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ABSTRACT 

 

DEVELOPMENT OF PERIPHERAL INNERVATION 

IN THE FROG XENOPUS LAEVIS 

 

by 

 

Mitali A. Gandhi 

 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Dr. R. David Heathcote 

 

 

The skin in Xenopus laevis is innervated by two different sets of mechanosensory 

neurons at different times during development. Rohon Beard (RB) neurons start 

differentiating during gastrulation, innervate the embryonic skin and mediate sensory 

function during hatching.  Dorsal Root Ganglion (DRG) neurons start differentiating after 

neural crest migration, innervate adult epidermal targets and mediate mechanosensory 

function during larval and adult stages and eventually replace RB neurons.  The change 

in sensory neurons occurs during the transformation of skin, sensory structures, and 

behavior from their embryonic to their larval forms.  We hypothesized that 

developmental changes in either the sensory end organs or the skin underlie the switch in 

mechanosensory systems.  We initially tested the development of sensory innervation of 

the skin by marking neurites that innervate the skin and measuring their spatial and 

temporal changes.  We also showed that sensory neurites rapidly disappear following 

denervation.  We then switched targets by transplanting denervated skin between animals 

of the same stage (isochronic) and animals at different stages (heterochronic).  

Quantification of the percent area reinnervated by neurites from the host showed that 

reinnervation of all three stages of larval development following isochronic transplant, 
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was approximately half that of controls.   Reinnervation of heterochronic transplants was 

approximately half of the isochronic transplants.  Our results show that neurites have 

difficulty innervating denervated skin at an age different from itself.  In addition, the 

pattern of innervation changes during this period of development.  Sensory neurons 

totally encircle a subset of dispersed cells in the skin.  Innervation of other cells follows, 

but the number of encircled cells gradually decreases.  Following heterochronic skin 

transplants, embryonic neurites encircle cells in a similar way in both embryonic and 

larval skin, indicating that the neurons, rather than the skin determines the pattern of 

innervation.  However, older neurons do not show age-specific patterning, which 

suggests that they no longer determine the pattern of innervation.  Thus, the skin targets 

help regulate target innervation, but the patterning of innervation, at least partially 

depends on the neurons. 
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Introduction 

 

As an animal develops, its needs change, requiring the activity of different sets of 

neurons.  In most animals, the embryo is encased in an egg from which it must escape to 

become a freely-moving and independent larva.  In fish and amphibians, different 

populations of sensory neurons form during these periods of development.  The first or 

primary sensory neurons differentiate during embryonic development and mediate the 

mechanosensory functions needed for hatching.  The secondary sensory neurons 

differentiate after hatching.  They gradually assume the mechanosensory functions and 

provide additional sensory information (proprioception, thermoreception, nociception) 

that is essential for animals at later stages of their development.  We test whether the 

change in skin targets of the mechanoreceptors drives the formation of and switch to the 

secondary neurons by transplanting the skin and its associated targets between animals at 

two different stages of development. 

Sensory Neuron Origin: Primary and secondary sensory neurons have distinct 

spatial patterns of expression.  Primary sensory neurons originate from the lateral edges 

of the developing neural plate and become located in the dorsal neural tube following 

neural fold fusion.  The cells are quite large and are called Rohon Beard (RB) neurons, 

after two of the early researchers who studied them (Rohon, 1885; Beard, 1889, 1892, 

1896). Secondary sensory neurons are derived from the embryonic neural crest and 

ultimately differentiate in the Dorsal Root Ganglia (DRG) associated with each segment.  

The region of ectoderm that is between the lateral neural plate and the dorsal epidermis 
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forms the neural crest.  Following fusion of the neural folds, the neural crest is deposited 

on top of the neural tube.  Cells then begin to migrate to their peripheral locations.  The 

first cells to migrate have distal destinations and form the sympathetic ganglia.  

Subsequent neural crest cells do not migrate as far from the neural tube and differentiate 

into the DRGs.   

There are also distinct temporal patterns of expression of primary and secondary 

sensory neurons.  The final cell divisions or “birthdays” of the population of primary RB 

neurons, start during gastrulation and continue during neural plate formation 

(Lamborghini, 1980), while DRG neurons are thought to undergo their birthdays much 

later, during and after their migration from the neural crest (Lawson et al, 1974).   

Although the time and place of differentiation of the two populations of sensory 

neurons is distinct, their origins are linked.  Both are mixed in the border region between 

the neural plate and ectoderm (Artinger et al, 1999; Cornell and Eisen, 2000, 2002) and 

the fate of both are induced by BMP signaling (Rossi et al, 2008).  Both sensory neuron 

types are also dependent on the expression of the Neurogenin-1 transcription factor and 

Delta signaling (Cornell and Eisen 2000).  These results have led to the conclusion that 

RBs and Neural Crest Cells may have a related origin, but they do not necessarily have a 

common progenitor (Cornell and Eisen, 2002).  

Sensory Neuron Differentiation.  The differentiation of all sensory neurons 

follows a similar sequence.  The pathways for both RB and DRG neurons start with the 

expression of the basic Helix-Loop-Helix transcription factor, Neurogenin-1 and/or -2 

(Ma et al, 1996, Fode et al, 1998) followed by Neurod-1 and -4 (Fode et al, 1998).  After  
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this neurogenic phase, the cells stop dividing and begin expressing the transcription 

factors Islet-1 and Brn3a (Anderson, 1999).  The expression of Islet-1 in all sensory cells 

is a necessary step in the specification of all types of sensory neurons (Sun et al, 2008).   

Following specification, the neurite outgrowth phase of differentiation begins.  In 

Xenopus, RB neurons are among the first to initiate neurite outgrowth, and do so around 

the time of neural tube closure (Hayes and Roberts, 1973; Hartenstein, 1989; Nordlander, 

1989).  They send neurites along the neural tube and into the periphery where they form a 

dense plexus underlying the embryonic epidermis (Roberts and Hayes, 1977; Roberts and 

Taylor, 1982; Taylor and Roberts, 1983; Somasekhar and Nordlander, 1997; Wieczorek, 

2002).  During peripheral innervation, they surround some cells in the skin (Somasekhar 

and Nordlander, 1997).  Eventually nerve endings are present on all epidermal cells, but 

they appear to totally surround only a subset of epidermal cells arranged in a dispersed 

pattern.  

Although they differentiate at a later stage of development, DRG neurons also 

extend neurites during the early phase of their differentiation.  After hatching, DRG 

neurons begin to differentiate and send neurites to the central nervous system and the 

periphery (Oblinger and Lasek 1994). Although the pattern of innervation of the skin 

does not obviously change when the DRG neurites first enter, it does undergo a gradual 

and ultimately dramatic transformation by the time animals start metamorphosis 

(unpublished observations).   

Changes in the sensory innervation occur during the transformation of embryonic 

to larval skin. This is also the time that larvae start to undergo active swimming and 
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feeding. Sensory neurons, their targets in the skin, and behavior, all change dramatically 

over this short period of developmental time. 
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Materials and Methods 

 

Xenopus laevis embryos and larvae were obtained from the breeding colony 

maintained in our laboratory.  The times and stages of development at 23
o
C were 

determined according to the criteria of Nieuwkoop and Faber (1994). 

 

HNK-1 Marking of Differentiating Sensory Neurons  

Animals were anesthetized in 1 mM Tricaine and then fixed before visualizing the 

sensory neurons.  Immunocytochemical marking of the HNK-1 antigen, which is 

expressed on the surface of Rohon Beard neurons (Nordlander, 1989, 1993; Metcalfe et 

al., 1990), involved fixation in 4% paraformaldehyde (PFA, pH 7.4) at 4C for 1 hour. 

After washing in 0.1 M Phosphate buffered saline (PBS), and dehydration in methanol, 

the embryos were bleached in 1.74 % H2O2 to remove pigment.  Following rehydration, 

non-specific binding was blocked with PBT (0.1 M PBS, 0.2% Bovine serum albumin 

(BSA) and 0.1% Triton X-100). The embryos were incubated overnight at 4
o
C in mouse 

monoclonal HNK-1 antibody (Miles Epstein, UW Madison, C0678 from Sigma Aldrich) 

diluted 1:500 in PBT. After incubation with HNK-1, the embryos were washed in PBS 

three times, for thirty minutes each, and incubated in biotinylated horse anti-mouse 

secondary antibody (Vector Laboratories) for 1 hour at room temperature, diluted 1:500 

in PBT.  After washing, the embryos were incubated in avidin-biotin horseradish 

peroxidase (HRP) complex (ABC Elite, Vector Laboratories) for 1 hour at room 

temperature, diluted 1:50 in PBT. Diaminobenzadine (DAB, 1 mg/ml in PBT) intensified 

with Co(Cl2)2 and Ni(NH4)2(SO4)2 was catalyzed by H2O2 and used to visualize the HRP 
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complex. The embryos were washed, infiltrated in 90% glycerol in PBS, whole-mounted 

in Sylgard wells on microscope slides (Sive et al., 2000) and viewed with a Zeiss 

Axioskop using brightfield and DIC optics. 

 

Islet-1 Marking of Sensory Nuclei 

Immunocytochemistry for Islet-1, a transcription factor expressed in sensory 

neurons (Korzh et al., 1993; Sun et al., 2008) was used to mark the nuclei of Rohon 

Beard (RB) and Dorsal Root Ganglion (DRG) neurons.  We used the same protocol as 

with HNK-1 immunocytochemistry except the primary antibody was a mouse 

monoclonal to Islet-1 (39-405; Developmental Studies Hybridoma Bank) diluted 1:500.  

 

Skin Denervation 

A patch of skin from the trunk region was denervated by using electrolytically 

sharpened tungsten needles to remove it from the animal.  It was maintained in 0.5X 

Modified Barth’s solution (MBS) and 50 µg/ml gentamycin before fixation.  Controls 

were fixed before skin removal.  Immunocytochemistry for HNK-1 was then used to 

mark the neurites in the isolated patches of skin. 

 

Skin Transplants  

Patches of skin were transplanted from donors to hosts of the same stage that had 

a patch of skin removed (isochronic transplants).  They were also transplanted between 

animals at different stages (heterochronic transplants).  The animals were maintained in a 

solution of 0.5X MBS, 50µg/ml gentamycin and 1mM Tricaine, pH 7.45 during the 
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transplant procedure.  The transplanted skin was held in place with a small piece of glass 

cover slip for an hour, to promote adherence to the new site.  The animals recovered for 

24 hours in a solution of 0.5X MBS and 50 µg/ml gentamycin before fixation and 

immunocytochemistry for HNK-1.  The stages used for experiments and rationale are 

summarized in Table 1.   

 

Analysis 

Neurite measurements 

To quantify the peripheral innervation of the skin during development, we used 

camera lucida to trace neurites from somite 7 (future fore-limb), somite 10 (inter-limb 

region), somite 13 (future hind-limb) and somite 22 (tail region).  The total length of 

neurites (peripheral innervation) in each of the somites was measured with a digitizing 

tablet (Drawing Board VI, GTCO Calcomp) and Sigma Scan Pro software.  In the same 

way, we quantified neurites from experimental and surrounding (control) regions. 

To quantify the area innervated by neurites in a patch of skin, we used camera 

lucida tracings of the patch.  The innervated region was enclosed by a polygon and its 

area was measured with a digitizing tablet. This was compared to the area of the entire 

patch to obtain the percent area innervated.  

 

Cell counts 

The RB cells in the dorsal spinal cord and the DRG cells in the peripheral nervous 

system that were associated with the corresponding somites (7, 10, 13, and 22) were 

quantified from camera lucida tracings.  
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The skin cells encircled by neurites within a given area were identified from 

camera lucida tracings and counted. 

         Graphing and statistical analysis (unpaired t-test) were performed using Prism 

Software (Graphpad). 
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RESULTS 

 

Pattern of innervation during development 

During larval development of the frog, Xenopus laevis, there are two populations 

of neurons that innervate the skin.  The Rohon Beard (RB) neurons form in the central 

nervous system during embryonic development while Dorsal Root Ganglion (DRG) 

neurons form during larval development and eventually replace the RB neurons.  

To test whether the peripheral pattern of innervation changes as the primary 

sensory neurons (RB) are replaced by the secondary ones (DRG), we marked their 

neurites with immunocytochemistry to the HNK-1 epitope and visualized the innervation 

of the skin at different times and locations in the animal.  Neurites innervate the skin by 

growing around the base of skin cells and forming small varicosities or boutons along 

their length (Fig. 1A).  Some cells are entirely surrounded by neurites.  The skin 

innervation was examined at 2.2 d (st 37/38; post-hatching), 3.1 d (st 41; mid-larval 

stage) and 7.5 d (st 48; start of metamorphosis).  It was also examined at four different 

axial levels, corresponding to the regions where the limbs will form (somites 7 and 13), 

the interlimb region (somite 10) and the region in the middle of the tail (somite 22).  The 

largest differences were in the tail region (Fig. 1 B).  The tail somites undergo a large 

increase in size during larval development, however the innervation surrounding 

individual skin cells appears remarkably similar. 

Spatial and temporal expression of sensory neurons  

 We quantified the spatial and temporal expression of both populations of sensory 

neurons and their peripheral processes to test the coordination of their growth during 
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larval development.  Initially, we used immunocytochemistry for the pan-sensory neuron 

marker, Islet-1, to mark the nuclei of the central RB neurons (Fig. 2A, 2C).  At all three 

stages of larval development, there are more neurons in the most anterior region (somite 

7).  The numbers decrease as you move to more posterior regions.  The spatial gradient 

persists throughout larval development.  Particularly in the more anterior regions, the 

numbers of RB neurons decrease during larval development.  This temporal pattern 

reflects a dynamic change in the population of RB neurons. 

 We also used Islet-1 immunocytochemistry to mark the nuclei of the peripheral 

DRG neurons at all three stages of development (Fig. 2 B-C).  Unlike the RB neurons, 

the number of DRG neurons increases during this period of development.  Only a couple 

of neurons are present in the most anterior region of some larvae at the earliest stage of 

development.  There are still small numbers present one day later, but they are present at 

all axial levels.  By the oldest stage, the numbers of cells are similar to those of RB 

neurons.  At the oldest stage, there is a difference between the axial patterning of DRG 

and RB neurons.  Although both have more neurons in the anterior versus posterior 

regions, there is a decrease or dip in the number of DRG neurons in the interlimb region 

(somite 10).  The pattern of DRG sensory neurons differs from that of RB neurons, but 

both change in a dynamic way during the larval period of development. 

 We quantified sensory innervation at the three stages of development by 

measuring the total length of neurites innervating the somites (Fig. 2D).  At the two 

earliest stages of development, there are roughly similar amounts of innervation in all 

three thoracic regions.  Only the tail has reduced amounts of innervation at this time.  By 

the oldest stage, the three posterior regions have undergone large increases in the amount 
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of innervation.  This corresponds to an increase in the size of somites over the same 

period of time (not shown).  The length of neurites forms a posterior to anterior gradient 

at this stage.  The large increase in neurite length also illustrates the large amount of 

growth in sensory innervation of the skin that occurs during this period of development. 

 

Denervation of the skin 

 The dynamic growth of sensory neurites could mean that they are relatively 

autonomous from their cell bodies.  To test this, we denervated patches of skin for 

different periods of time to determine how long neurites persist in the skin. Before 

denervation (Fig 3A), neurites extend throughout the patch. However most of the neurites 

are gone only one hour after denervation (Fig 3B) to approximately 10% of the control 

level (Fig 3C).  When neurites are separated from their cell bodies, they rapidly 

degenerate, indicating that during this period of rapid growth, they must remain intact 

and connected to their cell bodies.   

 

Regeneration of skin sensory neurons 

 Following degeneration, we tested whether sensory neurites could regenerate into 

a denervated patch of skin.  We transplanted a denervated patch of skin from a donor 

larva to a denervated site on a host.  The skin was given time to heal and sufficient time 

(one day) for growth cones traveling at a normal rate (80 μm/hr; Roberts and Taylor, 

1982), to easily traverse the patch.  Examples of four different transplants are shown in 

figure 4.  They include transplants of skin to animals of the same stage (isochronic, Figs. 

4A and C) and transplants between animals at different stages (heterochronic, Figs. 4B 
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and D).  Following isochronic transplantation, a greater area of the denervated skin was 

innervated than following heterochronic transplantation.  Neurites entered the isochronic 

transplants from more places than heterochronic transplants.  In all transplants, neurites 

could enter from any direction, but more seemed to enter from the dorsal side.  Although 

the amount of growth varied, successful reinnervation occurred in all transplants. 

 We quantified the innervation of the transplants to determine if the two 

populations of neurons had a preference for innervating targets in the skin at the same 

stage of development.  At 2.2 d, RB neurons are the only sensory neurons present in the 

host (Fig. 2) and they re-innervate 46.5 ± 8.9 % of the area in denervated skin from 

animals at the same stage of development (Fig. 5).  The area of skin from older (7.5 d) 

animals re-innervated by younger RB neurons was significantly (P < 0.05) less than 

isochronic controls (21.4 ± 3.6 %; Fig. 5).  At 7.5 d, sensory neurons have increased their 

innervation of the skin following DRG differentiation (Fig. 2).  They re-innervate 49.0 ± 

6.4 % of the area of skin from 7.5 d animals.  However, those neurons re-innervate 

significantly  (P < 0.05) less (24.6 ± 4.4 %) skin from younger (2.2 d) animals (Fig. 5).  

In 3.1 d hosts, there is an even greater area re-innervated in isochronic transplants (76.8 ± 

8.6 %) than in either 2.2 d or 7.5 d isochronic transplants.  This is similar to the area re-

innervated in heterochronic transplants of older skin 75.1 ± 8.3 %.  This is when DRG 

neurons are just starting to differentiate (Fig. 2B).  Neurons from 7.5 d animals, which 

have RB and DRG neurons, do not re-innervate the large areas characteristic of neurons 

at 3.1 d, when RB neurons are younger and DRG neurons are just starting to differentiate.  

The results of all of these transplant experiments show that established RB or DRG 

neurons preferentially re-innervate targets at the same stage of development.  
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Pattern of sensory regeneration to the skin 

 During larval development, the pattern of innervation of the skin changes.  

Ciliated epidermal and Small Secretory (SSC) cells appear following neural tube closure, 

but begin to disappear as the animal approaches metamorphosis.  Some cells that form a 

dispersed pattern like both of these epidermal populations, gradually become 

circumscribed by neurites (Fig. 1).  However, this pattern changes as ciliated and 

presumably SSC cells disappear.  To quantify this change, we measured the length of 

neurites in an area of skin from normal animals at different stages of development and 

counted the number of cells in the area totally surrounded by neurites.  The number of 

encircled cells per unit neurite length in normal (control) animals is shown in figure 6.  

At 2.2 d, DRG neurons have not differentiated, so all of the skin sensory innervation is by 

RB neurons.  The number of encircled cells per unit of neurite length is similar to that of 

animals at 3.1 d, which is when DRG neurons are just starting to differentiate.  By 7.5 d, 

when RB neurons are older and some have started to die, the number of encircled cells 

per unit length significantly (P < 0.05) decreased.  At 7.5 d, the number of ciliated 

epidermal cells also decreased (Nishikawa et al, 1992), as the larval skin replaces the pre-

larval or embryonic skin.  Presumably similar changes occur to the SSC cells at this time.  

Both sensory neurons and their targets change over this short period of developmental 

time. 

 The pattern of sensory innervation is maintained following regeneration into skin 

at the same stage of development.  We hypothesized that skin transplanted to hosts at the 

same stage of development (isochronic transplants) would have the correct targets 

available to guide neurons and form a pattern similar to normal skin.  Although the 
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number of encircled cells per unit neurite length in isochronic transplants at 2.2 d was 

somewhat lower than 2.2 d controls and 3.1 d isochronic transplants, both were still 

significantly (P < 0.05) greater than 7.5 d isochronic transplants (Fig. 6).  Sensory 

neurites in both 3.1 d and 7.5 d transplants assumed patterns similar to controls.  

Although the pattern of innervation was not identical to controls, it was largely 

maintained after regeneration.   

 To determine whether the skin or the neurons direct the pattern of sensory 

innervation, we performed skin transplants between animals at different stages of 

development (heterochronic).  What do RB neurons of a 2.2 d host do when they grow 

into skin from a 7.5 d donor?  The pattern of encircled cells is similar to that of the host 

(2.2 d) and is significantly (P < 0.05) different from donor (7.5 d) skin (Fig. 6).  This  

suggests that the RB neurons rather than targets in the skin are responsible for the 

encircling pattern.  The reciprocal transplant of 2.2 d skin into a 7.5 d host should show 

the encircling pattern of 7.5 d sensory neurites, if neurons are responsible for the pattern.   

Although the average number of encircled cells was lower, the response was variable and 

was not significantly different from either the reciprocal transplant, the 2.2 d and 7.5 d 

controls or the 2.2 d and 7.5 d isochronic transplants.  The wide variability means we 

cannot distinguish whether the neurons or their targets in this set of experiments stimulate 

the encircling behavior.  We obtained similar results from heterochronic transplants 

between 3.1 d and 7.5 d animals.  The encircled neuron pattern from 3.1 d host animals is 

similar to that of the 3.1 d control and isochronic transplants.  It is significantly (P < 0.05) 

different from 7.5 d isochronic transplants, but not from 7.5 d controls.  The RB and first 

DRG neurons rather than the targets in the skin, appear to be responsible for the 
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encircling behavior.  However, transplants of 3.1 d skin onto an older (7.5 d) host, 

showed a lower level of encircling, but it was widely variable and was not significantly 

different from the reciprocal transplants, 3.1 d or 7.5 d controls or the 3.1 d and 7.5 d 

isochronic transplants.  As with the heterochronic transplants between 2.2 d and 7.5 d 

animals, we cannot distinguish whether the neurons or their targets in this set of 

experiments stimulate the encircling behavior.  Overall, the neurons in younger (2.2 d and 

3.1 d) hosts encircle skin cells from an older animal in the same way that they would 

encircle skin cells from younger animals.  The neurons from older animals have a more 

variable response to younger skin cells.  This could be due to the fact that RB neurons 

remaining at this stage, regenerate differently from the large number of DRG neurons 

competing for targets in the skin.  
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Figure 1: Development of sensory innervation in the skin. A. Photomicrograph of 

peripheral neurites expressing the HNK-1 epitope at 7.5 d, (st. 48). Some skin cells (black 

asterisks) are completely surrounded by sensory neurites. The neurites have multiple 

varicosities or boutons along their length.  B. Camera lucida tracings of sensory neurites 

in the tail (somite 22) at hatching (2.2 d; st. 37/38), a mid-larval stage (3.1 d; st. 41) and 

the start of metamorphosis (7.5 d; st. 48) show that in the tail, there is dramatic growth 

during this period of development.  Cal: A, 20 μm; B, 25 μm. 
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Figure 2: Differentiation of sensory neurons and their innervation of the skin.  A. The 

number of Rohon Beard (RB) neurons associated with specific somites along the 

anterior-posterior axis, was quantified at three stages of development (hatching, mid-

larval, start of metamorphosis).  The somites are 7 (future fore-limb), 10 (inter-limb), 13 

(future hind-limb) and 22 (tail). B.  Only a few Dorsal Root Ganglion (DRG) neurons 

have differentiated in the most anterior region at 2.2 d (st. 37/38).  New DRG neurons 

have differentiated by 3.1 d (st. 41) but there is no obvious pattern along the anterior 

posterior axis. Between 3.1 d (st. 41) and 7.5 d (st. 48) there is a significant (P < 0.05) 

increase in DRG number in all regions except the interlimb region (somite 10). C. Shows 

dorsal view of a 7.5 d (st. 48) spinal cord; both RB and DRG neurons are marked with 

Islet-1.   D. Neurite length in the entire somite (peripheral innervation) is maintained 

between 2.2 d (st. 37/38) and 3.1 d (st. 41) in all three of the trunk regions, but is reduced 

in the tail.  All but the future forelimb (somite 7) show a significant (P < 0.05) increase in 

neurite length between 3.1 d (st. 41) and 7.5 d (st. 48). Bars show mean and standard 

error of the mean (SEM). Statistical analysis utilized unpaired t-tests. Cal: A, 100 μm. 
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Figure 3 
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Figure 3: Rapid denervation of the skin. A patch of skin was removed from the trunk 

region of animals at 2.2 d (st. 37/38) and 3.1 d (st. 41) to denervate skin. A. shows a 

camera lucida tracing of the sensory neurites in skin marked with HNK-1 before 

denervation. B is a patch of skin removed one hr. after denervation from a 3.1 d animal. 

C. In both stages, almost 90% of the area in the patch became denervated within one 

hour. Bars show mean (n=3) and standard error of the mean (SEM). Cal: A, B, 100 μm. 
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Figure 4:  Regeneration of skin sensory neurites.  Regeneration of neurites from 2.2 d (st. 

37/38, post-hatching, A) and 7.5 d (st. 48, metamorphic, B) hosts into skin from a 2.2 d 

animal after regeneration for one day.  Regeneration of neurites from 7.5 d (C) and 2.2 d 

(D) hosts into skin from a 7.5 d animal after regeneration for one day.  Hosts regenerated 

greater lengths of neurites and innervated a greater percentage of the transplant area in 

isochronic transplants.  Orientation of the transplants is indicated (D (dorsal), V (ventral), 

A (anterior), P (posterior)).  Cal: 25 μm.  
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Figure 5 
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Figure 5: Area innervated by regenerating neurites.  The area innervated by regenerating 

neurites was measured and expressed as the percent of the entire transplant area.  For 

each stage, isochronic transplants showed the maximum amount of area covered by 

regeneration.  For 2.2 d the percentage of the isochronic area innervated (black bar) was 

significantly (P< 0.05) greater than the heterochronic area innervated (dark gray bar). For 

7.5 d hosts, the percentage of the isochronic area innervated (dark gray bar) was 

significantly (P< 0.05) greater than the heterochronic area innervated (black bar). Bars 

show mean and standard error of the mean (SEM). Statistical analysis utilized unpaired t-

tests. 
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Figure 6 
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Figure 6:  Pattern of regeneration. The total number of cells encircled per unit neurite 

length was quantified in control and transplant to test the pattern of regeneration. The 

total number of encircled cells in unoperated controls at 2.2 d and 3.1 d are both 

significantly greater (a; P < 0.05)  than 7.5 d controls. The same holds true for isochronic 

transplants (b; P < 0.05). The number of encircled cells in heterochronic transplants from 

7.5 d donor skin to 2.2 d hosts is similar to 2.2 d controls or isochronic transplants and 

different from 7.5 d controls or isochronic transplants (c; P < 0.05). The number of 

encircled cells in heterochronic transplants from 7.5 d donor skin to 3.1 d hosts is similar 

to 3.1 d controls or isochronic transplants and different from 7.5 d controls or isochronic 

transplants (d; P < 0.05).  The results suggest that neurons from the hosts rather than 

targets in the donor skin are responsible for the encircling pattern. The total number of 

encircled cells in the reciprocal crosses between 2.2 d or 3.1 d donors to 7.5 d hosts  are 

not significantly (P > 0.05) different from the 2.2 d/3.1 d/7.5 d unoperated controls, and 

2.2 d/3.1 d/7.5 d isochronic transplants. Bars show mean and standard error of the mean 

(SEM). Statistical analysis utilized unpaired t-tests. 
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Table 1 
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Table 1: Sensory innervation by Rohon Beard and Dorsal Root Ganglion neurons at the 

three stages of larval development examined in this work.  Changes in the skin are 

included to show how they correspond to changes in the sensory neurons.  
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Table 2: Qualitative summary of neurite growth into skin transplants after one day of 

regeneration.  + indicates some growth, while +++ indicates extensive growth.  ND is not 

determined.  In general, isochronic regeneration could be variable, but was better than 

growth into transplants from the most widely-separated ages.  The number (n) for each 

combination is  greater than or equal to 3.  
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Discussion 

Sensory Neuron Development 

In Xenopus laevis two distinct populations of sensory neurons mediate 

mechanosensory function during development.  Rohon Beard (RB) neurons begin to 

differentiate during early gastrulation (Lamborghini, 1980) and send peripheral neurites 

to their epidermal targets (Roberts & Hayes, 1977; Somasekhar and Nordlander, 1997).  

RB neurons are present only in the embryonic and larval stages of development. They 

undergo programmed cell death and gradually disappear before the animal completes 

metamorphosis (Hughes 1957; Lamborghini 1987).  The mechanosensory function of 

these neurons is eventually replaced by DRG neurons, which derive from the embryonic 

neural crest.  DRG neurons begin to differentiate during early larval stages (Nieuwkoop 

& Faber, 1994) and thus overlap with the RB neurons.  The mechanosensory DRG 

neurons innervate epidermis associated with Merkel cells. They also have many other 

targets, like proprioceptors, thermoreceptors and nociceptors.  The larger array of sensory 

structures is used by both juveniles and adults to interact with their more complex 

environment.  

We quantified the timing and patterning of sensory neurons during embryonic and 

larval stages. Table 1 shows the rationale for choosing the three specific stages of 

development. RB neurons appear in a anterior–posterior gradient during development.  

Our data shows that there are more neurons in anterior regions but they gradually 

decrease as you move to more posterior regions.  In addition, the number of neurons at 

each axial level was maintained at all three stages of development (Fig 2A).  As for DRG 
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neurons, very few are present at early larval stages but their number increases 

dramatically by the start of metamorphosis (Fig 2B). 

 Temporal and spatial changes of the two sensory neuron populations should be 

reflected in the innervation of their peripheral sensory targets.  We expected to see an 

increase in peripheral innervation as the animal grew. Therefore we quantified neurite 

outgrowth during the transition from RB to DRG neurons. Our data shows that there is an 

increase in peripheral innervation as the animal grows. The increase in innervation is seen 

by the start of metamorphosis in posterior regions (Fig 2D).  There is a large increase in 

the number of DRG neurons (Fig 2B), which could explain the increase in innervation. 

However the innervation by sensory neurons is not segmentally restricted and peripheral 

neurites branch extensively to innervate several segments along the length of the animal.  

Therefore the differential change in the number of DRG neurons at different axial levels 

is not correlated to the pattern of peripheral innervation. The increase in innervation of 

the tail is primarily due to the huge increase in target area as the tail somites rapidly 

expand in size. The absence of increase in innervation of the skin in the most anterior 

region at metamorphosis is because this somite reached its maximum size at the earliest 

stage and stopped growing. 

The transition from RB to DRG and changes in peripheral innervation occur 

within a very short period during larval development when embryonic skin changes to 

larval skin and embryonic behavior becomes more complex after hatching.  By 

transplanting skin between animals at different stages of development, we test the role of  

targets in directing outgrowth of the regenerating neurites present in the host.  Our results 

also support that changes in the neurons occur during a switch in the mechanosensory 
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mechanisms during development and provide a candidate target for the outgrowing 

neurites. 

    

Neurite Outgrowth 

Development.  RB and other central neurons begin extending neurites around the 

time of neural tube closure.  The RB growth cones that extend into the periphery have 

been the subject of a number of in vivo studies (Roberts and Hayes, 1977; Roberts and 

Taylor, 1982; Roberts and Taylor, 1983; Taylor and Roberts, 1983).  These studies used 

scanning electron microscopy to show the formation of the dense plexus of neurites under 

the developing skin.  Their extensive characterization of growth cones, neurite behavior 

and the correlation to mechanosensory function, provides excellent background for our 

studies on growth at later stages and during regeneration of these neurons.  Scanning 

electron microscopy provides ultrastructural detail, but is limited to neurites on the 

myotome surface and the inner surface of the basal lamina.  Once the neurites penetrate 

the basal lamina to contact their epidermal cell targets, they cannot be visualized using 

this technique.  In addition, before hatching, a collagen matrix starts to form, making it 

impossible to distinguish fine neurites from collagen fibrils (Taylor and Roberts, 1983) at 

later stages of development.  Silver stains can show individual neurites (Hughes, 1957; 

Roberts and Hayes, 1977), but do not provide their density.  Likewise, filling cells by 

applying crystals of Horse Radish Peroxidase (HRP) can show the complexity of 

individual neurite arbors, but not the density of many such arbors in the skin (Clarke et 

al., 1984).  An immunocytochemical technique utilizing an antibody to the HNK-1 

epitope present on neural cell adhesion molecules, allows the visualization of the sensory 
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plexus associated with the skin in embryonic animals (Somasekhar and Nordlander, 

1997).  We have modified this technique to mark sensory neurites at older stages.   In our 

hands, the technique can quantitatively mark neurites associated with the epidermis, 

including endings between superficial cells and those on their basal surface.  None of 

these processes can be visualized with scanning electron microscopy. 

As RB neurons grow out of the neural tube, their substrate undergoes several 

changes.  Initially, they grow over the myotomes, where growth cones are quite large, 

elaborate and have a ventral orientation (Roberts and Taylor, 1983).  Then they move to 

the basal lamina underlying the epidermis and assume a more variable shape.  Growth 

cones retain their ventral orientation and become simpler as they enter more ventral 

regions (Roberts and Taylor, 1983).  In addition, the growth cone can follow other 

neurites and physical features of the substrate (Roberts and Taylor, 1983).  Finally 

neurites enter holes in the basal lamina to contact epidermal cell targets (Taylor and 

Roberts, 1983).  These holes are over the boundaries of epidermal cells, where they 

establish varicosities on the sides and basal surface of cells in the superficial layer (Fig. 1; 

Roberts and Hayes, 1977).   

Regeneration.  In our regeneration experiments, several parameters differ from 

those during development.  First, the RB neurons are older and some have started to die.  

The potential to sprout growth cones and extend neurites could be quite different after 

their initial outgrowth.  Second, the surfaces used by earlier growth cones have clearly 

changed.  As the embryonic skin becomes larval skin, the composition of the basal  

lamina changes.  For example, a fibrillar matrix composed of collagen forms on the basal 

lamina (Taylor and Roberts, 1983).  Our experiments show that older neurites can sprout 
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and grow on these substrates.  The reduced growth into isochronic explants may be due to 

discontinuity of the basal lamina in the host and donor tissue and presumably the 

secretion of new extracellular matrix molecules into the damaged region.  In 

heterochronic transplants there would also be a reduced ability to grow across the 

boundary between host and donor, but the different composition of the basal lamina in 

the two tissues could further reduce growth into the transplant as seen in figure 4.  

During development of the RB plexus, the initial pattern of growth can help 

explain the pattern of regeneration.  RB growth cones extend over the anterior myotomes 

first, and then over the posterior myotomes and more ventral regions (Roberts and 

Taylor, 1982).  Thus, there is a anterior/posterior gradient in the outgrowth of RB 

neurites.  The growth cones move at a rate of approximately 80 μm per hour (Roberts and 

Taylor, 1982) or 2 mm per day.  This means that any growth cones that could enter our 

explants should be able to easily grow throughout it.  This coincides with our 

observations.   

Studies of the orientation of RB growth cones in the myotomes and the skin basal 

lamina during initial outgrowth, can be similar to the neurite orientation during 

regeneration.   The first wave of growth cones is oriented primarily in the ventral 

direction as they extend down from the dorsal neural tube (Roberts and Taylor, 1982).  

Analysis of the neurites, shows that they run from dorsal to ventral in the trunk and 

longitudinally (ie., anterior to posterior) in the tail because of the absence of RB neurons  

in the tail (Roberts and Hayes, 1977).  Individual RB neurons innervate skin areas just 

posterior to the location of their cell body (Roberts and Hayes, 1977).  In transplants, 

most neurites enter from the dorsal side and grow ventrally.  Thus regenerating neurites 
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show a similar bias as the initial growth cones.  They grow ventrally, even though there 

are plenty of neurites available to grow from all directions into the explant.    Plenty of 

denervated targets are available in the explants, however nearby neurites infrequently 

deviate from their innate direction to innervate them.  This basic orientation of 

regenerating sensory neurites was apparent in young animals, older animals and even in 

transplants between the two (Fig. 4).  Thus, either the neurons or their substrate may have 

an inherent polarity that remains well after the first neurites have extended to their 

targets. 

Regeneration of sensory neurites during larval life is remarkably rapid.  

Denervating epidermis by removing it from donor animals resulted in the loss of 

approximately 90% of sensory neurites within one hour (Fig 3C).  Within 24 hours of 

transplanting them to a host animal, significant amounts of regenerated neurites were 

apparent.  When compared to the regeneration of mechanosensory neurites in adult 

animals this is extremely fast.  In adults, the mechanosensory neurons are in the DRGs.  

These neurons grow to Merkel cells in the skin (Scott et al., 1981).  Following nerve 

section, local mechanosensitivity gradually decreases until it disappears after five to six 

days.  Nonetheless, severed neurites can still conduct impulses if they receive a direct 

electrical stimulus (Mearow and Diamond, 1988).  Following nerve section, 

mechanosensory responses were not present until three weeks after nerve section 

(Mearow and Diamond, 1988).  Although we did not measure sensory responses, the 

initial disappearance of the neurites followed by rapid regeneration, indicates a dramatic 

difference between the two types of mechanosensory neurons and their associated 

structures in larval and adult animals. 
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Mechanosensory Function 

Development. The mechanosensory system of Xenopus and other amphibians goes 

through several distinct changes during early development.  The changes reflect the 

intimate relationship between the skin and sensory neurons.  Following neural tube 

closure in Xenopus, the embryonic skin is capable of conducting impulses when it 

receives a noxious stimulus (Roberts, 1969).  Recent experiments show that these 

impulses enter the central nervous system via the RB neurons for a brief period of 

developmental time (James and Soffe, 2011).  At hatching, the animals have a dual 

mechanosensory system that responds to both noxious stimuli and light touch (Roberts 

and Smyth, 1974).  As the mechanosensory endings of RB neurons differentiate, they no 

longer respond to skin impulses (James and Soffe, 2011), but to light touch from a small 

receptive field (Clarke et al, 1984). 

Regeneration. As neurites regenerate into transplanted skin, they need to repair 

both mechanosensory systems.  Regeneration of the noxious response would require 

integration of the transplanted patch of skin with that of the surrounding host skin, and 

the formation of the appropriate junctions to allow propagation of impulses across the 

patch.  It also may transiently require RB neurons to directly transmit the nociceptive  

skin impulses before their mechanosensory endings differentiate and are capable of 

conducting light touch stimuli.  This would be the same sequence that occurs during 

normal development.  Regeneration of the light touch response (Clarke et al., 1984) 

would require the differentiation of new mechanosensory endings in the transplanted skin 

We have not measured sensory responses, but we can make some conclusions 

based on the expression of neurite markers during regeneration.  The reduced neurite 
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coverage of the transplanted tissue indicates a clear reduction in the ability to respond to 

touch during the day of regeneration following transplant.  Furthermore, the reduction is 

not due to the age of transplanted skin, since isochronic transplants are innervated equally 

well at all three stages of development.  Heterochronic transplants between 2.2 d (st. 

37/38) and 7.5 d (st. 48) receive significantly less sensory neurite innervation than 

isochronic transplants (Table 2; Fig 5). Thus there appears to be two potential 

checkpoints limiting regeneration of the neurites.  First, neurites do not have unrestricted 

access to the skin transplant at either the older or younger stage.  This could be due to 

damage of the extracellular matrix during removal of skin from the donor and the host or 

from tissue changes at the site of annealing between donor and host tissues.  Second, a 

neurite has an even greater difficulty in innervating denervated skin at a different age 

from itself.  These stage-specific differences could be due to changes in the skin and the 

associated targets between the two stages of development.  

  Mature Mechanosensory System.  The mechanosensory system changes as the 

animal matures.  DRG nerve endings are associated with Merkel cells, which were 

originally described in amphibians (Merkel, 1880), but are conserved throughout the  

entire vertebrate lineage.  The Merkel cell-neurite complexes respond to touch (Mearow 

and Diamond, 1988) in much the same way as RB neurons (Clarke et al, 1984).  

Likewise, the mechanism of transduction in both involves the excitation of free sensory 

nerve endings that penetrate the basal lamina underlying the skin (Roberts and Hayes, 

1977; Mearow and Diamond, 1988).   

The transition from the embryonic to the adult mechanosensory systems has not 

been quantified in Xenopus.  Merkel cells are present in high density on the tentacles of 



40   

 

 

Xenopus tadpoles undergoing metamorphosis (Ovalle, 1979; Eglmeier, 1987).  Tentacles 

become prominent by two weeks (st 50), but their rudiments are present before four days 

of development (st 44; Nieuwkoop and Faber, 1994).  The development of Merkel cells 

in the larval and metamorphic skin has not been quantified in either Xenopus tentacles or 

skin.  However, RB neurons are still present at st 50 (Lamborghini, 1987), which means 

that they co-exist with Merkel cells.   

Merkel cells derive from the epidermis, since they can differentiate under 

aneurogenic conditions (Tweedle, 1978; Mearow and Diamond, 1988).  Likewise the 

cells innervated by RB neurons are all derived from the epidermis (Drysdale and Elinson, 

1992; DeBlandre et al, 1997).  Sensory neurites form complexes with synaptic-like 

endings on Merkel cells, but Merkel cells in Xenopus are not needed to produce a normal 

mechanosensory response (Mearow and Diamond, 1988).  Rather, the evidence supports  

a role for Merkel cells as a target for mechanosensory nerves in amphibians (Scott et al., 

1981).  In this way, the Merkel cells determine the distribution of mechanosensory nerves 

in the skin.  Likewise, specialized epidermal cells in the embryonic and larval skin, are 

initially the targets of mechanosensory RB neurons (Somasekhar and Nordlander, 1997).  

All of the nerve endings are in the skin (Roberts and Hayes, 1977; Taylor and Roberts, 

1983) and the pattern of encircled cells (Somasekhar and Nordlander, 1997) is dispersed, 

like that of ciliated epidermal cells (see DeBlandre et al., 1999) and conical or small 

secretory cells (SSC) cells.  The underlying molecular mechanism patterning ciliated 

epidermal cells and presumably SSCs, involves Notch/Delta signaling together with a 

subsequent step regulating intercalation of the cells moving from the germinal layer into 

the outer epidermal layer, to effectively disperse them across the skin (DeBlandre et al, 
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1999).  Little is known about the mechanism patterning Merkel cells, although in 

Xenopus, 2-4 of them differentiate around the opening of cutaneous skin gland ducts 

(Mearow and Diamond, 1988).  This also provides a dispersed pattern across the skin, but 

since the cells occur in groups, rather than as individual cells, like ciliated epidermal and 

SSC cells, their dispersion likely has a different mechanism. 

 

Development of Skin Sensory Targets 

Recent work provides a hint of the nature of the embryonic targets of RB neurons.  

Somasekhar and Nordlander (1997) described a class of epidermal cells that did not have 

cilia that they named “conical cells” based on their shape.  The cells assumed a dispersed 

distribution in the skin that was similar to the ciliated epidermal cells (see Deblandre et 

al., 1999).  Experiments have identified a new cell type in the skin.  Like the conical 

cells, it does not have cilia and forms a dispersed pattern, suggesting that these two cells 

are the same.  The recent description also shows that the cells develop large granules that  

are secreted and therefore call them Small Secretory Cells (SSCs; Dubaissi et al., 2014; 

Walentek et al., 2014).  The granules contain serotonin and a mucous-like substance that 

has been named “otogelin-like”.  

There is an extensive body of literature on the developmental actions of serotonin.  

Among them, it can direct the migration of neurons in C. elegans (Kindt et al., 2002), and 

striatal and cortical axons in mammals (Speranza et al., 2013).  In Xenopus skin, genes 

involved in serotonin production begin to be produced by all epidermal cells soon after 

neural tube closure (st 23; Walentek et al., 2014) and right after the initial appearance of 

RB growth cones.  However, the large granules characteristic of SSCs, do not become 
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evident until st 32.  Enzymes responsible for serotonin synthesis stop being produced at st 

42 (Walentek et al., 2014), shortly before RB neurons start their prolonged period of cell 

death (Lamborghini, 1987).  Thus, low levels of serotonin produced by the epidermis 

following neural tube closure, could stimulate the initial phase of RB neurite outgrowth.  

As the conical or SSC cells form, growth cones could be attracted to serotonin released 

by these cells that form a dispersed pattern in the epidermis. The serotonin could also 

stimulate penetration of the basal lamina and differentiation of sensory nerve endings 

around the cells.  This would explain why the cells that are entirely encircled are not as 

numerous as the other dispersed population of cells in the superficial epithelium: ciliated 

epidermal cells. 

The hypothesis of a chemoattractive role for serotonin in the skin and the SSCs 

suggests an explanation of how the embryo can ensure even mechanosensory innervation 

across its body.  The original hypothesis explaining the encircling behavior by 

Somasekhar and Nordlander (1997) was that neurites were attracted to the conical/SSC 

cells by the absence of chondroitin 6-sulfate on their surface, while it was present on the 

surface of other epidermal cells.  However, they also needed to propose that the growth 

inhibitory effects of chondroitin 6-sulfate were transient, since its expression does not 

change over the time the rest of the epidermal cells become innervated.   

A chemoattractive role of a skin cell for mechanosensory innervation is consistent 

with the role of Merkel cells in attracting DRG neurites in adults (Scott et al., 1981).  The 

conical/SSC cells could attract RB neurites and promote the differentiation of 

mechanosensory specializations.  Lower concentrations of serotonin in cells distal to the 

SSCs, would have fewer mechanosensory specializations and would not be encircled by 
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neurites.  This model lends itself to a relatively simple test.  Embryos could be incubated 

in a serotonin antagonist to test whether it would reduce a.) neurite outgrowth, b.) 

encirclement of cells in the epidermis and c.) the formation of specialized 

mechanosensory endings.  It would also be necessary to show that cells containing 

serotonin are those that are encircled by RB neurons.  Together these experiments could 

provide strong supporting evidence for a chemoattractive role of serotonin in the 

formation of the mechanosensory system of Xenopus.   
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