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ABSTRACT 

GENE REGULATORY PATHWAYS DRIVING CENTRAL NERVOUS SYSTEM 

REGENERATION IN ZEBRAFISH 

 

by 

 

Ishwariya Venkatesh 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Ava J. Udvadia, PhD 

 

 

 

Damage to the central nervous system (CNS) circuitry of adult mammals results 

in permanent disability. In contrast, the ability to regenerate damaged CNS 

nerves and achieve functional recovery occurs naturally in fish. The ability of fish 

to successfully regrow damaged CNS nerves is in part a consequence of their 

ability to re-express key neuronal growth-associated genes/proteins in response 

to CNS injury. On such protein is Growth-Associated Protein-43 (Gap43), a 

protein which is highly enriched in axonal growth cones during CNS development 

and regeneration. Experiments conducted in mammals have demonstrated that 

ectopic expression of GAP-43 improves axonal re-growth after injury. Using 

zebrafish optic nerve as a model for successful CNS regeneration, we have 

identified that re-expression of the gap43 gene is crucial for regenerative axon 

growth in vivo. Using a combination of in vivo reporter assays and in vivo 

regeneration assays, we also identified transcriptional regulatory pathways that 

are essential for gap43 gene expression in regenerating CNS neurons. We found 

that transcription factors Ascl1a, Atf3, cJun and Stat3 are required for both re-
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initiating gap43 expression and driving axon outgrowth in response to optic nerve 

injury. Futhermore, our results indicate that transcription factors Ascl1a, Atf3 and 

cJun function cooperatively to re-initiate gap43 expression in a manner that is 

conserved across highly divergent teleost species. Together, these experiments 

provide insights into regulatory mechanisms driving successful CNS 

regeneration, thereby revealing potential targets that may be manipulated to 

improve regenerative ability in mammals.  
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Chapter I 

Introduction 

The nervous system is a highly specialized organ system that synchronizes the 

human body’s responses to external and internal stimuli. The nervous system is 

broadly classified into the central nervous system (CNS) composed of the brain, 

spinal cord and retina and the peripheral nervous system (PNS) comprised of 

nerves and ganglia innervating the periphery. Everything we do from learning 

new things, recollecting old memories, as well as perceiving and responding to 

our environment is dependent on the nervous system. Problems affecting the 

nervous system can therefore be severely debilitating, causing a spectrum of 

defects including loss of memory, motor control, and sensory perception among 

others. While humans have the ability to respond to peripheral nerve injury 

through successful regeneration and recovery of function, a similar response is 

not mounted following insult to the CNS. Rigorous scientific efforts have been 

long underway to find strategies to limit or reverse the damage caused due to 

CNS injuries. One way to approach this problem has been to understand 

mechanisms underlying successful regeneration in a variety of experimental 

models in the hope of re-capitulating similar mechanisms to improve 

regeneration in humans.   

 In order to understand the mechanisms underlying successful CNS 

regeneration, two common approaches are taken. The first approach has been to 
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understand mechanisms underlying peripheral regeneration. The other approach 

has been to utilize animal models that are intrinsically capable of mounting a 

successful regenerative response following CNS injury. We have taken the 

second approach by studying zebrafish optic nerve regeneration to identify gene 

regulatory networks underlying successful vertebrate CNS regeneration.  

Barriers to regeneration in the mammalian CNS 

It is well accepted that there are two main barriers to regeneration in the adult 

mammalian CNS: 1) An inhibitory external environment that hinders axon re-

growth 2) Failure to initiate a transcriptional program conducive of axon 

outgrowth in response to injury. 

 

Inhibitory external cues 

The earliest suggestion that the environment surrounding injured axons in the 

mammalian CNS was inhibitory, comes from the landmark histological studies 

carried out by Ramon ý Cajal (1929). Advances in understanding the inhibitory 

environment have revealed broadly two broad classes of inhibition: 1) the 

inhibitory molecules produced by the myelinating glia of the CNS 

(oligodendrocytes) and 2) the formation of a glial scar initiated by reactive 

astrocytes. Together these form both physical and chemical barriers that obstruct 

CNS regeneration. 

Myelin is the insulation wrapped around an axon for efficient propagation of 

electrical signaling along the axon. After CNS injury, myelin debris becomes 

dispersed throughout the injury site, forming physical barriers that prevent axons 
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from re-connecting to their targets. In addition, many classes of inhibitory 

molecules are produced by oligodendrocytes including chondroitin sulfate 

proteoglycans (CSPGs), semaphorins, NogoA, myelin-associated glycoprotein 

(MAG) and oligodendrocyte-myelin glycoprotein (Omgp) (reviewed by Sharma et 

al., 2012, Pasterkamp and Verhaagen, 2006, Schwab 2004, Filbin 2003). All 

these inhibitory molecules signal through a receptor complex comprised of NgR, 

p75NTR and LINGO-1 (Park et al., 2005; Shao et al., 2005).  

 In addition to the myelin associated inhibitory molecules, the other major 

barrier to axon re-growth is the formation of a glial scar. The glial scar is the 

result of accumulation of microglia, oligodendrocytes and astrocytes at the site of 

injury (Rudge et al., 1990). The inhibition from the scar is both physical and 

chemical in nature. Inhibitory cues found in the reactive glial scar include 

aforementioned CSPGs which restricts neural repair by inhibiting axon extension 

across the lesion and by inhibiting collateral sprouting by spared axons near the 

lesion (reviewed by Sharma et al., 2012). Repressive axon guidance cues 

expressed during development such as ephrins and semaphorins also limit 

axonal regeneration in the injured mammalian CNS (Kaneko et al., 2006; Kantor 

et al., 2004; Pasterkamp and Verhaagen, 2006). 

 Improving regenerative ability through the manipulation of extrinsic 

inhibitory cues has been met with limited success. Several studies have been 

conducted with mice that genetically lack inhibitory molecules or receptors to 

determine if such manipulations enhance CNS regeneration. NogoA knockout 

mice display little to no improvement in regeneration after spinal cord injury (Kim 
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et al., 2003, Simonen et al., 2003, Zheng et al., 2005). Mice lacking the Nogo 

receptor, NgR also show little increase in regeneration following corticospinal 

axonal injury (Zheng et al., 2005).  Mice lacking MAG display very modest 

enhancement in axon regeneration following spinal cord injury (Li et al., 1996). 

Recently, it was observed that triple mutant mice lacking Nogo, MAG and OMgp 

showed little improvement in regeneration of corticospinal or raphesinal axons 

following spinal cord injury (Lee et al., 2010).  Inhibiting the action of molecules 

that form the reactive glial scar through enzymatic degradation or using 

antibodies to neutralize such molecules also improves regeneration but to a very 

limited extent. (Moon and Fawcett 2001; Tan et al., 2006). Together these 

studies suggest that simply removing the inhibitory environment alone is 

insufficient to promote robust axon re-growth and that improving the neuron-

intrinsic capacity for axon regrowth is necessary for successful regeneration.  

Intrinsic growth capacity for axon regeneration 

Neutralizing the external inhibitory environment still leads to only a small 

percentage of injured axons showing successful re-growth following CNS injury. 

Hence studies focusing on manipulating the intrinsic growth capacity of neurons 

to induce axon re-growth are on the steady rise. In response to axonal injury, 

three major molecular events occur that ultimately determine the intrinsic ability 

to mount a successful regenerative response (summarized in Fig 1). The 

signaling cascades ensuing axonal injury have been the focus of several studies 

and findings that have revealed the importance of these pathways in successful 

regeneration are broadly discussed in the next section. 
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Fig. 1. Signal transduction in response to axonal injury. Axon injury leads to a 
cascade of signaling events initiating with an increase in intracellular calcium that 
corresponds to an increase in levels of cAMP and PKA. Local release of cytokines in the 
injury site also stimulates the activation and retrograde transport of injury derived signals 
such as ERK, JNK and Stat3. Retrograde delivery of injury derived signals initiates 
upregulation of critical transcription factors associated with axonal injury such as Atf3, 
cJun, Ascl1a, p53, Sox11 etc. Transcription factors translocate to the nucleus and along 
with co-activators re-initiate transcription of critical regeneration associated genes such 
as gap43, sprr1a, hsp27 and tuba1a among others. 
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1) Retrograde transport of injury signals to the neuronal cell body 

Activation of pro-regenerative genes is induced by retrograde signaling pathways 

generated at the stump of the lesion that are transported back to the neuronal 

cell body within 12-24 hours following injury (Hanz et al., 2003; Ben-Yaakov et 

al., 2012). Cytokines such as leukemia inhibitory factor (LIF), interleukin-6 (IL-6) 

and ciliary neurotrophic factor (CNTF) are released locally at the sites of 

peripheral lesion and contribute to the activation of a successful regenerative 

program through activation of intracellular JAK/STAT signaling pathways (Cao et 

al., 2006, Sendtner et al., 1992, Subang and Richardson, 2001). Deletion of 

suppressor of cytokine signaling-3 (SOCS3), a negative regulator of JAK/STAT 

signaling pathways, greatly enhances axon regeneration after optic nerve injury 

in mammals, through induction and maintenance of a repertoire of regeneration-

associated genes, all of which are crucial for functional regeneration (Sun et al., 

2011).   

The other class of injury-related signals are initiated in response to an 

intracellular rise in calcium and cAMP due to a rapid depolarization following 

axonal injury. These molecules include the mitogen-activated protein kinases 

(MAPK), extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal 

kinase (JNK), Phosphotidylinositol 3 kinase (PI3K) and mammalian target of 

rapamycin (mTOR) among others (reviewed by Patodia and Raivich, 2012). 

Deletion of phosphatase and tensin homolog (PTEN), a negative regulator of 

mTOR, enhances retinal ganglion cell (RGC) axon regeneration in response to 

optic nerve injury in mammals. Notably, co-deletion of PTEN and SOCS3 leads 
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to a synergistic effect with increased RGC axon regeneration in response to 

injury (Sun et al., 2011). Therefore, retrograde injury signals are crucial in 

initiating a successful regenerative program and are attractive targets that can be 

manipulated to improve CNS regeneration in mammalian neurons. 

2) Upregulation and activation of regeneration-associated transcription factors 

The retrograde transport of key injury signals mediate the rapid activation and 

nuclear translocation of a suite of regeneration-associated transcription factors 

(Fig 1). This injury-induced transcription is critical in gaining growth competence 

following injury (Smith and Skene, 1997). Phosphoproteomic and microarray 

studies have identified nearly 400 redundant axonal signaling networks connected 

to 39 transcription factors implicated in the sensory neuron response to axonal 

injury (Michaelevski et al., 2010, reviewed by Patodia and Raivich, 2012). These 

transcription factors include cJun, JunD, Activating transcription factor-3 (Atf3), 

cyclic AMP response binding element (CREB), signal transducer and activator of 

transcription 3 (Stat3), CCAAT/ enhancer binding proteins (C/ EBPs), p53, 

Kruppel like factors (Klfs) and Sox11 among others (reviewed by Patodia and 

Raivich, 2012). Once activated, these transcription factors bind to specific 

promoter regions resulting in transcriptional activation or repression of a wide 

variety of target genes that is critical in initiating and sustaining a successful 

regenerative response.   

Most regeneration associated transcription factors are upregulated in response to 

peripheral nerve injuries in mammals, but not in response to CNS injuries.  In 

principle, two approaches have been utilized in understanding transcriptional 
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regulation of axon growth. The first approach involves knockdown of transcription 

factors in neurons capable of functional regeneration to identify specific 

transcription factors necessary for successful axon re-growth. The second 

approach involves forced expression of transcription factors in neurons incapable 

of functional regeneration; thereby testing whether the ectopic expression is 

sufficient to induce re-growth in injured mammalian CNS axons. Both approaches 

have been successful in identifying transcriptional complexes involved in nervous 

system regeneration leading to a better understanding of transcriptional regulatory 

pathways governing successful regeneration (reviewed by Tedeschi et al., 2012, 

Patodia and Raivich et al., 2012). The functional roles of select transcription 

factors during nervous system regeneration are summarized in Table 1. Since a 

single transcription factor likely regulates several regeneration- associated genes, 

they are appealing targets to identify gene regulatory networks underlying 

successful regeneration. Designing therapeutic interventions centered around 

transcription factors are also likely to be effective, since delivery of a single 

transcription factor may lead to the activation of multiple downstream regeneration 

associated genes, thereby enhancing the intrinsic ability to initiate a regenerative 

response. The orchestrated expression of the downstream regeneration-

associated genes ultimately determines regenerative success. 

3) Re-expression of crucial regeneration-associated genes 

The injury-induced transcription factors regulate the expression of a set of genes 

involved in cell-cell signaling, axon outgrowth and cell survival, collectively 

referred to as regeneration-associated genes (RAGs). RAGs have been 
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identified in two classes of neurons showing successful regeneration - 

mammalian models of PNS regeneration and fish models of CNS regeneration. 

DNA microarray experiments using aforementioned models have identified 

several RAGs (Bonilla et al., 2002, Costigan et al., 2002, Tanabe et al., 2007, 

Boeshore et al., 2004, Nilsson et al., 2005, Veldman et al., 2007).  These genes 

are diverse in function, but ultimately most of the functions are related to the cell 

membrane and the cytoskeleton.  

One class of RAGs encodes neuronal growth-associated proteins that function 

as cytoskeletal adaptors by modulating cytoskeletal dynamics during axon 

outgrowth, guidance and regeneration. Growth cones found at the tips of growing 

axons are responsible for modulating axon growth, guidance and synaptic target 

recognition through modulation of cytoskeletal dynamics. For successful 

regeneration to occur, gene expression must synchronize with cytoskeletal 

dynamics to efficiently distribute signaling components and re-assemble 

structural components (Hur et al., 2012). The molecules that modulate 

remodeling of the cytoskeleton and the reformation of the growth cone after 

nerve injury are of critical importance to regenerative success. This is because 

these molecules directly affect growth cone response to inhibitory molecules, the 

speed and extent of axon regeneration, and target innervation (Hur et al., 2012).  

 Growth associated protein-43 (Gap43) and cytoskeleton-associated 

protein-23 (CAP-23) are members of an important family of cytoskeletal adaptor 

molecules (Skene and Willard 1981, Verhaagen et al., 1986, Frey et al., 2000, 

Bomze et al., 2001, Zhang et al ., 2005, Patodia and Raivich 2012).  Gap43 and 
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Cap23 were found highly enriched in growth cones of neurons during both 

development and regeneration (Skene et al., 1989, Goslin and Banker 1990, 

Bomze et al., 2001). Gap43 and Cap23 modify actin filament polymerization, 

organization and disassembly, through interactions with phospholipids such as 

PIP2, calcium/calmodulin and protein kinase C (PKC) to elicit growth cone 

activity (Skene 1990, Ide 1997, Laux et al., 2000, Henley and Poo 2004, 

Kulbatski et al.,2004).  

 Expression of Gap43 is downregulated in most mature neurons and re-

initiated in response to injury in neuronal populations capable of mounting a 

successful regenerative response (Bormann et al., 1988, Kaneda et al., 2008, 

Bomze et al., 2001). The primary sensory neurons from dorsal root ganglia 

(DRGs) has two major branches, a peripheral axon that innervates peripheral 

targets and a central axon that relays the information to the spinal cord. These 

two branches of DRG axons have differential capacities for axon regeneration 

following injury. While the peripheral axon regenerates successfully after lesion, 

the injury of the central branch from the same DRG neuron fails to elicit a 

successful response. However, lesioning the peripheral branch prior to injuring 

the central branch, greatly improves regeneration of both the central and 

peripheral branches, in what has been termed as a conditioning effect (Liu et al., 

2011).  Differences in ability to initiate a gene program supportive of axon growth 

are thought to underlie the differential capacity for regeneration in the peripheral 

versus central branch of DRG neurons. Consistent with this hypothesis, Gap43 is 

upregulated in response to a peripheral lesion in DRGs, but not in response to a 
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lesion to the central branch of the DRG (Schreyer and Skene, 1993). However, 

treatment with cyclic AMP (cAMP) and a conditioning lesion to the DRG, both 

result in expression of Gap43 in the central branch of injured DRGs (Qiu et al., 

2002). Optic nerve injury affects only a single class of neurons - RGCs. In 

zebrafish, RGCs have a high capacity for regenerative growth and display 

increased levels of Gap43 throughout the regenerative process (Kaneda et al., 

2008). However, the spinal cord of zebrafish has several types of neurons with 

varying regenerative capacities (Becker et al., 1998). It is observed that the 

differing capacity for regeneration in these neurons is directly correlated with their 

ability to re-express crucial regeneration associated genes such as Gap43 and 

cell adhesion protein L1 (Becker et al., 2005). Thus re-expression of Gap43 is 

correlated with successful intrinsic ability to initiate and sustain a regenerative 

response. 

 While Gap43 expression is not re-initiated in mammalian CNS neurons, 

studies have demonstrated that ectopic expression of Gap43 improves CNS 

regeneration in injured adult mammalian neurons. Co-expression of Gap43 and 

Cap23 in DRG neurons, leads to a 60-fold increase in the re-growth of injured 

dorsal column axons (Bomze et al., 2001).  Constitutive over-expression of 

Gap43 in combination with cell adhesion protein L1 leads to increased axon 

regeneration of cerebellar purkinje axons in vivo (Zhang et al., 2005). Since 

artificial expression of Gap43 improves regeneration outcomes in injured adult 

mammalian CNS neurons, it is important to understand how Gap43 expression is 

re-initiated in neurons capable of functional recovery.  



 

 

12 

 

Transcriptional regulation of Gap43 

In vitro analysis of the mammalian gap43 gene promoter  

The mammalian gap43 gene promoter consists of both activators and repressors 

responsible for directing spatial and temporal expression of the gap43 gene. Two 

closely related promoters with multiple transcription start sites have been 

identified for mammalian Gap43. There is a TATA-less promoter sequence 

proximal to the protein-coding region and a more distal promoter that contains 

consensus TATA box sequences (Ortoft et al., 1993, Eggen et al., 1994, Starr et 

al., 1994, Nedivi et al., 1992). In vitro promoter analysis identified a 386 bp region 

that was sufficient to drive neural specific gap43 expression (Nedivi et al., 1992). 

In vivo, however a 1.6 kilobase promoter fragment was required for neural 

specific expression of gap43 in transgenic mice (Vanselow et al., 1994). Within 

this promoter region, two key cis-acting elements were identified. The first is an 

E-box binding site, which depending on interactions with members of basic helix 

loop helix (bHLH) family of transcription factors, could direct either transcriptional 

activation or repression (Chiaramello et al., 1996). Transcription factor Nex1/ 

MATH-2 belongs to the bHLH family of proteins and was capable of activating 

the gap43 promoter in vitro (Shimizu et al., 1995, Uittenbogaard et al., 2003). 

The second regulatory element identified was an AP-1 element (Weber and 

Skene, 1998). Transcription factors cJun and cFos are capable of binding to the 

AP-1 element as homodimers or heterodimers. Transcription factor cJun is well 

documented in driving axon outgrowth in the PNS (Raivich et al., 2004). It is not 
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known whether this AP-1 element through cJun regulates gap43 expression. 

Presence of cis-acting elements capable of binding to members from different 

transcription factor families hint that expression of gap43 is likely regulated by 

multiple transcription factors. 

Analysis of the gap43 promoter has revealed differences in function and 

conservation of promoter regions across species (Udvadia et al., 2001, Udvadia 

et al., 2008, Kusik et al., 2010). For instance, rat gap43 promoter sequences 

were able to direct transgene expression in zebrafish during nervous system 

development (Reinhard et al., 1994) but not during optic nerve regeneration 

(Udvadia et al., 2001). These results indicated that promoter regions responsible 

for directing gap43 expression during regeneration have diverged between 

species and that regulatory pathways governing nervous system regeneration 

are different from pathways modulating development (Udvadia et al., 2001).  

Teleost fish possess distinct advantages that have led to their use as models to 

identify promoter elements underlying successful re-expression of growth 

associated genes and axon outgrowth.  

Teleost models of transcriptional regulation and CNS axon outgrowth 

Teleost fish successfully re-express growth-associated genes in response to 

CNS injury resulting in functional recovery. In addition to upregulating positive 

regulators of axon growth in response to CNS injury, fish also upregulate many of 

the same negative modulators of axon regeneration observed in mammals, such 

as SOCS3 and Sfpq. However, in contrast to mammals, fish are able to 

overcome these inhibitory cues and mount a successful regenerative response 
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(Elsaedi et al., 2014). This finding demonstrates that the barriers to regeneration 

elicted by CNS nerve injury are similar in both fish and mammals. Thus it is the 

intrinsic ability to mount a successful response, which differs and ultimately 

determines regenerative success.  The above mentioned factors along with the 

relative ease in creating mutant transgenic lines and delivering knockdown 

reagents, have rendered teleost fish as ideal models to dissect regulatory 

pathways governing re-expression of crucial regeneration associated genes and 

axon outgrowth (Udvadia et al., 2008, Kusik et al., 2010, Senut et al., 2004, 

Veldman et al., 2007, Veldman et al., 2010).   

 Udvadia et al., 2008 identified a 3.6 kb gap43 promoter fragment from 

pufferfish that was sufficient to direct endogenous zebrafish gap43 gene 

expression during both development and regeneration. This compact promoter 

sequence promotes reporter gene expression that faithfully recapitulates 

endogenous gap43 expression. Promoter analysis of the 3.6 kb pufferfish gap43 

sequence identified distinct promoter regions necessary for developmental 

expression as opposed to regenerative gap43 expression. Specifically, a 708 bp 

proximal promoter region was sufficient to drive expression of gap43 during 

nervous system development. However, the same 708 bp promoter fragment 

was insufficient to drive expression of gap43 during optic nerve regeneration. A 

more distal 2.9 kb promoter fragment was required for driving regenerative gap43 

expression, which will be referred to henceforth as regeneration-specific fugu 

gap43 promoter regions (Kusik et al., 2010). Within these broader regeneration 

specific promoter regions, shorter DNA sequence elements were identified that 
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showed a high level of conservation among distantly related teleost species. 

These teleost conserved sequence elements were absent in the gap43 promoter 

regions from chicken, mouse, rat and humans (Kusik et al., 2010). The promoter 

analysis studies on fugu gap43 transgenic fish outline two important findings (1) 

gap43 promoter regions required to drive developmental expression are distinct 

from regions required to drive regenerative gap43 expression (2) cis-acting DNA 

elements within regeneration-specific gap43 promoter regions show a high 

degree of conservation among teleosts, which are capable of functional CNS 

regeneration, but are absent in higher vertebrates that fail to recover from CNS 

injury. These cis- acting elements are therefore potential targets of signaling 

pathways driving successful CNS regeneration and could explain species-

specific differences in regeneration ability.  

Candidate transcription factors predicted to drive regenerative gap43 expression 

Kusik et al., 2010 identified regeneration-specific promoter regions within the 

pufferfish gap43 promoter fragment. In silico analysis identified putative binding 

sites for several transcription factors within the regeneration specific promoter 

regions. We narrowed our focus to five candidate transcription factors likely to 

regulate gap43 expression and axon outgrowth during optic nerve regeneration 

in fish. These transcription factors, henceforth referred as candidate transcription 

factors, are Ascl1a, Atf3, cJun, Stat3 and p53. While most of these transcription 

factors have been well studied in their ability to drive regeneration in the 

peripheral nervous system, a direct test to determine necessity for these factors 

during central nervous system regeneration is largely missing. In addition, very 
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few if any, downstream targets have been identified for these transcription factors 

during central nervous system regeneration. The next section summarizes the 

current consensus on: (1) activation of candidate transcription factors in 

response to injury, (2) functions of candidate transcription factors during nervous 

system regeneration, and (3) known downstream targets during nervous system 

regeneration. 

cJun 

Transcription factor cJun binds to AP-1 element in the form of heterodimers or 

homodimers. Common cJun binding partners include c-fos and members of the 

ATF/CREB family of transcription factors. cJun is found in basal levels in 

uninjured neurons and is strongly upregulated in response to several injury 

related signals such as growth factors, cytokines and stress factors (Herdegen et 

al., 1997). Retrogradely transported JNKs are responsible for the activation of 

cJun through phosphorylation of cJun N-terminal (Lindwall and Kanje, 2005) (Fig 

1). Absence of cJun leads to impaired facial nerve regeneration in the PNS 

concomitant with a loss in expression of regeneration associated genes cd44, 

galn and itga7 (Herdegen et al., 1997; Raivich et al., 2004; Lindwall and Kanje, 

2005; Teng and Tang, 2006). 

In the CNS, forced overexpression of cJun leads to increased CNS axon growth 

in cortical neuron slices (Lerch et al., 2014). This enhanced growth was however 

not accompanied by increases in gap43 or itga7, both predicted targets of cJun 

based on observations in PNS regeneration (Lerch et al., 2014). There are 
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currently no known downstream targets of cJun that could explain effects 

observed on axon growth due to cJun over-expression in the CNS (Fig 2).  

Atf3 

Activating transcription factor-3 (Atf3) belongs to the ATF/CREB family of 

transcription factors and is capable of forming heterodimers with both members 

of leucine zipper proteins (CREB, cJun) and non-leucine zipper members (p53, 

STAT3) (Tedeschi et al., 2009). Atf3 expression is strongly upregulated in 

response to injury in neuronal populations capable of functional recovery such as 

peripheral branch of DRGs (Tsujino et al., 2000) and zebrafish retinal ganglion 

cells (Saul et al., 2010), but not in neurons incapable of functional regeneration 

(Tsujino et al., 2000). Similar to expression of cJun, extracellular injury signals 

such as JNK, p38 and ERK pathways are known to induce Atf3 expression in 

response to axonal injury (Hunt et al., 2010) (Fig 3).  Activity of Atf3 is primarily 

regulated at the translational level and there is no evidence for transcriptional 

regulation of Atf3. However, the co-expression of cJun and Atf3 in the nervous 

system following stress signals and traumatic injury makes it tempting to 

speculate that cJun could be involved in transcriptional regulation of Atf3 during 

regeneration. However a requirement for cJun in regenerative induction of Atf3 

expression is not previously demonstrated. 

Evidence for Atf3 involvement in peripheral nerve regeneration comes from a 

study by Seijjfers et al., 2007 where Atf3 over-expression enhanced axonal 

sprouting in a facial nerve axotomy model. sprr1a and hsp27 are the only known 

targets of Atf3 in the PNS (Seijjfers et al., 2007).  Atf3 is upregulated by CNS 
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 Model of 
regeneration 

Observed phenotypes Target 
genes 

References 

 
Peripheral 
nervous 
system 

 
Facial nerve 
axotomy – 

Mice 
 
 
 
 
 
 
 
 
 

Sciatic nerve 
crush – Mice 

 
Strongly reduced target re-
innervation 
Delayed functional recovery 
Decreased RAG expression 
and neuronal sprouting 
Strongly reduced glial 
activation and leukocyte 
recruitment 
Enhanced motor neuron 
survival 
Cellular atrophy 
 
Impaired axon regeneration 

 
itga7 
cd44 
galn 

 
 

 
Raivich et al., 

2004 
Ruff  et al., 

2012 
Makwana et 

al., 2010 
 
 
 
 
 
 

Saijilafu et al., 
2011 

 
Central 
nervous 
system 

 
Cortical slice 

cultures - 
Mice 

 
Overexpression of cJUN 
promotes CNS neuron axon 
growth 

 
? 

 
Lerch et al., 

2014 

 

Fig. 2. Transcriptional pathways involving transcription factor c-Jun during regeneration (A) 
Transcription factor c-Jun is activated through phosphorylation by JNK in response to injury. cJun 
activation results in regulation of genes itga7, cd44 and galn during peripheral nerve regeneration 
(Adapted from Tedeschi et al., 2012) (B) Table summarizing known effects and targets of 
transcription factor c-Jun in peripheral and central nervous system regeneration 
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 Model of 
regeneration 

Observed phenotypes Target 
genes 

References 

 
Peripheral 
nervous 
system 

 
Sciatic nerve 
crush – Mice  

 

 
Enhanced speed of 
regeneration in mice 
constitutively expressing Atf3 
in DRGs 

 
sprr1a 
hsp27 

 
 

 
Seijjfers et al., 

2007 
Lewis et al., 

1999 

 
Central 
nervous 
system 

 
Peripheral 
nerve grafts 
in the 
thalamus of 
adult rats 
 
Peripheral 
nerve grafts 
in the cervical 
spinal cord 
 
Optic nerve 
regeneration- 
zebrafish 

 

 
Injured CNS neurons 
transiently upregulate ATF-3 
expression 
 
 
Rubrospinal neurons growing 
into peripheral grafts 
upregulate ATF-3 expression 
 
 
Injured RGCs strongly 
upregulate ATF-3 expression 
in response to optic nerve 
injury 
 

 
? 

 
Campbell et 

al., 2005 
 
 
 

Shokouhi et 
al., 2010 

 
 
 

Saul et al., 
2010 

Fig. 3. Transcriptional pathways involving transcription factor Atf3 during regeneration 
(A) Transcription factor Atf3 is activated by retrograde injury signals in response to injury 
(Adapted from Tedeschi et al., 2012). Atf3 activation results in regulation of genes sprr1a and 
hsp27 during peripheral nerve regeneration (B) Table summarizing known effects and targets 
of transcription factor ATF-3 in peripheral and central nervous system regeneration 
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neurons growing into peripheral grafts, but a direct test of requirement for Atf3 

during CNS regeneration has not been carried out.  

Stat3 

 Signal transducer and activator of transcription – 3 (Stat3) belongs to the STAT 

family of transcription factors. Stat3 is locally synthesized at the injury site and 

retrogradely transported as an injury signal that then signals the start of a gene 

program supportive of axon growth. Injury-induced cytokine IL6 binds to receptor 

gp130 that activates receptor tyrosine kinase JAKs leading to Stat33 activation 

through phosphorylation on residues 705 and 727 (Bromberg and Darnell 2000, 

Dziennis and Alkayed, 2008) (Fig 4). Stat3 knockout mice displayed strongly 

reduced target re-innervation and delayed functional recovery following 

saphenous nerve lesion. In addition, overexpression of Stat3 improves collateral 

and terminal sprouting in the central branch of DRG following transection in a 

phase-specific manner (Baryere et al., 2011). It is currently not known how 

effects of Stat3 on axon re-growth are mediated in the nervous system following 

injury. However, Stat3 null mice display reduced levels of sprr1a and hsp27, 

hinting that they are potential downstream targets (reviewed by Patodia and 

Raivich et al.,2012) (Fig 4). 

p53 

p53 belongs to the family of tumor suppressors commonly known for mediating 

both pro- and anti-apoptotic roles in the nervous system (Jacobs et al., 2006). 

p53 is regulated at the post-translation level through modifications such as 

acetylation, phosphorylation and ubiquitination that influences localization and 
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 Model of 
regeneration 

Observed phenotypes Target 
genes 

References 

 
Peripheral 
nervous 
system 

 
Saphenous 

nerve lesion-
Mice 

 
 

Facial nerve 
axotomy-

Mice 
 

 
Strongly reduced target re-
innervation 
Delayed functional recovery 
 
 
Decreased RAG expression 
and neuronal sprouting 
Strongly reduced glial 
activation and leukocyte 
recruitment 
Enhanced motor neuron 
survival 
Cellular atrophy 

 
sprr1a 
hsp27 

 
 

 
Bareyre et al., 

2011 
 
 
 

Patodia et al., 
2011 

 
Central 
nervous 
system 

 
DRG central 
branch lesion 

 
Overexpression of Stat3 
improves collateral and 
terminal sprouting through 
induction of axon growth. 
Stat3 not required for 
elongation 
 

 
? 

 
Bareyre et al., 

2011 
 

 

 Fig. 4. Transcriptional pathways involving transcription factor Stat3 during regeneration. (A) 
Transcription factor Stat3 is activated by receptor ligand binding that leads to activation of 
associated JAK2. JAK2 activation results in phosphorylation of Stat3 leading to activation and 
translocation into nucleus. Phosphorylated Stat3 dimerizes and along with co-activators leads to 
regulation of genes sprr1a and hsp27 during peripheral nerve regeneration (Adpated from 
Tedeschi et al., 2012) (B) Table summarizing known effects and targets of transcription factor 
Stat3 in peripheral and central nervous system regeneration 
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function (Tedeschi et al., 2009) (Fig 5). p53 was found to be an essential 

component of peripheral nerve regeneration by modulating expression of 

regeneration associated genes coro1b, rab12 and gap43 (DiGiovanni et al., 

2006, Tedeschi et al., 2009) (Fig 5). Requirement for p53 during CNS 

regeneration has not been tested yet. (Fig 5) 

Ascl1 

Achaete-scute complex-like 1a (Ascl1a) belongs to the basic helix loop helix 

family of transcription factors. Ascl1a is one of the earliest genes to be induced in 

response to optic nerve injury , with expression detected as early as 4 hours post 

injury (Fausett et al., 2008). Ascl1a is expressed in neural progenitors in chick, 

mouse and zebrafish (Fisher and Reh 2001, Yun et al., 2002, Yurco and 

Cameron 2007), suggesting a role in cell fate determination and specification. 

Ascl1a was found to activate expression of regeneration associated gene tuba1a 

via an E-box element during optic nerve regeneration in zebrafish. Ascl1a 

knockdown also affected axon re-growth in dissociated retinal cultures (Fausett 

et al., 2008). Ascl1a influences the ability of Mueller glia to de-differentiate to a 

progenitor state to replace dead neurons in zebrafish (Fausett et al., 2008). 

However whether Ascl1a is required for axon re-growth of surviving neurons 

during CNS regeneration remains unknown. 
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Peripheral 
nervous 
system 

 
Facial nerve 
axotomy – 

Mice  

 
Decreased neurite 
outgrowth 
Reduced target innervation 

 
coro1b 
rab13 
gap43 

 

 
Di Giovanni et  

al.,2006 
Qin et al., 2009 
Tedeschi et al., 

2009 

 
Central 
nervous 
system 

 
Not tested 

 
Not tested 

 

 
? 

 
- 

 

 
 
Fig. 5. Transcriptional pathways involving transcription factor p53 during 
regeneration. (A) Transcription factor p53 is activated by receptor ligand binding leading 
to post translational modifications by p300/CBP and PCAF. Acetylated p53 forms a 
transcriptional module along with p300/CBP that occupies promoters of regeneration 
associated genes coro1b, rab13 and gap43 and regulates expression during 
regeneration (Adapted from Tedeschi et al., 2012) (B) Table summarizing known effects 
and targets of transcription factor p53 in peripheral and central nervous system 
regeneration 
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Thesis statement  

In contrast to mammals, zebrafish respond to CNS injury by successfully 

upregulating essential regeneration-associated genes and mounting a functional 

regenerative response. This makes them ideal models to uncover gene 

regulatory pathways underlying successful CNS regeneration. To gain insight 

into mechanisms underlying successful CNS regeneration, we have studied the 

regulation of the gap43 gene as a model regeneration-associated gene, to 

identify specific transcriptional complexes required for in vivo axon regeneration. 

Although gap43 over-expression drives modest outgrowth in neurons incapable 

of regeneration, experiments described in this thesis demonstrate evidence for 

the first time that re-expression of Gap43 is required for successful regeneration 

in neurons capable of functional recovery. We have identified a conserved role 

for transcription factors Ascl1a, Atf3, cJUN and Stat3 in driving regenerative 

gap43 expression and axon outgrowth during CNS regeneration in fish. 

Furthermore, we have found that three of these transcription factors, Ascl1a, 

Atf3, cJUN, seem to function in a synergistic, rather than additive manner, 

suggesting that the absence of any one is sufficient to prevent regeneration. 

These findings extend our basic understanding of neuron-intrinsic mechanisms 

underlying successful CNS regeneration and reveal potential therapeutic targets 

for manipulation to improve CNS regeneration in mammals. 
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Chapter II 

Materials and Methods 

Zebrafish husbandry and reporter lines 

Zebrafish husbandry and all experimental procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of 

Wisconsin-Milwaukee and were performed in accordance with animal welfare 

standards established by the US National Institutes of Health guide for the care 

and use of laboratory animals.   

Zebrafish colonies were maintained as previously described (Kusik et al., 2010).  

Adult zebrafish were maintained at 28°C with a 14-hour light/ 10-hour dark cycle, 

and fed twice daily with Artemia as well as Zeigler Adult Zebrafish Complete Diet 

(VWR, West Chester, PA).  Two strains of zebrafish were used in these 

experiments: 1) Ekkwill, a wild type strain, used in the RGC axon regeneration 

assays, and 2) Tg (Tru.gap43:egfp) mil1, a.k.a. fgap43:egfp, a fugu gap43 

transgenic reporter strain constructed on the Ekkwill background (Udvadia et al., 

2008) used in the gap43 gene expression studies. 

Zebrafish optic nerve injury and gene knockdown 

Targeted knockdown of mRNAs in regenerating retina ganglion cells was 

accomplished by introducing gene-specific MOs (MOs) delivered by retrograde 

axonal transport from the site of optic nerve injury. Adult zebrafish were 

anesthetized with 0.03% aminobenzoic acid ethylmethylester (Argent Chemical 
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Labs, Redmond, WA), and immobilized in a foam mold. The left optic nerves 

were fully transected one mm from the retina.  The right eyes were left intact to 

serve as unoperated controls.  Gene knockdown was accomplished by placing a 

1mm sized piece of gel foam soaked with MOs (Gene tools LLC, Philomath, OR) 

at the site of optic nerve transection. Sequences used for MO synthesis are 

summarized in Table 2. All MOs were tagged with the red fluorescent tracer, 

lissamine.  This allowed for identification of neurons that received MOs through 

retrograde transport.   

Table 2.  List of morpholinos used in the study 

Gene 

target Sequences used for synthesis Target site, References 

Ctrl 5’ CCTCTTACCTCAGTTACAATTTATA 3’ Veldman et al., 2007 

gap43 5’ TCTTCTGATGCAGCACAGCATAGTC 3’ Translation start site 

ßascl1a 5′-AAGGAGTGAGTCAAAGCACTAAAGT-3′ Translation start site 

(Cau and Wilson, 2003) 

atf3 5’ AGTAAATGAGTGGGTCTTACCTCTC 3’ 
Splice donor site 

between exons 3 and 4 

jun 5’ TCCATCTTGGTAGACATAGAAGGCA 3’ Translation start site 

stat3 5’ CATTTCCAATGCAGTCATACCTCCA 3’ Exon5/Intron 5 boundary 

p53 5’ GCGCCATTGCTTTGCAAGAATTG 3’ Translation start site 

 

Reporter gene assays and MO verification in regenerating retinas 

For the gene expression assays, 6-9 month old fgap43:egfp were subjected to 

optic nerve injury as described above. Animals were sacrificed four-days post-

injury, and retinas were removed, fixed, and prepared for frozen sectioning as 

previously described (Kusik et al., 2010).  Transverse sections (10 µm) were 
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collected on glass slides and cover slipped in Vectashield Hard Set mounting 

medium (Vector Labs, Burlingame, CA) with DAPI to stain the nuclei.  

Fluorescent images were obtained using a Zeiss Apotome microscope (Carl 

Zeiss AG, Oberkochen, Germany).  Cells expressing gap43 were identified by 

the green fluorescence from the fugu gap43:egfp transgene (Udvadia 2008).   

MO-mediated mRNA knockdown of targeted transcription factors was verified in 

regenerating retinas at four days post-injury using immunofluorescence staining. 

MO treatments and preparation of retinas for cryosectioning were performed as 

described above. Slides were rehydrated in PBST (0.1% Tween 20, 2XPBS) for 

3 min and incubated in blocking buffer (10%NCS/PBST) for 1 hour at room 

temperature prior to incubating overnight at 4°C in primary antibody diluted in 

blocking buffer. The primary antibodies and corresponding concentrations used 

for these studies are listed in Table 3. Following overnight incubation with 

primary antibody, slides were washed with PBST for 10 min at room temperature 

3 times and then incubated with secondary antibodies (Alexa Fluor 488, 

Invitrogen, Grand Island, NY) diluted 1:500 in PBST for 2 hours at room 

temperature. Following incubation with secondary antibodies, slides were 

washed again with PBST before mounting with VECTASHIELD (Vector labs, 

Burlingame, CA) to stain the nuclei. Fluorescent images were obtained using a 

Zeiss Apotome microscope. 
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Table 3.  List of primary antibodies used in the study 

Protein Vendor information 
Primary antibody 

concentration 

Atf3 
C-19, Santa Cruz Biotechnology, Santa 

Cruz, CA 1:100 

cJun 31419, Abcam, Cambridge, MA 1:100 

Stat3 

SC-H190, Santa Cruz Biotechnology, 

Santa Cruz, CA 1:100 

p53 GTX128135, GeneTex, Irvine, CA 1:100 

HuC/HuD 

A21721, Molecular probes, Grand 

Island, NY 
1:500 

Caspase 3 

AF835, R&D systems Inc., R&D R&D 

systems Inc., Minneapolis, MN 
1:1000 

 

Quantification of gene expression 

We used quantitative PCR (QPCR) to quantify the effect of knocking down 

regeneration-associated transcription factors on expression of fgap43:egfp 

transgene and endogenous zebrafish gap43 gene. QPCR was performed on an 

ABI 7500 Fast Real time PCR system (Applied Biosystems, Carlsbad, CA) with 

SYBR green fluorescent label (Quanta Biosciences, Gaithersburg, MD).  Total 

RNA was isolated from adult retina of fgap43:egfp zebrafish using Trizol reagent 

(Invitrogen, Grand Island, NY).  The cDNA was synthesized from 550 ng total 

RNA with Oligo dT priming using qSCRIPT reverse transcriptase (Quanta 

Biosciences, Gaithersburg, MD).  The QPCR analysis was performed to 

determine the relative levels of gap43 and gfp mRNA in each sample, using ef1α 

as an internal control.  
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We used qPCR for the transcription factor inter-regulation analyses, to quantify 

expression of ascl1a, atf3 and jun, following knockdown of either of the other two 

transcription factors. Samples were prepared as described above. 

Primer sequences used for each gene are summarized in Table 4.  A 

dissociation step was performed at the end of the amplification phase to confirm 

a single, specific melting temperature for each primer set.  Cycle threshold 

values (Ct) were normalized to ef1α as an internal reference.  

Relative gene expression was quantified using the 2^-(ΔΔCt) method (Livak and 

Schmittgen, 2001), ΔCt1 = Normalized Ct (operated Lt eye) and ΔCt2 = 

Normalized Ct (unoperated right eye).  A similar analysis was performed on 

retinas treated with negative control MOs for comparison.  Normalized gene 

expression data from 3-4 biological replicates were averaged and analyzed as 

fold change.  

Table 3.  List of primers used in the study 

Gene Forward primer Reverse primer 

gap43 5’- CCAAAGAGGAAGTGAAGGAG-3’ 5’-CAGCAGCGTCTGGTTTGTC-3’ 

gfp 5’-AACGAGAAGCGCGATCAC-3’ 5’CCATAGGTTGGAATCTTAGAG-3’ 

efl1α 5’- GTACTTCTCAGGCTGACTGTG-3’ 5’-CGCTGACTTCTTGGTGAT-3’ 

atf3 5’ TCACGCTGGACGACTTCACAAACT 3’ 
 

5’TCTCAGTGTTCATGCAGGCTCTGT 3’ 
 

ascl1a 

 
5’ GACGAGCATGACGCCGTAAG 3’ 

 

 
5’AAGTTTCCTTTTACGAACGCTCAA 3’ 

 

jun 5’ ACATCGACCAGGTTGTGCAT 3’ 5’ CGCGTCCCTGTTTTACTCCT 3’ 
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Optic nerve regeneration assays 

The RGC axon regeneration assays were performed as previously described by 

Zou et al., 2013. 9 month – one year old wild type zebrafish were anesthetized 

and their left optic nerves were partially transected one mm from the retina.  

Then a piece of gel foam soaked with corresponding MOs was placed at the site 

of transection.  After four days, regenerating axons were traced from the right 

optic tectum using a fluorescent retrograde tracer (DiI-N22880, Invitrogen, Grand 

Island, NY). Nine days after retrograde tracing, retinas were removed and 

prepared for frozen sectioning and fluorescence microscopy as described above.  

Images were collected from five sections per retina, which included sections from 

the center of the retina containing the optic nerve and two lateral sections on 

each side.  RGCs that were injured and received the MO from the optic nerve 

transection were identified by the red fluorescence from lissamine.  RGCs that 

regenerated their axons to the contralateral optic tectum were identified by green 

fluorescence from the tracer.  The percentage of axon regeneration was 

calculated by counting the number of double fluorescent cells (yellow), divided by 

the total number of cells taking up the MO (red) and multiplied by 100. 

Statistical analysis 

All statistical analysis was done using Graph Pad Prism 6 software. For the 

qPCR assays and the axon regeneration assays, values from control MO treated 

retinas were pooled together and outlier analysis was performed (Mean ± 

2STDEV) to ensure that data values fall within the normal statistical range before 

being used for further analysis. Individual transcription knockdown values were 
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then compared to the pooled controls and analyzed by one-way analysis of 

variance (ANOVA) followed by the Tukey post-hoc method for pair-wise multiple 

comparisons.  
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CHAPTER III 

Identification of transcription factors regulating gap43 gene expression and 

axon outgrowth during optic nerve regeneration in zebrafish 

 

Central nervous system (CNS) injury results in the disruption of neuronal 

networks and permanent disability in mammals, however, the ability to 

regenerate damaged CNS nerves and achieve functional regeneration occurs 

naturally in fish. While it is true that the extracellular environment of the 

mammalian CNS contains growth inhibitory factors that prevent regeneration, 

simply removing the inhibitory factors is not sufficient to promote functional 

regeneration (reviewed in Ferguson and Son, 2011). Thus the focus in 

regenerative research has returned to the investigation of neuron-specific factors 

that promote the ability of mammalian CNS neurons to regenerate.  

The re-expression of neuronal growth-associated genes after CNS injury occurs 

naturally in fish, yet our knowledge of proteins and regulatory pathways that are 

actually necessary for CNS regeneration in fish remains limited. To identify 

molecular mechanisms underlying successful CNS regeneration in fish, we have 

focused on the regeneration-associated regulation of the growth-associated 

protein 43 (Gap43), a prototypical axon growth protein encoded by the gap43 

gene. The importance of gap43 gene expression in facilitating regeneration is 
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evident from studies in which ectopic expression of Gap43 in combination with 

other neuronal growth associated proteins (nGAPs) induces axon regrowth in 

neuronal populations previously incapable of regeneration (Bomze et al., 2001; 

Zhang et al., 2005).  

In zebrafish, levels of gap43 mRNA and protein are rapidly increased in response 

to injury and remain elevated through the entire phase of regenerative growth 

(Bormann et al.,1998; Kaneda et al.,2008). However, the requirement of gap43 

expression for successful CNS regeneration in fish has not been established. 

Previous studies from our lab identified specific regions within the pufferfish 

(fugu) gap43 promoter that are indispensable for regenerative gap43 expression 

and highly conserved across divergent teleost species (Kusik et al., 2010). These 

regeneration specific promoter regions harbor putative binding sites for several 

transcription factors. While these transcription factors were previously implicated 

in axon growth and regeneration, none of them had been tested for their 

requirement in successful CNS axon regeneration. We have used an optic nerve 

transection injury in adult zebrafish to model successful vertebrate CNS 

regeneration in order to address the following questions: 

1) Is gap43 induction following optic nerve injury necessary for successful 

regeneration? 

2) Are the candidate transcription factors with putative binding sites in the fugu 

gap43 regeneration-specific promoter regions necessary for gap43 expression in 

following optic nerve injury? 
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3) Are the candidate transcription factors with putative binding sites in the fugu 

gap43 regeneration-specific promoter regions necessary for successful 

regeneration following optic nerve injury? 

 

We hypothesized that both Gap43 and the transcription factors that regulate its 

expression in regenerating CNS neurons would be essential for regenerative 

axon growth leading to successful CNS target re-innervation after optic nerve 

transection. Using in vivo reporter assays and in vivo regeneration assays, we 

have determined that Gap43 expression is required for the successful regrowth 

of retinal ganglion cell axons and re-innervation of the optic tectum following optic 

nerve transection in zebrafish. Furthermore, we have identified specific 

transcriptional complexes that are required for both re-initiating gap43 gene 

expression and promoting regenerative axon outgrowth in response to optic 

nerve injury. The data contained in this chapter are part of two separate 

manuscripts in preparation (Williams et al., in preparation; Venkatesh and 

Udvadia, in preparation).  

  

Verification of gene knockdown approach for specificity and efficacy 

We used morpholino-mediated gene knockdown of Gap43 and candidate 

transcription factors regulating gap43 gene expression in regenerating CNS 

neurons to determine their roles in successful CNS regeneration. Morpholinos 

(MOs) are synthetic, stable oligonucleotides designed to hybridize with a target 

mRNA and prevent protein synthesis by blocking translation or mRNA 

processing. Ascl1a, cJun and p53 MOs were targeted to the translation start site. 
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atf3 MO targeted the splice donor site between exons 3 and 4 and stat3 MO 

targeted the exon5/intron5 boundary. MOs were delivered by retrograde 

transport from the site of injury. All MOs were conjugated with a fluorescent 

lissamine label to allow verification of MO delivery to the RGCs. In the following 

series of experiments we established that the MOs resulted in specific 

knockdown of the targeted genes and did not have non-specific toxic effects on 

RGCs. 

The specificity and efficacy of MOs in knocking down expression of their target 

genes was validated using either transgenic zebrafish expressing reporter genes 

targeted by the MOs, or immunofluorescence staining. In each case targeted 

knockdown by MOs was compared with control MO that targets a human 

sequence not present in zebrafish. A transgenic zebrafish line expressing a 

gap43-GFP fusion protein (Udvadia, 2008) was used to verify the efficacy and 

specificity of the gap43 MO. The gap43-GFP transgene used in the study 

contains the promoter/enhancer sequences upstream of the fugu gap43 gene in 

addition to exon 1 sequences that include the 5’ untranslated region (UTR) as 

well as sequences encoding the first 10 amino acids of the protein fused to the 

coding sequence for GFP. The resulting transgene encodes a GFP fusion protein 

that is targeted by the gap43 MO. Retinas treated with control or gap43 MO were 

sectioned and imaged for MO uptake (red fluorescence), and expression of the 

gap43-GFP transgene (green fluorescence) in the RGCs. Both the control and 

gap43 MOs were effectively taken up by the RGCs, however; only gap43 MO 

was able to knockdown gap43-GFP expression (Fig. 6A, B). Similarly, the  
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Fig. 6. Morpholinos targeting Gap43 and candidate transcription factors are 
effective and specific. Representative images of the RGC layer from transverse 
sections through regenerating adult retinas treated with either control MO (A, C, E, G, I) 
or MOs targeting candidate proteins (B, D, F, H, J) and preserved four days after optic 
nerve transection. The control MO does not affect target protein expression (A, C, E, G, 
I), while targeted knockdowns results in a substantial decrease in target protein levels 
(B, D, F, H, J). Blue, DAPI; Red, lissamine-labeled MOs; Green, GFP (A, B) or Alexa 
488 secondary antibody (C-J). Scale bar = 20 μm. 
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efficacy of the previously described ascl1a MO used in these studies was verified 

by knockdown of an ascl1a-GFP fusion protein expressed in zebrafish embryos 

(Cau and Wilson, 2003). Gene knockdown by MOs targeting atf3, cjun, stat3, and 

p53 was validated using immunofluorescence staining with antibodies specific to 

each of the transcription factors. In each case, we observed antibody staining in 

retinas receiving the control MO, indicating that the MO delivery did not interfere 

with injury-induced upregulation of the transcription factors (Fig. 6C, E, G, I). As 

expected, we observed little to no antibody staining after gene specific 

knockdown (Fig. 6D, F, H, J). Together these data validate the effective and 

specific knockdown of injury-induced protein expression by MOs targeting 

transcripts for gap43 and candidate transcription factors.  

Unlike in mammals, optic nerve injury in fish does not normally result in an 

increase in RGC cell death. In order to rule out the possibility of MO toxicity to 

the RGCs, we verified that MO delivery did not cause RGC cell death. We 

observed no activated caspase-3 staining in RGCs indicating that MO uptake did 

not lead to cell death (Fig. 7). Thus, we conclude that retrograde delivery of MOs 

does not have a non-specific effect on survival of regenerating RGCs. 

Since most of the genes targeted by the MOs are also important in neuronal 

differentiation, we wanted to verify that MO-mediated knockdown of these genes 

did not interfere with the maintenance of the neuronal phenotype. We used 

immunostaining to verify that MO uptake by RGCs did not affect expression of 

the HuC/HuD antigen, a common pan-neuronal marker. Based on the normal  
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Fig. 7. Uptake of morpholinos (MOs) does not result in increased RGC cell death. 

Representative images of the RGC layer from transverse sections through regenerating 

adult retinas treated with control or targeted lissamine-labeled MOs (B, E, H, K, N, Q, T) 

and preserved four days after optic nerve transection. The effect of MO-mediated gene 

knockdown on RGC cell death was assessed by immunostaining with zebrafish 

caspase-3 antibody (C, F, I, L, O, R, U). Nuclei of all cells were stained with DAPI (A, D, 

G, J, M, P, S). Absence of caspase-3 co-localization in RGCs confirms that MO uptake 

does not result in increased RGC cell death. Scale bar = 20 μm 
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expression of the HuC/D in RGCs, we concluded that MO uptake did not affect 

neuronal identity (Fig 8). 

Gap43 expression is required for optic nerve regeneration in vivo 

Gap43 is a prototypical axon growth-associated protein, which is highly expressed in 

developing and regenerating axonal growth cones. Gap43 expression is transcriptionally 

downregulated in most mature neurons. Previous studies have demonstrated that 

ectopic expression of Gap43 along with one other growth-associated protein (either 

Cap23 or L1) in the adult mammalian CNS is sufficient to stimulate regrowth of axons 

that normally lack regenerative capacity (Bomze et al., 2001, Zhang et al., 2005). 

However the requirement for Gap43 in CNS neurons that are capable of fully 

regenerating severed axons has not been investigated.  

To test the hypothesis that gap43 re-expression is necessary for CNS regeneration in 

vivo, we assessed the ability of retinal ganglion cell (RGC) axons to regrow to the optic 

tectum in adult zebrafish following MO-mediated knockdown of gap43 expression.  MOs 

were delivered via retrograde transport at the time of optic nerve injury as described 

above (Fig. 9A). A fluoresceinated dextran tracer was deposited on the contralateral 

tectum four days after the original optic nerve injury to label only the RGCs that had 

successfully regenerated axons and reinnervated the target tissue (Fig. 9B). Thirteen 

days post-injury, retinas were dissected and prepared for cryosectioning and 

fluorescence imaging (Fig. 9C). Injured RGCs that had taken up the MO were identified 

by virtue of the red fluorescence from the lissamine tag (Fig. 10B, F, J).  RGCs with 

axons that had regenerated to the optic tectum were identified by their uptake of 

fluoresceinated dextrans, which appears yellow in the merged image (Fig 10C, G, K). 

We quantified the percent of RGCs that successfully regenerated by counting the  
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Fig. 8. Knockdown of regeneration-associated transcription factors does not alter 

neuronal identity. Representative images of the RGC layer from transverse sections 

through regenerating adult retinas treated with control or targeted lissamine-labeled MOs 

(B, E, H, K, N, Q, T) and preserved four days after optic nerve transection. The effect of 

MO-mediated gene knockdown on neuronal identity was assessed by immunostaining 

with zebrafish HuC/HuD antibody (C, F, I, L, O, R, U). Nuclei of all cells were stained 

with DAPI (A, D, G, J, M, P, S). Expression of the HuC/HuD antigen was unaffected by 

MO treatment, confirming normal neuronal identity of RGCs after transcription factor 

knockdown. Scale bar = 20μm 
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Fig. 9. Timeline for retinotectal regeneration assay. Lissamine-labeled morpholinos 

were delivered to the RGC cell bodies through retrograde transport at the time of optic 

nerve transection. Four days post-injury, fluoresceinated dextran was placed on the 

contralateral tectum to back-label regenerating RGC axons. Retinas were dissected 13 

days post-injury, prepared for cryosectioning, and imaged using wide-field fluorescence 

microscopy.

Day 0 
Optic nerve 
injury and 

morpholino 
delivery 

Day 4 
Retrograde 
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the tectum 
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Fig. 10. Gap43 knockdown disrupts retinotectal regeneration. Representative images of the RGC layer from 

transverse sections through uninjured retina (A-D), regenerating adult retinas treated with either control MO (E-H) 

or gap43 MO (I-L). Lissamine-labeled morpholinos (red) were delivered to RGCs through retrograde axonal 

transport after proximal optic nerve transection (F, J). RGC axons regenerating to the tectum were retrogradely 

labeled with fluoresceinated dextran (green) four days post injury (C, G, K).  Retinas were harvested 9 days after 

tectum labeling, cryosectioned and coverslipped with DAPI mounting medium to stain the nuclei (blue). RGCs 

treated with control MO displayed robust re-growth as evident by the co-localization of MOs and tracer (H, white 

arrow). In contrast, few RGCs regenerated in retinas treated with Gap43 MO, as evident by lack of co-localization 

with tracer (L, yellow arrow). Scale bar = 20 μM 
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number of regenerated RGCs (fluorescein-dextran uptake, green/yellow) dividing by the 

number of injured neurons (lissamine-MO, red). We observed that 2-weeks post optic 

nerve transection, 50-60% of the injured RGCs treated with the control MO had 

regenerated to the contralateral tectum (Fig. 11). In contrast, MO-mediated 

downregulation of gap43 resulted in a sharp decrease in number of RGCs re-growing to 

the tectum (Fig. 11), with only ~3% of injured neurons showing complete axon 

regeneration. These results establish that upregulation of the Gap43 protein in response 

to injury is essential for the successful re-establishment of retinotectal projections 

following optic nerve transection. 

Transcription factors are differentially required for regenerative gap43 reporter 

expression 

Given the importance of injury-induced gap43 expression in retinotectal regeneration, we 

next sought to identify the transcription factors responsible for regeneration-associated 

induction of the gap43 gene. We previously demonstrated that a 3.6 kb gap43 promoter 

fragment from pufferfish is sufficient to promote reporter gene expression during 

zebrafish development and after optic nerve injury in a manner that recapitulates 

endogenous zebrafish gap43 expression (Udvadia et al., 2008). Furthermore, we found 

that the regeneration-specific gap43 promoter regions contained putative binding sites 

for transcription factors commonly implicated in axon growth (Fig. 12).  Our studies 

focused on five transcription factors, Ascl1a, Atf3, cJun, Stat3, and p53, which had been 

shown to be important for axon growth in developing or cultured neurons, or during 

peripheral nervous system regeneration (Table 1).    

We tested the ability of the candidate transcription factors to induce regenerative gap43 

expression by assaying the effects of transcription factor knockdown on gap43 reporter 

gene activity in the injured adult zebrafish retina. As expected, the gap43-GFP reporter  
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Fig. 11. Knockdown of gap43 results in an ~20-fold decrease in RGC axon 

regeneration. The percentage of RGCs that regenerated axons to the optic tectum after 

gap43 knockdown was calculated. In control MO treated RGCs, ~50% of the injured 

axons regenerated back to the tectum 2 weeks post injury. gap43 MO treated RGCs 

display an ~20-fold decrease in axon regeneration, with 2.3% regeneration. n=4 error 

bars = SEM Statistical significance was assessed using t test (p<0.001).  
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Fig. 12. Putative binding sites for regeneration-associated transcription 

factors in the fugu gap43 gene promoter. Regions associated with 

developmental and regenerative gap43 expression are color-coded. Putative 

transcription factor binding sites are indicated within regeneration specific 

promoter regions.  tss- Transcription start site (Adapted from Kusik et al., 2010) 
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gene expression was strongly induced four days post-injury in retinas treated with the 

control MO (Fig. 13B), while RGCs treated with the gap43 MO displayed a complete 

reduction in reporter gene expression (Fig. 13E). MO-mediated knockdown of the 

various transcription factors had varying effects on reporter gene expression.  MOs 

targeting ascl1a, atf3, or jun all significantly prevented injury-induced gap43 reporter 

gene expression (Fig. 13H, K, N). This result suggests that ascl1a, atf3 and jun are 

acting in a synergistic manner rather than in an additive manner with regard to gap43 

activation. Stat3 MO also significantly impacted injury-induced gap43 reporter gene 

expression (Fig. 13Q), although not to the same extent as observed with ascl1a, atf3 

and jun knockdown. Surprisingly, knockdown of p53 has no significant effect on injury-

induced gap43 reporter expression (Fig. 13T). We conclude that there is a differential 

requirement for the candidate transcription factors in driving regenerative gap43 

promoter expression. 

We next quantified the relative contributions of the various candidate transcription 

factors to the upregulation of gap43 reporter gene expression in regenerating RGCs. We 

isolated RNA from regenerating retinas treated with transcription factor MOs at 4 days 

post-injury and used quantitative PCR (QPCR) to determine the effects of transcription 

factor knockdown on injury-induced gap43 reporter gene expression. Our QPCR results 

corroborated what we observed qualitatively in the fluorescence imaging experiments 

described above. We observed a 50-fold increase in gap43 reporter expression in 

regenerating retinas compared to the uninjured contralateral control retinas (Fig. 14). In 

contrast, in retinas that received the ascl1a MO we observed virtually no reporter gene 

activity, while retinas receiving atf3 or jun MOs displayed an approximately four to six-

fold reduction in gap43 reporter gene expression compared to controls (Fig. 14). 

Consistent with the visualization of the in vivo reporter assays, we found that although  
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Fig. 13. Regeneration-associated transcription factors are differentially required 

for gap43 reporter gene activation during optic nerve regeneration. Representative 

images of the RGC layer from transverse sections through regenerating adult retinas 

treated MO and preserved four days after optic nerve transection. Lissamine-labeled 

morpholinos (red) were delivered to RGCs through retrograde axonal transport after 

proximal optic nerve transection (A, D, G, J, M, P,S). The effect of MO-mediated gene 

knockdown on injury-induced gap43 expression was assessed by gap43-GFP transgene 
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expression (green; B, E, H, K, N, Q, T). Expression of GFP in RGCs that have taken up 

the MO are visualized in the merged images (yellow; C, F, I, L, O, R, U), which include 

DAPI staining of nuclei in blue. Normally, RGCs express high levels of the gap43-GFP 

transgene in response injury as observed in samples treated with the negative control 

MO (B, C).  As a positive control, RGCs treated with gap43 MO show fully reduced 

gap43-GFP transgene expression as expected (E, F). In contrast, injury-induced gap43-

transgene expression is greatly reduced in RGCs upon c-jun knockdown (H, I) , ATF3 

knockdown (K, L) and Ascl1a knockdown (N, O). RGCs treated with STAT3 MO show a 

partial reduction in gap43-GFP transgene expression (Q, R) p53 knockdown has no 

effects on gap43-transgene expression (T,U)Scale bar = 20 μm. n=6 for all treatment  
groups. 
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Fig. 14. Cooperative regulation of regenerative gap43 reporter gene expression by 

a subset of regeneration-associated transcription factors. Total RNA extracts were 

prepared from control and regenerating retinas dissected four days after optic nerve 

transection and retrograde MO delivery. Relative fold change between uninjured and 

injured retina was determined by QPCR. Retinas treated with control MO show 

increased gap43 reporter gene expression in response to optic nerve transection. In 

contrast, individual knockdown of Ascl1a, Atf3 or cJun leads to a significant reduction in 

injury-induced gap43 reporter gene expression (b, p<0.0001). Knockdown of Stat3 

partially reduces gap43 reporter gene expression (c, p<0.001) and p53 knockdown has 

no effect on injury-induced transgene induction (a, not significantly different from 

control). Relative fold changes upon knockdown of Ascl1a (b), Atf3 (b) and cJun (b) are 

not statistically significant from each other but are statistically different from levels upon 

Stat3 knockdown (c) Statistical analysis: one-way ANOVA with Tukey post-hoc test. 

n=14 for control MO treated retinas, n=4 for each TF knockdown, error bars = SEM. 
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Stat3 knockdown reduces induction of gap43 reporter expression, the effect is 

significantly different from ascl1a, atf3 or jun knockdown (Fig. 14). Also consistent with 

the imaging analysis, we observed no significant effects on injury-induced gap-43 

reporter gene expression upon knockdown of p53 (Fig .14). We conclude that ascl1a, 

atf3 and jun expression are essential for promoting gap43 regeneration-associated gene 

expression in regenerating retinal ganglion cells, and that stat3 contributes to the 

maximal levels of gap43 expression. 

Regulation of injury-induced gap43 expression is evolutionarily conserved 

Although fugu and zebrafish diverged over 300 million years ago, we previously 

demonstrated that the fugu gap43 promoter is functionally conserved and promotes 

reporter gene expression in same spatial and temporal manner as the endogenous 

zebrafish gap43 gene (Udvadia, 2008). However, since the genomic region upstream of 

the zebrafish gap43 remains recalcitrant to sequencing efforts, we were unable to 

determine the level of sequence conservation in the gap43 promoter regions between 

the two fish. Thus, it was necessary to determine if the effects of candidate transcription 

factor knockdown on the endogenous gap43 gene were comparable to those we 

observed with the reporter gene. 

We used QPCR to test the effects of candidate transcription factor knockdown on the 

regeneration-associated expression of endogenous zebrafish gap43 gene. As previously 

reported, optic nerve injury leads to significant upregulation of endogenous gap43 gene 

transcription, which is what we observed in RGCs treated with the control MO (Fig. 15). 

Knockdown of the individual transcription factors had effects similar to those we reported 

above on the reporter gene. As with the reporter gene, we observed that ascl1a, atf3 

and jun knockdown resulted in substantial reduction of gap43 expression (8-16 fold 

reduction), while p53 knockdown had no effect on gap43 expression (Fig. 15). Stat3  
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Fig. 15. Transcription factors regulating regeneration-associated gap43 gene 

expression are functionally conserved between highly divergent teleost species. 

Total RNA extracts were prepared from control and regenerating retinas dissected four 

days after optic nerve transection and retrograde MO delivery. Relative fold change 

between uninjured and injured retina was determined by QPCR. Retinas treated with 

control MO show increased endogenous gap43 expression post optic nerve transection. 

In contrast, individual knockdown of Ascl1a, Atf3 or cJun leads to significant reduction in 

endogenous gap43 expression (b = p<0.0001). Knockdown of Stat3 partially reduces 

endogenous gap43 expression (c = p<0.001) and p53 knockdown has no significant 

effect on endogenous gap43 induction (a, not significantly different from control). 

Relative fold changes upon knockdown of Ascl1a (b), Atf3 (b) and cJun (b) are not 

statistically significant from each other but are statistically different from levels upon 

Stat3 knockdown (c). Statistical analysis: one-way ANOVA with Tukey post-hoc test. 

n=16 for control MO treated retinas, n=4 for TF knockdown, error bars = SEM 
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knockdown had significantly less of an impact on gap43 expression than knockdown of 

ascl1a, atf3 or jun, reflecting the same trend we observed with the reporter gene (Fig. 

15). However, one difference we observed was that stat3 knockdown appeared to have 

a more substantial effect on endogenous gap43 expression (2-fold reduction, see Fig. 

15) than on the reporter gene expression (20% reduction, see Fig. 14). We conclude that 

the transcription factors regulating regeneration-associated gap43 expression are 

evolutionarily conserved, and that Ascl1a, Atf3, and cJun, act in a synergistic fashion to 

promote expression. 

Ascl1a, Atf3 and cJun do not transcriptionally regulate each other during optic 

nerve regeneration 

Based on our finding that knockdown of any one of the three transcription factors, 

ascl1a, atf3, or jun severely impacted regenerative gap43 expression, we tested the 

possibility that these transcription factors transcriptionally regulated each other in 

response to optic nerve injury. We used QPCR to compare the expression of each 

transcription factor in regenerating retinas after uptake of MOs targeting either of the 

other two transcription factors. We found no significant differences in injury-induced 

expression of ascl1a, atf3, or jun under any of the conditions (Fig. 16), suggesting that 

regenerative expression of transcription factors Atf3, Ascl1a and cJun are not dependent 

on each other. This finding leaves open the possibility that these transcription factors 

work cooperatively, by either forming complexes, or by otherwise facilitating promoter 

binding to regulate regeneration-associated gap43 expression. 

Transcription factors necessary for re-establishment of retinotectal projections 

after optic nerve injury 

We demonstrated that previously identified regeneration-associated transcription factors, 

Ascl1a, Atf3, cJun, Stat3, and p53 have differential activity with regard to regulating  



  54  

 

                       
 
 
  
 
 
 
 
   
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

      
      
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ctrl atf3 jun
0

2

4

6

8

10

12

Morpholino treatment

R
e
la

ti
v
e
 a
s
c
l1
a
 m

e
s
s
a
g

e
 l
e
v
e
ls

Ctrl ascl1a jun
0

2

4

6

8

10

12

14

16

Morpholino treatment

R
e
la

ti
v
e
 a
tf
3
 e

x
p

re
s
s
io

n
 l
e
v
e
ls

Ctrl atf3 ascl1a
0

2

4

6

8

Morpholino treatment

R
e
la

ti
v
e
 j
u
n

 e
x
p

re
s
s
io

n
 l
e
v
e
ls

A B 

C 

Fig. 16. Upregulation of ascl1a, atf3 
and jun transcription factors during 
optic nerve regeneration are not 
dependent on each other. 
Total RNA extracts were prepared from 

control and regenerating retinas 

dissected four days after optic nerve 

transection and retrograde MO delivery. 

Relative fold change of ascl1a, atf3, or 

jun levels between uninjured and injured 

retina was determined by QPCR. (A) 

There is no significant difference in 

regenerative expression of ascl1a upon 

Atf3 or cJun knockdown (B) There is no 

significant difference in regenerative 

expression of atf3 upon Ascl1a or cJun 

knockdown (C) There is no significant 

difference in regenerative expression of 

jun upon Atf3 or Ascl1a knockdown. 

Statistical analysis: one-way ANOVA p 

value = 1 (Not significant), error bars = 

SEM. n=4 for each 
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gap43 expression after optic nerve injury. We next wanted to determine how the ability 

to ability of these transcription factors to regulate gap43 expression correlated with their 

overall ability to promote successful CNS axon regeneration. Given that each of these 

transcription factors is likely to regulate additional regeneration-associated genes, we 

hypothesized that a transcription factor that did not regulate gap43 expression, such as 

p53, could still have the potential to impact overall regeneration. To address this 

possibility, we used the same method outline in Fig.9 to test how MO-mediated 

knockdown of ascl1a, atf3, jun, stat3, or p53 affected retinotectal regeneration.  

Our results demonstrate a direct correlation between the ability to promote regenerative 

expression of gap43 and the ability to promote retinotectal regeneration (Fig. 17). We 

observed that knockdown of ascl1a, atf3, and jun nearly prevented regeneration 

altogether, while knockdown of stat3 caused a partial reduction in regeneration, and 

knockdown of p53 had no effect on regeneration. We quantified the results by 

calculating the percent regeneration as described above. We found that after ascl1a or 

atf3 knockdown, which nearly abolished regenerative gap43 expression (Fig. 15), only 1-

3% of injured neurons show complete axon re-growth to the tectum (Fig. 18). This is 

similar to the percentage of RGCs that regenerated after gap43 knockdown (Fig. 11). 

Knockdown of jun permitted only 20% regeneration, while stat3 knockdown still allowed 

30% regeneration compared to the 50-60% regeneration observed with the control MO 

(Fig. 18). Finally, similar to its effects on gap43 expression, knockdown of p53 did not 

significantly impact axon re-growth to the tectum (Fig. 18). These results identify gap43 

is a significant regeneration-associated target of Ascl1a, Atf3, cJun, and Stat3, and 

demonstrate that the ability to upregulate gap43 expression after CNS injury clearly 

correlated with successful CNS regeneration.  
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Fig. 17. Ability of candidate transcription factors to promote regeneration is correlated with their ability to promote 

regenerative gap43 expression. Representative images of the RGC layer from transverse sections through regenerating adult 

retinas treated with control MO (B) or morpholinos targeting candidate transcription factors  (F, J, N, R, W). Lissamine-labeled 

morpholinos (red) were delivered to RGCs through retrograde axonal transport after proximal optic nerve transection (B, F, J, N, 

R, W). RGC axons regenerating to the tectum were retrogradely labeled with fluoresceinated dextran (green) four days post-

injury (C, G, K, O, S, X).  Retinas were harvested 9 days after tectum labeling, cryosectioned and coverslipped with DAPI 

mounting medium to stain the nuclei (blue). Control MO treated RGCs displayed robust re-growth as evident by the co-

localization of MOs and tracer (D, white arrow). In contrast, few RGCs regenerated in retinas treated with ascl1a MO (H), atf3 

MO (L), jun MO (P) and stat3 MO (U) as evident by lack of co-localization with tracer (yellow arrow). Scale bar = 20 μM 
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Fig. 18. Expression of ascl1a and atf3 are required for re-establishment of 

retinotectal projections after optic nerve transection. Quantification of the 

percentage of RGCs that received the MOs and were able to regenerate axons to the 

optic tectum.  Compared to controls (n=9), RGCs receiving ascl1a and atf3 MO show 

(n=4) exhibited significantly reduced optic nerve regeneration. RGCs treated with jun 

and stat3 MO display reduced regeneration compared to controls. p53 MO treated 

RGCs regenerated to the same extent as controls. (**=p<0.01,****=p<0.0001). Percent 

axon regeneration upon ascl1a (b), atf3 (b) and jun (b) knockdown are not different from 

each other but are different from stat3 knockdown (c). Statistical analysis: ONE- way 

ANOVA with Tukey post hoc. n=3- 4 per treatment group, error bars = SEM 

 

  

 

Ctrl ascl1a atf3 jun stat3 p53
0

10

20

30

40

50

60

70

Morpholino treatment

%
 A

x
o

n
 r

e
g

e
n

e
ra

ti
o

n

**** ****

**

****

a

b
b

b

c

a

****

b



  59  

 

 

Conclusions and summary: 

Using a combination of in vivo regeneration assays and in vivo reporter assays, we have 

identified specific transcriptional complexes underlying successful CNS regeneration in 

fish. We first demonstrated that Gap43 expression in response to optic nerve injury is 

necessary for successful re-innervation of transected RGC axons in the tectum. We 

have next used Gap43, as a probe to identify transcriptional regulatory pathways 

modulating gene expression and axon outgrowth in response to CNS injury. 

 Previously, we have utilized the pufferfish gap43 promoter as a proxy to 

endogenous zebrafish gap43 gene to identify promoter regions indispensable for 

initiation of gap43 expression in response to optic nerve injury. Current work extends 

these findings by revealing specific transcription factor complexes required in re-initiating 

gap43 expression upon CNS injury. Induction of regenerative gap43 expression in 

response to CNS injury is dependent on transcription factors Ascl1a, Atf3, cJun and 

Stat3. The function of these transcription factors in driving regenerative gap43 

expression is well conserved between highly divergent teleost species. We also observe 

that knockdown of any one of the transcription factors, Ascl1a, Atf3 or cJun, appears to 

greatly diminish regenerative gap43 expression and correspondingly axon regeneration. 

This finding reveals the cooperative action of Ascl1a, Atf3 and cJun in driving 

regenerative gap43 expression in fish, the implications of which are discussed in further 

detail in the next chapter. Together, these findings enhance our understanding of 

transcriptional pathways underlying successful CNS regeneration, revealing potential 

pathways that could be targeted to improve CNS regeneration in mammals. 
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CHAPTER IV 

General Discussion 

Summary of key findings 

Using a combination of in vivo reporter and regeneration assays, we have 

identified gene regulatory pathways underlying successful CNS regeneration in 

fish. We show that gap43 re-expression post-injury is critical for RGCs axons to 

re-establish tectal connections following optic nerve transection. We demonstrate 

that Gap43 expression during regeneration is regulated by the transcription 

factors Ascl1a, Atf3, cJun and Stat3. Furthermore, we show that the impact of 

these transcription factors on axon outgrowth is proportional to their impact on 

regenerative gap43 expression. In particular, Ascl1a, Atf3 and cJun are essential 

and appear functionally intertwined in their requirement for initiating regenerative 

gap43 expression in a manner that is evolutionarily conserved across teleost 

evolution. These results reveal a cell intrinsic mechanism that regulates the 

ability of CNS neurons to switch to a growth state and mount a functional 

regenerative response. The significance of these results in the context of the 

broader CNS regeneration field and the future directions in which they may lead 

are discussed below. 

Growth associated protein-43 in CNS regeneration 
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Gap43 is a growth-associated protein heavily enriched in growth cone 

membranes during nervous system development and regeneration (Skene., 

1989, Benowitz and Routenberg, 1997). Expression of Gap43 is augmented 

during peripheral nervous system regeneration (Chong et al., 1992) and certain 

types of CNS injuries (Sommervaille et al., 1991). Conceptually, most research 

on Gap43 has focused on testing whether forced expression of Gap43 is 

sufficient to enhance CNS regeneration in mammalian neurons, that normally fail 

to mount a successful regenerative response (Bomze et al., 2001 , Zhang et al., 

2005). In contrast, we have addressed the question of whether Gap43 is 

necessary for successful CNS regeneration. 

 

We observe that in the absence of Gap43, there is a dramatic reduction in the 

number of RGC axons successfully re-innervating the optic tectum. Our findings 

demonstrate that re-expression of Gap43 following injury is necessary and critical 

for successful CNS regeneration. In this study, we have focused on identifying 

the effects of Gap43 knockdown on initial axon outgrowth to the tectum.  The 

impact of Gap43 knockdown 30 and 60 days post-injury, correlating with ensuing 

stages of regeneration involving synaptic refinement are important questions to 

study in the future. The main focus of this work is transcriptional regulation of 

Gap43 and corresponding effects on axon regeneration. However, Gap43 

function is also regulated at the level of post-translational modifications such as 

phosphorylation. To fully understand the contributions of Gap43 to successful 
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CNS regeneration, it will also be necessary to understand how post-translational 

regulation of Gap43 affects axon re-growth. 

 

Gap43 is a major substrate of protein kinase C (PKC) in axonal growth cones 

and phosphorylation by PKC impacts Gap43 localization and its interactions with 

other proteins. Phosphorylated Gap43 is localized to areas of the growth cone 

membranes that are engaged in productive interactions with the substrate (Dent 

and Meiri, 1992). In contrast, unphosphorylated Gap43 is localized to regions of 

the growth cone that are retracting (Dent and Meiri, 1992). Constitutively 

phosphorylated GAP43 promotes f-actin-regulated filopodial formation, whereas 

unphosphorylated Gap43 modulates microtubule dynamics (Nguyen et al., 2009). 

Since the capacity of growing neurons to respond to directional pathfinding cues 

is critically dependent on the balance of microfilament and microtubule dynamics 

in the growth cones (Bouquet and Nothias 2007, Pak et al 2008, Nguyen et al., 

2009), regulation of Gap43 phosphorylation is thought to function by modulating 

axon growth and guidance in response to external cues in the developing 

landscape. However, its role in the regenerating landscape is less clear. 

 

In fish, during optic nerve regeneration, there is a biphasic pattern of 

phosphorylated gap43 mRNA and protein correlating with key regenerative 

phases (Kaneda et al., 2008). The initial peak in phosphorylated Gap43 at 4-10 

days following injury corresponds to the increase in axon re-growth to the tectum. 
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The second peak 30-80 days post injury corresponds to synaptic refinement of 

retinotectal topography (Kaneda et al., 2008). In transient transgenic experiments 

in developing zebrafish, Gap43 phosphorylation was shown to be critical for the 

growth and branching of retinotectal arbors. Thus, it is possible that the 

regulation of Gap43 phosphorylation in retinal axons post-injury is also likely to 

impact target re-innervation and subsequent synaptic refinement.  

 

In our lab, we have generated stable transgenic zebrafish lines that can be 

induced to express wild type gap43 or a mutant form of gap43 (gap43S42A) that 

cannot be phosphorylated by PKC (Forecki and Udvadia, in preparation). These 

lines allow temporal control in the induction of wild type and mutant Gap43. 

Inducing the mutant protein at various stages of retinal ganglion cell development 

causes axon growth and guidance defects in the formation of retinotectal 

connections. Recent evidence has emerged that suggests that under conditions 

that permit mammalian optic nerve regeneration, re-growing RGC axons often 

show mistargeting and misguidance (Pernet and Schwab, 2014). This suggests 

the importance in understanding the role of axonal guidance cues and how they 

are transduced intracellularly to ensure successful target re-innervation.  Future 

studies using the inducible gap43 S42A zebrafish line could be used to address 

the importance of Gap43 phosphorylation in transducing guidance signals that 

lead to successful retinotectal regeneration.  

 



! 64!

Candidate transcription factors – Role in driving regenerative gap43 

expression and CNS regeneration 

Previously we identified regeneration specific DNA elements within the fugu 

gap43 promoter containing putative binding sites for several regeneration-

associated candidate transcription factors such as Ascl1a, Atf-3, cJun, Stat3 and 

p53 among others (Kusik et al., 2010). Notably, all of these transcription factors 

were shown to be induced several fold following optic nerve transection in 

zebrafish (Veldman et al., 2010), making them strong candidates for 

transcriptional regulation of regenerative gap43 expression. We performed gene 

knockdown experiments to test the hypothesis that these candidate transcription 

factors are required for gap43 re-induction after injury. Our objective was to 

utilize gap43 as a model to understand regulatory pathways underlying 

successful regeneration in fish.  In the following sections I will elaborate on the 

key findings and relevance for each candidate transcription factor with respect to 

regulation of growth-associated gene expression and CNS regeneration.    

cJun 

The AP-1 transcription complex regulates neural development and consists of 

homo- or hetero-dimeric complexes between members of the Jun, Fos, and 

ATF/CREB families (Smita and Patodia., 2012). Jun is activated as an immediate 

early gene (IEG) following nerve injury and persists at high levels in injured 

neurons during the entire peripheral regenerative process (Herdegen et al., 1991; 

Kenney and Kocsis, 1998; Mason et al., 2003; Raivich et al., 2004; Lindwall and 
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Kanje, 2005; Ruff et al., 2012). In a facial nerve transection model, neuronal 

deletion of jun results in strongly reduced target innervation and delayed 

functional recovery, concomitant with a loss of Cd44, galanin and integrin 

expression (Raivich et al., 2004).  In the mammalian CNS, overexpression of jun 

leads to cortical neurite outgrowth  (Lerch et al., 2014).  

 

Surprisingly, the forced expression of jun in cortical slices did not lead to 

increases in expression of Gap43 or Integrin alpha 7, both considered potential 

downstream targets of JUN (Lerch et al., 2014, Schaden et al., 1994, Weber and 

Skene, 1998, Ekstrom et al., 2003). In contrast, our results show that during 

successful CNS regeneration in fish, cJun is required for inducing regenerative 

gap43 expression. While this may reflect a species-specific difference, we 

speculate that forced expression of cJun in cortical slices alone is not sufficient to 

induce gap43 expression because the neurons are still lacking the proteins that 

heterodimerize with cJun to form transcriptional activators. cJun homodimers 

have a lower affinity for AP-1 promoter sites compared to cJun/cFos or cJun/Atf3 

heterodimers (Halazonetis et al., 1988). In addition, Overexpression of cJun 

might result in the formation of aberrant homodimeric transcriptional complexes 

that result in transcriptional repression. Thus, it is possible that cJun has dual 

functions during axon regeneration. cJun homodimers may be necessary for 

repressing genes that inhibit regeneration, while cJun heterodimers may be 

necessary for activating genes the promote axon growth. 
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 We observe that knockdown of jun results in a significant reduction in the 

number of severed axons re-growing to the optic tectum 2 weeks following injury. 

This reduction in axon regeneration is proportional to the ability of cJun to drive 

regenerative gap43 expression. Thus, cJun has a conserved role in driving axon 

growth across species and is a critical component of successful CNS 

regeneration.  

 

Atf3 

Atf3 belongs to the bZIP family of transcription factors, and forms heterodimeric 

interactions with bZIP transcription factors from the AP-1 and CEBP families (Hai 

and Curran, 1991; Hai and Hartman, 2001). Atf3 is normally expressed at basal 

levels, but is rapidly induced by peripheral nerve injury in mammals (Tsujino et 

al., 2000; Raivich and Behrens, 2006; Hyatt Sachs et al., 2007; Zigmond and 

Vaccariello, 2007) and optic nerve injury in fish (Saul et al., 2010).  Homodimeric 

Atf3 complexes primarily act as transcriptional repressors (Nakagomi et al 2003, 

Chen et al 1996, Hai and Hartman, 2001). In contrast, the heterodimeric 

interactions of Atf3 and cJun result in transcriptional activation (Nakagomi et al 

2003, Hsu et al., 1992; Hai and Hartman, 2001). In vitro, expression of Atf3 along 

with cJun enhanced cJun-mediated neurite sprouting (Pearson et al., 2003). In 

vitro, Atf3 interactions with cJun were also important in initiating a signaling 

cascade involving upregulation of heat shock protein 27 (hsp27) and Akt 

activation leading to neurite elongation (Nakagomi et al., 2003). Transgenic mice 
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constitutively overexpressing Atf3 in uninjured DRG neurons show enhanced 

rates of peripheral regeneration, comparable to the rates observed with a pre-

conditioning nerve injury (Seijjfers et al., 2007). This enhancement in peripheral 

nerve regeneration was accompanied by a modest increase in expression of 

regeneration associated gene Sprr1a, but not Gap43 (Seijjfers et al., 2007).  

 

In fish, two independent studies have identified atf3 as one of the few genes 

showing >20 fold increase in expression 24 hours post optic nerve injury 

(Veldman et al., 2007, Saul et al., 2010). We observe that upon atf3 knockdown 

in regenerating RGCs, gap43 expression is dramatically reduced, confirming that 

atf3 expression is required for inducing regenerative gap43 expression. The Atf3 

protein is up regulated in response to optic nerve injury in both mammals and 

fish. One possibility is that the downstream gene targets activated by Atf3 

account for the differential ability of animals to regenerate the optic nerve. 

Consistent with this theory, we observe that Atf3 upregulation post-injury initiates 

gap43 transcription in fish, whereas similar gap43 re-induction was not observed 

when Atf3 was constitutively overexpressed in mammals (Sejjfers et al., 2007). 

One explanation for this difference is that constitutive overexpression of Atf3 may 

encourage Atf3 homodimer formation that abrogates gene activation. Thus, it 

may be that it is not simply the presence of Atf3 that is necessary to promote 

axon regeneration. Rather, key regeneration-associated gene activation may 

require the proper stoichiometry of Atf3 and other bZIP proteins for appropriate 

heterodimerization. Consistent with this interpretation, we observe that either atf3 
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or jun knockdown dramatically reduces optic nerve regeneration in vivo at levels 

proportional to the impacts on regenerative gap43 expression.  

 

Stat3 

Signal transducer and activator of transcription 3 (Stat3) is a well-studied 

transcription factor regulating several cellular processes including migration, 

proliferation, apoptosis and immune responses (Levy and Lee, 2002). Axonal 

Stat3 activated at the injury site has dual roles: 1) in retrograde injury signaling 

and 2) as a transcription factor that initiates regeneration associated gene 

transcription (Patodia and Raivich et al., 2012). We demonstrate here that Stat3 

is necessary for driving expression of an important regeneration-associated gene 

gap43. Also, effects of Stat3 knockdown on regeneration in vivo is proportional to 

the effects on gap43 expression.  

 

Our work complements studies that demonstrate that over expression of 

constitutively active forms of Stat3 is sufficient to initiate neurite outgrowth in 

neurons that are normally incapable of functional regeneration. In a 

transcriptional profiling study of intrinsic PNS factors in the postnatal mouse, 

Stat3 was found to be constitutively enriched in the PNS and was shown to 

enhance neurite outgrowth of cerebellar granule neurons in vitro (Smith et al., 

2011). In adult mouse RGCs, a constitutively active form of Stat3 increased axon 

outgrowth following injury, although pharmacological blockage of Rho/ROCK 
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pathway was required to prevent guidance errors observed in the regenerating 

axons (Pernet et al., 2013). Miao et al., 2006 demonstrated a requirement for 

Stat3 in the neurite outgrowth of rat primary sensory neurons. Baryere et al., 

2011 through time-lapse fluorescence microscopy demonstrated that Stat3 

promotes neurite outgrowth following PNS lesion, but seems to possess a phase-

specific role in promoting outgrowth. Specifically, the authors observed that Stat3 

is crucial for initiation of outgrowth, but not necessarily for sustaining axon growth 

(Baryere et al., 2011). Altogether these studies along with our findings confirm 

that Stat3 is an important mediator of regeneration and further downstream 

targets, in addition to gap43 remain to be identified. 

 

There is considerable evidence that suggests redundant roles for Stat3 and cJun 

in modulating axon regeneration. Patodia and Raivich et al., 2012 observed that 

in stat3 conditional knock out mice, expression of key regeneration-associated 

genes such as CD44, β1 integrin, CGRP, and galanin, as well as nuclear 

transport of Atf3 was reduced or abolished in some cases. Interestingly, cJun 

expression was unchanged in Stat3 conditional knock out mice. Considering 

Stat3 and cJun share some gene targets (Raivich et al., 2004, Patodia and 

Raivich., 2012), one can speculate that cJun and Stat3 have overlapping 

functions in promoting regeneration. The functional overlap with cJun could 

explain our finding that Stat3 knockdown does not impact either regenerative 

gap43 expression and axon regeneration to the same extent as the knockdown 

of other transcription factors. 
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Recently Jak/Stat signaling was also identified to mediate successful optic nerve 

regeneration in fish (Elsaedi et al., 2014). Surprisingly, in addition to stimulating 

axon growth-associated genes, Jak/Stat signaling also induced the expression of 

well-characterized negative regulators of axon regeneration namely Socs3 and 

Sfpq. While CNS regeneration proceeds in the zebrafish even in the presence of 

such inhibitory factors, knockdown of Socs3 and Sfpq leads to enhanced 

regeneration. The finding that CNS injury in fish induces similar negative 

modulators of axon regeneration to those observed in mammals is significant 

because it further validates the use of zebrafish as an appropriate model for 

vertebrate CNS regeneration. Understanding how fish overcome these common 

inhibitory signals to mount a successful regenerative response will be directly 

relevant to discovering therapeutics for human CNS nerve injuries. 

 

Ascl1a 

The basic helix-loop-helix (bHLH) transcription factor, Mash1 (aka Ascl1), is 

transiently expressed during the development of many neuronal subtypes and 

directly regulates genes involved in axon growth (Tomita et al., 1996, Johnson et 

al., 1990,Castro et al., 2011). In fish, Ascl1a is one of the earliest genes to be 

induced upon optic nerve injury and was shown to promote neurite outgrowth in 

dissociated retinal ganglion cells (Fausett et al., 2008). Although Ascl1a was 
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demonstrated to promote RGC neurite outgrowth in vitro, a direct role for Ascl1a 

in axon regeneration in vivo was not previously demonstrated. 

 

Ascl1a has been shown to be necessary in a different aspect of retinal 

regeneration that occurs in response to photoreceptor damage. In addition to 

regenerating damaged CNS axons, fish are also capable of stimulating 

neurogenesis in response to chemical or light damage of photoreceptors to 

replace the neurons lost due to cell death. This is accomplished by Mueller glia, 

which de-differentiate and form multipotent retinal progenitors (Raymond et al., 

2006; Bernardos et al., 2007; Fausett et al., 2008; Thummel et al., 2008; 

Ramachandran et al., 2010). In fish, expression of ascl1a was shown to be 

critical for reprogramming differentiated Mueller glia into actively dividing retinal 

progenitors (Fausett et al., 2008). Interestingly, Stat3, which has established 

roles in axon regeneration was shown to be necessary for maximal ascl1a 

expression and proliferation of Mueller glia during photoreceptor regeneration in 

fish (Nelson et al., 2012). In addition, tuba1a and pax6a, which are upregulated 

in response to axonal injury, are also downstream targets of Ascl1a in Mueller 

glia undergoing injury induced de-differentiation and proliferation (Fausett et al., 

2008, Ramachandran et al., 2010, Ramachandran et al., 2012). Thus 

photoreceptor cell death and optic nerve damage both elicit the Ascl1a pathway 

as part of two distinct regenerative responses involving neurogenesis and axon 

growth. 
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Given that the ascl1a gene was shown to be induced by optic nerve injury and 

promote neurite outgrowth in cultured RGCs, we investigated the ability of Ascl1a 

to initiate regeneration-associated gene transcription of gap43 and to promote 

target reinnervation after optic nerve transection. Previously, Fausett et al., 2008 

showed that Ascl1a induced regenerative expression of another regeneration-

associated gene, tuba1a, in fish after retinal injury. This induction was dependent 

on an E-box motif in the tuba1a promoter (Fausett et al., 2008). Promoter 

analysis of the fugu gap43 promoter has identified a similar teleost conserved E-

box motif (Kusik et al., 2010). We show that Ascl1a is essential for gap43 

expression during optic nerve regeneration, and that Ascl1a knockdown also 

greatly reduces axon re-growth to the tectum following optic nerve transection.  

 

Although the mammalian homologue of Ascl1a (Mash1) is not normally 

expressed upon photoreceptor cell death or RGC axotomy, forced expression of 

Mash1 in mammals has similar effects to the injury-induced Ascl1a expression in 

fish. For example, virally-mediated ectopic expression of Mash1 in either 

dissociated Mueller glial cultures or intact mouse retina was sufficient to induce 

neurogenesis (Pollack et al., 2013). Gene expression analysis of Mash1-infected 

Mueller glia showed the activation of retinal progenitor genes and concomitant 

downregulation of glial genes. Furthermore, in Mash1-infected cells the 

chromatin landscape surrounding retinal progenitor genes was converted from a 

repressive to an active state, reprogramming Mueller glia to a proliferating state 

to replace dying neurons after retinal injury.  
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To investigate whether forced expression of Mash1 would improve axon 

regeneration after spinal cord injury, our collaborators ectopically expressed 

Mash1 in noradrenergic brainstem neurons of adult rats (Williams et al., 

submitted). After complete transection of the thoracic spinal cord and 

implantation of a Schwann cell (SC) bridge, Mash1 led to increased 

noradrenergic axon regeneration into the SC bridge. In addition, axon regrowth 

was correlated with eventual partial recovery of locomotor function in the injured 

animals, supporting the therapeutic value of such an approach. Taken together, 

the Ascl1a knockdown studies in the fish and the Mash1 forced expression 

studies in mammals provide compelling evidence for an evolutionarily conserved 

role for Ascl1a/Mash1 in promoting regeneration through both neurogenic and 

axonogenic pathways. 

 

p53 

p53 is a member of a family of tumor suppressors and is known to carry out both 

pro-apoptotic and anti-apoptotic roles in the nervous system (Culmsee and 

Mattson, 2005, Jacobs et al., 2006). In addition, in vitro studies have 

demonstrated a role for p53 in inducing neurite outgrowth in PC12 cells, in part 

by regulating regeneration-associated genes Coro1b and Rab13 (Di Giovanni et 

al., 2006). Furthermore, in the PNS, which normally exhibits a robust 

regenerative response, p53 knockout mice display a significant decrease in the 

number of fibers re-innervating target muscles following facial axotomy (Di 
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Giovanni et al., 2006). In mammals, a novel transcriptional complex formed by 

acetylated p53 and the acetyltransferases CBP/p300, was recruited to the gap43 

promoter in vivo following facial nerve transection thereby driving regenerative 

gap43 and axon regeneration in vivo (Tedeschi et al., 2009).  

Surprisingly, our results show that p53 is not required for gap43 induction during 

optic nerve regeneration in fish. In contrast to findings that show that both gap43 

expression and axon regeneration in mice after facial nerve transection is 

dependent on p53 activity, we found that p53 knockdown had no significant effect 

on gap43 expression or target reinnervation after optic nerve transection in fish. 

(Tedeschi et al., 2009). These apparent differences in the requirement for p53 in 

promoting regenerative gap43 expression and regenerative axon growth could 

be due to at least two differences in experimental design. One possibility is that 

p53-dependent gap43 expression is a species-specific phenomenon. If this is the 

case it is not due to the lack of p53 binding sites within the teleost gap43 

promoter (Kusik et al., 2010) or to the lack of p53 induction after nerve injury 

(Veldman et al., 2007). Thus, it is possible that in the fish there are redundant 

pathways activated in response to injury that can compensate for the lack of p53. 

A second possibility is that gap43 is regulated differently after PNS injury and 

CNS injury. In support of differential regulation of growth associated genes, we 

have previously shown that activation of gap43 expression in regenerating RGCs 

requires additional promoter elements from those require to activate expression 

in developing neurons (Kusik et al., 2010). The regulation of another 

regeneration-associated gene, tuba1a, was also shown to have different 
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requirements for transcription during development and regeneration (Goldman 

and Ding, 2000). Future experiments comparing the role of p53, and other 

regeneration-associated transcription factors in CNS and PNS regeneration 

paradigms within the zebrafish model will help to distinguish between these 

possibilities. 

Combinatorial transcription factor regulation of regenerative gap43 

expression and axon outgrowth 

One of the important findings from this work is evidence that Ascl1a, Atf3 

and cJun act in a synergistic, rather than additive manner to promote 

transcription of gap43 gene during CNS regeneration. Combinatorial regulation 

by transcription factors has often been touted as the basis by which cells use 

minimal cellular resources to elicit complex signaling cascades. Recently there 

has been a steady increase in studies demonstrating evidence for combinatorial 

transcription factor regulation of a variety of cellular processes. The list includes 

but is not limited to terminal differentiation of the dopaminergic nervous system in 

C.elegans (Doitsidou et al., 2013), regulation of ion channel gene expression 

(Wolfram et al., 2014), determination of cardiac cell fates (Junion et al ., 2012), 

odorant receptor expression in D.melanogaster (Jafari et al., 2012), and 

patterning of chromatin regulators in human cells (Ram et al., 2011). More 

importantly, axonal guidance, recently demonstrated to be critical factor in 

determining regenerative success of RGCs axons during mammalian optic nerve 
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regeneration (Pernet and Schwab et al., 2014), has also been demonstrated to 

be regulated by a combinatorial transcription factor network (Zarin et al., 2014).  

 

A list of possible models for synergistic effects of candidate transcription factors 

is summarized in Fig.19. As previously discussed, we have tested and ruled out 

the possibility that candidate transcription factors regulate the expression of each 

other at the transcriptional level (Fig.16). In the context of axon regeneration, it is 

being increasingly recognized that manipulations with a single transcription factor 

or growth-associated gene rarely leads to robust re-growth confirming that 

successful regeneration is dependent on a multi-nodal transcription network that 

is highly connected rather than isolated (Tedeschi et al., 2012). There is plenty of 

evidence to suggest co-operative actions for Atf3 and cJun during axon 

regeneration (Pearson et al., 2003,Tsujino et al., 2000,Nakagomi et al 2003). In 

light of our current findings, it is not surprising that overexpression of Atf3 alone 

(Seijjfers et al 2007) or cJun alone (Learch et al 2014) in the mammalian CNS, 

did not lead to a corresponding increase in expression of gap43. Overexpression 

of either Atf3 or cJun alone, likely hampers heterodimer formation, which could 

even lead to transcriptional repression of target genes such as gap43. To test the 

possibility that cJUN and Atf3 heterodimerize to regulate key regeneration 

associated genes during zebrafish optic nerve regeneration (Fig.19), sequential 

chromatin immunoprecipitation on regenerating retinas may be performed. 

Interestingly, Ascl1a solely studied in the context of reprogramming Mueller glia 

into a proliferative state, is part of a cohort of transcription factors needed to re- 
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Fig. 19. Potential models for synergistic effects of candidate transcription 
factors. (A) Candidate transcription factors regulate each other at the level of 
transcription (B) Transcription factors cJUN and Atf3 heterodimerize to regulate 
key regeneration associated genes (C) Presence of anchor TF that creates a 
complex at the promoter of key regeneration associated genes (D) Simultaneous 
binding of multiple transcription factors leads to an open chromatin state thereby 
facilitating binding of other TFs due to increased DNA accessibility around 
promoters of key regeneration associated genes!
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activate regenerative gap43 expression. Further studies are needed to clarify 

whether Ascl1a, Atf3 and c-Jun induce expression of Gap43, through direct 

promoter occupancy during CNS regeneration.  

 

In addition to formation of heterodimeric complexes, Atf3 and cJun can also 

interact with other transcription factors such as Stat3, through utilization of co-

activators or by synergizing with transcription factors that bind to adjacent DNA 

binding sites. In vitro and in vivo studies have identified interacting regions in 

Stat3 and cJun that participate in cooperative transcriptional activation (Zhang et 

al., 1999). Interestingly, transcription of injury related enzyme DINE (damage 

induced neuronal endopeptidase) increased several-fold when transcription 

factor Sp1 acts as a scaffolding protein, mediating recruitment of Atf3, c-Jun and 

Stat3 to the DINE promoter in response to LIF upregulation (Kiryu-Seo et al., 

2008). The zebrafish homologue of LIF – M17 is upregulated in response to optic 

nerve lesion in fish (Elsaeidi et al., 2014) and regeneration specific regions of the 

fugu gap43 promoter also contain a putative site for Sp1.  Future studies may be 

carried out to test the possibility that Sp1-mediated recruitment of candidate 

transcription factors is also involved in our CNS injury paradigm (Fig.19). 

 

In conclusion, using gap43 regulation as a model, we have identified a highly 

conserved transcription factor network comprised of Ascl1a, Atf3, c-Jun and 

Stat3 as important mediators of successful CNS regeneration. In the future, more 
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focus will be placed on understanding how this network of transcription factors 

regulates other growth-associated genes and molecular components to 

eventually generate a gene regulatory code driving successful CNS regeneration 

in fish. Future studies should also focus on evaluating whether the same cohort 

of transcription factors are also required for other phases of regeneration namely 

axon guidance and synaptic refinement. Ulitmately, identifying specific regulatory 

mechanisms shared by several important regeneration genes will allow for 

optimal development of gene-based therapies. 

Evolutionary conservation of regeneration gene regulatory pathways 

Previously we have shown that gap43 promoter regions involved in regulating 

developmental axon growth are distinct from regions required for regenerative 

axon growth (Kusik et al., 2010). Furthermore, we found that cis-acting enhancer 

sequences required for regenerative axon growth are highly conserved across 

teleosts, but not mammals. These findings implied that these teleost conserved 

cis elements and the transcriptional pathways that impinge on these regeneration 

specific elements may contribute to species-specific differences in regenerative 

ability. The work presented here further supports the idea that regulatory 

mechanisms supporting regeneration-associated gene expression in response to 

CNS injury are well conserved in teleosts. We find that in addition to the cis-

acting elements, the trans-acting regulatory pathways are also highly conserved 

between pufferfish and zebrafish, which diverged approximately 300 million years 

ago (Yamanoue et al., 2006). Importantly, our work in conjunction with that of 

others on Ascl1a/Mash1 suggests that the downstream targets of the 
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regeneration-associated transcription factors are also conserved between fish 

and mammals, making transcription factor gene therapy a potentially feasible 

therapeutic approach. Together these results substantiate the use of fish to 

identify factors that are essential for successful CNS regeneration followed by 

subsequent validation in mice, with the ultimate goal of developing therapeutic 

approaches to promote regeneration in human patients suffering from CNS 

injuries or diseases. 

 

Although our results show that Ascl1a, Atf3, c-Jun, and Stat3 all contribute to the 

activation of gap43 expression in regenerating neurons, we cannot conclusively 

distinguish whether the effect is due to direct binding of the transcription factors 

to the gap43 gene or indirect regulation through other transcription factors. 

Chromatin immunoprecipitation (ChIP) assays on regenerating retina, will help 

determine whether our candidate transcription factors bind to fugu promoter 

regions in vivo to drive regenerative gap43 expression. If candidates do bind 

endogenous fugu promoter regions, specific cis-acting sequences bound to 

transcription factors in vivo will be delineated.  

The next step is to determine if binding sites for these critical transcription factors 

exist within the mammalian gap43 promoter/enhancer. Udvadia et al., 2001 

demonstrated that a 1kb regulatory region from rat gap43 promoter was able to 

direct transgene expression during nervous system development in zebrafish; 

however, the same rat gap43 promoter fragment was insufficient to direct 
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expression of transgene during regenerative growth. Furthermore, regeneration-

specific gap43 enhancer sequences that are highly conserved across fish 

species, but not between fish and mammals (Kusik et al., 2010) suggests that the 

sequences may have been lost due to genomic rearrangement or mutation. 

However, functional AP-1 sites and E-boxes, which bind cJun/Atf3 and Ascl1, 

respectively have been identified with mammalian gap43 promoters. Thus the 

lack of sufficient induction of the transcription factors in response to CNS injury, 

or the lack of the appropriate stoichiometry of the transcription factors is the more 

likely cause of differences between fish in mammals in the ability to induce 

regenerative gap43 expression. Finally, another possible difference in the ability 

to induce regenerative gap43 expression between fish and mammals may lie in 

the accessibility of the transcription factors to promoters of regeneration-

associated genes, which is discussed in more detail in the next section. 

 

Epigenetic control of axon regeneration 

Understanding epigenetic regulation of axon regeneration has gained wide 

interest in recent times, with studies uncovering the importance of modifying 

epigenetic regulators to promote axon regeneration (Puttangunta et al., 2014, 

Finelli et al., 2013, Trakhtenberg et al., 2012, Maki and Kimura., 2012., Gaub et 

al., 2011). It is being recognized that ultimately the capacity for regeneration 

might depend on plasticity of the cellular epigenome, which dictates the ability of 

the cell to respond to injury signals (Barrero et al., 2011).  For transcription 
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factors to effectively transcribe their target genes, chromatin remodelers or 

epigenetic factors are required to provide accessibility to DNA regions. This is 

perhaps the reason underlying the modest effect on axon re-growth upon Mash1 

overexpression in comparison to the robust effects observed in fish. Hence co-

expression with molecules/pathways that relax the chromatin such as p300 

(Gaub et al., 2011) may be required to form transcriptional complexes that are 

more capable of inducing changes in gene expression.  

The binding affinity for histones to DNA regions far exceeds the binding affinity of 

transcription factors to DNA regulatory elements.  In this context, simultaneous 

binding of multiple transcription factors like Ascl1a, Atf3 and cJun to the fugu 

gap43 promoter likely contributes to maintaining the “openness” of chromatin 

thereby allowing for increased transcription of gap43 gene as opposed to a single 

transcription factor binding event to the promoter (Fig.19). A similar mechanism 

was observed with engineered synthetic transcription factors and human gene 

activation (Pablo-Pinera et al., 2013). Many of the engineered transcription 

factors contributed to synergistic gene activation when delivered in combination, 

even though they failed to activate target genes when delivered alone (Pablo-

Pinera et al., 2013). Notably, not all combinations of engineered TFs lead to gene 

activation; certain combinations of synthetic factors caused repression of reporter 

gene as well. Thus, a thorough understanding of the interactions and epistasis of 

regeneration-associated transcription factors, and their impact on the chromatin 

landscape surrounding regeneration-associated genes encoding structural 

elements of the growth is needed. 
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Epigenetic modifications in response to axonal injury may provide key clues in 

understanding how gene expression for select regeneration-associated genes is 

modulated and sustained in response to injury. Consistent with this, Puttagunta 

et al., 2014 have identified that in response to retrograde signaling following 

sciatic nerve axotomy, positive chromatin remodeling occurs on the promoters of 

crucial regeneration associated genes such as gap43, galn and bdnf. 

Specifically, p300/CBP-associated factor (Pcaf) was responsible for acetylation 

of lysine 9 on histone H3 associated with promoters of regeneration-associated 

genes, along with a reduction in methylation of histone 3 at lysine 9. Notably, 

similar positive chromatin remodeling events are not observed in response to 

CNS injury. However, forced overexpression of PCAF in primary cultures of 

cerebellar granule neurons shifted the reduced acetylation on histone 3 of key 

gene promoters to positive enrichment (Puttagunta et al., 2014).  These findings 

are encouraging and support the notion that modifying epigenetic regulators may 

be one way to stimulate a transcriptional program for key regeneration 

associated genes in response to injury. Similar chromatin immunoprecipitation 

assays to decode the epigenetic environment surrounding fugu gap43 promoter 

in response to optic nerve injury in fish will clarify whether epigenetic regulatory 

pathways driving regeneration are conserved across species.   
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Final summary and future directions 

 We have identified gene regulatory pathways underlying successful CNS 

regeneration in fish. We show that gap43 re-expression post-injury is critical for 

RGCs axons to re-establish tectal connections following optic nerve transection. 

Using transcriptional regulation of gap43 as a model, we have identified a 

transcription factor cohort composed of Ascl1a, Atf3 and cJun, which is required 

for driving CNS regeneration in fish. This combinatorial regulatory pathway 

driving successful regeneration is highly conserved. This research adds to the 

body of work in understanding cell-intrinsic mechanisms underlying successful 

CNS regeneration, in an effort to discover novel targets for therapeutic 

intervention to improve CNS regeneration in mammals.  

 

While we have used gap43 as a model to identify pathways underlying 

successful regeneration, our ultimate goal is to identify a gene regulatory network 

code to target for therapeutic intervention in mammals. To this end, we have 

initiated efforts in identifying downstream functional gene targets for transcription 

factor cJun during optic nerve regeneration in fish. cJun was found to be the only 

transcription factor common between four different expression profiling datasets 

of PNS injury induced genes, clearly highlighting a role for c-Jun in mediating 

successful regeneration (Blackmore et al., 2012). We have utilized a combination 

of ChIP-Seq and RNA-Seq strategy to identify genes that are bound in vivo to 

cJun during optic nerve regeneration that also show reduced transcript levels 
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upon cJun knockdown as confirmed by RNA-seq. Analysis of these datasets will 

reveal functional targets of c-Jun during optic nerve regeneration and allow us to 

start building a gene regulatory network that underlies successful regeneration in 

fish. 
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