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ABSTRACT 

EFFECTS OF GLOBAL DNA METHYLATION CHANGES ON NEUROBEHAVIOR IN ZEBRAFISH 

by 

Matthew Pickens 

 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Michael J Carvan, III 

 

 

A number of environmental neurotoxicants modulate DNA methylation, but its influence 

on neurobehavior remains unclear.  The laboratory has established that low-level 

developmental methylmercury exposure induces neurobehavioral deficits; the current results 

demonstrate that it also induces global DNA hypomethylation. DNA methyltransferase 1-

mutant zebrafish (exhibit ~70% reduction in enzymatic activity) were used to assess the role of 

DNA hypomethylation on behavior.  Several neurobehavioral assays including the C-start 

escape, circadian rhythm, basic locomotion and visual-motor response (VMR) were also 

performed.  There was a significant difference in VMR between the wild type and mutant 

animals. Other behavior assays revealed no significant difference, primarily due to small sample 

size, but several trends were observed. Mutants demonstrated a lack of persistent circadian 

rhythms when held in constant low light, and were hyperactive under normal lighting 

conditions. In conclusion, toxicant-induced global hypomethylation of DNA may alter 

neurobehavior in morphologically normal eleutheroembryos and the mechanism needs further 

investigation.    
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INTRODUCTION 

Embryonic development is a highly complex process which requires epigenetic 

regulation (e.g., DNA methylation, histone modifications, non-coding RNA, and nucleosome 

positioning [Jackson et al., 2002; Barr and Misener, 2015; Englander et al., 1993]) of gene 

expression (Cedar, 1988).  Epigenetics is defined as regulation of gene expression by external 

and/or environmental factors instead of inherent genetic mutations (Robertson and Wolffe, 

2000).  For example, DNA methylation is an epigenetic modification that plays a major role in 

gene silencing and genomic stability (Jirtle and Skinner, 2007).  Dysregulated DNA methylation 

has been reported as a potential etiological mechanism in human cancers (Vo and Millis, 2012; 

Avraham et al., 2014; Zhoa et al., 2015) and has been strongly linked with many other types of 

human disease (Ritter et al., 2015; Reynolds et al., 2015).  Thus, elucidating and understanding 

the mechanisms by which DNA methylation influences physiology, development, and disease 

has become an important research focus.  

Approximately 60-90% of all CpG nucleotidesin mammalian DNA are methylated (Tucker, 

2001), while in zebrafish ~20% are methylated (Fang et al. 2010).  However, CpG islands (i.e., 

regions of DNA which tend to include the transcriptional promoter site for genes) are typically 

unmethylated (Illingworth and Bird, 2009).  The level of transcription is dependent on the level 

of DNA methylation at the promoter CpG island (Fig. 1). 
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A global increase in DNA methylation inhibits gene transcription and a decrease in DNA 

methylation activates gene transcription.  DNA methylation affects the ability of transcriptional 

regulatory proteins (e.g., transcription repressors, MeCP1 and MeCP2 [Martin et al., 1999]) to 

bind the DNA.  Mechanistically, DNA methylation is the addition of a methyl group to the fifth 

carbon atom a sixth carbon cytosine in a CpG dinucleotide (Goll and Helpern, 2011) via DNA 

methyltransferases (DNMTs; Martin et al., 1999), which have been found to be homologous 

among many vertebrates (Bestor, 2000).  The methyl group required for this biochemical 

reaction originates from S-adenosylmethionine (SAM), the primary methyl donor in the 

methionine synthesis pathway (Loenen, 2006). The most abundant DNMT in vertebrates is DNA 

methyltransferase 1 (DNMT1), which contributes greatly to the establishment of methylation 

patterns in mitotic cells (Li et al., 2007).  During DNA replication, DMNT1 is recruited to the 

replication fork by ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1), whereby 
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DNMT1 methylates the nascent hemi-methylated DNA (Bostick et al., 2007).  Studies have 

shown that the complete loss of DNMT1 function yields embryonic lethality in mice (Oakes et 

al., 2007) and mortality in zebrafish after 8 days post fertilization (DPF) (Anderson et al., 2009).  

In the methionine pathway (Fig. 2), the enzyme methionine synthase synthesizes methonine 

from homocysteine by the use of methyl groups donated from methylcobalamin, folic acid 
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(folate), choline and betaine (Cooney, 1983).  Once the methyl group is removed from SAM, s-

adenosylhomocysteine can be recycled back to homocysteine and the methionine cycle beings 

again.   Homocysteine normally cycles through the methionine pathway; however, it also 

contributes to glutathione synthesis, which is needed to maintain redox balance.  In the case of 

toxin exposure, glutathione, the primary antioxidant and free radical scavenger in the cell, can 

become depleted.  Lee et al. (2009), hypothesized that during toxin exposures, the pathway 

shifts to generate more glutathione to compensate for its depletion and maintain redox 

balance.  If this occurs during early embryogenesis, it is possible that methionine synthesis from 

homocysteine consequently decreases, which, in turn, limits the ability of a cell to appropriately 

regulate DNA methylation during rapid mitotic divisions.  In addition, Deth et al. (2008) 

demonstrated that cellular oxidative stress can suppress the methylation cycle by inhibiting the 

folate-and cobalamin-dependent pathways of methionine synthase.  Collectively, this evidence 

supports that further research focused on the effect of environmental insults on DNA 

methylation and subsequent phenotypic expression is a necessity. 

  Many studies have shown correlations between exposure to environmental toxicants 

(e.g., mercury, lead, bisphenol A, etc.) and DNA methylation changes that may lead to the 

transgenerational inheritance of diseases (Bose et al., 2012; Hanna et al., 2012).  

Methylmercury (MeHg) is a ubiquitous environmental pollutant that bioaccumulates rapidly in 

fish and shellfish (Nyland et al., 2011).  It is neurotoxic and impacts the abilities of animals to 

sense and respond to environmental changes (Pilsner et al., 2010).  Acute MeHg exposure 

results in varying degrees of neuronal loss in the cortex, cerebellar granular cells, primary 

motor cortex and peripheral nerves (Heath et al., 2010).  A study by Pilsner et al. (2010), found 
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a decrease in DNA methylation with increasing methylmercury concentrations in the brain 

stems of polar bears.  Polar bears are apex predators that are known to feed on high mercury 

diets in the wild.  In certain regions of in the world, humans are also known to consume a lot of 

high mercury diets (Nyland et al., 2011).  If DNA methylation alterations occur from 

environmental toxicants and such impacts have been shown in an organism such as polar bears, 

then multi-organism effects should be investigated. 

Altered gene expression due to altered DNA methylation has been shown in numerous 

studies of cancers and mental disorders (e.g., schizophrenia; Abdolmaleky et al., 2014).  In the 

case of cancers, typically DNA methylation is increased at promoter sites, while globally the 

DNA is hypomethylated (Galm et al. 2006).  If a gene, such as a tumor suppressor is silenced 

from hypermethylation of the promoter region, then the potential for cancers to thrive increase 

(Esteller, 2003).  Other important genes that show correlation to cancers from 

hypermethylation are O6-methylguanine–DNA methyltransferase (MGMT; Esteller et al., 2000) 

involved in DNA repair and cyclin-dependent kinase inhibitor 2B (CDKN2B) involved in cell cycle 

regulation (Herman et al., 1997).  While many diseases occur directly as the result of direct 

toxicant exposure, it is also suggested that inherited diseases can also be found in future 

generations without subsequent exposure and that the mechanism is directly related to DNA 

methylation (Guerrero-Bosagna and Skinner, 2012).  Heavy metals such as MeHg (Bose et al. 

2012), lead (Pilsner et al., 2009), and cadmium (Jiang et al., 2008) have been shown to cause 

methylation changes in multiple organs.  Bose et al. (2012) were able to demonstrate in vitro 

that MeHg-induced DNA hypomethyaltion in neural stem cells (NSC) was maintained in 
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daughter cells three cell divisions after MeHg was removed.  Investigating the epigenetic 

mechanisms by which environmental toxicants cause disease is essential. 

  In this study, we investigated the effects MeHg on of global DNA hypomethylation, and 

the effects of DNA hypomethylation on the neurobehavior of developing zebrafish.  We 

considered a number of options including drug-induced DNA hypomethylation to emulate the 

potential impact of known environmental toxicants.  5-Azacytidine (5-aza) is a 

chemotherapeutic agent that binds to the catalytic domain (CXXC) of DNA methyltransferase 

enzymes and prevents DNA methylation (Santi et al., 1983).  Pharmacologically induced DNA 

hypomethylation in zebrafish eleutheroembryos is known to cause loss of tail, abnormal somite 

patterning, cranial abnormalities, and whole or partial loss of differentiated notochord (Martin 

et al., 1999).  These deformities will occur more frequently if an embryo is exposed during 

specific critical developmental windows.  Just after fertilization, there is a dramatic decrease in 

global DNA methylation followed by re-methylation and establishment of the normal 

methylation pattern that is dependent on each organism’s zygotic genome activation (Mhanni 

and McGowan, 2004).  For zebrafish embryos, DNA methylation patterns can be altered from 

fertilization until the blastocyst stage.  If 5-aza is used to induce DNA hypomethylation during 

this critical window of development, then it is possible it will cause lifelong DNA methylation 

abnormalities in zebrafish.   

Contrary to DNA hypomethylation, supplementations with methyl donors have been 

shown to increase DNA methylation.  Waterland and Jirtle (2004) have shown that dams 

supplemented with additional folic acid were able to change the methylation pattern of mutant 

Avy alleles causing a significant decrease in the amount of obese mice.  Medici et al. (2014) were 
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able to induce DNA hypomethylation and specific gene transcript changes that were corrected 

with betaine supplementation in utero in cystathionine beta synthase (CβS) heterozygous 

C57BL/6J mice. Although there are many publications showing that methyl donors are 

imperative to normal development (Sun et al., 2009; Finkelstein et al., 2015; Xu and Sinclair, 

2015), little is known about the mechanism(s) whereby they induce methylation changes during 

xenobiotic exposure.  

Studies using zebrafish as a model organism have steadily increased in recent decades, 

with this model organism being exploited in many fields of biomedical research, including 

toxicology, to study processes related to disease susceptibility, behavior and risk (MacPhail et 

al. 2009). 

Behavior is a useful tool for assessing neurological development in zebrafish as a wide 

range of neurobehavioral assays were developed to screen for mutant phenotypes and are 

generally well-developed.  Behaviors that have been investigated include sensory and motor 

functions (Burgess and Grana to 2007), synaptic transmission and plasticity via the c-start 

response (Kimmel et al. 1974), chronobiological effects via circadian rhythm (Rosenwasser et al. 

2014) and image and motion processing by the optomotor response (Orger and Baier, 2005).  

Dysfunction in a specific behavioral assay can lead to mechanistic investigations of 

environmental toxicants.  

The C-start is an escape behavior seen in fish, larval frogs and toads, which has a very 

distinct and well understood neural circuit (McLean et al., 2000; Kimmel et al., 1974).  The C-

start is important for predation escape in many vertebrae species (Eaton et al., 1977).The 

primary cell responsible for this escape response is the Mauthner cell, the largest neuron in the 
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central nervous system of fish (Kimmel et al., 1981).    In the zebrafish model, the Mauthner 

cells develop during gastrulation, around 8 HPF and form in the rhombomere 4 region of the 

hindbrain (Mendelson, 1986).  It is possible to evoke the C-start response by different stimuli 

that act through the trigeminal nerve and the acoustic-vestibular system, which functionally 

develop around 48 HPF (Kimmel et al., 1990; Foreman and Eaton, 1993).  Additionally, touching 

the tail elicits a C-start escape response through activation of one or more Rohon-Beard 

sensory neurons which then activate the glutamatergic dorsolateral commissural sensory 

interneuron (Easley-Neal et al., 2013; Li et al., 2003).  When these sensory neurons are 

activated via a tactile stimulus, they also activate one Mauthner cell by glutamatergic chemical 

signaling (Ali et al., 2000).  This signal travels down the spinal cord to primary motor neurons on 

side opposite the stimulus (Sillar and Roberts, 1988).  There are six to eight primary motor 

neurons in the dorsal motor column per spinal cord segment (Eisen et al., 1986; Moreno and 

Ribera, 2009) and many smaller, secondary motor neurons located more ventrally in the motor 

column (Menelaou and McLean, 2012).  In zebrafish, these motor neurons stimulate slow-tonic-

redand fast- twitch- white muscles fibers (Fetcho, 1992).  The entire C-start response, from the 

Mauthner cell excitation through muscle contraction, occurs within 2ms (Zottoli, 1977).  There 

is also an inhibitory feedback system to ensure that only one Mauthner cell fires in order for the 

animal to escape in the opposite direction of the stimulus (Eaton and Kimmel, 1980).  In 

addition to the C-start response, circadian rhythm is another advantageous endpoint that 

permits the evaluation of the potential chronobiological effects of DNA methylation on 

neurobehavior. 
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Circadian rhythm is an important biological clock that is controlled by the 

suprachiasmatic nucleus (SCN) in the mammalian brain (Rosenwasser et al., 2014), that controls 

daily functions and energy levels via metabolism and cell cycle (Li et al., 2015).  In this system, 

one factor that commonly entrains the behavioral circadian rhythm is light.  Light enters the 

eyes and travels to the photoreceptors in the retina to form an image.  In the retina, there are 

specialized intrinsically photosensitive retinal ganglion cells (ipRGCs) that use melanopsin to 

send a signal directly to the SCN by means of the retinohypothalmus tract (Hatter et al., 2002; 

Gooley et al., 2001).  These ipRGCs are non-image forming and do not require functional cones 

or rods to entrain the circadian rhythm (Freedman et al., 1999).  The signal is then sent through 

long axons to the brain and cross at the optic chiasm.  Here, the signal can then either continue 

to the back of the brain, or divert upward towards the SCN (Berson et al., 2002).  Once 

entrainment is complete in the SCN, the rhythm is communicated to the pineal gland where 

melatonin is produced (Steele et al., 2006).  In mammals, the SCN is the key oscillator in 

regulating the circadian rhythm; however, in teleosts, other oscillators can regulate the 

circadian clock in the absence of SCN.  For example, the mutant cyclops (cyc) zebrafish lack a 

ventral brain and SCN, but still produce a circadian rhythm (Noche et al. 2011).  A set of 

experiments by Whitmore et al., (1998, 2000) showed that the heart and kidneys of zebrafish 

have independent circadian rhythm oscillators, which remained active in culture. In mammals, 

the circadian rhythm has been extensively investigated; however, in zebrafish the molecular 

mechanism controlling circadian rhythm is still under investigation. 

The effect of visual stimuli on locomotor functions is another area of behavioral 

assessment that is gaining ground as a powerful tool in neurobehavior.  In general, locomotion 
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plays an integral role in feeding, social, and defensive activities throughout the zebrafish 

lifespan (Colwill and Creton, 2011).  The optomotor response (OMR) is an innate behavior that 

develops 5 DPF in the zebrafish.  When larva is presented with a whole-field moving visual 

stimulus, it will turn and swim in the direction of perceived motion (Portugues and Engert, 

2009).  The OMR is initiated by red and green cones (Orger and Baier, 2005); however exactly 

which retinal ganglion cells are involved remain unclear (Roeser and Baier, 2003).  Twelve 

neurons have been found in both sides of the hind brain that transmit signals down the spine 

for a motor response to occur (Orger et al., 2008).  Another frequently used behavioral assay is 

the visual-motor response (VMR), where locomotion changes are induced by changes in light 

(Emran et al., 2008).  In the case of the VMR, zebrafish have been found have increased 

locomotor activity during sudden removal of light and decreased locomotor activity when lights 

are suddenly turned on (Prober et al., 2006).  The circadian rhythm plays an integral role in daily 

locomotor activity, but can be overridden by sudden changes in light stimuli (Burgress and 

Granato , 2007).  Interestingly, Burgress and Granato, (2007) have also reported that the 

Mauthner cell is not required for the VMR.  In summary, if neurocircuits are indeed disrupted, 

the exploitation of a suite of neurobehavioral assays is a comprehensive approach that may 

elucidate the potential mechanism(s) of an observed phenotype. 

In this study, we investigated the effects of MeHg on global DNA hypomethylation, and 

the effects of global hypomethylation on zebrafish neurobehavior.  We first compared levels of 

DNA hypomethylation from methylmercury and 5-aza exposures.  Then, we investigated several 

neurobehavioral phenotypes induced by toxin exposures. We completed the experiment by 

using dnmt1 S872 strain zebrafish as a model for global hypomethylation as both heterozygous 
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and homozygous mutant individuals have reduced DNA methylation compared to wild-type 

individuals (Anderson et al. 2009).  By using the mutant zebrafish, we are able to establish 

direct interactions between neurobehavioral phenotypes and DNA hypomethylation in the 

absence of toxin exposure.  We hypothesize that global reduction in DNA methylation impacts 

zebrafish behavior and may play a role in toxicant-induced neurobehavioral abnormalities.  
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Materials and Methods 

Experimental Animals 

 All studies were conducted in accordance with the Institutional Animal Care and Use 

Committee (IACUC) at the University of Wisconsin-Milwaukee. For this study, EkkWill (EK) 

zebrafish (Waterlife Resources, Ruskin, FL, USA) and dnmt1 S872 (+/-) zebrafish (ZFIN ID: ZDB-

GENO-100112-13) were used (Anderson et al. 2009).  Zebrafish were maintained in plastic 

aquaria (1.5-39L) at a density of ≤ 10 fish/L in 28°C dechlorinated tap water with a 14:10hour 

light:dark photoperiod.  Embryos were raised in E2 medium (248.5mM NaCl, 9.56mM KCl, 

18.9mM MgSO4, 2.15mM KH2PO4, 0.08mM Na2HPO4, 24.8mM CaCl2, and 13.6mM NaHCO3.  

Adults were fed a combination of Artemia nauplii (Brine Shrimp Direct, Osden, UT, USA) and 

Aquarian™ flake food (Aquarium Pharmaceuticals, Inc., Chalfont, PA, USA).   

Eleutheroembryo Rearing 

 Embryos were obtained shortly after spawning and transferred to 100x25 mm Petri 

dishes (VWR, Radnor, PA, USA). In each dish, 100 embryos were placed in 30mL of fresh E2 

medium.  At 24 HPF, embryo mortality was assessed and any dishes with >20% mortality were 

discarded.  EK eleutheroembryos were raised and exposed to reagents in the Petri dishes and 

early life stage toxicity scoring was performed in non-coated Falcon® Multiwell™ 12 well plate 

(Fisher Scientific, Pittsburgh, PA,USA). For neurobehavioral trials, individual dnmt1 S872 

eleutheroembryos of unknown genotype were placed in 2mL of fresh E2 medium in each well 

of a non-coated Falcon® Multiwell™ 24 well plate (Fisher Scientific, Pittsburgh, PA, USA, CAS: 

08-722-51). Half volume medium changes were performed daily for to maintain 

eleutheroembryo health. During days of neurobehavioral trials, medium changes were 
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performed post-trial.  Because eleutheroembryos still receive nourishment from the yolk, no 

supplemental feedings were performed.  Physical abnormalities were assessed for each 

eleutheroembryo and malformed fish were excluded from the neurobehavioral data sets for 

each assay.   

Tracking of Fish Movement 

 Eleutheroembryos were individually tracked using DanioVisionTM (Noldus Information 

Technology, Leesburg, VA, USA).  The experimental settings were selected for round wells of a 

24-well plate and parameters of distance(cm) and time (sec) were evaluated.  The sample rate 

was set to a standard of 25 frames per second.  The area of each well was adjusted and a 

template was used to encompass each well and the width of the plate was calibrated to 

12.25cm.  Detection settings were set for ‘differencing’ with the subject was selected to be 

‘darker’ than the background with a ‘medium/slow’ change in background.  Subject contour 

settings were adjusted to increase the capture of the eleutheroembryos.  Contour erosion and 

dilation were both selected and dilation was set at 3 pixels.  The option to dilate first, than 

erode, was also chosen.  For the OMR, EK eleutheroembryos were tracked using a digital 

camera and manual analysis was performed for each trial.  All DanioVisionTM and OMR trials 

were performed in a designated behavior and dark room, respectively, with a controlled air 

temperature of 28°C.  EthoVision® XT software (Noldus Information Technology) was used to 

analyze the trials.  Data  for the locomotor and VMR were analyzed in velocity (cm/s) in one-

minute time bins while the circadian rhythm was analyzed in  one-hour time bins.  Locomotion, 

VSR, and circadian rhythm data were presented as mean velocity ± S.E.M (cm/s) for each 
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designated time interval.  Qualitative observation was used to analyze data for the OMR and 

the data was presented as number of animals that successfully performed the OMR. 

5-azacytidine Dose Response Curve 

 The first preliminary trial was to evaluate the magnitude to which 5-azacytidine (5-aza) 

can induce DNA hypomethylation in wild-type zebrafish.  A dose response curve (i.e., 0, 1, 3, 10, 

30, 50 and 100 μM) was performed using 5-aza (Simga-Aldrich, St Louis, MO, USA).  Freshly 

fertilized embryos (1 cell stage) were statically exposed for 24 hours to determine the highest 

concentration which would cause minimal morphological deformities.  Exposures were 

performed in 12-well plates, 2 mL of E2 medium ± treatment, and 10 eleutheroembryos per 

well.   An early life-stage toxicity score (ELSTS) was used to access the amount of morphological 

deformities associated with each concentration.  A scoring system of 0 to 4 was used to 

evaluate the ELSTS (0 = no abnormalities, 1 = one abnormality, 2 = two abnormalities, 3 = three 

abnormalities, and 4 = grossly deformed).  Data was analyzed by two-way ANOVA. 

DNA Methylation Quantification by MethylFlashTM 

 The MethylFlashTM DNA Methylation Quantification Kit (Colorimetric) (Epigentek , 

Farmingdale, NY, USA) is an ELISA-like micro-plate assay that uses antibodies to directly 

measure the amount of 5-methylcytosine (5-mC).  Samples were stored at 80°C in 100 μL 

RNAlater® (Thermo Fisher Scientific, Grand Island, NY, USA).  DNA was isolated using the Mini 

Genomic DNA Mini Kit (Tissue) (IBI Scientific, Peosta, IA, USA) with a modification for single 

embryo optimization:  200 μL GT buffer was added to each individual eleutheroembryo.  First, 

each sample was treated with 10μL of proteinase K, vortexed, and subsequently incubated at 

60°C for 5 to 10 mins.  Then, each sample received 200 μL of GBT buffer, vortexed, and 
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incubated at 60°C for 10 mins.  Next, RNase A (2 µl; Qiagen, Valencia, CA, USA) was added; each 

sample was then vortexed and incubated for 5 mins at room temperature (~20°C).  Rinsing was 

performed per the manufacturer’s protocol.  Elution buffer was warmed to 60°C during the last 

centrifugation phase, 30 μL of elution buffer was applied to the column matrix and incubated 

for 5 mins before the final centrifugation in a new 1.7 mL Eppendorf tube.  Sperm DNA isolation 

was conducted using the same protocol. DNA quantification and quality were assessed using 

two methods prior to use in the MethylFlashTM assay.   Genomic DNA was evaluated in triplicate 

using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) 

and  a Qubit® 2.0 Fluorometer in tandem with a  Qubit dsDNA Broad Range Assay Kit 

(Invitrogen, Carlsbad, CA, USA).  

 MethylFlashTM was then performed using 100 ng of (RNA free) genomic DNA (8 μL) for 

each reaction.  A duplicate for each sample was made by pipetting 180 μL of ME2 binding 

solution to 225 ng of genomic DNA in a 200 μL PCR tube.  All samples were then immediately 

vortexed.  80 μL of the mixture + x μL DNA (100 ng) was added to each assay well in randomized 

pattern.  A standard curve (water blank, 5 ng negative control, and 0.25, 0.5, 0.75, 1, or 2 ng 

positive control DNA) was made in the same fashion as stated above.   The positive (100% 

methylated DNA) and negative (0% methylated DNA) control DNA is provided with the 

MethylFlashTM kit to help quantify percent 5-mC.  All liquids were removed using a vacuum 

suction system, without touching the bottom of the well.  All subsequent steps were performed 

per the MethylFlashTM protocol.  Using a Synergy H4 plate reader (BioTek, Winooski, VT, USA) 

an absorbance at a wavelength of 450 nm was read immediately after stopping the reaction at 

a medium blue color as stated in the MethylFlashTM protocol.  It is important to note that usage 
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of the SynergyTM H4 dual reagent injector module is not compatible for use with the 

MethylFlashTM reagents.  A one-way ANOVA was performed using all raw absorbance values for 

each experimental group to assess potential statistical significance and all control absorbance 

values were standardized to a value of 1 to evaluate a fold-change comparison.    The overall 

purpose of the MethylFlashTM is to quickly and accurately quantify global DNA methylation. 

 The first MethylFlashTM experiment was performed using embryos that were exposed to 

30-μM 5-aza to access the level of DNA hypomethylation that developed from drug-induced 

alteration.  We also evaluated the effect of one static exposure versus a continual exposure.  

Freshly spawned embryos were collected and exposed to 30 mL of E2 in absence or presence of 

30-μM 5-azaat a density of 100 embryos per Petri dish.  The 0 μM (control) group and one 30 

μM 5-aza group did not receive any medium changes.  The second 30 μM 5-aza group received 

a 30 mL medium change with a fresh mixture of 5-aza every 8 hours.  After 24 HPF, DNA was 

isolated and MethylFlashTM was performed.  Statistical analysis was performed by one-way 

ANOVA.   

The second MethylFlashTM experiment was designed to look at the effects of 

methylmercury on the DNA methylation changes.  A methylmercury dose response was 

performed on freshly fertilized embryos.  A dose range (i.e., 0, 0.001, 0.003, 0.01, 0.03, and 0.1 

μM) of MeHg was used to statically expose embryos (1 cell stage) to 12 HPF.  Absolute ethanol 

was used as vehicle for the MeHg.   Embryos were then collected, DNA isolated, and 

MethylFlashTM performed.  Statistical analysis was performed by one-way ANOVA. 

The third MethylFlashTM experiment investigated transgenerational effects of MeHg on 

EK zebrafish sperm. A F1 generation of EK zebrafish was made by a static exposure does range 
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as previously mentioned.  The F1 generation was allowed to age to adults without further 

MeHg exposures and the F2 and F3 generations were created.   Sperm was collected by gentle 

abdominal massage and glass capillary tubes (World Precision Instruments, Inc, Sarasota, FL, 

USA, Item # 1B100F-6) on Tricaine-s (Western Chemical Inc., Ferndale,. WA, USA) anesthetized 

F1 and F3 adult males from the 0 and 0.01 μM MeHg groups.  The sperm was transferred to 100 

μL RNAlater in 1.7 mL eppendorf tubes in pools of 3 per sample, and frozen at -80°C.  DNA was 

extracted using the same individual embryo protocol and MethylFlashTM was performed.  

Statistical analysis was performed by student t-test comparing the 0.01 μM MeHg group to the 

respective generation control.        

Optomotor Reponse 

 The optomotor response assay was used to investigate the effects of 5-aza on DNA 

hypomethylation.  Cyanocobalamin (B12) (Sigma-Aldrich, St Louis, MO, USA), exposure was also 

performed to investigate if any hypomethylation-induced phenotype could be rescued.  Freshly 

fertilized EK embryos (1 cell stage) were exposed with 0 μM, 30 μM 5-aza, 1 μM 

cyanocobalamin, or 30 μM 5-aza + 1 μM cyanocobalamin.  Embryos were raised in the absence 

of light for the first 24 hours, as cyanocoblamain is light sensitive, and then rinsed three times 

with E2 medium.  At 144 HPF, 25 eleutheroembryos from each group were transferred to a 

FisherbrandTM square disposable Petri dish with grid (Fisher Scientific, Pittsburg, PA, USA) with 

30 mL of E2 medium.  A small piece of plastic was used to confine the eleutheroembryos to the 

far left column of the grid.  The dish was placed on a computer monitor showing a still white 

image (Fig. 3).  After a 2 min acclimation period, an animation of 2 cm alternating white and red 

bars was started in the right direction at a frequency of approximately 2 hz.  A video recording 
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was also performed using a Sony Cyber-shot DSC-HX94 Exmor R CMOS digital camera (Sony Co, 

New York City, NY, USA).  After 5 seconds of the animation, the plastic gate was removed and 

eleutheroembryos were allowed to free-swim for 1 min. The performance of an animal was 

deemed acceptable if it traveled in the right direction, moved a minimum of 7 cm out of a 

maximum possible distance of 9 cm, and performed this action within 45 seconds.  Data was 

analyzed by hand and assessed by one-way ANOVA.  

 

Touch Response Assay  

 The touch response assay was utilized to evaluate the synaptic transmission and 

plasticity of the C-start neurocircuit in individual eleutheroembryos.  A “touch” was performed 

using a 1 mL transfer pipette to gently touch the base of the cranium, near the otolith.  A 

scoring system of 0 to 2 was used to evaluate the quality of escape (0 = no movement, 1 = poor 

escape, 2 = normal escape). Kruskal-Wallis one-way ANOVA of variance of ranks was used to 
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determine statistical significance.  A second touch response assay was performed at 144 HPF, 

using identical methods, to further investigate functionality of the more developed neural 

network and musculature. 

Circadian Rhythm 

 Circadian rhythm trials were used to investigate potential chronobiological disruption 

within individuals by comparing the time of day to locomotor activity.  At 5 DPF, a 24-well plate 

containing one eleutheroembryo per well, was placed into the DanioVisionTM.  Each trial was 

initiated at approximately 15:00 hours, using a trial control setting of constant 1% light and a 

recording time of 56 hours.  Medium changes were not performed during the recording to 

prevent interference of larval behaviors.  Data were analyzed in one-hour time bins and a two-

way ANOVA was used to determine statistical significance.    

Locomotor and Visual-Motor Response 

 At 144 HPF eleutheroembryos were assessed for basic locomotor activity and visual-

motor response.  Assays were performed using the DanioVisionTM between 12:00 and 16:00 

hours each day in 24-well plates, containing one eleutheroembryo per well.  Each trial started 

with a twenty-minute acclimation period in the absence of light.  The first trial assessed 

locomotion of the eleutheroembryos in the absence of light for thirty minutes.  The second trial 

assessed locomotion of the eleutheroembryos after a transition from the dark acclimation 

phase to 30 minutes of light at intensity of 100% in the DanioVisionTM.  The third trial was an 

visual-motor response assay and was performed by interchanging cycles of ten minutes of light, 

ten minutes of dark, for three cycles.  Each 24-well plate was only used for one trial type on 
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each day; and the order of trial type was randomized.  Statistical analysis was performed by 

two-way ANOVA and Kruskal-Wallis one-way ANOVA of variance of ranks. 

Genotyping of dnmt1 S872 

 After completion of the VSR or circadian rhythm neurobehavioral trials, embryos were 

stored at -80°C.  Genotyping was then performed on each individual after all behavioral trials 

were completed.  DNA was isolated using a rapid digest method for PCR (Meeker et al. 2007).  

PCR was performed by the addition of 2 μL of genomic DNA to a 25 μL reaction with the 

following reagents: 8.5 μL of HycloneTM Hypure Molecular Biology Grade Water (VWR, Radnor, 

PA, USA), 1 μL each of 20 μM dnmt1 S872 specific forward and reverse primers design by 

Anderson et al. 2009, (Forward: 5’-GACACCTACCGCTTCTTTGG-3; Reverse: 5’-

TCTCCTGCTCACAGGCTCT-3’), 12.5-μL 2x Promega PCR Master Mix (Promega, Madison, WI, 

USA, CAS: M7505).  Reactions were amplified in a Bio-Rad T-100 Thermal Cycler (Bio-Rad 

Laboratories, Hercules, CA, USA) using the following conditions: 95°C for 5-minutes; 45 cycles of 

95°C for 30 seconds, 58°C for 30 seconds, 72°C for 30 seconds; followed by 72°C for 3-minutes.   

Restriction enzyme digestion was then performed using HincII (New England Biolabs, 

Ipswich, MA, USA) in a 25 μL reaction using the following reagents: 0.5 μL of HincII, 2 μL 10x 3.1 

buffer, 2 μL 10x bovine serum albumin (50mg/ml, Invitrogen, Carlsbad, CA, USA), and 15.5 μL 

HypureTM water.  Reactions were digested using the following conditions in the Bio-Rad T-100 

Thermal Cycler: 37°C incubation for 6 hours; followed by 65°C for 20 minutes to inactivate. 

 Genotypes were confirmed by running 20 μL of HincII digested product on 2% agarose 

gel, containing 40mM Tris-acetate and1mM EDTA, at 50 volts for approximately 3 hours on a 

EC600 power supply (E-C Apparatus Corp, Milford, MA, USA).  Then, two μL of loading dye 
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containing SYBR gold (Invitrogen, Carlsbad, CA, USA) was added to visualize the bands.  A 50 bp 

ladder (New England Biolabs, Ipswich, MA, USA) was used for band size comparison.  

Confirmation of restriction products was performed by matching products the corresponding 

genotypes: WT - one band of 311bp, HET – three bands of 311, 184, and 127bp, and MUT – two 

bands of 184 and 127bp. 
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RESULTS 

5-azacytidine dose response curve 

 The objective of the experiment was to investigate the toxicity of 5-aza (i.e., 0, 1, 3, 10, 

and 30 μM) in EK zebrafish.  The results revealed that there was no statistical significant 

difference found between the treatment groups and each ELSTS time point using a two-way 

ANOVA (p > 0.05; Fig. 4).  There was a statistically significant increase in the incidence of 

morphological abnormalities observed upon exposure to 30-μM 5-aza compared to all other 

experimental groups at each time point (P > 0.05, Fig. 4). Moreover, a statistically significant 

increase in the incidence of morphological abnormalities was also apparent between the 10 μM 

5-aza exposure group compared to the 0, 1, and 3 μM exposure group at each time point.  The 

frequently observed were mortality, small heads, small eyes, pericardial effusions, and tail 

deformities. 
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5-azacytidine Causes a Dose Dependent Increase in 

Morphological Phenotypes in EK Wild-Type Zebrafish
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Fig. 4.  5-azacytidine causes a dose dependent increase in morphological phenotypes.  

There was a significant differnce (P > 0.05) found among all treatment by two-way ANOVA.

Comparing treatments groups, there was a significant difference among the 30µM 

treatment and all treamtment groups.  The 10 µM group also had a signficant difference 

among the 0, 1, and 3 µM groups.  There was no differnce found among each ELSTS time 

points.  * Indicates signficance (P < 0.001). † Indicates

*

signficance (P < 0.05).
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5-azacytidine causes DNA hypomethylation in zebrafish embryos 

To evaluate whether or not we could measure DNA hypomethylation using 

MethylFlashTM, one group of EK embryos were statically exposed to 30 μM of 5-aza for 24 

hours. The second group was exposed to 30 μM of 5-aza with a fresh medium change every 8 

hours.  The results showed a non-statistically significant decrease in DNA methylation relative 

to control (Fig. 5).  When a medium change was performed every 8 hour, it further decreased 

global methylation.  One-way ANOVA of variance showed no significant difference among 

treatment groups (p>0.05). 
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5-azacytidine Decreases DNA 

Methylation in 24 HPF EK Zebrafish
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0 µM 30 µM q24 hr 30 µM q8 hr

R
e

la
ti

v
e

 t
o

 P
e

rc
e

n
t 

o
f 

C
o

n
tr

o
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fig. 5.  5-azacytidine causes a global decrease in DNA methylation during 
a static 24 hour exposure or a reoccuring 8 hour exposure for 24 hours.  

DNA was isolated and MethylFlash
TM

 performed to quantify DNA 
methylation.  Data presented has been standardized to be relative to 
control values with error bars as STDEV.  A one-way ANOVA showed no 
significant difference in DNA methylation, but a trend is observed.  Sample 
numbers are 2-4 respectively.

 

Methylmercury causes DNA hypomethylation in zebrafish embryos 

 DNA hypomethylation caused by methylmercury, was investigated by statically exposing 

EK embryos (1 cell stage) for 12 hours.  The dose response curve (i.e., 0, 0.001, 0.003, 0.01, 

0.03, and 0.1 μM) was performed using MeHg. RNA free genomic DNA was isolated and 

MethylFlashTM was performed.  There was a significant difference found among the treatment 

0.03 and 0.1 μM groups using a one-way ANOVA of variance with a post-hoc Holm-Sidak 

multiple comparison versus control (P < 0.05, Fig. 6). 
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DNA methylation is Altered During Exposure to 

Methylmercury in 12 HPF EK Zebrafish

MeHg Concentration (µM)
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Fig. 6. DNA methylation is altered during exposure to methylmercury in 12 HPF EK 

zebrafish. MethylFlashTM was performed to quantify global DNA methylation in pools 

of 50 embryos per sample with sample numbers of 3 to 7 and run in 3 seperate 

exposures trails.  Data is presented as mean ± S.E.M. and all samples were standardized 

to the control on each trial day.  A significant difference among the 0.03 and 0.1µM 

     groups was found by one-way ANOVA with a Holm-Sidak Multiple Comparisons versus 

Control. * Indicates significant difference to control (P < 0.05).  

Methylmerucry causes transgenerational DNA hypomethylation in sperm 

 MeHg was exposed to an F1 generation of EK embryos as previously described and 

raised to adults were they were bred to create an F2 and F3 generation, that had no further 

supplementations. Sperm was collected from the F1 and F3 generations in the 0 and 0.01 μM 

and MethylFlashTM was performed to quantify DNA methylation and investigate any 

transgenerational impacts that MeHg zebrafish germ lines.    There is a decrease of DNA 

methylation associated with methylmercury exposure seen in the data (Fig. 7).  The trend was 

carried from the F1 generation to the F3 at almost equal levels.  A student t-test was performed 
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to compare the 0.01 μM MeHg group to their respective generational control with no 

significant difference found (P < 0.05). 

Methylmercury Causes Transgenerational

DNA Hypomethylation in Zebrafish Sperm
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Fig. 7.  Methylmercury causes transgenerational DNA hypomethylation in zebrafish 

sperm cells. DNA methylation was quantified in genomic DNA collected from sperm cells 

by MethylFlashTM DNA Methylation Quantification (Colorimetric) kit.  No significant 

difference in level of DNA methylation (t-test) between the vehicle control and the 

treatment group for F1 and F3, but trend suggestive of inheritable DNA hypomethylation 

is present.  Samples were run as pools with 3 sampels run in duplicate.  

 

5-azacytidine impairs the optomotor response and is rescued by cyanocobalamin 

 The optomotor response was performed on 144 HPF EK zebrafish exposed to 0 μM 5-

aza, 30 μM 5-aza, 1 μM cyanocobalamin, and 30 μM 5-aza with 1 μM cyanocobalamin.  There 

were no significant differences among treatment groups as assessed by one-way ANOVA; 

however, there was a drastic decrease in the number of animals that passed the test in the 30 

μM 5-aza treatment group (Fig. 8).  A t-test analysis comparing the 0 μM 5-aza and the 30 μM 
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5-aza resulted ina P value of 0.065, suggesting that these data may become significant with an 

increased number of animals.  There was no impairment of the OMR in the 1 μM 

cyanocobalamin.  Co-exposure of 1 μM cyanocobalamin with 5-aza appears have increased the 

amount of animals that passed the test to that of the control level. 

 

 

Optomotor Respose in 144 HPF EK Zebrafish

Exposed to 5-azacytidine and Cyanocobalamin
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Fig. 8. Co-exposure of methylcobalamin recovers alterations in DNA hypomethylation 

induced optomotor response in 144 HPF EK zebrafish.  Exposure to 30 µM 5-aza 

caused a decrease in number of passing animals.  1 µM methylcobalamin exposure 

shows no significant change in comparison of the control.  Co-exposure of both 5-aza 

and cyanocobalamin shows a recovery of the 5-aza phenotype to the level of the 
control. Statisitical evaulation using a student t-test between the control group and 

30 µM 5-aza group had a P value = 0.065. 
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C-start response is not grossly altered in dnmt1 s872 at 72 HPF 

To investigate the effect of global DNA hypomethylation on neurological synaptic 

transmission and plasticity, a touch response assay was performed at 72 HPF.  This was 

performed using the dnmt1 S872 zebrafish to investigate the effects of hypomethylation in the 

absence of a toxin.  A touch near the otolith in the WT dnmt1 S872 elicited a rapid escape from 

the stimulus which can be clearly observed without the use of high speed imaging.  Touch 

stimulation of heterozygous and mutant fish also resulted in rapid escapes (Table 1).  No 

significant differences were found among groups using a Kruskal-Wallis one-way ANOVA of 

variance of ranks. 

 

 

Circadian rhythm is altered in dnmt1 s872 mutant zebrafish 

In this study, we tested the effects of DNA hypomethylation on the biological clock by 

evaluating circadian rhythm.   Time points used in the analysis corresponded to the scheduled 

lights on/off (9:00/23:00) times; as well as, two hours before and after the trained light 

changes.  No statistically significant differences were found between the wild-type and 

heterozygous groups (Fig. 9-11).  There were not enough mutants available in each individual 
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trial to perform statistical analysis.  Trials were first analyzed alone in order to show trial-to-trail 

variations in zebrafish activity. Two-way ANOVA was performed comparing genotypes in each 

one-hour time bin for each individual trial.    

 

Circadian Rhythm In dnmt1 S872 Zebrafish Trial 1
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Fig. 9. Ciracdian rhythm is not altered in dnmt1 S872 zebrafish in Trial 1.  Circadian 

rhythm was performed at 5 DPF and a recording at a constant low level of light was 

done for 56 hours.  The light phase bar is shown to indicate the normal ligth cycle the 

larvae were raised in.  Data is presented in 1 hour time bins and time points presented 

are when normal light on/off (9:00/23:00) and 2 hours before and after those periods.  
No significant differences were found between groups by two-way ANOVA.  
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Circadian Rhthym In dnmt1 S872 Zebrafish Trial 2
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Fig. 10. Ciracdian rhythm is not altered in dnmt1 S872 zebrafish in Trial 2.  Circadian 

rhythm was performed at 5 DPF and a recording at a constant low level of light was 

done for 56 hours.  Data is presented in 1 hour time bins and time points presented 

are when normal light on/off (9:00/23:00) and 2 hours before and after those periods.  

No significant differences were found between groups by two-way ANOVA.   
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Circadian Rhtyhm In dnmt1 S872 Zebrafish Trial 3
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Fig. 11. Ciracdian rhythm is not altered in dnmt1 S872 zebrafish in Trial 3.  Circadian rhythm 

was performed at 5 DPF and a recording at a constant low level of light was done for 56 

hours.  The light phase bar is shown to indicate the normal ligth cycle the larvae were raised 

in.  Data is presented in 1 hour time bins and time points presented are when normal light 

on/off (9:00/23:00) and 2 hours before and after those periods.  No significant differences 

were found between groups by two-way ANOVA.  

 

With no significant findings in the individual circadian rhythm trials, the three trials were 

pooled together.  Although this provided some statistical power for comparison of the mutants; 

the sample size was still too low.  There were no statistically significant differences found 

between any groups using a two-way ANOVA (Fig. 12).  However, using Kruskal-Wallis one-way 

ANOVA of variance of ranks on each time period there was a significant (P < 0.05) difference 

between the heterozygous and the mutant groups at the six DPF, 11:00AM time point.  No 

other time points were significant.  
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Circadian Rhythm in dnmt1 S872 Zebrafish Trails 1-3 Pooled
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Fig. 12. Ciracdian rhythm is not altered in dnmt1 S872 zebrafish in Pooled Trials.  Circadian 

rhythm was performed at 5 DPF and a recording at a constant low level of light was done 

for 56 hours.  The light phase bar is shown to indicate the normal ligth cycle the 

eleutheroembryos were raised in.  Data is presented in 1 hour time bins and time points 
presented are when normal light on/off (9:00/23:00) and 2 hours after those periods.  

No significant differnece was found by two-way ANOVA.  A significant difference was 

found by one-way ANOVA between the heterzygous and mutant group at 11:00 hour 

of the 6 DPF.  * Significant difference (P < 0.05).

*

 

Locomotion is not altered in the dnmt1 S872 zebrafish 

Locomotion was tested by evaluating activity in different light phases.  The first trial was 

in a session of 30 minutes of constant darkness. (Fig. 13 A).  The dnmt1 S872 zebrafish exhibited 

low levels of activity in all groups.  There were no significant differences found by two-way 

ANOVA with repeated measures. 

The second trial for locomotion was a 30-minute session of white light.  The dnmt1 S872 

zebrafish showed an initial low locomotor activity with a steady increase as the trial continued 

(Fig. 13 B).  There were no significant differences by two-way ANOVA with repeated measures. 
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Locomotion of dnmt1 S872 Zebrafish 

in Light and Dark Phases
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Fig. 13.  Locomotion of dnmt1 S872 Zebrafish in not altered during Light and Dark 

Phases.  Light status is indicated by colored bars during each session.  A. Locomotion 

in 30 minutes of darkness resulted in low locomotor activity in all genotypes without 

any significant differences. B. Locomotion in a 30 minute of light resulted in an initial 

low activity, but steadily increased over time.  There was no significant differences. 

Both trails were analyzed by two-way ANOVA with repeated measures.
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Visual-motor response is altered in the dnmt1 S872 mutants 

The VMR assay uses alternating ten-minute intervals of light and dark periods to assess 

the behavioral response of the fish to sudden changes in light.  Although each genotype 

responded to the light-phase changes, there was a decrease in locomotor activity as global DNA 

methylation decreased (Fig. 14).  Averaging each ten-minute phase change and performing a 

Kurskal-Wallis one-way ANOVA of variance of ranks in each phase showed a significant 

difference between the wild-type and the mutant strains at the first and third dark phases (Fig. 

15).  There were no statistically significant differences found between the heterozygous and the 

wild-type groups. 
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Visual-motor Response of dnmt1 S
872

 Zebrafish 

During Alternatingl Light Phase Changes
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Figure 14:  VMR activity is altered in dnmt1 S872 during alternating light phases.  During 

the light phases, a decrease in locomotor activity was observed, while a increase in locomotor 

activty when the lights were shut off. There is a gradient decrease in locomotor activty 

observed between all groups, with the wild-type having the greatest level of activity and the 

mutatns have the lowest amount of activity. There was a significant distance found between 

zygosity and time using a two-way ANOVA.  
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Visual-Motor Response of dnmt1 S872 Zebrafish 

with Light/Dark Phase Averaged

Time (Minutes)

20 30 40 50 60 70 80

A
v

e
ra

g
e

 V
e

lo
ci

ty
 (

cm
/s

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

WT n = 6

HET n = 35

MUT n =6

Figure 15. VMR is altered in dnmt1 S872 mutants.  Averaging each 10 minute phase 

together and comparing locomotor activity showed a significant decrease in locomotor 

activity in mutant groups during the first and thrid dark phases by one-way ANOVA 

(P < 0.05).  A significant difference was not found in the light phases or bewteen the 

heterzygous groups in any phase.  The light phase bar is shown to indicate the phase 

changes. * Signficant difference (P < 0.05).

*

*

 

C-start response is not grossly altered in dnmt1 s872 at 144 HPF 

 A second touch response was performed at 144 HPF after a locomotion trial to 

investigate further development of the neurological system at a later time period.  All 

individuals had a quick and rapid response (data not shown).     
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DISCUSSION 

Methylmercury (MeHg) is an environmental toxicant that presents a high concern for 

public health, as many people around the world ingest organic mercury through dietary fish 

consumption (Grandejean et al., 2010; Newland et al., 2008).  For instance, Tsankova et al. 

(2006), discovered that MeHg induced long-lasting developmental problems in perinatal 

exposed mice.  Specifically, the results showed DNA hypemethylation, increased H3-K27 tri-

methylation, and decreased acetylation on the promoter site IV in brain-derived neurotrophic 

factor (Bdnf), an important protein that helps with nerve growth, function and survival.  Their 

findings also support that sub-lethal environmental toxins could mediate epigenetic 

modifications in neurons that, in turn, lead to long-term neurobehavioral phenotypes  

Moreover, Bose et al. (2012) reported that globally decreased DNA methylation was inherited 

in NSC daughter cells after a low dose of mercury in the parental cell.  The epigenetic 

mechanisms whereby different toxicants influence global gene expression changes that, 

ultimately, yield abnormal neurobehavioral phenotypes remain unknown. 

The objective of this study was to investigate the impact of DNA hypomethylation the 

neurobehavior of zebrafish larvae. First, we exploited 5-azacytidine (5-aza) and MeHg, 

established demethylating agents (Pilsneret al. 2009; Bose et al., 2012; Oakes et al., 2007), to 

investigate the impacts of epigenetic changes on neurobehavior.  We also employed the dnmt1 

S872 mutant zebrafish to characterize potentially altered neurobehavioral phenotypes induced 

by global DNA hypomethylation in the absence of toxicant.  If similar phenotypes are found in 

the absence and presence of an environmental toxicant, then possible mechanistic outcomes in 

neurobehavior abnormalities can be associated with dysregulated DNA methylation. 
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5-aza was used to chemically induce global DNA hypomethylation in zebrafish during the 

first 24 hours of development.  5-aza binds to the catalytic domains of DMNTs and inhibits their 

function (Santi et al., 1983).  The magnitude of global DNA methylation was assessed using 

MethylFlashTM analysis following exposure to 30-μM 5-aza, which was the highest dose tested 

that produced some morphologically normal embryos.  Although the sample size was not large 

enough to identify a significant difference, 24-hour exposure to 30 μM 5-aza exhibited a 

downward trend in the level of DNA methylation that necessitates further research (Fig. 5).  

Clinical trials have shown that 5-aza has a half-life of 4 hours and is completely undetectable 

after 8 hours (Rudeket al., 2005).  That said, when embryos were exposed to fresh 5-aza every 8 

hours for 24 hours, DNA hypomethylation was much more apparent as a result of methylation 

being continuously inhibited (Fig. 5).  The variation with these data could stem from the 

potential of its quick half-life, thus creating different dose zone across the plate, where animals 

were exposed to different levels of 5-aza.  Since the chosen animals were morphologically 

normal, it is also possible that the data variation is a result of variable tolerance to the effects of 

5-aza. Ultimately, further experimentation is required to validate that results described above. 

Having determined that 5-aza can induce DNA hypomethylation in developing zebrafish, 

this chemical was exploited to investigate the effect of toxicant-induced DNA hypomethylation 

on optomotor response (OMR).  The OMR is an innate behavior in zebrafish and starts at 5 DPF 

(Portugues and Engert, 2009).  It involves the proper function of the retinal ganglion cells, rods 

and cones, and neurocircuits (Roeser and Baier, 2005; Orger and Baier, 2005; Orgeret al. 2008).  

Results showed that 5-aza caused a decrease in the number of animals with a functional OMR 

(Fig. 6).  Next, the hypothesis proposed by Lee et al. (2009) was investigated using 5-aza. Lee et 
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al. (2009) hypothesized that the presence of an environmental toxicant can shift the 

methionine pathway towards GSH synthesis resulting in decreased methionine synthesis (and 

reduced DNA methylation) but could be restored by methyl donor supplementation. Therefore, 

zebrafish embryos were exposed to 30-μM 5-aza supplemented with 1-μM cyanocobalamin (a 

well-characterized methyl donor).  Cyanocobalamin alone did not cause any significant 

difference in the OMR, but the co-exposure of 5-aza and cyanocobalamin increased the number 

of animals from an average of 40% passed in the 5-aza alone to 64% in the co-exposure, which 

was close to the level of the control fish (Fig. 8). These data support the hypothesis proposed by 

Lee et al. (2009), suggesting that the addition of the methyl donor, cyanocobalamin, increased 

the level of methionine synthesis as GSHis an antioxidant that scavenges free radicals, plays a 

key role in detoxification and helps prevent apoptosis (Leggatt and Iwama, 2009; Dethet al. 

2008). GSH is known to bind to MeHg to help eliminate it out of the organisms, which leads to a 

drastic depletion of glutathione and increased risk of cellular damage (Sanfelie et al., 2001; Yee 

and Choi, 1996).The next objective of this study was to investigate and compare the effects of 

methylmercury to those of 5-aza.The acute effects of methylmercury toxicity in humans are 

neurological toxicity, multiple organ toxicity, immune system disorders, and cellular oxidative 

stress (Li et al., 2010; Mingwei et al., 2010).  Low dose exposures of MeHg are also of concern 

as even in woman that are not symptomatic (Grandjean and Herz, 2011), it has been shown 

that perinatal exposure in rats causes neurobehavioral impairments later after birth (Fujimura 

et al., 2012).   

The results of the current study support the notion that MeHg can cause DNA 

hypomethylation as seen in previous investigations (Pilsner et al. 2009; Bose et al., 2012; Oakes 
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et al., 2007), and that the MethylFlashTM assay is an effective means of quantifying DNA 

methylation in zebrafish.  To further assess epigenetic changes from MeHg exposures, global 

DNA methylation in sperm was investigated.  Sperm is a germ-line cell with an imprinted 

methylation pattern that is passed to the offspring during conception and is a important factor 

in genetic inheritance (Jirtle and Skinner, 2007).  EK embryos (1-cell stage) were exposed to 

MeHg for 24 hours to generate a F1 generation. These embryos were then raised to adults with 

no further exposures to MeHg and were bred to make the F2 and F3 generations.  Sperm was 

then collected from F1 and F3 males (0 μM and 0.01 μM exposure groups only) and pooled into 

groups of three for MethylFlashTM analysis.  There was a downward trend in the DNA 

methylation of both generations, but a statistically significant difference was not observed due 

to small sample size (Fig. 7). However, it is important to reiterate that a reduced level of global 

DNA methylation in the F3 generation was apparent despite the lack of direct exposure to 

MeHg. Thus, epigenetic conservation is solely by germ-line transgenerational inheritance.  This 

report analogous to that of Guerrero-Bosagna and Skinner (2012) regarding germ-line 

inheritance of epigenetic patterns. In addition, Oakes et al. (2007) reported DNA 

hypomethylation and impaired function of sperm in Dnmt1+/- mice exposed to 5-aza-2-

deoxycytidine (a DNMT inhibitor).  If both MeHg and 5-aza-2-deoxycytidine cause DNA 

hypomethylation, then it is plausible that they share similar mechanisms.  Methylmercury has 

been shown to increase GSH levels during exposure; however, MeHg-induced disruption of GSH 

homeostasis is not the only means of toxicity (Ou et al., 1999; Fujimura et al. 2012; Grandjean 

and Herz, 2011; Ginsberg et al., 2014).  We suggest that an additional MeHg-induced 

mechanism of toxicity is DNA methylation changes caused by decreased availability of 
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methionine.The mechanism shared by MeHg and 5-aza seems to be strictly related to DMNT 

function as both chemicals have been shown to interfere with their function (Basu et al., 2013; 

Santi et al., 1983).  This hypothesis can be evaluated further using the dnmt1 S872 mutant 

zebrafish and investigating neurobehavioral outcomes. 

The next research objective was to evaluate the effect of hypomethylation on 

neurobehavior using dnmt1 S872 zebrafish.  This C-start assay is used to evaluate early 

neurological plasticity and synaptic transmission, particularly in the Mauthner cells, the largest 

neurons in the zebrafish central nervous system (Kimmel et al., 1981).  There was no gross 

significant difference in the C-start response in and of the dnmt1 S872 eleutheroembryos (Table 

1.) Conservation of this circuit shows that early neurodevelopmental impacts are not grossly 

inhibited by the dnmt1 S872-induced global hypomethylation.  To exclude a problem in later 

neuronal development leading to a dysfunction in motor neuron function, a second C-start 

touch response assay was performed on 144 HPF dnmt1 S872 zebrafish. Again all animals 

escaped effectively.  This provides further evidence of potential neurologic abnormalities in the 

brain versus a sensory and motor neuron abnormality; as the zebrafish maintained their 

sensory motor neurons and rapid-escape responses. It should be noted that high-speed imaging 

and analysis of tail beat frequency and degree of bend were not conducted in this experiment.  

There may therefore, be a subtle decrease in response efficiency that was not investigated and 

may be present. 

The circadian rhythm was slightly altered in dnmt1 S872 heterozygous animals and 

almost completely abolished in the dnmt1 S872 homozygous animals.  Circadian rhythm is an 

important biological clock that is controlled by the suprachiasmatic nucleus in the brain 
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(Rosenwasseret al., 2014) and which controls daily functions and energy levels.  Although this 

study does not possess sufficient statistical power due to small sample sizes, the heterozygous 

individuals show a trend toward hyperactivity that is associated with DNA hypomethylation.   

There have been multiple studies that have looked at the level of specific gene expression in 

zebrafish that have neurobehavioral alterations in response to DNA hypomethylation.  Parrish 

et al. (2013) found that DNMT inhibition (by zebularine exposure) in epileptic rats decreased 

field excitatory postsynaptic potentials in the hippocampaus; as well as causing an increase in a 

glutamate receptor subunit epsilon-2 (Grin2b/Nr2b) expression. The excitatory post synaptic 

potential in neurons are important for making the neuron more likely to fire an action potential 

(Knogler and Drapeau, 2014).If DNA hypomethylation alone can alter the excitatory post 

snynaptic potential, then neural latency of the action potential could arise.  Similar results were 

reported by Parrish et al. (2013) as they suggested that DNA hypomethylation also causes 

posttranscriptional mechanistic changes in neurons as it promoted a latency phase in the onset 

of seizures in their model.  In terms of the current study, the dnmt1 S872 mutants, with severe 

DNA hypomethylation, may have contributed to the decrease in the activity throughout the 

circadian rhythm trial by slowing down the action potential depolarization.  The alterations in 

circadian seen in this study may also be contributed to hormonal changes. In animals that have 

seizures with or without convulsions, it is theorized that behavioral phenotypes can still arise 

from stress-induced cortisol increases that influences seizure-related behaviors and endocrine 

phenotypes (i.e., hyperactivity; Wong et al., 2010).  Another interesting finding is the fact that 

circadian rhythm in not completely regulated by the SCN in zebrafish like it is in mammals 

(Noche et al., 2011). Whitmore et al., (1998, 2000) performed studies looking at circadian 
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rhythm in zebrafish that completely lacked SCNs and found that their mutant cyc fish, still had a 

functional rhythm.  They isolated organs and in cell culture were able to show that a separate 

oscillator were present in kidney and heart in zebrafish and were still entrained by light and 

dark cycles.  In the dnmt1 S872 fish there is drastic onset of apoptosis of hepatic and pancreas 

cells around 8 DPF (Anderson et al., 2009).  If circadian rhythm supporting oscillators exist in 

multiple organs within zebrafish, then the almost complete abolishment of the circadian 

rhythm in the dnmt1 S872 mutants (Fig. 12) may be a result of the altered physiology exhibited 

by these organs.    In general, these mutants may not be a good candidate for circadian rhythm 

trials past 7 DPF. 

With problems in circadian rhythm apparent, the locomotion and VMR trials were 

performed to investigate motor and visual-motor response.  Locomotion was consistent across 

all genotypes of dnmt1 S872zebrafish when assessed in 30 minutes of constant darkness or light 

(Fig. 13A-B). The quicker 10-minute intervals of light and dark periods of the VMR assay 

resulted in decreased average velocity during dark phases in relation to the severity of DNA 

hypomethylation (Fig. 15). These data suggest that the dnmt1 S872 mutant zebrafish can visually 

see the light changes; however, they seem to have a problem in appropriately responding to 

the stimulus.  The effects of light are mediated by a non-image-forming visual pathway that 

starts in the eye by melanopsin-expressing intrinsically photoreceptive retinal ganglion cells 

(Hattar et al., 2003).  It is assumed that if these retinal ganglion cells are defective due to 

altered gene-expression, there would be a delayed response to the light-period change; 

however, in our study the fish responded immediately and consistently to each phase change 

while the magnitude of response was altered.  MacPhail et al. (2009) proposed that the changes 
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in VMR could be from alterations in paradoxical activity, where dark periods create a more 

rapid-acting excitatory effect.  When the zebrafish are given a quick alternating light-dark 

phase, a rebound excitation in the dark period develops.  This suggests that during the changes 

in the light, the dnmt1 S872 heterozygous and mutant groups may have a dysfunction in neural 

excitation.  In relation to humans, problems involved in neural excitations can be seen in 

kinesia, which is controlled by the basal ganglia and dopamine receptors as investigated by 

Sano et al., (2013). There is also supporting information by Irons et al. 2012 that emphasize sthe 

importance of dopamine receptors in motor behavior.  In the future, investigating dopamine 

receptors using agonists and antagonists may elucidate a possible neural mechanism of 

zebrafish that could be altered from DNA methylation. 

In summary, we have shown that the dnmt1 S872 strain of zebrafish is a good candidate 

model for investigating the effects of DNA hypomethylation on early neurobehavioral 

outcomes.  The heterozygous and the mutant dnmt1 S872 zebrafish provided a global reduction 

in DNA methylation without the direct cytotoxicity by environmental toxicants or other DNA 

hypomethylating agents.  The neurobehavior phenotypes found in this study can be strongly 

associated with DNA methylation changes; however, secondary synergistic mechanisms require 

further research..  In this study, we were able to show that circadian rhythm and locomotor 

activity are potentially regulated via DNA methylation; however, more samples are needed for 

appropriate statistical power. The dnmt1 S872 fish responded to touch stimulus and had no 

apparent morphological phenotypes, thus functional neural transmission was conserved.  

Interestingly, a DNA hypomethylation-induced OMR phenotype may have been manipulated by 

co-exposing zebrafish embryos with cyanocobalamin and 5-aza; probing the theory that the 
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methionine pathway is a key contributor epigenetic modulation during environmental toxicant 

exposures. Collectively, the knowledge gained here and future, investigation into the specific 

role of individual neuronal cell types, neurocircuits, and molecular neurotransmitters will 

further elucidate the mechanism in which DNA methylation regulates neurobehavior. 
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