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ABSTRACT 
VIRAL HEMORRHAGIC SEPTICEMIA VIRUS (VHSV) GREAT LAKES 
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Abstract  

 
Viral hemorrhagic septicemia virus (VHSV) is one of the most devastating and 

problematic viral fish diseases to plague the European aquaculture industry, and due to its 

pathogenicity, disease course, mortality rates, and wide host range, remains one of the 

most pathogenic viral diseases of finfish worldwide. A new freshwater strain of viral 

hemorrhagic septicemia virus IVb (VHSV-IVb) in the Great Lakes has been found 

capable of infecting a wide number of naive species, and has been associated with large 

fish kills in the Midwestern United States since its discovery in 2005. In this study, the 

yellow perch, Perca flavescence, one such species documented in several fish kills 

affiliated with VHSV, was used as a research model to elucidate host-virus interactions to 

better understand the mechanisms of viral infection. A direct comparison of viral 

infection kinetics and net mortality among yellow perch stocks derived from distinct 

genetic and geographic regions found large variation in susceptibility to the disease, 

suggesting that genetic variance within a population can play a significant role in survival 

after infection with VHSV-IVb. Upon investigation of the early acute innate immune 
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response after exposure to the VHS virus, a significant up-regulation of Mx expression in 

the liver, as well as the inflammatory response genes IL-1� and SAA, in all three tissues 

sampled, head kidney, spleen, and liver, was directly correlated to viral load indicating 

the role of these genes in the initial stages of infection. Viral load increased most rapidly 

in the head kidney and spleen, suggesting that potential down-regulation of Mx in these 

tissues may represent a viral strategy to increase replication. Finally, when the pathology 

and distribution of the virus were monitored in different tissues of adult fish exhibiting a 

low level of VHSV infection over time, the finding of significant viral load in the gills 

and blood suggest that the sampling of these tissues may offer a more accurate, non-lethal 

alternative to viral screening from the currently, more traditional and lethal cell culture 

analysis of the head kidney/spleen. A significant viral load in the brain, however, 

particularly in the later stages of infection, also suggests that latent virus may remain in 

the brain neurons undetected in asymptomatic carriers of the virus, classifying the VHS 

virus as neurotropic, as well as a hemorrhagic. 
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Yellow Perch 
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Chapter 1 - Introduction & Objectives 
 
 
 

 

 

 

 

 

     Due to its broad host range and acute nature, viral haemorrhagic septicaemia (VHS) 

is one of the most problematic viral fish diseases to plague the aquaculture industry, and 

remains one of the most pathogenic viral diseases of finfish worldwide (Kim & Faisal, 

2011; Wolf, 1988). In areas of Europe, VHS infections in farmed rainbow trout 

(Oncorhynchus mykiss) have resulted in extremely high mortalities, causing extensive 

economic losses (Einer-Jensen et al., 2004; Olesen, 1998; Skall et al., 2005; Smail, 1999; 

Wolf, 1988) and, thus, is currently listed as a reportable disease by the World 

Organization for Animal Health (OIE, 2012). Viral haemorrhagic septicaemia virus 

(VHSV) isolates of marine origin have been identified in North America, Europe, and 

Asia where they cause disease in both farmed and wild species (Kim et al., 2003; King et 

al., 2001; Meyers & Winton, 1995; Mortensen et al., 1999; Nishizawa et al., 2002). In 

2005, a new freshwater strain of VHSV was isolated from tissue of an adult muskellunge, 

(Esox masquinongy), collected in 2003 from Lake St. Clair, Michigan, part of the Great 

Lakes of North America (Elsayed et al., 2006). This novel sublineage, named Great 

Lakes VHSV-IVb, was subsequently associated with massive fish kills that included 
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freshwater drum (Aplodinotus grunniens) (Lumsden et al., 2007), muskellunge, round 

goby (Neogobius melanostomas) (Groocock et al., 2007), gizzard shad (Dorosoma 

cepedianum), and yellow perch (Perca flavescens), in Lake St. Clair, Lake Erie, and Lake 

Ontario (Figure 1-1.) (Kim & Faisal, 2011). When VHSV was confirmed for the first 

time in the U.S. in the Great Lakes of North America in 2005, the United States 

Department of Agriculture Animal and Plant Health Inspection Service (USDA APHIS) 

immediately took action to prevent any further spread of the disease by issuing a Federal 

Order prohibiting the transport of any VHS-susceptible fish species from any VHS-

affected or at risk states without specific disease testing and inspection of the facility 

(Figure 1-2). In an effort to slow the spread of the virus to inland lakes and rivers, the 

Federal government ordered strict restrictions on the transfer of susceptible species from 

the Great Lakes watershed into other regions of the U.S. (USDA, 2008). Because of the 

severe pathogenicity of the disease and the ever-increasing number of host-environments 

in which the virus is found, the study of VHS remains a top priority worldwide. 

 

 

 

 

                                                                                                                           

     

 

 

Figure 1-1. A VHS-
induced fish kill 
documented in the 
Great Lakes of North 
America shortly after 
the discovery of a 
new freshwater strain 
of virus, VHSV-IVb 
(U.S. Fish & Wildlife, 

2008). 
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          September 9, 2008 
 

       Species regulated by title 9 CFR Parts 83.1 through 83.7, 93.900 and 93.910 through 

93.916 (the Viral Hemorrhagic Septicemia (VHS) Interim Rule) 

 
          The United States Department of Agriculture (USDA), Animal and Plant Health 
          Inspection Service (APHIS), Veterinary Services (VS) has identified the following 
          species as having originated in freshwater locations in the United States and/or Canada, 
          and as having been infected by VHS virus under natural (i.e. non-experimental) 
          conditions of exposure; and from which VHS virus has been isolated by cell culture, with 
          confirmation of strain identity through molecular detection. Anadromous fish species 
          that have migrated into freshwater and from which VHS strain type IV(a) is isolated are 
          excluded from this definition. 
 
          For regulatory purposes, presence of the viral pathogen and clinical expression of disease 
          caused by the virus are considered synonymous. 
 
         Black crappie                                                     Pomoxis nigromaculatus 

          Bluegill                                                              Lepomis macrochirus 

          Bluntnose minnow                                            Pimephales notatus 

          Brown bullhead                                                 Amieurus nebulosus 

          Brown trout                                                       Salmo trutta 

          Burbot                                                                Lota lota 

          Channel catfish                                                  Ictalurus punctatus 

          Chinook salmon                                                Oncorhynchus tshawytscha 

          Emerald shiner                                                  Notropis atherinoides 

          Freshwater drum                                               Aplodinotus grunniens 

          Gizzard shad                                                      Dorosoma cepedianum 

          Lake whitefish                                                   Coregonus clupeaformis 

          Largemouth bass                                               Micropterus salmoides 

          Muskellunge                                                      Esox masquinongy 

          Shorthead redhorse                                            Moxostoma macrolepidotum 

          Northern Pike                                                    Esox lucius 

          Pumpkinseed                                                     Lepomis gibbosus 

          Rainbow trout                                                   Oncorhynchus mykiss 

          Rock bass                                                          Ambloplites rupestris 

          Round goby                                                       Neogobius melanostomus 

          Silver redhorse                                                  Moxostoma anisurum 

          Smallmouth bass                                               Micropterus dolomieu 

          Spottail shiner                                                   Notropis hudsonius 

          Trout-Perch                                                       Percopsis omiscomaycus 

          Walleye                                                             Sander vitreus 

          White bass                                                        Morone chrysops 

          White perch                                                      Morone americana 

          Yellow perch                                                    Perca flavescens 

    

 
Figure 1-2. As of 2008, 28 new species of freshwater fish in the Great Lakes 
demonstrated susceptibility to VHSV-IVb resulting in the transfer of live fish to 
uninfected regions of the U.S. to become federally regulated (USDA, 2008). 
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             Genotypic analysis has classified VHSV as a negative-sense RNA virus. Its 

bullet shaped structure and 11kb genome have classified it as part of the Rhadboviridae 

family of the newly recognized Novirhabdovirus genus. While rhabdoviruses are among 

the most widely distributed viruses in nature, infecting plants, invertebrates and 

vertebrate hosts, the most well-known, and well-studied include the mammalian 

rhabdoviruses, rabies and vesicular stomatitis virus (VSV). The 11kb VHSV genome 

consists of six genes including,-the nucleoprotein (N), phosphoprotein (P), matrix protein 

(M), glycoprotein (G), non-virion protein (NV), and the viral RNA polymerase (L) 

(Figure 1-3A.) (Schutze et al., 1999). Like all negative-sense RNA viruses, once inside a 

host-cell the viral RNA cannot be directly accessed by host ribosomes to form proteins. 

Instead, the RNA must first be transcribed by its own viral RNA polymerase into a 

"readable" complementary positive-sense mRNA transcript. Thus, intact, functional viral 

polymerase (L) must be safely transported in the host cell by the virus in order for it to 

replicate and become infectious (Figure 1-3). 

     The sixth gene, which encodes a non-virion protein (NV) is unique to fish 

rhabdoviruses including VHSV and has resulted in their sub-classification into the 

novirhabdovirus genus. While the function of the non-virion protein remains unknown, a 

large variation in the NV genomic sequence and subsequent protein structure between 

fish rhabdoviruses suggests that there is a relatively low level of evolutionary constraint 

on the NV gene (Kurath et al., 1997). 
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Figure 1-3. The Rhabdovirus virus life cycle.  A simplified rhabdovirus life cycle can be 
divided into four phases. (1) The virus binds to the cell and enters by phagocytosis, (2) 
followed by fusion of the glycoprotein and matrix membrane to release the viral genome 
and viral polymerase into the cell cytoplasm (uncoating), (3) resulting in transcription of a 
positive-sense RNA that translated into viral proteins by the cellular endoplasmic 
reticulum (ER) and Golgi apparatus. (4) The pos-sense RNA is replicated back into a neg-
sense RNA and the life cycle completed by assembly of the viral components and release 

of the virus through budding (Schnell et al., 2010). 

+ 
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   The clinical signs of an acute VHS manifestation of the disease are often non- 

specific, appearing singly or in a combination of either dermal petichial hemorrhages, 

hemorrhaging at the base of the fins (Figure 1-4 & 1-5A), muscles, internal organs 

(Figure 1-5B), and exophthalmia (Figure 1-5C). Ascites is often observed upon necropsy. 

In acute forms of the disease, mortality is rapid and commonly as high as 100% in 

juvenile fish, and as much as 30-90% in adults. In chronic forms of the disease, however, 

fish become infected with the virus without showing any outward clinical signs or 

pathology of the disease (Batts & Winton, 2007; Skall et al., 2005). These fish experience 

a prolonged course with lingering low levels of mortality, and possibly shed the virus into 

the surrounding environment acting as covert carriers of the disease. In some hosts, a 

chronic infection is characterized by nervous behavior and erratic swimming (Kim & 

Faisal, 2010a; Wolf, 1988). Recent studies also demonstrate that the main portal of viral 

entry and replication is at the base of the pelvic and pectoral fins (Harmache et al., 2006; 

Montero et al., 2011). 

 

 

 

 

Figure 1-4. Juvenile northern pike exhibiting characteristic external clinical signs of VHS 
consisting primarily of severe hemorrhage throughout the body. Image by Dr. Mohamed Faisal 

(MSU,Lansing MI) 
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A.                                      B.                                              C. 

 

 

 

 

Figure 1-5. Clinical manifestation of VHS most often consists of (A.) moderate to 
severe petichial hemorrhage throughout the body, (B.) hemorrhage of the muscle and 
internal organs, (C.) swelling behind the eye, or exophthalmia. Images credit of Dr. Jim 

Winton (USGS, Seattle, WA), Dr. Mohamed Faisal (MSU, Lansing, MI), and Dr. Paul Bowser 

(Cornell, Ithaca, NY) 

 

 

 

 

 

 

 

 

 

History of VHSV  

     The first reported clinical signs of VHS infecting freshwater rainbow trout in Europe 

date back to 1938. It was not until 1962, however, that the virus was isolated and viral 

etiology confirmed. Until the late 1980s, the VHS virus was thought to exclusively target 

rainbow trout farmed in Europe until, in 1988, through routine viral screening of 

spawning salmonid broodstocks, a marine form of the VHSV was isolated for the first 

time in the Pacific Northwest in Washington State in chinook salmon (Oncorhynchus 

tshawytscha) and coho salmon (Oncorhynchus tshawytscha) (Winton et al., 1989). At the 

time, VHSV had never been isolated outside of Europe, therefore, it was speculated that 

the virus must have originated through imported Atlantic salmon eggs from Europe. In 

1990, however, a pacific cod (Gadus macrocephalus) caught in Prince William Sound, 

Alaska, exhibited lesions similar to those described in Europe. Upon examination by the 

pathology staff of the Alaska Department of Fish and Game, the marine strain of the virus 
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was again confirmed. This isolation provided the first evidence that a marine reservoir of 

the virus existed and may have led to the infected salmonids isolated earlier in 

Washington state (Amos et al., 1998). Following this discovery, isolations of VHSV 

became widespread and problematic in hatcheries along the marine coastal regions of 

North America, where it has been particularly associated with substantial mortality in 

Pacific herring (Clupea harengus pallas), Pacific hake (Merluccius productus), and 

walleye pollock (Theragra chalcomgramma) (Kocan et al., 1997; Meyers et al., 1999; 

Meyers & Winton, 1995). 

     Since its discovery in the North Pacific, VHSV has been found in other marine fish 

worldwide, including turbot (Scophthalmus maximus) farmed in the Baltic Sea, and olive 

flounder (Paralichthys olivaceus) farmed in Japan (Isshik et al., 2001; King et al., 2001; 

Mortensen et al., 1999; Nishizawa et al., 2002). As VHSV continued to be isolated from 

an increasing number of marine species around the world, it soon became clear that the 

virus was more geographically widespread and less species-specific than previously 

thought. With further genetic analysis, it was concluded that the freshwater virus, 

originally known to infect rainbow trout in Europe, was actually derived from the marine 

form of the virus (Skall et al., 2005). 

     In an effort to prevent the spread of this voracious pathogen, the European Union 

enforced strict restrictions on trade between zones where the pathogen was endemic, and 

between zones which were considered VHSV-free. While an aggressive VHS virus 

eradication program has successfully reduced the number of infected farms, the virus 

continues to be problematic throughout fish farms in continental Europe. Several studies 
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have recently indicated that VHS non-susceptible individuals may be acting as active 

covert carriers of VHS, serving as the primary source of viral spread into fish farms. It is 

suggested that these carrier fish act as viral reservoirs, continually shedding the virus at 

low to non-detectable levels while showing no clinical pathology of the disease. In 

addition, while the practice of pasteurizing fish feeds has significantly contributed to the 

reduction of VHSV in fish culture facilities, the introduction of the virus can still occur 

through the import of contaminated fish or fish eggs, or by waterborne virus in the water 

supply (Kurath, 2012). Once the virus establishes itself in a population, this opportunistic 

pathogen may remain hidden or latent in apparently healthy populations of fish until a 

significant stressor, such as spawning, sustained harassment by predators, severe 

temperature change, nutritional deprivation, or acute exposure to pollutants 

(hydrocarbons) trigger an active infection and subsequently lethal outbreak of the disease 

(Amos et al., 1998; King et al., 2001; Mortensen et al., 1999; Skall et al., 2005; Smail, 

1999). 

 

VHSV in the Great Lakes  

     The first isolate of VHSV was discovered in 2005 in the Great Lakes during a routine 

survey to determine the spread of the intracellular bacterium, Piscirickettsia sp., in adult 

muskellunge (Esox masquinongy) from Lake St. Clair, Michigan (Elsayed et al., 2006). 

Upon more intense investigation, the same exact strain of VHSV was then isolated from 

4 of 42 muskellunge that had been collected in 2003. Since no other form of the virus had 

been previously reported in Great Lakes fish species prior to this discovery, a study was 
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immediately initiated to sequence the virus in an effort to identify its possible source. 

Nucleotide sequence analysis demonstrated that this was an entirely new strain of 

freshwater VHSV, most closely related to the North American genotype IV of marine 

VHSV and clearly distinct from the three known European genotypes (Figure 1-6.). This 

implies that, the Great Lakes strain of freshwater VHS, now referred to as the North 

American IVb virus, evolved from the North American marine coastal virus, now 

referred to as IVa, through adaptation to its new freshwater hosts of the Great Lakes 

(Ammayappan & Vakharia, 2009; Einer-Jensen et al., 2004; Elsayed et al., 2006). 

     Following this discovery, in 2005 VHSV was associated with a large fish kill 

consisting of freshwater drum (Aplodinotus grunniens), muskellunge, round goby 

(Neogobius melanostomas), striped bass (Morone saxatilis), three-spined stickleback 

(Gasterosteus aculeatus), mud minnows (Fundulus heteroclitus), and brown trout (Salmo 

trutta) in Lake Ontario, as well as muskellunge in Lake St. Clair. In 2006, another large 

die-off of round goby and muskellunge in the St. Lawrence River, followed by significant 

fish kills of muskellunge, northern pike (Esox lucius), gizzard shad (Dorosoma 

cepedianum), smallmouth bass (Micropterus dolomieu), walleye (Sander vitreus), and 

yellow perch (Perca flavescens) throughout Lake St. Clair, Lake Erie and Lake Ontario 

(USDA, 2006), were all found to be associated with VHSV. In 2008, the U.S. 

Department of Agriculture, Animal and Plant Health Inspection Service, listed 28 

different fish species native to the Great Lakes as VHS-susceptible (Figure 1-2.); 

however this list is expected to grow as more potentially susceptible species are 

investigated. Since its discovery, VHS has been isolated in all five of the Laurentian 
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Great Lakes of North America, Lake Winnebago, WI, and several smaller inland lakes 

located in Michigan, Ohio, and New York (Figure 1-7.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6. Phylogenetic relationship of the glycoprotein sequences across 
48 different VHSV isolates. The Great Lakes strain M103GL (circled) 
forms its own unique sublineage IVb, whereas all other North American 
isolates collected thus far fall under sublineage IVa (from Ammayappan and 

Vakharia, (2009)). 
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Figure 1-7.  VHSV-IVb has been confirmed in each of the Great Lakes as 
well as several smaller lakes in the states of Michigan, Ohio, and New 
York (USDA-APHIS, 2010). 
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   The VHSV-IVb strain is noteworthy to the field of virology, as well as the wild 

fisheries and aquaculture industry, in that it represents a geographic invasion of an 

extensive freshwater ecosystem and it is the first time the virus has been known to cause 

large-scale epidemics in wild freshwater fish populations. Several distinct features set this 

virus apart from its European counterparts and its marine ancestors, the most striking 

being the broad new host range of freshwater fish species this virus has acquired in a very 

short period of time. Genetic typing of the virus isolated from fish kills throughout the 

Great Lakes currently indicate very low genetic diversity, implying that this is a very 

early point in the emergence of the virus. In contrast, the much more familiar and diverse 

European strain of freshwater VHSV continues to exclusively target only freshwater 

salmonids. Gradual, species-specific adaptation to a host environment based on 

successful replication and disbursement is the pathogenic behavior exhibited most 

commonly by viruses. However, it is very unusual to witness the evolution of this process 

over such a short period of time (Kurath, 2010). Therefore, studying the mechanisms of 

how such a virus can infect its host successfully, will not only provide valuable insight 

into the teleost immune system, but possibly offer insight regarding how viruses may 

quickly evolve to infect multiple host species with tremendous diversity and speed. 

 

The Yellow Perch as a Research Model  

     The discovery of a novel strain of viral hemorrhagic septicemia virus (VHSV) in the 

Laurentian Great Lakes and the associated fish kills have raised much concern over the 

ability of this virus to infect a large range of freshwater species with devastating 
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consequences. The yellow perch (Perca flavescens) has been a large part of many of the 

die-offs associated with VHSV in the Great Lakes, and thus, has been listed as a highly 

susceptible species to the disease (Kane-Sutton et al., 2010). The natural distribution of 

the yellow perch ranges throughout much of North America from the Northern provinces 

of Canada, into the eastern and southern United States. In addition, human introductions 

and dispersal has resulted in the yellow perch being introduced into several western 

regions of the United States (Figure 1-8.) (Brown et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-8. Native and introduced distribution of yellow perch 
in North America from (Bradford et al., 2008). While the virus 
has been contained primarily to the Great Lakes basin, the 
virus susceptibility and wide range of the yellow perch, 
however, may allow for the virus to spread undetected into new 
regions. 
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     The yellow perch is also known for its extremely high commercial and aquaculture 

value. Commercial fishing is predominantly successful in the Great Lakes, particularly in 

Lake Erie and in Green Bay, WI (directly connected to Lake Michigan) (Brown et al., 

2009). Yellow perch harvests from the Great Lakes peaked at 14,900 metric tons/year in 

the 1950s, but have continued to decline to 5,000 – 8,200 metric tons/year in the 1980s 

and 1990s (Malison, 2003) due to predation, pollution, invasive organisms, and over-

fishing. A high consumer demand, combined with an increase on commercial fisheries 

closures and restrictions, has thus fueled a recent increase in yellow perch aquaculture. 

The challenges and risks associated with preventing potential VHS outbreaks in fisheries 

and aquaculture systems outside of the Great Lakes have been high; however they can be 

expected to rise to an even greater extent if the virus is successful at spreading across the 

region. In addition, while the virus to date has seemingly been contained to the Great 

Lakes region, the high susceptibility of the yellow perch to the Great Lakes virus, 

combined with its wide range of habitats and distribution as a prey species, may allow 

this fish species to potentially act as a covert carrier, facilitating the spread of VHS into 

the inland rivers and lakes throughout North America. Thus, the yellow perch will serve 

as an ideal research model to aid in understanding how freshwater fish are recognizing 

this pathogen, as well as the mechanisms this virus can utilize to replicate and spread. 
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 Summary/Main Objectives 

     Using the yellow perch as a research model in a controlled laboratory setting, the basic 

objectives outlined in this study will aid in the preliminary development of a disease 

resistant stock, new methods of non-lethal sampling and enhanced viral detection, and 

contribute towards a greater understanding of the mechanisms of viral infection as well as 

the fish’s primary antiviral immune defenses. The first objective will compare differences 

in resistance or susceptibility to the Great Lakes strain of VHS within three different 

broodstock populations of fish with varying geographic and genetic origins. The second 

objective focuses specifically on elucidating the early immune response necessary for an 

effective defense against invading viral pathogens. Improving our understanding of the 

innate mechanism used by the fish to combat invading pathogens will not only result in 

improved aquaculture practices, potential vaccine development, and treatment strategies 

leading to more sustainable healthy fish populations, but contribute towards our greater 

understanding of the evolution of various immune system mechanisms and responses in 

lower vertebrates. The final objective will examine how and where the virus replicates 

and spreads within different tissues throughout the fish after exposure, ranging from the 

fins, gills, blood, liver, kidney, spleen, brain, and blood, and how this distribution 

changes over time. This knowledge will not only aid in our understanding of the viral 

mechanisms of infection, but may challenge the current methodologies in viral detection 

and surveillance as previously unknown potential reservoirs of the virus are explored. 
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 Main objectives are proposed in this study: 

 
 

I.    Assess the susceptibility of different yellow perch broodstocks of genetic 

variability and geographic origin to the Great Lakes strain of VHS IVb to 

evaluate the potential for a disease resistance stock. (Chapter 2) 

 

 

 

II.    Conduct an analysis of immunologically relevant tissue in yellow perch 

infected with VHSV describing innate immune response pathways 

characteristic to early, or pre-disease, stages of infection. (Chapter 3) 

 

 

 

III.    Determine how the relative distribution of virus within key internal organs    

   of infected fish develops and changes over the course of infection, as well as  

   identify potential organs where virus may be found in asymptomatic   

   carriers. (Chapter 4) 
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     "The Great Lakes strain of viral haemorrhagic septicaemia virus IVb (VHSV-IVb) is 

capable of infecting a wide number of naive species and has been associated with large 

fish kills in the Midwestern United States since its discovery in 2005. The yellow perch 

(Perca flavescens),a freshwater species commonly found throughout inland waters of the 

United States and prized for its high value in sport and commercial fisheries, is a species 

documented in several fish kills affiliated with VHS. In the present study, differences in 

survival after infection with VHSV-IVb were observed among juvenile fish from three 

yellow perch broodstocks that were originally derived from distinct wild populations, 

suggesting innate differences in susceptibility due to genetic variance. While all three 

stocks were susceptible upon water-born exposure to VHS virus infection, fish derived 

from the Midwest (Lake Winnebago, WI) showed significantly lower cumulative percent 

survival compared with two perch stocks derived from the East Coast (Perquimans River, 

NC and Choptank River, MD) of the United States. However, despite differences in 

apparent susceptibility, clinical signs did not vary between stocks and included moderate 

to severe haemorrhages at the pelvic and pectoral fin bases and exophthalmia. After the 

28-day challenge was complete, VHS virus was analyzed in subsets of whole fish that had 

either survived or succumbed to the infection using both plaque assay and quantitative 

PCR methodologies. A direct correlation was identified between the two methods, 

suggesting the potential for both methods to be used to detect virus in a research setting." 
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Introduction 
 

     Due to its broad host range and acute nature, viral hemorrhagic septicemia (VHS) is 

one of the most problematic viral fish diseases to plague the aquaculture industry, and 

remains one of the most pathogenic viral diseases of finfish worldwide (Kim & Faisal, 

2011; Wolf, 1988). In areas of Europe, VHS infections in farmed rainbow trout, 

Oncorhynchus mykiss, have resulted in extremely high mortalities, causing extensive 

economic losses (Einer-Jensen et al., 2004; Olesen, 1998; Skall et al., 2005; Smail, 1999; 

Wolf, 1988). Viral hemorrhagic septicemia virus (VHSV) isolates of marine origin have 

been identified in North America, Europe, and Asia where they cause disease in both 

farmed and wild species (Kim et al., 2003; King et al., 2001; Meyers & Winton, 1995; 

Mortensen et al., 1999; Nishizawa et al., 2002). In 2005, a new freshwater strain of 

VHSV was isolated from tissue of an adult muskellunge (Esox masquinongy), collected 

in 2003 from Lake St. Clair, Michigan, part of the Great Lakes of North America 

(Elsayed et al., 2006). This novel sublineage, named Great Lakes VHSV-IVb, was 

subsequently associated with large fish kills that included freshwater drum (Aplodinotus 

grunniens) (Lumsden et al., 2007), muskellunge, round goby (Neogobius melanostomas) 

(Groocock et al., 2007), gizzard shad (Dorosoma cepedianum), and yellow perch (Perca 

flavescens), in Lake St. Clair, Lake Erie, and Lake Ontario (Kim & Faisal, 2011). To 

date, the Great Lakes strain of VHSV-IVb has been isolated from at least 31 species of 

fish in the Great Lakes, several smaller inland lakes and the upper portion of the St. 

Lawrence River (Thompson et al., 2011a). Because of the severe pathogenicity of the 
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disease and the ever-increasing number of host-environments in which the virus is found, 

the study of VHS remains a top priority worldwide. 

     The yellow perch is well known throughout North America for its high value to 

aquaculture, commercial and sport fisheries. This species has also been included in 

several of the fish kills that have occurred throughout the region in association with the 

Great Lakes VHS-IVb virus, and was the primary species affected in a large die-off in 

central Lake Erie (Kane-Sutton et al., 2010). While yellow perch susceptibility to Great 

Lakes VHSV-IVb has been tested relative to other fish species (Kim & Faisal, 2010b), 

variations in susceptibility within different perch populations have not been addressed. 

Because yellow perch primarily live in lake ecosystems, gene flow between these inland 

ecosystems is limited and, thus, there are great genetic differences between populations. 

Therefore, populations of yellow perch that originate from different genetic backgrounds 

and geographic regions may have developed fundamental differences in their 

susceptibility or resistance to the virus. 

     In the present study, three yellow perch broodstocks derived from wild populations 

having different geographic origins and genetic backgrounds (Grzybowski et al., 2010; 

Todd & Hatcher, 1993), were challenged with VHSV-IVb to evaluate (measured by % 

survival) the VHS resistance of each stock. Offspring from the three stocks were 

propagated under identical conditions with environmental factors such as diet, water 

temperature, flow rates, and fish densities kept the same between fish stocks. Thus, with 

all other variables held equal, the genetic origins of the fish would be the principle 

component involved in disease susceptibility or resistance. 
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Materials and Methods   

Yellow perch stocks  

     The yellow perch populations used in the present study are part of a broodstock 

development program for aquaculture (Rosauer et al., 2011) at the University of 

Wisconsin-Milwaukee (UWM) School of Freshwater Science (SFS). The three 

broodstocks chosen for the study were originally derived in 2006 from the gametes of 

adult perch collected from three distinct locations: the Perquimans River of the 

Albemarle Sound (NC), the Choptank River of the Chesapeake Bay (MD), and Lake 

Winnebago (WI), a watershed connected to Lake Michigan by the Fox River. Thus, all 

three stocks originated from three separate drainage basins and genetic analyses 

confirmed that each represented a separate population (Grzybowski et al., 2010; Todd & 

Hatcher, 1993). Since their origin, two subsequent generations of these broodstocks have 

been produced from crosses within the stocks. Juvenile fish for the current study were 

produced from the second generation of crosses and were reared under identical 

environmental conditions at the UWM SFS Aquaculture Research Facility according to 

the guidelines of the Animal Care and Use Committee of the UWM as previously 

described (Rosauer et al., 2011).  

   

Virus challenge 

     When the juvenile perch were 1-2g, they were transferred to the USGS Western 

Fisheries Research Center in Seattle, WA and held for 6-8 weeks prior to virus challenge. 

Choptank River perch were used in a preliminary experiment to determine the dose of 
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VHSV for subsequent challenges (data not shown) and optimal dose was determined such 

that the full effect of the virus could be observed within 28 days post-infection. For the 

main challenge experiment, all three stocks of fish were exposed to VHSV-IVb by static 

water-borne immersion with aeration at the predetermined viral titre of 5 x 105 PFU mL-1 

for 2 hrs at 30 fish per tank (30 L) in triplicate tanks (n=90 fish) per treatment group. 

VHSV-IVb Great Lakes (isolate Muskie MI03) virus strain used in the challenge was 

propagated using the Epithelioma papulosum cyprini (EPC) cell line (Fijan et al., 1983a) 

and initial virus titre was determined by plaque assay (Batts & Winton, 2007). Initial 

water temperature was 10°C and raised 0.5°C daily until it reached 12°C for the duration 

of the 28 day experiment. Identical triplicate tanks of each fish stock serving as negative 

controls, were exposed to the same volume of tris-buffered Eagle's minimum essential 

medium (MEM-10) used to formulate the virus treatments at the same temperature 

regime. All control and virus challenge treatments were observed for 28 days and fish 

were fed every other day during the challenge. Dead fish were recorded and removed 

daily from each of the tanks. All survivors were euthanized after 28 days with an 

overdose of NaHCO3 buffered tricaine methanesulfonate (MS-222; Western Chemical 

Inc.). All fish in the study were immediately frozen and stored at -80°C until virus 

analysis could be performed. 

 

Virus analysis by plaque assay 

     Virus titre was determined in a representative subset of 7 fish that had succumbed to 

infection and 15 surviving fish from each yellow perch stock (total n= 66 fish, 22 fish 
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stock-1). Whole fish were diluted 1:8 (weight:volume) in MEM-0 and homogenized with 

a Stomacher-80 (Seward Laboratory Systems, Biomaster). Sample homogenates were  

transferred into 15 mL conical tubes and spun at 4°C for 10 minutes at 1000 x g. One 

milliliter (mL) of supernatant from each sample was removed to quantify infectious virus 

by plaque assay, and another 1 mL stored at -80°C to assess virus genome concentrations 

by qRT-PCR. For plaque assay, serial 10-fold dilutions (1:40 to 1:4 x 106) of tissue 

homogenate supernatants were plated in duplicate onto polyethylene glycol (7% PEG) 

treated EPC cell monolayers in 24-well plates. Cell-cultures were overlaid with 

methylcellulose and incubated at 15°C for 7 days before fixation with crystal violet-

formalin solution and plaque enumeration as previously described (Batts & Winton, 

1989a). Fish tissue viral titres of VHSV are reported as plaque forming units per gram 

(PFU g-1).  

 

Virus analysis by qRT-PCR 

     The qRT-PCR assay for the detection of VHS virus nucleic acids was developed and 

described by (Garver et al., 2011). Thawed 210 µL samples of homogenate supernatant 

were used for total RNA extraction using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. Complimentary DNA was synthesized from 1 µg RNA by RT-

PCR using the Applied Biosystems (ABI) High Capacity cDNA Reverse Transcription 

kit according to the manufacturer’s protocol. VHS virus primers (Forward primer 5'-

ATG AGG CAG GTG TCG GAG G-3', Reverse primer 5'-TGT AGT AGG ACT CTC 

CCA GCA TCC-3', Invitrogen) and MGB probe (5'-6 FAM-TAC GCC ATC ATG ATG 
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ATG -MGBNFQ-3', ABI) were utilized for the qPCR assay as described in Garver et al. 

(2011). The RNA standard used for qPCR virus quantification, generated by a plasmid 

vector containing the N-gene of the virus, was generously provided by Dr. Kyle Garver 

(Pacific Biological Station, Nanaimo, BC). RNA transcripts were quantified using a 

NanoDrop ND-1000 and copy number was determined such that one µg of N RNA 

transcript contained 1.32 x 1012 gene copies. A standard curve based on a dilution series 

of N-transcripts ranging from 1 x108 to 1 x 101 viral gene copies was included on each 

qPCR plate and used to calculate virus loads based on the resulting CT values. The 

VHSV qPCR assay was performed using a LightCycler® 480 (Roche). Each qPCR assay 

was conducted in a 25 µL reaction volume containing 1 µL of cDNA, 600 nM of each 

primer, 200 nM probe, and 12.5 µL 2x TaqMan Universal PCR Master mix (Applied 

Biosystems). The thermal cycle profile was: 2 minutes at 50ºC, 10 minutes at 95ºC, 40 

cycles of 15 seconds at 95ºC, and 1 minute at 60°C (Garver et al., 2011). 

 

Statistical analysis 

     Percent survival was calculated as the cumulative number of surviving fish in the 

pooled triplicate tanks for each stock divided by the total number of fish for each stock 

originally exposed to the virus x 100. All statistical analyses of % survival, multivariate 

comparisons (ANOVA), and linear regression analysis on plaque assays and qRT-PCR 

values were completed using Sigma Plot® software (Systat Inc.). 
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Results  

Clinical signs of VHSV infection 

     Clinical signs of VHS infection were similar among all three stocks of yellow perch 

and included internal and external hemorrhages consistent with signs in other fish species 

infected with VHSV. In addition to petechial hemorrhages observed throughout the body, 

signs of hemorrhage were particularly visible on the brain and optical lobes when the fish 

were viewed dorsally (Fig. 2-1A). Hemorrhage was also evident in the eye socket in 

association with exophthalmia (Fig. 2-1B), and at the base of the pectoral and pelvic fins 

(Fig. 2-1B & 2-1C). Internally, abdominal swelling as a result of severe ascites, and 

petechial hemorrhages on the swim bladder and liver were commonly observed. 

 

 Survival among stocks 

     The cumulative number of survivors for each yellow perch stock was used to calculate 

% survival (Fig. 2-2). In the VHSV exposed fish, yellow perch stocks from the East 

Coast (Choptank River and the Perquimans River) were nearly identical in susceptibility, 

with relatively high survival of 74% (67/90) and 73% (66/90), respectively. Alternatively, 

the Midwest (Lake Winnebago) perch exhibited relatively low survival of 20% (18/90). 

An initial Kaplan-Meier Log-Rank Survival Analysis as well as a pair-wise multiple 

comparison test using the Holm-Sidak method demonstrated a significant (P = <0.001) 

difference in % survival between Lake Winnebago and Choptank River fish, and between 

Lake Winnebago and Perquimans River fish, but not between Choptank River and 

Perquimans River fish (P= 0.735). This indicates that the yellow perch stocks originating 
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from Lake Winnebago in Wisconsin were significantly more susceptible to Great Lakes 

VHSV-IVb than perch originating from the two East Coast populations (Choptank River, 

MD, Perquimans River, NC). In equivalent tanks of negative control fish, 99% (89/90) of 

the Lake Winnebago and Choptank River fish and 94% (85/90) of the Perquimans River 

fish survived the 28 day experiment.  

     When virus load was determined in subsamples of fish from each stock, the Lake 

Winnebago fish that survived the challenge with VHSV had significantly higher virus 

titres and viral N-gene copy numbers (ANOVA, P<0.05) then Choptank or Perquimans 

River fish (Table 2-1). The prevalence of virus in the surviving VHSV exposed fish 

differed as well. Only 4 of 15 Perquimans River fish and 8 of 15 Choptank River fish 

tested positive for VHSV at the end of the 28-day challenge period, while 13 of 15 

surviving Lake Winnebago fish had detectable virus titres verifiable by both plaque assay 

and qRT-PCR. All VHSV exposed fish that died during the challenge had detectable 

virus (100% prevalence) in all three stocks by both plaque assay and qRT-PCR. 

Statistical analysis using ANOVA indicated no significant differences in detectable virus 

loads in these fish. None of the negative control fish that died during the 28-day 

challenge tested positive for VHS virus. 

     Differences between the three stocks of yellow perch were also apparent in the 

kinetics of VHSV infection (Fig. 2-3). Fish from Lake Winnebago had an acute high 

mortality response on day 9, followed by an even greater mortality response that peaked 

on day 14, resulting in a bimodal disease progression pattern. The Choptank River perch 

had a relatively delayed bimodal response to infection with the first peak in mortalities 
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occurring on day 13 and the second mortality peak on day 21. The Perquimans River fish, 

alternatively, were the first stock of fish to succumb to VHSV infection with a mortality 

peak on day 4; however, a slow progression of the disease resulted in a wide-spread 

temporal distribution of mortality. 

 

 

Figure 2-1. Clinical signs affiliated with VHSV-IVb infection in three different  juvenile 

yellow perch after immersion exposure to the Great Lakes VHSV strain at a dose of 

1x105 PFU mL-1. Hemorrhages were visible around the brain and optical lobes when the 

fish were viewed dorsally (A), the eye socket (B), and at the base of the pectoral and 

pelvic fins (B & C). 

A

B

C
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Figure 2-2. The cumulative % survival of Lake Winnebago, Choptank River, and 

Perquimans River perch after water-born exposure to VHSV-IVb.
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Table 2-1: Prevalence of VHSV (#VHSV positives over total # of fish examined) and 

comparison of the geometric mean virus load by plaque assay (PA) and qRT-PCR. 

 

 

 

 

 

 

Perquimans R. Choptank R. L. Winnebago

Prevalence of VHSV (4/15) 27% (8/15) 53% (13/15) 87%

PA titer (PFU g
-1

) 64,784 26,483 1,367,489
qRT-PCR (copy #) 1,860 1,473 86,231

Prevalence of VHSV (7/7) 100% (7/7) 100% (7/7) 100%

PA titer (PFU g
-1

) 3,040,800 10,977,605 14,380,585
qRT-PCR (copy #) 463,877 1,110,308 1,809,404

Survivors (n = 15 stock
-1

)

Mortalities (n = 7 stock
-1

)
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Figure 2-3. Kinetics of VHSV-IVb infection between Lake Winnebago, Choptank River, 

and Perquimans River perch stocks.  

 

Comparison between plaque assay and qRT-PCR 

     All whole fish (n=72) homogenates were analyzed for VHSV using both plaque assay 

(PFU g-1) and qPCR (viral copy # µg-1 RNA). When results were directly compared after 

a logarithmic transformation, a significant positive correlation between virus load as 

determined by qRT-PCR and the corresponding number of plaques in paired samples was 

found with a Pearson correlation coefficient of R2 = 0.89 (P < 0.001) (Fig. 2-4). The limit 

of detection for the plaque assay was 500 PFU g-1, while the limit of detection for the 

qRT-PCR assay was 10 viral copies; therefore, four of the samples contained a low level 

of virus detectable by qPCR, but were negative by plaque assay.  
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Figure 2-4. Linear regression between plaque assay (PA-PFU g-1) and qRT-PCR (qPCR-

viral copy #) on log transformed data (R2 = 0.89). Thin dotted and dashed lines represent 

the 95% confidence intervals for the population and regression, respectively.  
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Discussion 

     This study identified major differences in susceptibility to the Great Lakes VHSV-IVb 

strain in yellow perch populations originating from different genetic and geographic  

origins. Because the environmental conditions for rearing and challenging the fish were 

identical for all three stocks, genetic differences between the populations from which the 

stocks were derived most likely contributed to the variability in virus susceptibility. In the 

present study, the major differences in susceptibility were observed between fish from the 

Lake Winnebago stock versus the two East Coast stocks from the Perquimans and 

Choptank Rivers. While significant genetic differences were previously observed 

between all three of the perch populations from which these broodstocks were derived, a 

greater difference was observed between East Coast and Midwest perch populations than 

between East Coast populations (Gryzbowski et al., 2010) supporting the results 

observed here. In aquaculture, the identification of disease resistant stocks of fish is a 

vital first step towards the development of healthier broodstocks. Because many disease 

resistance traits have been shown to be heritable, there is large potential to continue this 

form of genetic improvement within current fish broodstocks throughout the aquaculture 

industry (Norris et al., 2008; Ødegård et al., 2011; Ødegård et al., 2007; Wetten et al., 

2007). 

     A previous study examining the three yellow perch stocks used in this study also 

found significant differences in other phenotypes, such as growth (Rosauer et al., 2011). 

The Lake Winnebago population had a significantly lower growth rate overall than both 

Choptank River and Perquimans River fish. It has been proposed that, because growth 
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and an active immune response are both resource-demanding processes, a trade-off 

between fast growth and an effective immune response would most likely exist (Johansen 

et al., 2006). In contrast, more recent studies evaluating the correlation between body 

weight and disease resistance have demonstrated no such adverse relationship (Silverstein 

et al., 2009). The results of these previous studies, as well as the results reported here, 

imply that simultaneous genetic improvement for both growth and disease resistance can 

be accomplished. Rosauer et al. (2011) also documented differences in apparent stress 

level between Lake Winnebago, Choptank and Perquimans River stocks, which may be 

linked to growth rate and the potential to resist infection. In the study by Rosauer et al. 

(2011), it was reported that Lake Winnebago fish seemed more easily stressed by human 

interactions (e.g., tank cleaning, adjusting feeders, and peering into or walking by the 

tank), than Choptank or Perquimans River fish. This increased level of stress may lead to 

lower growth rates and reduced resistance to infection.  

     An additional factor that may be affecting susceptibility is that fish from the Great 

Lakes region may have never been exposed to VHS virus or any similar rhabdovirus in 

the past, making them particularly vulnerable. Alternatively, the perch stocks from the 

Choptank River and Perquimans River, both river estuary environments on the east coast 

of the U.S., may have encountered  strains of VHSV (Gagne et al., 2007) or other marine 

viruses and, thus, natural selection would have allowed for the development of more 

resistant stocks. Similar pathogen-driven selection mechanisms have been proposed for 

disease resistance among different populations of Chinook salmon (Oncorhynchus 

tshawytscha), which were comparable in genetic diversity, but separated by a 
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geographical land barrier (Purcell et al., 2008). Alternatively, marine populations of 

Pacific herring (Clupea pallasii) with distinct genetic differences and similarly high 

diversity were found equally susceptible to the North American marine strain of VHSV-

IVa (Hershberger et al., 2010) possibly due to similar selection pressures of a shared 

environment. 

     The clinical signs observed in the infected perch were similar to signs of VHS virus in 

other species, including septicemic hemorrhages throughout the body and at the base of 

the fins. The transparency of dead juvenile perch allowed us to observe severe internal 

haemorrhages around the lobes of the brain, suggesting that infected fish may suffer 

permanent damage to the central nervous system and that the brain may be a potential 

viral reservoir in surviving fish. 

     The plaque assay currently remains the 'gold standard' for the verification of infectious 

virus and is the best method for the detection of infectious virus particles. The plaque 

assay, however, is also relatively labor intensive, time consuming (requires a minimum of 

5 days to complete), and the resulting titre can be highly susceptible to the presence of 

proteolytic enzymes, the quality and quantity of the cell monolayer used in the assay, 

changes in temperature, and differences in incubation time. Alternatively, quantitative 

reverse transcription-polymerase chain reaction (qRT-PCR) has become an increasingly 

common method for the diagnosis of a wide variety of viruses due to its speed (a large 

number of samples can be analyzed in <1 day) and sensitivity (detection of less than 10 

copies of RNA target genes can be achieved). It has become particularly useful in the 

medical diagnosis of other RNA viruses, including Ebola and Marburg viruses, Lassa 
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virus, Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus, dengue virus, 

and yellow fever virus (Drosten et al., 2002). Unlike the plaque assay, this method can be 

used to detect all viral RNA, not just infectious particles. This is particularly useful in the 

detection of a negative-strand RNA rhabdovirus such as VHS virus, where the mutation 

rate and thus the presence of non-infectious particles and RNA is typically much higher 

than that of other viruses (Flint et al., 2004). However, in most cases, the detection of 

viral RNA by qRT-PCR is only an indicator of infection, and provides no information 

regarding the infectious capabilities of the virions detected. Only a few studies have 

worked towards identifying the relationship between qRT-PCR and plaque assay analysis 

of the VHS virus in fish (Chico et al., 2006; Garver et al., 2011; Hope et al., 2010). Here, 

we directly compared VHS virus concentrations in whole fish by plaque assay using cell 

culture and qRT-PCR using primer/probe sets designed by Garver et al. (2011) to test 

whether a correlation between the two methodologies could be observed. 

     The strong positive correlation between the VHSV qRT-PCR and plaque assays 

results suggests that the viral copy number as determined by the qRT-PCR assay of 

Garver et al. (2011) is directly correlated to levels of replicating virus and can be used 

together in virus screening practices. Although not true for all viruses, a similar 

correlation between qRT-PCR (viral copy #) and plaque assay (PFU g-1) was also 

identified for the detection of the RNA virus responsible for yellow fever (Bae et al., 

2003), and qRT-PCR is currently used to estimate the titre of infectious measles, mumps, 

and rubella in live virus vaccines (Schalk et al., 2005; Schalk et al., 2004).  
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     In this present study, four fish had detectable virus by qRT-PCR that was undetected 

by plaque assay (Figure 2-4). While a negative plaque assay result indicates that any 

infectious virus present was below the limits of detection, qRT-PCR confirmed the 

presence of viral RNA in these fish. Because these four samples represented surviving 

fish from the 28-day viral challenge, this may mean that either the fish have successfully 

cleared the virus, or that latent virus may still be present but below the detection limit of 

the plaque assay. In either scenario, the indication of viral RNA may still warrant further 

evaluation of the fish as a potential viral reservoir of latent infection, or may simply 

indicate previous exposure to the virus.  
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   " The recently discovered strain of viral hemorrhagic septicemia virus, VHSV-IVb, 

represents an example of the introduction of an extremely pathogenic rhabdovirus 

capable of infecting a wide variety of new fish species in a new host-environment. The 

goal of the present study was to delineate the expression kinetics of key genes in the 

innate immune response relative to the very early stages of VHSV-IVb infection using the 

yellow perch (Perca flavescens) as a model. Administration of VHSV-IVb by IP-injection 

into juvenile yellow perch resulted in 84% cumulative mortality, indicating their high 

susceptibility to this disease. In fish sampled in the very early stages of infection, a 

significant up-regulation of Mx gene expression in the liver, as well as IL-1� and SAA 

activation in the head kidney, spleen, and liver was directly correlated to viral load. The 

potential down-regulation of Mx in the hematopoietic tissues, head kidney and spleen, 

may represent a strategy utilized by the virus to increase replication." 
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Introduction 

     Due to its extremely has a long history as being one of the most pathogenic viral 

diseases of finfish worldwide (Skall et al., 2005; Smail, 1999; Wolf, 1988)Outbreaks of 

the highly pathogenic fish virus, viral hemorrhagic septicemia virus (VHSV) are 

characterized by systemic hemorrhage throughout the body of the fish and mortality rates 

that can be as high as 90% in a wide number of host species. The causative agent of VHS 

is a negative-sense RNA virus (VHSV) belonging to the family Rhadboviridae, and 

classified in the genus Novirhabdovirus (ICTV, 2012). Because of its severe impact on 

trout farms in Western Europe, the virus has been historically considered a European fish 

pathogen exclusively targeting freshwater salmonids. Thus, the majority of viral-host 

interaction studies have been conducted on the rainbow trout (Oncorhynchus mykiss). 

More recent phylogenetic analyses of VHSV isolates from a large number of marine fish 

species in the Atlantic and Pacific Oceans, however, have identified VHSV as essentially 

a marine virus in origin and categorized VHSV isolates into four genotypes (I, II, III, and 

IV) (Einer-Jensen et al., 2004; Pierce and Stepien, 2012; Smail, 1999). These findings 

suggest that the marine to freshwater species host-jump associated with the virus's ability 

to exclusively infect salmonids in Europe in the 1900s was due to repeated introductions 

of the virus into salmonid stocks through anadromous migration or, more likely, via the 

practice of feeding raw, infected marine fish over a long period of time (Kurath and 

Winton, 2011). Therefore, the emergence of a freshwater VHSV genotype IVb in the 

Great Lakes basin of North America (Elsayed et al., 2006), emphasizes the ability of this 

RNA virus to once again adapt from a saltwater to a freshwater environment, however, 
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the causal mechanisms of this adaptation remain unknown. Unlike the rainbow trout 

adapted strain of VHSV in Europe (genotype VHSV-Ia), the Great Lakes strain of 

VHSV-IVb has also demonstrated the ability to infect a very large number of new host 

species in a relatively short amount of time (Ammayappan & Vakharia, 2009; Kim & 

Faisal, 2010b; Thompson et al., 2011b). Since its discovery, questions and concerns 

regarding the ability of the virus to spread rapidly throughout the inland waters of the 

U.S. and infect naive populations of freshwater fish are being addressed (Kim & Faisal, 

2010b; Kim & Faisal, 2011). 

     The yellow perch (Perca flavescens) is a freshwater species of fish that has been a part 

of large fish kills in the Great Lakes associated with VHSV-IVb, and is listed as a 

susceptible species to the virus (USDA, 2008). Therefore, the potential impact that 

VHSV could have on yellow perch commercial and sport fisheries is of great concern to 

fisheries and aquaculture managers (Kane-Sutton et al., 2010). The yellow perch, 

however, is also a fish species in which the physiological and immune responses to viral 

infection have not been well studied and, thus, are poorly understood. Most of the 

research on the host response to VHSV has been completed on the rainbow trout, an 

ancestral teleost salmonid species. However, the yellow perch is a more derived teleost, 

in which differences in the antiviral immune response may have evolved over time. 

Vaccine development, the enhancement of feed immunostimulants, and the development 

of hardier, more disease resistant fish stocks, are some of the potential strategies 

proposed to mitigate the impact that VHSV-IVb will have on fisheries and aquaculture 
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populations. To accomplish any of these disease prevention strategies, however, requires 

an understanding of the host immune defenses involved. 

     Many studies have demonstrated that the most successful vaccines against virus 

diseases of fish will confer a non-specific anti-viral response at early stages post-

vaccination (Lorenzen et al., 2002; McLauchlan et al., 2003). It has also been observed 

that the successful activation of non-specific innate defense mechanisms induced shortly 

after infection will often determine the outcome, or survival of the fish, after viral 

exposure. Thus, to better understand the fish host-virus relationship between the VHS 

IVb virus and its naive freshwater hosts, the present study focuses exclusively on the 

early innate immune pathways triggered relative to viral load by VHSV-IVb infection 

during the very early stages of infection.  

     While a large repertoire of complex pathways and molecules are involved in the early 

innate immune response, the expression of Mx, interleukin 1� (IL-1�), and serum 

amyloid A (SAA), representative cytokines that function in three different components of 

the fish's innate immune system, were the focus in the current study. The expression of 

the Mx transcript has become a direct indicator of type I interferon (IFN� and IFN�) 

activation, a crucial component of the antiviral innate immune response conserved in 

many species. Interleukin-1� is a pro-inflammatory cytokine that has been implicated as a 

key gene in early VHSV infection in rainbow trout (Tafalla et al., 2005). In mammals, 

SAA is primarily synthesized in the liver and induced by the inflammatory cytokines 

interleukins 1 and 6 and tumor necrosis factor (Thorn & Whitehead, 2002). In salmonids, 

SAA induction has been well documented in the liver upon bacterial infections and 
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stimulation with various pathogen-associated molecular patterns (PAMPs)  (Bayne & 

Gerwick, 2001; Jensen et al., 1997), however, SAA transcription and up-regulation have 

also been described in rainbow trout macrophages in response to lipopolysaccharide 

(Goetz et al., 2004), and the skin of parasite-infected carp (Gonzalez et al., 2007).  The 

results of this study increase not only our understanding of the antiviral mechanisms 

utilized by a more recently evolved fish species to a novel virus, but provides insight into 

the anti-viral role these cytokines may play in lower vertebrates such as the yellow perch. 

 

Materials & Methods  

Yellow Perch, VHSV Propagation, and Intraperitoneal-Injection Challenge  

     Juvenile yellow perch were obtained from the University of Wisconsin-Milwaukee 

(UWM) School of Freshwater Science (SFS). All fish used in the study were originally 

derived from spawnings of yellow perch broodstocks collected as gametes from the 

Choptank River, MD, and reared under identical environmental conditions at the UWM 

SFS Aquaculture Research Facility according to the guidelines of the Institutional 

Animal Care and Use Committee (IACUC) of the UWM as previously described 

(Rosauer et al., 2011). The fish used in the current study were offspring from the second 

generation of fish derived from the Choptank River broodstock. When the juvenile perch 

were approximately 5-10g, they were transferred to the USGS Western Fisheries 

Research Center (WFRC), Seattle, WA, where they were reared and used for the 

subsequent challenge experiment under protocols approved by the IACUC of the WFRC. 
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All virus exposure experiments were performed in the WFRC aquatic biosafety level-3 

containment laboratory.  

     The Great Lakes VHS virus strain IVb (MI03) was isolated from adult muskellunge, 

Esox masquinongy  (Mitchill) from Lake St. Clair in 2003 (Elsayed et al., 2006). The 

virus was propagated using the Epithelioma papulosum cyprini  (EPC) cell line (Fijan et 

al., 1983b) and concentration determined by plaque assay as previously described (Batts 

& Winton, 2007) 

     For the challenge experiment, 100 fish (7-10g) were equally divided into four tanks, 

each containing 25 fish, and exposed to the VHSV by intraperitoneal (IP) -injection at a 

titer of 1 x 105 PFU/fish. Four additional tanks, each containing 25 fish, served as 

negative control groups, and were challenged by IP injection with the same volume of 

tris-buffered Eagle's minimum essential medium (MEM-10-T) used to formulate the 

virus treatments to simulate the stresses of handling and injection. Water temperature was 

9°C at the start of the challenge and then raised 1.0°C daily until it reached 12°C. All fish 

were fed every other day throughout out the entire challenge experiment. Of the negative 

control tanks and virus challenged tanks, fish from one tank in each group were 

monitored daily for a total of 17 days only for mortality events to assess disease 

progression. From these tanks, dead fish were removed daily and mortality data recorded. 

Percent survival in each tank was calculated as the cumulative number of surviving fish 

divided by the total number of fish x 100.  In the other three virus and negative control 

treatment tanks, four fish were lethally sampled from each tank on days 1, 2, 3, 4, 5 and 6 

post-virus exposure (n=12 fish/treatment group/day) (Figure 1). Each fish sampled was 
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euthanized by an overdose (25 mg mL-1) of buffered tricaine methanesulfate (MS-222, 

Western Chemical Inc.), and the liver, spleen, and head kidney were collected into 

RNAlater (Qiagen) and kept at -80°C until RNA extraction. 

 

 cDNA synthesis 

     Tissues stored in RNAlater were weighed and transferred into Qiagen Lysis Buffer for 

homogenization using lysing matrix D beads (MP Biomedicals). Total RNA was isolated 

from the homogenized tissue using the RNAqueous®-Micro Scale RNA Isolation Kit 

(Ambion) according to the manufacturer’s protocol that included a 20-minute in column 

DNase treatment. Total RNA quality and concentration were determined using a Bio-Rad 

Experian Electrophoresis Station. All RNA used in the study had a RNA Quality 

Indicator (RQI) value >7.0 and a 260/280 index of 2.00 ± 0.20.  Complimentary DNA 

was synthesized using an oligo-dT-primer and ImProm-II Reverse Transcriptase kit 

(Promega) according to the manufacturer’s protocol. The thermal cycle profile was: 25°C 

for 5 min., 42°C for 1 hr., 70°C for 15 min., and a 4°C hold. 

 

 Gene Expression Analysis by qPCR 

     The expression of Mx, IL-1�, and SAA was quantified by real time quantitative 

reverse transcription PCR (qRT-PCR) using Power SYBR Green PCR Master Mix 

(Applied Biosystems), cDNA and gene specific primer sets (Table 1) on either a 

Stratagene Mx 3000P qPCR system or a LightCycler® 480 (Roche) and analysis was 

completed with Real-time PCR Miner software (Zhao & Fernald, 2005). Quantification 
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was performed by calculating the relative mRNA concentration (Ro) for each gene per 

individual sample using the following equation: Ro = 1/(1+E)
Ct, where E is the gene 

efficiency calculated as the average of all individual sample efficiencies across all 

reactions for a given gene per qPCR, and Ct is the cycle number at threshold (Zhao & 

Fernald, 2005). Gene expression analysis in all fish (virus-exposed and mocks) was 

normalized to the control genes, ribosomal S4 (RS4) in the head kidney and liver, and 

elongation factor-� (EF-1�) in the spleen (Table 1). Elongation factor-�, rather than RS4, 

was used as a normalizing gene in the spleen since RS4 expression in the spleen was 

found to change relative to VHSV detection. To determine the level of gene regulation, 

transcript expression of virus-exposed fish was quantified relative to transcript expression 

in negative control fish.  

 

Virus load by qRT-PCR  

     To assess the amount of VHSV in infected fish, we used the qRT-PCR protocol 

described by Garver et al. (2011). The RNA standard used for qPCR virus quantification 

generated by a plasmid vector containing the N-gene of the virus was generously 

provided by Dr. Kyle Garver (Pacific Biological Station, Nanaimo, BC). The VHSV 

qPCR assay was performed using a Stratagene Mx 3000P qPCR system (Roche). Each 

qPCR assay was conducted in a 25 µl reaction volume containing 1 µl of cDNA, 600 nM 

of each primer, 200 nM probe, and 12.5 µl 2x TaqMan Universal PCR Master mix 

(Applied Biosystems) (Table 3-1). The qPCR cycle profile was: 2 min at 50ºC, 10 min at 

95ºC, 40 cycles of 15 sec at 95ºC, and 1 min at 60°C (Garver et al., 2011).  A standard 
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curve based on a dilution series of N-transcripts ranging from 1 x108 to 1 x 101 viral gene 

copies was included on each plate and used to calculate virus loads based on the resulting 

CT value.  

 

Statistics 

     Statistical relevance was calculated using Sigma Plot® software (Systat Inc.). 

Statistical analysis of gene expression relative to time of expression and tissue type was 

completed using Tukey's pairwise multivariate comparisons procedure within a two-way 

analysis of variance (ANOVA). Correlation results were completed using linear 

regression analysis on log transformed data. 

 

 

 

Gene       5'- Forward-3' 5'- Reverse-3'

Size of PCR 

product (bp)

Genebank 

accession #/ 

Source

IL-1� ATC TTG AGG TTG TGG AGG CA GCA CAT TTC CAC TGG CTT GT 176 bp GO656767.1

Mx AAG AGG CAG TGG CAT TGT AAT GAG CGT CAG GTC TGG AA 244 bp GO654167.1

SAA ACC ATG CTC GTT TGC CTT CT TGT GGC GAG CAT  ACA  GTG AT 209 bp KC306947

EF-1� TGA CAA CGT CGG CTT CAA CA GCA CAT TTC CAC TGG CTT GT 124 bp GO658156.1

RS4 ACA TCA CCT ACC CTG CTG GAT T AAT GCC CTT GGT GCC AAT CA 174 bp FK819484.1

VHSV ATG AGG CAG GTG TCG GAG G TGT AGT AGG ACT CTC CCA GCA TCC 82 bp Garver et al. 2011

MGB probe 5'-6 FAM-TAC GCC ATC ATG ATG - MGBNFQ-3'  

 

Table 3-1. Yellow perch primers used for immune gene expression analysis and VHSV 

(N-gene) primer (Garver et al. 2011). 

 



53 

 

 

 

 Results 

Clinical Signs and Progression of VHS in Yellow Perch 

     External signs were only noted on the fish that had succumbed to the disease in the 

mortality monitoring tanks and most typically included petechial hemorrhages throughout 

the entire body as well as exophthalmia (Figure 3-1.). In the tanks reserved for 

monitoring mortality events, the first documented death occurred on day 9 post-VHSV 

injection, three days after the last sampling date in the experiment (Figure 3-2). Total 

mortalities within this tank peaked on day 11. At the end of the 17-day challenge period, 

cumulative mortality was 84% (21/25). No deaths occurred in the negative control tank. 

No fish, VHSV-exposed or mock treated, died in tanks used to assess disease progression 

during the six-day sampling period of the experiment. Clinical signs of disease as 

hemorrhage of the internal organs and moderate to severe ascites were first documented 

within fish on days 5 and 6 post-VHSV injection. 

 

 

 

 

 

 

Figure 3-1. The clinical signs observed in yellow perch that succumbed to VHS infection 

by VHSV-IVb IP-injection included petechial hemorrhage throughout the entire body of 

the fish as well as exophthalmia within the eye sockets. 
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Figure 3-2. Daily mortalities recorded over a 17-day period post-virus challenge. Fish 

were sampled for gene expression and viral load on days 1-6 (arrows) post-virus injection 

before any mortality had occurred to capture the early innate immune response to 

infection. 
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 VHS Viral Load in Tissues 

      The VHSV N-gene copy number was measured separately in each of the three tissues 

within each fish sampled (N=54 fish) post-VHSV injection by qRT-PCR, and the 

geometric mean of detected viral load (copy #) was analyzed over time. Significant 

increases in viral load were observed in all three tissues on days 3, 5 and 6 relative to day 

1. While the accumulation of viral RNA was directly correlated with time post-challenge 

in all three tissues (P < 0.001), the accumulation of virus was the most rapid and 

significantly correlated with time within the spleen (F (1, 52) = 66.61, R2 = 0.56) (Figure 3-

3); however, differences in the total viral load measured in the head kidney and spleen 

were not significant on any of the sampling days. Total viral load remained lowest in the 

liver. Because of a more rapid accumulation of virus within the head kidney and spleen, 

virus load detected in these organs became significantly greater than virus load detected 

in the liver by day 6 of the challenge (Figure 3-4). 
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Figure 3-3. Linear regression analysis of log transformed VHS viral load against 

day post-VHSV injection. Dashed lines show the 95% confidence interval of the 

regression line and dotted lines indicated to 95% confidence interval for the entire 

data set.  



56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4.  The geometric mean of VHS viral load (copy #) in head kidney, spleen, and 

liver measured on days 1-6 post-VHSV injection using RT-qPCR. Single asterisks 

indicate significant increases in viral load in all three tissues on days 3, 5 and 6 relative to 

day 1. Double asterisks indicate significant differences in viral load between spleen and 

head kidney as compared to the liver on day 6 of the challenge.  
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Mx Gene Expression 

     Mx gene expression within the tissues of VHSV infected fish was measured and 

analyzed relative to expression in the tissues of control fish on each of the six sampling 

days (Figure 3-5). The expression of Mx in the tissues of the control fish averaged 0.041 

(± 0.017) in the head kidney, 0.086 (± 0.053) in the spleen, and 0.0046 (± 0.0045) in the 

liver. Mx expression in the head kidney of VHSV-exposed fish peaked at a 6.5-fold 

increase relative to Mx expression in control fish on day 4 post-VHSV injection, and 

remained relatively unchanged on days 5 and 6, at a 6.4- and 6.2-fold increase, 

respectively. Mx expression in the spleen of VHSV-injected fish gradually increased and 

peaked at a 7.0-fold increase relative to the control fish on day 5 post-VHSV injection. 

On day 6 post-VHSV injection, Mx expression in the spleen declined to a 0.5-fold level 

relative to Mx expression in the control fish. Mx expression in the liver, alternatively, 

was significantly elevated relative to controls on day 6 post-VHSV injection (P < 0.001), 

as well as to levels in the head kidney and spleen on days 4-6 post-VHSV injection (P < 

0.05). A linear regression analysis indicated that no significant correlation between Mx 

expression and virus load was found in either the head kidney or the spleen (Figure 3-6). 

Mx expression in the liver, however, was significantly correlated to viral load (P < 0.001, 

F(1,41) = 56.46, R2 = 0.58).  
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Figure 3-5.  Mx gene expression (relative to mock-infected control fish) in head kidney, 

spleen and liver on days 1-6 post-VHSV injection. Single asterisks indicate significant 

increases in Mx expression in the liver on days 4, 5 and 6 relative to day 1. Double 

asterisks indicate significant differences in Mx expression between spleen and head 

kidney as compared to the liver on day 6 of the challenge. 

 

 

Head Kidney Spleen Liver

M
x
 E

x
p
re

s
s
io

n

0

10

20

30

40

50

60

70

Day 1

Day 2

Day 3

Day 4

Day 5

Day 6

 * 

** 

  *   * 



59 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6.  Linear regression analysis of log transformed VHS viral load against log 

transformed Mx expression. Dashed lines show the 95% confidence interval of the 

regression line and dotted lines indicated to 95% confidence interval for the entire data 

set.  
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IL-1� Gene Expression  

    Il-1� gene expression within the tissues of VHSV infected fish was measured and 

analyzed relative to expression in the tissues of control fish on each of the six sampling 

days (Figure 3-7).  The expression of IL-1� in the tissues of the control fish averaged 

0.001 (± 0.0008) in the head kidney, 0.002 (± 0.0004) in the spleen, and 0.0001 (± 

0.0001) in the liver. Within each of the tissues, IL-1� gene expression in the head kidney 

peaked on day 3 with a 74- fold increase relative to the control before decreasing to 27-

fold and 30-fold increases on days 5 and 6 post-VHSV injection, respectively. IL-1� gene 

expression in the spleen peaked on day 4 with a 122-fold increase relative to the control 

before decreasing to a 31-fold increase one day later. The expression level on day 4 was 

significantly higher relative to days 1, 2, 3, 5 & 6 (P < 0.05). IL-1� gene expression in the 

liver peaked on day 5 with a 173-fold increase relative to the control before decreasing to 

a 36-fold increase on day 6 post-VHSV injection.  The expression level on days 4 and 5 

were significant relative to days 1, 2, 3 & 6 (P < 0.05). Overall, IL-1� gene expression 

within the tissues of VHSV-injected fish was significantly correlated with viral load in all 

three tissues (P<0.001) (Head Kidney: F (1, 41) = 41.21, R2 = 0.50; Spleen: F (1, 43) = 26.93, 

R2 = 0.39; Liver: F (1, 43) = 35.23, R2 = 0.45) (Figure 3-8). 
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Figure 3-7. IL-1� gene expression (relative to mock-infected control fish) in head 

kidney, spleen and liver on days 1-6 post-VHSV injection. Single asterisks indicate a 

significant increase in IL-1� expression in the spleen on day 4 relative to all other days 

measured, as well as in the liver on days 4 and 5 relative to all other days measured. 
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Figure 3-8. Linear regression analysis of log transformed VHS viral load against log 

transformed IL-1� expression post-VHSV injection. Dashed lines show the 95% 

confidence interval of the regression line and dotted lines indicated to 95% confidence 

interval for the entire data set.  
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SAA Gene Expression 

       SAA gene expression within the tissues of VHSV infected fish was measured and 

analyzed relative to constitutive expression maintained in the tissues of control fish on 

each of the six sampling days (Figure 3-9).  The expression of SAA in the tissues of the 

control fish averaged 0.0007 (± 0.0006) in the head kidney, 0.014 (± 0.014) in the spleen, 

and 0.087 (± 0.046) in the liver. SAA expression gradually increased over time and 

peaked on day 6 in all three tissues, with a 12.2-fold increase in the head kidney, a 42.6-

fold increase in the spleen, and a 119-fold increase in the liver. Significant increases in 

SAA expression were identified on days 4, 5, & 6 in the liver and day 6 in the spleen (P � 

0.05) (Figure 3-9). SAA expression was also significantly correlated with viral load in all 

three tissues (P<0.001) (Head Kidney: F (1, 38) = 135.83, R2 = 0.78; Spleen: F (1, 38) = 

89.48, R2 = 0.70; Liver: F (1, 40) = 81.41, R2 = 0.67) (Figure 3-10). 

 

Discussion 

    An increasing number of studies have focused on the early innate immune response to 

the virus as a key factor controlling the outcome of infection. Past studies on the immune 

response to VHSV have focused primarily on rainbow trout and the response to virus 

isolates of genotype VHSV-I, II, and III. In contrast, the current study investigated the 

viral accumulation and innate immune response towards an emerging invasive virus, 

VHSV-IVb, in yellow perch, a percid phylogenetically distant from salmonids and 

relatively unstudied compared to rainbow trout. In this study, the administration of 
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VHSV-IVb by IP-injection into juvenile yellow perch resulted in 84% mortality, 

indicating their high susceptibility to this disease. In fish sampled in the very early stages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9. SAA gene expression (relative to mock-infected control fish) in head kidney, 

spleen and liver on days 1-6 post-VHSV injection. Single asterisks indicate significant 

increases in SAA expression in the liver on days 4, 5 and 6 relative to day 1 and in the 

spleen on day 6 relative to day 1. 
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Figure 3-10. Linear regression analysis of log transformed VHS viral load against log 

transformed SAA expression post-VHSV injection. Dashed lines show the 95% 

confidence interval of the regression line and dotted lines indicated to 95% confidence 

interval for the entire data set.  
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of infection, a significant up-regulation of Mx gene expression in the liver, as well as IL-

1� and SAA activation in the head kidney, spleen, and liver was directly correlated to 

viral  load. In addition, the relatively low level of Mx expression observed in the 

hematopoietic tissues, head kidney and spleen, may represent the host response to a 

strategy utilized by the virus to down-regulate or block Mx expression in these tissues, 

thus increasing virus replication. 

     When the kinetics of viral RNA accumulation was monitored in each of the three 

tissues, the accumulation of virus was the most rapid and significantly temporally 

correlated within the spleen and head kidney. Even so, viral load also remained highly 

correlated with time in the liver, suggesting that the liver might have a secondary role in 

VHSV-IVb infection. Since the spleen and head kidney are the primary producers of 

hematopoietic cells, including mature macrophages in fish, these results also suggest that 

cells in these tissues may be specifically targeted and critical for successful VHSV 

replication.  

    Mx proteins comprise a small family of GTPases and have been shown to induce a 

high degree of resistance against virus infections in a number of vertebrates (Haller et al., 

2007), and even in the abalone (Haliotis discus), an invertebrate mollusk (De et al., 

2007). Mx genes, however, are highly polymorphic and the resulting amino acid 

differences account for a large number of allelic gene products and a large degree of 

variation between species, complicating their study. The presence of multiple isoforms of 

Mx suggests that different protein products, with and without antiviral mechanisms, may 

be unique to each species, and thus heavily influenced by the environment in which a 
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species has evolved over time. In fish, for example, three isoforms of Mx have been 

identified in rainbow trout (Trobridge et al., 1997; Trobridge & Leong, 1995),  Atlantic 

salmon (Salmo salar)(Robertsen et al., 1997), rock bream (Oplegnathus fasciatus)(Zenke 

& Kim, 2009), and Gilthead seabream (Sparus aurata) (Fernandez-Trujillo et al., 2011), 

seven in zebrafish (Danio rerio)(Altmann et al., 2004), five in the channel catfish 

(Ictalurus punctatus)(Plant & Thune, 2008), two in the Atlantic halibut (Hippoglossus 

hippoglossus)(Jensen & Robertsen, 2000), turbot (Scophthalmus maximus)  (Abollo et 

al., 2005), and goldfish (Carassius auratus)(Zhang et al., 2004), and one in the pufferfish 

(Takifugu rubripes)(Yap et al., 2003), Japanese flounder (Paralichthys olivaceus)(Lee et 

al., 2000), Senegalese sole (Solea senegalensis)(Fernandez-Trujillo et al., 2006), orange-

spotted grouper (Epinephelus coioides)(Chen et al., 2006), and barramundi (Lates 

calcarifer)  (Wu et al., 2010). 

     Contrary to similar studies examining Mx activation in rainbow trout (McLauchlan et 

al., 2003), the present study identified a relatively high level of Mx expression in the 

perch liver that while directly correlated to viral load, appeared to be associated with 

relatively poor protection against VHSV disease progression (84% mortality). Unlike the 

rainbow trout study, however, which examined the antiviral response of three Mx genes, 

only one Mx gene was analyzed in this study, thus it may be possible that alternate forms 

exist in perch with different expression kinetics. The sequences used to obtain qPCR 

primers for this Mx form were obtained from a yellow perch expression sequence tag 

(EST; Accession #GO654167.1), derived from sequencing the ovary. This EST contains 

only a partial open reading frame so it is not possible to determine the precise Mx form 
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that it represents. However, the amino acid sequence of this open reading frame aligns 

most closely with an Mx protein from Perca fluviatilis, the European perch (Staeheli et 

al., 1989). Only one Mx form was reported for P. fluviatilis but there was no attempt to 

look for multiple forms so it may be possible that alternate forms exist in perch. 

Alternatively, lower levels of Mx transcription and no correlation to viral load were 

observed in the head kidney. Further, no correlation and even potential down-regulation 

of Mx was observed in the spleen where virus accumulation was highest. These 

observations may be due to interferon down-regulation as part of a strategy utilized by 

the virus for enhanced replication within these tissues. 

     The pro-inflammatory cytokine IL-1� has also been well-characterized in a wide 

variety of fish species and directly correlated to early viral infection in rainbow trout 

(Purcell et al., 2010; Tafalla et al., 2005), although the role of IL-1� function in antiviral 

defenses remains largely unknown. Allelic variations of IL-1� in fish suggest alternative 

unknown functions may also exist, the activation of specific immune responses including 

the induced expression of COX2 and MHC II in rainbow trout macrophages (Iliev et al., 

2005), as well as the in vivo enhancement of phagocytosis and increased resistance 

against bacterial infections have been observed (Secombes et al., 2011). 

     IL-1� was significantly correlated to viral load in all three tissues though the duration 

of the experiment, peaking at different stages of the infection within different tissues. The 

kinetics of IL-1� activation were very different than those observed in a similar study 

examining IL-1� expression in tissues of the rainbow trout after exposure to a very low 

level of VHSV-Ia infection induced by IP-injection (Tafalla et al., 2005). In the rainbow 
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trout, IL-1� activation was immediately induced (days 1 & 2 post-VHSV infection) 

before returning to control levels by day 3 in the spleen. In addition, IL-1� was only 

slightly activated in the head kidney and liver. In contrast, in the yellow perch, IL-1� 

expression peaked at much higher levels later (days 3, 4, & 5 post-VHSV exposure) in 

each of the tissues, particularly the liver, before a rapid down-regulation. In addition, IL-

1� was significantly correlated to viral load throughout the duration of the experiment. 

The differences observed here may again be due to the heightened susceptibility of 

yellow perch to the VHS virus, and suggest this inflammatory cytokine plays a significant 

role in the disease progression. 

     Of the three genes analyzed, SAA activation was the most strongly correlated with 

viral RNA accumulation, particularly in the head kidney, although SAA expression 

reached its highest levels in the liver. This appears to be the first published report of SAA 

activation directly tied to anti-VHSV immune response in fish. Human SAA is an acute-

phase protein that circulates in the blood and is known to be primarily synthesized in the 

liver. It has been implicated in antiviral immune defense against hepatitis C virus by 

inhibiting viral entry into cells (Cai et al., 2007; Lavie et al., 2006), as well as numerous 

other immune defense functions ranging from cytokine activation (Patel et al., 1998), to 

leukocyte recruitment (Mullan et al., 2006), and antimicrobial activity (Badolato et al., 

2000). The extrahepatic production of anti-viral SAA proteins in the plasma has been 

observed in a variety of mammalian species (Urieli-Shoval et al., 1998). However, a 

recent study examining SAA in rainbow trout challenged with bacterial proteins, found 

significant up-regulation of SAA expression in immune relevant tissues, but no SAA 
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proteins were detected in the blood or plasma, suggesting that in fish, a more localized 

alternate function may exist (Villarroel et al., 2008). The results of the present study 

support this hypothesis, that SAA may have a more localized, anti-viral role in all three 

immune tissues of the yellow perch. 

     In summary, we present evidence that yellow perch mount a strong innate immune 

response to VHSV-IVb as demonstrated by significant changes in the expression of IL-

1�, Mx and SAA in various immune related tissues during the early stages of VHSV 

infection.  Further, VHSV accumulation was highest and most directly correlated to SAA 

expression in the spleen and head kidney, suggesting that SAA activation in these tissues 

may be a direct indicator of VHSV-IVb infection. The continued study of emerging 

viruses in non-traditional fish species, such VHSV-IVb in yellow perch, can provide 

valuable insight into alternative immunological host defenses, as well as novel strategies 

utilized by a rapidly evolving virus. Such knowledge is beneficial, not only for the 

mitigation of the impact VHSV-IVb and similar viruses in aquaculture and fisheries, but 

for our own understanding of the evolution of host-virus immune defenses.  

 

. 
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Chapter 4 

 

Viral distribution and pathology of the Great Lakes viral hemorrhagic septicemia 

virus (VHSV-IVb) in adult yellow perch 

 

 

 

 

 

 

 

 
     "Since the discovery of VHSV-IVb in the Great Lakes of North America, over 31 

species of freshwater fish commonly found throughout the inland waters of the U.S. have 

been classified as being susceptible to the disease. While studies have begun to examine 

viral tissue distribution and pathology using highly susceptible juvenile fish, the goal of 

this study was to better understand the viral pathogenesis as an infection progresses over 

time in asymptomatic adult fish. Adult yellow perch (Perca flavescens) were exposed to 

VHSV-IVb by IP-injection at two different titers, 1 x 10
2
 PFU/fish and 1x10

4
 PFU/fish 

and sampled for viral tissue distribution. These titers produced infections that resulted in 

67% and 60% cumulative survivals, respectively, with the onset of mild to no clinical 

signs of the disease. Plaque assays on the tissues from VHSV-injected fish sampled over 

the course of 28 days, revealed that virus was detected mainly in the gills as well as the 

pooled head kidney and spleen. VHSV titers determined by qPCR detected viral load in 

the blood that was highly correlated to viral detection in the pooled head kidney and 

spleen over all sampling days, while viral load in the brain gradually increased over 

time. Fluorescent microscopy imaging of brain tissues of VHSV-exposed fish at 28 days 

indicated mild hemorrhage with VHSV-associated erythrocytes, as well as leukocytes, 

and heavy infection in cell body layers within the optic tectum and in axonal tracts 

throughout the brain. These results suggest that blood is an active component of VHSV 

transport, and that the analysis of gills by plaque assay, and blood by qPCR, may offer 

reliable and accurate methods of non-lethal sampling for VHSV in adult fish. These 

results also indicate, however, that the brain of the fish may be a target organ of the virus 

and heavy staining of VHSV in neurons suggest that the VHSV-IVb virus may be 

neurotropic as well as  hemorrhagic."  
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Introduction 

 
     Viral hemorrhagic septicemia virus (VHSV) is a fish virus best known for its severe 

pathology and high mortality rates in rainbow trout  (Oncorhynchus mykiss) hatcheries 

throughout Europe, where outbreak of disease has resulted in extensive economic losses 

since its discovery in 1962 (Einer-Jensen et al., 2004; Olesen, 1998; Skall et al., 2005; 

Smail, 1999; Wolf, 1988). Because potential outbreaks of this highly transmissible virus 

have had such profound socio-economic consequences, the Office of International 

Epizooties (OIE), also known as the World Organization of Animal Health, has 

categorized VHSV as a reportable disease of great international concern. Thus, the 

increasing number of aquatic environments in which the virus has been found is of great 

concern to fisheries and aquaculture managers throughout the world. With the exception 

of the VHSV-Ia strain, VHSV was typically known as a marine virus until a new 

freshwater strain, now classified as VHSV-IVb, was reported in 2005 in the Great Lakes 

of North America from adult muskellunge sampled in 2003 (Elsayed et al., 2006). Since 

then, the VHS virus has been found capable of infecting over 31 species of freshwater 

fish commonly found throughout the inland waters of the U.S. (Kim & Faisal, 2010b; 

Thompson et al., 2011b). Never before had VHSV, or any other rhabdovirus been 

isolated in any of the Great Lakes, reflecting the ability of VHSV to rapidly evolve into a 

new-host environment (Pierce & Stepien, 2012), and opening the door for a large number 

of new freshwater host-species to become infected with the virus. 

     Genotypic analysis has classified VHSV as part of the Rhabdoviridae family, which 

includes some of the most well-known and most well-studied mammalian viruses, rabies 
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and vesicular stomatitis virus (VSV). Like all rhabdoviruses, VHSV is a negative-strand 

RNA virus consisting of an 11.2 kb nucleotide genome which includes five proteins 

including, the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein 

(G), and the viral RNA polymerase (L). Unique to VHSV and other fish rhabdoviruses, 

however, is a unique sixth gene that encodes a non-virion (NV) protein of unknown 

function. This non-virion protein is expressed in infected cells but is not present in 

purified virions (Kurath et al., 1997), and has resulted in the placement of fish 

rhabdoviruses into of the newly recognized Novirhabdovirus genus within the 

Rhabdoviridae family. 

     Clinical signs of an acute VHS manifestation of the disease in fish are often non-

specific, appearing as petichial hemorrhages throughout the body, hemorrhaging at the 

base of the fins, muscles, internal organs and eyes, exophthalmia, darkening of the body 

and pale gills. Ascites and hemorrhaging of the liver and other internal organs are often 

observed upon necropsy (Kim & Faisal, 2010a; Olson et al., 2013; Wolf, 1988). In acute 

forms of the disease, mortality is rapid and commonly as high as 100% in juvenile fish, 

and as much as 30-90% in adults. In chronic forms of the disease, however, fish become 

infected with the virus without showing any outward clinical signs or pathology of the 

disease. These fish experience a prolonged course with lingering low levels of mortality, 

and possibly shed the virus into the surrounding environment acting as covert carriers of 

the disease. In some hosts, a chronic infection is characterized by nervous manifestations, 

often associated with erratic swimming behavior (Batts & Winton, 2007; Lovy et al., 

2012; Skall et al., 2005). 
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     Currently, sampling of the head kidney and spleen for virus isolation using cell culture 

or plaque assay, followed by confirmation by reverse-transcriptase polymerase chain 

reaction (RT-PCR), is the gold standard diagnostic test for VHSV in fish (Batts & 

Winton, 2007; OIE, 2009). Unfortunately, sampling of these tissues is lethal and, in 

addition, the nature of this assay requires that virus be present in sufficient quantities in 

these organs to produce a positive titer in a susceptible cell line, a condition that does not 

always exist in fish infected with low levels of virus (Lovy et al., 2012). Because of the 

wide-species host range and the active screening for virus in fish, the impact of 

euthanizing a statistically sufficient number of fish can have a negative impact on a 

natural population in a lake, such as the case for muskellunge (Esox masquinongy) or 

northern pike (Esox lucius), or for valuable broodstocks in aquaculture. Thus, if virus can 

be more accurately detected in a non-lethal manner, such as blood sampling or gill and 

fin biopsy, larger numbers of fish may be screened more effectively and efficiently at a 

lower cost and valuable fish stocks could be spared. To do this, however, requires a more 

detailed understanding of how the pathogenicity and distribution of the VHS virus 

changes in a susceptible host-fish species over time. 

     Using the adult yellow perch as a research model and multifaceted methods such as 

quantitative PCR and fluorescence microscopy in conjunction with plaque assay, this 

study examines the relative distribution of VHSV-IVb throughout the head kidney, 

spleen, liver, brain, fin, gills, and blood over the course of infection in an effort to track 

how the virus distribution between these tissues changes over time. This knowledge is 

useful for identifying similarities and differences between VHSV and other rhabdoviruses 
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in host-virus interactions and pathogenesis of disease, and will aid in the development of 

a more efficient, accurate, and potentially non-lethal, identification of chronically 

infected asymptomatic adult fish.   

 

Materials &  Methods  

     Adult yellow perch were obtained from the University of Wisconsin-Milwaukee 

(UWM) School of Freshwater Science (SFS). All fish used in the study were spawned 

and reared at the UWM SFS Aquaculture Research Facility according to the guidelines of 

the Institutional Animal Care and Use Committee (IACUC) of the UWM as previously 

described (Rosauer et al., 2011). Approximately 3-4 months prior to the challenge, all 

fish used in the study were transferred to the USGS Western Fisheries Research Center 

(WFRC), Seattle, WA, where they were used for the subsequent challenge experiment 

under protocols approved by the IACUC of the WFRC. All virus exposure experiments 

were performed in the WFRC aquatic biosafety level-3 containment laboratory.  

     The Great Lakes VHS virus strain IVb (MI03) was isolated from adult muskellunge, 

Esox masquinongy  (Mitchill) from Lake St. Clair in 2003 (Elsayed et al., 2006). The 

virus was propagated using the Epithelioma papulosum cyprini  (EPC) cell line (Fijan et 

al., 1983b) and concentration determined by plaque assay as previously described (Batts 

& Winton, 2007). 
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Virus Quantification by Plaque Assay Analysis 

     For the first challenge experiment, 180 fish (100-150g) were equally divided between  

3 treatments, each treatment conducted in 4 replicates of 15 fish/replicate.  The 

treatments consisted of one group (n=60 fish) exposed to VHSV by intraperitoneal (IP) -

injection at a titer of 1 x 104 PFU/fish, another group (n=60 fish) exposed to VHSV by 

intraperitoneal (IP) -injection at a titer of 1 x 102 PFU/fish, and a third group (n=60 fish) 

served as a control, and was challenged by IP injection with the same volume of Tris-

buffered Eagle's minimum essential medium (MEM-10-T) used to formulate the virus 

treatments.  This group served to simulate the stresses of handing and injection. Water 

temperature was 9°C at the start of the challenge and then raised 1.0°C daily until it 

reached 12°C. All fish were fed every other day throughout the entire challenge 

experiment. Of the negative control tanks and virus challenged tanks, fish from one 

replicate tank in each group were monitored daily for a total of 28 days only for mortality 

events to assess disease progression. From these tanks, dead fish were removed daily and 

mortality data recorded. Percent survival in each tank was calculated as the cumulative 

number of surviving fish divided by the total number of fish x 100.  In the other three 

virus treated and negative control tanks, fish were lethally sampled on days 2, 4, 7, 10, 

14, 21 and 28 post-virus exposure. Each fish sampled was euthanized by an overdose (25 

mg mL-1) of buffered tricaine methanesulfate (MS-222, Western Chemical Inc.), and 

samples of the spleen, head kidney, gill, and fin were collected and immediately frozen  

(-80°C) until plaque assay analyses could be conducted. The head kidney and spleen 

samples were pooled for each individual prior to freezing. 
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      Plaque assay analysis on each specimen collected was conducted according to 

protocol establish by the AFS Fish Health Section for the detection of VHSV (Batts and 

Winton, 2007).  Each sample was diluted 1:8 (weight:volume) in MEM-0 and 

homogenized with a Stomacher-80 (Seward Laboratory Systems, Biomaster). Sample 

homogenates were transferred into 15 mL conical tubes and spun at 4°C for 10 minutes at 

1000 x g. One milliliter (mL) of supernatant from each sample was removed to quantify 

infectious virus by plaque assay, and another 1 mL stored at -80°C to assess virus 

genome concentrations by qRT-PCR. For plaque assay, serial 10-fold dilutions (1:40 to 

1:40k) of tissue homogenate supernatants were plated in duplicate onto polyethylene 

glycol (7% PEG) treated EPC cell monolayers in 24-well plates. Cell-cultures were 

overlaid with methylcellulose and incubated at 15°C for 7 days before fixation with 

crystal violet-formalin solution and plaque enumeration as previously described (Batts & 

Winton, 1989b). Fish tissue viral titers of VHSV are reported as plaque forming units per 

gram (PFU g-1).      

 

Virus Quantification by qPCR analysis 

     For the second challenge experiment, only one group of triplicate tanks, containing 16 

yellow perch/tank, was exposed to the VHSV by IP-injection at a titer of 1 x 104 

PFU/fish as described above. Identical triplicate tanks of each fish stock serving as 

negative controls were exposed to the same volume of MEM-10 used to formulate the 

virus treatments at the same temperature regime. On days 5, 7, 9, 12, 14 & 21 post-virus 

exposure one fish was sampled from each tank. Each fish was euthanized by an overdose 
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(25 mg mL-1) of buffered tricaine methanesulfate (MS-222, Western Chemical Inc.) and 

samples of the spleen, head kidney, blood, brain, gill, and fin were collected. Tissue 

samples were immediately frozen (-80°C) until qPCR analyses could be completed. The 

head kidney and spleen samples were pooled for each individual prior to freezing. 

     Blood samples of approximately 1mL were taken from each fish in a non-heperinized 

syringe and kept overnight at 4°C for clotting to occur. After 12-24 hrs, samples were 

spun at 13,000 rpm for 20 minutes at 4°C and serum was carefully removed. The 

resulting pellet (~0.4-0.5 mL) was transferred to a new 2ml tube containing 1mL of TRI 

Reagent® RT-Blood with 75µl 4-bromoanisle (MRC, Inc, cat.# RB211), vortexed for 5 

minutes and frozen at -80°C until further processing could be completed. RNA extraction 

into 50µl H2O was completed according to the manufactures protocol. RNA was 

processed a second time to remove any interfering DNA and/or inhibiting enzymes using 

the RNAqueous®-Micro Scale RNA Isolation Kit (Ambion) according to the 

manufacturer’s protocol. The pooled head kidney and spleen, brain, gill, and fin samples 

were collected and immediately froze at -80°C and total RNA extraction using the 

RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol. Complimentary 

DNA was synthesized from 1 µg RNA by RT-PCR using the Applied Biosystems (ABI) 

High Capacity cDNA Reverse Transcription kit according to the manufacturer’s protocol. 

VHS virus primers (Forward primer 5'-ATG AGG CAG GTG TCG GAG G-3', Reverse 

primer 5'-TGT AGT AGG ACT CTC CCA GCA TCC-3', Invitrogen) and MGB probe 

(5'-6 FAM-TAC GCC ATC ATG ATG ATG -MGBNFQ-3', ABI) were utilized for the 

qPCR assay as described in Garver et al. (2011). The RNA standard used for qPCR virus 
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quantification, generated by a plasmid vector containing the N-gene of the virus, was 

generously provided by Dr. Kyle Garver (Pacific Biological Station, Nanaimo, BC). A 

standard curve based on a dilution series of N-transcripts ranging from 1 x108 to 1 x 101 

viral gene copies was included on each qPCR plate and used to calculate virus loads 

based on the resulting CT values. The VHSV qPCR assay was performed using a 

LightCycler® 480 (Roche). Each qPCR assay was conducted in a 25 µL reaction volume 

containing 1 µL of cDNA, 600 nM of each primer, 200 nM probe, and 12.5 µL 2x 

TaqMan Universal PCR Master mix (Applied Biosystems). The thermal cycle profile 

was: 2 minutes at 50ºC, 10 minutes at 95ºC, 40 cycles of 15 seconds at 95ºC, and 1 

minute at 60°C (Garver et al., 2011). 

 

Statistics 

     Statistical relevance was calculated using Sigma Plot® software (Systat Inc.). 

Statistical analysis of gene expression relative to time of expression and tissue type was 

completed using Tukey's pairwise multivariate comparisons procedure within a two-way 

analysis of variance (ANOVA). Correlation results were completed using linear 

regression analysis on log transformed data. 

 

Fluorescence Microscopy 

     In a third challenge experiment, yellow perch were exposed to virus as described 

above and on day 28 post-virus exposure, all surviving fish were euthanized and the 

heads removed and immediately fixed (30% ethanol, 10% formalin, 2% glacial acetic 
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acid, and 58% distilled water). Samples were shipped to and processed for microscopy at 

UWM-SFS in Milwaukee, WI. The brains were carefully removed from each of the fish 

heads and placed in a 20% sucrose / phosphate-buffered saline (PBS) solution overnight 

at 4°C. After sucrose saturation, brain tissues were embedded in a 1:2 OTC sucrose 

medium. Frozen blocks were cut into 7µm sagittal or horizontal sections onto silicone 

coated slides and fixed in cold acetone for 5 min, followed by a 30 min drying period at -

20°C. Tissues were then rehydrated with a series of 5 min incubations with PBS followed 

by a 30 min block with 10% normal goat serum (NGS) in PBS with 0.1% Tween. 

Sections were blocked a second time with a commercially available Image-iT® FX 

Signal Enhancer Reagent (Molecular Probes, cat# R37107) to further reduce non-specific 

staining or background fluorescence. Tissues were washed two more times using 10% 

NGS/PBS with 0.1% Tween before incubation with anti-VHSV monoclonal antibody 

(Aquatic Diagnostics Ltd., Scotland) diluted 1:10 in PBS in a humid chamber for 1 hour 

at room temperature. Tissue sections were washed an addition 3 times, 30 min each, 

using 10% NGS/PBS before incubation with Alexa Fluor 594 (AF594) goat anti-mouse 

IgG fluorescent conjugate (Molecular Probes, cat# A31624) diluted 1:1000 in 10% 

NGS/PBS for 15 min at 4°C. This was followed by 5 consecutive 5-10 min washes with 

10% NGS/PBS at room temperature and mounted with Vectashield® with DAPI for 

nuclear staining (Vector Laboratories, cat# H1200). 
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Results 

     In the tanks of fish reserved only for mortality monitoring, fish exposed to VHSV at a 

dose of 1 x 102 PFU/fish had 67% cumulative survival (10/15), while fish exposed to 

VHSV at a dose of 1 x 104 PFU/fish had 60% cumulative survival (9/15) (Figure 4-1). No 

mortalities were observed in any of the negative control tanks. Statistical analysis verified 

that no significant difference in cumulative survival existed between fish exposed to the 

two VHSV titers (P = 0.532). 

     Despite a relatively high mortality in each of the tanks (33% low dose and 40% high 

dose), external clinical signs of the disease remained very mild and were often not visible 

in fish that had succumbed to the disease in either treatment group. When external 

clinical signs were visible, they most frequently consisted of mild exophthalmia, or 

swelling of the eye, as well as slight hemorrhage on the fins and the base of the anus. Fish 

with external signs did not always die from the disease, and most appeared to recover 

from clinical signs of VHS by day 21 post-VHSV injection. Hemorrhages around the 

brain, eye sockets, and liver, as well as moderate ascites in the abdominal cavity, 

however, were the most often apparent internal signs of the sampled fish. Since many of 

the fish that had died during the 28-day challenge did not exhibit external signs of the 

disease, plaque assay analysis was conducted on the pooled head kidney and spleen on all 

individual fish to confirm the presence of VHSV. Because mild exophthalmia was the 

most common clinical sign exhibited during the challenge, the brain was also extracted 

and included in the analysis. This analysis of the fish that had succumbed to the disease 

confirmed relatively high titers of VHSV in the pooled head kidney/spleen and brain. The 
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geometric mean viral titer in the brain was 5.57 x 108 PFU g-1, while the geometric mean 

viral titer in the pooled head kidney/spleen was 6.72 x 108 PFU g-1.  No significant 

difference in viral titer between the brain and pooled kidney/ spleen was detected (n=8 

fish, data not shown). 

     VHSV titer was analyzed by plaque assay in the tissues, head kidney/spleen, gill, and 

fin over the first 28 days post-VHSV injection. In fish exposed to the virus at a dose of 1 

x 102 PFU/fish, three fish were sampled (1 fish/tank)  on days 2, 4, 7, 10, 14, 21 and 28 

days post-VHSV exposure (Figure 4-2, Table 4-1). On day 2 post-VHSV exposure, virus 

was only detected in the fin in 1/3 fish analyzed. While viral detection in the pooled head 

kidney and spleen became evident on day 4. On day 10, VHSV was only detected in 2/3 

fish, but in the gill and fin it was detected in all 3/3 fish sampled. By day 28 post-VHSV 

exposure, VHSV was detected in the pooled head kidney and spleen in 1/3 fish (62% of 

fish overall), the gill in 2/3 fish (67% of fish overall), and the fin in 0/3 fish (57% of fish  
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Figure 4-1. Adult yellow perch were exposed to VHSV-IVb at two viral 

titers, 1 x 102 and 1 x 104 PFU/fish, and survival monitored daily in each 

group over 28 days. Overall, cumulative percent survival (67% vs 60%) was 

not significantly different between the two groups. 

High Titer (1 x 104 PFU/fish) 

Low Titer (1 x 102 PFU/fish) 
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Figure 4-2. The geometric mean of VHS viral titer (PFU g-1) determined by plaque 

assay in all three tissues (pooled head kidney/spleen (Hk/Sp), fin and gill) in fish 

exposed to a viral titer of 1 x102 PFU/fish over time. 

Table 4-1. VHSV prevalence determined by PA in fish exposed to a viral titer of 

1 x102 PFU/fish. 

 

 

Low Titer - 

Day 2 4 7 10 14 21 28 Total % Pos.

Kd/sp 0/3 2/3 3/3 2/3 3/3 2/3 1/3 13/21 62%

Gill 0/3 1/3 3/3 3/3 3/3 2/3 2/3 14/21 67%

Fin 1/3 0/3 3/3 3/3 3/3 2/3 0/3 12/21 57%
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overall) (Table 4-1). When viral titer in time point-sampled fish was analyzed, no 

significant difference was found between viral titer in the three tissues. All mock-injected 

fish sampled during the were negative for virus, and fish that had died in the VHSV- 

exposed sampling tanks showed significant levels of virus in the pooled head kidney and 

brain as described above.           

     In fish exposed to the higher viral titer of 1 x 104 PFU/fish, three fish were sampled (1 

fish/tank)  on days 2, 4, 7, 10, 14, 21 and 28 days post-VHSV exposure (Figure 4-3, 

Table 4-2). Unlike fish in the low titer challenge, a relatively high viral titer was 

immediately detected in only the pooled head kidney/spleen on day 2 post-VHSV 

exposure (Figure 4-3, Table 4-2). However, as with the fin in the lower titer challenge, 

this was only detected in 1/3 fish tested, although the gill and fin from the same fish 

tested negative. While virus was detected in the pooled head kidney/spleen in all 3/3 fish 

sampled on days 4 and 21 post-VHSV exposure, it was only detected in 2/3 fish on days 

7, 10 and 14, despite a positive detection of VHSV in the gill and fin in all 3/3 fish on 

each sampling day. By day 28 post-VHSV exposure, VHSV was not detected in the 

pooled head kidney and spleen in any of the fish tested (62% of fish overall), the gill in 

1/3 fish (71% of fish overall), and the fin in 0/3 fish (62% of fish overall) (Table 4-2.). 

When viral titer in positive fish was analyzed, no significant difference was found 

between the three tissues, however, overall viral titer was statistically significantly higher 

in each tissue in fish exposed to the high titer (1 x 104 PFU/fish) on days 10 and 21 post-

VHSV exposure relative to fish exposed to the lower titer (1 x 102 PFU/fish) (P<0.05). 
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Figure 4-3. The geometric mean of VHS viral titer (PFU g-1) determined by plaque 

assay (PA) in all three tissues (pooled head kidney/spleen (Hk/Sp), fin and gill) in fish 

exposed to a viral titer of 1 x104 PFU/fish over time. Astericks indicate where viral titer 

was statistically significantly higher in each tissue in fish exposed to the high titer (1 x 

104 PFU/fish) on days 10 and 21 post-VHSV exposure relative to fish exposed to the 

lower titer (1 x 102 PFU/fish) (P<0.05). 

High Titer - 

Day 2 4 7 10 14 21 28 Total % Pos.

Kd/sp 1/3 3/3 2/3 2/3 2/3 3/3 0/3 13/21 62%

Gill 0/3 2/3 3/3 3/3 3/3 3/3 1/3 15/21 71%

Fin 0/3 1/3 3/3 3/3 3/3 3/3 0/3 13/21 62%

Table 4-2. VHSV prevalence determined by plaque assay (PA) in fish exposed 

to a viral titer of 1 x104 PFU/fish. 
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     In the second challenge experiment, fish were exposed to a viral titer of 1 x 104 

PFU/fish as in the previous challenge, however, VHSV load was analyzed by qPCR in 

the pooled head kidney/spleen, blood, brain gill, and fin in 3 fish sampled (1 from each 

tank) at each time point, days 5, 7, 9, 12, 14 and 21 days post-VHSV exposure (Figure 4-

4, Table 4-3). While virus was detected in the pooled head kidney and blood on every 

sampling day (88% and 94% of all samples respectively), virus was not detected in the 

fin until day 12, 14 & 21 (31% of all fish sampled), and in the gill on days 5, 12, 14, and 

21 (45% of all fish sampled). Only on day 9 was VHSV not detected in the pooled head 

kidney and spleen, but positive in the blood of one of the fish sampled (Table 4-3). 

Alternatively, in no case was there a positive detection of VHSV in the pooled head 

kidney and spleen, but not in the blood. VHSV detection in the brain also began on day 9 

(44% of all fish sampled), however peaked to the highest viral load detected in all tissues 

on day 21. Viral titer in the pooled head kidney/spleen, blood, and brain was statistically 

significant relative to the fin and gill on day 14 post-VHSV exposure (P<0.05).  Linear 

regression analysis confirmed a significant correlation between viral load detected in the 

pooled head kidney/spleen and blood over the course of the challenge experiment (F (1, 14) 

=42.783, R2=0.75) (Figure 4-5).         
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Figure 4-4. The geometric mean of VHS viral load (copy # µg-1 RNA) determined by 

qPCR assay in the pooled head kidney/spleen (Hk/Sp), fin, gill, blood and brain in fish 

exposed to a viral titer of 1 x104 PFU/fish over time.  

 

Table 4-3. VHSV prevalence determined by qPCR in fish exposed to a viral titer 

of 1 x104 PFU/fish. 

 

qPCR          

High titer - Day 5 7 9 12 14 21 Total % Pos.

Hk/Sp 3/3 2/3 2/3 3/3 2/2 2/2 14/16 88%

Blood 3/3 2/3 3/3 3/3 2/2 2/2 15/16 94%

Brain 0/3 0/3 1/3 2/3 2/2 2/2 7/16 44%

Gill 1/2 0/2 0/2 1/2 1/1 2/2 5/11 45%

Fin 0/2 0/2 0/3 1/3 1/2 2/2 4/14 29%
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Figure 4-5. Linear regression analysis indicating a significant correlation 

between VHS viral load (copy # µg-1 RNA) detected in the blood versus the 

pooled head kidney and spleen (Hk/Sp) by qPCR. 
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     Fluorescence microscopy imaging using a fluorescently conjugated monoclonal anti-

VHSV antibody was conducted on sectioned brain tissues of fish 28 days-post-VHSV 

exposure. Despite being asymptomatic for VHS infection, the presence of VHSV positive 

erythrocytes was identified within the optic tectum of the brain (Figure 4-6 A & B). VHS 

virus was also identified with leukocytes in the same region (Figure 4-7). Additional 

tissue analysis also indicated heavy staining for VHSV positive neural cell bodies of the 

optic tectum (Figure 4-8 A), and axonal tracts within the telencephalon (Figure 4-9 A). 

The presence of VHSV in peripheral nerve axons was also visible in a longitudinal 

section of a cranial nerve (Figure 4-10 A), a cross-section of an axonal tract running 

through the thalamus (Figure 4-11 A), and hindbrain (Figure 4-11 B). Nuclear staining of 

the tissue revealed that virus remained in the cytoplasm of the neurons and was not 

associated with the nucleus in any stage of infection (Figure 4-8 B, Figure 4-9 B, Figure 

4-10 B). 

 

Discussion 

     This study was unique in that it examined the viral distribution and pathology in a 

population of largely asymptomatic adult yellow perch infected with the Great Lakes 

strain VHSV-IVb. This is in contrast to other studies that have only examined the 

susceptibility of juvenile fish to the VHSV-IVb, where young fish exhibited severe to 

moderate external signs of the disease including hemorrhage throughout the body, fin 

bases and exophthalmia at similar viral titer exposures, and viral distribution not yet 
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explored (Kim & Faisal, 2010b; Olson et al., 2013). Alternatively, in the current study, 

clinical manifestations of VHS as external signs, including mild hemorrhage of the fins  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6. VHS virus positive erythrocytes within the brain tissue of 

VHSV-exposed fish. (A) Light microscopy DIC image of erythrocytes 

identified within the optic tectum of an adult yellow perch brain. (B) 

Fluorescent microscopy image using a monoclonal antibody to identify 

VHSV (red). 

A. 

B. 
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Figure 4-7. Fluorescence microscopy image indicating a VHS virus (white) 

positive leukocyte in a brain section of a VHSV-exposed adult yellow perch. 
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Figure 4-8. Fluorescence microscopy indicating VHS virus (A) 

(white) within neural cell bodies of the optic tectum. (B) Staining of 

the cellular nuclei within the tissues (blue) revealed that VHS virus 

(pink) remained in the cytoplasm of the neurons. 
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Figure 4-9. Fluorescence microscopy image in a brain section of a 

VHSV-exposed adult yellow perch indicating VHS virus (A) (white) 

within the axonal tracts of the telencephalon, and (B), VHS virus 

(pink) does not translocate with the cellular nuclei (blue). 

A. 

B. 
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200µm 
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Figure 4-10. Fluorescence microscopy image in a brain section of a 

VHSV-exposed adult yellow perch indicating VHS virus (A.) 

(white) within a longitudinal section of a cranial nerve, and (B), 

VHS virus (pink) does not translocate with the cellular nuclei (blue). 

A. 

B. 
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Figure 4-11. Fluorescence microscopy image in a brain section of a 

VHSV-exposed adult yellow perch indicating VHS virus (white) within 

(A) a cross-section of an axonal tract running through the thalamus, and 

(B) hindbrain. 
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and exophthalmia, were rarely observed in fish that had died during the adult yellow 

perch virus challenge; only internal signs were observed. In addition, particularly in fish 

injected with the lower titer of VHSV, the fish died very gradually instead of as a group. 

The occasional death of only a few fish at a time, combined with the lack of external 

signs, suggests that die-offs resulting from the manifestation VHSV in adult fish may 

easily go unnoticed in a natural lake environment. Fish that had demonstrated clinical 

signs during the early stages of infection also appeared to recover as survivors of the 28-

day challenge. 

     In the present study, the identification of virus in the gill by plaque assay in fish which 

tested negative for infection in the head kidney/spleen suggests that this tissue may 

harbor virus in cases of low level infection.  The detection of live, replication capable 

VHSV in the gill may be useful for the monitoring for VHSV in aquatic organisms since 

VHSV in the gill may also be an indicator of viral shedding in a chronically infected 

carrier fish. Similar studies with VHSV-Ia have identified the gill epithelium as a target 

for viral replication (Yamamoto et al., 1992), and a recent study confirmed that a rainbow 

trout gill epithelial cell line (RTgill-W1), but not spleen macrophage cell line (RTS11), 

will support replication of VHSV-IVb  (Pham et al., 2013). This correlates with our 

findings of VHS virus in the gill, but not the pooled head/spleen samples, suggesting that 

the macrophage rich organs of the head kidney and spleen maybe capable of clearing the 

virus from these tissues, while the gill epithelium may not. Thus, the relatively high 

prevalence of VHS virus detected by plaque assay suggest that the gill in particular may 
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serve as a useful tool for non-lethal detection measures, particularly in fish that may not 

have actively replicating virus in the head kidney or spleen.  

     When VHS virus was examined by qPCR, virus was consistently detected in the blood 

in nearly all (94%) of the fish that were sampled with a significant correlation to viral 

load detected in the pooled head kidney/spleen (F (1, 14) = 42.783, R2=0.75). In one of the 

fish analyzed, a positive detection of virus in the blood correlated with a negative 

detection in the pooled head kidney and spleen, suggesting that analysis of the blood may 

be even more representative of viral infection. Excluding this fish from the analysis (as a 

possible outlier), however, increases the correlation between the pooled head kidney and 

spleen even greater (F (1, 14) = 91.152, R2=0.87). The finding of a significant correlation 

between viral load detected in the blood and the pooled head kidney/spleen over the 

course of the 21-day challenge suggests that blood could be used as an accurate non-

lethal sampling tool in place of the lethal analysis of the head kidney and spleen.     

As in this study, VHSV-IVb antigen-associated leukocytes have been detected in several 

other Great Lakes fish species (Al-Hussinee et al., 2010; Al-Hussinee et al., 2011).  

Blood has also been used for the detection of VHSV-Ia relative to viral load in head 

kidney and spleen in infected rainbow trout (Oncorhynchus mykiss) (Cuesta & Tafalla, 

2009), however, with less robust results, possibly due to inhibitory enzymes present in 

the extracted RNA due to the presence of serum. Alternatively, VHSV-IVb may have 

evolved a slightly higher affinity for cells in the blood, particularly erythrocytes, resulting 

in a more pathogenic virus capable of infecting a wide array of new host-species. In 

addition, as research in anti-VHSV antibody production and detection continues to 
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improve (McLauchlan et al., 2003; Millard & Faisal, 2012; Pereiro et al., 2012; Purcell et 

al., 2012), the potential use of blood and serum as a non-lethal means for both the 

detection of VHSV and anti-VHSV antibody holds more promise than ever before. 

     The discovery of VHSV antigen associated erythrocytes in the brain tissue of infected 

fish also provides valuable insight into how the virus is potentially spread throughout 

various tissues within the fish. Unlike mammalian erythrocytes, nucleated red blood cells 

of fish have been shown to be fully functional immune cells capable of eliciting pathogen 

associated molecular pattern-specific responses (Montero et al., 2011). Because fish lack 

a lymphoid system, and teleost erythrocytes maintain a nuclei and functional cellular 

machinery, it would be highly beneficial for the virus to have adapted the use of these 

cells for quick transport and dispersal to tissues throughout the body. The infection of red 

blood cells in fish is not novel in that is has long been the characteristic signature of the 

iridovirus, erythocytic necrosis virus (ENV) (Glenn et al., 2012; Smail, 1982). Unlike 

ENV, however, which is easily visualized by the identification of intracytoplasmic 

inclusion bodies in infected cells, VHSV, like all rhabdoviruses, sheds its glycoprotein 

upon cellular entry and replicates in the cytoplasm, thus the viral capsid cannot be easily 

visualized. While in this study, fluorescence microscopy confirmed the presence of VHS 

virus in red blood cells using an N-gene specific monoclonal anti-VHSV antibody, 

studies to determine whether or not the virus is still infectious, or can replicate within 

these cells remain. 

     Viral detection by plaque assay, qPCR, as well as fluorescence microscopy, also 

confirmed VHS virus accumulation in the brain, particularly in the later stages of 
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infection in association with hemorrhage and the likely introduction through VHSV 

infected blood and virally infected neural axons. This finding is consistent with other 

reports of VHSV in the brain tissues of chronically infected juvenile rainbow trout 

(Oncorhynchus mykiss) (Brudeseth et al., 2002) and Pacific herring (Clupea pallasii) 

(Lovy et al., 2012), providing further evidence that the same is true of VHSV-IVb in 

adult yellow perch. Targeting of the brain is a characteristic similar to another 

rhabdovirus capable of infecting multiple host-species, rabies. This small, negative strand 

RNA virus is exclusively known as a prototypical neurotrophic virus, but the mechanisms 

of neural transport via peripheral axons to the brain may be similar. Like rabies, our 

results suggests that the VHS virus spreads in the blood, and it can enter CNS neurons at 

a peripheral sites and travel through the spinal cord to the brain of the infected host 

(Kelly & Strick, 2000). Unlike the rabies virus, however, it is unknown if the VHS virus 

is capable of replicating within the neuron and inducing apoptosis, or if the virus can 

sustain in the cranial neurons long-term.  

     In summary, the results of this study suggest a low level of VHSV-IVb infection in 

adult yellow perch may easily go undetected since no clinical signs were apparent in most 

of the fish in this study. When blood and brain tissues were included in the second 

challenge, analysis by qPCR demonstrated that blood, in combination with plaque assay 

of the gill, might provide a viable and accurate way of screening for VHSV in larger, 

more valuable fish in a non-lethal manner. The finding of significant virus in the brain, 

possibly through the transport of VHSV associated erythrocytes and neural axons, 
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however, also suggests that this tissue may be the target organ and source of chronic 

infection in long-term asymptomatic carriers of infection in adult yellow perch. 

 

 References 

 

Al-Hussinee L, Huber P, Russell S, Lepage V, Reid A, Young KM, Nagy E, Stevenson 
RM,& Lumsden JS. Viral haemorrhagic septicaemia virus IVb experimental 
infection of rainbow trout, Oncorhynchus mykiss (Walbaum), and fathead 
minnow, Pimphales promelas (Rafinesque). J Fish Dis 2010; 33 (4):347-60. 

Al-Hussinee L, Lord S, Stevenson RM, Casey RN, Groocock GH, Britt KL, Kohler KH, 
Wooster GA, Getchell RG, Bowser PR,& Lumsden JS. Immunohistochemistry 
and pathology of multiple Great Lakes fish from mortality events associated with 
viral hemorrhagic septicemia virus type IVb. Dis Aquat Organ 2011; 93 (2):117-
27. 

Batts WN, Winton JR. Enhanced Detection of Infectious Hematopoietic Necrosis Virus 
and Other Fish Viruses by Pretreatment of Cell Monolayers with Polyethylene 
Glycol. Journal of Aquatic Animal Health 1989; 1 (4):284-90. 

Batts WN, Winton JR. Viral Hemorrhagic Septicemia. In:  Suggested Procedures for the 
Detection and Identidfication of Certain Finfish and Shellfish Pathogens, Blue 
Book: American Fisheries Society, 2007. 

Brudeseth BE, Castric J,& Evensen Ã. Studies on Pathogenesis Following Single and 
Double Infection with Viral Hemorrhagic Septicemia Virus and Infectious 
Hematopoietic Necrosis Virus in Rainbow Trout (Oncorhynchus mykiss). 
Veterinary Pathology Online 2002; 39 (2):180-9. 

Cuesta A, Tafalla C. Transcription of immune genes upon challenge with viral 
hemorrhagic septicemia virus (VHSV) in DNA vaccinated rainbow trout 
(Oncorhynchus mykiss). Vaccine 2009; 27 (2):280-9. 

Einer-Jensen K, Ahrens P, Forsberg R,& Lorenzen N. Evolution of the fish rhabdovirus 
viral haemorrhagic septicaemia virus. Journal of General Virology 2004; 85 
(5):1167-79. 

Elsayed E, Faisal M, Thomas M, Whelan G, Batts W,& Winton J. Isolation of viral 
haemorrhagic septicaemia virus from muskellunge, Esox masquinongy (Mitchill), 
in Lake St Clair, Michigan, USA reveals a new sublineage of the North American 
genotype. J Fish Dis 2006; 29 (10):611-9. 



106 

 

 

 

Fijan N, Sulimanovic D, Bearzotti M, Muzinic D, Zwillenberg LO, Chilmonczyk S, 
Vautherot JF,& de Kinkelin P. Some properties of the Epithelioma papulosum 
cyprini (EPC) cell line from carp cyprinus carpio. Annales de l'Institut Pasteur 
Virologie 1983; 134 (2):207-20. 

Garver K, Hawley L, McClure C, Schroeder T, Aldous S, Doig F, Snow M, Edes S, 
Baynes C,& Richard J. Development and validation of a reverse transcription 
quantitative PCR for universal detection of viral hemorrhagic septicemia virus. 
Diseases of Aquatic OrganismsDis Aquat Org 2011; 95 (2):97-112. 

Glenn JA, Emmenegger EJ, Grady C, Roon SR, Gregg JL, Conway CM, Winton JR,& 
Hershberger PK. Kinetics of Viral Load and Erythrocytic Inclusion Body 
Formation in Pacific Herring Artificially Infected with Erythrocytic Necrosis 
Virus. Journal of Aquatic Animal Health 2012; 24 (3):195-200. 

Kelly RM, Strick PL. Rabies as a transneuronal tracer of circuits in the central nervous 
system. J Neurosci Methods 2000; 103 (1):63-71. 

Kim R, Faisal M. Comparative susceptibility of representative Great Lakes fish species to 
the North American viral hemorrhagic septicemia virus Sublineage IVb. Dis 
Aquat Org 2010a; 91:23-34. 

Kim R, Faisal M. Experimental studies confirm the wide host range of the Great Lakes 
viral haemorrhagic septicaemia virus genotype IVb. J Fish Dis 2010b; 33:83-8. 

Kurath G, Higman KH,& Bjorklund HV. Distribution and variation of NV genes in fish 
rhabdoviruses. Journal of General Virology 1997; 78 (1):113-7. 

Lovy J, Lewis NL, Hershberger PK, Bennett W, Meyers TR,& Garver KA. Viral tropism 
and pathology associated with viral hemorrhagic septicemia in larval and juvenile 
Pacific herring. Vet Microbiol 2012; 161 (1-2):66-76. 

McLauchlan PE, Collet B, Ingerslev E, Secombes CJ, Lorenzen N,& Ellis AE. DNA 
vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, 
dose, route of injection and duration of protection-early protection correlates with 
Mx expression. Fish Shellfish Immunol 2003; 15 (1):39-50. 

Millard EV, Faisal M. HETEROGENEITY IN LEVELS OF SERUM NEUTRALIZING 
ANTIBODIES AGAINST VIRAL HEMORRHAGIC SEPTICEMIA VIRUS 
GENOTYPE IVB AMONG FISH SPECIES IN LAKE ST. CLAIR, MICHIGAN, 
USA. Journal of Wildlife Diseases 2012; 48 (2):405-15. 

Montero J, Garcia J, Ordas MC, Casanova I, Gonzalez A, Villena A, Coll J,& Tafalla C. 
Specific regulation of the chemokine response to viral hemorrhagic septicemia 
virus (VHSV) at the entry site. J Virol 2011:02519-10. 



107 

 

 

 

OIE. Chapter 2.3.9 Viral Hemorrhagic Septicemia. In. Paris: Office International des 
Epizooties; 2009:279-98. 

Olesen NJ. Sanitation of viral haemorrhagic septicaemia (VHS). Journal of Applied 
Ichthyology 1998; 14 (3-4):173-7. 

Olson W, Emmenegger E, Glenn J, Winton J,& Goetz F. Comparative susceptibility 
among three stocks of yellow perch, Perca flavescens (Mitchill), to viral 
haemorrhagic septicaemia virus strain IVb from the Great Lakes. Journal of Fish 
Diseases 2013:n/a. 

Pereiro P, Martinez-Lopez A, Falco A, Dios S, Figueras A, Coll JM, Novoa B,& Estepa 
A. Protection and antibody response induced by intramuscular DNA vaccine 
encoding for viral haemorrhagic septicaemia virus (VHSV) G glycoprotein in 
turbot (Scophthalmus maximus). Fish & Shellfish Immunology 2012; 32 
(6):1088-94. 

Pham PH, Lumsden JS, Tafalla C, Dixon B,& Bols NC. Differential effects of viral 
hemorrhagic septicaemia virus (VHSV) genotypes IVa and IVb on gill epithelial 
and spleen macrophage cell lines from rainbow trout (Oncorhynchus mykiss). 
Fish Shellfish Immunol 2013; 34 (2):632-40. 

Pierce LR, Stepien CA. Evolution and biogeography of an emerging quasispecies: 
Diversity patterns of the fish Viral Hemorrhagic Septicemia virus (VHSv). 
Molecular Phylogenetics and Evolution 2012; 63 (2):327-41. 

Purcell MK, Bromage ES, Silva J, Hansen JD, Badil SM, Woodson JC,& Hershberger 
PK. Production and characterization of monoclonal antibodies to IgM of Pacific 
herring (Clupea pallasii). Fish & Shellfish Immunology 2012; 33 (3):552-8. 

Rosauer DR, Biga PR, Lindell SR, Binkowski FP, Shepherd BS, Palmquist DE, Simchick 
CA,& Goetz FW. Development of yellow perch (Perca flavescens) broodstocks: 
Initial characterization of growth and quality traits following grow-out of different 
stocks. Aquaculture 2011; 317 (1-4):58-66. 

Skall HF, Olesen NJ,& Mellergaard S. Viral haemorrhagic septicaemia virus in marine 
fish and its implications for fish farming - a review. Journal of Fish Diseases 
2005; 28 (9):509-29. 

Smail DA. Viral erythrocytic necrosis in fish: a review. Proceedings of the Royal Society 
of Edinburgh Section B: Biology 1982; 81 (03):169-76. 

Smail DA. Viral haemorrhagic septicaemia. In. Wallingford: CAB International LA  - 
English, 1999:123-47. 



108 

 

 

 

Thompson TM, Batts WN, Faisal M, Bowser P, Casey JW, Phillips K, Garver KA, 
Winton J,& Kurath G. Emergence of Viral hemorrhagic septicemia virus in the 
North American Great Lakes region is associated with low viral genetic diversity. 
Diseases of Aquatic Organisms 2011; 96 (1):29-43. 

Wolf K. Fish Viruses and Fish Viral Diseases. Ithaca, NY: Cornell University Press, 
1988. 

Yamamoto T, Batts WN,& Winton JR. In Vitro Infection of Salmonid Epidermal Tissues 
by Infectious Hematopoietic Necrosis Virus and Viral Hemorrhagic Septicemia 
Virus. Journal of Aquatic Animal Health 1992; 4 (4):231-9. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

 

 

 

Chapter 5 

 

Final Discussion 

 

 

 

 

 

 
     Overall, for a successful viral infection and the onset of disease to occur, proper 

conditions must be met within three primary areas, the external environment, the species 

population, and the individual fish immune system (Figure 5-1). Previous studies have 

verified that the VHSV-IVb virus is only capable of replicating in water temperatures 

below 18°C, with optimal replication occurring between  9-12°C (Goodwin & Merry, 

2011). External stressors in a lake such as low oxygen as in hypoxia or anoxia, combined 

with rapid temperature changes characteristic to large lake environments in the winter 

and spring, can also compromise the fish immune system, increasing chances of 

susceptibility. Farm raised fish held at similar temperatures may also become immune 

compromised due to stresses such as shipping and crowding during transport, making 

them more susceptible to disease outbreak as well. Another significant factor that will 

determine disease susceptibility within a population is the species of fish, since large 

differences appear to exist between fish species in susceptibility to VHSV-IVb.  
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Environment 

Species 

Population 

Individual 

Immune  

System 

� Cold Water (4-15°C) 
 

� External Stress 
                  -Hypoxia/Anoxia 
                  - Rapid Temp. Change 
                  - Shipping/ Crowding 

� Species Susceptibility 
 

� Internal Stress 
                  -Spawning 
 
                   
                 

� Susceptible Host 
 Genetics 
 

� Three Components 
                  -Barrier 
                  - Innate 
                  - Acquired 

Figure 5-1. Conditions must be met in three generalized components for successful 

VHSV infection and the onset of disease to occur. A common variable influenced and 

shared in all three components to VHS susceptibility is stress. 
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     Populations within a species, however, will react differently to VHSV exposure due to 

genetic differences and stresses brought on by external changes in the environment, 

and/or internal stress such as spawning. Within an individual fish, activation of a proper  

immune response will ultimately dictate whether or not the disease will progress. The 

results presented here indicate that a large component of a healthy immune response will 

depend on genetic factors and stress, both internal and external. Thus, provided general 

conditions for the virus to replicate are met (i.e., water temperature and species 

susceptibility), stress and genetics are ultimately the two factors which will influence 

disease susceptibility and outbreak the most. 

     The first chapter of this study identified major differences in susceptibility to the Great 

Lakes VHSV-IVb strain within a single species of yellow perch in three populations 

derived from different genetic and geographic origins. With all environmental conditions 

held equal, the most predominant differences between individuals, and thus the factors 

that would determine the outcome of VHSV infection and disease, were host genetics. 

Because genetic diversity was not significantly different between populations, a factor 

often attributed to differences in susceptibility to disease, it may be hypothesized that the 

existence of certain disease resistance genetic traits shaped by the host population's  

previous environment are responsible. As mentioned earlier, studies have confirmed that 

fish from the Great Lakes region most likely have never been exposed to VHS virus or 

any similar rhabdovirus before the identification of VHSV-IVb (Elsayed et al., 2006; 

Kim & Faisal, 2010a; Kim & Faisal, 2011; Olson et al., 2013; Pierce & Stepien, 2012). 
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Therefore, previous generations have not been influenced by the same natural selection 

pressures as the fish from the East coast. Alternatively, the perch stocks from the 

Choptank River and Perquimans River, both river estuary environments on the east coast 

of the U.S., may have encountered marine strains of VHSV (Gagne et al., 2007) and 

other viruses. Thus, natural selection pressures would have eliminated fish that did not 

survive viral exposure, allowing for the development of more virus resistant offspring to 

occur. In addition, however, the individual stress level also appeared to be highest in the 

susceptible population originating from Lake Winnebago, WI. As mentioned earlier, it 

was reported that Lake Winnebago fish seemed more easily stressed by human 

interactions (e.g., tank cleaning, adjusting feeders, and peering into or walking by the 

tank), than Choptank or Perquimans River fish. In all vertebrates, as well as fish, elevated 

levels of stress can result in elevated cortisol and a chronic overactive pro-inflammatory 

state, which can contribute to an increase susceptibility to disease (Miller et al., 2008).   

     The second chapter of this study focuses exclusively on the early innate immune 

pathways triggered relative to viral load by VHSV-IVb infection in a highly susceptible 

population of fish during the very early stages of infection. The administration of VHSV-

IVb by IP-injection into juvenile yellow perch resulted in 84% mortality, indicating their 

high susceptibility to this disease. However, it was also found that yellow perch mount a 

strong innate immune response to VHSV-IVb as demonstrated by significant increase in 

expression by pro-inflammatory genes IL-1� and SAA. In addition, a down-regulation of 

an anti-viral immune response indicated by a decrease in Mx gene expression in the 

hematopoietic tissues, head kidney and spleen, may represent a strategy utilized by the 



113 

 

 

 

virus to increase replication. It is therefore also possible that the fish from Lake 

Winnebago, WI may have experienced significantly high down-regulation of the Mx 

gene, resulting in an insufficient antiviral innate immune response and a high pro-

inflammatory response, possibly as a result of increased chronic stress, resulting in an 

increase in overall susceptibility to the disease relative to the other stocks. 

     In the final chapter of the study, the viral distribution was tracked over time in 

infected fish. Interestingly, in the juvenile yellow perch infected with a similar dose of 

VHSV in the first two chapters of the study, the clinical signs observed in the infected 

perch were similar to signs of VHS virus in other species, including septicaemic 

hemorrhages throughout the body and at the base of the fins. The transparency of dead 

juvenile perch allowed us to observe severe internal hemorrhages around the brain, 

suggesting that infected fish may suffer permanent damage to the central nervous system 

and that the brain may be a potential viral reservoir in surviving fish. In the adult fish, 

however, rarely were external clinical signs of the disease observed. Mild exophthalmia, 

or swelling of the eyes was the most common sign exhibited, however, it also seemed to 

disappear in the fish over time, again suggesting internal hemorrhage around the brain of 

the fish (Figure 5-2). The final study confirmed this hypothesis with the discovery of high 

virus loads in the brain of VHSV infected fish, particularly in the later stages of infection. 

In addition, this study demonstrated that analysis for VHSV in the blood by qPCR, in 

combination with plaque assay of the gill, may provide a viable and accurate way of 

screening for VHSV in larger, more valuable fish in a non-lethal manner. 
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     From the culmination of this and previous studies, we can begin to understand how  

VHSV-IVb infects yellow perch in different stages of infection.  In the waterborne 

transmission of virus, recent studies suggest that the main portal of viral entry and 

replication may be at the base of the fins (Harmache et al., 2006; Montero et al., 2011), 

as well as oral transmission of VHSV through the predation of infected fish (Schonherz et 

al., 2012).  Once a fish is infected with the VHSV, the suppression of the interferon 

response, combined with activation of a pro-inflammatory response, may result in 

successful replication of virus in the target tissues, head kidney and spleen. The spleen 

and head kidney of the fish represent hematopoietic tissues that are rich in leukocytes and 

erythrocytes from the continual circulation of blood. Therefore, the detection of VHSV in 

the blood and VHSV-associated erythrocytes and leukocytes, suggest a mechanism for 

Figure 5-2. Exophthalmia, or swelling of the eye was the most common 

clinical sign associated with VHSV infection in adult yellow perch. 
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the virus to be quickly transported and dispersed to all tissues of the fish in conjunction 

with internal hemorrhaging. Since VHSV-IVb is capable of replication primarily within 

epithelial cells (Batts & Winton, 2007), translocation to the skin and gills (shown in 

chapter 4) can  rapidly occur and represent key tissues where virus shedding may take 

place. Targeting of the brain by VHSV-IVb was also demonstrated in this study, possibly 

through the transport of VHSV-associated erythrocytes and retrograde travel through 

peripheral axons. This and other studies also suggest (Brudeseth et al., 2002; Lovy et al., 

2012) that the brain may be an additional target organ and source of chronic infection in 

long-term asymptomatic carriers of infection in adult yellow perch. Once the virus 

establishes itself, this opportunistic pathogen may remain hidden or latent in apparently 

healthy populations of fish until a significant stressor again triggers an active infection, 

repeating the cycle of infection and disease once more.  
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