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ABSTRACT 

EFFECTS OF LIFE HISTORY AND BRAIN SIZE ON COGNITION AND BEHAVIOR: STUDIES ON PREY-
SEARCHING IN THE SPIDER PHOLCUS PHALANGIOIDES 

 
by 

 
Joseph Theodore Kilmer 

 
 

The University of Wisconsin-Milwaukee. 2018 
Under the Supervision of Professor Rafael L Rodríguez 

 

There is tremendous diversity in body size across animals, including many examples of derived 

miniaturization. A reduction in body size is accompanied by a reduction in brain size, which is 

predicted to lead to limitations in cognition, but we have yet to find empirical evidence 

indicating what these limitations might be. I used a behavioral assay common in web spiders to 

explore this topic. I observed spiders as they searched for prey that they recently captured and 

lost. This assay has the advantage of being easily quantifiable while reflecting a spider’s 

evaluation and memory of lost prey. I conducted a series of experiments with the cellar spider, 

Pholcus phalangioides, using natural variation in body size between juveniles and adults. This 

allowed me to study effects of brain size on memory content and memory duration without 

potential confounding effects of cross-species differences in behavior. At the same time, it 

required a strong understanding of how behavior naturally changes with maturity. Therefore, I 

began by studying ontogenetic change in this behavior in order to better understand the 

patterns of change and their causes. In a comparison across age groups, from naïve spiderlings 

to mature adults, I found that even the youngest, smallest, least experienced spiders were 
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capable of remembering and searching for prey (suggesting a lack of size-based limitations to 

memory content), and of all the age groups, they were the ones most motivated to recover lost 

prey. With these results in mind, I turned my attention to the question of memory duration. I 

ran an experiment in which I imposed a gap of time between memory formation and memory 

use. I found that although the smallest spiders had been the most motivated to recover prey, 

they were also the ones most negatively affected by a delay in the onset of searching. This 

points to either a higher rate of memory decay or a greater susceptibility to distraction in small 

brains. These results are among the first findings of size-based limitations to cognition, and they 

reveal specific ecological and evolutionary challenges faced by miniature animals. 
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Chapter 1 – Ontogenetic approach reveals how cognitive capability and motivation 

shape prey-searching behavior in Pholcus phalangioides cellar spiders  

 

Abstract 

An important part of understanding the evolution of behavior is understanding how and why 

behavior develops and changes throughout ontogeny. Patterns of behavior are shaped by an 

animal’s capabilities as well as its motivations, both of which are subject to selection. We ran an 

experiment to see how spiders’ efforts to recover lost prey change with age, and to determine 

the relative contributions of shifts in capability and motivation. We found that as spiders 

mature, they spend less time searching to recover lost prey, and they discriminate less between 

prey of different sizes. We also found that even the youngest, least experienced spiders are 

cognitively equipped to search for lost prey. Thus, predatory behavior in spiders fluctuated 

primarily with each age group’s motivations to capture and consume prey, and did not seem to 

be hindered by behavioral or cognitive limitations at young ages. 
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Introduction 

Behavior sits at the intersection of capability and motivation. An animal can only perform 

actions that its anatomy and cognition allow for, and it should only perform actions that are 

necessary or rewarding. Throughout an animal’s life, these two aspects change. Capability 

tends to increase with maturity (up to a point), while motivation fluctuates based on context—

it can change over months and years (e.g., during sexual maturation), or over seconds (e.g., 

after the sudden appearance of a predator).  

Developing capabilities and varying motivations influence the ontogeny of animal 

behavior, and exploring this interplay is one of the major goals of the evolutionary study of 

behavior (Tinbergen 1963). A key challenge in this enterprise is to elucidate the precise 

mechanisms that are involved in ontogenetic change in behavior (Ryan & Wilczynski 2011). This 

is a difficult task, for two main reasons. On the one hand, behavior is the consequence of neural 

processes that constitute a special kind of trait—cognitive phenotypes (Mendelson et al. 2016). 

These traits determine behavior, decision-making, and how animals engage with their 

surroundings, yet they are ephemeral and difficult to study objectively. On the other hand, the 

ontogeny of a given behavior can be affected by the development of various other capabilities. 

In other words, not only must a capability be present, but the ability to exhibit the capability 

must also be present—for example, experimental tests for object permanence generally 

require that the animal be capable of either searching for an object or showing surprise 

(Baillargeon et al. 1985; Dore & Dumas 1987; Hoffmann et al. 2011; Singer & Henderson 2015). 

Understanding the ontogeny of behavior thus requires untangling webs of inter-related 

developing capabilities that are influenced in their expression by changing motivations.  
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In this paper we analyze the ontogeny of memory in a web spider. Memory is a basic 

cognitive capability that allows animals to gather and use information in order to improve their 

behavioral responses to a range of contexts (Shettleworth 2010). Working with a web spider 

affords a particularly clear analysis in terms of changes in capability and motivation. 

Our assay of the contents of memory is based on the searching behavior that many web 

spiders perform when they lose prey that they have captured (Rodríguez & Gamboa 2000; 

Rodríguez & Gloudeman 2011; Rodríguez et al. 2013, 2015). Searching for lost prey can help 

spiders reduce rates of prey loss caused by wind disturbances, or prey escaping, or by 

kleptoparasites that steal captured prey (Rodríguez & Gamboa 2000; Rodríguez & Gloudeman 

2011).  

When a web spider searches for lost prey, it moves about the web and tugs or plucks 

the threads, sending out vibrations that help it locate objects in its web. The effort put into 

recovering the lost prey is a function of the spider’s memory of the features of the prey and its 

preference for those features (e.g., searching longer for more valuable or preferred prey items) 

(Rodríguez & Gamboa 2000; Rodríguez & Gloudeman 2011; Rodríguez et al. 2013, 2015). 

Therefore, spider prey-searching behavior is an illuminating measurement of a cognitive 

phenotype; specifically, it allows us to analyze the contents of spiders’ memories of prey 

features. We used this assay of memory of captured prey to test for variation between 

individuals across life stages. 

We studied the ontogeny of the formation of memory of captured prey and its use in 

prey recovery efforts in long-bodied cellar spiders, Pholcus phalangioides (Fuesslin 1775). We 

tested two hypotheses to analyze change in searching behavior in terms of potential changes in 
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capability and motivation. The two hypotheses are not mutually exclusive. Our goal is to 

determine which factor is the principal driver of behavioral change for these spiders. The 

hypotheses are as follows: 

 

Changing capability hypothesis 

This hypothesis states that young spiders are limited in their ability to evaluate prey and form 

memories, and that ontogenetic changes in behavior are driven by improvements in capability 

as spiders grow older. Development in many species involves orders-of-magnitude increases in 

brain size (Quesada et al. 2011), as well as substantial changes to patterns of neuronal 

connectivity (Supekar et al. 2009), both of which are likely to have direct impacts on cognition 

(Eberhard 2007; Chittka & Niven 2009; Eberhard & Wcislo 2011). The changing-capabilities 

hypothesis makes the following predictions: (i) young spiders will search very little upon losing 

prey they have captured, and searching efforts will increase with the age of the spider; (ii) 

young spiders will discriminate less strongly between prey of different sizes than older spiders. 

A lack of prey-size discrimination in young spiders could indicate that they have trouble either 

evaluating or remembering the size of prey. 

The test of this hypothesis is confounded by the possibility that experience may help 

shape spider prey-searching behavior. If this is the case, then an increase in search behavior 

with age could be attributed to spiders learning how to search, which is downstream of the 

ability to form and use memories. We suspect that prey-loss events like those we create in this 

experiment (where the spider has already subdued and secured its prey before the prey goes 

missing) are relatively rare in nature, so it is unlikely that the spiders we test have much 
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experience. Nevertheless, we deal with this potential confound in three ways. First, many of our 

trials involve testing individuals twice. This allows us to test for short-term experience effects—

if experience is important, we would expect to see spiders consistently searching differently in 

trial 2 compared to trial 1. Second, a subset of our spiders are lab-hatched naïve spiderlings, 

which have absolutely zero experience capturing or losing prey. Comparing this group to more 

experienced groups will help shed light on the effects of experience. Third, we consider the 

effects of long-term experience. Many of the spiders in this experiment were caught in the wild, 

and so we have no way of knowing their previous experience with capturing and losing prey. 

However, because this experience is uncommon, it is likely that some of the spiders we tested 

had multiple experiences losing prey while others had absolutely none. This range of variation 

in experience across individuals is only likely to increase with age, so if long-term experience 

has a strong effect on behavior, we would expect to see behavioral variation increase with age.  

 

Changing motivation/need hypothesis 

This hypothesis states that all individuals are similar in their memory capabilities, but that the 

needs of the spiders change over ontogeny. This hypothesis makes the following predictions: (i) 

young spiders will search the most, as they have greater need of energy for growth and 

development, whereas mature spiders will search the least, as they have more energy reserves 

and motivation to engage in sexual behavior rather than in foraging. (Note that it might be 

argued that adult females have a high need of nutrients for developing eggs  (cf. Rickers et al. 

2006); however our prediction is based on the fact that females that consume more prey as 

juveniles grow to larger sizes and reach higher fecundity (Skow & Jakob 2003). Therefore, 
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females are preparing for reproduction well before maturity). (ii) Young spiders will 

discriminate more strongly between prey of different sizes than older spiders.  

Note that as with the previous hypothesis, experience is a potential confound for the 

age-based tests outlined here. Specifically, spiders could learn that searching for lost prey is not 

worthwhile. If this is the case, then an decrease in search behavior with age could be attributed 

to spiders learning not to search, which is similar to, but distinct from, a shift in motivation. The 

predictions described above that are designed to detect effects of experience apply here as 

well. 

Differences in the life history of males and females in our spiders suggest additional 

predictions for this hypothesis. Juvenile P. phalangioides males grow more quickly than females 

(Uhl et al. 2004), and so are likely to place a higher premium on prey; therefore: (iii) juvenile 

males will search more than females for preferred prey. Additionally, when males reach sexual 

maturity their behavior shifts away from capturing prey toward actively seeking mates (Uhl 

1998; Foelix 2011; Escalante 2013); therefore: (iv) mature males will exert particularly little 

search effort.  

 

Methods 

Pholcus phalangioides is a widespread synanthropic spider (Uhl 1998). We collected P. 

phalangioides spiders from populations in six houses in Milwaukee, Wisconsin (USA) during the 

summers of 2015 and 2016. The spiders ranged in age from juveniles to adults. We recorded 

the mass of each spider on the day of capture, and then we immediately set them up in 

individual rectangular plastic shoe boxes. Each box measured approximately 30 × 17 × 10 cm (L 
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× W × H) and was lined with a 6 cm-wide strip of poster board along the sides (to give spiders a 

better surface to climb on and attach silk to). We also placed a thin sheet of plastic wrap under 

the lid of each box to discourage spiders from attaching silk to the lid of the box. 

Among the collected spiders were eight gravid females, which we did not test, but 

rather set aside and tested their spiderlings after they hatched. We separated spiderlings from 

their mothers once they reached their second instar (at approximately one week of age), which 

is when they naturally disperse (Uhl 1998; Uhl et al. 2004). At this point, we recorded the mass 

of each spiderling, and we excluded any that weighed considerably more than its siblings (over 

20% greater than the family median), as we took this to be a sign of cannibalism, and we 

wanted spiderlings with no experience of capturing or eating prey of any kind. We housed 

spiderlings in individual, clean, round plastic takeout containers (approximately 8 cm high and 

11 cm in diameter at the top), each with a flat-bottom standard coffee filter pressed flat along 

the bottoms and sides to give spiderlings a decent surface to climb on and attach silk to. 

Spiderlings were ready for testing as soon as they built their first web.  

For the rest of the spiders, we standardized hunger prior to running trials. First we 

withheld food from spiders for at least four days after capturing them, then we fed them a 

single cricket whose mass was one quarter of the spider’s mass at capture, and then we waited 

an additional two days before testing them. This controlled feeding, combined with the 

standardized periods without food, ensured that spiders started their trials at similar levels of 

satiation. 

We kept all spiders (including spiderlings) in an environmental chamber (Percival 

Scientific, Inc., Perry, Iowa, USA), where we controlled the light:dark cycle (14:10 hr) and the 
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temperature, which ranged from 21.4 to 27.6˚C. In preliminary versions of the statistical models 

presented below, we included temperature as a term and found that it had no effect, so we 

removed it from our final analyses. The interior dimensions of the chamber were 2.54 × 2.39 × 

2.1 m (L × W × H).  

 

Overview of trials 

All trials involved us giving a cricket to a spider as prey, then stealing the cricket and recording 

the spider’s behavior as it searched for the lost prey (described in detail below). We tested 

spiderlings only once in order to observe their behavior in the complete absence of prey-

capture experience. We tested all other spiders twice, two days apart, once with a relatively 

small prey and once with a relatively large prey (prey size details below) in random sequence. In 

our preliminary analyses, we included trial sequence in our statistical models to look at short-

term effects of experience. It had no effect, so we removed it from the final analyses presented 

below. 

Each trial began with us attaching a cricket to a miniature crane that we used to lower 

prey onto the horizontal webs of our spiders (Fig. 1.1). If the spider did not promptly respond to 

the arrival of the cricket, we used an electric toothbrush (Colgate 360˚ Total Advanced) to 

vibrate the cricket and simulate struggling in order to attract the attention of the spider. (We 

used the toothbrush in 84% of trials. In preliminary versions of our models, we included 

whether or not the toothbrush had been used. We found that it had no statistical effect, so we 

removed it from our final analyses).  
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Figure 1.1 Experimental setup, including a plastic shoe box holding one of the spiders hanging from its 
horizontal web (web not shown), and the crane we used to lower crickets onto the spider’s web. Scale 
bars along the lip of the box indicate 1 cm. The crane is made of bamboo garden stakes with a spool of 
thread mounted on top. Rotating the spool clockwise or counterclockwise (indicated by arrows) raises 
and lowers the cricket, which is attached to the end of the thread by a tiny hook. 

 

 
We allowed the spider two minutes to wrap up its prey before we scared it away with 

several sharp puffs of air from a 2 ml plastic pipette. The spider would retreat, leaving the 

tethered prey behind, at which point we used the crane to raise the cricket off from the web, 

and we used a hot soldering iron to gently cut any strands of silk that attached it to the web. 

After stealing each spider’s prey, we took note of behaviors indicative of searching (e.g., 

tugging, defined in Table 1.1), as well as non-searching behaviors (e.g., attaching threads or 

grooming, defined in Table 1.1). We recorded video of each trial (using a Canon VIXIA HF R600 

camcorder). We also entered behavior data in real-time into a custom computer program that 

we created for this purpose. To enter data quickly and efficiently, we programmed keyboard  
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Table 1.1 Descriptions of spider behaviors observed during trials. See Fig. 1.2. Not every behavior was 
used in the final analysis of search behavior—for that, we primarily looked at tugs and descents—but all 
together, they helped expand our general view of how each spider spent time during trials. 

Behavior Description 

tug The spider quickly and sharply contracts all of its legs in and then 
immediately returns them to a resting state. This is a typical single tug. 
When a spider performs multiple tugs over a short period of time, it is 
indicative of search behavior. We defined a bout of searching as a series of 
tugs in which each tug was no more than 20 seconds apart from the next. 

build The spider works on constructing or maintaining its web. We recorded 
every time a spider attached a new thread to its web and every time it cut 
old strands with its chelicerae.  

descend The spider drops down, tethered by a silk dragline, from its web to the 
floor of its enclosure. Often when the spider is on the floor, it waves its 
front legs around in an apparent exploration of its surroundings. The spider 
usually returns up its silk line back to its web after several seconds. 
Sometimes the spider attaches a thread to the floor of the box before 
returning to the web. If it does, we consider this and the entire trip down 
as web-building behavior. On the other hand, when a spider descends and 
only explores, we count this as searching behavior. 

move The spider moves around its web, usually hanging from the underside of 
the web, with its ventral side up. 

handle debris The spider encounters a piece of debris in the web, and spends time 
investigating it and removing it from the web. 

groom The spider stops moving around and cleans its legs. It brings a leg up to its 
mouthparts and pulls the tarsus through its chelicerae, presumably to 
remove tiny bits of dirt or silk. 

rest Periods of inactivity. 

 

 

hotkeys to correspond to different behaviors, and we used a one-handed keyboard (Twiddler 3 

by Tek Gear) for our input. This allowed us to record behavior while keeping one hand and both 

eyes free for the trial. With this setup, we created behavior logs with precision down to a 
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fraction of a second that were digitized and ready for analysis as soon as the trial was complete, 

and we had video recordings that we double-checked afterwards to resolve any inconsistencies 

or unusual sequences in our behavior logs. 

We ended each trial when the spider had finished searching. Our criterion was when it 

had gone five minutes without tugging on its web. Our observations ranged in duration from a 

little over 5 minutes up to 52 minutes. In the event that a spider did not search at all (which 

happened in 16 of 144 trials), we waited a full 15 minutes after stealing the prey to declare the 

trial over. After running a spider through its final trial, we euthanized it, recorded its mass, and 

preserved it in 75% EtOH. We deposited voucher specimens at the personal collection of M. 

Draney at the University of Wisconsin-Green Bay. 

 

Prey used in trials 

The prey used for the trials were commercially acquired crickets (Gryllodes sigillatus). For each 

trial, we selected a cricket based on its size relative to the spider. After euthanizing spiders, we 

were able to take more precise measurements of relative prey size, using spider sternum width 

as a proxy for spider body size (Lee et al. 2011; Suter & Stratton 2011). A spider’s sternum is a 

single sclerotized plate, and unlike other measurements, like mass or body length, sternum 

width does not change based on how recently or how much a spider has eaten. Additionally, it 

is an external structure with clear landmarks (measurement procedures described below). Our 

measure of cricket size was the length of its body from the front of its head to the end of its 

abdomen. Finally, our measure of relative prey size was the ratio of cricket body length over 
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spider sternum width. The relative prey size values in all of our trials varied across a range from 

about 4 to 8. 

 

Spider size measurements 

After preserving the spiders (including the spiderlings), we measured their sternums using an 

Olympus SZ61 microscope (Olympus Corporation, Tokyo, Japan) with a Moticam 2500 digital 

camera (Motic, Causeway Bay, Hong Kong) attached that was hooked up to a computer running 

Motic Images Plus 2.0.10. We photographed the sternum of each spider and a calibration slide 

for scale, and then we used ImageJ 1.51j8 (National Institutes of Health, USA) to measure the 

widths of the sternums. 

 

Data Analysis 

We used custom scripts written in Python 3.5.2 (https://www.python.org) and R 3.4.2 (R Core 

Team 2017) to process the behavior logs from the trials and calculate the total amount of time 

spiders spent actively searching for prey (e.g., Fig. 1.2, Table 1.1). To do this, the scripts looked 

for two main things: periods of frequent tugging, and time spiders spent exploring the floors of 

their enclosures. Tugging is a conspicuous component of searching behavior, but spiders tug on 

their webs in other contexts as well, for example when testing the tension of their threads or 

when orienting themselves in their web. The main difference is that during searching, a spider 

tugs frequently over a period of time, as opposed to performing infrequent and isolated tugs. 

Therefore, we only counted tugs that occurred within 20 seconds of other tugs. Each sequence 

of tugs that was not broken by a gap of 20 seconds or more was considered to be a bout of 
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searching behavior. In addition to tugging, spiders sometimes descend from their webs and 

search the ground for fallen prey (Table 1.1). We counted this as searching behavior as well, as 

long as the spider did not attach any threads to the floor before returning to its web (we did 

not want to mistakenly count web building as prey searching).  

 

Figure 1.2 Example visualization of a spider’s behavioral data from a trial. Categories of behaviors 
(defined in Table 1.1) are labeled along the y-axis, with markers showing instances of those behaviors 
through time, starting from when the spider’s prey was stolen. Horizontal lines under the markers for tug 
and build indicate sequences broken by no more than 20 seconds (for tug, this was our major criterion for 
search behavior). For the behaviors that continue over time (descend, move, debris, groom and rest), 
markers indicate the start of the behavior, and light trailing bars indicate the duration. Note that for the 
descend category, we make the distinction between descents in which spiders attached threads (striped) 
and those in which they did not (solid) (see Table 1.1). The thick vertical line near the end indicates that 
five minutes have passed since the last tug—our usual criterion for ending observation. 

 

For our analyses, we divided spiders into four groups based on age: i) spiderlings, which 

were hatched and raised in the lab and were tested during their second instar post-hatching; ii) 

early juveniles, which were older than spiderlings, but were still too small for us to distinguish 

their sexes; iii) advanced juveniles, which were old enough that we could tell them apart by sex, 

but were not yet fully mature; and iv) adults, who were sexually mature (see Fig. 1.3 below for 

sample size and mass). 
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Statistical analysis 

We used linear mixed models implemented in JMP Pro 13.0.0. To test the first prediction of 

each hypothesis, we tested for variation in overall searching behavior with spider age. We used 

a model with search time as the dependent variable, and the following fixed independent 

terms: age, relative prey size, and the age × relative prey size interaction. The model also 

included a random term for replicate: this represented family identity for spiderlings and 

individual identity for all other spiders.  

To test the second prediction of each hypothesis, we tested for variation in how strongly 

spiders of different ages discriminated between prey of different relative size. Our measure of 

discrimination was the slope of the line representing change in search time over change in 

relative prey size. A flat slope indicates low importance of prey size, while a steep slope (either 

positive or negative) indicates high importance. We analyzed differences in the absolute value 

of slopes across three age groups: early juveniles, advanced juveniles and adults (we omitted 

spiderlings from the formal analysis because their slopes came from family-level regressions, 

not the individual-level). We did this by running a one-way ANOVA with the absolute values of 

slopes as the dependent variable and age group as the independent variable. We used Tukey 

HSD post-hoc analysis to determine which groups were statistically different from the others. 

The changing motivation hypothesis has two additional predictions that deal with 

differences in search behavior between males and females, so we ran a model that explicitly 

tested for the effects of sex. Since sex is indistinguishable in spiderlings and early juveniles, this 

model only included advanced juveniles and adults. The dependent variable was search time. 

The fixed independent variables were age, relative prey size, sex, and their interactions. We 
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also included a random term for spider identity, since each spider was tested twice. We do not 

know for sure whether any of the adult females we tested were gravid, because we caught 

them as adults from the wild. We also do not know what effects being gravid would have on 

search behavior. All of our adult females decreased in mass from the beginning of the 

experiment to the end, but two in particular decreased proportionately less than the others. In 

case this was a sign of them being gravid, we ran our models with these individuals excluded. 

These additional models were qualitatively identical to the models that included these females 

(data not shown). 

One test for the effects of experience involves looking at changes in variance of search 

behavior as a function of age. We ran a Brown-Forsythe test for unequal variances across the 

four groups. We also ran a mean-corrected test, looking at the correlation between the 

coefficient of variation (CV) and age group.  

Finally, we were curious about family-level and individual-level sources of variation in 

search behavior, as this would help give us a broad sense for the variation available for natural 

selection to potentially act on. To measure family-level variation, we ran a model that only 

included spiderlings. It used relative prey size as a main term, family as a random term, and it 

included a family × prey size interaction. Our exploration of individual-level variation comes 

from the random terms in the model described above. 

 

Results  

In evaluating the age-related predictions from the two hypotheses, we found that spider 

maturity had a significant effect on search time, with younger spiders spending more time 
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searching than older spiders (Table 1.2, Fig. 1.3). We found a marginally significant effect of 

relative prey size on search time, with spiders overall tending to search longer for relatively 

smaller prey (Table 1.2, Fig. 1.3). There was no significant interaction between maturity and 

prey size (Table 1.2).  

The analyses for the discrimination-related predictions yielded similar results. The 

search time ~ prey size slopes revealed that early juveniles had much steeper differences in 

their search behavior between large and small prey (Fig. 1.4). These slopes were significantly 

steeper than those of the advanced juveniles and the adults (F2,46 = 9.14, p < 0.005). 

 

Table 1.2 Statistical results from a linear mixed model looking at the effects of maturity and prey size on 
search time in P. phalangioides spiders. Maturity is broken into four categories (spiderling, early juvenile, 
advanced juvenile, and adult, as described in the text), and relative prey size is a continuous variable 
calculated from linear measurements of the prey and the spider. We included an interaction between 
these two variables to test for differences in prey-size preferences between age groups, and we included 
replicate as a random variable. Replicate codes for family in spiderlings (which were all tested once) and 
for individual in all other spiders (which were tested multiple times). Significant and marginally 
significant terms indicated with bold text. Data visualized in Fig. 1.3. 

 

Fixed effects DF num, DF den F-ratio p-value  

Spider maturity 3, 49.80 3.11 0.035  

Relative prey size 1, 93.95 3.72 0.057  

Maturity × prey size 3, 116.0 0.75 0.522  

     

Random effect Var. comp. 95% CI % of total var. Wald p-value 

Replicate 15049 2354 – 27744 28.1 0.020 
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Figure 1.3 Time that spiders (Pholcus phalangioides) spent searching for lost prey of varying relative 
sizes, plotted by spider age category. Each panel displays the average mass ± sd for the corresponding 
categories, followed by sample size in parentheses. a) Spiderlings were naïve second-instar spiders that 
were raised in the lab. They are grouped by family (eight families total, distinguished by color). Dashed 
lines show simple linear regressions for each family, and a solid black line shows the regression across all 
spiderlings. b) Early juveniles were young spiders caught in the wild that had not yet developed sexual 
characteristics. Each juvenile was tested twice, and each thin gray line connects data points for an 
individual’s two trials. A thick black line shows the simple linear regression through all points. c) 
Advanced juveniles were young spiders caught in the wild that were not yet mature, but old enough for 
us to be able to distinguish the sexes. Thin lines connect data points from two trials for males (triangles) 
and females (squares). Thick colored lines represent the linear regression for the sexes, and a thick black 
line represents the linear regression through all the points. d) Like panel c), but for fully mature spiders. 
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Figure 1.4 Prey-size discrimination, measured as the steepness of search time ~ prey size relationships, 
for spiders of different ages and sexes. Data are calculated from the absolute values of the slopes in Fig. 
1.3. Black points represent the overall mean for the group. Squares and triangles represent the means for 
females and males, respectively, in those groups where the spiders are old enough to be told apart by 
sex. Error bars indicate standard error. Spiderlings were omitted from the analysis, because they were 
tested only once each, and so their slopes (mean ± se = 1.53 ± 0.65) come from family-level regressions, 
not individual-level behavior, like the groups plotted here. A one-way ANOVA, with age group as the 
independent variable, followed by a Tukey HSD post-hoc analysis, showed early juveniles to be 
significantly higher than the advanced juvenile and adult age groups (F2,46 = 9.14, p < 0.05). 

 

When we looked at only those life stages for which we could tell the sexes apart (to 

evaluate additional predictions of the motivation hypothesis), we continued to see the 

significant effects of maturity (Table 1.3). We also found that males and females searched 

differently for prey of different sizes (significant prey size × sex interaction), with juvenile males 

preferring larger prey and juvenile females preferring smaller prey (Fig. 1.3c; Table 1.3). 
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Furthermore, these differences between the sexes varied across maturity levels (significant 

maturity × prey size × sex interaction), with males sharply decreasing their search behavior 

once reaching full maturity (Fig. 1.3c,d; Table 1.3). 

 

Table 1.3 Statistical results from a linear mixed model looking at the effects of maturity, prey size, and 
sex (and their interactions) on search time in advanced juvenile and adult P. phalangioides. Spider 
identity was included as a random term because each spider was tested twice. Significant and marginally 
significant terms indicated with bold text. Data visualized in Fig. 1.3. 

 

Fixed effects DF num, DF den F-ratio p-value  

Spider maturity 1, 33.18 5.19 0.029  

Relative prey size 1, 39.49 0.69 0.410  

Spider sex 1, 33.24 2.76 0.106  

Maturity × prey size 1, 37.92 1.25 0.270  

Maturity × sex 1, 33.18 0.01 0.934  

Prey size × sex 1, 39.49 9.96 0.003  

Maturity × prey size × sex 1, 37.92 5.83 0.021  

     

Random effect Var. comp. 95% CI % of total var. Wald p-value 

Spider identity 18224 5748 – 6959 68.7 0.002 

 

 

Adult males were the group that searched the least, and the nature of their searching 

was distinctly different from any other group—we observed tugging search behavior in only 

one male trial out of twelve. Search behavior in males almost exclusively manifested as 

exploring the bottoms of their enclosures. Compare this with mature females, who used tugs in 

their search behavior in 16 of 20 trials—similar to spiders in the other age groups. 

Our sample size of males is relatively low, and is lower than our sample of females (Fig. 

1.3), so there is a risk that we under-sampled variation in males. However, based on the F-ratios 
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in our statistical models (Table 1.2), we believe that the patterns we report are real. 

Additionally, we should address the possibility that two of the mature females we tested could 

have been gravid. This is based on the fact that their final masses were a bit higher (relative to 

their mass at capture) compared to the other mature females. However, their search behavior 

was no different from other females, and their exclusion from statistical models did not change 

any patterns. Therefore, one of two things is true: either i) being gravid has little effect on 

search behavior, or ii) these individuals were not gravid. 

In our tests for the effects of experience, we looked at how variance in search time 

changed with age. We found a significant difference in variance across the four age groups, 

with higher variance in the younger spiders and lower variance in older spiders (see Appendix). 

When correcting for changes in the mean, we found no correlation between age and CV of 

search time (see Appendix). 

Lastly, we evaluated sources of variation in search behavior. There was a high degree of 

individual variation (as seen in the identity term in Table 1.3 as well as Fig. 1.3b-d), whereas 

family was not a significant source of variation (Table 1.4). 

 

Table 1.4 A closer look at the random effect from the model in Table 1.2. We ran a similar model looking 
only at spiderlings in order to see if there were family-level differences in search behavior. We used 
relative prey size as a fixed effect, family ID as a random term, and an interaction between the two. 

 

Fixed effects DF num, DF den F-ratio p-value  

Relative prey size 1, 8.94 0.55 0.479  

     

Random effects Var. comp. 95% CI % of total var. Wald p-value 

Family ID 22187 -14320 – 58694 25.6 0.234 

Family × prey size 12254   -8697 – 33207 14.2 0.252 
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Discussion 

We tested hypotheses about the relative roles of capability and motivation in ontogenetic 

change in memory of captured prey in a web spider. The first hypothesis was that spiderlings 

would be limited in their ability to evaluate and remember lost prey, and so would spend less 

time searching for it compared to older spiders. Our results refute this, as spiderlings searched 

just as long or longer than older spiders. This hypothesis also predicted that younger spiders 

would be less discriminating between prey of different sizes. This was also refuted by the fact 

that the early juveniles had the steepest search time vs prey size slopes. Thus, early 

developmental stage was neither a limiting factor in the formation of memories of captured 

prey, nor a limiting factor in the use of those memories in the regulation of searching efforts. 

This is rather remarkable, considering that the brains of the adults are over 5.5 times the size of 

the brains of spiderlings (based on the average masses that we measured, and the spider brain-

volume ~ body-mass relationship described by Quesada et al. (2011)). The results from this 

study also indicate that previous experience with prey is not necessary for a spider to search for 

lost prey (as none of the spiderlings had ever caught prey before). The lack of trial sequence 

effects on the spiders’ behavior suggests that short-term experience was not a confounding 

variable in our experiment. Additionally, both the decrease in search time variance with age, 

and the relatively flat CV across age groups, suggests that long-term experience does not have a 

strong effect on search time, relative to the other effects that we tested. 

The second hypothesis was that as spiders approached adulthood and their growth 

slowed down, their motivation to recover prey would decrease. This was supported by our 

results, as fully mature spiders spent less time searching than spiders in other groups. The 



22 
 

motivation hypothesis also predicted the greatest amount of prey-size discrimination among 

young spiders and the least among adults. This too was supported by our results.  

The motivation hypothesis made additional predictions about the effects of sex on 

search behavior. Males grow more quickly than females, and so it is predicted that they would 

place a premium on larger prey. This prediction was supported by our data, specifically by the 

significant interaction between prey size and sex in advanced juveniles (Fig. 1.3). It is unclear 

precisely when this difference first appears. It could be present in the early juveniles—certainly 

other sex-based differences in behavior, like activity level or prey-capture rate, are known to 

arise early on for this species (Hoefler et al. 2010). If so, it might help explain the high variation 

in slopes across individuals in this group (Fig. 1.3b).  

Finally, this hypothesis predicted a decrease in search behavior for mature males, whose 

priorities shift heavily towards seeking a mate after reaching maturity. The lower search time 

that we observed in mature males, plus their qualitative change in search behavior (the 

reduced use of tugging), support this prediction. Males still readily attacked prey, and there is 

nothing about their morphology that would prevent them from being able to tug, so it seems 

that they simply have a reduced interest in recovering prey.  

Looking at individual differences in search behavior, we find that nearly half of the 

spiders in our study actually preferred prey from the lower end of the range of sizes we tested 

(i.e., had negative slopes). The high amount of individual variation in search time, including in 

inexperienced spiderlings, suggests a diversity of prey-size preferences across individuals on 

which selection may act to shape prey recover efforts. 
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In short, when it comes to prey-searching in spiders, it is motivation, not capability, that 

drives ontogenetic change in behavior. Without a doubt, there is some point in a spider’s 

development when it is incapable of searching, but as soon as spiderlings disperse from their 

mother’s web, they essentially fill the same ecological niche as adults, and they perform many 

of the same actions—they build webs, capture prey, and seek to recapture it when lost. 

Analyzing the causes of ontogenetic variation in behavior is greatly facilitated with species like 

this, where direct comparison of similar behavior and tasks is possible. For example, many 

species of fish allow ontogenetic studies across stages that are ecologically equivalent in many 

respects, with newborns being miniature adults (Agrillo & Bisazza 2017). Even in such cases, 

interesting cognitive limitations may be revealed in younger animals. Guppies, for instance, are 

safest when swimming in large shoals, but young guppies are not as good as adults at 

evaluating shoal size; consequently, they face the greatest risk of making wrong shoaling 

decisions at the most vulnerable stage of their lives (Petrazzini et al. 2014). Other animals may 

reach the state of adult-equivalence at older ages and yet still face the risk of performing 

suboptimal behaviors due to both cognitive limitations and lack of experience. For example, in 

ravens, caching behavior is affected both by their sense of object permanence and their 

experience of conspecifics stealing their prey (Bugnyar et al. 2007). 

In conclusion, the interplay of capability and motivation along ontogeny varies in 

multiple dimensions between species, and this variation requires explanation. We suggest that 

progress can be made by using behavioral assays to test hypotheses about the evolution and 

expression of cognitive phenotypes (Mendelson et al. 2016). 
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Chapter 2 – Miniature brains forget sooner: size-based limitations on memory 

retention time in cellar spiders 

 

Abstract 

There exists a longstanding expectation that animals with tiny brains must face some cognitive 

limitations. On the physiological level, decreasing the size or number of neurons impacts traits 

such as signal transmission and neuronal connectivity that are associated with basic brain 

functions. On the organismal level, however, evidence of specific size-related limitations to 

cognition remains elusive. We examined memory content and retention time, which are likely 

to subtend a large variety of cognitive abilities, such as learning. Working with web spiders, we 

used an established and easily quantifiable behavioral assay of memory: how they search for 

lost prey. In our study species, variation in memory content has an order of magnitude stronger 

effect on variation in searching behavior than hunger. We compared individuals of different 

instars belonging to a single species (varying 2-5-fold in brain size) to reduce possible 

confounding variation due to ecological differences between species varying in size. Small 

spiders were perfectly motivated and capable of searching for lost prey when allowed to start 

searching immediately after losing it, but when a delay was introduced between memory 

formation and memory use, search time in small spiders decreased more steeply than in big 

spiders. Small spiders also performed much less additional searching after their primary bout of 

searching was over. Thus, memory retention, but not memory content, was limited in spiders 

with small brains. Our results suggest that miniature animals with miniature brains sacrifice not 

the ability to perceive and acquire information about their environments, but rather the ability 
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to hold on to that information and use it to establish connections between their behavior and 

associated costs and benefits. 
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Introduction 

Brains are metabolically expensive, and small animals can only afford small brains (Striedter 

2005). Yet small animals have proportionately large brains (Haller’s rule; Rensch 1948). Thus, 

the most extreme aspect of miniature animals is not their body size (striking though that may 

be, with lungless salamanders as small as a wasp, and parasitoid wasps as small as a 

Paramecium; Hanken 1985; Evans 2008; Polilov 2012). More remarkable, however, is the 

increasing proportion of body mass taken up by brains in smaller animals. Across mammals, 

brain mass varies 20,000-fold, and relative to body mass, the brains of the smallest species are 

over 600 times bigger than those of the largest species (Striedter 2005). In miniature 

arthropods the brain accounts for up to 16% of body mass (compared to 2% in humans), and in 

some cases it protrudes into the thorax or legs (Eberhard & Wcislo 2011, 2012; Quesada et al. 

2011). 

The repeated evolution of miniature animals with absolutely smaller but relatively larger 

brains presents a problem. While it seems straightforward to understand the advantage of 

reduced body size (smaller animals have lower absolute energy requirements and quicker time 

to maturity; Peters 1983), reduced brain size seems likely to bring manifold disadvantages. 

Neural tissue is energetically expensive because of the need to establish and maintain 

membrane potentials (Rolfe & Brown 1997; Attwell & Laughlin 2001; Niven & Laughlin 2008). 

Thus, as animals decrease in size and carry proportionally larger brains, a greater percentage of 

their energy must be spent maintaining their central nervous systemwhen it comes to brain 

size, small animals pay relatively more for absolutely less. Furthermore, brain size may be 

decreased by reducing either the size or the number of its neurons. As neurons get smaller, 
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they tend to have slower transmission rates, noisier signals and fewer dendrites to connect 

with other neurons (Purves & Lichtman 1985; Faisal et al. 2005; Perge et al. 2012). And 

reducing the number of neurons may diminish certain abilities like parallel processing and 

memory storage (Spaethe et al. 2006; Chittka & Niven 2009). Either way, tiny animals are 

expected to face neurological constraints in sensory acuity, decision making, and cognitive and 

behavioral capabilities (Eberhard & Wcislo 2011; Niven & Farris 2012).  

In light of the above considerations, it has been surprisingly difficult to identify what, if 

any, limitations arise from miniature brains (Eberhard 2007, 2011; Eberhard & Wcislo 2011). 

Consider hummingbirds. These are not only miniature birds, but miniature dinosaurs, and yet 

they have astonishing flight control, and song-learning to boot (Price 2008; Dakin et al. 2018). 

Or recall that possibly the most complex courtship displays known for any animal are produced 

by minuscule jumping spiders (Girard et al. 2011; Elias et al. 2012).  

This is the problem of miniaturization: Does miniaturization reduce an animal’s cognitive 

or behavioral capabilities? And if not, how do miniature animals escape such limitations? These 

questions are fundamental for understanding the evolution of body and brain size. They are 

also of practical interest, as for example in the field of miniature technology. 

Part of the difficulty in testing for limitations associated with miniaturization is 

identifying appropriate measures of cognitive and behavioral capability. Measures of general 

intelligence, behavioral complexity, or size of behavioral repertoire suffer from being too vague 

or hard to compare across species (Healy & Rowe 2007; Chittka & Niven 2009). Questions like, 

“how complex is this behavior?” are hard to answer because it is difficult to quantify discrete 

units of behavior objectively (and to do so consistently across species) (Eberhard 2007; Healy & 
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Rowe 2007). The clearest evidence to date comes from an artificial selection experiment that 

specifically targeted brain size relative to body size in guppies, and found that small-brained fish 

performed less well than large-brained ones in a numerical learning test (females) and a maze 

learning test (males) (Kotrschal et al. 2013, 2015). However, the detected difference may reflect 

the advantage of evolving larger brains (for which there is more abundant evidence; e.g., 

Madden 2001; Day et al. 2005; Sol et al. 2005; Benson-Amran et al. 2015), rather than the 

disadvantage of evolving miniature brains, especially as the range of brain sizes was limited (9-

14% difference) compared to the orders of magnitude that miniaturized animals and their 

ancestors may span (Striedter 2005; Eberhard & Wcislo 2012). Furthermore, it is not clear 

whether the limitation detected represents a difficulty in keeping track of numbers (for 

females), or in learning. Ideally, measures of cognitive and behavioral ability should relate as 

directly as possible to specific metal features and be comparable across different species and 

groups. 

Here we test for cognitive limitations in miniature animals with an assay that measures 

variation in the information content and retention time of memory. Memory is a basic 

capability that subtends many other cognitive processes such as learning and decision-making 

(Squire & Kandel 2009; Shettleworth 2010). We explore the effects of brain size on memory 

with web spiders and their behavior of searching for prey that they have captured and lost. This 

has become a model assay of memory content, and has revealed that a broad variety of spiders 

form memories about the prey they have captured that include details about their size and 

numbers (Rodríguez & Gamboa 2000; Rodríguez & Gloudeman 2011; Rodríguez et al. 2013, 
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2015; Kilmer et al. 2018). It also has the advantages of both being easy to quantify and yielding 

continuous measures that allow for fine-scaled comparisons. 

We took advantage of the difference in body size (and hence brain size) that occur 

across developmental instars in web spiders (Fig. 2.1). Comparing the behavior of juvenile and 

adult stages in web spiders is possible because, starting at a very young age, juvenile spiders are 

completely independent, and essentially function as adults, as far as foraging with webs is 

concerned. This approach can be very fruitful when the juveniles and adults of a given species 

are ecologically equivalent except for their size (Agrillo & Bisazza 2017; Kilmer et al. 2018). 

 

 

Figure 2.1 A mother P. phalangioides (approximately 25 mg) with her second-instar offspring 
(approximately 0.5 mg; 1-2 weeks old), illustrating the difference in size between adults and spiderlings 
that have reached the age of dispersal, which is when they begin living independently. Note: the juvenile 
spiders used in this study were older than the spiderlings shown here; see Fig. 2.2 for body sizes. 
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There are two main ways in which brain size could limit memory: it could limit the 

information content of memories, or it could limit the retention of memories over time. The 

hypothesis that brain size limits memory content predicts that smaller spiders (with smaller 

brains) will: spend less time searching or be less likely to search at all (signs that they don’t 

remember their captured prey very well); and show little distinction in search behavior 

between large and small prey (a sign that they don’t remember the features of their prey very 

well). These predictions have already been tested and rejected in a prior study with our study 

species (Kilmer et al. 2018). Across a 5-fold difference in brain size (estimated from an 

approximately 50-fold difference in body size across instars; Quesada et al. 2011), it was the 

smallest spiders that searched the most and that showed the greatest prey-size discrimination. 

The hypothesis that brain size limits the retention time of memories makes two 

predictions. First, smaller (juvenile instar) spiders will spend less time searching or be less likely 

to search at all following a period of time in which they are not allowed to search. We tested 

this prediction with an experiment in which we imposed a delay between memory formation 

(prey capture) and memory use (prey searching) (this type of experimental delay is also known 

as a “retention interval” in the literature; Shettleworth 2010). We manipulated the length of 

the delay across large and small spiders. With a long enough delay, search time for all spiders 

should drop to zero, regardless of brain size, but this hypothesis predicts that the search time ~ 

delay function will drop to zero more quickly for small spiders than for large spiders. In other 

words, it should take less of a delay to see any given drop in search time for small spiders than 

for large spiders. Second, if brain size limits memory retention, small spiders should be less 

likely to resume searching or search for less time than large spiders; and they should show less 
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of a difference according to the size of the prey that they lost. We tested this prediction in a 

separate experiment in which we checked whether spiders resume searching after giving up 

their initial search. 

A potential concern with our assay of memory content and retention is that it may be 

confounded by non-cognitive influences, such as differences in motivation and hunger between 

spiders. Indeed, prior work with our study species shows that motivation to search varies across 

life stages in our study species (Kilmer et al. 2018). Therefore, we ran an additional experiment 

to gauge the relative effects of proximate non-cognitive motivational cues (e.g., hunger) versus 

cognitive information acquisition in our searching assay. 

 

Methods 

Our study species was the long-bodied cellar spider, Pholcus phalangioides (Araneae: 

Pholcidae), a widespread synanthropic spider that often weaves messy horizontal webs in 

basements and garages. We collected spiders from 8 different locations in Milwaukee, WI in the 

summers of 2014, 2015 and 2016. Upon collecting spiders, we recorded their mass and housed 

them in our lab in individual clear plastic shoe boxes (30 × 17 × 10 cm) in a walk-in 

environmental chamber (Percival Scientific, Inc., Perry, Iowa, USA) with a 14:10 hour light:dark 

cycle and a temperature of 24.6 ± 0.9˚C (mean ± sd). We kept spiders on the same feeding 

regimen to standardize hunger levels. 

All experiments shared a core set of methods: we gave spiders prey, we removed the 

prey, and we observed and recorded the spiders’ behavior as they searched for the lost prey. 

We used commercially acquired Gryllodes sigillatus crickets as prey for all experiments (with 
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one exception, as noted below). We had crickets that spanned a range of ages (and therefore 

sizes), and we selected crickets for trials based on their size relative to the spider. To deliver a 

cricket to a spider web, we attached the cricket to a hook at the end of a thread suspended 

from a small crane, and spooled it down onto the web (details in Kilmer et al. 2018). Sometimes 

the spider would respond immediately to the arrival of the cricket, but most of the time, we 

had to draw spider’s attention by vibrating the prey (to simulate struggling) with a tuning fork 

(in the case of the memory retention experiment below) or electric toothbrush (in the cases of 

the search resumption and the handling time experiments below). 

We allowed the spider a full two minutes (unless specified otherwise below) to subdue 

and secure the cricket. We then scared the spider away from the cricket by puffing it with air 

from a 2 ml plastic pipette. The spider would retreat to a corner of its box, leaving behind the 

cricket, which was tethered in place by the crane’s string. We removed the cricket by raising it 

up off the web, and we used a hot soldering iron to cut any strands that kept it attached to the 

web, but we made sure not to disturb the web any more than necessary in this process. 

As soon as the cricket was removed, we began our observation of the spider’s behavior. 

All trials were video-recorded from start to finish. We also actively took note of each spider’s 

behavior during the trial. Like many spiders, P. phalangioides have poor eyesight, and rely 

instead on sensing vibrations in their web. When they search for lost prey, they move around 

their web, tugging the threads every several seconds, effectively sending out vibrations to feel 

for objects caught in the web (Kilmer et al. 2018). This behavior is unique to this context 

(spiders do not initiate prolonged periods of frequent tugging spontaneously), and it is similar 

to the searching behavior of other species of web spiders tested to date, including araneids, 
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linyphiids, tetragnathids, and uloborids (Rodríguez & Gamboa 2000; Opell 2001; Rodríguez & 

Gloudeman 2011; Rodríguez et al. 2013, 2015). We tracked every instance of tugging, and 

counted every sequence of tugs broken by no more than 20 seconds as a bout of search 

behavior. Sometimes spiders drop down from their web to search the nearby ground for lost 

prey, so we also took note of every time a spider made exploratory descents to the bottom of 

its box (Kilmer et al. 2018). Our criterion for ending observations was when the spider had gone 

5 minutes without tugging; or if the spider did not tug at all, we observed it for a full fifteen 

minutes after removing its prey. We preserved the spiders in 75% EtOH. Later, we took precise 

measurements of each spider’s sternum width as a measure of body size. We ran all of our 

statistical analyses (described below) in JMP Pro 13.0.0 (SAS Institute Inc.). 

 

Testing for variation in memory retention 

To test the prediction that large spiders can retain memories for a longer period of time than 

small spiders, we ran an experiment in which we imposed a delay between memory formation 

(prey capture) and memory use (searching for prey). We divided spiders into two categories 

based on body size (Fig. 2.2a). Based on allometric slopes of brain size on body size (Quesada et 

al. 2011), this nearly 7-fold difference in average body mass in our spiders translates to roughly 

a 2.3-fold difference in brain mass. 

We tested each spider twice: once with a relatively small cricket (mean ± sd = 0.68 ± 

0.19 times the spider’s mass), and once with a relatively large cricket (1.36 ± 0.40 times the 

spider’s mass). We size-matched crickets to spiders based on mass, and then after the trials 

were complete, we took linear measurements of both spiders and crickets for a more precise 
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Figure 2.2 Ranges of final body mass measurements for P. phalangioides spiders used in our 
experiments. a) Big (n = 23) and small (n = 24) spiders used in the memory retention experiment, b) big (n 
= 29) and small (n = 16) spiders used in the search-resumption experiment, and c) all spiders used in the 
hunger vs handling time experiment (n = 22). 

 

 

measure of relative prey size to use in our analysis (note that in some trials, we used Acheta 

domisticus crickets instead of G. sigillatus; during analysis, we tested for statistical differences 

in spider behavior between the two prey species, and we found absolutely no difference, so we 

combined them into a single dataset). The trials were two days apart and conducted in random 

sequence. Each trial was as described above with the addition of an imposed delay between 

when the cricket was removed and when the spider was allowed to search for the cricket. We 
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randomly assigned spiders to one of six categories, varying the length of this delay: 0 (no delay), 

1, 2, 4, 8 and 16 minutes. To prevent spiders from searching during the delay, we kept them 

confined to their retreat position—if they started moving before their assigned delay was 

complete, we gave them a small puff of air with our pipette. Each spider only received the 

minimum amount of disturbance that was required to keep it from searching, and these puffs 

did not significantly affect search time (below). Once the delay treatment was complete, the 

spider was free to search its web for the lost prey, and we observed its behavior as normal. 

We estimated the spiders’ memory retention with their “total search time,” which is the 

length of time starting from when we allowed the spider to start searching for prey, and ending 

with the last bout of search behavior in the trial. Our rationale for this measure is that as long 

as a spider is still searching, its memory of the lost prey is still active in its mind. 

We analyzed variation in total search time using a linear mixed model with the following 

terms: spider identity (a random effect to account for each spider being tested twice), spider 

size (big, small), length of delay, a delay × spider size interaction, and relative prey size, 

measured as: cricket body length / spider sternum width, following Kilmer et al. (2018). 

Additionally, because total search time is bound on one side by zero and we were specifically 

interested in rates of decrease in the search time ~ delay function, we included the following 

terms looking at curvature in the function: delay2, and delay2 × spider size. Preliminary versions 

of the model included both trial sequence and number of puffs administered to enforce the 

delay, but neither of these effects were significant, so we removed them for statistical power. 
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Search resumption 

Next, we tested the predictions that small spiders are less likely to resume searching after their 

main bout of search behavior, or search for less time than large spiders; and that prey size has 

less of an effect on search time for small spiders than for large spiders. To do this, we 

conducted a separate experiment in which we observed spiders for an extended period of time. 

We divided spiders into two categories based on body size (Fig. 2.2b), and based on allometric 

slopes of brain size on body size (Quesada et al. 2011), the approximately 4-fold difference in 

average body mass in our spiders translated to roughly a 1.9-fold difference in brain mass. As 

with the previous experiment, we tested each spider twice with large and small prey in random 

order. Each trial was as described above with the following modifications. We randomly 

assigned spiders to one of two groups. For one group, when spiders reached our usual stopping 

criterion, we continued to observe them for at least an additional five minutes. If the spiders 

tugged at all during this additional time, we continued watching until five minutes passed since 

the last tug. For the second group, when spiders reached our usual stopping criterion, we 

attempted to reactivate their search behavior by gently vibrating the web with an electric 

toothbrush to simulate the presence of struggling prey. When we did this, spiders readily 

charged toward the vibration the same way they would attack prey. We removed the 

toothbrush before they reached it, and, as with the first group, we continued to observe until a 

further five minutes passed without any tugging. 

From the data we collected, we calculated active search time (not to be confused with 

total search time, defined above), which is the sum of all the periods in which the spider was 

actively performing search behaviors (i.e., tugging in quick succession or exploring the bottom 



39 
 

of its box), and it excludes periods in which the spider was not searching (e.g., when it was 

maintaining its web or resting). Broadly, active search time is a measure of effort exerted over 

the course of the trial. Whereas total search time is a measure of the length of time that a 

memory remains active in the brain, active search time is a measure of how much time and 

effort a spider is willing to invest in recovering its prey. We used this measure because it gives 

us information about the value that the spider put on its lost prey. 

We determined: the percentage of spiders that resumed searching in the additional 

observation period, the active search time of this additional phase, and whether the application 

of a vibration made any difference. To determine this last point, we ran a mixed model in which 

the dependent variable was active search time of the additional observation period, the fixed 

effect was vibration treatment, and spider identity was included as a random variable, because 

each spider was tested twice. 

We analyzed the data with a linear mixed model, using active search time from the 

additional phase as the dependent variable and the following fixed effects: spider size (big or 

small), cricket size (big or small), and spider size × cricket size. We also included spider identity 

as a random term. 

 

Testing motivation against cognition 

In order to assess relative contributions of proximate motivation and information acquisition on 

search time, we ran an experiment with full-factorial design, manipulating both spider hunger 

and prey handling time. We used non-mature spiders that covered the species’ mid-range of 

body sizes (Fig. 2.2c). We randomly assigned each spider to a high-hunger or low-hunger 
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experimental group. The low-hunger spiders were tested two days after their last meal, and the 

high-hunger spiders were tested eight days after their last meal. Each spider was tested once 

with a cricket that was half the spider’s mass. We allowed the spider to wrap up its prey for a 

set amount of time, according to a randomly assigned treatment group—either short handling 

time (30 seconds) or long handling time (120 seconds). Once the handling time was up, we 

removed the prey, and observed the spider’s searching behavior (as described above). 

We analyzed our results with a standard least squares model in which the dependent 

variable was active search time, and the main effects were hunger level (high, low), handling 

time (long, short), and a hunger level × handling time interaction. We also included terms for 

spider size, measured as sternum width, and prey body size measured relative to spider body 

size. 

 

Results 

As we increased the delay between memory formation and memory use, search time in all 

spiders decreased, and it decreased more quickly in small spiders than in big spiders (Fig. 2.3, 

Table 2.1). For example, to see a 50% reduction in search time, it would take a delay of 

approximately 3 minutes in small spiders, but approximately 11 minutes in big spiders. This 

effect was most likely caused by the delay itself, and not the methods used to enforce the 

delay, because: the number of puffs it took to prevent spiders from searching was not a 

significant term in our initial model; spiders only received as many puffs as necessary to keep 

them from searching; and all spiders were administered similar puffs of air when we drove  
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Figure 2.3 Effects of delay on total search time in P. phalangioides. We imposed delays of varying length 
between memory formation and memory use. We measured total search time as the length of time from 
the end of the delay until the end of the spider’s search behavior. With increasing delay, search time for 
small spiders (open circles; n = 24) dropped off more steeply than it did for big spiders (filled circles; n = 
23). Each spider was tested twice at a single delay value—once with large prey and once with small prey 
(as reported in Table 2.1, but not shown here). Error bars represent standard error. Note that the 
apparent increase in search time for small spiders at 16 minutes of delay is only an artifact of the 
quadratic regression used to fit the curve, which we chose to model the drop-off followed by the 
flattening-out at zero seen here. Corresponding statistics reported in Table 2.1. 

 

them away from their prey during the prey-removal phase of each trial, and these had no 

apparent effect. Finally, our analyses found no significant effect of prey size. 

When we extended observations beyond the usual cutoff (regardless of whether we 

vibrated the web or not), small spiders searched less compared to big spiders, and they showed 

virtually no discrimination between prey sizes, while large spiders showed significantly higher 

search times for larger prey (Fig. 2.4, Table 2.2, significant spider size and spider size × prey size  
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Table 2.1 Variation in the retention of memory of lost prey in P. phalangioides. The dependent variable 
was total search time and the fixed effects were spider size (big or small), delay imposed before 
searching, spider size × delay, delay2 (included because search times do not decay linearly),  spider size × 
delay2 (included to look for differences in decay between spider sizes), and prey size (relative to spiders 
size). We also included a random term, spider identity, because each spider was tested twice (once with 
each prey size). Significant terms indicated with bold text. 

Fixed effects DF num, DF den F-ratio p-value  

Spider size 1, 40.75 4.89 0.033  

Delay 1, 40.04 21.46 < 0.0001  

Spider size × delay 1, 40.68 4.26 0.045  

Delay2 1, 40.05 4.38 0.043  

Spider size × delay2 1, 40.05 5.20 0.043  

Prey size 1, 84.59 0.84 0.360  

     

Random effect Var. comp. 95% CI % of total var. Wald p-value 

Spider identity 92247 21587-162907 44.0 0.011 

 
 

 
 
Figure 2.4 Late-stage search time in P. phalangioides spiders. We measured active search time for small 
spiders (open circles; n = 16) and big spiders (filled circles; n = 29) as they searched for large and small 
prey. Each spider was tested twice, once with each prey size. The data shown here are means ± SE of 
search behavior that occurred in the additional observation periods—that is, after the normal criterion 
for ending observations had passed. Statistical results presented in Table 2.2. 
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Table 2.2 Variation in resumed searches for lost prey in P. phalangioides. The dependent variable was 
active search time, and the fixed effects were spider size (big or small), prey size (big or small), and spider 
size × prey size. We also included a random term for spider identity, because each spider was tested 
twice (once with each prey size). Significant terms indicated with bold text. 

 

Fixed effects DF num, DF den F-ratio p-value  

Spider size 1, 43 4.16 0.048  

Prey size 1, 43 3.20 0.081  

Spider size × prey size 1, 43 5.48 0.024  

     

     

Random effect Var. comp. 95% CI % of total var. Wald p-value 

Spider identity 104 -277—486 8.2 0.592 

 

 

terms). Mainly, however, spiders were unlikely to resume searching. There was no resumption 

in nearly two thirds of trials (56 of 90, with each spider going through two trials), meaning that 

our criterion of ending trials after five minutes of no searching was mostly sufficient for 

capturing the behavior. In the 34 trials that spiders did resume searching, they did so only 

briefly: 50% had an active search time under 30 seconds, and spiders actively searched longer 

than two minutes in only four trials. The addition of prey cues (in the form of a vibration) 

affected neither the percentage of spiders that resumed searching (36.4% of the spiders in the 

vibration group, compared to 37.5% in the no-vibration group) nor the length of search time (LS 

means ± SE: no-vibration = 21.0 ± 5.7 seconds (n = 23 spiders, 46 trials); vibration = 14.7 ± 5.8 

seconds (n = 22 spiders, 44 trials); F1,43 = 0.60, p = 0.44). 

When we measured the relative contributions of hunger vs handling time on search 

behavior, we found that a 90-second difference in the opportunity to gather information had an 

effect that was 6-7 times larger than a 6-day difference in hunger (Fig. 2.5, Table 2.3). This was 
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true regardless of prey size and spider size. The analysis hinted at a possible interaction 

between these two variables (whereby the hungriest spiders that had the most opportunity to 

acquire information about their prey searched the most), but the effect was not significant (p = 

0.127; Table 2.3). 

 

 
Figure 2.5 Effects of hunger (physiological motivation) and handling time (information acquisition) on 
active search time for P. phalangioides. Spiders in the low-hunger group (open circles; n = 6 and 6 for low 
and high handling time, respectively) went two days without food before the trial, while spiders in the 
high-hunger group (filled circles; n = 5 and 5 for low and high handling time, respectively) went eight 
days without food. Handling time (30 seconds vs 120 seconds) had a much larger effect on search 
behavior than did hunger. Statistical results presented in Table 2.3. 
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Table 2.3 Effects of motivation and information acquisition on the time that P. phalangioides spiders 
search for lost prey. The dependent variable was active search time and the fixed effects were hunger (2 
days or 8 days since last meal), handling time (30 seconds or 120 seconds subduing and wrapping prey), 
hunger × handling time, spider size (sternum width), prey size (prey body length / spider size). Significant 
terms indicated with bold text. 

 

Effects DF num, DF den F-ratio p-value  

Hunger 1, 21 0.25 0.625  

Handling time 1, 21 12.50 0.003  

Hunger × handling time 1, 21 2.59 0.127  

Spider size 1, 21 0.71 0.413  

Prey size 1, 21 1.17 0.296  

 

 

Discussion 

We report evidence of a cognitive limitation in miniature animals. Testing over an 

approximately 2-fold difference in brain size across juvenile and adult P. phalangioides, we find 

that memory retention time, but not memory content, is limited in the smaller instars. Smaller 

spiders searched similarly or longer than larger spiders for prey they had captured and lost 

(Kilmer et al. 2018; this study). This shows that memory formation and content are not limited 

by brain size; and that even very small spiders can be highly motivated and both physically and 

cognitively capable of forming memories of captured prey and using them to regulate searching 

efforts. By contrast, in two separate experiments, smaller spiders showed a steeper decline in 

searching when we imposed a delay between memory formation and use; i.e., they had worse 

performance on a delayed memory task (Fig. 2.3). Thus, memory retention time is limited by 

brain size. Interestingly, when large spiders searched without delay between memory 

formation and use, they did not prefer large over small prey (Kilmer et al. 2018; present study, 

Fig. 2.3). But they did search longer for large prey in resumed searches (Fig. 2.4). We interpret 
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this not as a loss of the ability to distinguish between remembered large and small prey, but 

rather as a difference in the memorability of large and small prey, which is only expressed in 

spiders with brains large enough for memory retention time not to be compromised. An 

alternative explanation might be that, as the delay between memory formation and use 

increased, small spiders reached the decision not to search sooner than larger spiders (perhaps 

driven by reduced experience or motivation). However, the overall greater motivation and 

search times of small spiders in the absence of a delay—combined with evidence that past 

experience has little effect on search time—argue against this interpretation (Kilmer et al. 

2018). An additional experiment assessed the relative contribution to search times of 

information stored in memory versus motivation (hunger), finding that the effect of memory is 

at least an order of magnitude stronger. 

Why should memory retention time (but not information content) be limited by brain 

size? Perhaps it is energetically cheaper or neuronally simpler to form memories than to retain 

them over time. The mechanisms of forgetting will be key to address these questions. To the 

extent that our results reflect a passive-decay model of forgetting (e.g., Brown 1958, Ricker et 

al. 2014), small brains may simply be less capable of holding on to memories. Alternatively, 

under an interference model of forgetting (e.g., Lewandowsky et al. 2008), small brains may 

instead be limited in their ability to hold attention on a given object or aim, and be more 

susceptible to distraction. 

Either way, limitations in memory retention in miniature animals are likely to have 

downstream consequences for other abilities. Learning, for instance, may be limited if the 

interval between an event and its consequence exceeds the retention of the memory of the 
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event. This may be part of the explanation for the poor performance in a numerical learning 

tasks of small-brained guppies, even if their numerosity per se was not compromised (Kotrschal 

et al. 2013). On the flip side, forgetting itself may be an adaptation that allows for adjusting 

behavior and decision-making in the face of change (West-Eberhard 2003: 350-352). Even here, 

though, a limited retention time would constrain the range over which miniature animals could 

modulate learning and forgetting. 

The scarcity of evidence in the literature for limitations in small brains is not for lack of 

effort—indeed, biologists have been curious about brain size for decades (e.g., Rensch 1956; 

Eisenberg & Wilson 1978; Harvey et al. 1980; Cole 1985; Garamszegi et al. 2005, Eberhard 2007, 

Eberhard & Wcislo 2011), and some have found compelling results (Kotrschal et al. 2013, 2015). 

The endeavor of identifying limitations in miniature species has proven to be a challenge, in 

part because some cognitive abilities have turned out to not be as neurologically complex as 

initially thought (Chittka & Niven 2009; Roper et al. 2017; Skorupski et al. 2017). Simulations of 

neural networks have shown that seemingly complex cognitive functions, like selective 

attention or visual categorization, can each be accomplished with fewer than 20 neurons (Beer 

2003; Goldenberg et al. 2004; Roper et al. 2017). Some abilities, like pattern recognition, may 

actually be adaptations that allow brains to process information more efficiently with fewer 

neurons, rather than being complex functions that require large neural machinery (Srinivasan 

2006). Perhaps larger brains do not add new functions so much as they increase existing 

abilities, such as memory capacity, sensory resolution and parallel processing (Chittka & Niven 

2009). Additionally, there are some areas in which small animals are truly not limited, for 
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example in movement precision movement precision and error correction (Eberhard 2007, 

2011). 

We consider that two features of the present study increase our ability to assess animal 

cognitive and behavioral capabilities across brain sizes. First, using within-species variation in 

size (juvenile to adult instars) allowed us to compare animals greatly varying in body an brain 

size with no confounds arising from potential species differences in ecology. Second, our 

searching assay directly reflects the content and use of memory in the regulation of behavior 

and is easily quantifiable. We suggest that integrating the ontogenetic approach and behavioral 

assays will enhance comparative work on the evolution of cognition. 

In conclusion, we provide evidence that the ability to retain memories over time is a 

main factor in the selective trade-offs influencing brain size and cognitive ability when animals 

evolve miniature body sizes. In turn, limitations in memory retention may influence other 

variables, such as the time window over which miniature animals have the opportunity to learn 

relationships between their behavior and its consequences. 
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APPENDIX: Variation in search time 

 

Variation in search time, measured as a) standard deviation and b) coefficient of variation (CV = sd / 

mean), across four levels of maturity in our spiders: spiderlings (sp), early juveniles (ej), advanced 

juveniles (aj), and adults (ad). a) A Brown-Forsythe test for unequal variance found significant differences 

in standard deviation between the groups (F3, 140 = 2.82, p = 0.041), with older spiders showing less 

variance in their behavior. b) For each of the four age groups, we calculated the CV of search time and 

the average sternum width (± 1 SE) of the spiders in the group. Sternum width is a rough proxy for age 

that we used in order to have a continuous independent variable for the regression. A simple linear 

regression between these two variables found no relationship (R2 = 0.16, t-ratio = 0.61, p = 0.60). Note 

that by using a series means as our dependent variable in (b), we violate an assumption of linear 

regressions. However, given that the standard errors are so small relative to the whole range, we find it 

unlikely that this variation in the x-axis is masking a significant non-zero relationship between the 

variables. 
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