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ABSTRACT 
 

DECIPHERING THE MULTI-TIERED REGULATORY NETWORK THAT LINKS 
CYCLIC-DI-GMP SIGNALING TO VIRULENCE AND BACTERIAL BEHAVIORS 

 
by 

Xiaochen Yuan 
The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Ching-Hong Yang, Ph.D. 
  

 Bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a bacterial second 

messenger that regulates multiple cellular behaviors in most major bacterial phyla. C-di-GMP 

signaling in bacterial often includes enzymes that are responsible for the synthesis and 

degradation of c-di-GMP, effector proteins or molecules that bind c-di-GMP, and targets that 

interact with effectors. However, little is known about the specificity of c-di-GMP signaling in 

controlling virulence and bacterial behaviors. In this work, we have investigated the 

c-di-GMP signaling network using the model plant pathogen Dickeya dadantii 3937.  

 In Chapter 2, we characterized two PilZ domain proteins that regulate biofilm formation, 

swimming motility, Type III secretion system (T3SS) gene expression, and pectate lyase 

production in high c-di-GMP level conditions. YcgR3937 binds c-di-GMP both in vivo and in 

vitro. Next, we revealed a sophisticated regulatory network that connects the sRNA, 

c-di-GMP signaling, and flagellar master regulator FlhDC. We proposed FlhDC regulates 

T3SS through three distinct pathways, including the FlhDC-FliA-YcgR3937 pathway; the 

FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Genetic 

analysis showed that EcpC is the most dominant factor for FlhDC to positively regulate T3SS 

expression.  

In chapter 3, we constructed a panel of single-deletion mutants, in which each GGDEF 
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and/or EAL domain protein coding gene was individually either deleted or inactivated. 

Various cellular outputs were investigated using these mutants. We showed that GGDEF 

domain protein GcpA negatively regulates swimming motility, pectate lyase production, and 

T3SS gene expression. GcpD and GcpL only negatively regulate the expression of T3SS and 

swimming motility but not the pectate lyase production.  
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1.1 Dickeya dadantii 3937 

1.1.1 Background and Significance of Dickeya dadantii 3937 

Dickeya dadantii 3937 (former name Erwinia chrysanthemi 3937) was first observed to 

cause disease on greenhouse stocks of Chrysanthemums morifolium in New York in the 1950s. 

Studies of cell morphology, culture conditions and biochemical characteristics determined that 

this isolated organism was a new species of Erwinia, and was thus named as Erwinia 

chrysanthemi (Burkholder et al. 1953). Thereafter, taxonomical analysis using 16S rDNA 

sequencing and DNA-DNA hybridization techniques reclassified E. chrysanthemi 3937 into a 

new genus Dickeya (named for American phytopathologist Robert S. Dickey), which is 

different from other Erwinia sp. (Gardan 2005; Ma et al. 2007). Thus, a new name was given 

to Erwinia chrysanthemi 3937 as Dickeya dadantii 3937.  

D. dadantii is known to cause diseases on a wide range of host plants throughout the 

world, including tropical, subtropical, and temperate regions. Based on literature provided by 

the European and Mediterranean Plant Protection Organization (EPPO), this pathogen infects 

a wide range of ornamental and horticultural host plants, including many economically 

important vegetables such as potato, tomato and carrot (Czajkowski et al. 2011). D. dadantii 

cells can live in soils and water-logged environments as either epiphytes or saprophytes 

(Cother and Gilbert 1990; Robert-Baudouy et al. 2000; Reverchon and Nasser 2013). Several 

studies reported that D. dadantii is able to survive for weeks in cattle fecal material, months in 

sterile distilled water, or on other non-host plants without infection (Cother and Gilbert 1990; 

Lohuis 1990; Nelson 2009). However, once D. dadantii encounters a susceptible host under 

favorable conditions such as high temperature (above 30°C) and high humidity, it can quickly 
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shift to its pathogenic state and initiate infection. As a plant pathogen, D. dadantii causes a 

variety of disease symptoms within several parts of the plant. In the fleshy and succulent areas, 

such as tubers and leaves, D. dadantii causes severe maceration or decaying of these plant 

tissues, which is a localized symptom often referred to as “soft rot.” Additionally, D. dadantii 

is able to infect xylem vessels, resulting in a systemic infection that causes wilting. Grenier 

and colleagues reported that D. dadantii is capable of infecting pea aphid, which may serve as 

an insect vector for Dickeya disease transmission (Grenier et al. 2006).  

The complete genome of D. dadantii 3937 has been sequenced, and thus this organism is 

widely used as a model system (Glasner et al. 2011). Genetically, it is a close relative of 

Escherichia coli, and animal pathogens Yersinia and Salmonella. Physically, D. dadantii is a 

Gram-negative, rod-shaped bacterium, whose cells measure 1.8 µm in length and 0.6 µm in 

diameter. It is also motile, due to its peritrichous flagella, and does not form spores.  

 

1.1.2 Virulence mechanisms of D. dadantii 3937 

The initial attachment of D. dadantii to the plant surface is crucial for its pathogenicity. In 

order to increase this attachment, D. dadantii secretes the CdiA/HecA type V secreted protein, 

resulting in enhanced adherence of bacteria to the plant surface (Rojas et al. 2002). It also 

produces a biosurfactant and cellulose fibrils that contribute to the bacterial colonization and 

aggregation on leaves, respectively (Hommais et al. 2008; Jahn et al. 2011; Prigent-Combaret 

et al. 2012). As a phytopathogen, D. dadantii has a strong response to jasmonic acid, which is 

an environmental stimulus produced by wounded plant tissue. Chemotaxis and motility then 

enable this pathogen to move to these wounded sites and facilitate the invasion of D. dadantii 
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to the apoplast (Antúnez-Lamas et al. 2009a; Antúnez-Lamas et al. 2009b). In the apoplast, 

plants can sense molecules originating from pathogens, which triggers of a battery of immune 

responses. Pathogen-associated molecular patterns (PAMP)/pattern-triggered immunity (PTI) 

and effector-triggered immunity (ETI) are two well-defined modes of plant immunity against 

pathogens (Dubery et al. 2012; Gassmann and Bhattacharjee 2012; Spoel and Dong 2012). 

PTI is activated via recognition of pathogen/microbe-associated molecular patterns 

(PAMPs/MAMPs), such as the bacterial flagellin and lipopolysaccharide (LPS). However, 

bacterial pathogens utilize the Type III secretion system (T3SS) to successfully evade the PTI 

and attenuate the host defense mechanisms. The T3SS allows the bacteria to translocate 

several effector proteins directly into the host cell cytoplasm. As a result, ETI will be 

provoked by specific recognition of these effector proteins. The plant then synthesizes 

proteins to neutralize the injected bacterial effectors, which is associated with apoptosis, or 

programmed cell death, called the hypersensitive response (HR) in the non-host plant such as 

tobacco (Bauer et al. 1995; Pieterse et al. 2009). D. dadantii can degrade the plant cell wall, 

which is correlated with its ability to express and secrete plant cell wall degrading enzymes 

(PCWDE) that include pectinases, proteases, cellulases, and polygalacturonases (Collmer and 

Keen 1986; Roy et al. 1999; Herron et al. 2000; Kazemi-Pour et al. 2004). Pectinases and 

cellulases are secreted by the Out pathway, which is the Type II secretion system (T2SS) 

(Andro et al. 1984; Condemine et al. 1992b; Lindeberg and Collmer 1992). Proteases are 

secreted by the PrtDEF Type I secretion system (Shevchik et al. 1998). 

 

1.1.2.1 Type II secretion system 
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D. dadantii 3937 secretes a plethora of PCWDEs to cause severe maceration and wilting 

of host tissue. These enzymes are released via an ATP-dependent secretion system notated as 

the T2SS. The T2SS, also known as the Out system, translocates Out proteins and pectinolytic 

enzymes into the extracellular space, which interact with host plant tissues (Condemine et al. 

1992b; Lindeberg and Collmer 1992; Sandkvist 2001). As a result, these enzymes break down 

the long-chain carbohydrate pectin into smaller sugars, which can then be used in bacterial 

metabolism.  

The regulation of pectate lyase production is complex, including modifications of DNA 

topology, quorum-sensing and other regulatory systems that are associated with bacterial 

physiological and metabolic status (Römling et al. 2013) (Fig. 1). During the early and 

intermediate stages of infection, bacterial chromosomal DNA is relaxed in response to the 

oxidative and acidic stresses and provokes a strong negative effect on pel gene transcription 

(Ouafa et al. 2012). Major pectate lyase repressors, such as Fis, H-NS, PecT, PecS, and KdgR, 

directly bind to the relaxed pel gene promoters and regulate their expression (Condemine et al. 

1992a; Castillo et al. 1998; Rodionov et al. 2004; Lautier and Nasser 2007; Hommais et al. 

2008; Ouafa et al. 2012). A recent study showed that PecT preferentially binds relaxed pel 

promoters (Hérault et al. 2014). Negative regulation of pectate lyase production is also 

provided by a two-component regulatory system PhoP/PhoQ, and the ferric uptake receptor 

Fur, both of which are activated under acidic conditions (Franza et al. 2002; Venkatesh et al. 

2006; Wu et al. 2014). RsmA, a global post-transcriptional regulator, degrades pel mRNA and 

promotes its time-dependent degradation (Charkowski et al. 2012). During the advanced 

stages of infection, alkalinization of plant tissue increases the pH value, resulting in 
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inactivation of PhoP/PhoQ and Fur, and activation of pel operon activator MfbR (Reverchon 

et al. 2010). GacS/GacA, another two-component system, is activated, which in turn represses 

the expression of rsmA and pecT (Yang et al. 2008b; Charkowski et al. 2012). Degradation of 

pectin to 2-keto-3-deoxygluconate (KDG) relieves the pel promoter from its cognate repressor 

KdgR, which becomes inactive when complexed to KDG (Rodionov et al. 2004). The cAMP 

receptor protein CRP, which is activated during differential carbon utilization, and a newly 

defined quorum-sensing system Vfm, also assist in positive regulation of pectate lyase 

production (Hugouvieux-Cotte-Pattat et al. 1996; Nasser et al. 2013; Reverchon and Nasser 

2013). In addition, a DNA supercoiling state decreases the Fis and H-NS repression of the pel 

genes (Reverchon and Nasser 2013). 

     

1.1.2.2 Type III secretion system and its regulatory mechanism 

The T3SS is required for complete pathogenicity of D. dadantii 3937 (Yang et al. 2002; 

Yang et al. 2004). It is encoded by two divergent operons, which include approximately 32 

ORFs located in the hrp/hrc/dsp gene clusters (Yang et al. 2002; Yang et al. 2010; Glasner et 

al. 2011). Evolutionarily, the T3SS and bacterial flagellum share a common ancestor, and the 

basal structure of the T3SS shows many similarities with bacterial flagellum (Young et al. 

1999; Lee and Galán 2004; Pallen et al. 2005; Erhardt et al. 2010). In addition, FlhDC, the 

master regulator of flagellar transcription, positively regulates the expression of T3SS in 

Pectobacterium carotovorum and D. dadantii 3937 (Cui et al. 2008; Yuan et al. 2015). 

The expression of T3SS genes is modulated by two main regulatory pathways at both the 

transcriptional and post-transcriptional levels (Yap et al. 2005; Tang et al. 2006; Yang et al. 
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2008a; Yang et al. 2008b) (Fig. 2). In the HrpX/HrpY-HrpS-HrpL pathway, HrpX/HrpY is a 

two-component system, which activates the expression of hrpS. HrpS is an NtrC-family 

transcriptional enhancer protein, which interacts with the sigma factor RpoN (σ54), and then 

activates the transcription of hrpL (Yap et al. 2005). HrpL is a member of the 

extracytoplasmic factor (ECF) family alternative sigma factors that activates the expression of 

T3SS structural and effector genes, such as hrpA, hrpN and dspE, which encode the T3SS 

pilus protein, a harpin protein and a virulence effector, respectively (Wei and Beer 1995; 

Chatterjee et al. 2002; Tang et al. 2006). The T3SS gene expression is also controlled by the 

GacS/A-RsmB-RsmA-HrpL pathway at the post-transcriptional level (Chatterjee et al. 2002; 

Yang et al. 2008b). The two component system GacS/GacA positively controls the expression 

of a regulatory small RNA (sRNA) RsmB (Yang et al. 2008b). RsmB binds to its target 

protein RsmA with high affinity and neutralizes its activity against hrpL mRNA (Liu et al. 

1998; Chatterjee et al. 2002). In D. dadantii 3937, RsmA is a small RNA-binding protein that 

binds to the 5’ untranslated region of hrpL mRNA, and facilitates its time-dependent 

degradation (Chatterjee et al. 1995). Besides the above mentioned regulators, the expression 

of T3SS genes is also modulated by the polynucleotide phosphorylase (PNPase), a regulator 

of the SlyA/MarR family (SlyA), a global bacterial second messenger bis-(3’-5’)-cyclic 

di-GMP (c-di-GMP), and some natural phenolic compounds in the plant (Yang et al. 2008a; 

Yi et al. 2010; Zeng et al. 2010; Zou et al. 2012). 

 

1.1.2.3 Role and regulatory mechanism of chemotaxis and motility  

Chemotaxis and motility are crucial for D. dadantii 3937 to reach the interior of the plant 
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in order to cause disease (Antúnez-Lamas et al. 2009a). Bacterial cells use chemotactic 

signaling to move away from hostile surroundings and towards favorable conditions (Lux and 

Shi 2004). In the chemotaxis signaling system, methyl-accepting chemotaxis proteins (MCPs) 

function as transmembrane receptors, which sense the environmental cues and transmit the 

chemotactic signal to the cytoplasm (Parkinson et al. 2005). Several cellular proteins such as 

CheA and CheY, a histidine kinase and a response regulator respectively, then transfer the 

chemical signal to the flagellar switch (Wadhams and Armitage 2004). In many bacterial 

species, motility is determined by the rotation of flagella. In general, bacterial cells move 

forward when the rotation of flagella is counter-clockwise; they tumble in place to change 

direction when the flagellar rotation is clockwise (Eisenbach 1996).   

 Intensive studies have established a hierarchical regulation of the flagellar assembly 

system in E. coli and other enteric bacteria (Chilcott and Hughes 2000; Aldridge and Hughes 

2002) (Fig. 3). The expression of a functional chemotaxis and flagellar system require more 

than 50 genes, which are divided among at least 17 operons in the flagellar regulon (Chilcott 

and Hughes 2000). These genes are referred to as class I, class II, and class III, depending 

upon the expression of these genes at early, middle, or late stages. In addition, the expression 

of the previous transcriptional class is required for the expression of the next class (Kutsukake 

et al. 1990). The class I genes include two genes that are transcribed from the flhDC operon. 

FlhD and FlhC form a hetero-oligomeric complex (FlhD4FlhC2), which functions as a 

transcriptional activator for the class II genes (Liu and Matsumura 1994; Wang et al. 2006). 

Proteins encoded by the class II genes include those necessary for the basal body and hook of 

the flagellum known as the hook-basal body intermediate structure, and the transcriptional 
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regulators FlgM and FliA (Chilcott and Hughes 2000). FliA is an alternative sigma factor (σ28) 

that determines the transcription of σ28 RNA polymerase-specific class III genes (Ide et al. 

1999; Schaubach and Dombroski 1999). The protein products of class III operons are required 

to form a complete flagellum, such as the outer subunits of the flagellum, chemotaxis and the 

flagellar motor (Chilcott and Hughes 2000; Aldridge et al. 2006). FlgM binds to FliA, 

resulting in an inhibition of FliA-dependent transcription. This negative regulation on FliA 

will be relieved upon completion of the hook-basal body intermediate structure (Ohnishi et al. 

1992).  

 

1.1.3 A bacterial second messenger c-di-GMP 

Bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a common bacterial 

second messenger found in most major bacterial phyla (Römling et al. 2013). It was first 

discovered in 1987 as an allosteric activator for cellulose synthase in Gluconacetobacter 

xylinus (Ross et al. 1987; Tal et al. 1998). It is now established that c-di-GMP is involved in 

the regulation of many cellular activities, including biofilm formation, motility, cell cycle, 

antibiotic production, virulence, and other processes (Dow et al. 2006; Cotter and Stibitz 2007; 

Fineran et al. 2007; Ryan et al. 2007; Tamayo et al. 2007; Wolfe and Visick 2008; Duerig et al. 

2009; Hengge 2009; Yi et al. 2010). The synthesis and breakdown of c-di-GMP are dependent 

on two groups of enzymes, the diguanylate cyclase (DGC) enzymes and the 

c-di-GMP-specific phosphodiesterase (PDE) enzymes, respectively (Fig. 4). DGC activity is 

associated with the GGDEF domain, which converts two molecules of 

guanosine-5’-triphosphate (GTP) to c-di-GMP (Paul et al. 2004; Solano et al. 2009). PDE 
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activity is associated with either the EAL or the HD-GYP domains, which degrade c-di-GMP 

to 5’-phosphoguanylyl-(3’-5’)-guanosine (pGpG) or two molecules of guanosine 

monophosphate (GMP), respectively (Schmidt et al. 2005; Tamayo et al. 2005; Ryan et al. 

2006a). Studies of the DGCs and PDEs revealed that most GGDEF, EAL and HD-GYP 

domains are linked to various N-terminal sensory input domains, such as PAS, GAF, CHASE, 

and REC domain (Galperin 2004; Ryan et al. 2006b; Hengge 2009). Signals received by the 

above mentioned sensor domains include numerous environmental cues, such as light, oxygen, 

and redox conditions, as well as other cellular signals including antibiotics, polyamines or 

intercellular signaling molecules (Galperin et al. 2001; Galperin 2004; Jenal and Malone 

2006). Recently, Townsley and colleagues reported that temperature also serves as an 

environmental signal to regulate c-di-GMP-dependent biofilm formation in Vibrio cholerae 

(Townsley and Yildiz 2015), however, many primary signals in the c-di-GMP signaling 

network are yet to be identified. C-di-GMP binds to diverse classes of receptors in order to 

regulate bacterial activities. These include PliZ domain receptors, inactive GGDEF, EAL and 

HD-GYP domain receptors, and two types of RNA riboswitches (Sudarsan et al. 2008; 

Krasteva et al. 2012; Ryan et al. 2012; Römling et al. 2013).  

The genomes of many bacteria contain a large number of enzymes involved in the 

synthesis and breakdown of c-di-GMP. For example, V. cholerae encodes more than 50 

GGDEF or EAL domain proteins, E. coli has 29 GGDEF or EAL domain proteins, whereas 

Caulobacter crescentus has 14 (Hengge 2009). In D. dadantii, there are 12 GGDEF, 4 EAL, 

and 2 GGDEF and EAL dual domain proteins. The multiplicity of these proteins raises 

questions of the specificity of c-di-GMP signaling. To determine whether they regulate 
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diverse cellular outputs redundantly or in a temporal and spatial manner, the functions of each 

GGDEF and/or EAL domain proteins need to be investigated in D. dadantii 3937.  
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  Source: modified from (Reverchon and Nasser 2013) 

 
FIG 1 Regulation of pectate lyase production during D. dadantii 3937 pathogenesis. During early and 
intermediate stages of infection, generation of reactive oxygen species (ROS) and low pH conditions in the 
plant cause bacterial DNA relaxation, and activation of several pectate lyase repressors including 
PhoP-PhoQ and Fur. The relaxed DNA facilitates major regulators such as Fis and H-NS to bind and 
repress the pel gene expression. During advanced stages of infection, the in plant condition is altered 
resulting in higher pH value, increased acetate, 2-keto-3-deoxygluconate (KDG) concentration, and 
quorum-sensing signals. These changes inactivate the repressors mentioned above, while activate the 
activators for petate lyase production. Fis production is growth phase regulated, and is mainly produced 
during the early exponential growth phase while decreasing in concentration during the stationary growth 
phase. Arrows and bars indicate activation and repression of gene expression, respectively.  
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FIG 2 Regulatory mechanism of T3SS in D. dadantii 3937. HrpX/Y-HrpS pathway positively regulates 
HrpL at the transcriptional level. GacS/A-RsmB-RsmA pathway controls T3SS at the post transcriptional 
level. Arrows and bars indicate positive and negative regulation, respectively. 
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Source: modified from (Chilcott and Hughes 2000)  

 
FIG 3 Flagellar transcriptional hierarchy in bacteria. The flagellar master regulator FlhDC, which is 
encoded from two early (class I) genes, is required for the transcription of middle (class II) genes. Proteins 
encoded by middle genes include those necessary for the flagellar hook-basal body structure, and two 
regulatory proteins, FlgM and FliA. FliA is an alternative sigma factor that activates the transcription of 
late (class III) genes to accomplish the flagellar assembly.  
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FIG 4 Modulation of c-di-GMP and its regulatory effects on diverse cellular behaviors. Diguanylate 
cyclases (DGCs) contain GGDEF domain, which synthesize c-di-GMP from two molecules of GTP. 
Phosphodiesterases (PDEs) with either an EAL or HD-GYP domain, break down c-di-GMP.  
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Cross-talk between a regulatory small RNA, cyclic-di-GMP signaling, and flagellar 
  

regulator FlhDC for virulence and bacterial behaviors 
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ABSTRACT 

Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide 

range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress 

host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. 

Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate 

(c-di-GMP), and flagellar regulators have been reported to affect the regulation of these two 

virulence factors and multiple cell behaviors such as motility and biofilm formation, the 

linkage between these regulatory components that coordinate the cell behaviors remain 

unclear.  Here we reveal a sophisticated regulatory network that connects the sRNA, 

c-di-GMP signaling, and flagellar master regulator FlhDC. We propose multi-tiered regulatory 

mechanisms that link the FlhDC to the T3SS through three distinct pathways including the 

FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the 

FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for 

FlhDC to positively regulate T3SS expression.  

 

INTRODUCTION 

Dickeya dadantii 3937, belonging to the Enterobacteriaceae family, is a Gram-negative 

plant pathogen that causes soft rot, wilt, and blight diseases on a wide range of plant species, 

including many economically important vegetables such as potato, tomato and chicory 

(Czajkowski et al. 2011). There are many virulence factors that contribute to the pathogenesis 

of D. dadantii at different stages of infection. For example, during the primary stage of 

infection, D. dadantii produces several factors that enhance its adhesion to the plant surface, 

such as cellulose fibrils, CdiA-type V secreted proteins and a biosurfactant (Rojas et al. 2002; 
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Hommais et al. 2008; Jahn et al. 2011; Prigent-Combaret et al. 2012). Chemotaxis and 

motility are essential when D. dadantii needs a favorable site to enter into the plant apoplast 

(Antúnez-Lamas et al. 2009). In the apoplast, D. dadantii uses a Type III secretion system 

(T3SS) to further invade the plant host (Bauer et al. 1994; Yang et al. 2002) by translocating 

virulence effector proteins into the host cytoplasm, thereby causing disease symptoms (Hueck 

1998; He et al. 2004; Mota et al. 2005). At later stages of infection, large areas of maceration 

on plant leaves and tissues occur due to the production and secretion of plant cell wall 

degrading enzymes, such as pectate lyases, proteases, cellulases and polygalacturonases 

(Collmer and Keen 1986; Roy et al. 1999; Herron et al. 2000; Kazemi-Pour et al. 2004). 

The T3SS of D. dadantii is encoded by a group I hrp gene cluster, in which the 

alternative sigma factor HrpL is required to activate most hrp operons (Alfano and Collmer 

1997). Two regulatory pathways to control the expression of hrpL have been discovered in D. 

dadantii (Yap et al. 2005; Tang et al. 2006; Yang et al. 2008a; Yang et al. 2008b). The first 

pathway is through the two-component signal transduction system (TCS) HrpX/HrpY, which 

directly activates hrpS transcription. HrpS is a σ54 (RpoN)-enhancer binding protein, that 

binds a σ54 -containing RNA polymerase holoenzyme and initiates the transcription of hrpL 

(Chatterjee et al. 2002; Yap et al. 2005; Tang et al. 2006). Hence, HrpL is able to activate 

most genes downstream in the T3SS regulatory cascade, such as hrpA, hrpN, and dspE, which 

encode the T3SS pilus protein, a harpin protein, and a virulence effector, respectively (Wei 

and Beer 1995; Chatterjee et al. 2002; Tang et al. 2006). hrpL is also post-transcriptionally 

regulated by the RsmA/rsmB RNA-mediated pathway (Chatterjee et al. 2002; Yang et al. 

2008b). RsmA is a small RNA-binding protein that binds to the 5’ untranslated region of hrpL 
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mRNA, and facilitates its degradation (Chatterjee et al. 1995). RsmB is an untranslated 

regulatory RNA that binds to RsmA and sequesters its negative effect on hrpL mRNA (Liu et 

al. 1998; Chatterjee et al. 2002). The global two-component system GacS/A upregulates 

RsmB RNA production, which alternatively increases downstream T3SS gene expression 

(Yang et al. 2008b). How these regulatory pathways are coordinated to regulate T3SS gene 

expression remains unclear. 

Recent work from our laboratory demonstrated that a bacterial second messenger 

bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global regulatory signal 

in D. dadantii controlling the expression of T3SS-encoding genes, the production of pectate 

lyase, swimming and swarming motility, and biofilm formation (Yi et al. 2010). This is in 

agreement with the function of c-di-GMP in many other bacterial species showing that 

c-di-GMP regulates diverse cellular activities (Cotter and Stibitz 2007; Hengge 2009; 

Schirmer and Jenal 2009; Römling 2012). The synthesis and degradation of c-di-GMP are 

controlled by two types of enzymes performing opposing functions. They are the GGDEF 

domain-containing diguanylate cyclases (DGC), which convert two molecules of GTP to 

c-di-GMP (Paul et al. 2004; Solano et al. 2009), and the EAL or the HD-GYP 

domain-containing phosphodiesterases (PDE), which break down c-di-GMP into 

5’-phosphoguanylyl-(3’-5’)-guanosine (pGpG) or 2 guanosine monophosphates, respectively 

(Schmidt et al. 2005; Tamayo et al. 2005; Ryan et al. 2006). In order for c-di-GMP to exert 

such diverse influences in the cell, a range of cellular c-di-GMP effectors have been identified 

including PilZ domain proteins, transcription factors, enzymatically inactive GGDEF and/or 

EAL domain proteins and RNA riboswitches. These effectors are able to directly interact with 
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c-di-GMP which either activates or represses their activity (Hengge 2009; Breaker 2011; 

Ryan et al. 2012).  

It has long been established that flagellar gene expression and assembly is a highly 

regulated process and occurs in a hierarchical manner. In Escherichia coli and other enteric 

bacteria, FlhDC is the master regulator, also defined as class I operon in flagellar assembly 

genes (Wang et al. 2006). FlhDC activates the expression of class II operons which encode 

the basal body and hook of the flagellum and an alternative σ factor (σ28) FliA. FliA is 

required for the activation of class III operons which encode proteins for the outer subunits of 

the flagellum, chemotaxis and the flagellar motor (Chilcott and Hughes 2000; Aldridge et al. 

2006). Recently, it has been reported that FlhDC regulates the expression of genes encoding 

GGDEF domains in E. coli (Pesavento et al. 2008). In addition, FlhDC positively regulates 

T3SS gene expression and extracellular enzyme production in Pectobacterium carotovorum 

by activating the expression of rsmB regulatory RNA (Cui et al. 2008). The homolog of 

FlhDC was also found in the genome of D. dadantii 3937, but its regulatory function has not 

yet been fully characterized.  

C-di-GMP control of flagellar motility has been well studied in some bacterial species 

(Ryjenkov et al. 2006; Hengge 2009). For example, the PilZ-domain protein YcgR slows 

down flagellar rotation by directly binding to switch complex proteins under elevated 

c-di-GMP conditions (Fang and Gomelsky 2010; Paul et al. 2010). C-di-GMP also directly 

controls motility by transcriptional regulation of flagellar synthesis in Vibrio cholerae 

(Srivastava et al. 2013) and indirectly through induction of extracellular polysaccharides, 

which inhibit motility via undescribed mechanisms in V. cholerae and Salmonella (Srivastava 
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et al. 2013; Zorraquino et al. 2013). 

In this study, we further investigated the impact of the PDEs EGcpB and EcpC on 

c-di-GMP-regulated behaviors in D. dadantii 3937. We identified two PilZ domain proteins 

YcgR3937 and BcsA3937, and determined their roles and functional relationship with EGcpB 

and EcpC. Then we systematically investigated the multi-tiered regulatory pathways linking 

the flagellar master regulator FlhDC to c-di-GMP signaling and T3SS gene expression. We 

found that EcpC is the major contributor that controls the T3SS through FlhDC. 

 

EXPERIMENTAL PROCEDURES 

Bacterial strains, plasmids, primers, and media 

The bacterial strains and plasmids used in this study are listed in Table 2. D. dadantii 3937 

and mutant strains were stored at –80°C in 20% glycerol. D. dadantii strains were grown in 

Luria-Bertani (LB) medium (1% tryptone, 0.5% yeast extract, and 1% NaCl), 

mannitol-glutamic acid (MG) medium (1% mannitol, 0.2% glutamic acid, 0.05% potassium 

phosphate monobasic, 0.02% NaCl, and 0.02% MgSO4) or low-nutrient T3SS inducing MM 

at 28°C (Yang et al. 2007; Yang et al. 2008b). E. coli strains were grown in LB at 37°C. 

Antibiotics were added to the media at the following concentrations: ampicillin (100 μg/ml), 

kanamycin (50 μg/ml), gentamicin (10 μg/ml), chloramphenicol (20 μg/ml), tetracycline (12 

μg/ml) and spectinomycin (100 μg/ml). The D. dadantii 3937 genome sequence can be 

retrieved from ASAP (https://asap.ahabs.wisc.edu/asap/home.php). Primers used for PCR in 

this report are listed in Table 3. 
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Mutant construction and complementation 

The flhDC, fliA, bcsA3937 and ycgR3937 genes were deleted from the genome by marker 

exchange mutagenesis (Yang et al. 2002). Briefly, two fragments flanking each target gene 

were amplified by PCR with specific primers (Table 3). The kanamycin cassette was 

amplified from pKD4 (Datsenko and Wanner 2000), and was cloned between two flanking 

regions using three-way cross-over PCR. The PCR construct was inserted into the suicide 

plasmid pWM91, and the resulting plasmid was transformed into D. dadantii 3937 by 

conjugation using E. coli strain S17-1 λ-pir. To select strains with chromosomal deletions, 

recombinants, grown on kanamycin medium, were plated on 5% sucrose plate. Cells that were 

resistant to sucrose due to SacB-mediated toxicity were then plated on ampicillin plate, and 

the ampicillin sensitive cells were confirmed by polymerase chain reaction (PCR) using 

outside primers. Finally, the DNA fragment which contains two flanking regions and 

kanamycin cassette was sequencing confirmed.  

To generate complemented strains, the promoter and ORF region of target genes were 

amplified and cloned into low-copy-number plasmid pCL1920 (Table 2). The resulting 

plasmids were then confirmed by PCR and electroporated into mutant cells.  

 

Biofilm formation assay 

Biofilm formation was determined by using a method that was previously described (Yi et al. 

2010). In brief, bacterial cells grown overnight in LB media were inoculated 1:100 in MM 

media in 1.5 ml polypropylene tubes. After incubation at 28°C for 48 h, cells were stained 

with 1% crystal violet (CV) for 15 min. The planktonic cells were removed by several rinses 
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with H2O. The CV-stained bound cells were air dried for 1 h, then dissolved in 90% ethanol, 

and the OD590 of the solution was measured to quantify the biofilm formation. 

 

Swimming motility assay 

Swimming motility was tested by inoculating 10 μl of overnight bacterial cultures (OD600=1.0) 

onto the center of MG plates containing 0.2% agar. The inoculated plates were incubated at 

28°C for 20 h, and the diameter of the radial growth was measured (Antúnez-Lamas et al. 

2009). 

 

Pectate lyase activity assay 

Extracellular Pel activity was measured by spectrometry as previously described (Matsumoto 

et al. 2003). Briefly, bacterial cells were grown in MM media supplemented with 20% 

glycerol and 1% polygalacturonic acid at 28°C for 20 h. For extracellular pel activity, 1 ml 

bacterial cultures were centrifuged at 15,000 rpm for 2 min, supernatant was then collected 

and 10 μl of the supernatant was added to 990 μl of the reaction buffer (0.05% PGA, 0.1 M 

Tris-HCl [pH 8.5], and 0.1 mM CaCl2, prewarmed to 30°C). Pel activity was monitored at 

A230 for 3 min and calculated based on one unit of Pel activity equals to an increase of 1 × 

10–3 OD230 in 1 min. 

 

GFP reporter plasmid construction and flow cytometry assay 

To generate the reporter plasmids pAT-ycgR3937 and pAT-ecpC, the promoter regions of 

ycgR3937 and ecpC were PCR amplified and cloned into the promoter probe vector 
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pPROBE-AT, which contains the ribosomal binding site upstream of the gfp gene, 

respectively (Miller et al. 2000; Leveau and Lindow 2001). The reporter plasmids pAT-hrpA, 

pAT-hrpN, pAT-hrpL and pAT-rsmB were constructed previously following the same 

procedure (Yang et al. 2007; Li et al. 2014). Promoter activity was monitored by measuring 

GFP intensity through flow cytometry (BD Biosciences, San Jose, CA) as previously 

described (Peng et al. 2006). Briefly, bacterial cells with reporter plasmid were grown in LB 

media overnight and inoculated 1:100 into MM media. Samples were collected at 12 h and 24 

h, respectively, and promoter activity was analyzed by detecting GFP intensity using flow 

cytometry. 

 

Determination of intracellular c-di-GMP concentration 

Intracellular c-di-GMP concentrations were determined by using ultra performance liquid 

chromatography coupled with tandem mass spectrometry (UPLC-MS-MS), that has been 

described previously (Edmunds et al. 2013). Overnight bacterial cultures were inoculated 

1:100 into 30 ml LB media in a flask. After the OD600 of bacterial culture reached about 0.8, 

corresponding to mid- to late-exponential growth, cells were centrifuged in 50-ml polystyrene 

centrifuge tubes for 30 min at 4,000 rpm. The supernatant was then removed, and the pellet 

was resuspended in 1.5 ml extraction buffer (40% acetonitrile–40% methanol in 0.1 N formic 

acid). To lyse the cell and release intracellular c-di-GMP, cells resuspended in extraction 

buffer were left at -20°C for 30 min, and then centrifuged at 13,000 rpm for 1 min. The 

supernatant was collected and analyzed by UPLC-MS-MS.  
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Protein expression and purification 

The full length ycgR3937 was cloned into the expression vector pET21b after PVR with 

primers ycgR3937-for-NdeI and ycgR3937-rev-EcoRI (Table 3). To construct the site-specific 

point mutation in the RxxxR motif of YcgR3937 PilZ domain, single nucleotide substitution 

was performed using the QuikChange XL Site-Directed Mutagenesis Kit (Agilent, Santa 

Clara, CA). Briefly, a primer set, ycgR3937-R124D-1 and ycgR3937-R124D-2 (Table 3), was 

used to generate ycgR3937R124D, which changed the RxxxR motif to RxxxD. Substitution was 

confirmed by DNA sequencing. The constructs carrying ycgR3937 and ycgR3937R124D were 

transformed into E. coli BL21 stains for protein expression and purification. Briefly, 

expression of fusion proteins was induced by addition of isopropyl-thio-galactopyranoside at 

a final concentration of 0.5 mM and the bacterial cultures were then incubated at 16°C for 12 

h. Then bacterial cells were collected by centrifugation, followed by suspension in phosphate 

buffered saline and sonication. The crude cell extracts were centrifuged at 12,000 rpm for 25 

min to remove cell debris. The supernatant containing the soluble proteins was collected and 

mixed with preequilibrated Ni2+ resin (GE Healthcare, Piscataway, NJ, U.S.A.) for 3 h at 4°C, 

then placed into a column and extensively washed with buffer containing 30 mM Tris-HCl 

(pH 8.0), 350 mM NaCl, 0.5 mM EDTA, 10% glycerol, 5 mM MgCl2, and 30 mM imidazole. 

The proteins were subsequently eluted with buffer containing 300 mM imidazole. The 

purified proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis.  

 

ITC assay  
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The binding of YcgR3937 and YcgR3937R124D to c-di-GMP was detected on ITC200 (MicroCal, 

Northampton, MA) following the manufacturer’s protocol. In brief, 2 µl of c-di-GMP solution 

(500 µM) was injected at 2 min intervals via a 60 µl syringe into the sample cell containing 

YcgR3937 or YcgR3937R124D proteins (50 µM) with constant stirring at 20°C, and the heat 

change accompanying these additions was recorded. The titration experiment was repeated 

three times, and the data were calibrated with a buffer control and fitted with the single-site 

model to determine the binding constant (Kd) using the MicroCal ORIGIN version 7.0 

software. 

 

Förster resonance energy transfer (FRET) analysis  

To construct the c-di-GMP sensor in vivo, encoded by plasmid pMMB67EHGent-ycgR3937 

(YFP-YcgR3937-CFP), the ycgR3937 fragment was amplified using specific primers (Table 3) 

and cloned into pMMB67EHGent vector. The resulting plasmid was transferred into D. 

dadantii 3937 by electroporation. Bacterial strains containing the pMMB67EHGent vector or 

derivative plasmids were incubated in LB medium at 28°C with a range from 0 to 100 µM 

IPTG (Isopropyl β-D-1-thiogalactopyranoside) and 10 μg/ml gentamycin for 12 or 24 hr to 

express various amounts of YcgR3937-based c-di-GMP sensors. After incubation, the cells 

placed on a glass-bottom dish were ready for FRET imaging. Accurate determination of 

apparent FRET efficiency for cells expressing the YcgR3937-based c-di-GMP sensor was 

performed by spectrally resolved FRET imaging (Raicu et al. 2009) using an optical 

micro-spectroscope (OptiMiS TruLine, Aurora Spectral Technologies, Milwaukee, WI). The 

imaging system was equipped with a Ti-Sapphire laser (Tsunami, Spectra-Physics) with a 
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tuning range of 690–1040 nm and delivering pulses with a width of < 100 fs at a repetition 

rate of 80 MHz. In this system, the excitation beam is shaped into a line by employing a 

curved mirror placed at the back focal plane of the scanning lens (Biener et al. 2013). This 

set-up features a reduced acquisition time and increased overall sensitivity. The incident light 

is focused through an infinity-corrected oil-immersion objective (100× magnification, NA 1.4, 

Nikon Instruments, Melville, NY) to a line with diffraction-limited thickness on the sample. 

The emitted light is passed through a transmission grating and projected onto a cooled 

electron-multiplying CCD camera (EMCCD; Andor, iXon 897). 

Dishes containing cells expressing the c-di-GMP sensor were placed on the microscope 

sample stage and irradiated at 800 nm with femtosecond light pulses to obtain emission 

spectra consisting of signals from donors and acceptors for every pixel in an image. Emission 

spectra also were separately acquired for cells expressing donors or acceptors alone, which 

were excited at 800 nm and 960 nm, respectively; the measured fluorescence intensities were 

normalized to the maximum value to obtain elementary spectra for donors and acceptors. The 

elementary spectra where then used to unmix the donor and acceptor signals for the cells 

expressing the c-di-GMP sensor following a procedure described elsewhere (Raicu and Singh 

2013). The signals corresponding to the donor in the presence of acceptor (kDA) and acceptor 

in the presence of donor (kAD), respectively, were used to compute the FRET efficiency at 

each pixel in an image, using the same method as described before (Raicu et al. 2009). 

For data analysis, an automatic computer algorithm, based on thresholding, masking, and 

segmentation, was performed. First, an image was generated (labeled as FD) by correcting for 

FRET the digital image of the donor in the presence of acceptor, kDA, and multiplying by the 
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donor spectral integral, as described elsewhere (Patowary et al. 2013). Then, a threshold for 

the donor emission, based on Otsu’s algorithm, was chosen (Otsu 1975). Next, a mask of the 

FD image was formed using this threshold. The mask was segmented using a MATLAB 

function “boundaries” (Gonzalez et al. 2004). The segments’ boundaries were plotted to assist 

the user in removing segments containing multiple bacteria. Once the segments were 

approved by the user, the mask was used to select all the pixels corresponding to individual 

cells. Fluorescence images contained an average of 50 cells per image. Between 5 and 11 

images were acquired for each sample type. Average FRET efficiency values were computed 

over all cells in an image and then mean values and standard errors of the mean (i.e., standard 

deviation divided by the square root of the number of images) were computed for each sample 

type. 

 

Northern blotting analysis 

To measure the RNA levels of rsmB in wild type, ΔflhDC, ΔfliA and complemented strains, 

bacterial cells grown in MM for 12 h were harvested and total RNA was isolated using TRI 

reagent (Sigma-Aldrich, St. Louis, MO). The residual DNA was removed with a Turbo 

DNA-free DNase kit (Ambion, Austin, TX). Northern blotting analysis was performed using 

biotin-labelled probe and a biotin detection system (BrightStar Psoralen-Biotin and Bright 

Star BioDetect, Ambion). 16S rRNA was used as an internal control.  

 

qRT-PCR analysis 

The mRNA levels of rpoN and hrpL were measured by qRT-PCR. Briefly, bacterial cells 
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cultured in MM for 12 h were harvested and total RNA was isolated using RNeasy mini kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s instruction. Extracted RNA was 

treated with Turbo DNase I (Ambion, Austin, TX), and cDNA was synthesized using iScript 

cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA). The cDNA level of target genes 

was quantified by qRT-PCR using a Real Master Mix (Eppendorf, Westbury, NY, USA), as 

described previously (Peng et al. 2006). Data were analyzed using a Relative Expression 

Software Tool (Pfaffl et al. 2002). The expression level of rplU was used as an endogenous 

control for data analysis (Mah et al. 2003).  

 

Virulence assay 

The local leaf maceration assay was performed using the leaves of Chinese cabbage (B. 

campestris) and African violet (S. ionantha) as described (Yi et al. 2010). For African violet, 

50 μl of bacterial suspension at 106 CFU/ml were syringe infiltrated in the middle of each 

symmetric side of the same leaf. Phosphate buffer (50 mM, pH 7.4) was used to suspend the 

bacterial cells. Five replicate plants were used for each bacterial strain, and four leaves were 

inoculated in each plant. For Chinese cabbage, 10 μl of bacterial suspension at 107 CFU/ml 

were inoculated into the wounds punched with a sterile pipette on the leaves. Five leaves were 

used for each strain. Inoculated African violet plants or Chinese cabbage leaves were kept in 

growth chamber at 28°C with 100% relative humidity. To evaluate disease symptoms, APS 

Assess 1.0 software (Image Analysis Software for Plant Disease Quantification) was used to 

determine the leaf maceration area.   
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Statistical analysis 

Means and standard deviations of experimental results were calculated using Excel (Microsoft, 

Redmond, WA) and the statistical analysis was performed using a two-tailed student’s t-test. 

 

RESULTS 

Elevated c-di-GMP levels were detected in D. dadantii egcpB, ecpC, and egcpBecpC 

Previously, we identified two PDE-encoding genes egcpB (former name was ecpB), and 

ecpC in D. dadantii (Yi et al. 2010). Deletion of these PDE-encoding genes resulted in 

increased biofilm formation and reduced swimming motility, pectate lyase production, T3SS 

gene expression, and overall virulence, suggesting that the c-di-GMP level in these mutants is 

increased compared to the wild-type strain (Yi et al. 2010). To determine if these phenotypes 

observed in the above PDE mutants were indeed associated with elevated c-di-GMP levels, 

we performed liquid chromatography-mass spectrometry to measure the intracellular 

c-di-GMP concentration in the wild type and the PDE mutants (The levels of c-di-GMP in 

ΔegcpB, ΔecpC, and ΔegcpBΔecpC were measured by Devanshi Khokhani through 

collaboration with Christopher Waters). As expected, our results showed an increased 

c-di-GMP concentration in egcpB, ecpC, and ΔegcpBΔecpC in comparison with the 

wild-type strain (Fig. 1), suggesting that the two PDEs EGcpB and EcpC indeed reduce 

c-di-GMP concentration in D. dadantii 3937. The fact that the double-deletion mutant had the 

highest level of c-di-GMP indicated that the effect of EGcpB and EcpC was not completely 

redundant, which is consistent with the previous report that ΔegcpBΔecpC showed more 

drastic changes phenotypically than either ΔegcpB or ΔecpC (Yi et al. 2010). 
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PilZ domain proteins regulated biofilm formation, swimming motility, and pectate lyase 

production in D. dadantii under elevated c-di-GMP conditions 

C-di-GMP effectors are responsible for directly sensing intracellular changes in 

c-di-GMP levels and regulating cellular activity. PilZ domain proteins are the most widely 

distributed c-di-GMP effectors in bacteria (Hengge 2009). After searching the genome of D. 

dadantii 3937 genome using the Pfam program, we found two genes, ycgR3937 (ABF-0014564) 

and bcsA3937 (ABF-0017612), encoding PilZ domains (Fig. 2). Domain structure analysis 

using the simplified modular architecture research tool (SMART) revealed that YcgR3937, 

similar to the E.coli YcgR protein, has an N-terminal YcgR domain and a C-terminal PilZ 

domain, and BcsA3937 is an E. coli BcsA-like protein, which has an N-terminal cellulose 

synthesis domain and a C-terminal PilZ domain (Fig. 2A). Amino acid sequence alignments 

of the reported PilZ domains from E. coli and those identified in D. dadantii 3937, suggested 

that the c-di-GMP binding motif (RxxxR) is conserved in the PilZ domain of both YcgR3937 

and BcsA3937 proteins (Fig. 2B).  

To investigate whether the regulatory pathway of EGcpB and EcpC is mediated by the 

two PilZ domain proteins, we constructed ycgR3937 and bcsA3937 gene deletion mutants in the 

wild type, ΔegcpB and ΔecpC backgrounds, and examined biofilm formation, swimming 

motility, and pectate lyase production in these mutants. As shown in Figure 3, compared with 

the wild type, there was no detectable impact on biofilm formation, swimming motility, or 

pectate lyase production when bcsA3937 and ycgR3937 were deleted in the wild-type 

background (Fig. 3). This is in agreement with earlier results demonstrating that increased 
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c-di-GMP level is required for triggering the activity of PilZ-domain proteins (Paul et al. 

2010). Compared with ΔegcpB and ΔecpC, no further changes in swimming motility were 

detected when bcsA3937 was deleted in these backgrounds (Fig. 3A). However, both 

∆bcsA3937ΔegcpB and ∆bcsA3937ΔecpC were fully restored to wild-type levels in biofilm 

formation (Fig. 3B). A full restoration of pectate lyase production was also observed when 

bcsA3937 was deleted in either the ΔegcpB and ΔecpC backgrounds (Fig. 3C). Moreover, 

deletion of ycgR3937 in the ΔegcpB and ΔecpC backgrounds led to partial restoration of 

swimming motility and biofilm formation, and full restoration of pectate lyase production 

(Fig. 3D, 3E, 3F).  

To conclude, we propose that PilZ domain proteins BcsA3937 and YcgR3937 participate in 

the regulation of biofilm formation and pectate lyase production at elevated levels of 

c-di-GMP in D. dadantii 3937. In addition, YcgR3937, but not BcsA3937, regulates swimming 

motility when the intracellular levels of c-di-GMP are elevated. 

 

YcgR3937 and BcsA3937 differentially regulate T3SS gene expression under elevated 

c-di-GMP conditions 

Next, we wanted to determine whether YcgR3937 and BcsA3937 mediate regulation of 

T3SS gene expression, since EGcpB and EcpC affected T3SS gene expression in D. dadantii 

3937 (Yi et al. 2010). The promoter activity of the hrpA gene, which encodes the T3SS pilus 

protein, was measured in wild-type and mutant strains. As expected, deleting the ycgR3937 and 

bcsA3937 gene in the wild-type background did not affect hrpA promoter activity. Interestingly, 

a further reduction of hrpA expression was observed in ∆bcsA3937ΔegcpB and 
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∆bcsA3937ΔecpC compared with the ΔegcpB and ΔecpC backgrounds, respectively (Fig. 4A), 

suggesting that BcsA3937 might regulate T3SS gene expression in parallel with EGcpB and 

EcpC. In contrast, the ΔegcpBΔycgR3937 mutant partially restored hrpA promoter activity to 

the wild-type level compared with the egcpB single mutant (Fig. 4B). But there was no 

detectable impact on T3SS gene expression when ycgR3937 was deleted in the ΔecpC 

background (Fig. 4B). Thus, we concluded that EGcpB, but not EcpC, affected T3SS gene 

expression through YcgR3937. 

 

Binding of YcgR3937 to c-di-GMP is required for regulating T3SS gene expression 

Since the above results demonstrated that YcgR3937 was in the signaling pathway of 

EGcpB to regulate the T3SS, we were interested in determining whether this regulation was 

related to its binding to c-di-GMP. First, we examined whether YcgR3937 bound c-di-GMP in 

vivo and in vitro. The results from isothermal tritration colorimetry (ITC) assay revealed that 

the purified YcgR3937 protein was capable of binding c-di-GMP at a 1:1 stoichiometric ratio 

with an estimated dissociation constant (Kd) of 413±64 nM (Fig. 5A). In contrast, the 

YcgR3937R124D protein failed to bind c-di-GMP due to the mutation of the second arginine in 

the RxxxR motif in YcgR3937, which is in agreement with the notion that these arginine 

residues are critical for the recognition of c-di-GMP by PilZ domains (Ryjenkov et al. 2006) 

(Fig. 5B). To probe the interaction between YcgR3937 and c-di-GMP in living cells, we 

constructed a biosensor, in which YcgR3937 was fused to yellow (YFP) and cyan (CFP) 

fluorescent proteins at the N and C termini, respectively. The CFP and YFP acted as a 

donor-acceptor pair in a process of Förster resonance energy transfer (FRET), which relies on 
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the distance-dependent transfer of energy from an excited donor fluorescent protein to an 

acceptor fluorescent protein (Raicu and Singh 2013). Previous studies using a biosensor 

derived from Salmonella enterica serovar Typhimurium protein YcgR (YFP-YcgR-CFP) in 

diverse Gram-negative bacterial species demonstrated that the YcgR-based c-di-GMP sensor 

undergoes a conformational change that pushes the donor and acceptor apart when c-di-GMP 

binds to the PilZ domain of YcgR; this leads to reduction in the overall FRET efficiency, 

which is inversely proportional to the concentration of c-di-GMP in the cell (Benach et al. 

2007; Christen et al. 2007; Christen et al. 2010; Kulasekara et al. 2013). As shown in Table 1 

(second and third columns), significant differences between the FRET efficiencies in the 

wild-type and ΔegcpBΔecpC strains were observed, which were consistent with the result 

from mass spectrometry assay showing higher concentrations of c-di-GMP for the 

ΔegcpBΔecpC strain than the wild type (Fig. 1). To conclude, these results strongly suggest 

that YcgR3937 directly interacts with c-di-GMP in D. dadantii 3937.  

Next, we performed a chromosomal replacement of ycgR3937 with ycgR3937R124D in the 

ΔegcpB background, and checked T3SS gene expression in this strain. As shown in Figure 4B, 

the promoter activity of the hrpA gene was recovered to a level similar to that in the 

ΔegcpBΔycgR3937 double mutant. Based on these results, we propose that YcgR3937 negatively 

regulates T3SS gene expression only under high c-di-GMP conditions in the ΔegcpB 

background, and that this activity is triggered by directly sensing the intracellular c-di-GMP 

concentration via the YcgR3937 PilZ domain. Similar experiments were also carried out in the 

ΔecpC background. No further change in hrpA gene expression was detected (Fig. 4B), which 

was consistent with the above data showing that YcgR3937 does not mediate T3SS gene 
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expression regulation via EcpC.  

In a study by Tuckerman et al., an E. coli protein complex, termed “degradosome” 

contained a DGC and PDE which mediate the c-di-GMP-dependent RNA processing 

(Tuckerman et al. 2011). We used a bacterial adenylate cyclase two-hybrid (BACTH) system 

to test whether there is a physical interaction between YcgR3937 and EGcpB or EcpC in D. 

dadantii. No positive signal was detected using different protein combinations, suggesting 

that neither EGcpB nor EcpC directly interacts with YcgR3937 (data not shown).  

 

The flagellar master regulator FlhDC positively controls the expression of the T3SS 

regulon in D. dadantii 

Studies comparing the flagellum and the T3SS in several bacterial species demonstrated a 

close link between these two nanomachines in terms of structure, function and expression 

regulation (Young et al. 1999; Lee and Galán 2004; Pallen et al. 2005; Erhardt et al. 2010). In 

enteric bacteria such as E. coli and Salmonella, the flagellar gene regulon has a three-tier 

hierarchy, which is controlled by the class I master regulator FlhDC, and class II alternative 

sigma factor FliA (Macnab 1996). FliA is required for the activation of all flagellar class III 

genes that encode the structural components of the flagellum (Liu and Matsumura 1994). 

Homologs of both FlhDC and FliA are present in D. dadantii. Deletion of flhDC or fliA led to 

significantly reduced motility, indicating that they are important regulators for motility in D. 

dadantii (Fig. 6). To determine whether there is a similar gene expression hierarchy in D. 

dadantii, we examined the promoter activity of fliA in wild-type and ΔflhDC strains. The 

results showed that the promoter activity of fliA was reduced dramatically in the ΔflhDC 
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mutant, and was restored to the wild-type level in the complemented strain (Fig. 7A), 

suggesting that FlhDC strictly controls the expression of fliA.     

In P. carotovorum, Cui and colleagues discovered that the expression of T3SS hrp 

regulon is controlled by FlhDC (Cui et al. 2008). Therefore, we asked whether the homologs 

of FlhDC and FliA in D. dadantii regulate the T3SS. To test this, we first examined the 

promoter activity of hrpL, hrpA and hrpN in the wild-type, ΔflhDC, and ΔfliA strains. 

Deletion of flhDC significantly decreased the promoter activity of hrpA (3.9-fold), hrpN 

(6.6-fold) and hrpL (1.9-fold) under T3SS-inducing conditions (Fig. 7B). Complementation of 

ΔflhDC by expression of flhDC in trans restored the hrpL, hrpA and hrpN promoter activities 

to the wild-type level (Fig. 7B). In contrast, similar promoter activities for hrpL, hrpA and 

hrpN were observed between the wild-type and ΔfliA strains (Fig. 7C), suggesting that FliA 

does not impact T3SS gene expression. These results implied that FlhDC positively controls 

the expression of T3SS independently of FliA.  

 

FlhDC controls expression of ecpC, ycgR3937, but not egcpB 

The data above illustrated that the c-di-GMP degrading enzymes EGcpB and EcpC 

positively regulate the expression of T3SS, while YcgR3937 partially mediates the regulatory 

pathway downstream of EGcpB. In addition, the flagellar master regulator FlhDC also 

positively regulates T3SS gene expression. To understand the regulatory connections between 

these systems, we further examined the expression status of ecpC, egcpB, and ycgR3937 in the 

ΔflhDC and ΔfliA mutants. As shown in Figure 8A, the promoter activity of ecpC dropped by 

70% in the ΔflhDC mutant, but was not significantly affected in ΔfliA, suggesting that FlhDC 
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positively regulates the expression of ecpC, and the regulation was probably independent of 

FliA. In comparison, the promoter activity of egcpB was not affected by mutation of either 

flhDC, or fliA (Fig. 8B), while that of ycgR3937 was reduced in both ΔflhDC and ΔfliA (Fig. 

8C). These results indicated that expression of egcpB is not regulated by FlhDC or FliA, and 

that FlhDC positively regulates the expression of ycgR3937 through FliA. 

 FlhDC positively controls the expression of the PDE gene ecpC (Fig. 8A) and the T3SS 

gene hrpL (Fig. 7B). As EcpC positively regulates an alternative sigma factor RpoN, which is 

required to activate the transcription of hrpL in D. dadantii 3937 (Yi et al. 2010), we 

hypothesized that FlhDC exerted its effects on T3SS gene expression via induction of ecpC. 

To test whether FlhDC regulates T3SS gene expression by activating the expression of hrpL 

through EcpC, a quantitative real time RT-PCR was performed to measure the levels of rpoN 

and hrpL transcripts in the wild type and ΔflhDC mutant. As shown in Figure 8D, a 

considerable decrease in the rpoN and hrpL transcript level was detected in ΔflhDC compared 

with the wild-type strain. Taken together, these results strongly suggest that FlhDC regulates 

T3SS gene expression through the FlhDC-EcpC-RpoN-HrpL pathway independently of FliA.  

 

FlhDC positively controls rsmB expression at the post-transcriptional level 

The GacS/A-rsmB-RsmA network has been well-studied as a major regulatory pathway 

controlling the T3SS of D. dadantii (Yang et al. 2008b). In P. carotovorum, FlhDC promotes 

the transcription of gacA via an unknown mechanism, which in turn positively controls the 

expression of rsmB (Cui et al. 2008). Therefore, to investigate whether and at which level 

FlhDC regulates RsmB, we first examined the promoter activity of rsmB in the wild-type, 
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ΔflhDC and ΔfliA strains under T3SS-inducing conditions. Interestingly, no difference in 

rsmB promoter activity was detected between the wild type and the mutants (Fig. 9A). We 

then determined the RNA levels of rsmB in the above mentioned strains by Northern blotting. 

The results showed that rsmB RNA level was reduced in ΔflhDC, but increased in ΔfliA when 

compared with the wild type (Fig. 9B). Complementation assays using low-copy number 

plasmid pCL1920 containing flhDC and fliA genes restored the ΔflhDC and ΔfliA phenotypes 

to the wild-type levels, respectively (Fig. 9B). RsmB positively regulates the production of 

pectate lyase by sequestering the effect of the post-transcriptional regulator RsmA (Yang et al. 

2008b). To further investigate the impact of FlhDC and FliA on RsmB, we used a 

spectrophotomeric assay to monitor the pectate lyase production of wild-type, ΔflhDC and 

ΔfliA strains, and the complemented strains. The results showed that the pectate lyase 

production was reduced in ΔflhDC while increased in ΔfliA compared with the wild-type 

strain (Fig. 9C). To conclude, we propose that FlhDC and FliA divergently 

post-transcriptionally regulate the rsmB RNA level in D. dadantii 3937, and that these effects 

may contribute to the attenuated T3SS gene expression in ΔflhDC. 

 

FlhDC regulates T3SS gene expression mainly through EcpC 

The findings outlined above revealed three potential pathways through which FlhDC 

regulates T3SS gene expression. They are the FlhDC-FliA-YcgR3937 pathway, the 

FlhDC-EcpC-RpoN-HrpL pathway, and the FlhDC-rsmB-RsmA-HrpL pathway. To 

determine which pathway is the most dominant one, we first excluded the 

FlhDC-FliA-YcgR3937 pathway. This is because a negative impact on the T3SS through 
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YcgR3937 was observed (Fig. 4B), which is in contrast to the phenotype in ΔflhDC where the 

T3SS gene expression levels were lower than in the wild type (Fig. 7B). Next, to compare the 

other two pathways, FlhDC-EcpC-RpoN-HrpL and FlhDC-rsmB-RsmA-HrpL, we engineered 

two constructs containing genes ecpC and rsmB in trans using low-copy number plasmid 

pCL1920, respectively. The resulting plasmids were transferred into wild-type and ΔflhDC 

strains harboring a hrpA-gfp reporter plasmid pAT-hrpA. The results for transcriptional assays 

showed that ΔflhDC strain with plasmid pCL1920 expressing rsmB was unable to restore the 

hrpA promoter activity to the wild-type level. In contrast, ΔflhDC strain with the plasmid 

pCL1920 expressing ecpC restored the hrpA promoter activity to the wild-type level (Fig. 10). 

Based on these results, we concluded that the positive effect of D. dadantii 3937 FlhDC on 

T3SS gene expression is mainly controlled through the FlhDC-EcpC-RpoN-HrpL pathway. 

 

Motility regulators are required for the virulence of D. dadantii  

 Since FlhDC and FliA affected multiple phenotypes, such as swimming motility (Fig. 6), 

pectate lyase production, and T3SS, which are known to contribute to D. dadantii 

pathogenesis (Beaulieu and Van Gijsegem 1990; Yang et al. 2002; Antúnez-Lamas et al. 

2009), virulence assays were performed to assess the effects of ΔflhDC and ΔfliA in the leaves 

of the host plant Chinese cabbage (Brassica campestris). Compared with the wild type, 

deletion mutants of flhDC and fliA were significantly reduced in maceration ability in planta 

(Fig. 11). Complementation assays restored the mutant phenotypes to the wild-type level. 

Similar results were also observed in African violet (Saintpaulia ionantha) when inoculated 

with these bacterial strains (Fig. 12). These data suggested that FlhDC and FliA are both 
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essential for the full pathogenesis of D. dadantii 3937. 

 Since the findings outlined above showed that FlhDC and FliA regulated swimming 

motility in the same direction, but not pectate lyase production or T3SS, we speculated that 

motility might play a determinate role in the FlhDC-regulated virulence. When ecpC was 

expressed in trans in ΔflhDC, it restored hrpA promoter activity and pectate lyase production 

(Fig. 10 and 13A). In contrast, expression of rsmB in ΔflhDC was able to restore pectate lyase 

production, but not T3SS gene expression (Fig. 10 and 13A). However, neither ecpC nor 

rsmB expression restored the swimming motility in ΔflhDC (Fig. 13B), which suggests that 

FlhDC, the flagellar master regulator, controls flagellar gene expression independently from 

EcpC or RsmB. As expected, neither ecpC nor rsmB expression in ΔflhDC strain restored its 

virulence in the leaves of Chinese cabbage (Fig. 11). These results supported the notion that 

motility is essential for the FlhDC-regulated virulence.  

 

DISCUSSION 

In this study, we identified two PilZ-domain proteins YcgR3937 and BcsA3937 in D. 

dadantii 3937 and demonstrated that these proteins regulate diverse cellular activities under 

elevated c-di-GMP conditions. YcgR3937 specifically bound c-di-GMP as an effector both in 

vivo and in vitro, and this binding ability was required for mediating the regulation of T3SS 

gene expression by EGcpB. In addition, we demonstrated that the flagellar master regulator 

FlhDC regulates T3SS gene expression mainly through induction of the PDE ecpC under our 

experimental conditions. 

We detected increased c-di-GMP concentrations in the PDE mutants including ΔegcpB, 
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ΔecpC, and ΔegcpBΔecpC (Fig. 1), which supports the idea that EGcpB and EcpC regulates 

various cellular activities by modulating c-di-GMP levels. It has been proposed for many 

bacterial species that the regulation of c-di-GMP signaling is controlled in a temporal and 

spatial manner in the cell (Hengge 2009). EGcpB and EcpC probably control the degradation 

of c-di-GMP derived from different c-di-GMP pools, since deleting both of them had an 

additive effect on the increase of overall cellular c-di-GMP level. The changes in the 

c-di-GMP level are sensed at least partially by two PilZ domains proteins YcgR3937 and 

BcsA3937, since further deletion of them in the individual PDE mutants could restore some of 

the phenotypes to near wild-type level (Fig. 3B, 3C, 3D, 3E, 3F).  

In E. coli and Salmonella, the regulatory role of YcgR was found to be strictly associated 

with motility (Ryjenkov et al. 2006; Fang and Gomelsky 2010; Paul et al. 2010). Here, we 

showed that YcgR3937 not only regulates bacterial motility, but is mainly involved in the 

regulation of other activities including biofilm formation, pectate lyase production, and T3SS 

gene expression (Fig. 3 and Fig. 4). This is probably due to differences in the c-di-GMP 

signaling network between different bacterial species. In addition, YcgR3937 positively 

regulates T3SS gene expression in the ΔegcpB background, but not the ΔecpC background, 

suggesting that EGcpB and EcpC might have different mechanisms in affecting T3SS gene 

expression. Whether there are other c-di-GMP effectors mediating the downstream signaling 

pathway of EcpC needs further investigation.  

BcsA in E. coli and Salmonella strains was shown to play a role in synthesizing cellulose, 

a major component of the extracellular matrix (Zogaj et al. 2001; Hengge 2009; Zorraquino et 

al. 2013). Here, we showed BcsA3937 regulates biofilm formation and pectate lyase production 
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under the elevated levels of c-di-GMP (Fig. 3B, 3C), which is similar to YcgR3937. BcsA3937 of 

D. dadantii positively regulates biofilm formation, which might be due to the ability of 

BcsA3937 to produce cellulose when c-di-GMP is elevated (Jahn et al. 2011). Dissimilar to 

YcgR3937, BcsA3937 was not found to affect the regulation of motility (Fig. 3A). A recent study 

in Salmonella demonstrated that BcsA and YcgR coordinately regulate swimming motility, in 

which BcsA produces cellulose to block the rotation of the flagellar (Zorraquino et al. 2013). 

It is possible that, similar to Salmonella, BcsA3937 regulates swimming motility in the ΔycgR 

background under high-c-di-GMP-level condition. Moreover, BcsA3937 and YcgR3937 regulate 

T3SS gene expression in opposite directions in the ΔegcpB and ΔecpC backgrounds (Fig. 4). 

These data suggest that the regulation of T3SS by c-di-GMP signaling system in D. dadantii 

involves multiple components and is very complex. 

It has been shown that YcgR interacts with the flagellar switch complex proteins FliG and 

FliM to regulate swimming motility (Fang and Gomelsky 2010; Paul et al. 2010). The point 

mutation R118D in the RxxxR motif of YcgR abolished its binding ability to c-di-GMP, and 

also weakened its binding to FliM or FliG, suggesting that the c-di-GMP binding ability of 

YcgR is required for its strong interaction with flagellar switch complex in responding to 

intracellular c-di-GMP changes (Fang and Gomelsky 2010; Paul et al. 2010). Here, our in 

vitro ITC and in vivo FRET assays confirmed that YcgR3937 is a c-di-GMP binding protein, 

and the RxxxR motif in the PilZ domain is required for the binding activity (Table 1 and Fig. 

5). In addition, by chromosomally replacing the wild-type YcgR3937 with YcgR3937R124D, we 

showed that the binding to c-di-GMP is essential for its regulatory role in T3SS gene 

expression (Fig. 4B). Recently, Morgan and colleagues presented crystal structures of the 
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c-di-GMP-activated BcsA complex, which confirmed that the biological activity of BcsA is 

promoted through the allosteric effect of c-di-GMP (Morgan et al. 2014). We tried to examine 

whether the binding ability of the PilZ domain of BcsA3937 to c-di-GMP is responsible for the 

phenotypes of biofilm formation, pectate lyase production and T3SS expression. However, 

several attempts of integrating the bcsA3937 gene with amino acid replacements in the PilZ 

motif into chromosome of D. dadantii were unsuccessful. In addition, the ITC and FRET 

assays were not performed in BscA3937 because over-expression of BcsA3937 in E. coli led to 

poor growth and cell death.  

We demonstrated that the flagellar master regulator FlhDC plays a role in regulating 

T3SS gene expression. Three unique pathways were uncovered, including the 

FlhDC-FliA-YcgR3937 pathway, the FlhDC-EcpC-RpoN-HrpL pathway, and the 

FlhDC-rsmB-RsmA-HrpL pathway, and a model of FlhDC regulation of T3SS genes was 

developed (Fig. 14). In the first regulatory pathway, the FlhDC-controlled sigma factor FliA 

activates the expression of ycgR3937 at the transcriptional level. Under high-c-di-GMP-level 

conditions caused by ΔegcpB, YcgR3937 binds c-di-GMP and negatively regulates the 

expression of the T3SS regulon gene hrpA. Although the regulatory effect of YcgR on T3SS 

was not reported previously, the FlhDC-FliA-YcgR pathway was identified in S. 

Typhimurium (Frye et al. 2006). In the FlhDC-EcpC-RpoN-HrpL pathway, FlhDC controls 

the expression of ecpC, a phosphodiesterase-encoding gene at the transcriptional level. EcpC 

lowers the intracellular c-di-GMP concentration by degrading c-di-GMP, which positively 

affects the transcription of hrpL through the sigma factor RpoN at the post-transcriptional 

level (Fig. 8A, 8D) (Yi et al. 2010). It is important to note that this regulation is different in E. 
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coli, where the expression of yhjH (ecpC homolog) is activated by FliA (Pesavento et al. 

2008), whereas the expression of ecpC of D. dadantii is regulated by FlhDC but independent 

of FliA (Fig. 8A). In addition, computational and DNase footprinting analyses in E. coli and S. 

Typhimurium of the FlhDC-regulon gene promoter regions have identified a consensus 

FlhDC binding sequence, in which two repeats of FlhDC-binding boxes 

AA(C/T)G(C/G)N2-3AAATA(A/G)CG, are separated by a nonconserved sequence of 10-12 

nucleotides (Claret and Hughes 2002; Stafford et al. 2005). In our work, we did not find this 

binding sequence within the 500bp from the 5’ ecpC start codon, suggesting that FlhDC might 

not directly activate ecpC by binding to its promoter region. Finally, in the 

FlhDC-rsmB-RsmA-HrpL pathway, we discovered that FlhDC positively regulates the 

production of RsmB RNA at the post-transcriptional level, while FliA negatively regulates it 

(Fig. 9B). RsmB binds to RsmA, which neutralizes RsmA’s negative impact on hrpL mRNA 

(Liu et al. 1998; Chatterjee et al. 2002). In P. carotovorum, FlhDC was reported to positively 

regulate rsmB through the rsmB transcriptional activator GacA at the transcriptional level 

(Cui et al. 2008). The promoter activity of rsmB is controlled by GacA in D. dadantii (Yang 

et al. 2008b). However, we did not detect any significant impact on the promoter activity of 

rsmB from the deletion of either flhDC or fliA (Fig. 9A), suggesting that despite the overall 

impact of FlhDC on rsmB being the same between P. carotovorum and D. dadantii, the 

underlying regulatory mechanisms are different. Furthermore, since RsmB has also been 

reported to positively regulate the production of pectate lyase in D. dadantii (Yang et al. 

2008b), our observation that the pectate lyase production increased in ΔfliA compared with 

the wild-type strain is in agreement with the earlier statement. Owing to the fact that FlhDC 
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also regulates the expression of the phosphodiesterase gene ecpC (Fig. 8A), the reduced 

pectate lyase production observed in ΔflhDC may be due to a coordinated regulation of 

FlhDC on both the rsmB-RsmA system and the c-di-GMP signaling system (Yi et al. 2010). 

Expressing ecpC or rsmB using plasmid pCL1920 in ΔflhDC strain restored the pectate lyase 

production to near wild-type levels (Fig. 13A), which supports the above hypothesis. Finally, 

since we observed that FlhDC hierarchically regulates the expression of T3SS encoding genes, 

we further determined which of the three components, YcgR3937, EcpC or rsmB, contributes to 

the FlhDC’s positive effect on the T3SS. We first excluded YcgR3937 due to its negative 

impact on the T3SS. Our results showed that expression of ecpC using low-copy-number 

plasmid pCL1920 in the ΔflhDC background is able to restore the promoter activity of T3SS 

encoding gene hrpA to the wild-type level (Fig. 10). No significant difference was detected 

when rsmB was expressed under the same condition (Fig. 10). To conclude, these data 

suggest that FlhDC regulates the T3SS mainly through the FlhDC-EcpC-RpoN-HrpL 

pathway.  

Previous studies in D. dadantii 3937 demonstrated that swimming motility, pectate lyase 

production, and the T3SS are essential virulence factors that contribute to the pathogenicity of 

D. dadantii in host plant (Bauer et al. 1994; Yang et al. 2002; Yang et al. 2008b; 

Antúnez-Lamas et al. 2009). Here we uncovered a master regulator FlhDC, which positively 

regulates swimming motility, pectate lyase production, and T3SS expression (Fig. 6, 7B and 

9C). The sigma factor FliA was found to positively regulate swimming motility but negatively 

regulates pectate lyase production and has no impact on T3SS expression (Fig. 6, 7C and 9C). 

Interestingly, our results showed significant reductions in maceration ability in planta for both 
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ΔflhDC and ΔfliA strains (Fig. 11 and Fig. 12). We also observed that expression of ecpC in 

trans in ΔflhDC restored hrpA promoter activity and pectate lyase production (Fig. 10 and 

13A), but not swimming motility or overall virulence in Chinese cabbage (Fig. 11 and 13B). 

In addition, expression of rsmB in trans in ΔflhDC restored only pectate lyase production, but 

not hrpA promoter activity, swimming motility or virulence in Chinese cabbage (Fig. 10, 11, 

13A and 13B). Thus, these results together with the previous report that several 

motility-deficient mutants were severely impaired in virulence (Antúnez-Lamas et al. 2009), 

imply that the reduced virulence of ΔflhDC and ΔfliA strains might be due to their defective 

swimming motility, which cannot be restored by pectate lyase production or T3SS gene 

expression. Therefore, we conclude that swimming motility, pectate lyase production and 

T3SS gene expression are essential in determining the full virulence of D. dadantii 3937 in 

host plants. 

Many studies have demonstrated that the bacterial T3SS and the flagellum are 

evolutionarily related, since they share similarities in structure, function, and sequences of the 

main components (Young et al. 1999; Lee and Galán 2004; Pallen et al. 2005; Erhardt et al. 

2010). In Salmonella, the type III effector SptP missing its chaperone-binding domain was 

secreted through the flagellar system instead of the T3SS, implying that these effectors carry 

ancient signals that could be recognized by the flagellar system (Lee and Galán 2004). 

Recently, it was demonstrated that the flagellin protein FliC in Pseudomonas syringae could 

be translocated into plant cells by the T3SS and induce immune responses (Wei et al. 2013). 

Here, our work provides novel insights that further support a connection between flagella and 

T3SS by showing that the flagellar master regulator FlhDC of D. dadantii 3937 also regulates 
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the transcription of the T3SS genes in a c-di-GMP-dependent manner. 
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Sample 12 hrs/0 µM 12 hrs/50 µM 12 hrs/100 µM 24 hrs/50 µM 

Wild type 0.253 ± 0.002  
(n=10) 

0.310 ± 0.002 
(n=11) 

0.363 ± 0.001 
(n=5) 

0.402 ± 0.003 
(n=10) 

ΔegcpBΔecpC 
mutant 

0.257 ± 0.003 
(n=10) 

0.291 ± 0.002 
(n=10) 

0.339 ± 0.004 
(n=5) 

0.405 ± 0.002 
(n=10) 

 

Table 1 Mean ± SEM (standard errors of the mean) of apparent FRET efficiency for wild-type and 
ΔegcpBΔecpC cells expressing the c-di-GMP sensor YFP-YcgR3937-CFP. Various induction levels were 
tested (listed as “time/µM” IPTG in the table) to establish the dynamic range of the sensor. The sensor was 
sensitive to changes in the concentrations of c-di-GMP when it was incubated for approximately 12 hr with 
50 to 100 µM IPTG. An order-of-magnitude estimate of the sensor concentration based on the intensity of 
donor emission corrected for FRET, FD (Patowary et al. 2013), as described in the Materials and Methods 
section, suggested that the sensor expression level varied between roughly 10 molecules per cell, for 12 hr 
incubation with 0 µM IPTG (first column), and 1,000 sensor molecules per cell, for 24 hr incubation with 
50 µM IPTG (fourth column). The sensor concentration around which the sensor responded to changes in 
c-di-GMP concentrations, shown in the second and third columns in the Table, were on the order of 100 
sensor molecules per cell. Within that concentration range, significant differences between the FRET 
efficiencies of the wild-type and ΔegcpBΔecpC mutant were observed. n = number of FRET images. FRET 
images contained an average of 50 cells per image.  
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Table 2 Bacterial strains and plasmids used in this study 
Strains and plasmids Relevant characteristicsa Reference or 

source 

Dickeya dadantii   

3937 Wild type Hugouvieux-Cotte

-Pattat, N. 

ΔflhDC ΔflhDC::Km; Kmr, ABF-0018763 and ABF-0018762 deletion 

mutant 

This study 

ΔfliA ΔfliA::Km; Kmr, ABF-0019722 deletion mutant This study 

ΔycgR3937 ΔycgR3937::Km; Kmr, ABF-0014564 deletion mutant This study 

ycgR3937R124D ycgR3937R124D::Km; Kmr, ABF-0014564 site-directed mutant This study 

∆egcpB∆ecpC ∆egcpBΔecpC, ABF-0020123 and ABF-0020364 double deletion 

mutant 

(Yi et al. 2010) 

∆egcpB∆ ycgR3937 ΔegcpBΔycgR3937::Km; Kmr, ABF-0020123 and ABF-0014564 

double deletion mutant 

This study 

∆ecpC∆ ycgR3937 ΔecpCΔycgR3937::Km; Kmr, ABF-0020364 and ABF-0014564 

double deletion mutant 

This study 

∆egcpB∆ ycgR3937R124D ΔegcpBΔycgR3937R124D::Km; Kmr, ABF-0020123 deletion and 

ABF-0014564 site-directed mutant 

This study 

∆ecpC∆ ycgR3937R124D ΔecpCΔycgR3937R124D::Km; Kmr, ABF-0020364 deletion and 

ABF-0014564 site-directed mutant 

This study 

∆ bcsA3937 ΔbcsA3937::Km; Kmr, ABF-0017612 deletion mutant This study 

∆egcpB∆ bcsA3937 ΔegcpBΔbcsA3937::Km; Kmr, ABF-0020123 and ABF-0017612 

double deletion mutant 

This study 

∆ecpC∆bcsA3937 ΔecpCΔbcsA3937::Km; Kmr, ABF-0020364 and ABF-0017612 

double deletion mutant 

This study 

Escherichia coli   

DH5α supE44 ฀lacU169 (80lacZ฀M15) hsdR17 recA1 endA1 gyrA96 

thi-1 relA1 

Lab stock 

S17-1 λpir λ(pir) hsdR pro thi; chromosomally integrated RP4-2 Tc::Mu 

Km::Tn7 

Lab stock 

Plasmids   

pKD4 Template plasmid for kanamycin cassette, Kmr   (Datsenko and 

Wanner 2000) 

pKD3 Template plasmid for chloramphenicol cassette, Cmr   (Datsenko and 

Wanner 2000) 

pWM91  Sucrose-based counter-selectable plasmid, Apr (Metcalf et al. 

1996) 

pET21b Overexpression and purification vector, Apr Novagen 

pET21b: ycgR3937 Overexpression of ycgR3937 in expression vector This study 

pET21b: ycgR3937R124D Overexpression of ycgR3937R124D in expression vector This study 

pCL1920 Low copy number plasmid, lac promoter, Spr  (Lerner and 

Inouye 1990) 

pCL-flhDC flhDC cloned in pCL1920, Spr This study 
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pCL-fliA fliA cloned in pCL1920, Spr This study 

pCL-ecpC ecpC cloned in pCL1920, Spr This study 

pCL-rsmB rsmB cloned in pCL1920, Spr This study 

pPROBE-AT Promoter-probe vector, promoterless gfp, Apr (Miller et al. 

2000) 

pAT-hrpA 

 

pPROBE-AT containing hrpA promoter-gfp transcriptional fusion, 

Apr 

(Yang et al. 2007) 

pAT-hrpN pPROBE-AT containing hrpN promoter-gfp transcriptional fusion, 

Apr 

(Yang et al. 2007) 

pAT-hrpL pPROBE-AT containing hrpL promoter-gfp transcriptional fusion, 

Apr 

(Yang et al. 2007) 

pAT-rsmB pPROBE-AT containing rsmB promoter-gfp transcriptional fusion, 

Apr 

(Li et al. 2014) 

pAT- ycgR3937 pPROBE-AT containing ycgR3937 promoter-gfp transcriptional 

fusion, Apr 

This study 

pAT-ecpC pPROBE-AT containing ecpC promoter-gfp transcriptional fusion, 

Apr 

This study 

pMMB67EHGent pMMB67EHGent, Gmr (Kulesekara et al. 

2006; Christen et 

al. 2010) 

pMMB67EHGent-CFP pMMB67EHGent::mCYPet, Gmr (Christen et al. 

2010) 

pMMB67EHGent-YFP pMMB67EHGent::mYPet, Gmr (Christen et al. 

2010) 

pMMB67EHGent-Spy pMMB67EHGent::mYPet_synthSpy_mCYPet, Gmr (Christen et al. 

2010) 

pMMB67EHGent-ycgR

3937 

pMMB67EHGent::mYPet_ ycgR3937_mCYPet, Gmr This study 

aApr, ampicillin resistance; Cmr, chloramphenicol resistance; Kmr, kanamycin resistance; Gmr, gentamicin resistance; Spr, 

spectinomycin resistance. 
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Table 3 Primers used in this study 
Primers Sequences (5’-3’) Amplicon 

flhDC-A-BamHI 

flhDC-B 

flhDC-C 

flhDC-D-XhoI 

GGTGGATCCTCGAAGCAGGTATAATG 

GGCAAGCTTTTTCGTCATTTATTAATCG 

GACAAGCTTCAGCCACCCTCCAGAGCAG 

CAACTCGAGGCAAGCCATCCCCCATCAG 

flhDC deletion 

fliA-A-BamHI 

fliA-B 

fliA-C 

fliA-D-XhoI 

GGGGGATCCTCAAAAAAGTTGCTTTGT 

ACAGAATTCGCACCAGGGGAACATAGC 

GGGGAATTCGGAAGAACTGAACCTAAAGG 

TTTCTCGAGTCGGCATCGGCTTTGAG 

fliA deletion 

ycgR3937-A-XhoI 

ycgR3937-B 

ycgR3937-C 

ycgR3937-D-NotI 

AATACTCGAGACCCATAAAGGCGGCATTTT 

GAAGCAGCTCCAGCCTACACCATTTTATTACGCCTGGCGT 

CTAAGGAGGATATTCATATGGGTGATCACCGACGTGGAAT 

AATATTATGCGGCCGCTGGCTTTCTGGGCATAAGTA 

ycgR3937 deletion 

ycgR3937-R124D-1 

ycgR3937-R124D-2 

GCAGGCGAGTTGATATCGAAAAAGTTACGGCGCTGG 

CCAGCGCCGTAACTTTTTCGATATCAACTCGCCTGC 

ycgR3937 

site-directed 

mutant 

bcsA3937-A-XhoI 

bcsA3937-B 

bcsA3937-C 

bcsA3937-D-NotI 

ATAATACTCGAGGACGGATAACCGCCGTGCAA 

GAAGCAGCTCCAGCCTACACATGCAGGGTTTCCGTGCCC 

CTAAGGAGGATATTCATATGCGTCGATATTCCGCTGGCCC 

AATATTATGCGGCCGCCAGCCAGACGCTGCTGGACA 

bcsA3937 deletion 

ycgR3937-for-NdeI 

ycgR3937-rev-EcoRI 

ATATACATATGATGACGGTGGGGATGGAT 

AATTAGAATTCATGCGCAGCCGTTTGCGCTTTT 

ycgR3937 

overexpression 

and purification 

ycgR3937-for-SpeI 

ycgR3937-rev-KpnI 

GCGCACTAGTATGGATGTAGTGGATAACAATATGAAAGAGC

AGTAC 

ATTAGGTACCGCGCAGCCGTTTGCGCTTTT 

ycgR3937 clone into 

pMMB67EHGent 

flhDC-for-XbaI 

flhDC-rev-HindIII 

GGCGTCTAGATAAGCAGCTGTGGTGTTTTT 

ATTTAAGCTTTTGATCGCTTTGCCGTTGTT 

flhDC 

complementation 

fliA-for-XbaI 

fliA-rev-HindIII 

GGAATCTAGAAAATTGGCTGAGCAACAGGA 

CCGTAAGCTTGATATCGAAATAATTGGCGT 

fliA 

complementation 

ecpC-for-XbaI 

ecpC-rev-HindIII 

ATACTCTAGAAAGCATATCCTTCAATGGCG 

ATACTAAGCTTCAACAAAGCAGGCATAGCAG 

ecpC expression 

rsmB-for-XbaI 

rsmB-rev-HindIII 

AGGGTCTAGATTGACGATCTGGAATGCACG 

TTTTAAGCTTAGGCTGCCATAACGGGCTCG 

rsmB expression 

ycgR3937-p1-BamHI 

ycgR3937-p2-EcoRI 

TTTGGATCCCTTTGCTACCGTGCGTC 

GCTGAATTCCTCAAGGATCTTGCTGA 

ycgR3937 promoter 

ecpC-p1-BamHI 

ecpC-p2-EcoRI 

TTATAGGATCCTTAGAATTGGGCGGCACCGG 

AATAGAATTCGTGCCTCCCCGGTGATGGAG 

ecpC promoter 

rplU-for-qRT 

rplU-rev-qRT 

GCGGCAAAATCAAGGCTGAAGTCG 

CGGTGGCCAGCCTGCTTACGGTAG 

qRT-PCR analysis 

rpoN-for-qRT 

rpoN-rev-qRT 

ACTGGCGCTGGAAAGCAACC 

GGCAGCTCGTCGGGCATATC 

qRT-PCR analysis 
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hrpL-for-qRT 

hrpL-rev-qRT 

GATGATGCTGCTGGATGCCGATGT 

TGCATCAACAGCCTGGCGGAGATA 

qRT-PCR analysis 

rsmB-for-Northern 

rsmB-rev-Northern 

CGCGATTTTTGTACGGCTAT 

CGATTTCTCGGTTCCCTCTT 
Northern blotting 

analysis 
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FIG 1 Measurement of intracellular levels of c-di-GMP in wild-type Dickeya dadantii, ΔegcpB, ΔecpC, 
and ΔegcpBΔecpC. Assays were performed as described in Materials and Methods. Error bars indicate 
standard errors of the means. Different lowercase letters above the bar indicate statistically significant 
differences between treatments (P<0.05 by Student’s t test).  
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FIG 2 Analysis of PilZ-domain proteins. (A) PilZ-domain proteins YcgR3937 and BcsA3937 in Dickeya 
dadantii 3937. Protein domains were predicted by the simplified modular architecture research tool 
(SMART). (B) Amino acid sequence alignment for the PilZ domains in E. coli and D. dadantii. c-di-GMP 
binding motif RxxxR is marked. “*” means that the residues are identical in all sequences in the alignment, 
“:” means that conserved substitutions have been observed, “.” Means that semi-conserved substitutions are 
observed. 
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FIG 3 The impact of mutation of bcsA3937 and ycgR3937 on various virulence phenotypes were examined. 
Bacterial swimming motility (A), biofilm formation (B) and pectate lyase production (C) were measured in 
the parental strain D. dadantii 3937, ΔbcsA3937, ΔegcpB, ΔegcpBΔbcsA3937, ΔecpC, and ΔecpCΔbcsA3937, 
respectively. The same assays were also tested in the parental strain 3937, ΔycgR3937, ΔegcpB, 
ΔegcpBΔycgR3937, ΔecpC, and ΔecpCΔycgR3937 (D-F). Assays were performed as described in Materials 
and Methods. The experiments were repeated three independent times with similar results. The figure 
represents results from one experiment which includes three to five technical replicates. Error bars indicate 
standard errors of the means. Asterisks indicate statistically significant differences of the means (P<0.05 by 
Student’s t test).  
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FIG 4 The impact of mutation of bcsA3937 and ycgR3937 on hrpA promoter activity was examined. (A) The 
hrpA promoter activity was measured in the parental strain D. dadantii 3937, ΔbcsA3937, ΔegcpB, 
ΔegcpBΔbcsA3937, ΔecpC, and ΔecpCΔbcsA3937, respectively. Cells cultured under T3SS-inducing 
condition were used to measure the mean fluorescence intensity (MFI) by flow cytometry. The same assays 
were performed in the parental strain 3937, ΔycgR3937, ΔegcpB, ΔegcpBΔycgR3937, ΔegcpB ycgR3937

R124D, 
ΔecpC, ΔecpCΔycgR3937, and ΔecpC ycgR3937

R124D (B). The experiments were repeated three 
independent times with similar results. The figure represents results from one experiment which 
includes three technical replicates. Error bars indicate standard errors of the means. Asterisks indicate 
statistically significant differences of the means (P<0.05 by Student’s t test).  
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FIG 5 Isothermal titration calorimetric analysis of c-di-GMP binding to wild-type YcgR3937 (A) or the point 
mutation version YcgR3937

R124D (B). Calorimetric titration for c-di-GMP (500 µM) titrated into test proteins 
(50 µM) is shown. Derived values for Kd and stoichiometry (N) are shown. 
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FIG 6 Swimming motility was measured in D. dadantii. All results are shown from one representative 
experiment, three independent experiments were performed and three replicates were used for each 
experiment. Error bars indicate standard errors of the means. Asterisks indicate statistically significant 
differences of the means (P<0.05 by Student’s t test). 



 
 

70 
 

 

 
FIG 7 The impact of mutation of flhDC and fliA on the T3SS gene expression in D. dadantii 3937 was 
examined. (A) Promoter activity of fliA was measured using plasmid pAT-fliA in wild-type strain D. 
dadantii harboring empty vector pCL1920, the ΔflhDC harboring empty vector pCL1920, and ΔflhDC 
harboring pCL-flhDC. (B and C) Promoter activity of T3SS regulon genes hrpA, hrpN, and hrpL was 
measured in the D. dadantii 3937 harboring empty vector pCL1920, the ΔflhDC harboring empty vector 
pCL1920, the ΔfliA harboring empty vector pCL1920, and their complemented strains using reporter 
plasmids pAT-hrpA, pAT-hrpN and pAT-hrpL, respectively. Three independent experiments were performed 
and three replicates were used in each experiment. Values are a representative of three experiments. Error 
bars indicate standard errors of the means. Asterisks indicate statistically significant differences of the 
means (P<0.05 by Student’s t test). 
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FIG 8 FlhDC, independently of FliA, regulates the T3SS master regulator HrpL at transcriptional level 
through EcpC-RpoN-HrpL pathway in D. dadantii 3937. But FlhDC positively regulates transcription of 
ycgR3937 through FliA. (A) Promoter activity of ecpC was measured in the wild-type D. dadantii, the flhDC 
and fliA mutant strains, and the flhDC and fliA complemented strains, respectively. (B) Promoter activity of 
egcpB was measured in wild-type D. dadantii, ΔflhDC, and ΔfliA strains. (C) Promoter activity of ycgR3937 
was measured in wild-type D. dadantii harboring empty vector pCL1920, the ΔflhDC harboring empty 
vector pCL1920, the ΔfliA harboring empty vector pCL1920, and their complemented strains. (D) Relative 
mRNA levels of hrpL and rpoN were examined using quantitative real time RT-PCR in the wild-type D. 
dadantii and the ΔflhDC. Values are a representative of three independent experiments. Three replicates 
were used in each experiment. Error bars indicate standard errors of the means. Asterisks indicate 
statistically significant differences of the means (P<0.05 by Student’s t test). 
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FIG 9 FlhDC and FliA inversely regulate RsmB at a post-transcriptional level. (A) Promoter activity of 
rsmB was measured in the wild-type D. dadantii, the flhDC mutant and the fliA mutant strains. (B) 
Northern blot analysis of rsmB mRNA in the wild-type D. dadantii harboring empty vector pCL1920, ΔfliA 
harboring empty vector pCL1920, ΔfliA harboring plasmid pCL1920-fliA, ΔflhDC harboring empty 
pCL1920, and ΔflhDC harboring pCL1920-flhDC. 16S rRNA was used as RNA loading control. (C) 
Pectate lyase production assay was performed in in the wild-type D. dadantii harboring empty vector 
pCL1920, ΔfliA harboring empty vector pCL1920, ΔfliA harboring plasmid pCL1920-fliA, ΔflhDC 
harboring empty pCL1920, and ΔflhDC harboring pCL1920-flhDC. Values are a representative of three 
independent experiments. Three replicates were used in each experiment. Error bars indicate standard 
errors of the means. Asterisks indicate statistically significant differences of the means (P<0.05 by 
Student’s t test). 
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FIG 10 Promoter activity of hrpA in different D. dadantii 3937 strains was examined. Values are a 
representative of three independent experiments. Three replicates were used in each experiment. Error bars 
indicate standard errors of the means. Different lowercase letters above the bar indicate statistically 
significant differences between treatments (P<0.05 by Student’s t test).  
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FIG 11 FlhDC and FliA positively regulate the virulence of D. dadantii 3937 on Chinese cabbage 
(Brassica campestris). Bacterial cells of the wild-type D. dadantii harboring empty vector pCL1920, ΔfliA 
harboring empty vector pCL1920, ΔfliA harboring plasmid pCL1920-fliA, ΔflhDC harboring empty 
pCL1920, ΔflhDC harboring pCL1920-flhDC, ΔflhDC harboring pCL1920-ecpC, and ΔflhDC harboring 
pCL1920-rsmB strains were inoculated in the leaves of Chinese cabbage. The maceration symptom was 
measured 24 hours post-inoculation. Maceration assays were performed as described in Materials and 
Methods. Error bars indicate standard errors of the means. Asterisks indicate statistically significant 
differences of the means (P<0.05 by Student’s t test).
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FIG 12 Measurement of D. dadantii virulence to African violet (Saintpaulia ionantha). Bacterial cells of 
the wild-type D. dadantii, flhDC and fliA mutant strains, and complemented strains were inoculated in the 
leaves of African violet. The maceration symptom was measured 2 days post-inoculation. Maceration 
assays were performed as described in Materials and Methods. Error bars indicate standard errors of the 
means. Asterisks indicate statistically significant differences of the means (P<0.05 by Student’s t test). 
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FIG 13 Pectate lyase production and swimming motility were measured in the parental strain D. dadantii 
3937 harboring empty vector pCL1920, ΔflhDC harboring empty pCL1920, ΔflhDC harboring 
pCL1920-flhDC, ΔflhDC harboring pCL1920-ecpC, and ΔflhDC harboring pCL1920-rsmB, respectively 
Assays were performed as described in Materials and Methods. The experiments were repeated three 
independent times with similar results. The figure represents data from one experiment which includes 
three to five technical replicates. Error bars indicate standard errors of the means. Asterisks indicate 
statistically significant differences of the means (P<0.05 by Student’s t test). 
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FIG 14 Model for the type III secretion system (T3SS) regulatory network in D. dadantii 3937. The D. 
dadantii 3937 T3SS is regulated by the HrpX/HrpY-HrpS-HrpL and the GacS/GacA-rsmB-RsmA-HrpL 
pathways. In this study, the flagellar master regulator FlhDC was observed to hierarchically regulate the 
expression of T3SS encoding genes. (1) FlhDC positively regulates the PilZ domain protein encoding gene 
ycgR3937 at transcriptional level through a sigma factor FliA. Under high c-di-GMP levels (ΔegcpB), 
YcgR3937 binds c-di-GMP, which negatively regulates the T3SS. (2) FlhDC controls the expression of 
phosphodiesterase encoding gene ecpC. EcpC degrades intracellular c-di-GMP, which counteracts the 
negative impact of c-di-GMP on the RpoN, which is required for the transcription of hrpL. (3) FlhDC and 
FliA divergently regulate the regulatory small RNA RsmB at the post-transcriptional level. ⊥represents 
negative control; → represents positive control. The dotted lines indicate regulatory mechanisms identified 
in this study. 
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ABSTRACT 

In Dickeya dadantii 3937, a bacterial second messenger cyclic diguanylate 

monophosphate (c-di-GMP) regulates several cellular behaviors, including biofilm formation, 

swimming and swarming motility, Type III secretion system (T3SS) gene expression, and 

pectate lyase production. The modulation of c-di-GMP is achieved by two types of enzymes, 

which include the GGDEF-domain-containing diguanylate cyclases (DGCs) and the EAL- or 

the HD-GYP-domain-containing phosphodiesterases (PDEs). In D. dadantii 3937, there are 

12 GGDEF-domain-containing proteins (Gcp), 4 EAL-domain-containing proteins (Ecp), and 

2 EAL-GGDEF-dual-domain-containing proteins (EGcp). However, the redundancy of these 

proteins and their individual functions in the c-di-GMP signaling remain unknown. In this 

study, we investigated the phenotypes of various cellular behaviors using eighteen 

single-deletion mutants, in which each GGDEF and/or EAL domain protein coding gene was 

individually either deleted or inactivated. Our results showed that GcpA negatively regulates 

swimming motility, pectate lyase production, and T3SS gene expression. Interestingly, GcpD 

and GcpL only negatively regulate the expression of T3SS and swimming motility but not the 

pectate lyase production. These results suggest that different GGDEF and EAL domain 

proteins can regulate different cellular processes. 

 

INTRODUCTION 

Bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP) was first reported in 

Gluconacetobacter xylinus as an allosteric regulator of cellulose synthesis (Ross et al. 1987). 

This molecule is now recognized as a bacterial second messenger that regulates diverse 
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cellular functions involving motility, biofilm formation, virulence against animal and plant 

targets, and cell cycle progression (Cotter and Stibitz 2007; Hengge 2009; Schirmer and Jenal 

2009; Römling 2012). The synthesis of c-di-GMP is modulated by diguanylate cyclases 

(DGCs) that have a GGDEF domain, which converts two GTP molecules to c-di-GMP (Paul 

et al. 2004; Solano et al. 2009). Phosphodiesterases (PDEs) contain either an EAL or 

HD-GYP domain that break down c-di-GMP into 5’-phosphoguanylyl-(3’-5’)-guanosine 

(pGpG) or GMP, respectively  (Schmidt et al. 2005; Tamayo et al. 2005; Ryan et al. 2006). 

Studies in many Gram-negative bacteria revealed that genes encoding GGDEF and/or EAL 

domains are widely distributed in their genomes. For example, the Escherichia coli K-12 

strain contains 29 GGDEF and/or EAL domain encoding genes, whereas Vibrio cholerae has 

53 (Waters et al. 2008; Povolotsky and Hengge 2012). Although the reason for this gene 

redundancy remains unknown, individual DGC or PDE may sense different environmental 

signals to modulate the intracellular c-di-GMP level, since many of them contain N-terminal 

signaling domains (PAS, GAF, CHASE and REC) that are associated with their GGDEF, 

EAL, or HD-GYP domains (Hengge 2009). The sophisticated c-di-GMP-mediated signaling 

network includes transcriptional, post-transcriptional, and posttranslational regulation. In 

order to exert such diverse influences, c-di-GMP has a range of cellular effectors, such as PilZ 

domain proteins, transcription factors, enzymatically inactive GGDEF, EAL or HD-GYP 

domain proteins and RNA riboswitches (Hengge 2009; Breaker 2011; Ryan et al. 2012). In 

Dickeya dadantii 3937, two PilZ domain proteins, YcgR3937 and BcsA3937, were reported to 

regulate several cellular behaviors and virulence (Yuan et al. 2015).  

EcpC is one of the EAL-domain-containing-proteins that exhibit PDE activity in D. 
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dadantii 3937. It is involved in the regulation of biofilm formation, swimming and swarming 

motility, pectate lyase production, and T3SS gene expression (Yi et al. 2010). EGcpA (former 

name CsrD) and EGcpB (former name EcpB) are two 

EAL-and-GGDEF-dual-domain-containing proteins. Deletion of egcpB increased intracellular 

c-di-GMP level and displayed similar phenotypes as the ΔecpC, suggesting that EGcpB 

displays PDE activity (Yi et al. 2010; Yuan et al. 2015). Although EGcpA exhibits PDE 

activity, its regulatory effects on D. dadantii are mainly via the global post-translational 

regulator RsmA (Wu et al. 2014). EGcpA positively controls sRNA RsmB expression at the 

transcriptional level, whereas it negatively regulates RsmB at the post-transcriptional level 

through the osmoregulated periplasmic glucan synthesis proteins OpgGH (Wu et al. 2014). 

RsmB binds to RsmA that sequesters RsmA activity (Liu et al. 1998).  

In the present study, we constructed a panel of strains, each with a deletion or 

inactivation of one of the eighteen genes that encode GGDEF and/or EAL domains in D. 

dadantii (ΔegcpA, ΔegcpB, ΔgcpB, ΔgcpC, ΔgcpD, ΔgcpF, ΔecpA, and ΔecpC were 

previously constructed by Xuan Yi). The effects of these mutations on diverse cellular 

behaviors were investigated. GcpD and GcpL influenced T3SS and swimming motility, 

respectively. GcpA regulated swimming motility, pectate lyase production, and T3SS gene 

expression.   

 

EXPERIMENTAL PROCEDURES 

Bacterial strains, plasmids, primers, and media 

The bacterial strains and plasmids used in this study are listed in Table 1. D. dadantii strains 
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were grown in Luria-Bertani (LB) medium (1% tryptone, 0.5% yeast extract, and 1% NaCl), 

mannitol-glutamic acid (MG) medium (1% mannitol, 0.2% glutamic acid, 0.05% potassium 

phosphate monobasic, 0.02% NaCl, and 0.02% MgSO4) or low-nutrient T3SS inducing MM 

at 28°C (Yang et al. 2007; Yang et al. 2008). Escherichia coli strains were grown in LB at 

37°C. Antibiotics were added to the media at the following concentrations: ampicillin (100 

μg/ml), kanamycin (50 μg/ml), gentamicin (10 μg/ml), chloramphenicol (20 μg/ml), 

tetracycline (12 μg/ml) and spectinomycin (100 μg/ml). The D. dadantii 3937 genome 

sequence can be retrieved from ASAP (https://asap.ahabs.wisc.edu/asap/home.php). Primers 

used for PCR in this study are listed in Table 1. 

 

Mutant construction and complementation 

The GGDEF and/or EAL domain encoding genes were deleted from the genome by marker 

exchange mutagenesis (Yang et al. 2002). Briefly, two fragments flanking each target gene 

were amplified by PCR with specific primers (Table 1). The kanamycin cassette was 

amplified from pKD4 (Datsenko and Wanner 2000) and was cloned between two flanking 

regions using three-way cross-over PCR. The PCR construct was inserted into the suicide 

plasmid pWM91, and the resulting plasmid was transformed into D. dadantii 3937 by 

conjugation using E. coli strain S17-1 λ-pir. To select strains with chromosomal deletions, 

recombinants, grown on kanamycin medium, were plated on 5% sucrose plate. Cells that were 

resistant to sucrose due to the loss of SacB-mediated toxicity were then plated on ampicillin 

plate, and the ampicillin sensitive cells were confirmed by polymerase chain reaction (PCR) 

using outside primers. Finally, the DNA fragment which contains two flanking regions and the 
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kanamycin cassette was confirmed by sequencing. To construct the site-specific point 

mutation in the GGDEF motif of the GcpA GGDEF domain, single nucleotide substitution 

was performed using the QuikChange XL Site-Directed Mutagenesis Kit (Agilent, Santa 

Clara, CA). Briefly, a primer set, gcpA-D418A-1 and gcpA-D418A-2 (Table 1), was used to 

generate gcpAD418A, which changed the SGDEF motif to SGAEF. Substitution was confirmed 

by DNA sequencing. 

To generate complemented strains, the promoter and ORF regions of target genes were 

amplified and cloned into low-copy-number plasmid pCL1920 or high-copy-number plasmid 

pML123 (Table 1). The resulting plasmids were then confirmed by PCR and electroporated 

into mutant cells.  

 

Swimming motility assay 

Swimming motility was tested by inoculating 10 μl of overnight bacterial cultures (OD600=1.0) 

onto the center of MG plates containing 0.2% agar. The inoculated plates were incubated at 

28°C for 20 h, and the diameter of the radial growth was measured (Antúnez-Lamas et al. 

2009). 

 

Detection of bacterial flagella 

A droplet of overnight bacterial culture was placed onto carbon-stabilized Formvar supports 

on 200-mesh copper transmission electron microscopy (TEM) grids. The samples were then 

preserved by adding formaldehyde (final concentration, 2%). Specimens were imaged using a 

Hitachi H-9000NAR TEM operating at 80 to 100 kV.  
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Biofilm formation assay 

Biofilm formation was determined by using a method that was previously described (Yi et al. 

2010). In brief, bacterial cells grown overnight in LB media were inoculated 1:100 in MM 

media in 1.5 ml polypropylene tubes. After incubation at 28°C for 48 h, cells were stained 

with 1% crystal violet (CV) for 15 min. The planktonic cells were removed by several rinses 

with H2O. The CV-stained bound cells were air dried for 1 h, then dissolved in 90% ethanol, 

and the OD590 of the solution was measured to quantify the biofilm formation. 

 

GFP reporter plasmid construction and flow cytometry assay 

To generate the reporter plasmids pAT-ycgR3937 and pAT-ecpC, the promoter regions of 

ycgR3937 and ecpC were PCR amplified and cloned into the promoter probe vector 

pPROBE-AT, which contains a ribosomal binding site upstream of the gfp gene (Miller et al. 

2000; Leveau and Lindow 2001). The reporter plasmids pAT-hrpA, pAT-hrpN, pAT-hrpL and 

pAT-rsmB were constructed previously following the same procedure (Yang et al. 2007; Li et 

al. 2014). Promoter activity was monitored by measuring GFP intensity through flow 

cytometry (BD Biosciences, San Jose, CA) as previously described (Peng et al. 2006). Briefly, 

bacterial cells with reporter plasmid were grown in LB media overnight and inoculated 1:100 

into MM media. Samples were collected at 12 h and 24 h, respectively, and promoter activity 

was analyzed by detecting GFP intensity using flow cytometry. 

 

Pectate lyase activity assay 
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Extracellular Pel activity was measured by spectrometry as previously described (Matsumoto 

et al. 2003). Briefly, bacterial cells were grown in MM media supplemented with 20% 

glycerol and 1% polygalacturonic acid (PGA) at 28°C for 20 h. For extracellular pel activity, 

1 ml bacterial cultures were centrifuged at 15000 rpm for 2 min, supernatant was then 

collected and 10 μl of the supernatant was added to 990 μl of the reaction buffer (0.05% PGA, 

0.1 M Tris-HCl [pH 8.5], and 0.1 mM CaCl2, prewarmed to 30°C). Pel activity was monitored 

at A230 for 3 min and calculated based on one unit of Pel activity being equal to an increase of 

1 × 10–3 OD230 in 1 min. 

 

Statistical analysis 

Means and standard deviations of experimental results were calculated using Excel (Microsoft, 

Redmond, WA) and the statistical analysis was performed using a two-tailed student’s t-test. 

 

RESULTS 

Identification of GGDEF and EAL domain containing proteins in D. dadantii 3937 

In agreement with many other bacterial species showing that GGDEF and EAL domains 

coding genes are abundant in their genomes (Hengge 2009), we found, in D. dadantii 3937 

genome, 12 GGDEF-domain-encoding genes, 4 EAL-domain-encoding genes, and 2 

EAL-GGDEF-dual-domain-encoding genes by using the Pfam program. New names were 

then given to these genes as gcp (GGDEF-domain-containing protein encoding gene), ecp 

(EAL-domain-containing protein encoding gene) and egcp 

(EAL-GGDEF-domains-containing protein encoding gene) (Fig. 1). Further studies of the 



 
 

86 
 

encoded protein domain structure revealed that the N-terminal regions of certain proteins such 

as GcpA, EGcpB, and EcpD, contain either sensor domains or transmembrane domains that 

are associated with their GGDEF and/or EAL domains (Fig. 1). This suggests a temporal 

and/or spatial c-di-GMP specificity in D. dadantii 3937 (Hengge 2009). The GGDEF 

active-site (A-site) motif and EAL motif are crucial for their domain activities. To assess the 

significance of the identified domains, we performed amino acid sequence alignments 

between the reported GGDEF and EAL domains from Caulobacter crescentus, Vibrio 

cholerae, Pseudomonas aeruginosa and D. dadantii 3937 (Fig. 2). The results suggest that the 

majority of the GGDEF A-site motifs are enzymatically active, except for a degenerate 

YHSDF motif in the GGDEF domain of EGcpA. In addition, the essential glutamate residue 

in the EAL motifs is conserved in all of the D. dadantii EAL domains, suggesting potential 

phosphodiesterase activity among the EAL-domain-containing proteins.  

 

Construction of GGDEF and EAL single deletion mutants 

 C-di-GMP signaling is involved in the regulation of diverse cellular behaviors and 

virulence in D. dadantii 3937 (Yi et al. 2010; Wu et al. 2014; Yuan et al. 2015). Previous 

study showed that two PDEs, EGcpB and EcpC, degrade c-di-GMP, resulting in positive 

effects on swimming motility, pectate lyase production and T3SS gene expression, while 

negative effects on biofilm formation (Yi et al. 2010). EGcpA, a homologue of E. coli CsrD, 

exhibits PDE activity but mainly regulates the sRNA RsmB level in order to control pectate 

lyase production and T3SS gene expression (Wu et al. 2014). Therefore, to further elucidate 

the c-di-GMP signaling network in D. dadantii 3937, we used allelic exchange mutagenesis to 
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construct the remaining gcp and ecp mutants. As a result, 14 new single-deletion mutants 

were constructed. Several attempts to delete gcpA were not successful, suggesting that gcpA 

may be essential for viability of D. dadantii 3937. We then constructed a gcpAD418A 

site-directed mutant, in which the essential aspartic acid in the GGDEF A-site motif was 

replaced by alanine, and is has no defectiveness in bacterial growth when compared with the 

wild-type strain (data not shown). 

 

Biofilm formation in D. dadantii GGDEF and/or EAL single deletion mutants 

 Biofilm formation is crucial for the virulence of many pathogens, and the second 

messenger c-di-GMP is known to promote biofilm formation (Cotter and Stibitz 2007; 

Kuchma et al. 2007). To test which Gcp and Ecp are involved in regulating this cellular 

behavior, we measured the biofilm forming ability in all GGDEF and/or EAL single-deletion 

mutants. As shown in Figure 3A, both ΔegcpB and ΔecpC strains displayed an over 2-fold 

increase in biofilm production compared with the wild type, which is consistent with their 

PDE activities (Yi et al. 2010). ΔegcpA showed an even higher biofilm production than the 

PDE mutants, which may be due to its additive effects on c-di-GMP and sRNA RsmB. By 

contrast, no other single-deletion mutants showed a detectable difference in biofilm formation 

compared with the wild type (Fig. 3A). Thus, we concluded that EGcpA, EGcpB and EcpC 

inhibit biofilm formation in D. dadantii 3937. 

 

GcpA, GcpL, and EGcpA regulate swimming motility in D. dadantii  

Next, we measured the bacterial swimming motility in single GGDEF and/or EAL 



 
 

88 
 

deletion mutants. In agreement with our previous data (Yi et al. 2010), we observed a 

dramatic reduction of swimming motility in both ΔegcpB and ΔecpC (Fig. 3B). gcpAD418A 

A-site mutant and ΔgcpL showed increased swimming motilities when compared with the 

wild-type strain (Fig. 3B). Complementation assays were performed by expressing gcpA and 

gcpL in trans using high copy number plasmid pML123, which drastically reduced the 

swimming motility (Fig. 3C). Next, we used transmission electron microscopy (TEM) to 

observe the physical differences between the wild-type, gcpAD418A A-site mutant, and ΔecpC 

strains. Interestingly, our results showed that gcpAD418A A-site mutant produced much more 

flagella than the wild type (Fig. 4).  In addition, reduced flagellar numbers were observed in 

ΔecpC compared to the wild-type strain. Thus, these results indicated that GcpA and EcpC 

may play a role in regulation of flagellar number and this may impact swimming motility in D. 

dadantii.  

  Deletion of egcpA in D. dadantii increased swimming motility (Fig. 3B), suggesting 

that the PDE activity of EGcpA is not a major player in this regulation (Wu et al. 2014). In 

addition, our previous work demonstrated that EGcpA represses RsmB at post-transcriptional 

level (Wu et al. 2014). Therefore, we hypothesized that EGcpA repressed swimming motility 

through its negative effects on sRNA RsmB. To confirm this, we compared swimming 

motility in wild type, ΔrsmB, and ΔegcpA. Our results showed that deletion of rsmB reduced 

swimming motility (Fig. 5), suggesting EGcpA represses RsmB at the post-transcriptional 

level to regulate swimming motility in D. dadantii 3937.   

 

GcpA inhibits pectate lyase production in D. dadantii 3937 
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 The ability to produce a variety of polysaccharidases and polysaccharide lyases enables D. 

dadantii 3937 to degrade the plant cell wall (Collmer and Keen 1986). To investigate which 

DGC and PDE are potentially involved in regulating pectate lyase production, we measured 

the activity of pectate lyase in each GGDEF and/or EAL deletion mutants. egcpB and ecpC 

deletion mutants showed reduced pectate lyase activity, and ΔegcpA showed increased pectate 

lyase activity, which is consistent with previous results (Yi et al. 2010; Wu et al. 2014) (Fig. 

6A). In addition, gcpAD418A A-site mutant showed increased pectate lyase activity compared 

with the wild-type strain (Fig. 6A). Expression of gcpA from the plasmid pCL1920 in the 

gcpAD418A A-site mutant was able to restore the wild-type phenotype (Fig. 6B). Next, to 

elucidate at which level GcpA regulated pectate lyase production, we checked the promoter 

activity of pelD, one of the major pectate lyase production genes, in wild type and gcpAD418A 

A-site mutant strains. Our results showed that the promoter activity of pelD was 10-fold 

higher in gcpAD418A A-site mutant than in the wild type at 12 h (Fig. 6C), suggesting that 

GcpA transcriptionally regulated the expression of pel genes in order to control the pectate 

lyase production. Further studies were performed on the effects of GcpA on several pectate 

lyase regulators, revealing that only the promoter activity of fur and the protein levels of 

RsmA were reduced in gcpAD418A A-site mutant compared with the wild type (Fig. 6D and 

6E). This indicated that the regulatory effect of GcpA on pectate lyase production may be 

through two pel repressors, Fur and RsmA. In summary, GGDEF and EAL dual domain 

proteins EGcpA and EGcpB, EAL domain protein EcpC, and GGDEF domain protein GcpA 

are involved in pectate lyase production in D. dadantii. 
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GcpA and GcpD regulate T3SS gene expression in D. dadantii 3937  

D. dadantii utilizes the T3SS to invade plants by directly translocating virulence factors 

into the plant cell (Bauer et al. 1994; Yang et al. 2002). C-di-GMP inhibits the expression of 

T3SS genes in D. dadantii 3937 (Yi et al. 2010). To investigate which DGC and PDE affect 

T3SS gene expression, we examined the promoter activities of hrpA, a T3SS regulon gene, in 

wild-type and in each GGDEF and/or EAL deletion mutant strain. In agreement with our 

previous results, deletion of egcpB and ecpC reduced hrpA promoter activity, while deletion 

of egcpA increased it (Fig. 7A) (Yi et al. 2010; Wu et al. 2014). Additionally, the gcpAD418A 

A-site mutant and ΔgcpD showed increased hrpA promoter activities compared with the wild 

type (Fig. 7A). Plasmid complementation of gcpA and gcpD restored the wild-type phenotype 

(Fig. 7B). Since HrpL is the master regulator for T3SS and c-di-GMP was reported to 

transcriptionally regulate hrpL via RpoN, we compared the promoter activity of hrpL between 

wild type, gcpAD418A A-site mutant and ΔgcpD. As shown in Fig. 7C, the promoter activity of 

hrpL in ΔgcpD was higher than in the wild type, and the promoter activity in gcpAD418A A-site 

mutant was similar to that in the wild type. Therefore, this result suggested that although 

GcpA and GcpD regulate T3SS gene expression, their regulatory mechanisms are different. 

GcpD, but not the GcpA, may synthesize c-di-GMP to negatively regulate hrpL transcription 

via RpoN.  

 

DISCUSSION 

The bacterial second messenger c-di-GMP has a pleiotropic role in regulating multiple 

cellular behaviors; however, how this small molecule triggers one cellular output but not 
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another is still unclear. To understand the c-di-GMP signaling specificity in D. dadantii 3937, 

we investigated the function of each GGDEF and/or EAL domain protein in the regulation of 

four cellular outputs including biofilm formation, swimming motility, pectate lyase 

production, and T3SS gene expression. In agreement with previous results (Yi et al. 2010), 

deletion of two PDE-encoding genes, egcpB or ecpC, increased biofilm formation but 

repressed swimming motility, pectate lyase production, and T3SS gene hrpA promoter 

activity (Fig. 3A, 3B, 6A and 7A). Although EGcpA was reported to exhibit PDE activity, it 

controls pectate lyase production and T3SS gene expression mainly through its regulation on 

the small regulatory RNA RsmB (Wu et al. 2014). In this study, we observed enhanced 

biofilm and swimming motility when egcpA was deleted (Fig. 3A and 3B), suggesting that 

this protein is more crucial in regulating diverse D. dadantii behaviors than it has been 

reported previously (Wu et al. 2014). Further studies showed that EGcpA may control 

swimming motility through its negative regulation on RsmB, since deletion of rsmB resulted 

in attenuated swimming motility in D. dadantii (Fig. 5). The homolog of D. dadantii Rsm 

system has also been shown to be involved in swimming motility in E. coli, Pectobacterium 

wasabiae and Serratia sp. (Kõiv et al. 2013; Wilf et al. 2013; Yakhnin et al. 2013).  

In contrast to the above mentioned GGDEF and/or EAL domain proteins that were 

involved in multiple cellular behaviors, GcpL and GcpD were observed to regulate swimming 

motility and T3SS gene expression, respectively. Our results showed that GcpL negatively 

regulated swimming motility, which is consistent with its predicted DGC activity (Fig. 3B). 

However, deletion of gcpL had no impact on biofilm formation, pectate lyase production, and 

T3SS gene expression (Fig. 3A, 6A and 7A). GcpD repressed T3SS gene hrpA promoter 
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activity, but was not involved in other cellular behaviors (Fig. 7A). Since c-di-GMP was 

known to control the T3SS master regulator HrpL via RpoN, and RpoN activates hrpL 

expression (Yi et al. 2010), we tested hrpL promoter activity in wild-type and ΔgcpD strains. 

As shown in Fig. 7C, the hrpL promoter activity was increased in ΔgcpD when compared 

with the wild type, suggesting that GcpD may regulate T3SS through RpoN.  

The GGDEF A-site motif of GcpA (SGDEF) was predicted to be essential for its DGC 

activity (Fig. 2). Site-directed mutagenesis of the aspartic acid to alanine in GcpA A-site 

(GcpAD418A) increased swimming motility, pectate lyase production, and T3SS gene hrpA 

promoter activity when compared with the wild-type strain (Fig. 3B, 6A and 7A), suggesting 

that GcpA is an active DGC and its A-site motif is involved in c-di-GMP formation in D. 

dadantii 3937. We performed several attempts to delete gcpA in the wild-type background 

without success, which suggests multiple function of GcpA in D. dadantii, independent to its 

DGC activity. C-di-GMP represses swimming motility through a PilZ domain protein YcgR 

which affects the activity of flagellar rotation subunit FliG (Ryjenkov et al. 2006). A recent 

study in Salmonella demonstrated that cellulose negatively regulates swimming motility 

under high c-di-GMP conditions, and this regulation is coordinated with YcgR (Zorraquino et 

al. 2013). Here, we observed increased number of flagella in gcpAD418A and reduced flagella 

number in ΔecpC when compared with the wild type. To our knowledge, this is the first report 

that connected c-di-GMP signaling to regulation of flagellar number in bacteria, suggesting 

that c-di-GMP in D. dadantii may modulate the production of flagella, in collaboration with 

flagellar rotation, for complete motility regulation. GcpA repressed pectate lyase production 

at the transcriptional level, and this regulation may partially depend on Fur and RsmA. 
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Intriguingly, different from GcpD, GcpA may repress T3SS gene expression via an 

unidentified pathway that is independent of RpoN, since deletion of gcpA had no influence on 

hrpL promoter activity (Fig. 7C).  

In conclusion, we uncovered several GGDEF and/or EAL domain proteins that 

specifically or generally regulate diverse cellular behaviors in D. dadantii. To fully appreciate 

the c-di-GMP signaling in this bacterium, future experiments will be performed to elucidate 

the potential correlation and interaction between these c-di-GMP specific proteins for 

different cellular processes, and to investigate the molecular mechanisms that control these 

regulatory interactions.      
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Table 1  
Strains and plasmids Relevant characteristicsa Reference or 

source 

Dickeya dadantii   

3937 Wild type Hugouvieux-Cotte

-Pattat, N. 

gcpAD418A gcpAD418A::Km; Kmr, ABF-0020368 site-directed mutant This study 

∆gcpB ΔgcpB::Km; Kmr, ABF-0016029 deletion mutant Lab stock 

ΔgcpC ΔgcpC::Km; Kmr, ABF-0019499 deletion mutant Lab stock 

ΔgcpD ΔgcpD::Km; Kmr, ABF-0014719 deletion mutant Lab stock 

ΔgcpE ΔgcpE::Km; Kmr, ABF-0019019 deletion mutant This study 

ΔgcpF ΔgcpF::Km; Kmr, ABF-0016283 deletion mutant Lab stock 

ΔgcpG ΔgcpG::Km; Kmr, ABF-0019796 deletion mutant This study 

ΔgcpH ΔgcpH::Km; Kmr, ABF-0015146 deletion mutant This study 

ΔgcpI ΔgcpI::Km; Kmr, ABF-0017509 deletion mutant This study 

ΔgcpJ ΔgcpJ::Km; Kmr, ABF-0019128 deletion mutant This study 

ΔgcpK ΔgcpK::Km; Kmr, ABF-0019798 deletion mutant This study 

ΔgcpL ΔgcpL::Km; Kmr, ABF-0015843 deletion mutant This study 

∆ecpA ΔecpA::Km; Kmr, ABF-0015066 deletion mutant Lab stock 

∆ecpC ΔecpC::Km; Kmr, ABF-0020364 deletion mutant Lab stock 

∆ecpD ΔecpD::Km; Kmr, ABF-0020048 deletion mutant This study 

∆ecpE ΔecpE::Km; Kmr, ABF-0020067 deletion mutant This study 

∆egcpA ΔegcpA::Km; Kmr, ABF-0015649 deletion mutant This study 

∆egcpB ΔegcpB::Km; Kmr, ABF-0020123 deletion mutant Lab stock 

Escherichia coli   

DH5α supE44 ฀lacU169 (80lacZ฀M15) hsdR17 recA1 endA1 gyrA96 

thi-1 relA1 

Lab stock 

S17-1 λpir λ(pir) hsdR pro thi; chromosomally integrated RP4-2 Tc::Mu 

Km::Tn7 

Lab stock 

Plasmids   

pKD4 Template plasmid for kanamycin cassette, Kmr   (Datsenko and 

Wanner 2000) 

pKD3 Template plasmid for chloramphenicol cassette, Cmr   (Datsenko and 

Wanner 2000) 

pWM91  Sucrose-based counter-selectable plasmid, Apr (Metcalf et al. 

1996) 

pCL1920 Low copy number plasmid, lac promoter, Spr  (Lerner and 

Inouye 1990) 

pCL-gcpD gcpD cloned in pCL1920, Spr This study 

pPROBE-AT Promoter-probe vector, promoterless gfp, Apr (Miller et al. 

2000) 

pAT-hrpA 

 

pPROBE-AT containing hrpA promoter-gfp transcriptional fusion, 

Apr 

(Yang et al. 2007) 

pAT-hrpL pPROBE-AT containing hrpL promoter-gfp transcriptional fusion, (Yang et al. 2007) 
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Apr 

pAT-hrpS pPROBE-AT containing hrpS promoter-gfp transcriptional fusion, 

Apr 

(Yi et al. 2010) 

pAT-rsmA pPROBE-AT containing rsmA promoter-gfp transcriptional fusion, 

Apr 

(Yi et al. 2010) 

pAT-rsmB pPROBE-AT containing rsmB promoter-gfp transcriptional fusion, 

Apr 

(Li et al. 2014) 

pML123 RSF1010-derived expression and lac-fusion broad –host-range 

vector, Gmr 

(Labes et al. 1990) 

pML-gcpA gcpA cloned in pML123, Gmr This study 

pML-gcpL gcpL cloned in pML123, Gmr This study 

pRK415 Broad-host-range cloning vector, Tcr (Keen et al. 1988) 

Primers Sequences (5’-3’) Amplicon 

gcpA-D418A-1 

gcpA-D418A-2 

ATCGCCGTAGCGGCGCCGAATTCATCATCTTG 

CAAGATGATGAATTCGGCGCCGCTACGGCGAT 

gcpA site-directed 

mutant 

gcpA-A-SacI 

gcpA-B 

gcpA-C 

gcpA-D-KpnI 

GGCGAGCTCGAGAAAGAACTGGTTG 

GAAGCAGCTCCAGCCTACACATTACTGGTGGG 

GGAATAGGAACTAAGGAGGATATTCATATGACGCCGATTCG 

AAAGGTACCCGGGCGAACTCAGCGACAT 

gcpA site-directed 

mutant 

gcpE-A-XhoI 

gcpE-B 

gcpE-C 

gcpE-D-NotI 

AATACTCGAGGGGCGTCGACAGTATGAATG 

GAAGCAGCTCCAGCCTACACTAACCAGCTCTTGCCACTCA 

CTAAGGAGGATATTCATATGTCAAAAAGGCCGATAACGCG 

AATATTATGCGGCCGCTCAATGTTAATCGCGACCCG 

gcpE deletion 

gcpG-A-SacI 

gcpG-B 

gcpG-C 

gcpG-D-KpnI 

CCGGACGCGGGATAGTCTTCACCAGTCG 

GAAGCAGCTCCAGCCTACACATTAGTTATATTTACCG 

CTAAGGAGGATATTCATATGCCGCGCCCGACCTCTGC 

ATCTGATTTTGCCGGGAAATA 

gcpG deletion 

gcpH-A-SacI 

gcpH-B 

gcpH-C 

gcpH-D-KpnI 

GCAGAGCCGGAATGCCTTCAT 

GAAGCAGCTCCAGCCTACACATCACTTTTCCTGCATT 

CTAAGGAGGATATTCATATGCCGTTTTTCGCACCGAAACT 

CAAATATTACAAACAGCACGG 

gcpH deletion 

gcpI-A-BamHI 

gcpI-B 

gcpI-C 

gcpI-D-KpnI 

AAAGGATCCCTGCCCTACTTCAACAGCTC 

GAAGCAGCTCCAGCCTACACACCAGCATAATCA 

GGAATAGGAACTAAGGAGGATATTCATATGCAGTCTGAATG 

AAAGGTACCCGATTGCAAGATCGACGG 

gcpI deletion 

gcpJ-A-SacI 

gcpJ-B 

gcpJ-C 

gcpJ-D-KpnI 

TACCCCGCCATCCCCTCCTCT 

GAAGCAGCTCCAGCCTACACAATTCAGATGCATGCCGTCA 

CTAAGGAGGATATTCATATGCGACCACACAAGAAATGGTG 

GCGATCAATCGAAAATCGTGC 

gcpJ deletion 

gcpK-A-SacI 

gcpK-B 

gcpK-C 

gcpK-D-KpnI 

GTGATCCGCAAACTGAGCCAG 

GAAGCAGCTCCAGCCTACACAAAATAAATAAGATAAACAA 

CTAAGGAGGATATTCATATGTAACGGAAAATTACTCG 

GGATCTGTGTGAGGTCAGGGT 

gcpK deletion 

gcpL-A-BamHI AAAGGATCCGGACAGCGGGAGACGG gcpL deletion 
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gcpL-B 

gcpL-C 

gcpL-D-KpnI 

GAAGCAGCTCCAGCCTACACACAATCGGCACAA 

GGAATAGGAACTAAGGAGGATATTCATATGCTCGTTATGGC 

AAAGGTACCGGGTAATTACGTGGCTGGG 

ecpD-A-BamHI 

ecpD-B 

ecpD-C 

ecpD-D-KpnI 

AAAGGATCCGAGGCCTATGGAGGGGC 

GAAGCAGCTCCAGCCTACACACATATTCAGTTG 

GGAATAGGAACTAAGGAGGATATTCATATGCTGCGTTATCGA 

AAAGGTACCGCGAGCAGTTGGCCGTAC 

ecpD deletion 

ecpE-A-BamHI 

ecpE-B 

ecpE-C 

ecpE-D-KpnI 

AAAGGATCCCGCGTGAAAAGAATTGGGG 

GAAGCAGCTCCAGCCTACACAGATCATCTCTAG 

GGAATAGGAACTAAGGAGGATATTCATATGGCAAGTCGTGG 

AAAGGTACCCGGAAGTTGCTGGTGATA 

ecpE deletion 

egcpA-A-BamHI 

egcpA-B 

egcpA-C 

egcpA-D-KpnI 

GCCAGCGCATCTTTATAGTTG 

GAAGCAGCTCCAGCCTACACACCCTGCGCTTAACTCCGTA 

CTAAGGAGGATATTCATATGTGTCAAAATCCGAACAA 

GATGAAGTGCTGCAGCATTTT 

egcpA deletion 

gcpD-for-XbaI 

gcpD-rev-HindIII 

TTTATCTAGAATTTCGTGGTGCTGGACTGG 

TTCCAAGCTTCGATAAATGAATAATGACGT 

gcpD 

complementation 

gcpA-for-SacI 

gcpA-rev-HindIII 

GGCGAGCTCGAGAAAGAACTGGTTG 

GCCAAGCTTCGACGCCAGTGAAAAC 

gcpA 

complementation  

gcpL-for-SacI 

gcpL-rev-HindIII 

GGCGAGCTCTAGTCTGTCCCCAATG 

GCCAAGCTTTGTCGCACATTCGTGA 

gcpL 

complementation 
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FIG 1 GGDEF and/or EAL domain proteins in Dickeya dadantii 3937. Proteins were shown with the 
encoded gene names and protein length. Protein domains were predicted by the simplified modular 
architecture research tool (SMART).  
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FIG 2 (A) Amino acid sequence alignment for the GGDEF domains in D. dadantii. PleD and WspR are 
two active DGCs from Caulobacter crescentus and Pseudomonas aeruginosa, respectively. Inhibition site 
RxxD motif (I-site) and enzymatic activity site GGDEF motif (A-site) are marked. (B) Amino acid 
sequence alignment for the EAL domains in D. dadantii. VC1086 is an active PDE from Vibrio cholerae. 
The arrow indicates glutamate residue in the EAL motif. “*” means that the residues are identical in all 
sequences in the alignment, “:” means that conserved substitutions have been observed, “.” Means that 
semi-conserved substitutions are observed. 
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FIG 3 Biofilm formation and swimming motility in wild-type D. dadantii, GGDEF and/or EAL single 
deletion mutants and complementation strains. (A) Biofilm formation of wild type and mutant strains 
cultured at 28°C in MM media for 48 hours. Ratio of mutant/WT was performed for data analysis. (B) 
Swimming diameter of the wild-type D. dadantii and mutant strains culture at 28°C in 0.2% MG agar 
plates for 16 h. Ratio of diameter were calculated following mutant/WT. (C) Swimming activity in wild 
type, gcpAD418A, ΔgcpL mutants and their complementation strains. All results are from one representative 
experiment, three independent experiments were performed and three replicates (five replicates for biofilm 
formation assay) were used for each experiment. Error bars indicate standard errors of the means. Asterisks 
indicate statistically significant differences of the means (P<0.05 by Student’s t test). 
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FIG 4 TEM pictures of the wild-type D. dadantii and mutant strains.  
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FIG 5 Swimming motility in D. dadantii 3937. Swimming diameter of the wild-type D. dadantii and 
mutant strains was measured at 16 h incubation at 28°C. All results are from one representative experiment, 
three independent experiments were performed and three replicates were used for each experiment. Error 
bars indicate standard errors of the means. Asterisks indicate statistically significant differences of the 
means (P<0.05 by Student’s t test). 
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FIG 6 Pectate lyase production, gene promoter activities and RsmA protein levels in D. dadantii 3937. (A) 
Pectate lyase production of wild type and mutant strains cultured in MM+0.1% PGA for 12 h at 28°C. (B) 
Pectate lyase activity in wild type, gcpAD418A mutant and complementation strain. (C) pelD promoter 
activity in wild type and gcpAD418A A-site mutant strains. (D) fur promoter activity in wild type and 
gcpAD418A A-site mutant strains. (E) RsmA protein levels in wild type and gcpAD418A A-site mutant strains. 
All results are from one representative experiment, three independent experiments were performed and 
three replicates were used for each experiment. Error bars indicate standard errors of the means. Asterisks 
indicate statistically significant differences of the means (P<0.05 by Student’s t test).  
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FIG 7 T3SS gene hrpA (A and B) and hrpL (C) promoter activities in wild-type D. dadantii, GGDEF 
and/or EAL single deletion mutants and their complementation strains. Cells cultured in minimal medium 
were used to measure the mean fluorescence intensity (MFI) of hrpA-gfp by flow cytometry at 12 and 24 h, 
respectively. One representative experiment was chosen, and three independent experiments were 
performed. Error bars indicate standard errors of the means. Asterisks indicate statistically significant 
differences of the means (P<0.05 by Student’s t test). 
 
 
 
 
 
 
 
 
 

A 

B C 

393
7

gcp
AD41

8A
gcp

D- 
0

5

10

15

20

25

30

 12 h
 24 h

M
ea

n 
Fl

uo
re

sc
en

ce
 In

te
ns

ity
 

(h
rp

L 
pr

om
ot

er
)

*

*

393
7

gcp
AD41

8A
gcp

D- 
0

5

10

15

20

25

30

 12 h
 24 h

M
ea

n 
Fl

uo
re

sc
en

ce
 In

te
ns

ity
 

(h
rp

L 
pr

om
ot

er
)

*

*

39
37

 (p
ML12

3)

gcp
AD41

8A
 (p

ML12
3)

gcp
AD41

8A
 (p

ML-gc
pA)

39
37

 (p
CL19

20
)

gcp
D- (p

CL19
20

)

gcp
D- (p

CL-gc
pD)

0
20
40
60
80

100
120
140
160
180
200
220

 12 h
 24 h

M
ea

n 
Fl

uo
re

sc
en

ce
 In

te
ns

ity
 

(h
rp

A 
pr

om
ot

er
)

*

*
*

* *

39
37

 (p
ML12

3)

gcp
AD41

8A
 (p

ML12
3)

gcp
AD41

8A
 (p

ML-gc
pA)

39
37

 (p
CL19

20
)

gcp
D- (p

CL19
20

)

gcp
D- (p

CL-gc
pD)

0
20
40
60
80

100
120
140
160
180
200
220

 12 h
 24 h

M
ea

n 
Fl

uo
re

sc
en

ce
 In

te
ns

ity
 

(h
rp

A 
pr

om
ot

er
)

*

*
*

* *
*

*
*

* *

39
37

egc
pA-

egc
pB-
ecp

A-
ecp

C-
ecp

D-
ecp

E-

gcp
A D41

8A
gcp

B-
gcp

C-
gcp

D-
gcp

E-
gcp

F-
gcp

G-
gcp

H-
gcp

I-
gcp

J-
gcp

K-
gcp

L-
0

50

100

150

200

250  12h
 24h

M
ea

n 
Fl

uo
re

sc
en

ce
 In

te
ns

ity

*
*

* *
**

*

*

*

39
37

egc
pA-

egc
pB-
ecp

A-
ecp

C-
ecp

D-
ecp

E-

gcp
A D41

8A
gcp

B-
gcp

C-
gcp

D-
gcp

E-
gcp

F-
gcp

G-
gcp

H-
gcp

I-
gcp

J-
gcp

K-
gcp

L-
0

50

100

150

200

250  12h
 24h

M
ea

n 
Fl

uo
re

sc
en

ce
 In

te
ns

ity

*
*

* *
**

*

*

*



 
 

107 
 

Xiaochen Yuan 
Department of Biological Sciences                                      Phone: 414-688-7174                                                
College of Letters & Science                                           Email: xyuan@uwm.edu                       
University of Wisconsin-Milwaukee                                                                             
Milwaukee, WI 53211 
 

Education_________________________________________________________________             
Ph. D in Biological Sciences                                             Expected May 2016                                         

Advisor: Dr. Ching-Hong Yang 

Department of Biological Sciences, College of Letters & Science, University of Wisconsin, Milwaukee, WI 
 
B. S. in Biological Engineering                                          June 2011                         

College of Life Science, Northwest A&F University (NWSUAF), Yangling, Shaanxi, China 

 
Awards and Presentation_____________________________                          
Chancellor Award Scholarship, University of Wisconsin, Milwaukee, WI, 2011-2016 
Biological Sciences Symposium, University of Wisconsin, Milwaukee, WI, 2013, 2015, and 2016 
Outstanding Graduate Poster Award, University of Wisconsin, Milwaukee, WI, 2016 
Invited seminar “Deciphering the multi-tier regulatory network that links the flagellar master regulator 

FlhDC to c-di-GMP signaling and the type III secretion system, an important virulence factor of pathogenic 

bacteria”  Milwaukee Microbiology Society, Milwaukee, WI, March 11th 2015 
 
Teaching Experience_________________________            ________                                                                                                           
Teaching Assistant, University of Wisconsin, Milwaukee, WI, 2011-2015 

Elements of Biology, (Teaching Evaluation (TE): 4.3/5.0) 
Developed laboratory instruction syllabus and assisted with 

overall class structure, including weekly lab practicum, and 

administered all grading for assigned laboratory sections.  
Teaching Assistant, University of Wisconsin, Milwaukee, WI, 2013, 2015, and 2016 

Experimental Microbiology, (TE: 4.8/5.0) 
Assisted in the development the course structure, 

assessment of student performance, and grading of 

laboratory work. Designed special projects assigned by 

the course professor. Implementation of enhanced 

techniques for improving student experimental 

outcomes.  
            



 
 

108 
 

 
Publications and Papers___________________________                            

Xiaochen Yuan, Devanshi Khokhani, Xiaogang Wu, Fenghuan Yang, Gabriel Biener, 
Benjamin J. Koestler, Valerica Raicu, Chenyang He, Christopher M. Waters, George W. 
Sundin, Fang Tian and Ching-Hong Yang. Cross-talk between a regulatory small RNA, 
cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial 
behaviours. Environmental Microbiology, 2015, 17-11: 4745-4763.  
 
Susu Fan, Fang Tian, Jianyu Li, William Hutchins, Huamin Chen, Fenghuan Yang, 
Xiaochen Yuan, Zining Cui, Ching-Hong Yang and Chenyang He. Identification of 
phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via 
the type III secretion system. Molecular Plant Pathology, 2016, accepted. 
 
Yan Li, William Hutchins, Xiaogang Wu, Cuirong Liang, Chengfang Zhang, 
Xiaochen Yuan, Devanshi Khokhani, Xin Chen, Yizhou Che, Qi Wang and 
Ching-Hong Yang. Derivative of plant phenolic compound inhibits the type III 
secretion system of Dickeya dadantii via HrpX/HrpY two-component signal 
transduction and Rsm systems. Molecular Plant Pathology, 2015, 16-2: 150-163.  

 
 

 
 

 
  
 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2016

	Deciphering the Multi-tiered Regulatory Network That Links Cyclic-di-GMP Signaling to Virulence and Bacterial Behaviors
	Xiaochen Yuan
	Recommended Citation


	Microsoft Word - chapter 123.doc

