incubating cells with Protein-G-coated 

latex spheres carrying antibodies against GFP and determining the percentage of cells to which 

spheres attached. Whereas full length RemA fused to sfGFP (RemA C-terminal region of 1386 

amino acids) resulted in attachment of spheres indicating surface localization, none of the other 

fusion proteins containing C-terminal regions of 97, 87, or 62 amino acids did (Fig. 9B).  

The constructs described above each had the N-terminal signal peptide from RemA. In 

order to determine if this region had any role in secretion by the T9SS beyond targeting to the Sec 

system for initial export across the cytoplasmic membrane, we replaced it with the N-terminal 

signal peptide from the predicted F. johnsoniae periplasmic cytochrome C, Fjoh_1634. The 
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cytochrome C signal peptide allowed secretion of SPFjoh_1634-sfGFP-CTDRemA (carrying 97 amino 

acids of the RemA CTD) by the T9SS (Fig. 10), suggesting that any cleavable N-terminal signal 

peptide that facilitates export across the cytoplasmic membrane may be sufficient to allow 

secretion across the outer membrane by the T9SS provided that an appropriate CTD is present. 

Such secretion was not observed in the gldNO mutant, indicating that the T9SS was required. 

 The extreme C-terminus of CTDRemA was explored in more detail. Attachment of amino 

acids 1339-1424 of RemA (97 AA CTD minus the C-terminal 12 AAs) failed to support secretion 

of SPRemA-sfGFP (Fig. 11A). The final 12 amino acids have a lysine residue that is highly 

conserved among type A CTDs including those from F. johnsoniae (Fig. 1). Replacement of this 

lysine with alanine resulted in failure to secrete SPRemA-sfGFP suggesting that it may be important 

in secretion by the F. johnsoniae T9SS (Fig. 11B). Similar results have previously been reported 

for the distantly related bacteroidete P. gingivalis. Deletion of the C-terminal 13 amino acids or 2 

amino acids of gingipain RgpB resulted in accumulation of the truncated protein in the periplasm 

(20, 24), and conversion of the conserved lysine 732 to alanine also resulted in decreased secretion 

(20). Amino acids near the C-terminus appear to be important components of the Bacteroidetes 

T9SS secretion signal. 

 PorU and PorV are involved in the secretion of some but not all proteins that are targeted 

to the T9SS (18, 23, 45). PorU has been suggested to function as a C-terminal signal peptidase, 

whereas the function of PorV is less certain. RemA requires PorV but not PorU for secretion by 

the T9SS (18). A porV deletion mutant failed to secrete SPRemA-sfGFP carrying the 97-amino acid 

CTDRemA (Fig. 12). Cells of a porU deletion mutant secreted some SPRemA-sfGFP-CTDRemA, but 
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less than did wild type cells. F. johnsoniae PorU is not essential for secretion but appears to allow 

more efficient secretion. 
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Fig. 9. Determination of the region of RemA needed to allow secretion of sfGFP. (A) The 

minimum region necessary for sfGFP secretion was determined by examining cells carrying 

plasmids that expressed SPRemA-sfGFP-CTDRemA with CTD regions of 62 amino acids (pSK81), 

87 amino acids (pSK71) and 97 amino acids (pSK30). Cartoons at the top indicate the plasmid-

encoded proteins carrying CTDs extending from amino acids 1339-1436, 1349-1436, and 1374-

1436 of RemA. Cell free spent media and whole cells were examined for sfGFP by SDS-PAGE 

followed by western blotting using anti-serum against sfGFP. Whole cell samples corresponded to 

10 g protein per lane and samples from spent media corresponded to the volume of spent medium 

that contained 10 g cell protein before the cells were removed. (B) Attachment of sfGFP on the 

cell surface was determined by examining cells carrying plasmids that expressed SPRemA-sfGFP-

CTDRemA with CTD regions of 62 amino acids, 87 amino acids, 97 amino acids, or 1386 amino 

acids (pYT180). Anti-GFP antiserum and 0.5-μm-diameter protein G-coated polystyrene spheres 

were added to cells as described in Materials and Methods. Samples were introduced into a tunnel 

slide, incubated for 3 minutes at 25°C, and examined using a phase-contrast microscope. Images 

were recorded for 30s, and 100 randomly selected cells were examined for the presence of spheres 

that remained attached to the cells during this time. Error bars indicate standard deviations from 

three measurements. 
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Fig. 10. The N –terminal signal peptide from a periplasmic protein allows secretion of SP-sfGFP-

CTDRemA. Cell free spent media and whole cells were analyzed for wild-type (WT) cells carrying 

fusion plasmid pSK30, which expresses SPRemA-sfGFP-CTDRemA, or carrying pSK84, which 

expresses SPFjoh_1634-sfGFP-CTDRemA. Both fusion proteins had 97 amino acid C-terminal regions 

of RemA. Cells and spent media from cultures of the T9SS mutant gldNO carrying pSK84 were 

also analyzed. Whole cell samples corresponded to 10 g protein per lane and samples from spent 

media corresponded to the volume of spent medium that contained 10 g cell protein before the 

cells were removed. Samples were separated by SDS-PAGE, and sfGFP was detected using anti-

serum against GFP. 
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Fig. 11. The C-terminal 12 amino acids of RemA are critical for secretion. Cells carrying pSK30 

which expresses SPRemA-sfGFP fused to the C-terminal 97 amino acids of RemA (amino acids 

1339-1436), pSK79 which expresses SPRemA-sfGFP fused to amino acids 1339 to 1424 of RemA 

but lacking the C-terminal 12 amino acids, and pSK91 which expresses SPRemA-sfGFP fused to the 

C-terminal 97 amino acids of RemA but with the conserved lysine 1432 (Fig. 1) replaced by 

alanine, were examined for sfGFP in intact cells and in cell-free spent media by Western blot 

analysis. Cultures of wild-type (WT) and T9SS mutant (gldNO) carrying the plasmids were 

analyzed. Whole cell samples corresponded to 10 g protein per lane and samples from spent 

media corresponded to the volume of spent medium that contained 10 g cell protein before the 

cells were removed. (A) Effect of deletion of the C-terminal 12 amino acids of SPRemA-sfGFP-

CTDRemA on secretion. (B) Effect on secretion of replacement of conserved lysine 1432 of 

CTDRemA with alanine. 
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Fig. 12. Effect of deletion of porU and porV on secretion of SPRemA-sfGFP-CTDRemA. Cell free 

spent medium and whole cells were analyzed for cells of wild-type (WT), porU deletion mutant 

(porU), and porV deletion mutant (porV), each carrying pSK30. pSK30 expresses SPRemA-

sfGFP-CTDRemA, where CTDRemA refers to the 97 amino acid C-terminal region of RemA. Samples 

were separated by SDS-PAGE, and sfGFP was detected using anti-serum against GFP. Whole cell 

samples corresponded to 10 g protein per lane and samples from spent media corresponded to 

the volume of spent medium that contained 10 g cell protein before the cells were removed.  
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The results above indicate that the C-terminal 87 amino acid region of RemA is sufficient 

to target a foreign protein carrying an N-terminal signal peptide for secretion by the T9SS. Similar 

regions of the CTDs of F. johnsoniae AmyB (Fjoh_1208) and ChiA were examined for their ability 

to facilitate secretion of SPRemA-sfGFP. The CTD of AmyB is a member of the protein domain 

family TIGR04183 (type A CTD) and is much closer to the consensus type A CTD sequence than 

is the CTD of RemA (Fig. 1). The 99-amino acid CTDAmyB facilitated efficient secretion of SPRemA-

sfGFP, whereas 73-amino acid CTDAmyB did not (Fig. 13A). In contrast the ChiA CTD is not 

similar in sequence to members of this or any other protein domain family (21). For ChiA, 105-

amino acid CTDChiA and 79-amino acid CTDChiA both facilitated secretion of SPRemA-sfGFP by the 

T9SS (Fig. 13B). Attachment of the 79-amino acid region of ChiA had a negative effect on the 

accumulation of sfGFP in whole cells. In contrast a 62-amino acid CTDChiA failed to support 

secretion but allowed accumulation of sfGFP within the cells. The 79-amino acid CTDChiA may 

have interacted with components of the T9SS in a way that destabilized the attached sfGFP, 

perhaps making it susceptible to proteolysis, although other explanations are possible. 

 Some type A CTDs from other Bacteroidetes facilitate secretion of sfGFP by the F. 

johnsoniae T9SS. T9SSs, and proteins with type A CTDs are common among members of the 

phylum Bacteroidetes (1). F. johnsoniae (Class Flavobacteriia) has 40 proteins with type A CTDs, 

the marine bacterium C. algicola DSM 14237 (Class Flavobacteriia) has 13, C. hutchinsonii 

ATCC 33406 (Class Cytophagia) has 118, and P. gingivalis ATCC 33277 (Class Bacteroidia) has 

17 (Table 3). We examined a single representative type A CTD from C. algicola, from C. 

hutchinsonii, and from P. gingivalis to determine if they support secretion of SPRemA-sfGFP by the 

F. johnsoniae T9SS. Plasmids expressing sfGFP carrying the N-terminal RemA signal peptide and 

C-terminal regions from C. algicola Celal_2532 (AmyA), C. hutchinsonii Cel9B (46), and P. 
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gingivalis RgpB (26) were introduced into F. johnsoniae. The CTD regions from C. algicola 

AmyA and C. hutchinsonii Cel9B functioned in F. johnsoniae resulting in secretion of sfGFP from 

wild type cells (Fig. 14). They failed to support secretion in the gldNO mutant, indicating that a 

functional T9SS was required. The results indicate that T9SS CTDs are not species specific. In 

contrast to the results described above, the CTD from P. gingivalis RgpB did not support secretion 

of SPRemA-sfGFP (Fig. 14), suggesting that some foreign T9SS CTDs may not function properly 

with T9SSs from distantly related bacteria. The CTD of RgpB lacks the consensus 'YPNP' 

sequence that is found in most type A CTD proteins at approximately 80 amino acids from the C-

terminus (Fig. 1) which may explain its inability to function with the F. johnsoniae T9SS.  
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Fig. 13. T9SS-mediated secretion of SPRemA-sfGFP-CTDAmyB, and SPRemA-sfGFP-CTDChiA. Cell 

free spent media and whole cells were analyzed for wild-type (WT) cells and for cells of the T9SS 

mutant gldNO. Cells carried plasmids expressing either SPRemA-sfGFP-CTDAmyB (A), or SPRemA-

sfGFP-CTDChiA (B) with CTD regions of various lengths. Proteins produced by pSK82, pSK85, 

and pSK86 produced SPRemA-sfGFP-CTDAmyB with CTD regions of 99, 73, and 59 amino acids 

respectively as indicated by the cartoons (A). Proteins produced by pCB3, pSK89, and pCB4 

produced SPRemA-sfGFP-CTDChiA with CTD regions of 105, 79, and 62 amino acids respectively 

as indicated by the cartoons (B). Samples were separated by SDS-PAGE, and sfGFP was detected 

using anti-serum against GFP. Whole cell samples corresponded to 10 g protein per lane and 

samples from spent media corresponded to the volume of spent medium that contained 10 g cell 

protein before the cells were removed.  
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Fig. 14. C-terminal regions from Cellulophaga algicola AmyA and Cytophaga hutchinsonii Cel9B 

target sfGFP for secretion by the F. johnsoniae T9SS. (A) Cell free spent media and whole cells 

were analyzed for wild-type (WT) cells and for cells of the T9SS mutant gldNO. Cells carried 

pSK65, pSK76, or pSK75 expressing SPRemA-sfGFP fused to C-terminal regions of C. algicola 

AmyA (108 amino acids), C. hutchinsonii Cel9B (97 amino acids) or P. gingivalis RgpB (103 

amino acids) respectively. Samples were separated by SDS-PAGE, and sfGFP was detected using 

anti-serum against GFP. Cell samples corresponded to 10 g protein per lane and samples from 

spent media corresponded to the volume of spent medium that contained 10 g cell protein before 

the cells were removed. (B) To determine if any sfGFP was attached on the cell surface, anti-GFP 

antiserum and 0.5-μm-diameter protein G-coated polystyrene spheres were added to cells as 

described in Materials and Methods. Samples were introduced into a tunnel slide and examined 

using a phase-contrast microscope for the presence of spheres attached to the cells. Error bars 

indicate standard deviations from three measurements. FjRemA is full length RemA with sfGFP 

inserted immediately after the N-terminal signal peptide and was produced from pYT180. FjRemA 

was used as a positive control. 'No CTD' refers to cells expressing SPRemA-sfGFP without a CTD, 

and 'Empty vector' refers to cells carrying pCP23.  



 

65 

 

The CTD of SprB is required for secretion but is not closely related to type A CTDs 

or to CTDChiA. SprB has a type B CTD and requires the T9SS for its secretion to the cell surface 

(3, 8, 13). Previous results suggested that this region might be involved in secretion because SprB 

and six other F. johnsoniae proteins that had type B CTDs were secreted by wild type cells but not 

by cells of the T9SS mutant gldNO (18). The genome analyses presented above also linked type 

B CTDs to the T9SS (Table 3). Finally, a role for CTDSprB in secretion is also suggested by the 

properties of mutant FJ117, which has a HimarEm2 transposon inserted 101 nucleotides upstream 

of the stop codon of sprB (16). FJ117 produces truncated SprB lacking the C-terminal 34 amino 

acids (Fig. 15A). The cell-associated truncated SprB protein was apparently not present on the cell 

surface (data not shown) suggesting that it was instead trapped inside of the cells. sprF, which lies 

immediately downstream of and is cotranscribed with sprB, is required for SprB secretion (41). 

SprF protein was detected in wild type cells and in cells of the FJ117 mutant (Fig. 15B) indicating 

that the failure to secrete SprB was not caused by a polar effect of the transposon on sprF. 

HimarEm2 has an internal promoter that was predicted to allow expression of sprF (41), which 

explains the presence of SprF protein in the mutant. Since the defect in secretion of SprB was not 

caused by lack of SprF it is likely that the absence of the C-terminal 34 amino acids of SprB were 

responsible for the defect, lending further support for a role for this type B CTD in T9SS-mediated 

secretion. 

C-terminal regions of SprB and of Fjoh_3952 fail to support secretion of sfGFP. The 

highly conserved regions of type B CTDs extend approximately 80 to 100 amino acids from the 

C-termini (Fig. 2). Plasmids were constructed that encode SPRemA-sfGFP with various lengths (99 

to 1182 amino acids) of the C-terminal region of SprB. None of these facilitated secretion of sfGFP 

from wild type cells (Fig. 16). sfGFP was not detected in the cell-free spent medium, and was also 
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not detected on intact cells using latex spheres coated with anti-sfGFP. In addition, the sfGFP 

fusion proteins in intact cells were not susceptible to proteinase K, further indicating that they were 

not secreted and attached on the cell surface (Fig. 17). We also examined the type B CTD of 

Fjoh_3952, which is secreted by wild type cells but not by cells of a T9SS mutant (18). SPRemA-

sfGFP carrying the C-terminal 228 AAs of Fjoh_3952 failed to be secreted by wild type cells (Fig. 

17). The results indicate that whereas short (97 amino acid or less) type A CTDs were sufficient 

to target a foreign protein for secretion by the T9SS, even much longer regions of type B CTDs 

were not. Type B CTDs may require additional regions of the secreted protein to interact 

productively with the T9SS.  
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Fig. 15. The C-terminal region of SprB is required for secretion. (A) Immunodetection of SprB 

from wild type (WT) cells and from cells of the sprB transposon mutants FJ117 and FJ156 that 

should produce truncated SprB proteins lacking the C-terminal 34 and 5880 amino acids 

respectively. Total cell extracts were prepared by boiling in SDS loading buffer and samples 

corresponding to 25 g protein per lane were analyzed for SprB by SDS-PAGE and Western blot 

analysis. (B) The transposon insertion in FJ117 is not polar on the downstream gene sprF. Cells 

were examined for SprF by SDS-PAGE and western blot analysis using antiserum against SprF. 

Wild-type F. johnsoniae CJ1827 and FJ1, sprF, sprF complemented with pRR48 (sprFc), and 

the transposon mutant FJ117 were examined. Equal amount (10 g protein) of each sample were 

loaded in each lane.  

 

 



 

68 

 

 

 

Fig. 16. C-terminal regions of SprB fused to SPRemA-sfGFP failed to result in secretion of sfGFP. 

(A) Cell free spent media and whole cells were analyzed for cultures of wild-type cells carrying 

fusion plasmid pSK93, pSK56 and pSK62, which express SPRemA-sfGFP with 99, 218, and 1182-

amino acid C-terminal regions of SprB, respectively. Cells carrying fusion plasmid pSK58, which 

expresses SPRemA-sfGFP with the 228-amino acid C-terminal region of the SprB-like protein 

Fjoh_3952 were also analyzed. Samples were separated by SDS-PAGE, and sfGFP was detected 

using anti-serum against GFP. Whole cell samples corresponded to 10 g protein per lane, and 

samples from spent media corresponded to the volume of spent medium that contained 10 g cell 

protein before the cells were removed. 
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Fig. 17. Proteinase K treatment to determine if SPRemA-sfGFP-CTDSprB localizes to the cell surface. 

Strains expressing sfGFP fusion proteins with SprBCTDs of 99 amino acids (pSK93), 218 amino 

acids (pSK56), 1182 amino acids (pSK62), and with Fjoh_3952CTD of 228 amino acids (pSK58) 

were analyzed. Strain expressing SPRemA-sfGFP-CTDRemA with 1386 amino acids of RemACTD, 

which is cell surface localized, was used as a positive control. Proteinase K was added at a final 

concentration of 1 mg/ml to intact cells (A) and to cell extracts prepared by French pressure cell 

treatment (B), and cells and extracts were incubated at 25˚C. Samples were removed at 0 h and 2 
h for immunoblot analyses. Samples were separated by SDS-PAGE, and sfGFP was detected using 

antiserum against GFP. Samples not exposed to proteinase K (-) were also included. 
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Discussion 

T9SSs are common in members of the phylum Bacteroidetes but have only recently been 

recognized and studied. Many secreted proteins of P. gingivalis have conserved CTDs (4, 20, 24) 

and it is now clear that this extends to the many other members of the phylum that have T9SSs (1, 

2, 18).  There is considerable diversity among these CTDs, but most belong to protein domain 

families TIGR04183 (type A CTDs) or TIGR04131 (type B CTDs). There have been only a few 

functional studies of the CTDs of secreted proteins, most of which were conducted on P. gingivalis 

(24, 26, 47). These studies focused on P. gingivalis RgpB and HBP35, which have type A CTDs. 

The only other functional studies involved F. johnsoniae ChiA, which has a unique CTD that is 

apparently unrelated to either type A or type B CTDs (21). The full spectrum of CTDs that facilitate 

secretion by T9SSs has not yet been thoroughly explored. Here we examined the characteristics of 

several F. johnsoniae T9SS CTDs including two type A CTDs, two type B CTDs, and the novel 

CTD of the chitinase ChiA. 

 The results confirm findings from P. gingivalis indicating that type A CTDs of less than 

100 amino acids in length are sufficient to target foreign proteins for secretion by T9SSs. The 

length of the two F. johnsoniae type A CTDs required for efficient secretion of sfGFP were 

between 80 and 100 amino acids, and similar results were obtained for the ChiA CTD. Even shorter 

CTDs allowed secretion of P. gingivalis RgpB and HBP35 (25). The results also confirm previous 

findings from P. gingivalis regarding the importance of the extreme C-terminal amino acids. 

Deletion of the final 12 amino acids of an otherwise functional CTDRemA eliminated secretion of 

the foreign protein sfGFP to which it was attached. Conversion of a conserved lysine within this 

terminal region to alanine had a similar effect. The similarity of these results to those reported for 
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the P. gingivalis T9SS CTDs suggests that targeting of proteins for secretion by type A CTDs may 

be broadly similar throughout the phylum Bacteroidetes. 

 The components of T9SSs are conserved across the many members of the phylum 

Bacteroidetes that use this system (Table 3). Recognizable type A CTDs are found in all members 

of the phylum that have the core components of the T9SS, but they are generally absent in the few 

species that lack T9SSs. The T9SS components from diverse members of the phylum, although 

conserved, also exhibit considerable divergence in sequence. For example, F. johnsoniae GldK, 

GldL, GldM, GldN, SprA, SprE, and SprT exhibit only 14-33 % amino acid identity with their 

orthologs from C. hutchinsonii (Table 5).  
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Table 5. Amino acid sequence identities of F. johnsoniae T9SS components with orthologs from 

other members of the phylum Bacteroidetesa.  

 

F. johnsoniae  C. algicola 

 

C. hutchinsonii P. gingivalis 

GldK (464 AA) 67% over 467 AA 33% over 477 AA 34% over 502 AA 

GldL (215 AA) 58% over 219 AA 27% over 273 AA 19% over 313 AA 

GldM (513 AA) 41% over 526 AA 20% over 546 AA 24% over 539 AA 

GldN (329 AA) 52% over 334 AA 14% over 353 AA 16% over 409 AA 

SprA (2403 AA) 52% over 2460 AA 32% over 2537 AA 32% over 2622 AA 

SprE (870 AA) 40% over 887 AA 21% over 902 AA 15% over 1191 AA 

SprT (237 AA) 48% over 240 AA 25% over 244 AA 22% over 254 AA 

PorU (1278 AA) No ortholog 33% over 1332 AA 23% over 1335 AA 

PorV (402 AA) 57% over 404 AA 34% over 417 AA 42% over 413 AA 

 

aF. johnsoniae T9SS components were aligned with orthologs from Cellulophaga algicola (Class 

Flavobacteriia), Cytophaga hutchinsonii (Class Cytophagia) and Porphyromonas gingivalis 

(Class Bacteroidia) using MUSCLE. In each case percent amino acid (AA) identity over the region 

of similarity is listed. Note that C. algicola, which has a functional T9SS, lacks a PorU ortholog. 
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This is perhaps not surprising since F. johnsoniae (Class Flavobacteriia) and C. 

hutchinsonii (Class Cytophagia) are only distantly related (48). In spite of the divergence in 

sequence between their T9SS components, the C. hutchinsonii Cel9B CTD functioned with the F. 

johnsoniae T9SS to allow secretion of the foreign protein sfGFP. While not all CTDs functioned 

in this way, the results indicate that individual CTDs can function with the secretion system from 

a distantly related member of the phylum. The structure of one CTD was recently solved (49). It 

is likely that the 3-dimensional structures of the CTDs and of the components of the T9SS, rather 

than the primary sequences, are most important in directing proteins for secretion by the T9SS. 

Determination of the structures of additional T9SS CTDs may help to determine if the diversity of 

primary sequences obscures a common fold that allows recognition of diverse CTDs by T9SSs. 

Similarly, determination of the structure of the secretion apparatus and its components may help 

determine how secreted proteins interact with this machine. Electron microscopic analyses 

recently revealed structural features of a complex comprised of P. gingivalis PorK and PorN 

(orthologs of GldK and GldN) suggesting that they form a large ring on the periplasmic side of the 

outer membrane (50). Evidence for a cell envelope-spanning complex consisting of P. gingivalis 

PorK, PorL, PorM, PorN, and PorP was also recently presented (51). Further studies will 

undoubtedly reveal additional structural features of the T9SS. Regardless, it is clear that CTDs 

play a role in secretion of proteins by the T9SS. The ability to predictably target proteins for 

secretion by addition of a type A CTD allows engineering of F. johnsoniae or other members of 

the Bacteroidetes to secrete proteins of interest.  

 Given the ability of type A CTDs to target foreign proteins for secretion, the inability of 

type B CTDs to function similarly was somewhat surprising. All of the F. johnsoniae proteins with 

type B CTDs are large. SprB (6497 AAs in length) has a type B CTD that appears to be required 
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for its secretion. Secretion of such large proteins may require additional secretion system proteins 

to be involved and additional regions of the secreted protein to interact with the secretion system. 

For example, sprF, which lies immediately downstream of sprB, is required for secretion of SprB 

but not for secretion of RemA or of ChiA (14, 21, 41). Most genes encoding secreted proteins with 

type B CTDs have sprF-like genes immediately downstream, and it has been suggested that these 

may be involved in secretion of their cognate proteins (41). Additional experiments are needed to 

determine the features of type B CTD-containing proteins that are necessary for secretion by the 

T9SS. This may be challenging given the large size of these proteins. 

 Genome analyses indicate that T9SSs are found in most but not all members of the phylum 

Bacteroidetes (1) (Table 3). Our results suggest that the function of type A CTDs in secretion may 

be similar across diverse members of the phylum. The co-occurrence of type A CTDs and SprA 

across the entire phylum Bacteroidetes and extending to the phyla Rhodothermaeota, Chlorobi, 

Fibrobacteres, and Ignavibacteriae suggests the possibility that type A CTDs may interact directly 

or indirectly with SprA. Our results also highlight the diversity of CTDs involved in secretion and 

suggest that type A CTDs and type B CTDs may interact differently with the T9SS to facilitate 

secretion of specific sets of proteins.  

 Our results also identified the growth phase dependence of secretion. The F. johnsoniae 

T9SS appeared to function poorly in cells growing exponentially in rich media but it supported 

secretion in cells that were in stationary phase of growth. The exponentially growing cells had 

little if any SprA protein which may explain the secretion defect. The F. johnsoniae T9SS is needed 

for secretion of numerous proteases, polysaccharide digesting enzymes and motility proteins. 

Polymer digestion and cell movement may only be needed when cells are nutrient limited and the 
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T9SS may be regulated so that it is only fully expressed under these conditions. Little is known 

regarding regulation of the genes encoding T9SS components. Further research is needed to 

explore this topic and to fully understand the structure and function of the T9SS apparatus in the 

many diverse members of the phylum Bacteroidetes that rely on these secretion machines. 
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Chapter 3. Secretion and cell-surface localization of proteins carrying C-terminal regions of 

the Flavobacterium johnsoniae motility protein SprB 

This chapter is a manuscript in preparation and will be submitted to a journal for publication after 

completion. 

Abstract 

The Flavobacterium johnsoniae adhesin SprB is propelled rapidly along the cell surface resulting 

in gliding motility. Secretion of SprB requires the type IX secretion system (T9SS). Proteins 

secreted across the outer membrane by the T9SS typically have conserved C-terminal domains 

(CTDs) that belong to protein domain families TIGR04183 (type A CTDs) or TIGR04131 (type 

B CTDs). They also have amino-terminal signal peptides (SPs) that facilitate export across the 

cytoplasmic membrane by the Sec system. Attachment of 80 to 100 amino acid (AA) regions of 

type A CTDs to a foreign protein such as sfGFP allow its secretion across the outer membrane. In 

contrast, similar regions of type B CTDs fail to result in secretion. Type B CTDs are common in 

the Bacteroidetes but little is known regarding their roles in secretion. Here the secretion of the 

foreign protein sfGFP fused to an N-terminal SP and to C-terminal regions of SprB (SP-sfGFP-

CTDSprB) was analyzed. CTDs of 218 AAs or longer resulted in secretion whereas a CTD of 149 

AAs did not. sprF, which lies downstream of sprB, is known to be required for SprB secretion. 

SP-sfGFP-CTDSprB also required SprF for secretion. Efficient secretion only occurred when SP-

sfGFP-CTDSprB and SprF were expressed together. Under these conditions CTDs of 218 AAs and 

448 AAs resulted in secretion of soluble sfGFP, whereas longer CTDs (663 and 1182 AAs) 

resulted in attachment of sfGFP to the cell surface. Most F. johnsoniae genes encoding proteins 

with type B CTDs lie immediately upstream of sprF-like genes. The CTD from one such protein, 
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Fjoh_3952, facilitated secretion of sfGFP only when it was coexpressed with its cognate SprF-like 

protein, Fjoh_3951. Secretion did not occur when SP-sfGFP-CTDFjoh_3952 was expressed with 

SprF, or when SP-sfGFP-CTDSprB was expressed with Fjoh_3951. The results highlight the need 

for extended regions of type B CTDs for secretion and cell-surface localization, and the 

requirement for the cognate SprF-like protein for secretion. Since type B CTD-containing proteins 

and associated SprF-like proteins are common among members of the phylum Bacteroidetes the 

unique features required for secretion of these proteins may have broad implications. 

Introduction 

Protein secretion systems are key players in regulating interactions of Gram-negative 

bacteria with their environment (1). Secreted proteins may be anchored to the cell-surface or 

released into the extra-cellular milieu (2). Type I, III, IV, and VI secretion systems transport 

proteins directly from the cytoplasm to the outside. In contrast, Type II, V, VII, VIII and IX 

secretion systems deliver proteins across the outer membrane from the periplasm, and rely on the 

Sec or Tat systems for the initial export across the cytoplasmic membrane. The type IX secretion 

system (T9SS) is common in, but limited, to members of the phylum Bacteroidetes (3). It was first 

studied in the non-motile oral pathogen Porphryomonas gingivalis and in the gliding bacterium 

Flavobacterium johnsoniae (4, 5). The core proteins of the F. johnsoniae T9SS include GldK, 

GldL, GldM, GldN, SprA, SprE and SprT  (4, 6-9), which correspond to P. gingivalis PorK, PorL, 

PorM, PorN, sov, PorW and PorT respectively (4). The F. johnsoniae T9SS is required for 

secretion of dozens of proteins, including the cell surface motility proteins SprB and RemA and 

the soluble extracellular enzymes ChiA and AmyB (8, 10). The P. gingivalis T9SS is involved in 

secretion of virulence factors such as gingipain proteases and adhesins (4). The secreted proteins 
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have signal peptides that allow export across the cytoplasmic membrane via the Sec machinery, 

and conserved C-terminal domains (CTDs) that are required for T9SS-mediated secretion and are 

typically cleaved during or after secretion (11-14). 

 Proteins secreted by the F. johnsoniae T9SS have CTDs that belong to either TIGR04183 

(type A CTDs), or TIGR04131 (type B CTDs). The roles of type A CTDs in secretion of F. 

johnsoniae and P. gingivalis proteins have been studied. Type A CTD regions of 80 to 100 AA 

are usually sufficient to target a foreign protein such as sfGFP for secretion from the periplasm 

across the outer membrane by the T9SS (12, 14, 15). Type B CTDs of similar lengths however fail 

to result in secretion (15). Here we demonstrate that regions of type B CTDs longer than 149 AA 

are needed for secretion, and regions longer than 448 AA are needed for attachment of the secreted 

protein to the cell surface. An additional protein, SprF, is required for secretion of SprB but is not 

needed for secretion of other proteins targeted to the T9SS. sprF and sprB are adjacent on the 

chromosome and are co-transcribed  (16). Here we characterize the role of type B CTDs, and of 

SprF and SprF-like proteins in secretion by the T9SS.  

Materials and Methods 

Bacterial strains, plasmids and growth conditions. F. johnsoniae ATCC 17061 

(UW101) was the wild-type strain used in this study (17-19). F. johnsoniae strains were grown in 

Casitone-yeast extract (CYE) medium at 30C, as previously described (20). Escherichia coli 

strains were grown in Luria-Bertani medium (LB) at 37C (21). Strains and plasmids used in this 

study are listed in Table 1, and primers are Table 2. Antibiotics were used at the following final 

concentrations when needed: ampicillin, 100 g/ml; kanamycin, 30 g/ml; streptomycin, 100 

g/ml; and tetracycline, 20 g/ml.  
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Generation of plasmids that express sfGFP with signal peptides at the N-terminus 

and with regions of SprB CTDs at the C-terminus. Plasmids that express sfGFP fused to regions 

of the CTD of SprB were constructed. Regions of DNA encoding the C-terminus of SprB 

(CTDSprB) were introduced into plasmid pSK179 that expressed the N-terminal signal peptide of 

RemA fused to sfGFP (SP-sfGFP) (15), resulting in plasmids that produce SP-sfGFP-CTDSprB. 

These include pSK93 (expresses SP-sfGFP-CTDSprB99AA), pSK56 (expresses SP-sfGFP-

CTDSprB218AA) and pSK62 (expresses SP-sfGFP-CTDSprB1182AA) that have been previously 

described (15). Additional plasmids expressing SP-sfGFP-CTDSprB149AA (pSK60), SP-sfGFP-

CTDSprB368AA (pSK53), SP-sfGFP-CTDSprB448AA (pSK54), and SP-sfGFP-CTDSprB663AA (pSK50), 

were constructed in a similar way using the primers listed in Table 2. In each case a region that 

encodes the C-terminus of SprB was amplified and inserted into the XbaI and SphI sites of 

pYT179, to generate a construct encoding SP-sfGFP-CTDSprB. Plasmids that also included sprF 

downstream from each of the SP-sfGFP-CTDSprB-encoding constructs were also prepared. For 

example, a 657-bp fragment encoding 218 amino acids of CTDSprB, 17-bp intergenic region, and 

1294–bp fragment encoding SprF was amplified by PCR using Phusion DNA polymerase (New 

England Biolabs, Ipswich, MA) and primers 1843 (engineered XbaI site) and 955 (engineered SphI 

site). This fragment was introduced into XbaI and SphI digested pYT179 to generate pSK55. 

Plasmids encoding SP-sfGFP-CTDSprB with 99, 149, 368, 448, 663, and 1182 amino acids from 

the C-terminus of SprB followed by and coexpressed with sprF (pSK41, pSK59, pSK51, pSK52, 

pSK45, and pSK61 respectively) were constructed similarly using the primers listed in Table 2. A 

3537-bp fragment encoding 1170 amino acids near the C-terminus but lacking the C-terminal 12 

amino acids was also cloned into pYT179 using primers 1935 (engineered XbaI site) and 1880 

(engineered SphI site), generating plasmid pSK78. A fragment encoding SprF was amplified using 
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primers 1936 (engineered SphI site) and 1937 (engineered SphI site) and cloned into the SphI site 

of pSK78 to generate pSK83 and confirmed by sequencing. 

Generation of plasmids that express SP-sfGFP fused to Fjoh_3952 and Fjoh_1123 

CTDs. A 687-bp fragment encoding 228 amino acids of the CTD of the SprB-like protein 

Fjoh_3952 and the entire Fjoh_3951 (sprF-like) gene was amplified and cloned into pYT179 using 

primers 1868 (engineered XbaI site) and 1869 (engineered SphI site) to generate plasmid pSK57. 

Plasmids were constructed that encoded SP-sfGFP-CTDSprB and Fjoh_3951 (pSK69), and that 

encoded SP-sfGFP-CTDFjoh_3952 and SprF (pSK68). Fjoh_3951 was amplified using primers 1892 

(engineered SphI site) and 1969 (engineered SphI site) and cloned into the SphI site of pSK56, 

generating pSK69. Similarly, sprF was amplified using primers 1883 (engineered SphI site) and 

955 (engineered SphI site), and cloned into the SphI site of pSK58 to generate pSK68. Plasmids 

were confirmed by sequencing. A region spanning 762-bp of Fjoh_1123CTD was also cloned into 

pYT179 using primers 1881 (engineered XbaI site) and 1182 (engineered SphI site), generating 

plasmid pSK64 which encodes SP-sfGFP-CTDFjoh_1123. 

Microscopic observation of cells. The movement of F. johnsoniae cells on glass was 

examined by phase-contrast microscopy at 25˚C. Cells were grown in MM at 25˚C without 

shaking. Motility on glass was analyzed using liquid filled tunnel slides prepared as described 

previously (22), using Nichiban NW-5 double sided tape (Nichiban Co, Tokyo, Japan) to hold a 

glass coverslip over a glass slide. Cells suspended in CYE medium were introduced into tunnel 

slides and incubated for 3 min. Cell movements were observed using an Olympus BH-2 phase-

contrast microscope. Images were recorded using a Photometrics Cool-SNAPcf
2 camera and 

analyzed using Metamorph software.  
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Binding of protein G-coated polystyrene spheres. Anti-GFP (1 µl of 0.5 mg per ml; 

GeneScript), 0.5-µm-diameter protein G-coated polystyrene spheres (1 µl of a 0.1% stock 

preparation; Sphereotech Inc., Libertyville, IL), and bovine serum albumin (BSA) (1 µl of 1% 

solution) were spotted on a glass slide, covered with a glass coverslip, and images were recorded 

and analyzed using Metamorph software. 

Western blot analyses. F. johnsoniae cells were grown to early stationary phase in CYE 

at 25°C with shaking. Cells were pelleted by centrifugation at 22,000 x g for 15 min, and the 

culture supernatant (spent medium) was separated. For whole-cell samples, the cells were 

suspended in the original culture volume of phosphate-buffered saline consisting of 137 mM NaCl, 

2.7 mM KCl, 10 mM Na2PO4, and 2 mM KH2PO4 (pH 7.4). Equal amounts of spent media and 

whole cells were boiled in SDS-PAGE loading buffer for 10 min. Proteins were separated by SDS-

PAGE, and Western blot analyses were performed as previously described (23). Equal amounts of 

each sample based on the starting material were loaded in each lane. For cell extracts this 

corresponded to 10 g protein, whereas for spent medium this corresponded to the equivalent 

volume of spent medium that contained 10 g cell protein before the cells were removed. Anti-

GFP (0.5 mg per ml) was used at a dilution of 1: 3,000 to detect sfGFP in Western blots. Polyclonal 

antibodies against SprF peptides were produced by Biomatik Corporation (Cambridge, Ontario, 

Canada) and were used at a dilution of 1:3,000.    

Proteinase K treatment of cells to determine the localization of SprF. Cells of F. 

johnsoniae were grown in CYE at 25°C with shaking. Cells were collected, washed and suspended 

in 20 mM sodium phosphate-10 mM MgCl2 (pH 7.5) and diluted to an OD600 of 1.5. To examine 

SprF, proteinase K was added to the intact cells to a final concentration of 1 mg/ml and incubated 
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at 25°C with gentle mixing. In each case an identical sample was lysed using a French pressure 

cell, unbroken cells and debris were removed by centrifugation and proteinase K was added as 

above. At 0 and 2 h, 150 µl of cells or lysed cells were sampled, 10 mM phenylmethylsulfonyl 

fluoride was added and the samples were boiled for 1 min to stop digestion. SDS-PAGE loading 

buffer was added and the samples were boiled for another 7 min. Control samples that were not 

exposed to proteinase K were also included. Equal volumes were separated by SDS-PAGE and 

transferred to polyvinylidene difluoride membranes, and proteins were detected with anti-serum 

against SprF.  
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Table 1. Strains and plasmids used in this study. 

 

Strain  Descriptiona Source or 

reference 

E. coli strains   

  DH5mcr Strain used for general cloning Life 

Technologies 

(Grand Island, 

NY, USA) 

  HB101 Strain used with pRK2013 for triparental conjugation (24, 25) 

F. johnsoniae 

strains 

  

  CJ1827 rpsL2; Smr 'wild-type' F. johnsoniae strain used in 

construction of deletion mutants 

(26) 

  CJ2122 gldK (27) 

  CJ1922 sprB (26) 

  CJ2518 sprF (28) 

   

Plasmid  Description Source or 

reference 

   

  pCP11 E.coli- F. johnsoniae shuttle plasmid; Apr (Emr) (29) 

  pCP23 E.coli- F. johnsoniae shuttle plasmid; Apr (Tcr) (30) 

  pSK37 sfGFP with stop codon cloned into pYT40; Apr (Tcr) (15) 

  pSK41 300-bp region encoding 99 amino acids of CTDSprB, 16-bp 

intergenic region and 1178-bp region encoding 333 amino 

acids of SprF inserted into pYT179; Apr (Tcr) 

This study 
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  pSK45 1992-bp region encoding 663 amino acids of CTDSprB, 16-

bp intergenic region and 1178-bp region encoding 333 

amino acids of SprF inserted into pYT179; Apr (Tcr) 

This study 

  pSK50 1992-bp region encoding 663 amino acids of CTDSprB 

inserted into pYT179; Apr (Tcr) 

This study 

  pSK51 1107-bp region encoding 368 amino acids of CTDSprB, 16-

bp intergenic region and 1178-bp region encoding 333 

amino acids of SprF inserted into pYT179; Apr (Tcr) 

This study 

  pSK52 1347-bp region encoding 448 amino acids of CTDSprB, 16-

bp intergenic region and 1178-bp region encoding 333 

amino acids of SprF inserted into pYT179; Apr (Tcr) 

This study 

  pSK53 1107-bp region encoding 368 amino acids of CTDSprB 

inserted into pYT179; Apr (Tcr) 

This study 

  pSK54 1347-bp region encoding 448 amino acids of CTDSprB 

inserted into pYT179; Apr (Tcr) 

This study 

  pSK55 657-bp region encoding 218 amino acids of CTDSprB, 16-

bp intergenic region and 1178-bp region encoding 333 

amino acids of SprF inserted into pYT179; Apr (Tcr) 

This study 

  pSK56 657-bp region encoding 218 amino acids of CTDSprB 

inserted into pYT179; Apr (Tcr) 

(15) 

  pSK57 687-bp region encoding 228 amino acids of CTDSprB, 16-

bp intergenic region and 1032-bp region encoding 303 

amino acids of Fjoh_3951 inserted into pYT179; Apr (Tcr) 

This study 

  pSK58 687-bp region encoding 228 amino acids of CTDFjoh_3952 

inserted into pYT179; Apr (Tcr) 

(15) 

  pSK59  450-bp region encoding 149 amino acids of CTDSprB, 16-

bp intergenic region and 1178-bp region encoding 333 

amino acids of SprF inserted into pYT179; Apr (Tcr) 

This study 

  pSK60 450-bp region encoding 149 amino acids of CTDSprB 

inserted into pYT179; Apr (Tcr) 

This study 
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  pSK61 3549-bp region encoding 1182 amino acids of CTDSprB, 16-

bp intergenic region and 1178-bp region encoding 333 

amino acids of SprF inserted into pYT179; Apr (Tcr) 

This study 

  pSK62 3549-bp region encoding 1182 amino acids of CTDSprB 

inserted into pYT179; Apr (Tcr) 

(15) 

  pSK64 762-bp region encoding 228 amino acids of Fjoh_1123 

inserted into pYT179; Apr (Tcr) 

This study 

  pSK68 1294-bp region encoding 333 amino acids of SprF inserted 

into pSK58; Apr (Tcr) 

This study 

  pSK69 1032-bp region encoding 303 amino acids of Fjoh_3951 

inserted into pSK56; Apr (Tcr) 

This study 

  pSK78  3513-bp region encoding  1170 amino acids near the C-

terminus of SprB but lacking the C-terminal 12 amino acids 

inserted into pYT179; Apr (Tcr) 

This study 

  pSK83  3513-bp region encoding  1170 amino acids near the C-

terminus of SprB but lacking the C-terminal 12 amino 

acids, and 1178-bp region encoding 333 amino acids of 

SprF inserted into pYT179 inserted into pYT179; Apr (Tcr) 

This study 

  pSK93 300-bp region encoding 99 amino acids of CTDSprB 

inserted into pYT179; Apr (Tcr) 

(15) 

  pSK98 1294-bp region encoding 333 amino acids SprF inserted 

into pCP11; Apr (Emr)  

This study 

  pTB263 Plasmid expressing fluorescent protein sfGFP; Apr (31) 

  pYT40 511-bp fragment spanning the remA promoter, start  

codon, and the N-terminal signal peptide-encoding  

region inserted into pCP23; Apr (Tcr) 

(15) 

  pYT179 735-bp sfGFP amplified without stop codon and cloned 

into pYT140; Apr (Tcr) 

(15) 
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aAntibiotic resistance phenotypes are as follows:  ampicillin, Apr; streptomycin, Smr; tetracycline, 

Tcr.  The antibiotic resistance phenotypes given in parentheses are those expressed in F. johnsoniae 

but not in E. coli. The antibiotic resistance phenotypes without parentheses are those expressed in 

E. coli but not in F. johnsoniae. 
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Table 2. Primers used in this study 

   

954           5' GCTAGTCTAGATGGCGAGGAATTACCTTCTGGTGA 3'; forward primer 

used in construction of pSK42, pSK44, pSK45, pSK51, pSK52, pSK55; XbaI site 

underlined 

955             5' GCTAGGCATGCGGACATTTCGGCTTGTGTTAAATTCG 3'; reverse primer 

used in construction of pSK42, pSK59, pSK61, pSK68; SphI site underlined 

1399 5' GCTAGTCTAGAACAGATACGAAAGATTATTACATCGAG 3'; forward 

primer used in construction of pSK41, pSK93; XbaI site underlined 

1400 5' GCTAGGCATGCTTATCTGTATAAAGTGAAATGTCCAAC 3'; reverse 

primer used in construction of pSK50, pSK53, pSK54, pSK56, pSK60, pSK62, 

pSK93; SphI site underlined 

1694 5' GCTAGTCTAGACCGGATCCAATTACATTTACAGCAG 3'; forward primer 

used in construction of pSK45, pSK50; XbaI site underlined 

1695 5' GCTAGTCTAGACCAAATGGTGATGGAGTTAACG 3'; forward primer used 

in construction of pSK44; XbaI site underlined 

1828 5' GCTAGTCTAGA ACAGCTTACGAAGTACCAGGATCTATG 3'; forward 

primer used in construction of pSK51, pSK53; XbaI site underlined 

1829 5' GCTAGTCTAGAGCAGGTACAGAAATTAGACCGGCA 3'; forward primer 

used in construction of pSK52, pSK54; XbaI site underlined 

1843 5' GCTAGTCTAGAGTGGTGATTACAATTGATCCAAGC 3'; forward primer 

used in construction of pSK55, pSK56; XbaI site underlined 

1868 5' GCTAGTCTAGAGTCGAAGTGCCATCGATTACAGTA 3'; forward primer 

used in construction of pSK57; XbaI site underlined 

1869 5' GCTAGGCATGCAACTGCTTTTTGTGCTATTGCGTT 3'; reverse primer 

used in construction of pSK58, pSK69; SphI site underlined 

1879 5' GCTAGTCTAGAGGTGTTTGGAACGTAATTACAGCT 3'; forward primer 

used in construction of pSK59, pSK60; XbaI site underlined 

1880 5' GCTAGTCTAGACGTTCTGAAATTACGCTTACTCCG 3'; forward primer 

used in construction of pSK61, pSK62, pSK78; XbaI site underlined 

1881 5' GCTAGTCTAGATTCGTAAATGATCTGCCAACAGTA 3'; forward primer 

used in construction of pSK64; XbaI site underlined 
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1882 5' GCTAGGCATGCATAAATGTTTGAATGCCATCTCCT 3'; reverse primer 

used in construction of pSK64; SphI site underlined 

1883 5' GCTAGGCATGCTGGCGAGGAATTACCTTCTGGTGA 3'; reverse primer 

used in construction of pSK68; SphI site underlined 

1892 5' GCTAGGCATGCAGTCCAAATCAATAAAATGGCTTA 3'; reverse primer 

used in construction of pSK69; SphI site underlined 

1935 5' GCTAGGCATGCTTAATCATTCTCGTCATTTAGTTTAAGAAC 3'; reverse 

primer used in construction of pSK78; SphI site underlined 

1936 5' GCTAGGCATGCGCCCCTATGATGTTATCTAAAAAAATT 3'; reverse 

primer used in construction of pSK83; SphI site underlined 

1937 5' GCTAGGCATGCTTAATCGTGAACCGGGCTTTG 3'; reverse primer used in 

construction of pSK83; SphI site underlined 

2074 5' GCTAGGTCGACTGGCGAGGAATTACCTTCTGGTGA 3'; reverse primer 

used in construction of pSK98; SalI site underlined 

2075 5' GCTAGTCTAGAGGACATTTCGGCTTGTGTTAAATTCG 3'; reverse primer 

used in construction of pSK98; SphI site underlined 
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Results 

 

Efficient secretion of sfGFP depends on SprF. Many proteins secreted by T9SSs have 

type A CTDs, and the involvement of these in secretion has been demonstrated (10, 12, 14, 15, 

32). Type B CTDs, such as the SprB CTD, have been less well studied. A truncated form of SprB 

lacking the C-terminal 34 AAs is not secreted (33), and fusion of C-terminal regions of SprB 

ranging from 99 to 1182 AA in length to the foreign protein sfGFP that also carried an N-terminal 

signal peptide (SP-sfGFP-CTDSprB) failed to result in secretion of sfGFP from wild type cells (15). 

Here we examined the requirements for secretion of sfGFP in greater detail. One possibility for 

failure to secrete sfGFP is that a component of the secretion system was fully occupied with 

secretion of the large and abundant protein SprB. For this reason, we examined secretion of sfGFP 

by sprB mutant cells. Expression of SP-sfGFP-CTDSprB(218AA) in sprB cells resulted in a small 

amount of soluble secreted sfGFP, whereas expression of the same construct in wild type cells did 

not result in detectable secretion (Fig. 1A). sprB and sprF are cotranscribed, and SprF is required 

for secretion of SprB, but not for other proteins that are targeted to the T9SS (16). We previously 

suggested that SprF may play an adapter or chaperone-like function that facilitates secretion of 

SprB (16). The coexpression of SP-sfGFP-CTDSprB and SprF from the same plasmid resulted in 

efficient secretion of sfGFP from both wild type and sprB mutant cells (Fig. 1B). Secretion did 

not occur in ΔsprB ΔgldK mutant cells carrying the same plasmid, indicating that a functional 

T9SS was required (Fig. 1B). The results suggest that SprF may interact with the C-terminal region 

of SprB and facilitate secretion. A shorter region of the C-terminus of SprB (149 AA) failed to 

result in sfGFP secretion even when coexpressed with SprF (Fig. 2). 
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Fig. 1. Efficient secretion of sfGFP depends on CTDSprB and SprF. (A) Wild-type and sprB cells 

carrying pSK55, which expresses SP-sfGFP fused to the 218-amino acid CTD of SprB (SP-sfGFP-

CTDSprB) were analyzed. (B) Cultures of sprB cells and of T9SS mutant sprB gldK were 

incubated in CYE at 25C with shaking. 1ml samples were centrifuged at 22,000 x g for 15 min. 

The culture supernatant (spent medium) and intact cells were analyzed for sfGFP by western blot. 

Cells carried either pCP23 (Empty vector), pSK37, which expresses sfGFP with the N-terminal 

signal peptide from RemA (SP-sfGFP), pSK55, which expresses SP-sfGFP fused to the 218 amino 

acid CTD of SprB (SP-sfGFP-CTDSprB) or pSK56, which expresses SP-sfGFP fused to the 218 

amino acid CTD of SprB (SP-sfGFP-CTDSprB) and SprF. For both panels, whole cell samples 

corresponded to 10 µg protein per lane and samples from spent media corresponded to the volume 

of spent medium that contained 10 µg protein before the cells were removed. Samples were 

separated by SDS-PAGE, and sfGFP was detected using anti-serum against GFP.  
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Fig. 2. Determination of the region of the CTD of SprB needed to allow secretion of sfGFP. The 

minimum region necessary for sfGFP secretion was determined by examining cells of sprB and 

of T9SS mutant sprB gldK, carrying plasmids that expressed SP-sfGFP-CTDSprB with CTD 

region of 149 AA with SprF (pSK59) and without SprF (pSK60). Cell free spent media and whole 

cells were examined for sfGFP by SDS-PAGE followed by western blotting using anti-serum 

against sfGFP. Whole cell samples corresponded to 10 g protein per lane and samples from spent 

media corresponded to the volume of spent medium that contained 10 g protein before the cells 

were removed. 
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Longer regions of SprBCTD are needed for cell surface attachment. In wild type cells, 

SprB is attached to the cell surface after secretion by the T9SS. Regions of the C-terminus of SprB 

ranging from 368 to 1182 AAs were fused to sfGFP and examined for their ability to localize 

sfGFP to the cell surface. sprF was co-expressed on the same plasmids. Western immunoblot 

analyses of the strains expressing the fusion proteins show the accumulation of sfGFP in the spent 

medium when sprF was co-expressed (Fig. 3). The apparent molecular mass of the sfGFP band 

did not change when the length of the CTD fused to sfGFP was increased. This suggests processing 

of the fusion protein during or after secretion, with accumulation of stably folded sfGFP in the 

medium. F. johnsoniae produces many secreted proteases that could contribute to this partial 

digestion of the soluble secreted protein (34).  

We examined if the cell-associated sfGFP was surface exposed using anti-GFP-coated 

polystyrene spheres. Spheres attached to cells that expressed sfGFP fused to CTDs of 663 and 

1182 amino acids in length, but not to cells expressing sfGFP with smaller CTD regions (Table 3). 

This indicates that regions of SprB between 5315 and 5834 AA may be important for attachment 

to the cell surface. Cell surface proteins secreted by the P. gingivalis T9SS are modified by 

glycosylation and/or lipidation (32, 35, 36). This may also occur in F. johnsoniae, although it has 

not been well studied. Full length cell-associated SprB protein migrates as a ladder-like smear 

during PAGE (33) which could be the result of such modifications. Similar ladder-like banding 

patterns were observed in our studies. The extreme C-terminal region of SprB was explored in 

more detail. When the C-terminal 12 amino acids of SP-sfGFP-CTDSprB218AA were deleted sfGFP 

was not secreted indicating that the C-terminal 12 amino acids may be important for secretion (Fig. 

4). 
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Fig. 3. Longer regions of CTDSprB allow sfGFP secretion. Cultures of sprB cells and of T9SS 

mutant sprB gldK were incubated in CYE at 25C with shaking. 1 ml samples were centrifuged 

at 22,000 x g for 15 min. The culture supernatant (spent medium) and intact cells were analyzed 

for sfGFP by western blot. (A) Cells carried either pSK51, which expresses SP-sfGFP fused to the 

368-amino acid CTD of SprB with SprF (SP-sfGFP-CTDSprB) and SprF) or pSK53, which 

expresses 368-amino acid CTD of SprB without SprF (SP-sfGFP-CTDSprB), and pSK52, which 

expresses SP-sfGFP fused to the 448-amino acid CTD of SprB with SprF (SP-sfGFP-CTDSprB) 

and SprF) or pSK54, which expresses 448-amino acid CTD of SprB without SprF (SP-sfGFP-

CTDSprB). (B) Cells carried either pSK45, which expresses SP-sfGFP fused to the 663-amino acid 

CTD of SprB with SprF (SP-sfGFP-CTDSprB) and SprF) or pSK50, which expresses 663-amino 

acid CTD of SprB without SprF (SP-sfGFP-CTDSprB), and pSK61, which expresses SP-sfGFP 

fused to the 1182-amino acid CTD of SprB with SprF (SP-sfGFP-CTDSprB) and SprF) or pSK62, 

which expresses 1182-amino acid CTD of SprB without SprF (SP-sfGFP-CTDSprB). For all panels, 

whole cell samples corresponded to 10 g protein per lane and samples from spent media 

corresponded to the volume of spent medium that contained 10 g protein before the cells were 

removed.  
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Strains Protein encoded by plasmid 
Antibody 

used 
Avg (SD) % of cells with spheres attached 

CJ1922 (sprB) NA 

No 

antibody 0.0 (0.0) 

CJ1922 (sprB) NA GFP 0.0 (0.0) 

CJ1922 (sprB)/pSK59 SP-sfGFP-CTDSprB149 AA + SprF GFP 0.0 (0.0) 

CJ1922 (sprB)/pSK56 SP-sfGFP-CTDSprB218AA + SprF GFP 0.0 (0.0) 

CJ1922 (sprB)/pSK51 SP-sfGFP-CTDSprB368 AA + SprF GFP 0.0 (0.0) 

CJ1922 (sprB)/pSK52 SP-sfGFP-CTDSprB448 AA + SprF GFP 0.0 (0.0) 

CJ1922 (sprB)/pSK45 SP-sfGFP-CTDSprB663 AA + SprF GFP 14.67 (1.15) 

CJ1922 (sprB)/pSK61 SP-sfGFP-CTDSprB1182 AA + SprF GFP 24.67 (2.52) 

CJ1922 (sprB)/pSK37 SP-sfGFP GFP 0.0 (0.0) 

Table 3. Longer regions of more than 448 AA are needed for cell surface attachment. Attachment of sfGFP on the cell surface was 

determined by examining cells carrying plasmids that expressed SP-sfGFP-CTDSprB and SprF with CTD regions of 218, 368, 448, 663, 

and 1182 amino acids. Anti-GFP antiserum and 0.5- m-diameter protein G-coated polystyrene spheres were added to cells as described 

in the materials and methods. Samples were introduced into a tunnel slide, incubated for 3 minutes at 25C, and examined using a phase-

contrast microscope. Images were recorded for 30s, and 100 randomly selected cells were examined for the presence of spheres that 

remained attached to the cells, during this time. The numbers in the parenthesis are standard deviations calculated from three 

measurements. 
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Fig. 4. The C-terminal 12 amino acids of SprB are critical for secretion. Cells carrying plasmids 

which express SP-sfGFP fused to amino acids 5315 to 6485 of SprB (lacking the C-terminal 12 

amino acids) with SprF (pSK83) and without SprF (pSK78) were examined for sfGFP in intact 

cells and in cell-free spent media by Western blot analysis. Cultures of sprB cells and of T9SS 

mutant sprB gldK carrying the plasmids were analyzed. Whole cell samples corresponded to 10 

g protein per lane and samples from spent media corresponded to the volume of spent medium 

that contained 10 g protein before the cells were removed. sfGFP was detected using anti-serum 

against GFP.  
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SprF and the SprF-like protein Fjoh_3951 exhibit specificity for their cognate 

secreted proteins. Additional proteins with SprB-like CTDs were studied to determine if they 

behave as CTDSprB. For this purpose, 228 amino acids of the type B CTD of Fjoh_3952 were fused 

to SP-sfGFP and the secretion was monitored with or without coexpression of its cognate sprF-

like gene, Fjoh_3951. When SP-sfGFP-CTDFjoh_3952 and Fjoh_3951 were coexpressed from the 

same plasmid, sfGFP accumulated in the spent medium of the sprB cells but not in the spent 

medium of the sprB gldK cells. The SprF-like protein Fjoh_3951 was required for this secretion 

(Fig. 5A). To determine if SprF and the SprF-like protein Fjoh_3951 are interchangeable, we 

constructed a plasmid that expressed SP-sfGFP-CTDFjoh_3952 and SprF, and another plasmid that 

expressed SP-sfGFP-CTDSprB and Fjoh_3951. In both cases the cells failed to secrete sfGFP (Fig. 

5B), suggesting that the cognate SprF-like proteins were required for secretion, and expression of 

the paralog could not satisfy that requirement. 

Type B CTD with no SprF-like protein. Fjoh_1123 encodes a protein with a type B CTD 

that is expressed and appears to be secreted by the T9SS (10). Unlike most other F. johnsoniae 

genes encoding proteins with type B CTDs, Fjoh_1123 is not located near an sprF-like gene. For 

this reason, we suspected that secretion of Fjoh_1123 might not require an SprF-like protein. To 

test this, we constructed a plasmid that expressed SP-sfGFP fused to the C-terminal 238 amino 

acids of Fjoh_1123 (SP-sfGFP-CTDFjoh_1123). Western blot analysis demonstrated that sfGFP was 

not secreted by cells expressing this fusion protein (Fig. 6). This suggests the possibility that one 

of the 10 SprF-like proteins predicted to be encoded by the genome may facilitate secretion of 

Fjoh_1123. The 'orphan' sprF-like gene, Fjoh_1677, is a possible candidate, although any of them 

could possibly perform this function.  
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Fig. 5. Efficient secretion of SP-sfGFP fused to CTDSprB or to CTDFjoh_3952 requires coexpression 

with the cognate SprF-like protein (A) Fusion of the type B CTD encoded by Fjoh_3952 to SP-

sfGFP and coexpression with the sprF-like gene Fjoh_3951 results in T9SS-mediated secretion. 

Cells of sprB and of T9SS mutant sprB gldK carrying either pSK58 expressing SP-sfGFP-

CTDFjoh_3952(228 AA), or pSK57 expressing both SP-sfGFP-CTDFjoh_3952(228 AA) and the SprF-like 

protein encoded by Fjoh_3951 were examined. Whole cells and cell-free spent media were 

examined for sfGFP by SDS-PAGE and western blotting with anti-GFP antiserum. Whole cell 

samples corresponded to 10 g protein per lane and samples from spent media corresponded to 

the volume of spent medium that contained 10 g protein before the cells were removed. (B) 

Secretion of SP-sf-GFP was examined as described above except that cells carried either pSK69, 

which expresses both SP-sfGFP-CTDSprB and the SprF-like protein encoded by Fjoh_3951, or 

pSK68 which expresses both SP-sfGFP-CTDFjoh_3952 and SprF. Control cells that secreted sfGFP 

carried pSK56 expressing SP-sfGFP-CTDSprB and SprF. (C) SprF levels were examined in wild-

type and sprF mutant cells, and in cells of the sprB mutant carrying either pSK56 expressing 

SP-sfGFP-CTDSprB(218 AA) and SprF, pSK55 expressing SP-sfGFP-CTDSprB, or pSK68 expressing 

SP-sfGFP-CTDFjoh_3952 and SprF. Equal amount (10 g protein) of each sample were loaded in 

each lane and western blot analysis was performed using anti-SprF antibodies.  
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Fig. 6. A lone type B CTD by itself does not support sfGFP secretion. To determine of Fjoh_1123 

CTD can target SP-sfGFP for secretion, cells of sprB and of T9SS mutant sprB gldK, carrying 

plasmids that expressed SP-sfGFP fused to 238 AA of Fjoh_1123 (pSK64) were analyzed. The 

culture supernatant (spent medium) and intact cells were analyzed for sfGFP by western blot using 

anti-GFP antiserum. Whole cell samples corresponded to 10 g protein per lane and samples from 

spent media corresponded to the volume of spent medium that contained 10 g protein before the 

cells were removed. 
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SprF outer membrane localization. SprF is needed for SprB localization to the cell 

surface. sprB, sprC, sprD and sprF are part of an operon (16). SprF might be an adaptor or 

chaperone that interacts with SprB to aid in its secretion to the cell surface. To characterize SprF 

further, the protein was localized. SprF was not detected in the cell free spent medium or on the 

surface of intact cells using latex spheres coated with anti-SprF. SprF was not susceptible to 

proteinase K in the wild-type cells but was partially digested in sprB cells (Fig. 7). This suggests 

that it may be protected from extracellular proteases by SprB in wild-type cells. Further studies 

need to be done to understand the interactions between CTDSprB and SprF.  
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Fig. 7. Proteinase K treatment to determine if SprF localizes to the cell surface. Wild-type, sprB 

and sprF strains were analyzed. Proteinase K was added at a final concentration of 1 mg/ml to 

intact cells (A) and to cells extracts prepared by French pressure cell treatment (B), and cells and 

extracts were incubated at 25oC. Samples were removed at 0 h and 2 h for immunoblot analyses. 

Samples were separated by SDS-PAGE and SprF was detected using antiserum against SprF. 

Samples not exposed to proteinase K (-) were also included.  
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Discussion 

T9SSs are prevalent in members of the phylum Bacteroidetes. Proteins secreted by T9SSs 

have N-terminal SPs, and rely on the Sec system for export across the cytoplasmic membrane (2, 

5, 10). They also have conserved CTDs that target them for secretion across the outer membrane 

by the T9SS (5, 8, 10, 32, 33). Most T9SS CTDs belong to one of two protein domain families 

TIGR04183 (type A CTDs) and TIGR04131 (type B CTDs) (10). The features of type A CTDs 

have been functionally studied in F. johnsoniae and P. gingivialis (12, 14, 15). Type A CTDs 

typically extend less than 100 AAs from the C-terminus. Truncated proteins lacking their type A 

CTD are not secreted and instead accumulate in the cell, presumably in the periplasm (14). In 

addition, fusion of type A CTDs to foreign proteins such as GFP results in secretion across the 

outer membrane (12). CTDs are typically cleaved during or after secretion. PorU is the predicted 

peptidase that cleaves the CTD. Mutation of porU results in secretion of P. gingivalis proteins 

such as RgpB to the cell surface but without CTD removal (37). Deletion of core T9SS genes 

eliminates secretion of proteins carrying type A CTDs (8, 10, 15), indicating that the T9SS is 

required for this secretion. Unlike type-A CTDs, the potential roles and features of type B CTDs 

have not been studied. The results presented here demonstrate that type B CTDs can target a 

foreign protein for secretion by the T9SS. They also demonstrate the requirement for the 

appropriate cognate SprF-like protein for efficient secretion.  

 Type B CTDs are not similar in sequence to type A CTDs (15, 38). They also appear to 

differ functionally from type A CTDs. Type B CTDs of more than 149 amino acids were required 

to target sfGFP for secretion, and coexpression with cognate SprF-like proteins was required for 

efficient secretion. SprF was already known to be required for secretion of the type B CTD-
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containing protein SprB (16). In the current study we demonstrate that wild type levels of SprF 

were not sufficient to facilitate efficient secretion of SP-sfGFP-CTDSprB expressed from a plasmid. 

Efficient secretion only occurred when SP-sfGFP-CTDSprB and SprF were coexpressed from the 

same plasmid. F. johnsoniae encodes nine SprF-like proteins in addition to SprF. One of these, 

encoded by Fjoh_3951, was shown to be required for efficient secretion of sfGFP fused to the type 

B CTD of the protein encoded by the upstream gene, Fjoh_3952. SprF and Fjoh_3951 were not 

interchangeable. Expression of SprF did not facilitate secretion of SP-sfGFP-CTDFjoh_3952, and 

expression of Fjoh_3951 did not facilitate secretion of SP-sfGFP-CTDSprB. It appears that proteins 

carrying each of these CTDs require coexpression of their appropriate cognate SprF-like proteins 

for secretion.   

 SprF is predicted to be an outer membrane protein, and it may remain associated with SprB 

on the cell surface. This is suggested by the observation that SprF in wild type cells, but not in 

sprB cells, was protected from proteinase K digestion. The exact role of SprF and other SprF-

like proteins in secretion is not known. The apparent requirement for coexpression suggests that 

SprF may function as a chaperone for SprB. These proteins may travel to the T9SS and the cell 

surface together, and may remain associated with each other in their mature forms.  

 P. gingivalis has a single SprF-like protein, PorP. porP lies immediately upstream of the 

core T9SS genes, porK, porL, porM, and porN (39), which are orthologs of F. johnsoniae gldK, 

gldL, gldM, and gldN respectively. Deletion of P. gingivalis porP results in lack of secretion of 

proteins targeted to the T9SS, many of which have type A CTDs (4). P. gingivalis encodes a single 

protein with a type B CTD, and this protein has not yet been studied. The presence of a single type 
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B CTD-containing protein may explain why P. gingivalis has only one sprF-like gene (porP) 

whereas F. johnsoniae has ten. 

 The F. johnsoniae ortholog of porP has not been identified, but it is not adjacent to gldK. 

It is possible that one of the sprF-like genes, perhaps the 'orphan' sprf-like gene (Fjoh_1677), 

performs this role and is essential for secretion of proteins with type A CTDs. It is also possible 

that the SprF-like proteins exhibit redundancy for secretion of type A CTD containing proteins, or 

that an sprF-like gene is not needed for secretion of these proteins in F. johnsoniae. Additional 

experiments are needed to address these questions. We do not know why SprB and other proteins 

with type B CTDs require specific SprF-like proteins for their secretion. Many of the proteins with 

type B CTDs are very large. SprB for example is about 669 kDa in size. Perhaps efficient secretion 

of such large proteins drove the evolution of specific SprF-like proteins that are best adapted to 

assist in this process. It should be noted however that SprF was also needed for the secretion of 

SP-sfGFP-CTDSprB, which is much smaller than SprB. 

While the C-terminal 218 AA region of SprB facilitated secretion of SP-sfGFP-CTDSprB, 

it did not result in cell-surface localization of the protein. Rather, sfGFP was released in soluble 

form. However, longer regions near the C-terminus of SprB (663 and 1182 amino acids) did result 

in attachment to the cell surface. We do not know how SprB interacts with the cell surface, 

although SprF and other outer membrane motility proteins (SprC, SprD) are candidates that may 

interact with SprB to facilitate this interaction. C-terminal deletions and site-directed mutagenesis 

of the P. gingivalis RgpB protein indicated that the terminal 13 amino acid residues are important 

for proper processing and glycosylation of the protein (13). In our studies, deletion of the C-

terminal 12 amino acids abolished sfGFP secretion and cell surface localization. This study 
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highlights the roles of type B CTDs and SprF-like proteins in T9SS-mediated secretion. Additional 

studies are required to understand the interactions between the type B CTDs and SprF-like proteins 

to fully understand the mechanisms by which proteins are targeted to the T9SS. 
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Chapter 4. Summary 

 

Flavobacterium johnsoniae is a gliding bacterium that belongs to the phylum 

Bacteroidetes. It has a novel protein secretion system called the type IX secretion system (T9SS), 

that secretes cell surface adhesins SprB and RemA to the cell surface and secretes extra-cellular 

enzymes such as the chitinase ChiA and the amylase AmyB to the extra-cellular milieu. These 

proteins secreted by the T9SS have N-terminal signal peptides for export across the cytoplasmic 

membrane into the periplasmic space. Based on the results in this thesis, a model for protein 

targeting to the T9SS is hypothesized (Fig. 1). The T9SS secreted proteins have conserved 

Carboxy-terminal domains (CTDs) that appear to target them to the T9SS. The CTDs in F. 

johnsoniae belong to at least two distinct protein domain families. This thesis focused on 

understanding the diversity of these CTDs, the features needed for secretion and cell surface 

attachment, and the interaction of CTDs with some of the components of the T9SS. Chapter 2 

explored the features of type-A CTDs which belong to TIGR04183. Three F. johnsoniae proteins 

were studied in chapter 2: cell surface adhesin RemA, and extra-cellular enzymes ChiA and AmyB. 

About 80 to 100 AA of the CTDs of these proteins were sufficient and necessary to target the 

heterologous protein sfGFP to the T9SS for secretion. It was also found that secretion is growth-

phase dependent with substantial secretion seen in stationary phase cells and little secretion 

observed for cells in the exponential phase of growth. Chapter 3 focused on the CTD of SprB, 

which belongs to TIGR04131. It appears that regions longer regions than 149 AAs of SprB CTD 

are needed to target sfGFP for secretion. In addition, coexpresion with SprF was needed for 

secretion of the fusion protein. sprF and sprB are a part of an operon, and SprF is required for 

secretion of SprB but not for secretion of other proteins targeted to the T9SS. Additionally, while 
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the C-terminal 218 AA of SprB facilitated secretion of sfGFP, longer regions (greater than 448 

AAs) were needed for cell surface localization of sfGFP. These requirements for targeting proteins 

for secretion and surface localization in F. johnsoniae are likely to have broad significance given 

the prevalence of T9SSs, and the large number of proteins secreted by these systems, in members 

of the large and diverse phylum Bacteroidetes.  

 

Fig. 1. Members of the genus Flavobacterium, and many related bacteria, secrete proteins across 

the outer membrane using the type IX secretion system (T9SS core proteins in orange). Proteins 

secreted by T9SSs have amino-terminal signal peptides (N) for export across the cytoplasmic 

membrane by the Sec system, and carboxy-terminal domains (CTDs) targeting them for secretion 

across the outer membrane by the T9SS. Most T9SS CTDs belong to either family TIGR04183 

(type A CTDs; blue) or TIGR04131 (type B CTDs; dark green). The CTDs are cleaved off during 

or after secretion of the effector proteins. 
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Appendix 1. F. johnsoniae ChiACTD is recognized as a targeting signal by the Flavobacterium 

columnare T9SS  

 

To test if the F. johnsoniae ChiA T9SS CTD is recognized as a ‘targeting signal’ by the 

T9SSs of another member of the phylum Bacteroidetes, the plasmid pSSK52 expressing the fusion 

protein SPChiA-mCherry-CTDChiA was introduced into Flavobacterium columnare wild-type and 

gldN mutant cells. pSSK52 expresses mCherry that has an N-terminal signal peptide to allow 

export across the cytoplasmic membrane by the Sec system, and is fused to the C-terminal 105 

amino acids of F. johnsoniae ChiA (1). F. columnare is a common fish pathogen that causes 

columnaris disease and is a major issue faced by aquaculture facilities worldwide (2). F. columnare 

genomovar 2 strain C#2 (3, 4) was the wild-type strain used in this study. F. columnare strains 

were grown in Shieh medium (5) at 30°C. Tetracycline was used at a concentration of 10 μg/ml. 

To detect secretion of recombinant mCherry, F. columnare cells were grown overnight in Shieh 

medium at 30°C with shaking. Cells were pelleted by centrifugation at 22,000 x g for 15 min at 

4°C, and the culture supernatant (spent medium) was separated. Supernatant was ultracentrifuged 

at 352,900 x g for 30 mins at 4°C. For whole-cell samples, the cells were suspended in the original 

culture volume of phosphate-buffered saline consisting of 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2PO4, and 2 mM KH2PO4 (pH 7.4). Equal amounts of spent media and whole cells were boiled 

in SDS-PAGE loading buffer for 10 minutes. Proteins were separated by SDS-PAGE, and Western 

blot analyses were performed as previously described (6). Equal amounts of each sample based on 

the starting material were loaded in each lane. For cell extracts this corresponded to 10 g protein, 

whereas for spent medium this corresponded to the equivalent volume of spent medium that 

contained 10 g cell protein before the cells were removed. Commercially available antibodies 

against mCherry (0.5 mg per ml; BioVision Incorporated, Milpitas, CA) were used at dilution of 
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1:5,000 to detect mCherry. The CTD of F. johnsoniae ChiA functioned in F. columnare strain 

C#2, as demonstrated by the accumulation of mCherry in the spent culture fluid of wild type cells 

but not of the gldN mutant (Fig. 1). In contrast, mCherry accumulated in whole cells of the gldN 

mutant. Together the results demonstrate that the CTD signal from F. johnsoniae was recognized 

by the T9SS of another member of the phylum Bacteroidetes, F. columnare. This was especially 

impressive because CTDChiA is not similar to members of the type A or type B families of CTDs, 

and because F. columnare does not appear to produce any proteins with CTDs similar in sequence 

to ChiACTD. The results also indicated that the F. columnare T9SS component GldN was needed 

for secretion of proteins targeted to the T9SS.   

 

 

 

 

 

 

 

 

 

Fig. 1. Cultures of Wild-type (WT) cells and of T9SS mutant gldN were incubated in Shieh 

medium at 30C with shaking. 1 ml samples were centrifuged at 22,000 x g for 15 min and the 

supernatant was ultracentrifuged at 352,900 x g for 30 min at 4°C. The culture supernatant (spent 

medium) and intact cells were analyzed for mCherry by western blot. Cells carried either pSSK52, 

which expresses mCherry with the N-terminal signal peptide from ChiA fused to the 105-amino 

acid CTD of ChiA (SP-mCherry-CTDChiA) or pSSK54, which expresses SP-mCherry (no CTD 

control). Samples were separated by SDS-PAGE, and sfGFP was detected using anti-serum against 

mCherry.  
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Appendix 2. Deletion of F. johnsoniae orthologs of E. coli chemotaxis genes cheR and cheB 

have no apparent effect on motility behavior  

 

Gliding motility is common in members of the phylum Bacteroidetes, and other forms of 

motility are rare or nonexistent. For example, analysis of completed genomes revealed no members 

of the phylum that harbor genes for flagellar motility or for type IV pilus mediated twitching 

motility (Table 1).  Studies of Flavobacterium johnsoniae gliding have revealed some aspects of 

the mechanism of cell movement (1), but nothing is currently known regarding how the motility 

machinery is controlled to result in directed movement. The chemotactic responses of gliding 

members of the phylum Bacteroidetes have not been extensively studied, but several reports 

suggest the presence of chemotactic responses (2, 3). Other motile bacteria that have been well 

studied have chemotaxis systems related to the canonical ones studied in the flagellated bacteria 

Escherichia coli and Salmonella enterica (4, 5). These include CheA, CheB, CheR, CheW, CheY, 

methyl-accepting chemotaxis proteins (MCPs), and sometimes additional proteins.  In E. coli and 

other diverse flagellated bacteria belonging to many phyla these proteins control the functioning 

of the flagellar motor.  Similar chemotaxis systems have been shown to control other types of 

motility machineries, including Type IV pili (twitching motility) (6) and the M. xanthus gliding 

motility apparatus (7).  Gliding motility and gliding motility genes are widespread among members 

of the phylum Bacteroidetes, but gliding of these bacteria is apparently not related to 

myxobacterial gliding. Analyses of the genomes of gliding members of the phylum Bacteroidetes 

revealed the absence of genes encoding proteins with similarity to the core chemotaxis proteins 

CheA, CheW, and MCPs (Table 1 and (8)).    
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F. johnsoniae, and some other members of the phylum did have homologs of cheR and 

cheB (8).  In E. coli CheR and CheB add and remove methyl groups from MCPs.  Since CheA, 

CheW and predicted MCPs are lacking in all sequenced members of the Bacteroidetes, and since 

cheB and cheR homologs were lacking from some of the gliding members of the phylum 

Bacteroidetes analyzed (Table 1), a role for these genes in chemotaxis seemed unlikely.  

To probe the function of F. johnsoniae cheB and cheR genes, strains with in-frame 

deletions were generated using a gene deletion strategy described previously (9). Briefly, 

approximately 2-kbp regions upstream and downstream of cheR were amplified by PCR using 

primer pairs 1287/1288 and 1289/1290 respectively and ligated into pRR51 to generate pSK03.  

Plasmid pSK03 was introduced into the streptomycin-resistant wild-type F. johnsoniae strain 

CJ1827 by triparental conjugation, and the cheR deletion mutant was isolated as previously 

described (9).  Deletion of cheR was confirmed by PCR amplification using primers 1242/1243, 

which flank the gene. F. johnsoniae cheB was deleted in a similar way using the plasmids and 

primers listed in Table 2.  

 F. johnsoniae cheB and cheR strains were analyzed for their ability to move on agar and 

glass.  cheB and cheR formed spreading colonies on PY2 agar similar to wild-type F. johnsoniae 

(Fig. 1).  Colonies on PY2 agar were observed using an Olympus BH-2 phase-contrast microscope 

and images were recorded using a Photometrics Cool-SNAPcf
2 camera, and analyzed using 

MetaMorph software (Molecular Devices, Downingtown, PA). Cells of cheR and cheB strains 

attached to and moved on glass similar to wild-type cells (data not shown). Wild-type and mutant 

cells were grown overnight in motility medium at 25C without shaking and examined on glass. 

Tunnel slides were prepared to analyze motility on glass by attaching a glass cover slip to a glass 
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slide with strips of double stick tape as previously described to make a chamber to which cells 

suspended in growth media were added (10). Cells near the edge of the cover slip (within 1 mm) 

or near the tape (within 1 mm) were observed to avoid loss of motility as a result of depletion of 

O2. 

 These observations suggest that the cheR and cheB homologs are unlikely to have critical 

roles in controlling motility. This is in contrast to the results observed for similar mutations in the 

swimming bacterium E. coli and the gliding proteobacterium M. xanthus. Mutations in E. coli cheR 

result in suppression of tumbling and decreased spreading in swim agar plates (11). Similarly, 

mutations in the cheR homolog of M. xanthus, frzF, result in inhibition of cell reversals and 

formation of multicellular donut-shaped 'frizzy' swirls (12). Cells of F. johnsoniae exhibit cell 

reversals, and move in swarms, and it is likely that a sensory system controls these behaviors, but 

the canonical E. coli type of chemotactic signal transduction system does not appear to be involved. 

This suggests the presence of novel chemotaxis machinery in F. johnsoniae. Further studies are 

needed to identify the proteins that control gliding motility of F. johnsoniae and of the many other 

gliding members of the phylum Bacteroidetes.   

 

 

 

 

 



 

120 

 

 

 

 

 

Fig. 1. Deletion of cheB and cheR homologs in F. johnsoniae has no effect on colony morphology. 

Colonies were grown for 19 h at 25C on PY2 agar medium. Photomicrographs were taken with a 

Photometrics CoolSNAPcf
2 camera mounted on an Olympus IMT-2 phase contrast microscope. 

(A) Wild-type CJ1827 (B) cheB deletion mutant CJ2352 (C) cheR deletion mutant CJ2249.  

A B C 
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Table 1. Motility and chemotaxis genes present in members of the phylum Bacteroidetesa. 

Strains 

Gliding 

motility 

genesb 

Flagellar 

motility 

genesc 

Twitching 

Motility 

Genesd 

MCP(s)e cheA
 e
 cheB

 e
 cheR

 e
 cheW

 e
 cheZ e 

Class Flavobacteriia          

Capnocytophaga ochracea DSM 7271T + - - - - - - - - 

Cellulophaga algicola DSM 14237 T + - - - - - - - - 

Cellulophaga lytica DSM 7489 T + - - - - - - - - 

Croceibacter atlanticus HTCC2559 T + - - - - + + - - 

Flavobacterium johnsoniae ATCC 17061T + - - - - + + - - 

Flavobacterium psychrophilum JIP02/86 + - - - - - - - - 

'Gramella forsetii' KT0803 + - - - - + + - - 

Maribacter sp. HTCC2170 + - - - - - - - - 

Riemerella anatipestifer DSM 15868 T + - - - - - - - - 

Robiginitalea biformata HTCC2501 T + - - - - - - - - 

Weeksella virosa DSM 16922 T + - - - - - - - - 

Zunongwangia profunda SM-A87 T + - - - - + + - - 
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Class Cytophagia (next page) 

Class Cytophagia 

         

Cytophaga hutchinsonii ATCC 33406 T + - - - - + + - - 

Dyadobacter fermentans DSM 18053 T + - - - - + + - - 

Leadbetterella byssophila DSM 17132 T + - - - - - - - - 

Marivirga tractuosa DSM 4126 T + - - - - + + - - 

Spirosoma linguale DSM 74 T + - - - - + + - - 

Class Sphingobacteriia          

Chitinophaga pinensis DSM 2588 T + - - - - + + - - 

Pedobacter heparinus DSM 2366 T + - - - - + + - - 

Pedobacter saltans DSM 12145 T + - - - - + + - - 

Class Bacteroidia          

Alistipes shahii WAL 8301 T - - - - - - - - - 

Bacteroides fragilis NCTC 9343 T - - - - - - - - - 

Bacteroides helcogenes P 36-108 T - - - - - - - - - 

Bacteroides salanitronis BL78T - - - - - - - - - 
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Bacteroides thetaiotaomicron VPI-5482 T - - - - - - - - - 

Bacteroides vulgatus ATCC 8482 T - - - - - - - - - 

Bacteroides xylanisolvens  XB1AT - - - - - - - - - 

Odoribacter splanchnicus DSM 20712 T  - - - - - - - - - 

Paludibacter propionicigenes WB4 T  + - - - - - + - - 

Parabacteroides distasonis ATCC 8503 T   - - - - - - - - - 

Porphyromonas gingivalis ATCC 33277 T   - - - - - - - - - 

Prevotella melaninogenica ATCC 25845 T   - - - - - - - - - 

Prevotella ruminicola 23   - - - - - - - - - 

 

a Except for gliding motility genes, all motility and chemotaxis genes were identified by searching each genome for matches to specific 

COGs, PFAMs, or TIGRFAMs corresponding to key components of each system as indicated below using the IMG v 3.5 Function 

Profile tool.  For COGs, rpsblast was used in identification of hits, with maximum E-value of 1e-2.  For PFAMs, HMM specific cutoffs 

(gathering thresholds) were used as assigned by the PFAM curator when the family was built, to eliminate false positives.  For 

TIGRFAMs, HMM specific noise cutoffs were used as assigned by TIGRFAM to eliminate false positives.   

b Gliding motility genes were identified by BLASTP analysis as described in Table 1.  '+' indicates the presence of homologs for all of 

the core gliding motility genes, gldB, gldD, gldH, gldJ, gldK, gldL, gldM, gldN, sprA, sprE, and sprT. '-' indicates that some of the core 

gliding motility genes were missing.   
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c Flagellar motility genes were identified using the following:  pfam00460 (flagella basal body rod 

protein); pfam00669 (flagellin, N-terminal region); pfam00700 (flagellin, C-terminal region); 

pfam01706 (FliG); pfam02049 (FliE); pfam02050 (FliJ); pfam02107 (FlgH); pfam02108 (FliH); 

pfam02119 (FlgI); pfam02154 (FliM); pfam02465 (FliD, N-terminal region); pfam02561 (FliS); 

pfam03748 (FliL); pfam03963 (FlgD); pfam06429 (flagellar basal body rod and hook proteins); 

pfam07195 (FliD, C-terminal region); pfam07559 (FlaE); pfam08345 (FliF); and COG1291 

(MotA).  ).  '+' indicates that genes predicted to encode each of the proteins listed above were 

present. '-' indicates that none of these genes were present. 

Note that a previous study indicated that two members of the phylum Bacteroidetes (Salinibacter 

ruber and Rhodothermus marinus) have flagellar genes (13). However, recent data indicate that 

these bacteria are not members of the phylum Bacteroidetes but rather belong to the new phylum 

Rhodothermaeota (14, 15). 

dTwitching motility genes were identified using the following:  tigr01420 (PilT); COG2804 

(PilB/PulE).  '+' indicates the presence of both motor proteins (PilT and PilB).  '-' indicates the 

absence of a gene encoding PilT.  In each case where pilT was present, it was located near pilB, 

and near other pilus associated genes. 

eChemotaxis genes were identified using the following: pfam00015 (MCP); pfam01339 (CheB); 

pfam01739 (CheR); pfam03705 (CheR N-terminal region); pfam04344 (CheZ); pfam01584 

(CheW); pfam02895 (CheA); COG0643 (CheA).  '+' indicates that genes predicted to encode 

MCPs, CheA, CheB, CheR, CheW, and CheZ, were present.  '-' indicates that these genes were not 

present. 
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Table 2. Strains and plasmids used in this study 

Strain  Descriptiona Source or 

reference 

E. coli strains   

  DH5mcr Strain used for general cloning Life 

Technologies 

(Grand Island, 

NY, USA) 

  HB101 Strain used with pRK2013 for triparental conjugation (16, 17) 

F. johnsoniae 

strains 

  

  CJ1827 rpsL2; Smr 'wild-type' F. johnsoniae strain used in 

construction of deletion mutants 

(9) 

   

Plasmid  Description Source or 

reference 

   

pRR51 rpsL-containing suicide vector; Apr (Emr) (9) 

pSK01 2-kbp fragment downstream of Fjoh_3352 (cheR) 

amplified with primers 1289 and 1290 and inserted in 

XbaI and SphI sites of pRR51; Apr (Emr) 

This study 

 

pSK02 2-kbp fragment downstream of Fjoh_3351 (cheB) 

amplified with primers 1285 and 1286 and inserted in 

XbaI and SphI sites of pRR51; Apr (Emr) 

This study 

pSK03 2-kbp fragment upstream of Fjoh_3352 (cheR) amplified 

with primers 1287 and 1288 and inserted in XbaI and 

SphI sites of pSK01; Apr (Emr) 

This study 
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pSK23 2-kbp fragment upstream of Fjoh_3351 (cheB) amplified 

with primers 1318 and 1405 and inserted in XbaI and 

SphI sites of pSK02; Apr (Emr) 

This study 

aAntibiotic resistance phenotypes are as follows:  ampicillin, Apr; erythromycin, Emr; streptomycin, Smr; 

tetracycline, Tcr.  The antibiotic resistance phenotypes given in parentheses are those expressed in F. 

johnsoniae but not in E. coli. The antibiotic resistance phenotypes without parentheses are those expressed 

in E. coli but not in F. johnsoniae. 
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Appendix 3. Transposon mutagenesis to isolate novel motility mutants 

 

HimarEm1 mutagenesis was used to isolate mutants with partial defects in motility to 

identify novel genes involved in F. johnsoniae gliding motility and secretion. pHimarEm1 was 

introduced into wild-type cells by conjugation from E. coli S17-1 λ pir as previously described 

(1). In previous F. johnsoniae Himar mutagenesis experiments, colonies were screened to obtain 

those that failed to spread on agar. This resulted in the identification of many motility genes (1). 

The proteins encoded by these genes are thought to comprise components of the motility 

machinery and of the type IX secretion system (T9SS) that is involved in assembly of the motility 

apparatus (2). Genes involved in regulation of expression of the motility apparatus, and genes 

involved in control of the motility apparatus to result in chemotaxis, have eluded detection. Here 

we ignored nonspreading colonies and instead screened for colonies that exhibited some spreading 

but less than that exhibited by the wild type. Eleven such 'poor spreading' colonies were identified. 

Cells of the wild-type UW-101 and of the transposon mutants were grown on PY2 agar for 24 h at 

25C to examine single colonies for spreading by phase contrast microscopy. The transposon 

mutants had reduced or ‘poor’ spreading phenotypes as compared to the wild-type strains. 

Identification of the HimarEm1 insertions was performed as described previously by cloning the 

disrupted region and determining the DNA sequence near the site of insertion (1). A list of these 

mutants, gene loci and phenotypes has been compiled in Table 1.  

Four of the eleven 'poor spreading' mutants had insertions in genes predicted to be involved 

in polysaccharide synthesis and/or transport. Three of these had insertions in genes encoding 

glycosyl transferase enzymes. The fourth predicted polysaccharide synthesis mutant had an 

insertion in degT, which is similar to Porphryomonas gingivalis porR. P. gingivalis PorR is 
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involved in biosynthesis of aminoglycoside sugars of LPS (3). Polysaccharides have previously 

been implicated in F. johnsoniae gliding motility (4-7). The exact roles played by polysaccharides 

in gliding are not known, but it has been suggested that cells make different polysaccharides to 

coat the substratum. At least one of these polysaccharides appears to interact with the mobile cell 

surface motility adhesin, RemA (5). The polysaccharides may function as 'roads' and facilitate 

interaction of the motility adhesins with the substratum, thus providing the traction needed for cell 

movement.  

One mutant isolated from this screen had a transposon insertion in sprE. Previous studies 

have shown that sprE insertion mutants form non-spreading colonies but that individual cells 

exhibit slight gliding movements on glass (8). sprE mutants are also defective for T9SS-mediated 

protein secretion. The sprE mutant described here (CJ2215) exhibited a slightly different 

phenotype. Isolated colonies of CJ2215 failed to spread, but colonies in close proximity to each 

other exhibited slight spreading. CJ2215 produces 589 AA out of the 870 AA of SprE. This 

explains the poor spreading phenotype rather than non spreading phenotype previously (8) 

observed for SprE mutant that produce shorter truncated version of SprE protein.   

Mutant CJ2160 has transposon inserted in Fjoh_3155, which is predicted to encode a Rhs 

element Vgr-like protein. The single colonies observed under microscope exhibited poor spreading 

as compared to wild-type and the mutant failed to digest chitin, which may indicate a defect in 

protein secretion (data not shown). In Vibrio cholerae, Vgr proteins form a complex that resembles 

the tail-spike complex of bacteriophage T4 and provide a conduit for T6SS mediated translocation 

of proteins out of and between cells (9).  
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Other poor spreading mutants isolated from this screen include strains with insertions in 

genes predicted to encode: a PSP-1 domain containing protein, a short-chain 

dehydrogenase/reductase family protein, a CorA-like ion transporter, and a MoxR family ATPase. 

Fjoh_0891, encoding the PSP-1 domain containing protein, is immediately upstream of gliding 

motility gene gldH. gldH mutants are nonmotile (10). It is possible that the phenotype of the mutant 

carrying an insertion in Fjoh_0891 is the result of a polar effect on gldH. This could be tested by 

attempting to complement this mutant with gldH on a plasmid. CorA is a divalent ion transporter 

protein and has been extensively studied because of its ability to transport magnesium and cobalt 

across membranes (11). In E. coli, MoxR family proteins are predicted to have chaperone-like 

activities, enabling proper maturation and activation of protein complexes (12) . It is unclear if 

these proteins are directly involved in gliding motility and further studies are needed to 

characterize the mutants and investigate their unusual poor-spreading phenotypes.  
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Table 1. Mutants isolated in HimarEm1 transposon mutagenesis screen. 

Strain Protein encoded  

(gene locus) 

Phenotype 

CJ2210 Glycosyl transferase 

(Fjoh_0338) 

Well isolated colonies are poor-spreading; clustered 

colonies spread more but not as well as wild-type. 

CJ2214 Glycosyl transferase 

(Fjoh_0344) 

Well isolated colonies are poor-spreading; clustered 

colonies spread more but not as well as wild-type. 

CJ2211 Glycosyl transferase 

(Fjoh_0342) 

Well isolated colonies are poor-spreading; clustered 

colonies spread more but not as well as wild-type. 

CJ2304 Hypothetical protein 

(Fjoh_0816) 

Well isolated colonies are poor spreading; clustered 

colonies spread more but not as well as wild-type. 

CJ2030 PSP-1 domain 

containing protein 

(Fjoh_0891) 

Well isolated colonies are poor spreading; clustered 

colonies spread more but not as well as wild-type. 

CJ 2133 CorA (Fjoh_2650) All colonies (isolated and clustered) are poor-spreading. 

CJ2215 SprE (Fjoh_1051) Well isolated colonies fail to spread; clustered colonies are 

poor-spreading. Fails to digest chitin, suggesting a T9SS 

defect.* 
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CJ2160 Rhs element Vgr 

protein (Fjoh_3155) 

All colonies (isolated and clustered) are poor-spreading. 

Fails to digest chitin, suggesting a T9SS defect. * 

CJ2308 Dehydrogenase 

(Fjoh_4568) 

All colonies (isolated and clustered) are poor-spreading. 

Digests chitin. * 

CJ2219 MoxR ATPase 

(Fjoh_0715) 

All colonies (isolated and clustered) are poor-spreading. 

Digests chitin. * 

CJ2132 DegT (Fjoh_1727) Well isolated colonies are poor-spreading; clustered 

colonies spread more but not as well as wild-type; 

Doughnut shaped colonies after 48h. Digests chitin. * 

*  Chitin assay was performed only with these strains.  
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Table 2. Strains used in this study 

Strain  Description Source or 

reference 

E. coli strains   

  DH5mcr Strain used for general cloning Life 

Technologies 

(Grand Island, 

NY, USA) 

  HB101 Strain used with pRK2013 for triparental conjugation (13, 14) 

    S17-1 λ pir   Strain used for conjugation (15) 

F. johnsoniae 

strains 

  

UW101 (ATCC 

17061) 

Wild type (16, 17) 
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