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ABSTRACT 

 
EFFECTS OF DRIFT, SELECTION AND GENE FLOW ON IMMUNE GENES IN PRAIRIE 

GROUSE 
 

by 
 

Zachary W Bateson 
 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Linda Whittingham 

 
 
Fragmentation of natural habitats is related to population decline in many species. The resulting 

small and isolated populations are expected to lose genetic variation at a rapid rate, which 

reduces the ability to adapt to environmental change. One concern is that small populations are 

more susceptible to emerging pathogens due to the loss of variation at immune genes. My 

dissertation examined the relative effects of gene flow, genetic drift and selection on immune 

genes in prairie-chickens (Tympanuchus cupido), a species that has undergone drastic population 

declines across their range. In the first chapter, I examined how artificial gene flow through 

translocations of birds from Minnesota to the threatened Wisconsin population influenced 

genetic diversity at both neutral loci and immune genes. My second chapter explored how 

selection and drift shaped variation at two different functional categories of immune genes across 

prairie-chicken populations, including the critically endangered Attwater’s prairie-chicken (T.c. 

attwateri). My third chapter assessed how immune gene variation in captive-bred Attwater’s 

prairie-chickens is related to their immune response and survival in the wild. Overall, this 

dissertation provides a better understanding of how evolutionary mechanisms are shaping 

variation at immune genes in threatened species at both the population and individual level. 
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Abstract 

Supplemental translocations to small, isolated populations can be a valuable strategy to 

counteract the effects of genetic drift by increasing genetic diversity. We studied the genetic 

consequences of a translocation of greater prairie-chickens (Tympanuchus cupido pinnatus) to 

Wisconsin, which has a small population (<550 birds) with low genetic diversity. During 2006-

2009, 110 females were translocated to Wisconsin from Minnesota, which has greater genetic 

diversity. Two years after the final translocation, we detected introgression of unique Minnesota 

alleles. Although there was an increase in mtDNA diversity to near historic levels, there was no 

change in diversity at microsatellites or the major histocompatibility complex (MHC). Computer 

simulations of drift predicted that microsatellite diversity would have been lower in the absence 

of the translocation, and, thus, the translocation was a success in temporarily stemming the 

ongoing erosion of genetic variation through drift. Overall, our results caution that introgression 

of new alleles varies for genetic markers that differ in selection and inheritance, and, thus, the 

success of genetic restoration projects may depend on how the goals are defined.    
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Introduction 

Many species that once inhabited large continuous landscapes are now forced to exist in small 

isolated populations whose long-term persistence is uncertain. Supplemental translocation or 

restocking is being used increasingly to reduce the risk of extinction from both demographic and 

genetic stochasticity (reviewed by Champagnon et al., 2012; Perez et al., 2012). Some 

supplemental translocations have resulted in greater reproductive success or population growth 

following translocation, but claims for genetic “rescue" or “restoration” are often controversial, 

because it is not always clear if the population response was due to genetic or environmental 

changes (Adams et al., 2011). Genetic analysis of translocated individuals is important in this 

respect (Table 1.1), because it allows researchers to ascribe population responses directly to 

changes in genetic diversity from the translocation, rather than natural processes such as 

mutation or immigration.  

 Another issue with genetic studies of translocations is that they often estimate levels of 

variation using adaptively neutral markers, which may not reflect variation at functional genes 

that are important to population fitness. In particular, variation at immunity genes is of increasing 

concern as previously unknown diseases in wildlife, such as amphibian chytridiomycosis and 

Tasmanian devil facial tumor disease, have emerged as serious threats to populations. In these 

cases (Siddle et al., 2007; Savage and Zamudio, 2011) and others, resistance to disease has been 

linked to genes of the major histocompatibility complex (MHC), which code for molecules that 

recognize pathogens and initiate the adaptive immune response. Similar to neutral diversity, 

MHC diversity in small isolated populations is typically low, but the impact on population 

viability is not well understood (Radwan et al., 2010). To date, only one study of snakes has 

documented the effect of supplemental translocations on MHC genetic diversity (Madsen et al., 
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1999).  

 Here, we assess the consequences of a supplemental translocation on both neutral and 

MHC genetic variation in a bottlenecked population of greater prairie-chickens (Tympanuchus 

cupido pinnatus) in Wisconsin (WI). Early in the 1900s, there were > 50 000 prairie-chickens in 

WI and they occupied nearly every county in the state (Grange, 1948). However, during the 

1950s the population declined to 1500 birds, and the range contracted to 344 km2 in central WI  

(Figure 1.1). Today, the population has declined to 256 displaying males, most of which (122) 

are in the Buena Vista management area (Wisconsin Department of Natural Resources, WDNR, 

unpubl. data). The population continues to be isolated as the nearest contemporary populations 

are over 590 km away in MN and IL. Comparisons of genetic variation before the bottleneck in 

the 1950s and afterwards (1996-1999) showed that the population has lost genetic variation. 

Surprisingly, more variation has been lost at functional (44%, MHC) than neutral (8%, 

microsatellites) markers in the Buena Vista population (Bellinger et al., 2003; Johnson et al., 

2004; Eimes et al., 2011).   

 Based on the isolation and loss of genetic diversity of the WI prairie-chicken population, 

the WDNR decided to translocate birds from Minnesota (MN) to increase genetic diversity. The 

population in western MN was chosen as the source of translocated birds, because it had greater 

genetic diversity than the WI population, similar to larger populations in Kansas and Nebraska 

(Figure 1.1; Johnson et al., 2003), and it was at a similar latitude, so birds would be acclimated to 

a more northern environment.  The Buena Vista management area was chosen to receive all of 

the MN birds because it had the most grassland habitat (5140 h) and was intensively managed for 

prairie-chickens.  

 In this study, we evaluated whether these translocations from MN were successful at 
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increasing genetic diversity of prairie-chickens on the Buena Vista management area, hereafter 

referred to as the WI population. We also examined the potential and actual genetic contributions 

of translocated females from MN, and, thus, the efficiency of introgression at both neutral 

(microsatellite, mitochondrial DNA) and functional (MHC) genetic markers. Overall, our results 

caution that introgression of new alleles varies for genetic markers that differ in selection and 

inheritance, and, thus, interpreting the success of genetic restoration projects may depend on how 

the goals are defined. Although many studies claim that translocations are successful in restoring 

genetic variation, at least in the short term (Table 1.1), our study also revealed that drift 

continues to erode genetic variation, and, thus, translocations may only be a temporary solution 

for small, isolated populations.   

 

Methods 

Pre- and Post-translocation Wisconsin Sample Collection 

For the pre- and post-translocation samples, we collected blood and feathers, respectively, for 

genetic analysis from greater prairie-chickens at the Buena Vista management area, Portage 

County, WI (44° 20′ 15′′, 89° 38′ 49′′; Figure 1.1). The WI pre-translocation blood samples (n = 

41) were from males captured between 1996 and 1999 that were previously studied by Bellinger 

et al. (2003) and Johnson et al. (2003, 2004). The WI post-translocation samples consisted of 

feathers collected by the WDNR at 12 leks located throughout the Buena Vista management area 

during the March-May 2011 breeding season. These post-translocation samples covered the same 

geographic area as the pre-translocation samples. To extract DNA from the post-translocation 

WI feathers, we followed the molted feather protocol of Bush et al. (2005) using a Qiagen 

DNeasy® Tissue Kit (Valencia, California, U.S.A.).   
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Translocated females 

Female prairie-chickens (n = 110) from the MN population (Clay, Norman, Polk and Red Lake 

Counties; Figure 1.1) were captured during August-September 2006-2009 and transported by 

vehicle or airplane to WI for release. Only females were chosen for translocation because prairie-

chickens have a lek mating system in which relatively few males (~10%) breed each year (Robel, 

1970), and, thus, translocating females, which would presumably all breed, would be more likely 

to result in introgression. Although all females released in 2006 (n = 40) and 2009 (n = 19) were 

sampled for this study, we obtained fewer samples from females released in 2007 (n = 3/24, 

13%) and 2008 (n = 24/27, 89%). In total, we obtained blood samples from 78% (86/110) of the 

translocated females. We extracted DNA from the blood samples using a saturated salt solution 

method (Miller et al., 1988).  All translocated females were radio-tracked following release to 

determine survival and nesting success (see Hess et al., 2012 for details).  

 

Microsatellites 

Our estimates of genetic variation in prairie-chickens were based on seven microsatellite loci 

originally developed for other galliforms. Details of the microsatellite PCR amplifications are 

described in Bellinger et al. (2003) and Hess et al. (2012). All samples were analyzed on a 

capillary-based sequencer (ABI 3730) and sized using STRAND software (Toonen and Hughes, 

2001; http://www.vgl.ucdavis.edu/STRand). To ensure consistency in sizing alleles, we re-

genotyped the pre-translocation samples that were previously analyzed on a polyacrylamide gel 

sequencer (ABI 370). We binned allele sizes at all seven loci using the program MSATALLELE 

(Alberto, 2009). 
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 We were able to extract DNA from 112 of the 300 feathers collected.  To identify and 

remove duplicates from the 112 samples, we estimated the probability that any two randomly 

chosen individuals in a population will share the same genotype (probability of identity) using 

seven microsatellite loci. This probability is biased downward, so as a more conservative upper 

bound, we also estimated the probability of identity for siblings (Waits et al., 2001). Both of 

these probabilities were calculated in GENALEX 6.5 (Peakall and Smouse, 2012). For the post-

translocation WI samples, the probability of identity and probability of identity for siblings were 

low (1.8×10-8 and 1.8×10-3, respectively). Based on the probability of identity we found 81 

unique genotypes (individuals) among the 112 samples (1-3 repeats per individual), which were 

used in all subsequent analyses.  

 We examined the overall repeatability of microsatellite genotyping by using a version of 

the 'comparative method' proposed by Frantz et al. (2003). Using this approach, we performed 

additional PCR amplifications and repeated genotyping on 41% (232/567) of the original feather 

genotypes, sampled across all seven loci. In particular, we genotyped 161 homozygous 

genotypes three times and found that 19 genotypes differed because of allelic dropout (12%); 

these genotypes were changed to heterozygotes in the final data set when we observed both 

alleles in two of the three independent PCRs. We found no discrepancies among 71 heterozygote 

genotypes that were amplified and sequenced twice (i.e., false alleles; Broquet and Petit, 2004). 

Standard measures of microsatellite variation (number of alleles, allelic richness, and observed 

and expected heterozygosity) and population structure (Dest; Jost, 2008) were estimated in 

GENALEX or FSTAT 2.9.3 (Goudet, 1995; Peakall and Smouse, 2012). We used the default settings 

in the program ARLEQUIN 3.5.1.3 (Excoffier and Lischer, 2010) to assess deviations from Hardy-

Weinberg equilibrium (HWE) and evidence of linkage disequilibrium (LD) between pairs of loci 
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for each population. None of these loci departed from HWE in our previous studies (see also 

Bellinger et al., 2003 and Hess et al., 2012), but in this study, ADL146 showed a heterozygote 

deficiency (Table S1.1). There was no evidence of LD in the pre-translocation WI sample, which 

we used for the simulations.  

 

Sex determination 

The sex of individuals in the post-translocation sample was determined by amplifying an intron 

of the CHD gene (Kahn et al., 1998; see Supporting Information for more details). All 

individuals (n = 81) were identified as males and, thus, no translocated females were included in 

the post-translocation sample. These 81 males comprised 60% of the male population at the 

Buena Vista management area in spring 2011 (based on lek counts; WDNR unpubl. data).  

 

Drift simulation 

We used the computer program GENELOSS (England and Osler, 2001) to simulate genetic drift in 

the WI population over the 15 years (~ 7.5 generations) between the pre- (1996) and post- (2011) 

translocation samples. This method was also used by Bellinger et al. (2003) to simulate the loss 

of microsatellite variation over the 50 years (~25 generations) between their pre- (1951) and post 

(1996-1997) bottleneck samples from Buena Vista.  We used the simulation to compare levels of 

genetic variation observed in the post-translocation population with that expected from genetic 

drift alone (i.e., without translocation). For example, if values of post-translocation genetic 

diversity were equal to the pre-translocation WI, and greater than the simulated levels, then it 

would suggest that genetic diversity was maintained in the population. The initial conditions of 

the simulation were based on microsatellite allele frequencies and effective population size 
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estimates from the Buena Vista sample before the translocation (Bellinger et al., 2003).  We used 

an Ne estimate of 77 birds which was calculated from the harmonic mean of census estimates as 

described by Bellinger et al. (2003). This estimate of Ne was also similar to the midpoint of Ne 

estimates (80) for Buena Vista based on historic changes in microsatellite variation (22 to 137 

birds, for 20 generations in Table 5 of Johnson et al. 2004).  The GENELOSS simulation assumes 

non-overlapping generations, a constant Ne and a closed population.  Obviously, some of these 

assumptions were violated, but the constant Ne estimate used in the simulation is probably 

conservative, because the Buena Vista population declined during and after the translocation 

despite the addition of 110 females from MN (2007- 2012: 680, 492, 440, 292, 334, 310 

estimated birds; WDNR, unpubl. data). 

  

Mitochondrial control region 

We sequenced the mitochondrial DNA (mtDNA) control region using primers 16775L (Quinn, 

1992) and H774 (Sorenson et al., 1999) following methods in Johnson et al. (2004).  Both 

forward and reverse sequences for each individual were aligned and edited to produce a 384 bp 

consensus sequence in GENEIOUS 5.4 (Biomatters, Aukland, NZ). Both forward and reverse 

sequences were identical in all samples. We were unable to amplify nine of the 81 post-

translocation samples, possibly because of the lower quality DNA from feathers. Haplotype (h) 

and nucleotide diversity (π) were calculated using the program DNASP 4.10.4 (Librado and 

Rozas, 2009), and population pairwise θST values were estimated using ARLEQUIN.  

 

MHC class I 

We examined diversity at exon 3 of MHC class I (see supporting information for methods). 
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Based on our initial analyses of the pre-translocation sample, we chose a sample size of >25 

birds because this number is expected to result in finding all alleles with >90% probability (i.e., 

the binomial probability of missing one allele = 0.09, assuming 11 equally-frequent alleles). Our 

final sample size was 30 pre-translocation WI, 31 post-translocation WI, and 26 translocated MN 

females (from 2006). We used DNASP to calculate haplotype (h) and nucleotide diversity (π) and 

GENALEX to calculate population pairwise Dest. 

 

Introgression estimates 

To identify hybrid individuals, we used the microsatellite genotypes and a Bayesian clustering 

method implemented in STRUCTURE 2.3.4 (Pritchard et al., 2000) to separate parental (MN or 

pre-translocation WI) and admixed (‘hybrid’) individuals. First, we estimated appropriate 

thresholds for separating these groups by simulating hybrid genotypes in HYBRIDLAB (Nielsen et 

al., 2006).  We started with the observed microsatellite allele frequencies in the translocated MN 

female and pre-translocation WI samples, and, using HYBRIDLAB, we constructed equal sized 

samples (41) of the parental populations (translocated MN females, pre-translocation WI) and 

their F1, F2 and F1 backcross hybrids.  These simulated individuals were analyzed with 

STRUCTURE using admixture models with prior population information (Figure S1.1).  In this 

case, we used the two known sampling locations (pre-translocation WI and translocated MN 

females) to assist in ancestry estimation in our unknown sample (post-translocation WI, which 

was not assigned a population), as recommended when testing for hybrids (Pritchard et al., 2000; 

STRUCTURE manual pg 11).  Finally, we assigned the post-translocation WI individuals to 

purebred or hybrid categories based on the 10 to 90th percentiles of population membership (Q) 

from the simulated hybrids. To visualize introgression in terms of allele frequencies, we 
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performed a Principal Coordinates Analysis (PCoA) in GENALEX (using the covariance matrix) 

and plotted the scores from the three sample groups on the first two axes.  

 

Results 

Microsatellites 

By genotyping the translocated females, we were able to identify eight new microsatellite alleles 

that introgressed into WI.  These alleles were found in the post-translocation sample (mean ± SD 

frequency: 0.012 ± 0.010), as well as the translocated MN sample (0.051 ± 0.047), but not in the 

pre-translocation sample. In total, there were 71 alleles found in the pre-translocation WI sample 

and of these, 60 (84%) were also found in WI after the translocation. Thus, 11 alleles were 

apparently lost. These 11 alleles were at lower frequency (mean ± SD: 0.02 ± 0.019) than the 60 

alleles that were found in both the pre- and post-translocation samples (0.11 ± 0.140; unequal 

variances t67.3 = 4.50, P < 0.0001), suggesting they were lost due to drift. In addition, four new 

alleles were found in the post-translocation WI sample that were not present in our sample of 

translocated females.  These alleles were possibly the result of mutation or introduced by the 

translocated females that were not sampled (n = 24). Overall, there was a net gain of one allele 

(1.4% change) in the post-translocation WI population.  

 Over the seven generations from 1996 to 2011, we would have expected a significant loss 

(19%) of allelic richness at microsatellites (from 10.14 to 8.17; paired t6= 3.19, P = 0.019) based 

on GENELOSS simulations of drift without translocation (Figure 1.2).  However, there was no 

decline in allelic richness between the pre- and post-translocation samples (paired t6 = 1.48, P = 

0.188).  We also found no difference in expected heterozygosity following the translocation 

(paired t6 = 0.03, P = 0.971). There was also no difference between the post-translocation and 
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predicted (GENELOSS) estimate of allelic richness (paired t6 = 1.55, P = 0.22; Figure 1.2). 

Estimates of population structure (Dest) were significant between all pairs of populations (pre- 

and post-translocation WI and translocated MN females) at microsatellites (Table 1.2).  

mtDNA 

There were originally ten mtDNA control region haplotypes from individuals sampled at the 

Buena Vista marsh in the early 1950s.  After a population bottleneck, the number declined to six 

haplotypes (pre-translocation WI), but following the translocation of MN females the number 

increased back to ten haplotypes (post-translocation WI).  Thus, there was a net increase of four 

haplotypes following the translocation (Table 4, Figure S1.2), which led to increases in both 

haplotype (42%) and nucleotide (7%) diversity that approached historic levels in WI (Table 1.4, 

Figure S1.2). As with microsatellites, there was significant population structure (θST) between all 

three sample groups at the mtDNA control region (Table 1.3). 

 

MHC class I 

No alleles were lost or gained between the pre- and post-translocation WI populations (Table 

1.2). Three alleles were unique to the translocated MN females, but they occurred at a lower 

frequency (0.036 - 0.073) than the alleles that were shared between MN and WI (0.036 - 0.255, n 

= 6; χ2 = 55, df = 8, P < 0.001; Table S1.2, supporting information). There was no difference in 

MHC class I haplotype diversity or the number of alleles between the pre- and post-translocation 

samples in WI (Table 1.2).  Allele frequencies also did not differ between pre- and post-

translocation WI (χ2 = 5.68, df = 7, P = 0.58); however, allele frequencies were different between 

translocated MN and pre-translocation WI samples (χ2 = 29.1, df = 10, P = 0.001; Table S1.2). 

Population structure (Dest) showed similar patterns with no difference between pre- and post-
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translocation WI, but significant differentiation between the WI samples and the translocated 

MN sample (Table 1.3).  

 

Introgression estimates 

Among the post-translocation WI samples, 7% (6/81) were apparently admixed individuals (i.e., 

"hybrids") based on their microsatellite data and assignment using STRUCTURE. These individuals 

had probabilities of population membership for MN (mean ± SE: 0.55 ± 0.081; range 0.256 - 

0.80) that were within the 10-90th percentile of values for simulated hybrids (0.235 to 0.881). 

There were also 16 individuals with unique MN alleles that could be considered admixed; 12 of 

these were not considered admixed by the STRUCTURE method because they had Q scores below 

the 0.253 threshold. Using both methods, the percentage of individuals with evidence of 

admixture from microsatellites was 22% (18/81). Evidence of introgression can also be seen in 

the substantial overlap between the post-translocation WI samples and the parental populations 

in a plot of microsatellite allele frequencies on the first two principal coordinates (Figure 1.3).  

 We can also use mtDNA haplotypes to identify admixed individuals. There were 24 

individuals in the post-translocation sample (33%, 24/72) with MN haplotypes (haplotypes 7, 22, 

48 and 139; Table 1.4) that were not found in the pre-translocation WI sample. Two of these 

haplotypes (7, 48) were previously found in the historic WI sample, and one (7) was fairly 

common (32%, 6/19; Table 1.4), suggesting that it was lost from the historic population and 

reintroduced by the translocated MN females.  If we combine information from both the 

microsatellite and mtDNA markers, then the percentage of admixed individuals in the post-

translocation sample was 47% (34/72 typed at both markers).   
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Introgression efficiency 

We examined the efficiency of introgression in more detail by examining the genotypes of 

translocated MN females that were known to survive and breed. Following translocation from 

MN, 45 of 86 (52%) genotyped females were known to survive to their first breeding season in 

WI (based on radio-tracking). All females attempted to breed, but only 22 (26%) of these were 

known to have produced offspring based on hatched eggs at the nest. Collectively, these females 

explain seven of eight (88%) microsatellite alleles and both mtDNA haplotypes (haplotypes 22 

and 139) that were successfully introduced into Wisconsin. However, these females also 

possessed 17 microsatellite alleles and 13 mtDNA haplotypes that were potentially new, but 

were not found in the post-translocation WI sample. At MHC class I, three novel alleles from 

MN were detected in the translocated MN females that successfully bred; however, these alleles 

were absent in the post-translocation WI sample.   

 

Discussion 

Translocations have been widely used to restore genetic variation, but few studies have examined 

their efficacy at both neutral and functional genes (Table 1.1). Our study found introgression of 

new alleles from MN into the isolated WI population, although it varied depending on the 

genetic marker.  Even though the translocation did not increase genetic variation across all three 

marker types, it might be considered a success nonetheless, because our simulation model 

suggested that genetic drift would have caused a substantial loss of genetic variation in the 

absence of the translocation. In general, our results caution that detecting introgression varies 

according to the type of genetic marker and that successfully restoring genetic diversity may 
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require more individuals (or better reproductive success of the translocated individuals), 

particularly in small, declining populations in which drift is strong.  

Successful translocation depends on the ability of translocated individuals to contribute 

their genes to future generations. Radio-tracking released individuals suggested that 

introgression of new alleles was relatively low. For instance, the MN females that were known to 

breed successfully had 17 microsatellite alleles, nine mtDNA haplotypes and three MHC class I 

alleles that were potentially new, but were not found in the post-translocation WI sample. It is 

possible that we missed these in the post-translocation sample because of sampling error, but 

sample sizes were similar in the post-translocation WI and translocated MN samples (Table 1.2). 

The level of admixture in the post-translocation sample reached 47% of individuals (using data 

from all markers), and it might have been greater, but there was relatively low nesting success. 

During this study 38% of translocated MN and 42% of native WI females hatched eggs from 

their nest, which is below the 46-55% average of eight other studies in WI (Toepfer, 2003; Hull 

et al., unpubl. data). Overall, we achieved our goal of restoring mtDNA diversity, but it may 

require higher nesting success (or more translocated birds) to restore levels of microsatellite 

diversity.    

Successful introgression in small populations also depends on the opposing effects of 

drift. In our case, simulations of drift predicted a continual loss of microsatellite diversity, yet no 

change in allelic richness was observed between the pre- and post-translocation WI samples. 

Drift continues to affect the WI population, as suggested by the loss of 11 microsatellite alleles 

during the time period between pre- and post-translocation samples. However, introgression of 

eight novel alleles from MN females apparently counteracted some of the eroding effects of drift 

and helped to maintain microsatellite allelic diversity. Despite the introgression of microsatellite 
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alleles, there was no change in heterozygosity, which typically lags behind changes in the 

number of alleles (Allendorf, 1986). The current stability in genetic diversity is probably only 

temporary, and, if the WI population remains small, drift will quickly reduce genetic diversity 

gained through these supplemental translocations. 

In contrast to microsatellites, we found an increase in mtDNA diversity following the 

translocations. Five haplotypes were apparently introduced by the translocation; however, there 

are alternative explanations for the presence of three haplotypes (7, 48, and 140) other than 

introgression. Haplotypes 7 and 48 were present in historic (1950s) WI and may be missing from 

the pre-translocation sample due to sampling error. While this may be the case for haplotype 48, 

the high frequency of haplotype 7 in both the historic WI (32%) and post-translocation (21%) 

samples suggests the translocation either re-introduced or restored its frequency to historic 

levels. Interestingly, haplotype 140 is common (10%) in the post-translocation WI sample, but it 

is absent in our translocated MN samples. While it is possible that haplotype 140 came from 

translocated individuals that were not sampled (n = 24), this haplotype is just one base pair 

different than haplotype 5 (Figure S1.2), which is also absent in our MN sample. Therefore, 

haplotype 140 could be the result of a single mutation that occurred within WI.  

The extent of introgression will also vary with the type of inheritance of the genetic 

marker.  The mitochondrial genome is haploid and is usually maternally inherited, whereas 

nuclear genes such as microsatellites are diploid and inherited from both parents. In the post-

translocation WI samples, we detected proportionally more individuals with mtDNA haplotypes 

(33%, 24/72) than microsatellites alleles (22%, 18/81) that were unique to MN. Differences in 

introgression between mitochondrial and nuclear (e.g. microsatellites) DNA markers, particularly 

in studies of hybridization, are often explained as a consequence of adaptive introgression of 
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mtDNA or sex-biased dispersal (Karl et al., 2012; Toews and Brelsford, 2012). In our case, the 

difference may be due to translocating female birds, which had a large number of mtDNA 

haplotypes (n = 20) compared to the pre-translocation WI sample (n = 6; Table 1.4). 

Additionally, detecting introgression is more likely if one type of marker has more novel alleles, 

and in this study there were more novel mtDNA haplotypes (70%, 14/20) than novel 

microsatellite alleles (32%, 35/110) in the translocated MN samples (Table 1.1). Only three other 

studies have used both mtDNA and microsatellites to assess changes in genetic diversity 

following translocations to threatened populations (Table 1.1). Two of these studies showed 

increased genetic diversity at both markers following translocation (Bouzat et al., 2009; Olson et 

al., 2012), while the other study found an increase in mtDNA diversity, but no increase in 

microsatellite diversity (Arrendal et al., 2004), similar to our study.  

Few genetic studies of supplemental translocation (e.g., Table 1.1) have been repeated on 

the same species, so it is worth comparing our results with a previous translocation of greater 

prairie-chickens into Illinois (IL) (Bouzat et al., 2009). In IL, it was estimated that only 50 

individuals were left in the population by 1994 and both fertility and hatching rate of eggs had 

declined markedly (Westemeier et al., 1998). To prevent local extinction, managers translocated 

518 birds to IL (Svedarsky et al., 2000), and five years following the last translocation (1998) 

haplotype diversity of mtDNA had increased by 20% to near historic (1930s) levels (Bouzat et 

al., 2009), similar to our results in WI (Table S1.3). When we compared the same four 

microsatellite loci used in both studies we found that expected heterozygosity increased in both 

populations (4% in WI and 2% in IL), but allelic richness increased 22% in IL (4.9 to 6.0) and 

decreased (non-significantly) 2.5% in WI (7.34 to 7.15; Table S1.3). This difference between IL 

and WI in changes to allelic richness might be explained at least partially by the larger numbers 
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of birds translocated into IL (518 birds were translocated to a population of about 50 birds), than 

in WI (110 birds were translocated into a population of about 550 birds). In nine previous genetic 

studies (Table 1.1), the median ratio of translocated individuals to total population size was 0.32 

(range 0.06 to 10.4), and most studies showed an increase in genetic diversity after the 

translocation (Table 1.1).     

Previous studies have focused on neutral genetic markers, which may not reflect adaptive 

variation (Väli et al., 2008). Since the function of MHC-derived proteins is to detect pathogens 

and activate the immune system, threatened populations with reduced MHC diversity may have 

increased susceptibility to disease (Siddle et al., 2007). In general, MHC variation appears to be 

reduced by drift in small populations (Eimes et al., 2011; Ejsmond and Radwan, 2011). As a 

result, there is an increasing awareness that measuring MHC variation will be important in 

assessing the results of supplemental translocations, but so far studies are rare.  A study of 

European adders (Vipera berus) showed that MHC class I diversity increased following the 

translocation of 20 males into an isolated population of approximately 30 adults (Madsen et al., 

1999). In contrast, we did not detect any changes in MHC class I diversity in prairie-chickens, 

probably in part because there were just three potentially novel alleles in the translocated females 

and they were at low frequency.  However, in the absence of the translocation we would likely 

have seen a loss of MHC diversity due to drift (Eimes et al., 2011), as was predicted for 

microsatellite variation from our simulation model. Indeed, introgression and selection might 

have limited the effect of drift on MHC diversity. In particular, many of the females from MN 

had the same MHC alleles as WI birds, and, thus, introgression could have occurred and helped 

to maintain diversity, but remained undetected. Some studies suggest that selection can maintain 

MHC alleles in small, isolated populations (Aguilar et al., 2004; van Oosterhout et al., 2006).  
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This is also a possiblity in our study, but it will be difficult to determine because there were no 

MHC alleles unique to WI in our sample. 

 Most supplemental translocations appear to have successfully increased or maintained 

genetic diversity (Table 1.1). However, our study illustrates that interpreting these results may 

depend on the genetic markers used for evaluation. For instance, the translocation in WI 

increased mtDNA diversity and restored it to historic levels, but microsatellie diversity was only 

maintained at pre-translocation levels.  In terms of particular genotypes, however, there was 

introgression of mtDNA haplotypes and microsatellite alleles from MN. In contrast, the 

translocation did not appear to change the diversity or composition of MHC variation in the WI 

population, suggesting that it may be more difficult to restore diversity at functional loci. Few 

genetic studies of translocations have examined different types of markers (Table 1.1), so these 

issues have rarely been considered previously. Most studies use neutral markers such as 

microsatellites or mtDNA as indices of genome-wide variation and inbreeding.  As the number 

of markers increases in future studies, the distinctions between neutral and selected (functional) 

markers and their importance to the goals of restoration will become increasingly important. Our 

study also illustrates that small, isolated populations can continue to lose genetic variation during 

translocations. Unless population size also increases following a translocation, genetic drift is 

likely to continue, making it necessary to continue to monitor genetic diversity, and possibly 

conduct additional translocations. Thus, translocations may only be short-term solutions to 

temporarily reduce the risk of inbreeding and local extinction (Hedrick and Fredrickson, 2010). 

The ultimate goal should be to reverse the decline in numbers, and, in the case of prairie-

chickens, future management may need to focus more on increasing reproduction and survival to 

increase population size.  
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Figure 1.1. Map of the historic (light shading) and current (dark shading) range of greater 
prairie-chickens in the central US. 
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Figure 1.2. Change in allelic diversity (allelic richness, n = 41) at microsatellite loci from pre- to 
post- translocation WI in relation to the predicted change based on GENELOSS simulations 
(Predicted WI). P values are indicated for comparisons between pair of groups (see horizontal 
lines across the top) analyzed using paired t-tests (matching for locus; n = 7 loci in each group).  
Boxes indicate medians (center bar), 25 and 75th percentiles (bottom and top of boxes, 
respectively) and whiskers indicate maximum and minimum observations. 
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Figure 1.3. Microsatellite allele frequencies from a Principal Coordinates Analysis plotted on the 
first two axes.  Frequency scores for translocated MN females are the solid black circles and 
dashed ellipsoid, pre-translocation WI = open circles and thin ellipsoid, post-translocation WI = 
open squares and thick ellipsoid.  Ellipsoids contain 75% of observations. 
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Figure S1.1. A) Population assignments of individuals from pre-, post-translocation WI and translocated MN females groups 
into three clusters (K = 3) using STRUCTURE with a model of admixture and no population information (based on 
microsatellite loci). The figure shows the membership coefficients (Q) for each individual (vertical line) to each cluster.  B) 
Assignments of individuals into two clusters (K = 2) based on the admixture model with correlated frequencies with prior 
location information used for translocated MN females and pre-translocation WI only. 
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Figure S1.2. Median joining network displaying the relationship of mtDNA haplotypes in the 
three study groups. Each circle depicts a unique haplotype and the smallest circles correspond to  
sample sizes of one, and the size of larger circles is proportional to their haplotype frequency in 
the sample (see Table 1.4). Numbering of haplotypes follows Johnson et al. (2003, 2007). Color 
and pattern within a single haplotype circle correspond to groups where the haplotypes have been 
identified (solid gray = translocated MN females; solid black = post-translocation WI; crosshatch 
pattern = pre-translocation WI). Numbers on lines connecting haplotypes represent the exact 
position of nucleotide changes in the 384 bp mtDNA region examined. All novel haplotypes 
were submitted to GenBank (accession numbers: KF466480-KF466483). 
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Table 1.1. Comparison of supplemental translocation studies that included genetic analyses. Studies are based on 
human-facilitated translocations of free-ranging animals to threatened populations. Included are estimated population 
sizes before translocation (note that some studies examined two populations indicated by letters), number and sex of 
individuals translocated (n translocated), the number of individuals sampled pre- and post-translocation for genetic 
analyses, and whether genetic samples were analyzed of the translocated individuals (yes/no). For studies that used 
microsatellites (Msats), allelic richness (Ar) and expected heterozygosity (He) are presented. 
 

   Genetic sampling   

Species 

Population 
size pre-

translocation  

n 
translocated 

(sex) 

n 
sampled 
Pre, Post 

Translocated 
individuals Markers  Conclusions Reference 

        
Greater prairie-
chicken             
(Tympanuchus 

cupido                     

pinnatus) 

 550 110 (F) 41, 81 yes Msats,          
mtDNA,        
MHC 

Significant increase of 
mtDNA diversity but no 
change of Msats and 
MHC diversity in post-
translocation population. 
 

This study 

White-spotted 
charr †                      
(Salvelinus 

leucomaenis) 

? K: 20 (F)       
H: 20 (F) 

50, 48               
52, 46                             

yes Msats  Increased He and Ar 
diversity of post-
translocation populations 
to levels of the source 
populations. 
 

(Yamamoto 
et al., 2006) 

California bighorn 
sheep‡    
(Ovis canadensis             

californiana) 

S: 185                              
L: 125 

S: 15 (F)       
L: 16 (F)       

19, 48                         
23, 50 

yes 
 

 

 

 

Msats,      
mtDNA 

Increased mtDNA 
diversity (S & L) and 
significant increase of 
Msats He (L only) and Ar 
(S and L) in post- 
translocation populations 
following one generation. 
 

(Whittaker 
et al., 2004; 
Olson et 
al., 2012) 
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Bighorn sheep 
(Ovis canadensis) 

42 15  
(8M, 7F) 

20*, 115 no? Msats Increased He Ar and 
fitness in post-
translocation population. 

 (Hogg et 
al., 2006) 

Florida panther                
(Puma concolor 

coryi) 

25 8 (F) 62, 67 yes Msats Increased He and Ar in 
post-translocation 
population. Decreased 
frequency of kinked tails 
and undescended testicles.  
 

(Johnson et 
al., 2010, 
Table S3A) 

Greater prairie-
chicken  

50 518 (M, F) 32, 18 no Msats, 
mtDNA 

Increased mtDNA 
diversity and increased 
Msat He and Ar in post-
translocation population. 
 

(Bouzat et 
al., 2009) 

European adder               
(Vipera berus) 

30   20 (M) 7, 7 no MHC  Increased MHC diversity, 
number of recruiting 
males and population size. 
 

(Madsen et 
al., 1999) 

South Island 
robin§                              
(Petroica 

australis) 

A: 60                          
M: 300 

A: 13 (F)       
M: 18 (F) 

45, 50                    
82, 122 

no Msats Significant increase of AR 

and He in post-
translocation populations. 
Increased juvenile 
survival and recruitment, 
sperm quality and 
immune response. 
 

(Heber et 
al., 2013) 

Anacapa deer 
mouse                       
(Peromyscus 

maniculatus              

anacapae) 

173 1023 (M,F) 185, 60 no Msats Significant increases of He 
and AR two years after 
translocations. 

(Ozer et al., 
2011) 
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Eurasian otter                  
(Lutra lutra) 

? 54 (M, F) 15, 20 no Msats, 
mtDNA  

Increase of mtDNA 
diversity. Decrease in 
Msat diversity.  

(Arrendal 
et al., 2004) 

† Studied the effects of translocations upstream of dams in two populations: Kame River (K) and Hitozuminai River (H), Hokkaido 
Island, Japan 
‡ Experimental translocations into two populations: Steens Mountain (S) and Leslie Gulch (L), Oregon, USA 
* sampled 20 descendants of original population in 1985 before translocations 

§ Reciprocal translocations between two populations: Allports Island (A) and Motuara Island (M), Marlborough Sounds, New Zealand 
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Table 1.2.  Genetic diversity at seven microsatellite loci, mtDNA control region and MHC class I in three prairie-chicken samples 
(years sampled): pre-translocation WI (1996-1999), post-translocation WI (2011) and translocated MN females (2006-2009). 
Differences between means (±SE) of pre-translocation and post-translocation WI were tested with t-tests controlling for locus. Alleles 
or haplotypes were considered private if absent from the other sample groups.  
 

Population Pre-
translocation 

WI 

Post-translocation  
WI 

Percent 
Change 

t, P (df) Translocated MN  
females 

Microsatellites      
N 41 81   86 

   Number of alleles 71 72 1.4  110 
Private alleles 1 4   35 

Allelic richness 10.14 (0.488) 9.11 (0.584) –10.2 1.48, 0.188 (6) 13.38 (0.818) 
 Ho 0.683 (0.046) 0.716 (0.017)    4.8 0.80, 0.452 (6) 0.684 (0.058) 
He 0.726 (0.025) 0.725 (0.023)  –0.1  0.03, 0.971 (6) 0.764 (0.047) 

      
mtDNA      

N 41 72   86 
Haplotypes 6 10 66.6  20 

Private haplotypes 0 1   14 
Haplotype diversity (h) 0.577 (0.082) 0.822 (0.023) 42.5 0.004† 0.920 (0.014) 
Nucleotide diversity (π) 0.013 (0.001) 0.014 (<0.001)   7.7   0.009 (<0.001) 

      
MHC class I      

N 30 31   26 
 Number of alleles 8 8 0    9 

Private alleles 0 0   3 
Haplotype diversity (h) 0.837 (0.022) 0.812 (0.022) –3.0 0.329†    0.844 (0.025) 
Nucleotide diversity (π) 0.034 (0.003) 0.031 (0.002) –8.8      0.041 (0.002) 

* P values comparing pre- and post-translocation WI haplotype diversity using the double-testing procedure of (Weale, 2003); 
algorithm TEST_h_DIFF, available at http://www.ucl.ac.uk/tcga/software/index.html 
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Table 1.3.  Fixation indices for comparisons from seven microsatellite loci (Dest), control 
region of mtDNA (θst) and MHC class I (Dest) between greater prairie-chicken groups 
from Wisconsin (pre- and post-translocation WI) and translocated MN females. 

 
Marker Pre-WI vs. Post-WI Pre-WI vs. Trans MN Post-WI vs. Trans MN 

Msats             0.116**               0.243**   0.236** 
mtDNA             0.097**               0.227**   0.084** 
MHC class I             0.009               0.218* 0.130* 

* P < 0.05; ** P < 0.001 
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Table 1.4. Number of mtDNA control region haplotypes in greater prairie-chickens from historic 
(1952-1954), pre- and post-translocation WI at Buena Vista Wildlife Management Area, and the 
translocated MN females. Data from 1952-1954 are from Table S2 in Johnson et al. (2007). 
Thirteen haplotypes found only in the translocated MN females were combined in a single row 
(MN private). Sample sizes are shown in parentheses. 
 

Haplotype  
ID 

Historic  
WI 

(n = 19) 

Pre-trans 
WI 

(n = 41) 

Post-trans  
WI 

(n = 72) 

Trans MN 
females 
(n = 86) 

1 2 26 21  
2 2  6 15  
3   2  2  
4 1  3  1 11 
5   3  2  
7 6  15 17 

12 1    
15 1    
21 1  1   5 
22    4  6 
41 2    
42 1    
43 2   5 
48   3†   1 2 

139    4   2 
140     7  

MN private     38 
N haplotypes 11  6 10 20 

† Found historically in the Mead Wildlife Management Area (WMA), which is now genetically 
distinct from the Buena Vista WMA (Johnson et al., 2007). 
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Table S1.1. Number of alleles (Na) and observed (Ho) and expected (He) heterozygosity at microsatellite loci in the three prairie-
chicken samples (pre-translocation WI; translocated MN females; post-translocation WI).  Samples sizes were 41, 86 and 81, 
respectively.  

  Na   Ho    He  

  
Pre-   
WI 

Trans 
MN 

Post- 
WI  

Pre-   
WI 

Trans 
MN 

Post- 
WI  

Pre-   
WI 

Trans 
MN 

Post- 
WI 

ADL146 6 8 6  0.146 0.523 0.272  0.560 0.782 0.564 
ADL230 15 21 16  0.756 0.872 0.877  0.816 0.915 0.884 
LLSD4 12 21 14  0.854 0.895 0.975  0.846 0.918 0.858 
LLST1 5 7 5  0.268  0.512 0.383  0.337 0.518 0.351 
SGCA11 7 9 7  0.829 0.430 0.765  0.759 0.399 0.748 
SGCA6 13 26 15  0.927 0.663 0.827  0.895 0.907 0.866 
SGCA9 13 18 9  1.000 0.895 0.914  0.870 0.915 0.808 

Bold Ho values indicate deviations from HWE.  
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Table S1.2. Nucleotide alignment of the 11 observed MHC class I exon 3 sequences (373 - 379 bp) found in the three groups 
of greater prairie-chickens (pre-, post-translocation WI and translocated MN females). Vertical numbers indicate the position 
of the 33 variable nucleotides sites within exon 3. Sites marked with dots indicate the same nucleotide as Tycu-1A*15 allele 
and dashes represent deletions. The MHC class I allele frequencies and the allele counts (n) are provided for each group.  
Novel MHC class I sequences were submitted to GenBank (accession numbers: KF466475-KF466479). 
 

 

 
 
 
 
 
 
 
 
 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 Pre-trans Post-trans Trans
1 1 1 6 6 7 9 9 0 2 2 2 3 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 0 2 3 WI WI MN
2 3 4 7 8 3 3 9 5 2 3 4 5 6 7 9 0 1 2 3 5 6 7 8 9 1 5 6 8 9 5 9 9 (n  = 62) (n  = 66) (n  = 55)

Tycu-1A*15 G G T T A T T T G C G A G A T A T G G G G C G T T C G A G T C G A 0.129 0.288 0.255
Tycu-1A*06 A C G C G G C C C – – – . C A . . C C A C T T . . T T G A C . . . 0.097 0.061 0.255
Tycu-1A*08 A C G C G G C . . – – – . G . . G . . . . T . A A . . . . . . C G 0.226 0.182 0.091
Tycu-1A*09 . . . C G G C C C – – – . C A . . C C A C T T . . T T G A C . . . 0.048 0.030 0.000
Tycu-1A*11 . . . C G G C . . – – – . . . . . . . . . . . . . . . . . . . . . 0.065 0.046 0.036
Tycu-1A*13 T . . C G G C C C – – – . . . . . . . . . . . . . . . . . . . C G 0.129 0.136 0.127
Tycu-1A*14 T . . C . G C C C – – – . . . . . . . . . . . . . . . . . . . C G 0.274 0.242 0.091
Tycu-1A*16 T . . C G G C . . – – – . G . . G . . . . T . A A . . . . . . C G 0.000 0.000 0.036
Tycu-1A*17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G 0.000 0.000 0.036
Tycu-1A*18 . . . C . G C C C – – – A . A – – – T . . T . A A . . . . . A . G 0.000 0.000 0.073
Tycu-1A*19 T . . C . G C C C – – – . . . . . . . . . . . . . . . . . . . . G 0.032 0.015 0.000
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Table S1.3. Mean (SE) estimates of mitochondrial (mtDNA) and microsatellite (Msat) DNA diversity in greater prairie-
chickens for pre- and post-translocation in Wisconsin (Buena Vista marsh, this study) and Illinois (Bouzat et al., 2009).  For 
microsatellites, statistics were calculated for only the four loci used in both studies (ADL146, ADL230, LLSD4, LLST1). 
 
  Wisconsin    Illinois  

 Historic* Pre-
translocation  

Post-
translocation  

 Historic Pre- 
translocation  

Post-
translocation  

mtDNA         
                    Sample size 19 41 72  22 32 18 

Number of haplotypes  10  6 10   8  4  7 
Haplotype diversity (h) 0.889 (0.013) 0.577 (0.082) 0.822 (0.023)  0.883 (0.007) 0.728 (0.007) 0.876 (0.009) 
Nucleotide diversity (π) 0.012 (0.001) 0.013 (0.001) 0.014 (<0.001)  0.007 (0.000) 0.005 (0.000) 0.013 (0.000) 

        
Msats        

Sample size                     40-45 41 81  – 32 18 
Allelic richness (Ar) 8.2 (1.300) 7.34  (0.404) 7.15   (0.721)  – 4.94 (0.451) 6.00 (0.836) 

Ho 0.653 (0.122) 0.506 (0.175) 0.627 (0.175)  – 0.625 (0.082) 0.639(0.117) 
He 0.696 (0.099) 0.640 (0.120) 0.664 (0.127)  – 0.656 (0.084) 0.667 (0.079) 

* from Bellinger et al. (2003), Johnson et al. (2004)  
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Supplemental Molecular Methods 

 
Sexing prairie-chicken feathers. The sex of individuals sampled from post-translocation WI was 

determined by PCR using primers that amplify an intron of the CHD gene located on the W and 

Z sex chromosomes (Kahn et al., 1998).  The intron varies in size between the two chromosomes 

resulting in two bands for females (ZW) and one band for males (ZZ). PCR was carried out in a 

total volume of 15 μL with the following conditions: 1X GoTaq Flexi Buffer (Promega), 1.65 

mM MgCl2, 0.8 mM dNTPs, 1.0 μM of each primer, 0.5 U of GoTaq polymerase, 2% DMSO and 

approximately 50 ng of genomic DNA. PCR amplifications were performed under the following 

thermocycling conditions: an initial denaturing step at 94 °C for 2 min. followed by 30 cycles at 

94 °C for 30 s, 56 °C for 45 s and 72 °C for 45 s, and a final extension at 72 °C for 5 min. PCR 

products were visualized on a 3% NuSieve 3:1 agarose (FMC Corp.) gel, run at 23 V/hr and 

stained with ethidium bromide. DNA of known sex individuals (2 males and 2 females) was 

amplified in each PCR and run on each gel as positive controls. We conducted three separate 

PCRs of each sample to avoid false typing of individuals that may occur with DNA extracted 

from feathers (Bush et al., 2005). Sequencing the PCR products from one male and one female 

revealed the length of the intron amplified on the Z chromosome was 224 bp and the W 

chromosome was 256 bp.  

 

MHC class I cloning and sequencing.  We examined MHC diversity at exon 3 of the class I loci. 

Based on our genetic map of the core MHC-B in greater prairie-chickens (Eimes et al., 2013), we 

developed two new primers 1a2inExon3F (5′-TCACCTCTCCTGCCCAGCTC-3′) and 

1a2Raltintron2 (5′- ATCCCCTGCCCGGCTGTGTT-3′) that amplify exon 3 of MHC class I 

loci. PCRs (20 μL total volume) contained 1x Green GoTaq Flexi Buffer (Promega), 1.5 mM of 
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MgCl2, 7.5% DMSO, 0.5 μM of each primer, 0.4mM of dNTPs, 1.0 unit of GoTaq DNA 

polymerase and approximately 50 ng of genomic DNA. Thermocycling conditions started with 

an initial denaturation step at 95 °C for 1 min. followed by 30 cycles of 30 s at 94 °C, 30 s at 66 

°C and 45 s at 72 °C. We confirmed amplifications on 1% agarose gel. Initially, PCR products 

were sequenced, but 89% (77/87) of the generated chromatograms were difficult to interpret due 

to indels resulting in allelic length heterogeneity for each individual. Therefore, we purified PCR 

products using GeneJet Gel Extraction Kit (Fermentas) and cloned using pGEM®-T Easy Vector 

System II (Promega, Madison, WI) with JM109 competent cells. For whole colony PCR, the 

colonies to be screened were sampled with a sterile 10-μl pipette tip and transferred to a PCR 

mixture containing 1x Green GoTaq Flexi Buffer, 1.5 mM of MgCl2, 0.5 μM of each vector 

primer (Sp6 and T7), 0.4 mM of dNTPs and 1.0 unit of GoTaq DNA polymerase. Thermocycling 

conditions consisted of an initial denaturation for 2 min. at 94 °C followed by 30 cycles of 15 s 

at 94 °C, 15 s at 40 °C, 45 s at 72 °C with a final extension for 5 min. at 72°C. We identified 

alleles in two ways: 1) cloning of 77 individuals (6 colonies per individual) and 2) direct 

sequencing of 10 individuals in both directions and aligned with the cloned alleles in the 

program PHASE (Stephens et al., 2001) implemented in DNASP. All sequences were aligned with 

MHC class I exon 3 sequence of the domestic chicken (Gallus gallus; Genbank No. 

AB426152.1) using the program GENEIOUS.  

 

Introgression estimates. We used two methods to estimate the introgression of MN alleles into 

the WI population.  First, we calculated a hybrid index as described in the main text. Our second 

method to estimate introgression at microsatellites used a Bayesian Monte Carlo Markov Chain 

(MCMC) algorithm in STRUCTURE 2.3.4 (Pritchard et al., 2000) to assign individuals into genetic 
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clusters (K) and estimate their probability of membership in each cluster (Q). All individuals 

were tested with independent simulations of K, ranging from 1 to 5, with each level of K 

replicated 10 times. Each simulation was run for 500 000 MCMC steps after a burnin of 50 000. 

We used STRUCTURE HARVESTER 0.6.93 (Earl and vonHoldt, 2012) to combine the results from 

the 10 independent simulations for each value of K.  The number of clusters (K) was determined 

based on the ΔK method (Evanno et al., 2005).  

To identify hybrid individuals, we simulated hybrids and used STRUCTURE to estimate 

appropriate thresholds of population membership (Q values) for separating parental (MN or pre-

translocation WI) and admixed (‘hybrid’) individuals (K = 2 in all analyses). Starting with the 

observed allele frequencies in the translocated MN female and pre-translocation WI samples, we 

used HYBRIDLAB (Nielsen et al., 2006) to construct equal sized samples (41) of the parental 

populations (translocated MN females, pre-translocation WI) and their F1, F2 and F1 backcross 

hybrids.  These simulated individuals were analyzed with STRUCTURE using admixture models 

with prior population information.  In this case, we used the two known sampling locations (pre-

translocation WI and translocated MN females) to assist the ancestry estimation in our unknown 

sample (post-translocation WI, which was not assigned a population), as recommended when 

testing for hybrids (Pritchard et al., 2000; STRUCTURE manual pg 11).  From the analysis of 

simulated hybrids we used the 10 to 90th percentiles of population membership (Q) as a threshold 

for assigning the post-translocation WI individuals to purebred or hybrid categories. 

 

Using all three samples (pre-, post-translocation WI and translocated MN females), STRUCTURE 

found the greatest support for three genetic clusters (K = 3; Figure S1.1A) in an admixture model 

without assignment to populations.  However, to test specifically for hybrids in the post-
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translocation sample, we assumed two parental populations (pre-translocation WI and 

translocated MN females; K=2) and used the test for migrants model in STRUCTURE (Figure 

S1.1B). Membership probabilities (Q) for the post-translocation samples in the parental MN 

cluster ranged from 0.007 to 0.80 (median = 0.02, 10 to 90th percentiles: 0.011 to 0.16). Next, we 

used the 10 to 90th percentiles of simulated 'hybrids' (from HYBRIDLAB) to create thresholds (10 

to 90th percentile) for identifying individuals with mixed ancestry in our post-translocation WI 

samples.  These Q values were 0.235 and 0.811, respectively. Based on these thresholds, 7% 

(6/81) of birds had MN ancestry (mean ± SE for Q: 0.55 ± 0.081; range 0.256 - 0.80) in the post-

translocation WI sample (see main text for more details).  
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Abstract 

Immune-receptor genes of the adaptive immune system, such as the major histocompatibility 

complex (MHC), are involved in recognizing specific pathogens and are known to have high 

rates of adaptive evolution, presumably as a consequence of rapid coevolution between hosts and 

pathogens. In contrast, many ‘mediating’ genes of the immune system do not interact directly 

with specific pathogens and are involved in signaling (e.g., cytokines) or controlling immune cell 

growth. As a consequence, we might expect stronger selection at immune-receptor than 

mediating genes, but these two types of genes have not been compared directly in wild 

populations. Here, we tested the hypothesis that selection differs between MHC (class I and II) 

and mediating genes by comparing levels of population differentiation across the range of greater 

prairie-chickens (Tympanuchus cupido). As predicted, there was stronger population 

differentiation and isolation-by-distance at immune-receptor (MHC) than at either mediating 

genes or neutral microsatellites, suggesting a stronger role of local adaptation at the MHC. In 

contrast, mediating genes displayed weaker differentiation between populations than neutral 

microsatellites, consistent with selection favoring similar alleles across populations for mediating 

genes. In addition to selection, drift also had a stronger effect on immune-receptor (MHC) than 

mediating genes as indicated by the stronger decline of MHC variation in relation to population 

size. This is the first study in the wild to show that the effects of selection and drift on immune 

genes vary across populations depending on their functional role.   
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Introduction  

Individuals are continually challenged by a wide variety of pathogens, which has resulted in the 

evolution of a diverse and complex immune system. Immune genes are categorized based on 

their immunological roles, each of which experiences different selection pressures (Downing et 

al. 2010; Ekblom et al. 2010). In particular, genes of the adaptive immune system, such as the 

major histocompatibility complex (MHC), are involved in recognition of specific antigens and 

experience strong selection as a consequence of host-pathogen coevolution (“immune receptor” 

genes). In contrast, “mediating genes” are involved in signaling (e.g., cytokines) or controlling 

immune cell growth (e.g., inhibitor of apoptosis protein-1, IAP-1) and are thought to experience 

weaker selection because they have more general roles that do not involve recognition of specific 

pathogens (Sackton et al. 2007; Ekblom et al. 2010). With the rapid increase of novel pathogens 

that may threaten local populations with extinction (Smith et al. 2009), it is important to 

understand how a broad range of immune genes respond to contemporary selection in the wild.  

 Many studies investigating selection at immune-receptor genes have focused on the MHC, 

which initiates the adaptive immune response by recognizing foreign antigens produced by 

pathogens and presenting them to T cells (Janeway et al. 2005). Coevolution between pathogens 

and immune system is considered the primary force driving MHC variation (Bernatchez & 

Landry 2003). MHC allele frequencies may be similar among populations if beneficial alleles 

quickly increase in frequency (Schierup et al. 2000; Muirhead 2001), assuming that pathogen-

driven selection is similar among populations and selection prevents the loss of rare beneficial 

alleles due to drift. On the other hand, MHC alleles that are beneficial in one population may not 

be as beneficial in other populations with a different array of pathogens.  In this case, locally 

adapted MHC alleles may exist leading to greater population differentiation (Muirhead 2001). To 
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date, studies have found that, compared to neutral markers, MHC differentiation can be: (1) 

greater than expected suggesting local adaptation (Ekblom et al. 2007; Loiseau et al. 2009; 

Ackerman et al. 2013; Kyle et al. 2014), (2) weaker than expected consistent with balancing 

selection (Sommer 2003; Fraser et al. 2010; Strand et al. 2012), or (3) not different than neutral 

markers suggesting weak selection or a strong effect of drift (Miller et al. 2010; Zeisset & 

Beebee 2014). These differences in results may be related to the relative effects of gene flow, 

drift and selection (Bryja et al. 2007) and the spatial scale of the study (Landry & Bernatchez 

2001, Herdegen et al. 2014). For example, at small spatial scales MHC differentiation could be 

greater than that of neutral genes because of local adaptation, but at larger spatial scales MHC 

differentiation could be reduced because gene flow of adaptive MHC alleles is likely to be 

greater than that of neutral genes (Herdegen et al. 2014).   

 In contrast, few studies have explored population differentiation at other immune genes. 

Most of these studies focus on toll-like receptors (TLRs; Ryan et al. 2006), another type of 

immune-receptor gene, or meditating genes such as cytokines, which appear to have relatively 

low variation and population differentiation compared to neutral markers (Bollmer et al. 2011). 

Many mediating genes are responsible for signaling and controlling immune responses (e.g., 

inflammation and immune cell growth) so they do not interact directly with pathogens. As a 

consequence, selection for genetic variability or local adaptation in these genes may be weaker 

(Sackton et al. 2007), potentially leading to similar alleles across populations. Here we tested the 

hypothesis that selection differs between immune-receptor (MHC) and mediating genes by 

comparing levels of population differentiation at these genes in natural populations of greater 

prairie-chickens (Tympanuchus cupido). Although many studies have examined selection and 

drift in MHC genes, they have not been compared directly to mediating genes in analyses of wild 
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populations. There is also mounting evidence that variation declines faster at MHC than neutral 

genes following bottlenecks (Esjmond & Radwan 2009, Eimes et al. 2011, Sutton et al. 2011), 

but it is not clear whether the decline is similar in other types of immune genes. 

 To examine the effects of selection and neutral processes, we compared immune genes in 

relation to neutral markers (microsatellites) across six populations of greater prairie-chickens that 

vary greatly in size (176 to >170000 birds) and, hence, the influence of drift. The populations are 

distributed over a large geographic area (up to 2000 km apart, Table S2.1) across 16° of latitude 

(30° - 46° N), which may expose them to different pathogen communities (e.g., Guernier et al. 

2004). We previously examined variation within these prairie-chicken populations at five 

mediating genes (see Methods) and found a positive relationship between population size and 

genetic variation, consistent with the effects of drift (Bollmer et al. 2011). However, population 

differentiation was weaker at these mediating genes than neutral markers, suggesting that 

selection has favored similar alleles across populations (Bollmer et al. 2011).  

 In our present study, we compare patterns of geographic variation at two immune receptor 

genes (MHC class I and II) with the five mediating genes described in Bollmer et al. (2011). Few 

studies examine both MHC class I and class II loci, which code for antigen receptors that detect 

intracellular and extracellular pathogens, respectively. We predicted that if host-pathogen 

selection maintains similar MHC alleles across populations, then we would expect weaker levels 

of differentiation at MHC than neutral genes, similar to the mediating genes. On the other hand, 

if there were local adaptation at MHC genes, then we would expect stronger population 

differentiation at MHC genes than at both neutral markers and mediating genes.  
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Methods  

We sampled 183 individuals from six populations of greater prairie-chickens (T. c. pinnatus) in 

Kansas, Nebraska, Minnesota, Missouri, Wisconsin (n = 30 each) and the endangered Attwater’s 

subspecies in Texas (n = 33; T. c. attwateri). We sampled birds from one or two adjacent 

counties in each state (see map in Johnson et al. 2003) to limit the potential effects that sampling 

from areas of unequal size may have on measures of genetic diversity. DNA was extracted from 

blood and feathers collected during 1997-2011 following the methods described in Johnson et al. 

(2003). Most of the same individuals analyzed in Bollmer et al. (2011) at microsatellites and 

mediating genes were examined at MHC class I and II in this study, with the exception of 

samples from Minnesota and Texas.  In these populations, additional individuals from different 

years were used to examine MHC variation. The MHC samples from Minnesota, consisted of 

individuals that were captured in 2006 and used in a supplemental translocation to the threatened 

Wisconsin population (Bateson et al. 2014). Note that the Wisconsin samples (from 1999-2000) 

were collected prior to the introduction of these Minnesota individuals. The additional Texas 

samples used for MHC analysis were collected in 2011 from the descendants of a captive 

breeding program founded by 19 lineages in the early 1990s (Morrow et al. 2004). Using a 

DNA-based pedigree, we avoided using closely related individuals from the Texas population 

that had pairwise relatedness coefficients greater than 0.125.  

 

454 pyrosequencing of MHC class I and II 

We assessed genetic variation at exon 3 of MHC class I and exon 2 of MHC class II loci. To 

amplify MHC class I, we used primers and PCR protocols described in Bateson et al. (2014). 

Once the flanking intron nucleotides were trimmed, the most common class I sequence length 



 

48 

was 258 bp. However, as found in other studies of MHC class I (Čížková et al. 2012; Sepil et al. 

2012), there were insertions (position 40) and deletions (position 58) that resulted in 261 and 255 

bp sequences, respectively.  For MHC class II, we used primers Blex2F (Eimes et al. 2010) and 

RNA R1a (Strand et al. 2007) that amplified the entire 237 bp fragment of exon 2 (PCR 

conditions are described in Eimes et al. 2010). Greater prairie-chickens have a single class I 

locus and two copies (paralogs) of the class II locus (Eimes et al. 2013, Bateson et al. 2014); 

therefore, we amplified a maximum of two and four alleles within individuals, respectively. 

Due to the complexity of MHC class I (length polymorphism) and class II (multiple loci), we 

used 454 pyrosequencing to genotype individuals. Amplifications of MHC loci included fusion 

primers comprised of Roche 454 adapter sequences, an 8-bp barcode (to identify individuals) and 

a pair of either the MHC class I or II primers. Amplicons for both class I and II were pooled and 

then sequenced on a Roche 454 FLX Genome Sequencer using Titanium chemistry at Research 

and Testing Laboratory, LLC (Lubbock, TX).  

 

Filtering MHC pyrosequences and allele validation 

It is well known that 454 pyrosequencing is prone to errors (e.g., Gilles et al. 2011), which can 

artificially inflate the number of alleles within individuals and populations. Thus, several step-

wise methods have been proposed to identify true alleles (e.g., Lighten et al. 2014a; Sommer et 

al. 2013). We processed and filtered our 454 sequences according to the methods of Lighten et 

al. (2014a, 2014b). First, we used jMHC v. 1.5 (Stuglik et al. 2011) to exclude 454 sequences 

that contained ambiguities (N’s) and did not contain the entire forward primer, the correct 8-bp 

barcode (to identify individuals) and at least 10 bases of the reverse primer. Next, we excluded 

sequences that: 1) were found as a single read within amplicons (samples), or 2) differed by 
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more than 2 bp from the expected exon size because of PCR or sequencing errors. To identify 

true alleles, we clustered the remaining sequences by building neighboring-joining trees in 

Geneious version 7.0 (http://www.geneious.com, Kearse et al. 2012). Each cluster consisted of 

one sequence with a high number of reads (the true allele) and error sequences which were 

always <5% of reads in a cluster (similar to Lighten et al. 2014a). Each true allele was found in 

at least two individuals (87%, 48/55) or verified in two independent PCRs and 454 sequencing 

runs (13%, 7/55 alleles, see Repeatability of MHC genotyping below). 

 After applying the allele validation steps above, we estimated the number of MHC alleles 

in each individual using two independent methods (copy number variation, CNV and degree of 

change, DOC) described by Lighten et al. (2014a,b). Both methods estimate the number of 

alleles from the 10 most common sequences within each amplicon, and, therefore, can estimate 

the number of alleles for up to a maximum of five MHC loci.  

 The CNV method identifies the number of alleles and loci by using the proportion of 

reads for each allele. If an allele has a relatively higher read count than others, then the allele 

may exist at multiple loci within an individual. The observed read counts for each allele within 

individuals are compared to a theoretical genetic model that calculates expected read counts for a 

range of loci (1-5 loci) and allelic copies. Next we compared the estimated number of alleles 

from the top two CNV models (with the lowest sum of squares). If the estimated number of 

alleles differed between these two models, then we compared the lowest number of alleles for 

that individual to the results of the DOC method.  

 The DOC method determines the number of alleles by identifying a substantial drop or 

inflection point in the number of reads or the degree of change (DOC) that is expected between 

alleles and artifact sequences. The DOC approach assumes that alleles have a higher number of 
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reads than artifact sequences, so there is a breakpoint in the number of reads between the least 

amplified allele and the most common artifact within each amplicon. The quality of an amplicon 

is important for the DOC method to reliably determine the number of alleles; therefore, we 

independently examined the cumulative number of reads for the 10 most common sequences for 

each amplicon to make sure there was an obvious breakpoint between the true alleles and artifact 

sequences.  

The final MHC class I and II genotypes for each individual were determined when both the CNV 

and DOC methods converged on the same number of alleles. If the CNV and DOC methods 

disagreed, we used the DOC estimate, which is more conservative (Lighten et al. 2014b). There 

was agreement between the CNV and DOC approaches for 97% (178/183) of class I and 90% 

(164/182) of class II genotypes.  

After our initial filtering steps, we obtained 153,241 reads for the 183 individuals at MHC class 

I, and 250,245 reads for 182 individuals at MHC class II. One individual from Minnesota failed 

to amplify at class II in two pyrosequencing runs. The average number of reads per individual 

was 701 for class I (range: 25–3124) and 1091 for class II (range: 145–6197). There was no 

correlation between total number of reads and alleles at class I (r2= 0.01, F1,181 = 2.46, P = 0.118) 

or class II (r2= 0.01, F1,182 = 1.72, P = 0.191), indicating sufficient sequencing coverage for 

genotyping. Overall, pyrosequencing detected 15 class I and 14 class II alleles in addition to 

those that were previously identified in Wisconsin and Minnesota prairie-chickens using cloning 

and Sanger sequencing methods (Eimes et al. 2010, Bateson et al. 2014).  
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Repeatability of MHC genotyping 

We also examined the repeatability of our genotyping procedure at class I and II by comparing 

two independent PCRs and 454 sequencing runs for 18 individuals. These  repeated samples 

were selected to confirm putative class I and II alleles found in a single individual and the 

number of class II alleles (range: 1-4) within individuals. Among the 18 individuals there were 

only three mismatches in the number of alleles per individual between runs, which resulted in 

high repeatability across both class I and II (R=0.93; F35, 36 = 29.13; P < 0.001). The three 

mismatches all occurred at class I and appeared to be due to a low number of reads for those 

individuals in one 454 run. For 41 individuals we also compared MHC class I genotypes derived 

from pyrosequencing to those previously detected with cloning and Sanger sequencing (Bateson 

et al. 2014). Most (85%, 35/41) of the MHC genotypes matched. The six class I genotype 

mismatches were due to one allele missing in the cloned genotypes, the result of sequencing a 

small number of bacterial colonies (6 clones/individual).  

 

MHC diversity  

We used different measures to compare population genetic variation at class I and II because 

they have different numbers of loci. Class I has a single locus, so for population comparisons we 

calculated heterozygosity and tested for deviations from Hardy-Weinberg equilibrium using 

ARLEQUIN ver. 3.5 (Excoffier & Lischer 2010). Class II has two loci, and our primers amplify 

both of them simultaneously, so to compare variation at class II we calculated an index of allelic 

richness, theta k, using ARLEQUIN and the mean number of MHC alleles per individual 

(MHC/ind). Population-wide nucleotide diversity was calculated for both class I and II using 

DNASP v5 (Librado & Rozas 2009).  
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Mediating immune genes 

We compared variation in MHC genes to the five mediating genes examined previously in the 

same populations as described in Bollmer et al. (2011). We focused on mediating genes that 

have polymorphisms correlated with health (e.g., pathogen load) and fitness-related traits in 

domestic chickens (Ye et al. 2006; Tohidi et al. 2013). The mediating genes examined were 

chicken B cell marker 6 (ChB6 or Bu-1), inhibitor of apoptosis protein-1 (IAP-1), interleukin-2 

(IL-2), transforming growth factor β3 (TGF-β3) and tumor necrosis factor-related apoptosis 

inducing ligand-like protein (TRAIL-like). Briefly, ChB6 is a B lymphocyte receptor that 

induces cell death to self-reactive B cells, preventing autoimmune disease (Funk et al. 2003). 

The cytokine, IL-2 is involved in the activation of various immunity cells, including T cells and 

natural killer cells (Borish & Steinke 2003). IAP-1 prevents cell death and may be important in 

fighting intracellular pathogens (Prakash et al. 2009). TGF-β3 gene is a part of the cytokine 

family and has multiple immunological functions, including inhibiting the proliferation of 

lymphocytes, inducing immune cell migration and also suppressing inflammation (Borish & 

Steinke 2003). The cytokine, TRAIL-like protein stimulates apoptotic cell death, and activates 

cytotoxic T cells and IL-2-stimulated natural killer cells (Borish & Steinke 2003). 

 

Microsatellite loci 

We examined six microsatellite loci (methods in Johnson et al. 2003) to provide an estimate of 

neutral variation for comparison with immune receptor and mediating genes. The microsatellite 

data came from the same individuals genotyped at mediating genes in Bollmer et al. (2011). 
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Each locus had 8 to 26 alleles and all loci were in Hardy-Weinberg equilibrium with no evidence 

for linkage between any loci (Johnson et al. 2003; Bollmer et al. 2011).   

 

Genetic variation and population size 

To test for the effects of drift, we assessed the relationship between genetic variation and 

population size for each marker type (i.e., immune receptor, mediating, and microsatellites) 

using generalized linear models in JMP Pro v. 11 (SAS Institute 2013). We expected a positive 

correlation between genetic diversity and population size due to the effect of drift. We tested for 

differences in the effect of drift on different markers by comparing overlap in the 95% CI of the 

slopes for each marker across population sizes. In these analyses, we used a mean-centered 

estimate of genetic diversity because the three types of markers differ in polymorphism (mean 

alleles/locus varied from 4.7 for mediating genes to 15.5 for MHC class II) and this also helped 

to normalize the data.  To calculate the mean-centered estimate for microsatellites and mediating 

genes, we divided the mean number of alleles/locus at a particular population by the mean from 

all populations (for that marker). For MHC genes, which involved only one or two loci, we used 

the total number of alleles at class I and class II in each population divided by the mean across 

all populations (12.8 and 15.5, respectively). Population size estimates for the six prairie-chicken 

populations were from census data collected in the late 1990s (Svedarsky et al. 2000).  

 

Population differentiation and isolation by distance 

To investigate the role of neutral and selective processes on MHC and mediating genes, we 

compared population differentiation at immune genes relative to neutral microsatellites. We 

assessed population differentiation using standardized G'
ST (Hedrick 2005) and Jost’s D (Jost 
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2008), because the magnitude of FST is dependent on heterozygosity, which differs between our 

genes (i.e., microsatellite loci, MHC and mediating immune genes; Meirmans & Hedrick 2010). 

Pairwise G'
ST values were estimated by dividing the original GST values by the maximum GST 

value, which controls for different levels of heterozygosity between the genetic markers. We 

could not determine G'
ST at MHC class II because heterozygosity was unknown, so we also 

calculated Jost’s D which uses the effective number of alleles (Jost 2008). We calculated G'
ST 

and Jost’s D using GenAlEx (Peakall & Smouse 2006) for mediating genes and MHC class I (all 

single locus). To calculate Jost’s D for MHC class II, we used the program SPADE (Chao & 

Shen 2010), and coded each allele as present or absent (i.e., a dominant marker). For 

microsatellites, we used the program diveRsity (Keenan et al. 2013) in R (R Core Team 2014) to 

obtain Jost’s D values and associated 95% CI by bootstrapping over loci (1000 permutations). 

Since the general patterns were the same for the two population differentiation indices, we 

present the results for Jost’s D below and in Table S2.1 (see Tables S2.2 and S2.3 for analyses 

using pairwise G'
ST).  

To differentiate between neutral and selective processes on MHC and mediating genes, 

we compared population differentiation (Jost's D) at immune and neutral genes using isolation-

by-distance (IBD) analyses that controlled for both differences in isolation (geographic distance) 

and drift (population size). Under neutrality, population differentiation should increase linearly 

with geographic distance between populations due to reduced dispersal between populations that 

are farther apart. Thus, paired comparisons of differences in IBD slopes between immune genes 

and neutral microsatellites from the same populations are often thought to reflect the influence of 

selection. For example, if selection favors similar alleles across populations or there is high gene 

flow across populations, then we may detect weak or no IBD (flat slopes) at immune genes 
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compared with neutral microsatellites. Conversely, stronger IBD (steeper slopes) at immune 

genes than microsatellites may arise if differences in selective pressures are correlated with 

geographic distance between populations.  For example, in the case of MHC genes, populations 

farther apart may be more likely to have different pathogens and, thus, selection may favor 

different MHC alleles in those populations. We tested for IBD at immune genes and 

microsatellites by regressing Jost’s D values on the straight-line distance (log10-transformed km) 

between population pairs using Mantel tests (1000 permutations) in IBDWS 3.16 (Jensen et al. 

2005). This analysis does not control for the influence of drift, which can vary between different 

genetic markers, particularly the MHC (Eimes et al. 2011, Sutton et al. 2011). Thus, we also 

performed IBD analyses for each marker while controlling for differences in size between 

population pairs using partial Mantel tests. Analyses of IBD use repeated samples of the same 

population, so we tested for differences between types of markers by comparing the 95% CI of 

the slopes for each marker.  

 

Results 

MHC diversity  

We found a total of 25 and 30 alleles at class I and II, respectively. At both MHC class I and II, 

larger populations generally had a greater number of alleles and theta k, an index of allelic 

richness. Private alleles made up 25% (14/55) of the total MHC alleles, and each population had 

at least one private MHC allele (Table 2.1). The larger populations in Kansas and Nebraska had 

the most private alleles (3 and 4, respectively), while the small and isolated populations in 

Wisconsin and Texas each had two private alleles each. At MHC class I, heterozygosity was 

high across all populations (0.81-0.91), and there was no excess of heterozygotes (HWE tests). 
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Genetic variation and drift 

Genetic diversity (mean-centered) increased with population size (log10-transformed) at all 

marker types, consistent with the effects of drift (Figure 2.1), but the rate of increase differed 

between markers (interaction 2 = 10.2, df = 3, P = 0.018). The relationship had greater support 

in a quadratic (AIC = -13.1) than linear model (AIC = -2.6). As population size increased, MHC 

variation increased at a greater rate (slope [CI], MHC I: 0.300 [0.105 - 0.495]; MHC II 0.313 

[0.204 - 0.423]) than variation at either neutral microsatellites (0.178 [0.021 - 0.335]) or 

mediating genes (0.121 [0.002 - 0.240]). These results were influenced by the small, isolated 

population in TX, as excluding it from the analysis led to a non-significant difference in slope 

between genes (marker and population size interaction: 2 = 6.53, df = 3, P = 0.088; marker 

effect: 2 = 3.22, df=3, P= 0.359), but the effect of population size remained (P < 0.001). 

Genetic diversity at both MHC and mediating genes was correlated with variation at 

microsatellites (all r >0.92, P<0.01, in analyses with all six populations and also when excluding 

TX), providing more evidence of drift influencing these genes. However, in regression analyses 

of each immune gene in relation to microsatellite variation, the slope [95% CI] of the 

relationship was significantly steeper for MHC class I (1.5 [1.08 - 2.02]) than mediating genes 

(0.7 [0.50 - 0.84]), and nearly significant for MHC Class II (1.4 [0.59 - 2.21]). Results were 

qualitatively similar after excluding TX from the analyses. 

 

Population differentiation and isolation by distance  

MHC genes exhibited stronger population differentiation (Jost’s D) than both microsatellites and 

mediating immune genes, consistent with local adaptation (Figure 2.2, Table S2.1). For MHC 

genes, the majority of class I (73%, 11/15) and class II (60%, 9/15) pairwise Jost’s D values were 
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above the 95% confidence intervals for microsatellites. In contrast, the majority (60%, 9/15) of 

Jost’s D comparisons for mediating genes fell below the 95% confidence intervals for 

microsatellites.   

 MHC genes also showed stronger isolation by distance (IBD) than both microsatellites 

and mediating genes (Figure 2.3A, Table 2.2, Table S2.3). The IBD slopes for MHC class I (b = 

1.216, 95% CI: 0.776–1.656) and class II (b = 1.137, 95% CI: 0.606–1.661) were steeper than 

the slopes for microsatellites (b = 0.276, 95% CI: 0.149–0.403) and the mediating genes (b = 

0.301, 95% CI: 0.129–0.471; Figure 2.3A). IBD at mediating genes did not differ from that of 

microsatellites when all five genes were included.  However, one of the mediating genes (IAP-1) 

was previously identified as an outlier in terms of local adaptation (i.e., it had a greater slope; 

Bollmer et al. 2011). When IAP-1 was excluded from this analysis, the IBD slope for the 

remaining four immune genes was significantly lower than that of microsatellites (b = 0.120, 

95% CI 0.055–0.186; Table 2.2), and Jost’s D values were not correlated with geographic 

distance (Table 2.2).    

 Drift could also contribute to differences between the IBD slopes of MHC and mediating 

genes. In particular, the steeper IBD slope for the MHC may have been influenced by including 

Texas (Figure 2.2), which has the smallest and most isolated population. However, excluding 

Texas had no qualitative effects on the IBD analyses, as the slopes remained steeper at MHC 

class I (b = 0.628, 95% CI: 0.221–1.034) and class II (b = 0.797, 95% CI: 0.160–1.433), 

compared to mediating genes (b = 0.150, 95% CI: 0.036–0.264; Figure 2.3B). Furthermore, 

when we controlled for differences in population size (including TX) with partial Mantel tests, 

there was still significant IBD at both MHC class I (partial rM = 0.794, P = 0.010) and class II 

(partial rM = 0.712, P = 0.028), but not at mediating genes (partial rM = 0.419, P = 0.171). 
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Microsatellites also continued to show IBD after controlling for population size differences 

(partial rM = 0.650, P = 0.033). 

 

Discussion 

Understanding the effects of contemporary selection and drift at functionally different immune genes is 

becoming increasingly important as concern intensifies about pathogen outbreaks and their potential 

negative impact on wild populations (Radwan et al. 2010; Siddle et al. 2007; Smith et al. 2009). As 

predicted, we found strikingly different patterns of variation between immune-receptor and mediating 

genes in prairie-chicken populations. In particular, there was stronger population differentiation at 

immune-receptor genes of the MHC than at mediating genes or neutral microsatellites, which likely 

results from a combination of drift and selection for locally adapted MHC genes. In contrast, mediating 

genes exhibited weaker population differentiation than microsatellites, suggesting that selection favors 

similar allele frequencies across populations despite the effects of drift. Immune-receptor (MHC) genes 

appeared to be affected more strongly by drift than mediating genes, which is consistent with previous 

studies of the effects of bottlenecks on MHC variation (Ejsmond & Radwan 2009; Eimes et al. 2011). 

Overall, our results are consistent with the hypothesis that local pathogens play a stronger role in 

shaping variation at genes involved in recognizing specific pathogens than genes that are involved in 

other immune functions. 

Few studies have directly compared immune-receptor and mediating genes to investigate 

how selection shapes variation across populations. In these cases the results have been mixed, 

particularly when comparing immune-receptor genes of the innate immune system (toll-like 

receptors; TLRs) and mediating cytokines. For example, one study of humans found weak 

differentiation between populations at both TLR and cytokine genes (Ferrer-Admetlla et al. 
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2008), while another study of the same immune genes (but different populations) showed 

stronger differentiation at TLRs than cytokines (Ryan et al. 2006). Interestingly, Ryan et al. 

(2006) found that pairwise FST values for 15 mediating genes spanned two orders of magnitude 

(0.002 – 0.268), similar to this study (FST : 0.000 – 0.182). This large range of population 

differentiation at mediating genes suggests that selection can vary widely within this functional 

group. 

In prairie-chickens, we found stronger differentiation among populations at MHC genes 

than at four (including three cytokines) of the five mediating genes. One mediating gene (IAP-1) 

had stronger population differentiation, similar to MHC.  Most of this effect was driven by a 

unique polymorphism in IAP-1 found within the Wisconsin population (Bollmer et al. 2011). It 

is unknown whether the polymorphism within IAP-1 has any fitness-related effects in prairie-

chickens, but in domestic chickens a single nucleotide polymorphism within this gene had 

different effects on chick body weight in environments with high and low hygiene (Ye et al. 

2006), suggesting that selection may vary depending on environmental conditions. Intracellular 

pathogens are known to disrupt apoptosis by inhibiting the production of mediating molecules 

(e.g., cytokines), and, as a result, prevent an appropriate immune response (Seow 1998; Alcami 

2003). Thus, some mediating genes involved in apoptosis, such as IAP-1, may interact directly 

with pathogens, which could lead to local adaptation. 

 Similar to several other studies, we found stronger population differentiation at MHC 

than neutral loci, suggesting that differences in local selection pressures are important (Ekblom 

et al. 2007; Kyle et al. 2014; Oliver et al. 2009). However, there are exceptions to this pattern, 

including studies of other grouse. For example, black grouse (Tetrao tetrix) in Europe have 

weaker differentiation at MHC class II than microsatellite loci across populations of different 
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size (50 to >1000 birds) and isolation (200-2000 km between populations), suggesting that 

balancing selection favors similar alleles across populations (Strand et al. 2012). These 

differences between studies could arise if greater gene flow of advantageous MHC alleles 

(relative to neutral genes) leads to less differentiation of MHC at large geographic scales, while 

local adaptation of MHC alleles at smaller geographic scales (relative to neutral genes) produces 

stronger differentiation (Hederegen et al. 2014). However, contrary to this hypothesis, MHC 

differentiation was stronger in prairie-chickens and weaker in black grouse, even though the 

sampling scales were similar (maximum distances between populations were similar: ~2000 km). 

An alternative explanation may be that pathogen-mediated selection at the MHC differs between 

these species of grouse. Indeed, several studies have found that MHC variation across 

populations is related to differences in pathogen prevalence or strains, even within the same 

species, consistent with this hypothesis (Prugnolle et al. 2005; Bonneaud et al. 2006; Dionne et 

al. 2007; Tollenaere et al. 2008; Bichet et al. 2015). 

 These inferences about the role of selection in shaping variation at immune genes need to 

be viewed with some caution as drift also influenced variation at both MHC and mediating genes 

and our sample of populations was small (Figure 2.1). In particular, the effect of drift seemed to 

be stronger on MHC than other genes when we analyzed all six populations, but not when we 

excluded Texas, which has the smallest and most isolated population. However, MHC genes still 

exhibited a steeper IBD slope than both mediating genes and microsatellites when we removed 

the Texas population from the IBD analyses (which reduced the effect of drift), Thus, it appears 

that selection is contributing to stronger MHC differentiation among populations despite 

potentially stronger effects of drift on MHC than other genes (Eimes et al. 2011, Sutton et al. 

2011). One explanation for the greater effect of drift on MHC genes is that MHC allele 
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frequencies are skewed as a result of negative frequency-dependent selection (i.e., rare allele 

advantage), and in this case, drift is likely to remove the rare MHC alleles first, resulting in a 

relatively faster loss of genetic variation (Sutton et al. 2011). However, contrary to this 

hypothesis, MHC alleles in larger populations of prairie-chickens did not have a more skewed 

distribution than small populations (Figure S2.1), and so it is unlikely that drift alone explains 

the greater loss of MHC variation. Instead, a combination of drift and selection could be 

responsible. In particular, Ejsmond and Radwan (2009) proposed that following a bottleneck, 

selection may favor MHC alleles that provide resistance to current pathogens, but as these alleles 

increase in frequency they also expose relatively more alleles that are at low frequency to drift, 

and the net effect is that selection actually speeds up the loss of overall diversity. To help 

disentangle these effects of drift and selection, we recommend future studies use a greater 

number of non-bottlenecked populations (to reduce the confounding effects of drift) or examine 

how variation at the MHC and other immune genes changes with geographic variation in 

pathogen communities (e.g., Dionne et al. 2007, Eizaguirre et al. 2012). 

 Overall, our results suggest that both selection and drift play important roles in shaping 

immune gene variation, but their strength can be strikingly different between immune receptor 

and mediating genes. With the exception of humans, our study is the first to compare variation at 

immune genes from different functional groups across natural populations. We found effects of 

drift (population size) and isolation (IBD) on both categories of immune genes, which cautions 

against ascribing the type of selection acting on genes without knowledge of demography. From 

a conservation perspective, this study also demonstrates the need to examine a wider array of 

immune genes to assess adaptive variation in declining populations. While many studies have 

relied solely on MHC genes, it is becoming increasingly apparent that other types of immune 
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receptors (TLRs) and cytokines are associated with disease resistance (Tschirren et al. 2013; 

Turner et al. 2011) and survival (Grueber et al. 2013) in wild populations. Thus, more detailed 

studies of the fitness effects of particular alleles are needed to better understand how selection 

influences variation in different functional groups of immune genes. 
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Figure 2.1. Number of alleles in relation to population size (log10-transformed) across six 
prairie-chicken populations. Lines are from quadratic regressions (see text). Number of alleles 
was averaged across loci for mediating genes and microsatellites. Total number of alleles was 
used for MHC class I and II. These estimates for all four markers were then centered by their 
means (see Methods). 
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Figure 2.2. Population pairwise Jost’s D values for six microsatellites, MHC (class I and II, separately), and five mediating genes. 
Error bars indicate 95% confidence intervals for the microsatellites. 
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Figure 2.3. Isolation by distance in six prairie-chicken populations (A) and in five populations  
after excluding the small population in Texas (B). Genetic differentiation (Jost’s D) increased at 
a faster rate with geographic distance (log10[km]) for MHC than the four mediating genes 
(excluding IAP-1) in both A and B (see text for slopes and CI). 
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Figure S2.1. Allele frequency distributions for each of the two immune-receptor (MHC class I 
and II) genes separated by population. Alleles are presented in order of descending frequency 
(left to right) within populations. Skewness coefficients from JMP (SAS Institute, 2013) are 
given for each population. 
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Figure S2.1. (continued) 
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Table 2.1. Summary of MHC class I and II diversity for greater prairie-chicken populations in Kansas (KS), Nebraska (NE), 
Minnesota (MN), Missouri (MO), Wisconsin (WI) and Texas (TX). Census sizes were estimated by Svedarsky et al. (2000). Summary 
statistics include the number of individuals genotyped (n), number of MHC alleles (AN) with number of private alleles in parentheses, 
expected heterozygosity (HE) for class I, mean number of alleles per individual at class II (AN/I), nucleotide diversity (π), and theta k 
(k).  

 

 

 

 

 

 

 

 

 
                                *n = 29 for MHC class II 
 

 

 

      MHC class I   MHC class II 

Pop 
Census 

size 
n AN HE π k 

  
AN AN/I π k  

KS 178000 30 16 (1) 0.86 0.041 7.86  20 (2) 2.50 0.081 8.59 

NE 131484 30 18 (3) 0.91 0.042 8.79  19 (1) 2.66 0.087 7.57 

MN 1868   30* 14 (0) 0.88 0.042 5.67  18 (2) 2.48 0.086 7.38 

MO 1000 30 13 (0) 0.89 0.044 4.96  16 (1) 2.30 0.088 6.24 

WI 794 30 9 (0) 0.82 0.034 2.83  13 (2) 2.30 0.072 4.47 

TX 176 33 7 (2) 0.81 0.043 1.88     7 (0) 2.39 0.094 1.67 
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Table 2.2. Isolation by distance among prairie-chicken populations.  Results of Mantel tests in IBDWS using pairwise Jost’s D values. 
For mediating immune genes, isolation by distance was first tested with all five genes combined (A) and then again excluding the 
outlier IAP-1 gene (B).  

Genetic marker Z r P slope lower 95% CI Upper 95% CI 

MHC class I 18.47 0.797 0.004 1.216 0.776 1.656 

MHC class II 15.25 0.629 0.047 1.137 0.606 1.661 

Microsatellites 6.17 0.641 0.021 0.276 0.149 0.403 

Mediating genes (A)   3.59 0.317 0.203 0.301 0.129 0.471 

Mediating genes (B)  2.07 0.419 0.846 0.120 0.055 0.186 
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Table S2.1. Geographic distance (km) between six prairie-chicken chicken populations and their 
pairwise Jost’s D values for MHC class I and II genes, five mediating genes and six 
microsatellites loci. Significant comparisons (P < 0.05) are indicated in bold. 
 

Population 
pairs 

Distance 
(km) 

MHC  
class I 

MHC  
class II 

Mediating 
genes 

     
Microsatellites 

WI-MN 647 0.340 0.421 0.131 0.147 

WI-NE 821 0.267 0.288 0.166 0.113 

WI-KS 807 0.399 0.305 0.171 0.156 

WI-MO 860 0.196 0.418 0.177 0.180 

WI-TX 1754 0.935 0.687 0.219 0.135 

MN-TX 1978 0.981 0.704 0.068 0.236 

NE-TX 1370 0.617 0.659 0.027 0.212 

KS-TX 1016 0.556 0.549 0.021 0.178 

MO-TX 895 0.648 0.678 0.043 0.168 

MN-MO 1148 0.272 0.103 0.077 0.157 

NE-MO 613 0.125 0.055 0.029 0.085 

MO-KS 213 0.142 0.129 0.030 0.103 

NE-MN 700 0.234 -0.041 0.025 0.040 

MN-KS 980 0.382 0.050 0.016 0.081 

NE-KS 400 -0.041 0.018 -0.001 0.034 
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Table S2.2. Pairwise G'
ST values between six prairie-chicken populations at MHC class I, five 

mediating genes and six microsatellites loci between six prairie-chicken populations. Significant 
comparisons (P < 0.05) are indicated in bold. 
 

Population pairs MHC class I Mediating  Microsatellites 

WI-MN 0.358 0.169 0.219 

WI-NE 0.280 0.224 0.150 

WI-KS 0.418 0.230 0.212 

WI-MO 0.208 0.236 0.206 

WI-TX 0.941 0.302 0.221 

MN-TX 0.982 0.106 0.266 

KS-TX 0.577 0.039 0.221 

MO-TX 0.665 0.058 0.205 

NE-TX 0.634 0.046 0.232 

MN-MO 0.282 0.096 0.169 

NE-MO 0.130 0.038 0.103 

MO-KS 0.149 0.041 0.106 

NE-MN 0.244 0.033 0.031 

MN-KS 0.397 0.018 0.078 

NE-KS -0.044 -0.001 0.015 
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Table S2.3.  Isolation by distance among prairie-chicken populations.  Results of Mantel tests in 
IBDWS using pairwise G'

ST values. For mediating genes isolation by distance was tested with all 
five genes combined (5 genes) and excluding the outlier IAP-1 gene.  
 

Genetic Marker Z r P value Slope  

Lower 95% 

CI 

Upper 95% 

CI 

MHC class I 18.96 0.798 0.010 1.220 0.780 1.661 

Microsatellites  7.28 0.633 0.029 0.323 0.173 0.473 

Mediating genes (5 genes) 4.89 0.351 0.195 0.403 0.177 0.629 

Mediating genes (no IAP) 2.80 0.438 0.090 0.161 0.074 0.248 
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Abstract 

The negative effects of inbreeding on fitness are serious concerns for populations of endangered 

species. Reduced fitness has been associated with lower genome-wide heterozygosity and 

immune gene diversity in the wild; however, it is rare that both types of genetic measures 

included in the same study. Thus, it is often unclear whether the variation in fitness was due to 

the general effects of inbreeding, immunity-related genes, or both. Here, we tested whether 

genome-wide heterozygosity (20 990 SNPs) or diversity at nine immune genes were better 

predictors of two measures of fitness (immune response and survival) in the endangered 

Attwater’s prairie-chicken (Tympanuchus cupido attwatteri). We found that post-release survival 

of captive-bred birds was related to alleles of the innate (toll-like receptors, TLRs) and adaptive 

(major histocompatibility complex, MHC) immune systems, but not to genome-wide 

heterozygosity. Likewise, we found that the immune response at the time of release was related 

to TLR and MHC alleles, and not to genome-wide heterozygosity. Overall, this study 

demonstrates that genetic information can potentially help improve survival rates for captive-

release programs, and that specific functional genes may be better predictors of fitness than 

robust genome-wide heterozygosity in severely inbred populations. 
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Introduction 

Many small and isolated populations experience reduced fitness, presumably due to the effects of 

low genetic diversity and inbreeding (Keller and Waller 2002). Inbreeding increases 

homozygosity, which can lead to reduced fitness (inbreeding depression), primarily through the 

expression of recessive deleterious alleles (Charlesworth and Willis 2009; Kristensen, et al. 

2010). Many studies have examined the effects of inbreeding on fitness by correlating fitness 

with indices of inbreeding from genetic markers such as microsatellites (Hansson and 

Westerberg 2002; Chapman, et al. 2009).  Since these are putatively neutral markers, it is often 

assumed that correlations between fitness and heterozygosity are caused by linkage between the 

neutral markers and functional loci that affect fitness (Kristensen, et al. 2010; Szulkin, et al. 

2010).  Studies using heterozygosity-fitness correlations (HFC) have been controversial, because 

in the past they have generally relied on a small number of markers (<30 microsatellite loci; 

Chapman, et al. 2009).  As a consequence, a lack of correlation between neutral markers and 

fitness could be due to inadequate genome-wide sampling and weak linkage with functionally 

important loci (Chapman, et al. 2009). The number and choice of markers will also limit our 

ability to determine if inbreeding depression is caused by loss of heterozygosity at a small 

number of functionally important loci or more widespread homozygosity across the genome. As 

a result, there have been calls for more studies of the effects of inbreeding on heterozygosity 

(Kristensen, et al. 2010; Szulkin, et al. 2010) and gene expression (Hansson, et al. 2014; Menzel, 

et al. 2015) at functional loci directly related to fitness. 

 In terms of fitness effects, genes of the immune system, such as the major 

histocompatibility complex (MHC) and toll-like receptors (TLR), have been among the most 

studied. MHC genes code for receptor molecules that are involved in activating an adaptive 
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(specific) immune response by recognizing antigens from specific pathogens (Janeway, et al. 

2005). Many studies of the MHC have found associations with immune response (Bonneaud, et 

al. 2005; Charbonnel, et al. 2010; Cutrera, et al. 2011), pathogen resistance (Langefors, et al. 

2001; Arkush, et al. 2002; Kloch, et al. 2010; Osborne, et al. 2015) and survival (Worley, et al. 

2010; Dunn, et al. 2013). Fewer studies have explored the effects of innate immune genes on 

disease-related traits in wild populations, even though they may be responsible for more of the 

genetic diversity related to disease resistance than the MHC (Jepson, et al. 1997). For example, 

TLRs activate an immediate, innate (non-specific) immune response by detecting conserved 

features of large groups of pathogens (Medzhitov 2001). There is growing evidence that TLR 

diversity (Hartmann, et al. 2014) or specific TLR genotypes (Grueber, et al. 2014) are linked to 

survival in small inbred populations. Although these studies provide evidence for the importance 

of particular immune loci to fitness, it is largely unknown whether the gene-fitness relationships 

arise from the effects of the immune genes themselves or are a consequence of a broader, more 

general effect of inbreeding (e.g., reduced heterozygosity across the genome). Thus, to gain a 

more comprehensive assessment of the relationship between fitness and inbreeding, it will be 

important to include both functional loci, such as immune genes, and larger scale estimates of 

genome-wide heterozygosity. 

 The captive breeding program of the Attwater’s prairie-chicken (Tympanuchus cupido 

attwatteri) provides a rare opportunity to study the relationship between fitness and 

heterozygosity at both immune genes and across the genome. Attwater’s prairie-chicken 

populations have declined dramatically, and, as a consequence, have lost genetic variation at 

both microsatellites (Hammerly, et al. 2013) and a variety of immune genes (Bollmer, et al. 

2011; Bateson, et al. 2015). To prevent their extinction in the wild, a captive population of 
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Attwater’s prairie-chickens was established in the early 1990s from approximately 19 unrelated 

founders (U.S. Fish & Wildlife Service 2010). Each year since 1995, the wild population has 

been supported by the release of 150-200 captive-bred birds, which are radio-tagged and 

monitored daily. However, both survival of chicks in captivity (≤ 66%; Morrow, et al. 2004) and 

released juveniles (~20% range: 8-43%; Pratt 2010) is low due partially to high levels of 

relatedness between mated pairs (Hammerly, et al. 2015). The intensive management and daily 

monitoring of released birds gives us detailed estimates of individual survival that are rarely 

found in other studies, except other captive-release programs (e.g., fish hatcheries) or in 

populations where dispersal events are very limited (e.g., isolated islands). 

 In this study, we asked whether heterozygosity across the genome or at particular 

immune genes is a better predictor of immune response and post-release survival. We predicted 

that birds with higher genome-wide heterozygosity would have higher rates of survival because 

inbreeding appears to negatively influence the survival of chicks in the captive population during 

the first few weeks after hatching (Hammerly, et al. 2013). Since certain alleles may be more 

important than heterozygosity per se at immune genes, we also investigated whether there were 

allele-specific relationships with post-release survival. To test these predictions, we estimated 

genome-wide heterozygosity with >20,000 single nucleotide polymorphisms (SNPs) and allelic 

variation at nine immune genes. We also examined the relationship between immune response 

and genetic variation, both at immune loci and genome-wide. The cloacal microbiota of captive 

and wild Attwater’s prairie-chickens differ in their abundance of gram positive and negative 

bacteria (Simon 2014), so we included two assays that examined the innate immune response 

against gram positive and gram negative bacteria (lysozyme and bacteria killing assays, 

respectively).  
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Methods   

For this study, we sampled a total of 144 Attwater’s prairie-chickens that were released in 2011 

(n = 67) and 2012 (n = 77). These birds originated from five captive-breeding facilities in Texas, 

which includes the Abilene Zoo (n = 16), Caldwell Zoo (n = 2), Fossil Rim Wildlife Center (n = 

79), Houston Zoo (n = 37) and San Antonio Zoo (n = 9). The average (±SE) age of birds chosen 

for release was 245 ±24 days and did not differ between birds released in 2011 (261 ±35 days) 

and 2012 (231 ±32 days; t = -0.63, df = 142, P = 0.53). Prior to release, birds were examined by 

a veterinarian and those considered healthy were transferred from the breeding facilities to the 

Attwater’s Prairie Chicken National Wildlife Refuge [N 29° 39' 46.786'', W 96° 16' 56.249''] 

near Eagle Lake, TX (Colorado County). At the refuge, birds were held in acclimation pens (soft 

release) for 14 days before release into the wild (Lockwood, et al. 2005). We monitored the birds 

every day through radio-tracking to obtain the number of days alive in the wild until 15 

September 2015 when the last of the radio-tracked birds died (see Morrow, et al. 2015 for more 

details).  

 

Blood preparation for Plasma and DNA Extraction 

We collected approximately 300 µl of blood from the jugular vein of each bird before they were 

placed in the acclimation pens. This sample was immediately transferred to a heparinized vial, 

stored on ice for 1-2 hours and then centrifuged at 9300g for 10 min to separate plasma from the 

red blood cells. Plasma was stored at -80 °C for later use in the immunological assays. We stored 

the remaining red blood cells in Queen’s lysis buffer (Seutin, et al. 1991) until we extracted 

DNA (DNEasy Tissue Extraction Kit, Qiagen Inc).  
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Genome-wide heterozygosity 

We used double-digest restriction-site-associated DNA sequencing (ddRADseq) to identify 

single nucleotide polymorphisms (SNP), which were then used to estimate genome-wide 

heterozygosity of individuals. ddRAD libraries were prepared following the protocol of Peterson, 

et al. (2012), and all libraries were prepared and sequenced at Texas A&M AgriLife Genomics 

Facility. Briefly, genomic DNA was digested with the restriction enzymes SphI and MluCI.  Bar-

code adapters (110 bp) were ligated, and then fragments in the 260-340 bp size range were size-

selected using a Pippen Prep instrument (Sage Science). Amplified fragment libraries were 

quantified and then pooled in equimolar amounts for sequencing on six lanes of an Illumina 

HiSeq 2500 machine (100 bp paired-end reads). While the six lanes included samples from 

multiple projects, the initial ddRADseq data set (n = 130) used in this study consisted of 

282,498,476 paired demultiplexed raw sequence reads. 

 The dDocent pipeline (Puritz, et al. 2014) was used for quality trimming (Trimmomatic 

v.0.33; Bolger, et al. 2014), read mapping (BWA-MEM v.0.7.12; Li and Durbin 2010), and SNP 

calling (Freebayes v.0.9.20; Garrison and Marth 2012).  Default parameters were used for each 

step, with the exception of using a high coverage greater prairie-chicken (T. c. pinnatus) 

reference genome for read mapping as opposed to a de novo reference contig assembly, and only 

paired-end reads were retained following the initial trimming step using Trimmomatic. The 

reference genome used for mapping was sequenced and assembled by Dovetail Genomics 

(www.dovetailgenomics.com; Santa Cruz, CA) at 44x depth of coverage resulting in 12,364 

scaffolds with an N50 of 12.2 Mb.   
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Further filtering using VCFTools v.1.11 (Danecek, et al. 2011) and custom scripts was done to 

retain those SNPs that met several quality and population genetic criteria: genotyped in at least 

90% of all samples, a minimum quality score of 30, minor allele count of at least 3, and a minor 

allele frequency >5% across the dataset.  One sample possessed >50% missing SNPs, and was 

subsequently removed from the dataset.  Additional filtering using scripts available with the 

dDocent package (https://github.com/jpuritz/dDocent) were used to remove possible paralogs or 

repetitive regions within the dataset (see also Portnoy, et al. 2015).  Loci were excluded if the 

average allele balance at heterozygous genotypes was less than 28%, had a quality score less 

than half of the total depth, the ratio between the mean mapping quality of the reference and 

alternate allele was less than 0.9 or more than 1.05, possessed overlapping and improper paired 

forward and reverse reads, had a depth greater than the average depth plus one standard deviation 

if the quality score was less than 2x the depth, and were in the top 10% of mean depth. Only 

those loci that conformed to expectations of Hardy Weinberg Equilibrium (HWE) with a P-value 

threshold of 0.01 were retained for further analysis. The final dataset contained 20 990 biallelic 

SNPs in 129 birds with an average sequencing depth of 56x per individual (range = 24 to 235x). 

To obtain heterozygosity values for the final SNP dataset, the program PLINK v. 1.07 (Purcell, 

et al. 2007) was used to create a binary coded output file (--recode12), which was then used to 

calculate standardized heterozygosity (SH) for each individual in the R package Rhh (Alho, et al. 

2010). This measure of heterozygosity controls for variation in heterozygosity across loci and 

accounts for missing genotypes (Coltman, et al. 1999).  
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MHC class I and II 

We genotyped individuals at MHC class I (exon 3) and MHC class II (exon 2) loci, which code 

for the peptide-binding regions (PBRs) that recognize pathogens. For MHC class I, we used 

primers 1a2inExon3F and 1a2Raltintron2 with PCR conditions described in Bateson, et al. 

(2014). There was a 3 bp sequence length polymorphism at position 40 in exon 3 and sequences 

varied in length from 258 bp (most common) to 261 bp (Bateson, et al. 2015). To amplify MHC 

class II (exon 2) we used primers Blex2F (Eimes, et al. 2010) and RNA R1a (Strand, et al. 2007) 

that produced a 237-bp fragment (for PCR conditions see, Eimes, et al. 2010). Prairie-chickens 

have a single class I locus and two class II loci (Eimes, et al. 2013); therefore, similar to our 

previous work (Bateson, et al. 2015), we expected to amplify maximum of two (class I) and four 

(class II) sequences within individuals.  

 Due to the complexity at MHC class I (sequence length polymorphism) and class II 

(multiple loci), we used 454 pyrosequencing to genotype individuals, which used fusion primers 

containing Roche 454 adapter sequences, a unique 8-bp barcode (to identify individuals) and 

either MHC class I or class II primers. MHC class I and class II PCR products from each 

individual (amplicons) were purified, pooled and sequenced on a Roche 454 FLX Genome 

Sequencer with Titanium chemistry at Research and Testing Laboratory, LLC (Lubbock, TX).   

 

MHC allele and genotyping validation 

We performed several quality control steps to separate true sequences (hereafter alleles) from 

artifacts, which are known to occur in MHC sequences from 454 pyrosequencing (for details see, 

Bateson, et al. 2015). Briefly, we first extracted sequences that contained the forward primer, 8-
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bp barcode and 10 bases of the reverse primer using jMHC v. 1.5 (Stuglik, et al. 2011) and 

removed sequences that were >2 bp from expected sizes of exons. Next, we clustered the 

remaining sequences by building neighbor-joining trees in Geneious (version 7.0, 

http://www.geneious.com, Kearse, et al. 2012). Each cluster contained a high read sequence (the 

true allele) and low read sequences with 1-2 bp errors due to homopolymer runs (typically < 5% 

of the total reads of the true allele). The number of reads from the low read sequences were 

added to the final read count of the true alleles. To identify and discard any remaining artifact 

sequences and determine the number of alleles within individuals, we used the two independent 

models of Lighten, et al. (2014). We also assessed the repeatability of our genotyping procedure 

by resequencing a subset of prairie-chickens in a second 454 pyrosequencing run (Bateson, et al. 

2015).    

 After our filtering and processing steps, we had an average (±SE) of 176 ± 17 (range: 5 – 

1255) reads per individual at class I, and 1432 ± 139 (range: 141 – 13,035) reads per individual 

at class II. To assess whether we had sufficient sequencing coverage, we used the binomial 

distribution to calculate the minimal number of reads needed to find all alleles within individuals 

(amplicons) 95% of the time, given a maximum of two class I and four class II  alleles per 

individual. Assuming equal probability of finding each allele (0.5 at class I; 0.25 at class II), we 

estimated that we would need a minimum of 5 class I reads and 11 class II reads to find all 

alleles within individuals. For class I, there were just two individuals at the 5 reads threshold and 

both were heterozygous (i.e., had two alleles). For class II, the minimum number of reads in an 

individual (141) was well above the 11 read threshold. Additionally, there were no correlations 

between total number of reads and alleles at class I (r2= 0.002, F1,138 = 0.321, P = 0.572) or class 

II (r2= 0.001, F1,139 = 0.20, P = 0.649), indicating sufficient sequencing coverage for genotyping 
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in our sample. We had high repeatability (R=0.93; F35, 36 = 29.13; P < 0.001) in our 454 class I 

and class II genotyping for 18 prairie-chickens (Bateson, et al. 2015), which included five 

Attwater’s prairie-chickens used in this study.  

 

Single-locus immune genes 

We initially screened 16 additional immune gene loci for polymorphism, which included 

receptors (toll-like receptors and natural killer receptors), cytokines and β. These genes were 

chosen because they have polymorphisms associated with either fitness-related traits, or previous 

studies found signatures of selection (dN/dS > 1) at the sequence level. After our initial screening 

in prairie-chickens (see Tables S1 and S2 for PCR conditions and methods), we focused on seven 

genes that contained nonsynonymous polymorphisms (Table 3.1). First, we investigated TLR 

variation within the extra-cellular regions (leucine-rich repeat domain) that are involved in 

pathogen recognition (Bell, et al. 2003). Here, we investigated four loci (TLRs 1B, 4, 5, and 15) 

that detect a variety of cellular components of bacteria or fungi (Table 3.1). Next, we examined 

the C-type lectin-like receptor gene (Blec1), which is found within the MHC region of galliform 

birds, including prairie-chickens (Eimes, et al. 2013). While the function of Blec1 is largely 

understudied in birds, it has high amino acid similarity to CD69 (Shiina, et al. 2007; Rogers and 

Kaufman 2008), an early activation antigen within the natural killer gene family. In humans, 

CD69 may be important in regulating an inflammatory immune response, and some allelic 

variants are associated with chronic inflammatory diseases (González-Amaro, et al. 2013). We 

also examined the cytokine interleukin 4 (IL4) gene, which is a signaling molecule critical for 

mediating humoral (antibody) activity of the adaptive immune responses (Borish and Steinke 
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2003). Particular IL4 haplotypes have been associated with reduced risk of malaria and other 

diseases in human populations (Jha, et al. 2012). Lastly, we examined diversity at β –defensin 

11, which are catatonic peptides that disrupt cell walls of bacteria (Ganz 2003), and in great tits 

(Parus major), peptide products from different alleles vary in their ability to suppress bacterial 

growth in vitro (Hellgren, et al. 2010).    

For each of these seven single-locus immune genes, PCR products were directly 

sequenced in both directions at the University of Chicago Cancer Research Center DNA 

Sequencing Facility. We performed a BLAST search to confirm that sequences matched the 

targeted gene and then aligned them with the domestic chicken (Gallus gallus) genome to 

identify exons and introns. We considered SNPs within individuals when there were 

heterozygous peaks in both the forward and reverse sequences. Once all individuals were 

sequenced, alleles were determined using the PHASE algorithm (Stephens and Donelly 2003) in 

DNAsp v5 (Librado and Rozas 2009) with 1000 main iterations, a thinning interval of 10 and 

1000 burn-in interactions. For IL4, approximately half of the individuals contained sequence 

length polymorphisms due to an allele-specific indel at position 153 within intron 1. Therefore, 

before phasing IL4 the direct sequence traces of individuals with heterozygous indels were 

reconstructed using the default settings of the program Indelligent (Dmitriev and Rakitov 2008). 

All DNA sequences of immune genes were retained if sequences were found in at least two 

individuals (i.e., two independent PCRs). For all subsequent analyses, we removed introns 

(sequenced at Blec1, IL4 and BD11) and combined DNA sequences that had identical amino 

acid sequences into the same allele. Complete immune gene sequences (i.e., including introns) 

were submitted to NCBI GenBank.  
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Single-locus immune gene genetic diversity estimates 

Since there could be specific or general effects of genetic diversity on fitness, we assessed 

genetic diversity at immune genes in terms of: 1) presence of particular alleles, 2) heterozygosity 

at particular loci and 3) standardized (average) heterozygosity across loci. First, specific alleles 

may be better predictors of immune response and survival instead of heterozygosity, so we tested 

the presence or absence of immune gene alleles for each individual. By examining alleles, we 

were able to include the multi-locus data from MHC class II and, thus, reduce the total number 

of analyses. In these models we included the six immune genes with >2 alleles each (TLR1B, 

TLR15, IL4, Blec1, MHC class I and II) and, for each gene, we excluded alleles that occurred in 

< 5% of the sampled birds.  Second, we examined the effects of heterozygosity at specific 

immune genes by coding individuals as homozygote (0) or heterozygote (1) at each gene, 

respectively. Lastly, we examined the general effects of heterozygosity across all single-locus 

immune genes (MHC class II excluded) by measuring standardized heterozygosity (SH) in the R 

package Rhh.  

 

Immunological assays 

Bacterial killing assay  

We used a bacteria-killing assay to measure the ability of plasma to lyse gram negative bacteria 

in vitro, predominately through natural antibodies and complement (Millet, et al. 2007; Liebl and 

Martin 2009). We followed a modified protocol of Millet, et al. (2007). Briefly, we diluted 

Escherichia coli (ATCC no. 8739; American Type Culture Collection, Manassas, VA) 

lyophilized pellets to a working stock solution of 1×105 CFU/mL. Next, we mixed 1.5 μL of 
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plamsa with 34.5 μL of PBS and 12.5 μL of the E.coli solution (approximately 1250 CFU per 

sample) and incubated the mixture for 30 min at 39 °C (body temperature of Attwater’s prairie-

chickens). After incubation, we added 250 μL of sterile tryptic soy broth, vortexed the sample 

and then pipetted 50 μL of this mixture onto a tryptic soy agar plate, which was incubated at 37 

°C for 12 h (optimal growing temperature of E. coli). After this second incubation period, we 

counted the number of CFU on each plate. The antimicrobial activity of plasma was calculated as 

1-nb/nt, where nb is the number of surviving bacteria for each plasma sample and nt is the 

number of bacteria on control sample. Each plasma sample was tested three times to get an 

average BKA value for each bird. Three plates in each batch of 15 samples served as controls 

where plasma was replaced with 1.5 μL of PBS. Repeatability (Lessells and Boag 1987) between 

replicates of each individual was 0.94 (n = 441). 

 

Haemagglutination and haemolysis assays 

To measure the response of circulating natural antibodies and complement in plasma to a foreign 

antigen, we used a modified version of the protocol developed by Matson, et al. (2005), which 

consisted of two indices of innate immunity. The first index, haemagglutination, measures the 

interaction between natural antibodies and foreign antigens (in our case, rabbit erythrocytes). The 

second index measures haemolysis, which estimates the activity of complement from the levels 

of haemoglobin released during the lysis of rabbit erythrocytes. For these assays, 20 μL of both 

plasma and PBS was pipetted into the first well of each row of a 96-well plate, and then 1:2 

serial dilutions were made in wells 2-11 using PBS. The remaining well (12) was used as a 

negative control by adding only PBS. Next, we added 20 μL of 1% rabbit erythrocytes 
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suspension to each well and incubated the plates at 37 °C for 90 min. Following incubation, the 

plates were tilted at a 45° angle for 20 min to improve visibility of agglutination before they 

were scanned on an Epson perfection v100 flatbed scanner at 300 dpi. After an initial scan, the 

plates were kept at room temperature for an additional 70 min and scanned a second time to 

assess the maximum lytic activity. As suggested by Matson, et al. (2005), plates were scored 

blindly for agglutination and lysis by a single observer (SCH). Repeatability between replicates 

of each individual was 0.80 (n = 390) for the haemaggluintation assay and 0.53 (n = 434) for the 

haemolysis assays.  

 

Lysozyme assay 

Lysozyme is a protective protein of the innate immune system that hydrolyzes linkages in the 

cell walls of gram positive bacteria. We indirectly measured lysozyme concentrations in plasma, 

by using a modified protocol of Meier, et al. (2013). Briefly, using 96-well plates, 10 μL of each 

plasma sample was run in duplicate in 150 μL of a bacterial solution that consisted 0.01 g of 

Micrococcus lysodeikticus (ATCC 4698; Sigma-Aldrich, St. Louis, MO) in 20 mL of 1% sterile 

agarose.  To quantify lysozyme levels for each plasma sample, we used a standard curve 

prepared on each plate in quadruplicate from a serial dilution (0.039 to 2.5 mg/L) of a standard 

domestic chicken lysozyme solution (Sigma L6876) using sterile 0.1M sodium phosphate (pH 

6.2).  Both plasma and sodium phosphate blanks were also included in duplicate on each plate, 

and the final prepared plate was incubated at 49 °C for 18 h before reading the absorbance (850 

nm) using a microplate reader (Synergy HT, Bio-Tek, Winooski, VT). Repeatability between 

replicates of each individual was 0.95 (n = 671).   
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Statistical analyses 

We used mixed models to analyze immune response and survival in relation to genome-wide and 

immune gene diversity. In the allele-specific models, there were 28 immune gene alleles that met 

our initial criteria for predictor variables (i.e., genes with >2 alleles and alleles found in > 5% of 

sampled birds), which included alleles at MHC class I (n = 6), MHC class II (n = 6), Blec1 (n = 

5), TLR1B (n = 4), TLR15 (n = 4) and IL4 (n = 3). In the heterozygosity models, we included 

measures of standardized heterozygosity from the 8 single-locus immune genes (excludes MHC 

class II) or heterozygosity of individual loci. We also included genome-wide standardized 

heterozygosity, body mass (at entry into pens), sex, and family group (as a random effect) in 

each of the allele-specific and heterozygosity models. For each immune response and survival 

model, we checked for predictors with high multicollinearity as indicated by variance inflation 

factors (VIF) and removed variables that had VIF > 2 (Neter, et al. 1996) from further analyses 

using JMP 12 Pro (SAS Institute 2015). Only the allele-specific models had predictors with VIFs 

> 2, and, removing these predictors resulted in the same 18 immune gene alleles across models. 

Due to the large number of predictors, we also calculated q values, which are estimates of the 

proportion of false discoveries for all P values within each model, using a FDR of 0.10 and the 

graphically sharpened method of Pike (2010).   

 

Immune response  

We performed four separate generalized linear mixed models (GLMM) with the response from 

each of the four immunoassays as the dependent variable.  The fixed predictors in these models 

were immune gene heterozygosity or specific alleles, genome-wide heterozygosity (ddRAD-
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seq), sex and body mass (g); family group was included as a random factor. All analyses were 

conducted in JMP 12 Pro.  

Survival  

To examine the effects of genetic diversity on post-release survival, we used Cox proportional 

hazard mixed effect models in the R package coxme (Therneau 2012). Cox models estimate the 

baseline hazard function where predictor estimates (exp(β)) with no effects on the hazard (e.g., 

death) are equal to 1 and any categorical variable (e.g., presence/absence of an allele) with 

parameter estimates >1 increase the hazard of death while estimates <1 increase the likelihood of 

survival. Since missing data in the predictor variables can lead to biased interpretations in 

survival analyses, we only used birds (n = 116) with complete genetic data. We obtained data on 

survival (days until death) for 110 birds; an additional six birds were included in the analysis but 

were censored to the last day observed before they went missing (n = 4) or experienced radio 

failure (n = 2). All survival models included genome-wide heterozygosity, sex, body mass at 

release (g) as predictors and family group as a random factor. For immune gene predictors, we 

performed three Cox models to examine the effects of standardized heterozygosity, single-locus 

heterozygosity and specific alleles, separately.  

Results 

After release from the pens, the median survival for birds was 133 days (interquartile range: 33 - 

217 days; n = 110). There was no difference in survival between birds released in 2011 (median 

133 days, interquartile range 36 – 222 days; n = 54) and 2012 (median 158 days; n = 56; 

interquartile range 36 – 286 days; log-rank X 2 = 0.98, df = 1, P = 0.320).  Genome-wide 

standardized heterozygosity averaged 0.994 (range: 0.834 – 1.615). In contrast to our prediction, 



  

94 

we found no relationship between survival and genome-wide standardized heterozygosity (at 20 

990 SNPs), indicating no apparent effects of inbreeding on post-release survival (q = 0.782, 

Table 3.2). Likewise, immune response prior to release was not associated with genome-wide 

heterozygosity in the allele models (q > 0.1 across models; Table 3.3 and S3.4).   

 

Immune genes and survival  

We found that survival was related to six alleles from five immune genes as well as body mass, 

while controlling for family ID (Cox proportional mixed model: X 2 = 37.83, df = 21, P = 0.014; 

Table 3.2). Survival was not related to year (Z= -0.23, df = 1, P = 0.820), so it was not included 

in the model (Table 3.2). All alleles associated with survival were pathogen-recognition receptor 

genes from the innate (TLRs) and adaptive (MHC) immune systems. Interestingly, alleles from 

these two different categories of receptors had opposite relationships with survival. Birds with 

TLR1B*03 or TLR15*02 had lower survival rates, while birds with particular MHC alleles 

(class I: Tycu-IA*22 and Tycu-IA*24; class II: Tycu-BLB*08; and MHC-linked Blec1*04) had 

higher survival rates (Table 3.2). The MHC class II allele (Tycu-BLB*08) exhibited the 

strongest association with survival (Table 3.2, Figure 3.1). Only one allele (Tycu-IA*22) was 

related to both immune response (lower lysozyme activity) and survival (increased survival). 

Along with the presence of specific MHC alleles, individuals with greater body mass survived 

longer after release. In contrast, survival was not related to standardized heterozygosity averaged 

across the eight single-locus immune genes (P = 0.82, n = 116; excludes MHC class II) or to 

heterozygosity at each individual locus (P > 0.19; Table S3.3).  
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Immune genes and immune response 

Immune response was also related to specific alleles rather than heterozygosity at immune genes. 

We found that the innate immune response, as measured by the lysozyme and haemolysis assays, 

was related to alleles at four immune genes as well as to body mass and sex (Table 3.3). 

Specifically, we found that TLR1B*02, Tycu-IA*22, and Blec1*01 were associated with 

reduced lysozyme activity against gram positive bacteria. Males also had stronger lysozyme 

activity than females. A different MHC class I allele (Tycu-IA*20) and lower body mass was 

associated with reduced haemolysis activity. Across all models, immune response as measured 

by the bacterial killing with agglutination assays was not related to immune genes, body mass or 

sex (see Table S3.4 and S3.5). 

 

Discussion 

The detrimental effects of inbreeding on disease resistance are serious concerns for wild and 

captive populations of endangered species. While studies have demonstrated that individual 

fitness is related to genome-wide heterozygosity and immune gene diversity, rarely are both 

types of genetic measures included in the same study. Thus, it is unknown whether variation in 

fitness was due to the general effects of inbreeding, key immunity-related genes, or both. In the 

critically endangered Attwater’s prairie-chicken, we found that post-release survival of captive-

bred birds was related to specific alleles of the innate (TLR) and adaptive (MHC) immune 

systems, and not related to genome-wide heterozygosity. These results contrast with those from  

younger birds, in which chicks with reduced microsatellite heterozygosity had reduced survival 

shortly after hatch in the captive population (Hammerly, et al. 2013). We also found that the 
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immune response near the time of release was related to specific alleles of the innate and 

adaptive immune systems, and not to genome-wide heterozygosity. Overall, these results suggest 

that specific alleles of immune genes are better indicators of immune response and survival than 

genome-wide heterozygosity.   

 

 Genome-wide heterozygosity, immune response and survival 

Reduced genome-wide heterozygosity has been associated with reduced survival (Coltman, et al. 

1999; Townsend, et al. 2010) and immune response (Hawley, et al. 2005), suggesting that 

inbreeding influences disease resistance in wildlife populations. However, there are other studies 

that do not find correlations between genetic diversity and measures of fitness. For example, 

disease-related mortality was not related to genome-wide heterozygosity in captive-released 

bighorn sheep (Ovis canadensis; Boyce, et al. 2011) or a semi-natural population of red jungle 

fowl (Gallus gallus; Worley, et al. 2010). The absence of correlations between genetic diversity 

and measures of fitness may be due to a number of factors, including a relatively small number 

of genetic markers (10-30 loci) that reduced statistical power (Chapman, et al. 2009). In our 

study, however, genome-wide heterozygosity was estimated from 20 990 SNPs, suggesting that 

the absence of correlations between genetic diversity and measures of fitness was not due to an 

insufficient number of loci.  

 Perhaps a more important factor affecting the power of HFC studies is variation in the 

extent of inbreeding among individuals within the study population, i.e., the effect size (Grueber, 

et al. 2008; Szulkin, et al. 2010). For example, severely inbred nestlings had weaker innate 

immune responses and higher disease-related mortality as juveniles in a study of American 
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crows (Corvus brachyrhynchos (Townsend, et al. 2009).  However, this relationship between 

heterozygosity and survival disappeared when the highly inbred crows (coefficient of relatedness 

≈ 0.5) were removed from the analysis (Townsend, et al. 2010). In captive Attwater’s prairie-

chickens, chicks produced by more closely related parents had lower survival during the first two 

weeks post-hatch and juvenile and adult birds with high inbreeding coefficients have lower 

survival in captivity (Hammerly, et al. 2013). In our study, the released birds had already reached 

an average age of 245 ±24 days, and they had to pass several health checks before release. Thus, 

there was already some survival selection for birds at earlier life stages in captivity, which may 

have reduced variation in genome-wide heterozygosity in the released cohort. 

Immune genes and survival 

Associations between MHC genes and survival have been found in wild (Paterson, et al. 1998; 

Sepil, et al. 2013) and captive (Penn, et al. 2002; Kjøglum, et al. 2008) populations, but only a 

few studies have investigated whether these associations are independent of genome-wide 

variation. For example, MHC heterozygotes had higher survival after exposure to an infectious 

virus in Chinook Salmon (Oncorhynchus tshawytscha), which was not explained by the level of 

inbreeding within families (Arkush, et al. 2002). In the threatened New Zealand sea lion 

(Phocarctos hookeri), a specific MHC class II genotype and allele were associated with pup 

survival that was not related to microsatellite heterozygosity (Osborne, et al. 2015). In our study 

of Attwater’s prairie-chickens, specific alleles (not heterozygosity) at the MHC were related to 

increased post-release survival. In particular, the MHC class II allele, Tycu-BLB*08, had the 

strongest effect on survival. During the study period, birds with this allele were 3.5 times more 

likely to survive than those without it. Interestingly, the presence of a specific Blec1 allele also 

increased the likelihood of survival. In prairie-chickens, Blec1 is located within the compact 
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MHC region (Eimes, et al. 2013), and, while, functionally different than the MHC class I and II 

genes, it might play a role in regulating a MHC-related immune response (González-Amaro, et 

al. 2013).  Overall, our results are consistent with an increasing number of theoretical (De Boer, 

et al. 2004; Ejsmond and Radwan 2015) and empirical (reviewed in Sin, et al. 2014) studies that 

suggest a stronger role of frequency dependent or fluctuating selection at the MHC; in this case 

specific alleles (not heterozygosity) confer a selective advantage and influence fitness.   

 Pathogens have been associated with specific alleles and diversity at cytokines (Turner, et 

al. 2011) and TLRs (Tschirren, et al. 2013) in wild populations, suggesting that other immune 

genes, in addition to MHC, may be important to individual survival. For instance, reduced 

survival during migration was associated with elevated expression of cytokines (interleukins) in 

threatened Sockeye salmon (Oncorhynchus nerka) that were infected with viral pathogens 

(Jeffries, et al. 2014). In contrast to most HFC studies, greater heterozygosity at TLRs was 

associated with lower survival in the endangered Pale-headed Brush finch (Atlapetes pallidiceps; 

Hartmann, et al. 2014).  However, in this study, the authors did not explicitly test for links 

between specific TLR alleles and survival. In our study, there were no associations between 

survival and heterozygosity at cytokine IL4 or TLRs, but we found two TLR alleles (TLR1B*03 

and TLR15*02) that were related to lower survival. Disadvantageous alleles at immune genes 

have been reported elsewhere, as certain MHC alleles are associated with increased risk of 

infection in birds (Bonneaud, et al. 2006; Loiseau, et al. 2008), mammals (Srithayakumar, et al. 

2011) and fish (Langefors, et al. 2001; Kjøglum, et al. 2008). Persistence of these alleles is 

usually explained through antagonistic pleiotropy, in which alleles have opposing effects on 

fitness under different circumstances (Carter and Nguyen 2011), such as exposure to different 

pathogens (Loiseau, et al. 2008). In our particular case, the appearance of disadvantageous 
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alleles could be a product of the differences between the captive and wild environments. Captive 

and wild Attwater’s prairie-chickens appear to have different cloacal microbiomes (Simon 2014), 

which might interact with the two TLR alleles to affect survival differently in the wild and 

captivity. Testing this hypothesis will require more complete data on cloacal microbes, TLR 

alleles and survival in both environments.  

 

Immune genes and immune response 

Vertebrate studies of immune genes and immunity have mainly focused on associations between 

MHC diversity and an induced immune response. Measuring induced immunity of individuals 

requires multiple recaptures and injections of foreign antigens, such as phytohemagglutinin 

(PHA) or sheep red blood cells (SRBC). Responses to these antigens have been linked to both 

specific alleles and heterozygosity at the MHC (Bonneaud, et al. 2005; Charbonnel, et al. 2010; 

Cutrera, et al. 2011). Unlike the PHA and SRBC assays, our indices of immunity were measured 

from a single capture, and, therefore, evaluate the naturally circulating immunological 

components that provide an immediate and non-induced immune response (e.g. lysozyme and 

complement). We found specific immune gene alleles associated with only two (lysozyme and 

haemolysis) of the four assays, indicating the limitations of using a single immune assay to 

generalize non-induced immunity (Adamo 2004; Forsman, et al. 2008).   

Interestingly, we found both MHC and TLR alleles that were associated with a reduced immune 

response, particularly lysozyme activity. Lower lysozyme activity has been associated with 

lower disease-related mortality in salmon populations (Lund, et al. 1995; Balfry, et al. 1997). 

Therefore, TLR and MHC alleles associated with lower lysozyme activity might indicate higher 
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fitness in captive Attwater’s prairie-chickens possessing those alleles. In fact, one MHC allele 

(Tycu-IA*22) was associated with both lower lysozyme activity and increased survival in the 

wild. However, previous work did not find an association between lysozyme activity and post-

release survival in a larger sample of Attwater’s prairie-chickens (n = 192; Hammerly 2014), and 

so it is not clear how these negative relationships are produced between immune gene alleles and 

the non-induced immune response. 

 In summary, we found that the immune response of Attwater’s prairie-chickens and their 

subsequent survival in the wild were related to alleles of both the innate (TLR) and adaptive 

(MHC) immune systems, and not to genome-wide heterozygosity. This suggests that pathogens 

in the environment may substantially impact the survival of captive-bred birds released into the 

wild. However, we do not know the specific cause of death (i.e., disease or predation) of the 

released Attwater’s prairie-chickens in this study, and thus, the relative role of pathogens in the 

wild and captivity is still unclear. In the future, it will be important to investigate how variation 

at these immune genes influences mortality. For example, examining associations between 

immune genes and microbial diversity in the cloaca of both captive and wild birds could reveal 

important clues to the host-pathogen interactions that might be influencing survival (e.g., 

Bolnick, et al. 2014). Overall, our study illustrates that genetic information can potentially help 

improve survival rates for captive-release programs, and that in some cases at least, specific 

immune genes may be better predictors of fitness than genome-wide heterozygosity. As captive-

breeding programs are being used increasingly to supplement the remaining populations of 

endangered species, understanding the genetic (Grueber, et al. 2015) and ecological (Morrow, et 

al. 2015) factors that are driving recruitment success will be necessary to ensure population 

persistence in the wild.  



  

101 

Literature cited 

 

Adamo SA. 2004. How should behavioural ecologists interpret measurements of immunity? 
Animal Behaviour 68:1443-1449. 

Alho JS, VÄLimÄKi K, MerilÄ J. 2010. Rhh: an R extension for estimating multilocus 
heterozygosity and heterozygosity–heterozygosity correlation. Molecular Ecology 
Resources 10:720-722. 

Arkush KD, Giese AR, Mendonca HL, McBride AM, Marty GD, Hedrick PW. 2002. Resistance 
to three pathogens in the endangered winter-run chinook salmon (Oncorhynchus 
tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. 
Canadian Journal of Fisheries and Aquatic Sciences 59:966-975. 

Balfry SK, Heath DD, Iwama GK. 1997. Genetic analysis of lysozyme activity and resistance to 
vibriosis in farmed Chinook salmon, Oncorhynchus tshawytscha (Walbaum). 
Aquaculture Research 28:893-899. 

Bateson ZW, Dunn PO, Hull SD, Henschen AE, Johnson JA, Whittingham LA. 2014. Genetic 
restoration of a threatened population of greater prairie-chickens. Biological 
Conservation 174:12-19. 

Bateson ZW, Whittingham LA, Johnson JA, Dunn PO. 2015. Contrasting patterns of selection 
and drift between two categories of immune genes in prairie-chickens. Molecular 
Ecology 24:6095-6106. 

Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM. 2003. Leucine-rich repeats 
and pathogen recognition in Toll-like receptors. Trends in Immunology 24:528-533. 

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence 
data. Bioinformatics 30:2114-2120. 

Bollmer JL, Ruder EA, Johnson JA, Eimes JA, Dunn PO. 2011. Drift and selection influence 
geographic variation at immune loci of prairie-chickens. Molecular Ecology 20:4695–
4706. 

Bolnick DI, Snowberg LK, Gregory Caporaso J, Lauber C, Knight R, Stutz WE. 2014. Major 
Histocompatibility Complex class IIb polymorphism influences gut microbiota 
composition and diversity. Molecular Ecology 23:4831-4845. 

Bonneaud C, Perez-Tris J, Federici P, Chastel O, Sorci G. 2006. Major histocompatibility alleles 
associated with local resistance to malaria in a passerine. Evolution 60:383-389. 

Bonneaud C, Richard M, Faivre B, Westerdahl H, Sorci G. 2005. An Mhc class I allele 
associated to the expression of T-dependent immune response in the house sparrow. 
Immunogenetics 57:782-789. 

Borish LC, Steinke JW. 2003. 2. Cytokines and chemokines. Journal of Allergy and Clinical 
Immunology 111:S460-S475. 

Boyce WM, Weisenberger ME, Penedo MCT, Johnson CK. (Boyce2011 co-authors). 2011. 
Wildlife translocation: the conservation implications of pathogen exposure and genetic 
heterozygosity. BMC Ecology 11:1-7. 

Carter AJ, Nguyen AQ. 2011. Antagonistic pleiotropy as a widespread mechanism for the 
maintenance of polymorphic disease alleles. BMC Medical Genetics 12:1-13. 

Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC. 2009. A quantitative review of 
heterozygosity-fitness correlations in animal populations. Molecular Ecology 18:2746-
2765. 



  

102 

Charbonnel N, Bryja J, Galan M, Deter J, Tollenaere C, Chaval Y, Morand S, Cosson JF. 2010. 
Negative relationships between cellular immune response, Mhc class II heterozygosity 
and secondary sexual trait in the montane water vole. Evolutionary Applications 3:279-
290. 

Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nat Rev Genet 10:783-
796. 

Coltman DW, Pilkington JG, Smith JA, Pemberton JM. 1999. Parasite-mediated selection 
against inbred Soay sheep in a free-living, island population. Evolution 53:1259-1267. 

Cutrera AP, Zenuto RR, Lacey EA. 2011. MHC variation, multiple simultaneous infections and 
physiological condition in the subterranean rodent Ctenomys talarum. Infection, Genetics 
and Evolution 11:1023-1036. 

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, 
Marth GT, Sherry ST, et al. 2011. The variant call format and VCFtools. Bioinformatics 
27:2156-2158. 

De Boer R, Borghans J, Boven M, Keşmir C, Weissing F. 2004. Heterozygote advantage fails to 
explain the high degree of polymorphism of the MHC. Immunogenetics 55:725-731. 

Dmitriev DA, Rakitov RA. 2008. Decoding of Superimposed Traces Produced by Direct 
Sequencing of Heterozygous Indels. PLoS Comput Biol 4:e1000113. 

Dunn PO, Bollmer JL, Freeman-Gallant CR, Whittingham LA. 2013. MHC variation is related to 
a sexually selected ornament, survival and parasite resistance in the common 
yellowthroat. Evolution 67:679-687. 

Eimes J, Bollmer J, Dunn P, Whittingham L, Wimpee C. 2010. Mhc class II diversity and 
balancing selection in greater prairie-chickens. Genetica 138:265-271. 

Eimes JA, Reed KM, Mendoza KM, Bollmer JL, Whittingham LA, Bateson ZW, Dunn PO. 
2013. Greater prairie-chickens have a compact MHC-B with a single class IA locus. 
Immunogenetics 65:133-144. 

Ejsmond MJ, Radwan J. 2015. Red Queen Processes Drive Positive Selection on Major 
Histocompatibility Complex (MHC) Genes. PLoS Comput Biol 11:e1004627. 

Forsman AM, Vogel LA, Sakaluk SK, Grindstaff JL, Thompson CF. 2008. Immune-challenged 
house wren broods differ in the relative strengths of their responses among different axes 
of the immune system. Journal of Evolutionary Biology 21:873-878. 

Ganz T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710-
720. 

Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. 
arXiv preprint:arXiv:1207.3907. 

González-Amaro R, Cortés JR, Sánchez-Madrid F, Martín P. 2013. Is CD69 an effective brake to 
control inflammatory diseases? Trends in Molecular Medicine 19:625-632. 

Grueber C, Knafler G, King T, Senior A, Grosser S, Robertson B, Weston K, Brekke P, Harris 
CW, Jamieson I. 2015. Toll-like receptor diversity in 10 threatened bird species: 
relationship with microsatellite heterozygosity. Conservation Genetics:1-17. 

Grueber CE, Wallis GP, Jamieson IG. 2014. Episodic positive selection in the evolution of avian 
toll-like receptor innate immunity genes. PLoS One 9:e89632. 

Grueber CE, Wallis GP, Jamieson IG. 2008. Heterozygosity–fitness correlations and their 
relevance to studies on inbreeding depression in threatened species. Molecular Ecology 
17:3978-3984. 



  

103 

Hammerly SC. 2014. The effects of inbreeding on fitness traits in the critically endangered 
Attwater's prairie-chicken. [PhD Dissertation]: University of North Texas. 

Hammerly SC, de la Cerda DA, Bailey H, Johnson JA. 2015. A pedigree gone bad: increased 
offspring survival after using DNA-based relatedness to minimize inbreeding in a captive 
population. Animal Conservation:n/a-n/a. 

Hammerly SC, Morrow ME, Johnson JA. 2013. A comparison of pedigree- and DNA-based 
measures for identifying inbreeding depression in the critically endangered Attwater's 
Prairie-chicken. Molecular Ecology 22:5313-5328. 

Hansson B, Naurin S, Hasselquist D. 2014. Does inbreeding affect gene expression in birds? 
Biology Letters 10. 

Hansson B, Westerberg L. 2002. On the correlation between heterozygosity and fitness in natural 
populations. Molecular Ecology 11:2467-2474. 

Hartmann SA, Schaefer HM, Segelbacher G. 2014. Genetic depletion at adaptive but not neutral 
loci in an endangered bird species. Molecular Ecology 23:5712-5725 

Hawley DM, Sydenstricker KV, Kollias GV, Dhondt AA. 2005. Genetic diversity predicts 
pathogen resistance and cell-mediated immunocompetence in house finches. Biology 
Letters 1:326-329. 

Hellgren O, Sheldon BC, Buckling A. 2010. In vitro tests of natural allelic variation of innate 
immune genes (avian β-defensins) reveal functional differences in microbial inhibition. 
Journal of Evolutionary Biology 23:2726-2730. 

Janeway C, Travers P, Walport M, Shlomchick M. 2005. Immunobiology: the immune system in 
health and disease. New York: Garland Press. 

Jeffries KM, Hinch SG, Gale MK, Clark TD, Lotto AG, Casselman MT, Li S, Rechisky EL, 
Porter AD, Welch DW, et al. 2014. Immune response genes and pathogen presence 
predict migration survival in wild salmon smolts. Molecular Ecology 23:5803-5815. 

Jepson A, Banya W, Sisay-Joof F, Hassan-King M, Nunes C, Bennett S, Whittle H. 1997. 
Quantification of the relative contribution of major histocompatibility complex (MHC) 
and non-MHC genes to human immune responses to foreign antigens. Infection and 
Immunity 65:872–876. 

Jha AN, Singh VK, Kumari N, Singh A, Antony J, van Tong H, Singh S, Pati SS, Patra PK, 
Singh R, et al. 2012. IL-4 Haplotype -590T, -34T and Intron-3 VNTR R2 Is Associated 
with Reduced Malaria Risk among Ancestral Indian Tribal Populations. PLoS One 
7:e48136. 

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, 
Markowitz S, Duran C, et al. 2012. Geneious Basic: An integrated and extendable 
desktop software platform for the organization and analysis of sequence data. 
Bioinformatics 28:1647-1649. 

Keller L, Waller DM. 2002. Inbreeding effects in wild populations. Trends in Ecology and 
Evolution 17:230-241. 

Kjøglum S, Larsen S, Bakke HG, Grimholt U. 2008. The Effect of Specific MHC Class I and 
Class II Combinations on Resistance to Furunculosis in Atlantic Salmon (Salmo salar). 
Scandinavian Journal of Immunology 67:160-168. 

Kloch A, Babik W, A. B, Siski E, Radwan J. 2010. Effects of an MHC-DRB genotype and allele 
number on the load of gut parasites in the bank vole Myodes glareolus. Molecular 
Ecology 19:255-265. 



  

104 

Kristensen TN, Pedersen KS, Vermeulen CJ, Loeschcke V. 2010. Research on inbreeding in the 
`omic' era. Trends in Ecology & Evolution 25:44-52. 

Langefors Å, Lohm J, Grahn M, Andersen Ø, Schantz Tv. 2001. Association between major 
histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in 
Atlantic salmon. Proceedings of the Royal Society of London B: Biological Sciences 
268:479-485. 

Lessells CM, Boag PT. 1987. Unrepeatable Repeatabilities: A Common Mistake. The Auk 
104:116-121. 

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. 
Bioinformatics 26:589-595. 

Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA 
polymorphism data. Bioinformatics 25:1451-1452. 

Liebl AL, Martin LBI. 2009. Simple quantification of blood and plasma antimicrobial capacity 
using spectrophotometry. Functional Ecology 23:1091-1096. 

Lighten J, van Oosterhout C, Paterson IG, McMullan M, Bentzen P. 2014. Ultra-deep Illumina 
sequencing accurately identifies MHC class IIb alleles and provides evidence for copy 
number variation in the guppy (Poecilia reticulata). Molecular Ecology Resources 
14:753-767. 

Lockwood, MA, Griffin, CP, Morrow, ME, Randel, CJ, Silvy NJ. 2005. Survival, movements, 
and reproduction of released captive-reared Attwater's prairie-chicken. Journal of 
Wildlife Management, 69:1251-1258. 

Loiseau C, Zoorob R, Garnier S, Birard J, Federici P, Julliard R, Sorci G. 2008. Antagonistic 
effects of a MHC class I allele on malaria-infected house sparrows. Ecology Letters 
11:258-265. 

Lund T, Gjedrem T, Bentsen HB, Eide DM, Larsen HJS, Røed KH. 1995. Genetic variation in 
immune parameters and associations to survival in Atlantic salmon. Journal of Fish 
Biology 46:748-758. 

Matson KD, Ricklefs RE, Klasing KC. 2005. A hemolysis-hemagglutination assay for 
characterizing constitutive innate humoral immunity in wild and domestic birds. 
Developmental & Comparative Immunology 29:275-286. 

Medzhitov R. 2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1:135-145. 
Meier SA, Fassbinder-Orth CA, Karasov WH. 2013. Ontogenetic changes in innate immune 

function in captive and wild subspecies of prairie-chickens (Tympanuchus cupido spp.). 
The Journal of Wildlife Management 77:633-638. 

Menzel M, Sletvold N, Ågren J, Hansson B. 2015. Inbreeding Affects Gene Expression 
Differently in Two Self-Incompatible Arabidopsis lyrata Populations with Similar Levels 
of Inbreeding Depression. Molecular Biology and Evolution 32:2036-2047. 

Millet S, Bennett J, Lee KA, Hau M, Klasing KC. 2007. Quantifying and comparing constitutive 
immunity across avian species. Developmental & Comparative Immunology 31:188-201. 

Morrow ME, Chester RE, Lehnen SE, Drees BM, Toepfer JE. 2015. Indirect effects of red 
imported fire ants on Attwater's prairie-chicken brood survival. The Journal of Wildlife 
Management 79:898-906. 

Morrow ME, Rossignol TA, Silvy NJ. 2004. Federal listing of prairie grouse: lessons from the 
Attwater's prairie-chicken. Wildlife Society Bulletin 32:112-118. 

Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. 1996. Applied linear statistical models. 
Chicago, Illinois: Irwin. 



  

105 

Osborne AJ, Pearson J, Negro SS, Chilvers BL, Kennedy MA, Gemmell NJ. 2015. Heterozygote 
advantage at MHC DRB may influence response to infectious disease epizootics. 
Molecular Ecology 24:1419-1432. 

Paterson S, Wilson K, Pemberton JM. 1998. Major histocompatibility complex variation 
associated with juvenile survival and parasite resistance in a large unmanaged ungulate 
population (Ovis aries L.). Proceedings of the National Academy of Sciences 95:3714-
3719. 

Penn DJ, Damjanovich K, Potts WK. 2002. MHC heterozygosity confers a selective advantage 
against multiple-strain infections. Proceedings of the National Academy of Sciences of 
the United States of America 99:11260-11264. 

Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double Digest RADseq: An 
Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-
Model Species. PLoS One 7:e37135. 

Pike N. 2010. Using false discovery rates for multiple comparisons in ecology and evolution. 
Methods in Ecology and Evolution 2:278-282. 

Portnoy DS, Puritz JB, Hollenbeck CM, Gelsleichter J, Chapman D, Gold JR. 2015. Selection 
and sex-biased dispersal in a coastal shark: the influence of philopatry on adaptive 
variation. Molecular Ecology 24:5877-5885. 

Pratt AC. 2010. Evaluation of the reintroduction of Attwater's prairie-chicken in Goliad County, 
Texas. [Master's Thesis]: Texas A&M University-Kingsville. 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de 
Bakker PIW, Daly MJ, et al. 2007. PLINK: A Tool Set for Whole-Genome Association 
and Population-Based Linkage Analyses. The American Journal of Human Genetics 
81:559-575. 

Puritz JB, Hollenbeck CM, Gold JR. 2014. dDocent: a RADseq, variant-calling pipeline 
designed for population genomics of non-model organisms. PeerJ 2:e431. 

Rogers S, Kaufman J. 2008. High allelic polymorphism, moderate sequence diversity and 
diversifying selection for B-NK but not B-lec, the pair of lectin-like receptor genes in the 
chicken MHC. Immunogenetics 60:461-475. 

SAS Institute. 2015. JMP Pro 12. Cary, NC: SAS Institute. 
Sepil I, Lachish S, Sheldon BC. 2013. Mhc-linked survival and lifetime reproductive success in a 

wild population of great tits. Molecular Ecology 22:384-396. 
Service USFaW. 2010. Attwater's Prairie-chicken Recovery Plan, Second Revision. 

Albuquerque, New Mexico, USA. 
Seutin G, White BN, Boag PT. (#2097 co-authors). 1991. Preservation of avian blood and tissue 

samples for DNA analyses. Can. J. Zool. 69:82-90. 
Shiina T, Briles WE, Goto RM, Hosomichi K, Yanagiya K, Shimizu S, Inoko H, Miller MM. 

2007. Extended Gene Map Reveals Tripartite Motif, C-Type Lectin, and Ig Superfamily 
Type Genes within a Subregion of the Chicken MHC-B Affecting Infectious Disease. J 
Immunol 178:7162-7172. 

Simon SE. 2014. Cloacal microbiota of captive-bred and wild Attwater's prairie-chicken, 
Tympanuchus cupido attwateri. [Master's Thesis]: University of North Texas. 

Sin YW, Annavi G, Dugdale HL, Newman C, Burke T, Macdonald DW. 2014. Pathogen burden, 
co-infection and major histocompatibility complex variability in the European badger 
(Meles meles). Molecular Ecology 23:5072-5088. 



  

106 

Srithayakumar V, Castillo S, Rosatte RC, Kyle CJ. 2011. MHC class II DRB diversity in 
raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus). 
Immunogenetics 63:103-113. 

Stephens M, Donelly P. 2003. A comparison of bayesian methods for haplotype reconstruction 
from population genotype data. American Journal of Human Genetics 73:1162-1169. 

Strand T, Westerdahl H, Hoglund J, Alatalo RV, Siitari H. 2007. The Mhc class II of the Black 
grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity 
and expression. Immunogenetics 59:725-734. 

Stuglik MT, Radwan J, Babik W. 2011. jMHC: software assistant for multilocus genotyping of 
gene families using next-generation amplicon sequencing. Molecular Ecology Resources 
11:739-742. 

Szulkin M, Bierne N, David P. 2010. Heterozygosity-fitness correlations: a time for reappraisal. 
Evolution 64:1202-1217. 

Therneau T. 2012. Coxme: mixed effects cox models.: Vienna: R Foundation for Statistical 
Computing. 

Townsend AK, Clark AB, McGowan KJ, Buckles EL, Miller AD, Lovette IJ. 2009. Disease-
mediated inbreeding depression in a large, open population of cooperative crows. 
Proceedings of the Royal Society B: Biological Sciences 276:2057-2064. 

Townsend AK, Clark AB, McGowan KJ, Miller AD, Buckles EL. 2010. Condition, innate 
immunity and disease mortality of inbred crows. Proceedings of the Royal Society B: 
Biological Sciences 277:875-2883. 

Tschirren B, Andersson M, Scherman K, Westerdahl H, Mittl PR, Råberg L. 2013. 
Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia 
infection in a wild rodent population. Proceedings of the Royal Society of London B: 
Biological Sciences 280:20130364. 

Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S. 2011. Genetic diversity in cytokines 
associated with immune variation and resistance to multiple pathogens in a natural rodent 
population. PLoS Genet 7:e1002343-e1002343. 

Worley K, Collet J, Spurgin LG, Cornwallis C, Pizzari T, Richardson DS. 2010. MHC 
heterozygosity and survival in red junglefowl. Molecular Ecology 19:3064-3075. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



  

107 

Figure 3.1. Post-release survival of Attwater’s prairie-chickens in relation to MHC class II 
allele, Tycu-BLB*08. Kaplan-Meier plot shows that birds with Tycu-BLB*08 had higher 
proportional survival than birds without the allele (n = 116, log-rank: X 2=5.60, P=0.02). 
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Table 3.1. Summary of immune gene diversity in Attwater’s prairie-chickens. Included are the number of birds (n), particular exons 
sequenced and the corresponding length in base pairs (intron length in parentheses if amplified), number of nonsynonymous SNPs 
(NS), and number of alleles (AN). 

Immune gene Function n Exon(s) 
Sequence 

length   NS AN 
MHC region       

MHC class I Recognizes intracellular pathogens 143 3 258-261 16 7 
MHC class II Recognizes extracellular pathogens 141 2 239 36 8 
C-type lectin-like receptor 1 (Blec1) Early activation antigen 139 3,4 223 (534)  3 5 
Non-MHC       

Toll-like receptor 1B (TLR1B) Recognizes cell wall of bacteria and fungi 142 1 284 3 4 
Toll-like receptor 4 (TLR4) Recognizes LPS 143 3 787 1 2 
Toll-like receptor 5 (TLR5) Recognizes flagellin 139 1 1222 1 2 
Toll-like receptor 15 (TLR15) Recognizes fungi 144 1 597 3 4 
Interleukin 4 (IL4) B and T cell growth factor 144 1,2 178 (327)  3 4 
β-Defensin 11 (BD11) Disrupts bacterial membranes 137 2 131 (188) 1 2 
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Table 3.2. Post-release survival of Attwater’s prairie-chickens (n = 116) in relation to specific 
alleles at immune genes, genome-wide heterozygosity, body mass (g), sex and Family ID 
(random factor). Presented are the parameter estimates (β), standard error (SE), hazard ratio 
(Exp(β)) and P values from the Cox proportional mixed model. q values are the probability (P) 
values corrected for the false discovery rate (FDR).  

Predictor β SE Exp(β) P  q  

Genome-wide 
heterozygosity  -0.091 0.954 0.913 0.920 0.782 
MHC class I      
Tycu-IA*20 -0.324 0.462 0.723 0.480 0.544 
Tycu-IA*22 -0.741 0.305 0.477 0.015 0.048 

Tycu-IA*24 -0.741 0.310 0.476 0.017 0.048 

MHC class II      
Tycu-BLB*08 -1.262 0.351 0.283 <0.001 0.005 

Blec1       
Blec1*01  0.082 0.329 1.086 0.800 0.756 
Blec1*02  0.107 0.330 1.113 0.750 0.750 
Blec1*04  -0.931 0.330 0.394 0.005 0.040 

TLR1B      
TLR1B*01  0.259 0.329 1.296 0.430 0.522 
TLR1B*02  0.062 0.380 1.064 0.870 0.778 
TLR1B*03  0.662 0.284 1.938 0.020 0.049 

TLR1B*04  -0.007 0.308 0.993 0.980 0.793 
TLR15      
TLR15*01  0.711 0.576 2.035 0.220 0.340 
TLR15*02  0.861 0.355 2.365 0.015 0.048 

TLR15*03  0.317 0.399 1.373 0.430 0.522 
TLR15*04  0.495 0.448 1.641 0.270 0.383 
IL-4      
IL4*01  0.323 0.262 1.382 0.220 0.340 
IL4*02  -0.665 0.530 0.514 0.210 0.340 
IL4*03  0.153 0.456 1.166 0.740 0.750 
      

Body mass (g) -0.002 0.001 0.998 0.017 0.048 

Sex 0.534 0.262 1.706 0.042 0.089 
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Table 3.3. Immune response of Attwater’s prairie-chickens in relation to specific alleles at 
immune genes, genome-wide heterozygosity, body mass (g), sex, and family group (as a random 
factor). Presented are the parameter estimates (β), standard error (SE), P and q values for each 
predictor variable in the models for Lysozyme (n = 115) and Haemolysis (n = 114). The models 
for bacteria-killing and agglutination assays are in the supplemental material (Table S3.4). 

  Lysozyme   Haemolysis 
Predictor β SE P  q    β SE P  q  
Genome-wide  
heterozygosity 0.362 0.207 0.086 0.183  -0.790 0.577 0.175 0.458 
MHC class I          

Tycu-IA*20 -0.037 0.130 0.777 0.690  -1.070 0.291 <0.001 0.004 

Tycu-IA*22 -0.316 0.090 0.001 0.007  -0.270 0.193 0.166 0.458 
Tycu-IA*24 -0.212 0.102 0.040 0.136  0.007 0.216 0.974 0.975 
MHC class II          

Tycu-BLB*08 0.035 0.105 0.743 0.690  -0.353 0.234 0.135 0.458 
Blec1           

Blec1*01  -0.307 0.112 0.007 0.031  0.153 0.225 0.498 0.747 
Blec1*02  -0.001 0.098 0.995 0.805  -0.341 0.205 0.100 0.458 
Blec1*04  -0.019 0.077 0.812 0.690  -0.260 0.195 0.186 0.458 
TLR1B          

TLR1B*01  -0.177 0.096 0.070 0.170  -0.274 0.221 0.218 0.458 
TLR1B*02  -0.340 0.114 0.004 0.023  0.319 0.254 0.213 0.458 
TLR1B*03  0.035 0.088 0.689 0.689  -0.058 0.186 0.756 0.934 
TLR1B*04  -0.042 0.091 0.643 0.684  0.106 0.215 0.623 0.817 
TLR15          

TLR15*01  -0.184 0.171 0.285 0.484  -0.295 0.369 0.427 0.690 
TLR15*02  -0.052 0.102 0.616 0.684  0.008 0.243 0.975 0.975 
TLR15*03  -0.073 0.116 0.529 0.684  0.131 0.247 0.598 0.817 
TLR15*04  0.056 0.102 0.580 0.684  -0.044 0.251 0.860 0.950 
IL-4          

IL4*01  -0.042 0.075 0.580 0.684  -0.187 0.168 0.269 0.513 
IL4*02  -0.150 0.222 0.501 0.684  0.622 0.370 0.099 0.458 
IL4*03  -0.198 0.118 0.100 0.188  -0.071 0.313 0.822 0.950 

          

Body Mass (g) 0.000 0.000 0.062 0.170  0.003 0.001 <0.001 0.002 

Sex -0.168 0.036 <.0001 0.002   -0.083 0.080 0.302 0.528 
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Table S3.1. Summary of the other single-locus immune genes initially surveyed in a subset of prairie-chickens. Included are the 
number of birds (n), particular exons sequences and the corresponding length in base pairs (intron length in parentheses if amplified, 
number of synonymous (Syn) and intron SNPs. Note that none of these immune genes had nonsynonymous SNPs. 

Immune gene n Exon(s) Sequence length 
Syn  

SNPs 
Intron 
SNPs 

Toll-like receptor 3 (TLR3) 21 4 747 1 - 
Toll-like receptor 7 (TLR7) 21 2 570 1 - 
Interleukin 1B (IL1B) 21 5,6 357 (607) 3 4 
Interleukin 6 (IL6) 4 2,3 174 (309) 0 0 
Interleukin 6 (IL6) 21 4 189 1 - 
Interleukin 10 (IL10) 21 3,4 219 (728) 1 3 
β-Defensin 02 (BD02) 21 2,3 177 (410) 1 3 
β-Defensin 04 (BD04) 4 3 100 0 - 
Lysozyme (Lyso) 21 1 136 (324) 2 3 

 

Immune gene screening methods 

We screened for single nucleotide polymorphisms (SNPs) at candidate immune genes by initially sequencing three Attwater’s prairie-
chickens and one greater prairie-chicken from either the genetically diverse Kansas or Nebraska population. If we found SNPs 
between subspecies (i.e., between Attwater’s and greater prairie-chickens), we randomly selected an additional 16 Attwater’s prairie-
chickens to sequence. Next, we identified exons by aligning each sequence with the domestic chicken (Gallus gallus) genome using 
the BLAST algorithm in Geneious version 7.0. We retained immune genes for analysis in the entire data set if there were non-
synonymous SNPs in this initial sample of 21 prairie-chickens. Overall, seven single-locus immune genes met our criteria with these 
screening steps.  
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Table S3.2. Primers and PCR conditions used to amplify the seven single-locus immune genes used in the study (A) and other 
immune genes that did not meet our initial screening criteria (B). Each immune gene was amplified in PCRs (final volume 20ul) 
consisting of 1x Green GoTaq Flexi Buffer (Promega), 1.5 mM of MgCl2, 10% DMSO, 0.5 μM of each primer, 0.4 mM of dNTPs, 1.0 
U of GoTaq DNA polymerase and approximately 50 ng of genomic DNA. PCRs were performed with an initial denaturation step at 
94 °C for 2 min followed by 35 cycles of 20 s at 94 °C, 20 s at locus-specific annealing temperature (TA) and specific extension time 
(TE) at 72 °C.    

 

A) 

Locus 
TA       

(° C) 
TE 

(sec) Primer names Primer sequences (5'-3') References 
TLR1B 59 80 avTLR1LBF TCCAGGYTWCAAAATCTGACAC Alcaide & Edwards 2010 
   avTLR1LBR CGGCACRTCCARGTAGATG  
TLR4 50 80 avTLR4F GAGACCTTGATGCCCTGAG Alcaide & Edwards 2010 
   avTLR4R CCATCTTRAGCACTTGCAAAG  
TLR5 55 80 avTLR5F GTAATCTTACCAGCTTCCAAGG Alcaide & Edwards 2010 
   avTLR5R GCTGGAGTTCATCTTCATC  
TLR15 62 45 TLR15F1 GCTGGGTGCTGTTTTGGAGT This study 
   TLR15R1 GAGGTGCTGCAGAGAGATCG  
Blec1 62 45 Blec1F AGCTCCCACGTTTCTCATCC This study 
   Blec1R CCAAGGCAAGGATGGGAACT  
IL4 54 45 IL4ex1-2F ATGAGCTCCTCACTGCCCAC Downing et al. 2010 
   IL4ex1-2R  CTGGCTTTCCTCTTACCTTA  
BD11 60 45 AvBD11F1mat GACTGATCCTGCAGCACAAC Hellgren & Sheldon 2011 
      AvBD11R1 AGGGCTCCCACACGTACC   
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B) 

Locus 
TA       

(° C) 
TE 

(sec) Primer names Primer sequences (5'-3') References 
TLR3 53 80 pcTLR3Falt ACCTCTCACTGAGCCATGTG This study 

   pcTLR3R TGTTGTTATTGCTGATGTC  

TLR7 59 60 pcTLR7F2 GAAGCTTATCCCCAGTCTTG This study 

   pcTLR7R3 AGACAGGTAGCAGAATTCGC  

IL1B 59 60 IL1Bex5-6F CTTCGACATCTTCGACATCAAC Downing et al. 2009 

   IL1Bex5-6R ATACGAGATGGAAACCAGCAAC  

IL6 (a) 63 45 IL6ex2-3F CGAGAACAGCATGGAGATGC This study 

   IL6ex2-3R GTGGCCGCCAGGTGCTTTGT  

IL6 (b) 57 45 IL6ex4F GTGATAAATCCCGATGAAGT This study 

   IL6ex4R TCAGGCACTGAAACTCCTGG  

IL10 62 45 IL-10_F1 CCACTGCTGGGGTTCAGATT This study 

   IL-10_R1 CTCTCTCCCCACCCACTGAA  

BD02 55 45 AvBD2ex2F ATGAGGATTCTTTACCTGC This study 

    AvBD2ex3R CATTTGCAGCAGGAACGGAA  

BD04 56 45 pcBD4ex3F TGTTCAGGCTTTCCCCGTCC This study 

   pcBD4Ralt TCAGTTTAGCCATAGTCAAG  

Lyso 60 45 LYSOex1_Falt GAGACAGGTGCAAGAGAGCC This study 

   LYSOex1_Ralt GGGAAAGGAGCGTAAAGGGA  
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Table S3.3. Post-release survival of Attwater’s prairie-chickens (n = 116) in relation to 
standardize heterozygosity (A) and single-locus heterozygosity (B) at immune genes, genome-
wide heterozygosity, body mass (g), and sex. In both analyses, family group was used as a 
random factor. Presented are the parameter estimates (β), standard error (SE), hazard ratio 
(Exp(β)) and corresponding P values from the Cox proportional mixed models.   

A) 

Predictor β SE Exp(β) P 

Genome-wide het 0.128 1.136 0.882 0.88 
Immune genes het 0.082 1.085 0.350 0.82 
Body mass  -0.001 0.999 0.001 0.51 
Sex 0.511 1.667 0.229 0.03 

 

B) 

Predictor β SE Exp(β) P 

Genome-wide het -0.243 0.785 0.924 0.79 
MHC class I -0.068 0.934 0.286 0.81 
Blec1 -0.218 0.804 0.280 0.44 
TLR1B 0.267 1.307 0.237 0.26 
TLR4 0.491 1.634 0.505 0.33 
TLR5 -0.413 0.662 0.450 0.36 
TLR15 0.161 1.174 0.265 0.55 
IL4 0.138 1.148 0.238 0.56 
BD11 -0.793 0.452 0.599 0.19 
Body mass  < 0.001 1.000 0.001 0.83 
Sex 0.408 1.503 0.252 0.11 
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Table S3.4. Immune response of Attwater’s prairie-chickens in relation to specific alleles at 
immune genes, genome-wide heterozygosity, body mass (g) and sex. Family group was used as a 
random factor. Presented are the estimates (β), standard error (SE), P and q values for each 
predictor variable in the models for Bacteria killing assay (n = 116) and Agglutination assay (n = 
107).  

  Bacteria killing   Agglutination 
Predictor β SE P q  β SE P q 

Genome-wide het -0.397 0.357 0.269 1.017  1.739 1.127 0.128 0.670 
MHC class I          

Tycu-IA*20 -0.049 0.172 0.776 1.017  -0.018 0.572 0.975 0.975 
Tycu-IA*22 0.032 0.112 0.772 1.017  0.209 0.395 0.597 0.913 
Tycu-IA*24 -0.158 0.124 0.208 1.017  -0.018 0.448 0.969 0.975 
MHC class II          

Tycu-BLB*08 -0.072 0.136 0.599 1.017  0.218 0.471 0.645 0.913 
Blec1           

Blec1*01  0.238 0.130 0.071 1.017  0.053 0.473 0.911 0.975 
Blec1*02  -0.035 0.121 0.770 1.017  0.164 0.418 0.695 0.913 
Blec1*04  -0.064 0.117 0.587 1.017  0.245 0.377 0.519 0.913 
TLR1B          

TLR1B*01  -0.040 0.131 0.761 1.017  -0.273 0.441 0.538 0.913 
TLR1B*02  0.169 0.148 0.255 1.017  0.803 0.503 0.115 0.670 
TLR1B*03  -0.021 0.109 0.849 1.017  0.038 0.375 0.920 0.975 
TLR1B*04  0.001 0.125 0.996 1.046  -0.252 0.437 0.566 0.913 
TLR15          

TLR15*01  -0.147 0.220 0.506 1.017  0.684 0.778 0.382 0.891 
TLR15*02  -0.005 0.143 0.972 1.046  -0.119 0.481 0.805 0.975 
TLR15*03  0.040 0.146 0.786 1.017  -0.621 0.488 0.207 0.707 
TLR15*04  0.047 0.149 0.754 1.017  0.475 0.488 0.333 0.874 
IL-4          

IL4*01  -0.029 0.098 0.765 1.017  -0.549 0.337 0.108 0.670 
IL4*02  0.033 0.208 0.876 1.017  -0.329 0.751 0.664 0.913 
IL4*03  -0.073 0.188 0.699 1.017  -0.842 0.606 0.169 0.707 

          

Body Mass (g) < 0.001 < 0.001 0.686 1.017  0.001 0.001 0.236 0.707 
Sex -0.015 0.046 0.740 1.017   0.259 0.158 0.106 0.670 
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Table S3.5. Immune response of pre-released Attwater’s prairie-chickens in relation to standardized heterozygosity (A) and single-
locus heterozygosity (B) at eight immune genes, genome-wide heterozygosity, body mass (g) and sex. In these models, family group 
was included as a random factor. Sample sizes (n), parameter estimates (β), standard error (SE) and P values are given from the 
generalized linear mixed models. Single-locus heterozygosity models (B) also include false discovery rate q values for each variable. 
Significant P and q values are given in bold.  

A) 

Immunoassay   
Genome-wide 

het 
Immune genes 

het 
Body mass 

(g) Sex 
Lysozyme β 0.552 -0.054 < 0.001 -0.120 

n = 127 SE 0.206 0.090 < 0.001 0.032 
 P 0.009 0.552 0.270 < 0.001* 

      
Haemolysis β -1.455 0.235 0.002 -0.157 

n = 129 SE 0.935 0.338 0.001 0.122 
 P 0.123 0.488 0.029 0.202 
      

Bacteria-killing β -0.562 -0.052 < 0.001 -0.019 
n = 128 SE 0.303 0.109 < 0.001 0.039 

 P 0.066 0.632 0.649 0.636 
      

Agglutination β 1.261 -0.301 0.001 0.124 
n = 118 SE 1.003 0.376 0.001 0.138 

  P 0.212 0.425 0.335 0.373 
*indicates that males have stronger lysozyme activity 
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B) 

Immunoassay   
Genome-
wide het MHCI Blec1  TLR1B  TLR4  TLR5  TLR15  IL4  BD11  

Body 
mass  Sex 

Lysozyme β 0.492 0.057 0.014 0.020 -0.043 -0.073 -0.013 0.034 -0.132 < 0.001 -0.141 
n = 114 SE 0.240 0.051 0.043 0.038 0.078 0.080 0.040 0.039 0.104 < 0.001 0.038 

 P 0.045 0.270 0.756 0.609 0.584 0.365 0.753 0.382 0.210 0.220 < 0.001 

 q 0.245 0.594 0.756 0.745 0.745 0.601 0.756 0.601 0.594 0.594 0.004* 

             

Haemolysis β -0.880 0.160 -0.001 -0.083 -0.321 0.065 0.018 -0.082 0.005 0.003 0.035 
n = 113 SE 0.698 0.117 0.113 0.095 0.201 0.201 0.101 0.097 0.236 0.001 0.099 

 P 0.211 0.178 0.994 0.384 0.113 0.748 0.862 0.400 0.983 0.001 0.727 
 q 0.580 0.580 0.994 0.733 0.580 0.994 0.994 0.733 0.994 0.010 0.994 
             

Bacteria-killing β -0.429 0.056 -0.090 -0.019 -0.066 0.007 0.009 0.038 -0.081 < 0.001 -0.022 
n = 115 SE 0.323 0.050 0.050 0.042 0.090 0.088 0.045 0.043 0.104 < 0.001 0.043 

 P 0.187 0.265 0.078 0.659 0.465 0.938 0.845 0.380 0.435 0.387 0.621 
 q 0.730 0.730 0.730 0.805 0.730 0.938 0.930 0.730 0.730 0.730 0.805 
             

Agglutination β 2.221 -0.086 -0.144 -0.004 -0.139 0.524 0.030 0.237 -0.374 0.002 0.129 
n = 105 SE 1.126 0.170 0.175 0.144 0.326 0.307 0.153 0.144 0.343 0.001 0.148 

 P 0.052 0.614 0.414 0.980 0.670 0.092 0.844 0.105 0.279 0.114 0.385 
 q 0.285 0.744 0.592 0.891 0.744 0.285 0.844 0.285 0.558 0.285 0.592 

*indicates that males have stronger lysozyme activity
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