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ABSTRACT 
QUORUM SENSING IN VIBRIOS AND CROSS-SPECIES ACTIVATION OF 

BIOLUMINESCENCE LUX GENES BY VIBRIO HARVEYI LUXR IN AN 

ARABINOSE-INDUCIBLE ESCHERICHIA EXPRESSION SYSTEM 
 

by 
 

Anne Marie Wannamaker 
 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Dr. Charles Wimpee 

 

Bacterial bioluminescence is observed in over twenty known species, primarily in the 

family Vibrionaceae.  However, only Vibrio fischeri and Vibrio harveyi bioluminescence 

expression mechanisms are well studied.  In V. harveyi, expression of the lux operon is 

activated by the transcription factor LuxR (LuxRVH), resulting in bioluminescence.  

Homologs of LuxRVH in other Vibrio species have been shown to regulate transcription of 

a variety of genes.  Three parallel quorum sensing pathways co-regulate the expression 

of LuxRVH.  The first objective was to assess possible quorum sensing regulation of lux 

operon expression in V. cholerae, V. chagasii, V. orientalis, and V. vulnificus using V. 

harveyi as the control.  Secondly, cross-species induction of bioluminescence by LuxRVH 

was tested on the aforementioned Vibrio lux operons using an Escherichia coli dual 

vector expression system.  This was accomplished by first generating a plasmid with the 

V. harveyi luxR gene (luxRVH) driven by an arabinose promoter.  Secondly, individual E. 

coli systems had one of the five Vibrio species-specific lux operons cloned on a separate 

plasmid.  Luminescence was assayed qualitatively on plates, and quantitatively using a 
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luminometer.  Relative light per cell was calculated by dividing measured light by OD600.   

Relative light assays showed quorum sensing regulation of the lux operon in all five 

Vibrio species.  Quantitative V. harveyi lux operon expression assays in the E. coli dual 

vector systems showed significant increase in light production in samples provided with 

arabinose. This demonstrated that induction of luxRVH by arabinose resulted in 

upregulation of lux genes.  The level of LuxRVH activation of other Vibrio lux operons 

reflects the distance of evolutionary relationships to V. harveyi.  The most induction was 

seen with the V. vulnificus lux operon followed by V. orientalis, V. chagasii, and finally V. 

cholerae.  This implies conservation of the lux operon regulatory mechanism between 

closely related species and suggests that the studied Vibrios utilize LuxRVH-type 

transcription factors.  The known LuxRVH homologs, SmcR (V. vulnificus) and HapR (V. 

cholerae) were suspected lux activators. In addition, other LuxRVH-type regulators are 

now implicated in the other Vibrio species.  Furthermore, mechanistic conservation of 

these transcription factors implies regulation by V. harveyi-type quorum sensing. 
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Introduction 

 

Bioluminescence  

 

Bioluminescence is the natural ability for an organism to enzymatically produce light and 

can be used as a unique phenotype for studying gene regulation.  Light production is 

highly regulated as a result of the process being energetically demanding; using up to 

10% of the total cellular energy (52).  This energy is utilized in order to produce enzymes 

required for light production.  It is an investment for an organism to produce light; 

however, in relation to other cellular functions, such as growth or respiration rate, 

bioluminescence is well integrated and does not negatively affect these functions (82).   

Bioluminescence being energetically expensive suggests that this process would occur 

under conditions that would be advantageous physiologically or ecologically to the 

organism.  For example, a light organ is a mutually beneficial symbiotic relationship 

between luminescent bacteria and marine organisms like fish or squid.  The host utilizes 

the light for finding and/or attracting prey or for predator evasion.  The bacteria 

produces light for greater integration into the host and possibly for dispersal or survival; 

allowing a nutrient rich environment that is ideal for propagation before leaving the 

host (22, 46, 58, 65, 73, 83).  Bioluminescence is thought to be a by-product of an 

enzymatic reaction utilized for removal of oxygen by anaerobic bacteria while 

atmospheric concentrations of oxygen rose during the Precambrian Great Oxygenation 

Event.  The basis of the hypothesis is the high oxygen consumption of the 
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bioluminescence reactions, which consumes up to 20% of the cellular oxygen, and is 

thought to help maintain redox balance (23, 25, 64, 113).  Later, the maintenance of 

bioluminescence would be encouraged by symbiotic relationships with higher organisms 

that developed with the evolution of light sensing organs.  However, very few 

bioluminescent species form light organ symbiosis; the vast majority being planktonic.  

In this case, there should be little selective pressure towards conservation of functional 

bioluminescence genes, yet the genes are highly conserved (53, 110, 117, 122).  

According to Czyż, Wróbel and Węgrzyn, another possible theory is that the 

bioluminescence reactions arose in order to provide an internal, readily available light 

source for photoreactivation; the process where light is utilized to repair UV damaged 

DNA (18).  An internal light source would be beneficial to DNA repair as it ensures that 

at least one DNA repair system will always be available.  Ultimately, the specific function 

of bioluminescence is still under investigation.  

 

Bioluminescent Bacteria 

 

The most well studied bioluminescent bacteria are Vibrio fischeri and Vibrio harveyi; 

however, bioluminescent bacteria can be found in a variety of marine, freshwater, and 

terrestrial habitats living either as planktonic free-living organisms, saprophytic 

organisms, pathogenic parasites, gut or light organ symbionts (23, 44, 82).  By far, the 

most luminescent species are found in the family Vibrionaceae, but species are found 

scattered throughout the γ-Proteobacteria class which includes genera such as Vibrio, 
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Photobacterium, Photorhabdus, and Shewanella (21).  These genera have a common 

presence of conserved lux genes which are expressed in high levels during light 

production.  In the majority of cases, the genes appear to be vertically inherited; 

however, there are some cases of lateral gene transfer (117, 53).  Phylogenetic analysis 

of luxA, a bioluminescence gene, shows a Vibrio clade segregated from a 

Photobacterium clade.  Vibrio fischeri luxA is not included in the Vibrio clade; it is more 

closely related to the Photobacterium luxA clade. The Vibrio clade includes all the major 

species used in this study (Figure 1). 

 

 

Figure 1: Phylogenetic analysis of bioluminescence gene luxA.  The luxA tree was constructed 
using Bayesian Markov Chain Monte Carlo statistics with the parameters of General Time 
Reversible nucleotide substitution cost matrix (Geneious).  Photobacterium leiognathi is 
specified as the outgroup.  Consensus support percentage is listed at each node. 



4 
 

 
 

Sequence analysis investigating the family Vibrionaceae showed remnants of lux genes 

indicating non-luminous bacteria are more likely due to multiple losses than acquisition 

through lateral gene transfer (38, 53, 90, 91, 117).  Additionally, the regulation of 

functional lux genes in the majority of bioluminescent bacteria remains unknown. 

 

The lux operon 

 

The lux genes can be divided into three categories: the core, accessory and regulatory 

genes (Figure 2, 3).  The lux operon core genes always consist of five structural genes, 

luxCDABE, that encode enzymes required for light production (6, 23, 26-27, 66, 70, 73-

74, 77, 84).  The genes luxA and luxB encode the α and β subunits of the enzyme 

luciferase, respectively (3-4, 27).  The genes luxC, luxD, and luxE respectively encode the 

reductase (r), acyl-protein synthetase (s), and acyl-transferase (t) polypeptides of a fatty 

acid reductase complex (9-10).  Luciferase acts as an oxidative catalyst that drives the 

bioluminescent reaction in which oxidation of a reduced flavin (FMNH2) and a long chain 

aldehyde (RCHO) result in a photon emission; the fatty acid reductase complex supplies 

the aldehyde for oxidation by luciferase (70, 72).  
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Figure 2: The lux operon core genes.  The lux operon encodes the enzymes luciferase and a fatty 
acid reductase that are required for light production (89). 

 

 

The accessory genes, which can be present or absent depending on the bacterial strain, 

are redundant genes that produce enzymes that can be found in other metabolic 

systems.  In some species, such as V. fischeri, V. harveyi and Photobacterium 

phosphoreum, accessory genes are found as part of the lux operon following the luxE 

gene (108, 23).  For example, LuxG, an enzymatic homodimer, supplies FMNH2 to 

luciferase during the bioluminescent reactions and is homologous to the NAD(P)H-flavin 

oxidoreductase Fre of Escherichia coli (87, 128).  LuxH, a 3,4-dihydroxy-2-butanone 4-

phosphate synthetase (DHBP synthetase), is another accessory enzyme that is 

homologous to RibB of E. coli and involved in the biosynthesis of riboflavin; a crucial 

cofactor of FMN (97).   
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The regulatory genes control the expression of the lux operon (core genes).  In V. 

fischeri, the gene luxR (luxRVF), which is divergently transcribed and located upsteam of 

the lux operon, encode the transcriptional activator LuxR (LuxRVF).  LuxRVF is directly 

regulated by the signal molecule generated by LuxI.  LuxI is a member of the core lux 

operon in V. fischeri; found upstream of luxC (20, 25-26, 37, 102, 105-106).  In V. 

harveyi, the luxR gene (luxRVH) is not located near the lux operon (NCBI Accession 

Number: NC_009784).  The V. harveyi transcriptional activator LuxR (LuxRVH) is not 

homologous to LuxRVF and is a member of the TetR protein family, whereas LuxRVF is the 

basis of the LuxR-LuxI protein family (33-34, 94-95, 104, 109).  Unlike V. fischeri, LuxRVH 

is not directly regulated by a single signaling molecule, but is instead regulated by three 

parallel signaling protein cascades (48, 104, 107). 
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Figure 3: Vibrio fischeri and Vibrio harveyi lux genes.  The V. fischeri and V. harveyi lux operons 
are shown with core, accessory, and regulatory genes as indicated. 

 

 

Biochemistry of bioluminescence reaction 

 

The fatty acid reductase is a multi-subunit complex consisting of multiple copies of LuxC, 

LuxD and LuxE (120).  LuxE, the acyl-transferase subunit, shuttles fatty acids, specifically 

tetradecanoic acid that was intended for lipid biosynthesis, from the lipid pathway into 

the bioluminescent pathway.  In the bioluminescence pathway, the tetradecanoic acid is 

first activated by LuxD, the synthetase subunit, forming a fatty acyl-AMP intermediate in 

an ATP-dependent reaction.  This intermediate remains bound to the complex where it 

is reduced by LuxC, the reductase subunit, to an aldehyde, oxidizing one NADPH 
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molecule.  This aldehyde is then recycled back into the system through oxidation by 

luciferase (10, 71-73, 83).   

Luciferase is a heterodimeric (αβ) flavin monooxygenase that acts as a catalyst; driving 

the light-emitting reaction (3, 29).  Luciferase acts on three substrate molecules: 

molecular oxygen, reduced flavin (FMNH2) and an aliphatic long chain aldehyde 

(tetradecanal).  Luciferase first binds to FMNH2, then to O2 and finally to the long chain 

aldehyde resulting in FMN, a fatty acid, and water as well as emission of a 490 nm blue-

green photon.  FMNH2 is regenerated by a flavin oxidoreductase in the presence of 

NADPH (71-73).  The bioluminescence reactions are illustrated in Figure 4. 

 
 

 

Figure 4: Bioluminescence reduction-oxidation reaction.  Figure is adapted from B. Wimpee 
(125) and shows the aldehyde synthesis reaction on the right side, the light-emitting reaction in 
the middle, and the restoration of FMNH2 on the left side.  Overall enzymatic reactions are 
shown at the bottom. 
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Quorum Sensing: Regulation of the lux operon 

 

Organisms rely on differential gene expression in response to their surrounding 

conditions.  Quorum sensing is an auto-inductive regulatory mechanism that controls 

gene expression based on local cellular populations.  Cellular populations are sensed 

indirectly by bacteria using small diffusible molecules called autoinducers.  Autoinducers 

are made by the bacteria themselves and can be species-specific or used for interspecies 

communication (5-6, 48).  The concentration of autoinducers controls gene regulation 

by acting as the population signal for the cell (24, 51, 75, 81, 83, 124, 127).  Bacteria 

utilize quorum sensing to regulate a large variety of functions including biofilm 

formation, virulence factors, type III secretion factors, motility, sporulation, 

competence, fruiting body formation, and bioluminescence (2, 19, 42, 45, 47, 55, 57, 76, 

80, 88, 92-93, 96, 105, 123, 129). 

 

Vibrio fischeri Quorum Sensing 

 

V. fischeri utilizes the quorum sensing regulation mechanism to control bioluminescence 

lux gene expression.  LuxRVF is a 250 amino acid protein with an active domain 

containing a helix-turn-helix DNA binding domain and a regulatory domain that contains 

a binding site for a 3-oxo-hexanoyl homoserine lactone autoinducer, produced by LuxI 

(20, 43, 51, 99).  The regulatory domain blocks the helix-turn-helix DNA binding domain 

until the autoinducer binds and allows a conformational change that exposes the 
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binding site.  LuxRVF acts as an activator for the lux operon and a repressor for the luxRVF 

gene (20, 25, 34, 43, 102).    

At low cellular density (Figure 5a), autoinducer concentration is low and LuxRVF is not 

bound by autoinducers.  The lux operon is not transcribed and luxRVF is not repressed.  

As cell density increases there is an accumulation of LuxRVF and autoinducer 

concentration reaches a threshold.  At high cellular density (Figure 5b), the autoinducers 

bind to the N-terminus of LuxRVF.  Once bound, the regulatory domain of LuxRVF no 

longer interferes with the active domain, freeing up the helix-turn-helix DNA binding 

domain.  LuxRVF, along with σ70-RNA polymerase, binds to a consensus sequence called 

the lux box (ACCTGTAGGATCGTACAGGT) located upstream of luxI, and to the luxI 

promoter.  The lux operon is expressed which increases LuxI, thereby increasing 

autoinducer concentration, forming a positive feedback loop.  Bound LuxRVF also acts as 

a repressor for luxRVF, creating a negative feedback loop and equalizing the system (21, 

25, 37, 43, 75, 105-106). 
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Figure 5: Vibrio fischeri quorum sensing system.  A) At low cell density, LuxRVF does not repress 
or activate genes. B) At high cell density, LuxRVF acts as a repressor for luxRVF and an activator for 
the lux operon. 

 

 

Vibrio harveyi Quorum Sensing 

 

In V. harveyi, bioluminescence is under the regulation of three parallel quorum sensing 

pathways (7, 21, 48).  The concentration of autoinducers, AI-1, AI-2 and CAI-1, indirectly 

regulates the translation of luxRVH mRNA through signaling cascades (6, 12, 25, 48, 81).  

The strongest autoinducer signal AI-1, N-(3-hydroxybutanoyl) homoserine lactone, is 

synthesized by LuxM and utilized only for intraspecific population sensing (6, 13, 99, 

112).  The second strongest autoinducer signal is AI-2, (2S,4S)-2-methyl-2, 3, 3, 4-

tetrahydroxytetrahydro furan borate, and is an interspecies autoinducer synthesized by 

LuxS (14, 85, 100, 126).  CAI-1, named after Vibrio cholerae, is a (S)-3-hydroxytridecan-4-

one synthesized by CqsA and is the weakest signaling autoinducer in V. harveyi (49, 76).  

Extracellular concentrations of AI-1 and CAI-1 are recognized by the transmembrane 
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spanning sensor receptors LuxN and CqsS, respectfully.  LuxP acts as the receptor for AI-

2 and transduces the signal to the transmembrane LuxQ protein (14, 48, 76, 85).  LuxN 

and LuxQ are hybrid two-component proteins that have the ability to bind ATP and 

autophosphorylate at a conserved histidine residue, ultimately passing the phosphate to 

a conserved aspartate residue.  However, if bound by an AI-1 or AI-2, respectively, LuxN 

and LuxQ alternate to phosphatase activity using the same residues (32, 85, 112).   

The activity of the catalytic residues of all three sensing systems converges at the LuxU 

protein.  The LuxU protein has a conserved histidine residue that is used to transfer 

phosphate between the sensing systems and a conserved aspartate residue of the 

downstream response regulator, LuxO (7-8, 30-32, 48, 78).  LuxO is a σ54- binding 

protein that regulates the transcription of small regulatory RNA molecules (sRNAs) (8, 

36, 78).  In V. harveyi, there are five quorum regulatory sRNAs, referred to as Qrr1-5.  

With the aid of the chaperone protein Hfq, Qrr1-5 form complementary base pairs with 

luxRVH mRNA blocking translation (60-61, 78, 114, 116).   

At low cell densities (Figure 6a), autoinducer concentrations are low and binding sites on 

LuxN, CqsS and LuxP are unoccupied.  Under this condition LuxN, CqsS and LuxQ bind 

ATP and autophosphorylate their conserved histidine residues; then pass the phosphate 

to the conserved aspartate on each respective protein.  Any of these sensing systems 

can transfer the phosphate to LuxN at a histidine residue.  LuxN activates LuxO by 

relaying its phosphate to an aspartate residue on LuxO, allowing LuxO to recruit σ54.  The 

LuxO- σ54 complex binds DNA, allowing transcription of Qrr1-5.  Qrr1-5 sequester luxRVH 

mRNA by binding the ribosome binding site in the 5’ untranslated region; blocking 
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translation.  Without the transcriptional activator LuxRVH, the lux operon is not 

transcribed and no light is produced (7, 48, 61, 107, 114). 

At high cell densities (Figure 6b), the increased autoinducer concentration leads to 

greater binding frequency of each autoinducer with LuxN, CqsS and LuxP, respectively.  

When autoinducer is bound, these proteins cease binding ATP to perform 

autophosphorylation, leaving the aspartate residue unoccupied.  Without the bound 

phosphate, this aspartate residue will remove the phosphate from the histidine of LuxN.  

In turn, LuxN dephosphorylates LuxO leaving it in an inactive form.  Without active LuxO 

Qrr1-5 is no longer transcribed and not available to interfere with translation of luxRVH.  

LuxRVH is now free to bind to the promoter of the lux operon expressing the enzymes 

needed for the bioluminescence reactions; thus, light is produced.  LuxRVH is also 

thought to have a negative feedback loop on itself and through upregulation of Qrr2-4 

transcription (115). 
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Figure 6: Vibrio harveyi quorum sensing.  A) At low cellular density, kinase cascades repress the 
lux operon; no light production occurs.  B) At high cellular density, phosphatase cascades allow 
activation of lux operon; light is produced. 
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Vibrio cholerae Quorum Sensing 

 

An analogous quorum sensing regulation that shares many regulatory components with 

V. harveyi is found in V. cholerae.  The CqsA/CqsS sensor system, originally discovered in 

V. cholerae, and the AI-2/LuxPQ/LuxS sensor system, both have analogous function to 

the systems of V. harveyi.  LuxU and LuxO in either V. harveyi or V. cholerae also show 

analogous function.  There is no AI-1/LuxN/LuxM sensor system found in V. cholerae; 

however, as in V. harveyi, a third parallel quorum sensing system seems to be present 

and acts directly on LuxO (49, 76, 86, 121).   

HapR, a homolog of LuxRVH, acts as a transcription factor downsteam of LuxO for 

virulence genes such as cholera toxin genes and genes involved in biofilm formation (42, 

49, 54-55, 129).  However, unlike LuxRVH, HapR acts as a repressor not an activator for 

these virulence genes.  HapR has been shown to bind to the lux promoter of V. harveyi 

activating lux gene expression (50, 121, 129); however, it has not yet been shown to be 

the activator of the V. cholerae lux operon.  HapR is also regulated by Qrr sRNA 

molecules, however; only four are found in V. cholerae (76). 

As in V. harveyi, under low cellular density (Figure 7a) the autoinducer concentration is 

low and they are not found bound to either CqsS or LuxP.  This allows CqsS and LuxQ to 

autophosphorylate and act on LuxU.  LuxU then activates LuxO by transferring a 

phosphate and LuxO in turn will activate the transcription of the Qrr1-4 sRNAs genes.  

These sRNAs will sequester HapR and virulence genes are expressed.  Under high 
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cellular density (Figure 7b), autoinducers are more available to bind to the proper 

receptors and autophosphorylation does not occur.  The signal transduction is reversed 

where LuxU inactivates LuxO and CqsS/LuxQ inactivates LuxU.  With LuxO inactive the 

Qrr1-4 sRNAs are not synthesized and therefore unable to bind and block translation of 

HapR.  HapR is now available to act as a repressor at promoters of virulence genes; thus, 

blocking their transcription (49, 76, 86).  
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Figure 7: Vibrio cholerae Quorum Sensing. A) Virulence gene regulation cascades under low cell 
density. B) Virulence gene regulation cascades under high cellular density. Effects of HapR on lux 
operon are unknown. 
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LuxRVH Induction 

 

Previously, a construct was made to bypass the quorum sensing systems of V. harveyi in 

order to directly induce transcription of luxRVH using the lac promoter.  This construct, 

along with a second non-competitive vector containing a species-specific lux operon, 

were cloned into E. coli; however, using the lac promoter to drive transcription of 

luxRVH, led to light production in some uninduced samples.  The arabinose promoter 

along with the AraC protein is a more strongly repressible system (Figure 8) that is 

utilized for the current study to regulate luxRVH gene expression (41, 104).   

In the absence of arabinose, the AraC proteins form a dimer that binds to the O2 and I1 

DNA sites, physically bending the DNA, and blocks the access of RNA polymerase; thus, 

blocking transcription of the downstream gene (11, 59, 62, 101).  When arabinose is 

present, it binds to the N-terminals of the AraC dimer, resulting in a conformational 

change that opens up a higher binding affinity site for I2.  The dimer then binds to this 

site and acts as a transcriptional activator for the gene by promoting RNA polymerase 

binding (11, 59, 101).   For this study, the downstream gene that will be regulated by the 

ara promoter is the luxRVH (Figure 8).   
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Figure 8: Arabinose promoter control of luxRVH.  The ara promoter shown in the repressed 
conformation at top.  The regulon, AraC, alternates binding to activate lux expression in 
presence of arabinose. 

 

 

Homologs of LuxRVH 

 

It is known that the homologs of LuxRVH, HapR (Vibrio cholerae), OpaR (Vibrio 

parahaemolyticus), SmcR (Vibrio vulnificus), VanT (Vibrio anguillarum) and LitR (Vibrio 

fischeri), upregulate transcription of a variety of genes (17, 29, 50, 68-69, 103).  

McCarter explored whether OpaR of V. parahaemolyticus, a nonluminous species, was a 

homolog of LuxRVH (68).  Using Genetics Computer Group (GCG) BestFit analysis, 

McCarter found that OpaR, a regulator for opacity genes, showed a 96% identity to 

LuxRVH and a 72% identity to HapR, indicating homology.  Croxatto and colleagues also 

used GCG BestFit analysis to determine if VanT, a regulator for a variety of genes such as 
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metalloprotease and biofilm formation, was also a homolog of LuxRVH and found an 81% 

identity to LuxRVH, a 74% identity to HapR, and an 82% identity to OpaR, indicating 

homology (17).  LitR of V. fischeri has an unknown role as a transcriptional activator for 

bioluminescence as well as symbiotic colonization and was found to also be a homolog 

for LuxRVH.  Using Basic Local Alignment Search Tool (BLAST), DNA Strider and Vector NTI 

Suite software, Fidopiastis and colleagues aligned the sequences of homologs and 

showed that LitR has 58-60% identity to LuxRVH, HapR, OpaR, and SmcR (28).   

Jobling and Holmes investigated HapR, a regulator for hemagglutinin protease, using 

BLAST to compare open reading frames to LuxRVH, and found that HapR was 71% 

identical to LuxRVH and the DNA binding domain was 95% identical to DNA binding 

domain of LuxRVH (50).  This study also demonstrated that HapR and LuxRVH are 

functionally interchangeable.  Experiments showed that LuxRVH will bind the hap 

promoter and express the gene and HapR will bind to the lux promoter and express the 

operon genes of V. harveyi.  Shao and Hor investigated another potential LuxRVH 

homolog, SmcR, which regulates a metalloprotease gene (103).  Using BLAST and 

GenBank database, Shao and Hor found a 93% identity to LuxRVH, a 93% identity to 

OpaR, and a 78% identity to HapR, also indicating homology.  Shao and Hor were also 

able to show functional similarity between SmcR and LuxRVH by using SmcR to bind and 

activate the lux operon of V. harveyi in a LuxRVH deficient E. coli surrogate system.  

Collectively, these studies show homology between Vibrio transcription factors, which 

indicates that there may be conservation of lux operon activation in bioluminescent 
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species (5, 17, 29, 50, 68-69, 103).  Some of these studies demonstrated that the 

homologs of LuxRVH, specifically HapR and SmcR, will bind and activate V. harveyi lux 

operon expression in E. coli.  To further support the idea of activation conservation of 

the lux operon, this study will use inducible LuxRVH to activate the lux operon of five 

different species from the Vibrio genus: harveyi, chagasii, cholerae, orientalis, and 

vulnificus.   
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Hypothesis 

 

This study investigates whether V. harveyi-type quorum sensing is found in other Vibrio 

species including: V. chagasii, V. cholera, V. orientalis, and V. vulnificus.   To test this I 

will first determine whether these Vibrio species undergo quorum sensing regulation of 

their lux operons.  Secondly, I will test cross-species induction of bioluminescence by 

LuxRVH transcriptional activation of other Vibrio species lux operons.  Mechanistic 

conservation will indicate that V. harveyi-type quorum sensing may be taking place 

which will demonstrate specific gene conservation among Vibrio species.   

 

 

 

 

 

 

 

 

 



23 
 

 
 

Methods and Materials 

 

Phylogenetic Analysis and Sequence Alignment 

 

The luxA DNA and LuxR homolog amino acid sequences were imported into Geneious 

version 6.1.2 bioinformatics software application for analysis (35).  The phylogenetic 

tree based on the luxA gene in Figure 1 was generated using the MrBayes plugin which 

performs Markov Chain Monte Carlo (MCMC) probabilistic tree generation (1, 98).  The 

parameters specified are the General Time Reversible nucleotide substitution cost 

matrix and a chain length of 1,100,000 with an initial burn-in period of 100,000 (110).  

Three replicates were run using these parameters, in addition to three replicates using 

Maximum Likelihood with the PhyML plugin (39-40).  All runs resulted in the same 

phylogenetic topography.  Amino acid sequence alignments were performed using the 

ClustalW plugin within Geneious (56).  Amino acid alignment used a BLOSUM 62 

substitution cost matrix with a gap open cost of 10 and gap extension cost of 1.  BLAST 

was used to identify a potential LuxRVH-type homolog in the sequenced V. orientalis 

ATCC 33934 genome (79). 

 

Bacterial Strains  

 

All bacterial strains used in this study are found in Table 1.  Vibrio harveyi ATCC 33843 

was the positive control for this study and the strain used for the luxRVH gene.  The lux 

operons used in this study were previously cloned into plasmid pGEM-3Z and 

propagated in Escherichia coli Top 10 cells (Dr. Charles Wimpee laboratory, 
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unpublished).   The lux operons used in the cloning were derived from the following 

Vibrio strains: V. harveyi ATCC 33843, V. chagasii ATCC 33870, V. cholerae ATCC 14547, 

V. orientalis ATCC 33934, and V. vulnificus ATCC 43382.  The same Vibrio strains were 

used for the quorum sensing assays.  Top 10 E. coli was used for cloning as well as E. coli 

qualitative plate and E. coli maximum light output assays in this study.   

 

Media 

 

E. coli strains as well as Vibrio cholerae were grown in Luria Bertani (LB) medium either 

as broth [per Liter: 10g bacto-tryptone, 5g yeast extract, 10g NaCl; with aeration at 37°C, 

or on plates (addition of 15g/L of Agar)] incubated at 37°C.  Media used for induction of 

luxRVH expression also contained 0.2% arabinose (L(+)-Arabinose 99+%; ACROS Organics; 

NJ) (0.4g/100ml media).  Chloramphenicol was made in a 1000x stock solution at 

25mg/ml in 100% ethanol and stored at -20°C. Ampicillin was made in 1000x stock 

solution at 100mg/ml in sterile water stored at -20°C.  For plate and broth assays the 

appropriate antibiotic(s) were added to final concentrations of 25µg/ml 

(chloramphenicol) and 100µg/ml (ampicillin). 

All other Vibrios were grown in Sea Water Complete (SWC) broth [per Liter: 375ml 2x 

Artificial Sea Water (per Liter: 58.44g NaCl, 10.15g MgCl2, 12.3g MgSO4·7H2O, 1.49g KCl, 

5g peptone, 3g yeast extract, 3ml glycerol, 622 ml dH2O)] with aeration at room 

temperature, or on plates (addition of 15g/L of Agar to SWC)  kept at room 

temperature.     
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NZY recovery medium [per Liter: 5g NaCl, 2g MgSO4·7H2O, 5g yeast extract, 10g NZ 

amine (Sigma; St. Louis, MD, adjusted to pH 7.5 using NaOH] was used after E. coli 

transformation for cell recovery. 

 

Gel Electrophoresis and Imaging 

 

All DNA electrophoresis gels contained 1% agarose in 1x TAE buffer (0.04M Tris-acetate, 

0.001M EDTA) with 1µg/10ml Ethidium Bromide (Promega; Madison, WI).  All gels were 

loaded with a 1KB ladder (Promega) for size comparison.  Gels were photographed using 

a Kodak Gel Logic 100 imaging system (Eastman Kodak Company; Rochester, New York). 

All photographs taken of plates to capture bioluminescence were achieved by using 

GeneSnap 7.12 (SynGene Image Acquisition Software; Fredrick, MD).  The settings for 

pictures taken in the light were: 55 msec exposure, high resolution, no filter, with 

upperwhite light.  The settings for pictures taken in darkness were: 30 min exposure, 

high resolution, no filter, with no light. 
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Table 1: Bacterial strains used in this study 

Species Strain 

Escherichia coli Top 10 

Vibrio harveyi ATCC 33843 

Vibrio chagasii ATCC 33870 

Vibrio cholerae ATCC 14547 

Vibrio orientalis ATCC 33934 

Vibrio vulnificus ATCC 43382 

 

 

Quorum Sensing Vibrio Assays 

 

Vibrios were inoculated into 3ml of SWC broth (LB for V. cholerae) and allowed to grow 

in a shaker at 200 rpm overnight at 25°C.  Cultures were diluted 1:50 into fresh 50ml of 

SWC, or LB broth (V. cholerae), and kept in the shaker at 200 rpm throughout the 

experiment.  An aliquot was removed at hourly intervals and measured for optical 

density at 600nm (OD600) and light output using BioPhotometer plus (Eppenndorf; 

Hamburg, Germany) and Lumac Biocounter M 2010 (3M; St Paul, MN), respectively.  

Growth and light curves were generated for each sample and approximate light per cell 

(Relative Light) was calculated.  Relative light was calculated by dividing Light by OD600 

for each hour time point.  Relative light was graphed against time for quorum sensing 

graphs.  Individual growth and light curves were generated using Excel (Microsoft Office 

2010). 
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PCRs and Construct Generation 

 

Each polymerase chain reaction (PCR) was performed using a Bio-Rad DNA Engine 

Thermal Cycler (Bio-Rad Laboratories; Hercules, CA).  All PCR products were purified 

using a QIAquick PCR Purification Kit per manufacturer’s protocol (QIAGEN; Hilden, 

Germany).  For amplification of the araC/ara promoter region from pBAD-GFPuv (Figure 

11) and luxRVH from the V. harveyi genome, amplification PCRs were performed.  

 

Amplification PCRs were carried out using the following reaction mix: 

1 μl of template DNA 

1 μl of forward primer 

1 μl of reverse primer 

7 μl of dH2O 

10 μl of 2X Phusion Master Mix HF (Finnzymes; Vantaa, Finland) 

 

Crossover PCR was performed to fuse amplification PCR products using: 

1 μl of amplification PCR product 1 (araC/ara promoter region) 

1 μl of amplification PCR product 2 (luxRVH gene) 

1 μl of forward primer 

1 μl of reverse primer 

6 μl of dH2O 

10 μl of 2X Phusion Master Mix HF  
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Colony PCR was carried out using a small amount of a colony and the following reaction 

mix:  

1 μl of forward primer 

1 μl of reverse primer 

8 μl of dH2O 

10 μl of GoTaq Green 2x Master Mix (Promega) 

 

 

All PCRs used the same parameters: 

95°C 5 min 
 

98°C 30 sec 

30 cycles 
50°C 10 sec 

72°C 1 min 

72°C 7 min 
 

 

 

All PCR products were verified by gel electrophoresis.  Crossover PCR product (araluxR 

insert) was additionally verified by sequencing through the University of Chicago CRC 

DNA Sequencing Facility (Chicago, Illinois).   
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The plasmid pLS6 (Figure 16), a pACYC- type plasmid that confers chloramphenicol 

resistance, was first linearized by a blunt end restriction digest at a Sma1 restriction site 

within the lacZ cassette using the following protocol (119):  

5 μl of purified pLS6 

2 μl of 10X buffer 

11 μl of dH2O 

2 μl of Sma1 (Promega) 

 

The cut pLS6 plasmid was then dephosphorylated using temperature sensitive alkaline 

phosphatase (Promega) and ligated with the araluxR insert using the following ligation 

mix: 

1 μl pLS6 plasmid 

5 μl 2X buffer 

1 μl T4 DNA ligase (Promega) 

3 μl araluxR insert 

 

 

The ligation of pLS6 with the araluxR insert results in the pARA-LUXR plasmid. 
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Transformation  

 

Top 10 E. coli cells were made competent by the CaCl2 method (15). Transformation of 

pARA-LUXR plasmid was performed using the following protocol: 

Mixed 5 μl of the above ligation mix with 50 μl of competent E. coli cells.  

Immediately incubated on ice for 30min 

Incubated in 42oC water bath for 30 sec 

Incubated on ice again for 2 min 

Added 250 μl of NZY recovery medium  

Incubated at 37°C for 1 hr  

To confirm successful transformation, blue and white screening was carried out by 

plating 100µl of recovered cells, along with 50 µl each of the inducer isopropyl β-D-1-

thiogalactopyranoside and the indicator x-gal (5-bromo-4-chloro-indolyl-β-D-

galactopyranoside) (Promega), onto LB agar plates containing chloramphenicol. Plates 

were incubated overnight at 37°C.    

White resulting colonies were selected for colony PCR.  Colony PCR products were 

verified by gel electrophoresis for presence of pARA-LUXR.  The chosen colony 

containing pARA-LUXR was re-streaked for isolation onto LB agar plates with 

chloramphenicol and allowed to grow overnight at 37°C.  For further transformation 

with a second plasmid, cells were made competent by the CaCl2 method (15). 
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The non-competitive pLUX plasmid containing one of five species-specific lux operons 

was isolated from Top 10 E. coli (Dr. Charles Wimpee Laboratory). The species-specific 

plasmid confers ampicillin resistance and contains the lux operon from either V. harveyi, 

pLUXVH, V. chagasii, pLUXVCha, V. cholerae, pLUXVCho, V. orientalis, pLUXVO, or V. 

vulnificus, pLUXVV.   Collectively, this group of plasmids will be referred to as pLUXSpecies.  

Each of the five pLUXSpecies plasmids were purified from E. coli using Qiaprep Spin 

Miniprep per manufacturer’s protocol.   

Transformation of individual pLUXSpecies into competent cells containing the pARA-LUXR 

plasmid was performed using the protocol described above, with the exception of 

replacing the initial 5 µl ligation mix for 1µl of a 1:10 dilution of a purified pLUXSpecies 

miniprep product.   

Top 10 E. coli were made competent and transformed with one of the five pLUXSpecies 

plasmids using the protocols described above to generate a pLUXSpecies control for 

individual lux operons.  For the pLUXSpecies/pLS6, Top 10 E. coli were made competent 

and transformed with one of the five pLUXSpecies plasmids and the purified pLS6 using the 

previously cited protocols.  Test and control samples are found in Table 2.  
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Table 2: Test and Control Samples 

Sample Contents 

Test Strains pARA-LUXR/pLUXSpecies pLUXSpecies and pARA-LUXR plasmids 

pLUXSpecies control pLUXSpecies plasmid 

pLUXSpecies /pLS6 control pLUXSpecies and pLS6 plasmids 

 

 

E. coli Plate Assays 

 

The five sets of transformed pARA-LUXR/pLUXSpecies test strains and pARA-LUXR/pLS6 

controls were grown overnight at 37°C on LB agar plates containing both 

chloramphenicol and ampicillin with or without 0.2% arabinose.  The five individual 

pLUXspecies controls were grown on LB agar plates in the presence of only ampicillin.  

Induced plates had arabinose present while uninduced plate were absent of arabinose.  

E. coli was streaked onto an induced and an uninduced plate and grown overnight at 

37°C.  Plates were checked for the presence of light in a dark room and photographed in 

order to capture light production.  

  

E. coli Maximum Light Output Assays 

 

Maximum light output assays were performed on triplicate samples of E. coli for each of 

the six conditions:  induced and uninduced pARA-LUXR/pLUXSpecies, induced and 



33 
 

 
 

uninduced pLUXSpecies control, and induced and uninduced pLUXSpecies/pLS6 control.  E. 

coli was inoculated into 3ml of LB broth and shaken at 200 rpm overnight at 37°C. LB 

contained both ampicillin and chloramphenicol antibiotics for the pARA-LUXR/pLUXSpecies 

and pLUXSpecies/pLS6 control conditions and only ampicillin for the pLUXSpecies control 

condition   

All samples of overnight cultures were diluted 1:50 into 50ml of fresh LB broth and 

shaken at 200 rpm at 37°C throughout the duration of the experiment.  Growth and 

light readings were taken over a period of six hours using the same procedure as the 

quorum sensing Vibrio assays.  The maximum light output for each sample was 

determined by Relative Light (light/OD600) at hour four.  Individual light and growth 

curves were generated as well as average maximum light output graphs. 
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Results 

 

Quorum Sensing Vibrio Assays 

 

V. harveyi, V. chagasii, V. orientalis, and V. vulnificus naturally produced light when 

grown on SWC plates as did V. cholerae when grown on LB plates (Figure 9). 

 

 

Figure 9: Vibrio Bioluminescent Plates.  Frames of photographed plates are of the following 
Vibrios: A) harveyi B) chagasii C) cholerae D) orientalis E) vulnificus. Photographs taken with 
white light are on the left and photographs taken in darkness with a 30 min exposure time are 
on the right. 
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Relative light calculations for individual samples are found in Appendix A.  Relative light 

versus time graphs resulted in a “U” shaped curve for each species in all replicate 

samples.  V. harveyi showed the highest overall relative light followed by V. cholerae, V. 

orientalis, V. chagasii, and V. vulnificus (Figure 10).    
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Figure 10A: Vibrio harveyi Quorum Sensing Graphs 
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Figure 10B: Vibrio chagasii Quorum Sensing Graphs 
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Figure 10C: Vibrio cholerae Quorum Sensing Graphs 
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Figure 10D: Vibrio orientalis Quorum Sensing Graphs 
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Figure 10E: Vibrio vulnificus Quorum Sensing Graphs 

 

Figure 10: Vibrio Quorum Sensing Graphs. Individual growth and light curves are located on the 
left. Relative light quorum sensing curves are located on the right. Relative light was calculated 
by dividing light output by OD600 at hourly time points. 
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PCRs and Construct Generation 

 

All plasmids are found in Table 3 and all PCR primers used to generate the pARA-LUXR 

construct are found in Table 4. 

 

Table 3: List of plasmids used in this study 

Plasmid Description Reference 

pBAD-
GFPuv 

5371bp plasmid containing araC gene and ara promoter sequence Bio-Rad;16  

pLS6 5485bp plasmid containing chloramphenicol resistance cassette  
and lacZ cassette  

119 

pGEM-3Z 2743bp plasmid containing ampicillin resistant cassette and LacZ 
cassette 

Promega  

pARA-
LUXR 

7350bp plasmid with araLuxR insert cloned into pLS6 at the Sma1 
restriction site of the multi-cloning region 

This Study 

pLUXVH pGEM-3z + V. harveyi lux operon insert interrupting LacZ cassette 
and ampicillin resistance 

This Study 

pLUXVCha pGEM-3z + V. harveyi lux operon insert interrupting LacZ cassette 
and ampicillin resistance 

This Study 

pLUXVCho pGEM-3z + V. harveyi lux operon insert interrupting LacZ cassette 
and ampicillin resistance 

This Study 

pLUXVO pGEM-3z + V. harveyi lux operon insert interrupting LacZ cassette 
and ampicillin resistance 

This Study 

pLUXVV pGEM-3z + V. harveyi lux operon insert interrupting LacZ cassette 
and ampicillin resistance 

This Study 

pLUXSpecies Collectively referral of pLUXVH, pLUXVCha, pLUXVCho, pLUXVO, pLUXVV This Study 
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Table 4: Oligonucleotide primer sequences used in this study  

Primer Name        Sequence: 5’->3’ 

Crossover araluxR Forward 5’ CTTTAAGAAGGAGATATACATATGGACTCAATTGCAAAGAG 3’ 

luxR Reverse-
phosphorylated 

5’ TTAGTGATGTTCACGGTTGTAG 3’ 

luxR Reverse 5’ AGTGATGTTCACGGTTGTAG 3’ 

ara Forward-
phosphorylated 

5’ TTATGACAACTTGACGGCTACATC 3’ 

ara Forward 5’ ATGACAACTTGACGGCTACATC 3’ 

ara Reverse 5’ ATGTATATCTCCTTCTTAAAG 3’ 

 

 

The luxRVH gene was amplified out of the V. harveyi genome by PCR using Crossover 

araluxR Forward primer and luxR Reverse-phosphorylated primer (Table 4).  A second 

PCR was performed using the ara Forward-phosphorylated and ara Reverse primers 

(Table 4) in order to amplify the araC/ara promoter region from the pBAD-GFPuv 

plasmid (Figure 11) obtained from Bio-Rad.   Both the PCR products, 618bp luxRVH gene 

(Figure 12a) and 1247bp araC/ara promoter region (Figure 12b), were verified by gel 

electrophoresis.   
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Figure 11: Map of pBAD-GFPuv (pGLO) plasmid. Figure acquired from Bio-rad at 
http://www.bio-rad.com/ under “teaching resources.” 



44 
 

 
 

 

Figure 12: Gel electrophoresis of PCR products luxRVH and araC/ara promoter. A) Results of 
luxRVH PCR amplification from the V. harveyi genome.  B) Results of araC/ara promoter PCR 
amplification from pBAD-GFPuv plasmid. 

 

In order to fuse the araC/ara promoter region to the luxRVH gene, crossover PCR (Figure 

13) was performed using Crossover araluxR Forward primer and luxR Reverse-

phosphorylated primer (Table 4).  The resulting 1,865bp crossover PCR product (araluxR 

insert) was verified by PCR using the ara Forward and luxR Reverse primers (Table 4), gel 

electrophoresis (Figure 14) and sequencing (Figure 15).  
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Figure 13: Crossover PCR and araluxR insert.  Figure shows the process of cross over PCR to 
generate araluxR insert.  Gene order and transcription direction is depicted at the bottom. 
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Figure 14: Gel electrophoresis of crossover PCR product.  Gel electrophoresis was used to verify 
size of Crossover PCR product to identify araluxR fusion insert. 

 

 

Figure 15: Sequence of araluxR insert.  Sequence results of araC/ara promoter region and 
luxRVH crossover PCR.  The araC gene (green) is followed by the ara promoter (yellow) fused to 
LuxRVH gene (blue). 
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Transformation 

 

The araluxR insert was cloned into pLS6 (Figure 16) resulting in plasmid pARA-LUXR. 

   

 

Figure 16: Map of pLS6 plasmid. The araluxR insert was cloned at the Sma1 restriction site 
located within the lacZ cassette. 

 

Transformation of pARA-LUXR was tested by blue and white screening and verified by 

colony PCR using primers ara Forward and luxR Reverse (Table 4, Figure 17). Lanes 2 and 

11 contained the araluxR insert DNA generated by cross-over PCR.  The presence of the 

insert was confirmed by size as seen in Lanes 3, 6, 8, and 10.  Partial length fragments in lanes 

4, 5, 7, and 9 were not further investigated.   
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Figure 17: Colony PCR gel electrophoresis. Lane 1 contains a 1Kb DNA ladder from Promega. 
Lane 2 and Lane 11 contained the control araluxR fragment DNA. Lane 3, Lane 6, Lane 8 and 
Lane 10 contain the araluxR insert. 

 

 

Cells transformed with a second pGEM-3Z based plasmid (Figure 18), pLUXSpecies, 

containing one of five species-specific lux operons resulted in five individual dual vector 

expression systems for arabinose-inducible bioluminescence (Figure 19).   
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Figure 18: Map of pGEM-3z plasmid. Map acquired from Promega pGEM-3Z Vector instructions 
for use of product p2151 manual. 
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Figure 19: Dual vector expression system for arabinose-induced bioluminescence.  In the 
presence of arabinose, AraC binds to arabinose and then to the ara promoter activating the 

luxRVH gene.  LuxRVH is then able to activate the lux operon and light is produced. Five individual 
systems were generated for each of the five Vibrio lux operons. 

 

 

E. coli Plate Assays 

 

The dual vector expression systems for arabinose-induced bioluminescence were tested 

by plating transformed cells onto arabinose-induced and uninduced plates.  Plates were 

photographed in the light and in darkness (Figure 20).   
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Figure 20: E. coli Plate Assays 
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Figure 20 continued: E. coli Plate Assays 

 

 

Figure 20: E. coli Plate Assays.  E. coli strains tested under variable conditions for 
bioluminescence.  The lux operons under examination are of the following Vibrios: A) harveyi B) 
chagasii C) cholerae D) orientalis E) vulnificus. Test strains and controls are labeled above 
picture. Induced plates are the top row labeled “+” and uninduced plates are the bottom row 
labeled “-“.  The first column of frames with white light and the second column of frames are 
photographed in darkness with 30 min exposure. 
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E. coli containing the lux operons of either V. harveyi, V. chagasii, V. orientalis, or V. 

vulnificus each produced light when induced.  Additionally, no light production was 

observed for the uninduced pARA-LUXR/ pLUXSpecies condition or in either of the induced 

or uninduced pLUXSpecies or pLUXSpecies/pLS6 controls.  The V. cholerae lux operon, 

however, showed some degree of light production in all induced and uninduced 

samples.  In all samples, induced pARA-LUXR/ pLUXSpecies conditions showed greater light 

output than the rest of the conditions.  

 

E. coli Maximum Light Output Assays 

 

For each species-specific lux operon, three replicates were tested under each of the six 

conditions. Individual growth and light curves are found in Appendix B.  All relative light 

calculations (light /OD600) for each species-specific lux operon tested are located in 

Appendix C.  Averages of the maximum light output for each species-specific lux operon 

are found in Table 5.   
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Table 5: Average maximum light output for E. coli samples  

Operon tested & Condition Average 

Induced 

Average 

Uninduced 

Induced vs 

Uninduced 

pARA-LUXR/pLUXVH 4872792.78 498.28 9779.226098 

pLuxVH  12.14 8.23 1.47509113 

pLUXVH/pLS6 control 8.54 7.46 1.144772118 

pARA-LUXR/pLUXVCha 4658118.07 30593.44 152.2587218 

pLuxVCha 53.87 44.13 1.220711534 

pLUXVCha/pLS6 control 57.76 52.46 1.101029356 

pARA-LUXR/pLUXVCho 782885.56 6970.33 112.3168573 

pLuxVCho 3229.42 2570.76 1.256212171 

pLUXVCho/pLS6 control 7313.13 6371.066 1.147865993 

pARA-LUXR/pLUXVO 1570005.51 1342.44 1169.516336 

pLuxVO 56.63 32.84 1.724421437 

pLUXVO/pLS6 control 17.31 13.31 1.30052592 

pARA-LUXR/pLUXVV 4271138.31 1072.1 3983.899179 

pLuxVV  36.95 24.27 1.522455707 

pLUXVV/pLS6 control 36.49 26.13 1.396479143 
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E. coli containing the lux operons of V. harveyi, V. vulnificus, and V. orientalis yielded the 

highest light production, exhibiting a 9,800, 4,000, and 1,200 fold increase in light 

production on average with the induced pARA-LUXR/pLUXSpecies condition.  E. coli 

containing the lux operons of V. chagasii and V. cholerae showed lower light production 

for the induced pARA-LUXR/pLUXSpecies condition; however, both still averaged at least a 

100 fold increase.  For each species-specific lux operon tested, all induced and 

uninduced samples for the pLUXSpecies control and the pLUXSpecies/pLS6 condition 

conditions showed on average less than a 2-fold induction.  For each species-specific lux 

operon tested, average maximum light output results across all conditions were 

graphed for comparisons (Figure 21). 

 

 

 

 

 

 

 

 

 



56 
 

 
 

Figure 21: E. coli sample average maximum light output for all conditions. 
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Figure 21 continued: E. coli sample average maximum light output for all conditions. 
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Figure 21 continued: E. coli sample average maximum light output for all conditions. 

 

 

Figure 21: Average Maximum Light Outputs for E. coli Quorum Sensing Assay Conditions. 

Average maximum light output from samples of all five Vibrio lux operons tested for each of the 
six conditions. 

 

Sequence Analysis of LuxRVH Homologs 

 

Results of the sequence alignment showed high identity percentages for Vibrio 

parahaemolyticus OpaR (95.1%), Vibrio vulnificus SmcR (92.2%), Vibrio anguillarum VanT 

(81%), Vibrio cholerae HapR (70.4%), Vibrio fischeri LitR (58.7%) against LuxRVH;  only a 

16.4% identity for TetR of Salmonella enterica is observed (Figure 22; Table 6).  

Additionally, sequence alignment showed the hypothetical protein (H.P.) LuxRVH 

homolog for Vibrio orientalis with 81.9% identity (Figure 22; Table 6). 
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Figure 22: LuxRVH Sequence Alignment of Homologs. Proteins are organized in descending order of homology from LuxRVH.  The TetR family 
helix-turn-helix DNA binding domain is annotated in red. Color scheme is as follows: Green 100% similar amino acids, Orange >80% similar, 
Yellow is >60% similar. 
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Table 6: Percent Identity Comparison of LuxRVH Homologs. 
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Discussion 

 

Quorum Sensing Among Vibrios 

 

Among the bioluminescent Vibrios tested in this study, only V. harveyi and V. cholerae 

have been previously shown to utilize quorum sensing regulation for various genes (48, 

76).  Since light production is utilized in this study as an indicator of quorum sensing in 

Vibrios, qualitative light production was confirmed by plating (Figure 9).  For the quorum 

sensing assays, a positive quorum sensing graph would be indicated by a “U” shaped 

curve of relative light production over time (76).  The initial high relative light output is a 

remnant of residual light production from the high-density parent cultures that are 

diluted back as the original inoculum.   Relative light production then decreases as the 

cells react to the lowered cell density.  Finally, the relative light output increases as 

culture cell density rises.  Thus, the change in relative light is due to the dependence of 

light production on the cell population, indicating quorum sensing regulation.    

Observed light output is strain-specific and varies between strains as seen in Appendix 

A.  Since V. harveyi bioluminescence is specifically known to be regulated by quorum 

sensing (48, 76), this species serves as the positive control in the quorum sensing assays.  

Each of the replicate trials for the five tested Vibrio species: harveyi, chagasii, cholerae, 

orientalis, and vulnificus resulted in the expected “U” shaped relative light curve (Figure 

10).  The results indicate that V. cholerae, V. chagasii, V. orientalis, and V. vulnificus 

undergo quorum sensing regulation of bioluminescence similar to that of V. harveyi.  
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Dual vector system for arabinose-induced bioluminescence 

 

To determine if LuxRVH is capable of upregulating lux operon expression in the other 

Vibrio species, a method of directly inducing luxRVH was needed.  Quorum sensing 

regulation is bypassed by using E. coli surrogates with a plasmid containing the araC 

gene and the ara promoter linked to the luxRVH gene. Successful amplification of the 

luxRVH from the V. harveyi genome by PCR is confirmed by the 600bp band seen on the 

electrophoresis gel shown in Figure 12a.  The araC gene and linked ara promoter were 

amplified from pBAD-GFPuv using PCR and confirmed by the resulting 1250bp band on 

gel electrophoresis (Figure 12b).  Successful fusion of the araC/ara region to luxRVH was 

accomplished by crossover PCR.  The 1865bp araluxR crossover PCR product was 

confirmed by size using gel electrophoresis (Figure 14) as well as by sequence (Figure 

15).   Successful transformation of the first plasmid, pARA-LUXR, was confirmed by 

colony PCR amplification of araluxR and gel electrophoresis.  Results show that four of 

eight colonies had successful transformation, indicated by the bands between the 

2000bp and 1500bp markers (Figure 17).  Second, individual pLUXSpecies plasmids 

containing a species-specific lux operon driven by their native promoter were 

transformed into the E. coli containing the pARA-LUXR to generate the five individual 

dual vector systems for arabinose induced bioluminescence.   

Each of the six testing conditions for E. coli plate assays and E. coli maximum light 

production assays include: induced and uninduced pARA-LUXR/pLUXspecies, induced and 

uninduced pLUXspecies/pLS6 control, and induced and uninduced pLUXSpecies control.  E. 
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coli was first plated in order to confirm light production and photographed (Figure 20A-

E).  Light production was seen for each of the species-specific lux operons tested, 

confirming that the E. coli dual vector system for arabinose-inducible bioluminescence 

successfully promotes light production when induced with arabinose.  Additionally, no 

light production was observed in the absence of arabinose or in any controls for all 

strains except V. cholerae.  In the case of V. cholerae there is low level light production 

in the uninduced samples as well as both induced and uninduced controls (Figure 20C). 

This possibly indicates a promoter recognized by E. coli without induction. Incidentally, 

the lux operon of V. cholerae is shown to be more phylogenetically distant from the 

other four studied Vibrio lux operons (Figure 1); this is also shown in other studies (111, 

118).  Overall, there is clear activation of transcription at the lux promoter of other 

Vibrio lux operons by LUXRVH, which suggests regulation conservation of the lux 

operons.  The results presented in this study clearly show cross-species induction by 

LUXRVH in all Vibrio species tested.  Furthermore, the results show this dual vector 

system is useful for bypassing quorum sensing to directly express a regulator. 

 

 

 

Cross Species Induction of Bioluminescence by V. harveyi LuxR 

 

During exponential growth phase, light production reaches a maximum as the culture 

growth exits exponential growth phase then plateaus throughout stationary growth 
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phase.  In Vibrios, this is possibly due to autoinducer saturation at their receptors as cell 

population reaches stationary phase and/or the LuxRVH feedback loop on the Qrr sRNAs 

2-4 (115).  However, in the E. coli dual vector system used in this study, the decrease in 

light production may be attributed to cell resource or arabinose depletion. Maximum 

light output for each species-specific lux operon was determined in order to quantify the 

amount of LuxRVH activation of each respective lux operon.  Since light production drops 

around hour five and cell density continues to increase, maximum light output was 

calculated at hour four of cellular growth phase.  For each condition, replicate samples 

have individual light and OD600 over time graphs located in Appendix B.  Average results 

were utilized for inter-specific comparisons of lux operon activation by LuxRVH (Figure 

21, Table 5).   

Each sample tested had light production for the arabinose-induced pARA-

LUXR/pLUXspecies condition as well as varying amounts of reduced light production for 

uninduced pARA-LUXR/pLUXspecies conditions (Figure 21, Appendix B).  Some light 

production seen in uninduced samples may result from arabinose promoter leakage or a 

lux promoter recognized by E. coli.  As seen in Figure 21, this higher light production for 

the uninduced trials for the lux operons of V. chagasii and V. cholerae is likely to be due 

to more distant evolutionary relationships compared to V. harveyi (111, 117).  Light 

production was not seen in uninduced samples for the plate assay, but identified here 

because of greater instrumental sensitivity.  Except for the lux operon of V. cholerae, all 

control conditions had little to no light production compared to the pARA-

LUXR/pLUXspecies conditions.   All lux operon control samples had no more than a 2-fold 
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difference between induced and uninduced samples (Figure 21, Table 5).  These results 

demonstrate that bioluminescence is due to activation of a lux operon by LuxRVH 

recognizing a binding site and activating some level of lux operon transcription for each 

of the species-specific lux operons.  

Next to the positive control V. harveyi lux operon, V. vulnificus and V. orientalis had the 

highest maximum light output increase when induced with arabinose.  This was seen by 

comparing the light production for induced versus uninduced pARA-LUXR/pLUXspecies 

conditions (Figure 21, Table 5).  This indicates that LuxRVH is recognizing a binding site 

near the lux promoter of the V. vulnificus and V. orientalis lux operons well.  As seen in 

Figure 1, V. vulnificus and V. orientalis are the most phylogenetically similar to V. harveyi 

of the tested Vibrios (111, 117) and this level of lux operon activation by LuxRVH was 

expected.   

V. vulnificus had the most significant increase with a 4,000 times greater relative light 

for induced versus uninduced pARA-LUXR/pLUXspecies conditions.  Current studies 

suggest that V. vulnificus acquired the lux operon through lateral gene transfer from V. 

harveyi, which appears well supported by the results (117).  SmcR of V. vulnificus was 

shown to activate the lux operon of V. harveyi as well as having a 93% amino acid 

identity to LuxRVH (103).  Taken together, the Shao and Hor study along with the results 

shown here, suggest that SmcR may be the transcriptional activator for the lux operon 

of V. vulnificus.  Furthermore, this similarity may indicate that SmcR is regulated by V. 

harveyi-type quorum sensing regulation.   
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The transcriptional activator for the V. orientalis lux operon is not yet confirmed; 

however, BLAST results indicate a hypothetical quorum sensing regulator protein. 

Homolog sequence alignment showed an 81.9% identity between the hypothetical 

protein of V. orientalis and LuxR of V. harveyi (Figure 22, Table 6).  This study shows that 

LuxRVH upregulates transcription of the V. orientalis lux operon, further supporting the 

argument of a possible LuxRVH-type transcription factor.  Combining these results with 

the quorum sensing Vibrio assay suggests that V. orientalis may utilize a V. harveyi-type 

quorum sensing mechanism.    

The lux operon of V. chagasii had the next closest maximum light output to the V. 

harveyi lux operon after V. vulnificus and V. orientalis, respectfully.  The lux operon of V. 

chagasii showed less induction by LuxRVH for induced pARA-LUXR/pLUXspecies samples 

than the positive V. harveyi lux operon control (Figure 21, Table 5).    The phylogenetic 

relationship of V. chagasii to V. harveyi is further removed than V. vulnificus or V. 

orientalis, suggesting a possible reason for the reduced light output (111, 117).  Like V. 

orientalis, the lux operon transcriptional activator for V. chagasii is unknown; however, 

sequence data for the V. chagasii strain in this study is not available for LuxRVH homolog 

identification.  These results similarly indicate that regulation may be performed by a 

possible LuxRVH-type transcription factor in a V. harveyi-type quorum sensing system. 

As expected, the expression of the lux operon of V. cholerae increased in the pARA-

LUXR/pLUXspecies induced sample; however, the change is much less than the other 

studied lux operons.  Uninduced pARA-LUXR/pLUXspecies and the other control samples 
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produced significantly higher levels of light than other lux operons under study (Figure 

21).  V. cholerae is more distantly related than the other Vibrios tested in this study 

(111, 117), possibly explaining the lower level of light induction by LuxRVH in the E. coli 

induced pARA-LUXR/pLUXspecies condition and the higher baseline light production in 

other trials.  The LuxRVH homolog in V. cholerae, HapR, is also 71% identical to LuxRVH 

and accordingly, some cross species induction of V. cholerae lux operon by LuxRVH was 

shown.  This is most likely due to LuxRVH recognizing a binding site near the lux promoter 

as the DNA binding domain of HapR is a 95% identical to LuxRVH (50).  V. cholerae also 

has similar quorum sensing to V. harveyi (Figure 6, 7), yet may differ enough to explain 

the reduced small induction compared to the other Vibrio species under study.  The 

observed induction of the V. cholerae lux operon does, however, indicate that HapR may 

be a LuxRVH-type transcription factor for the lux operon in V. cholerae.  This implicates 

that V. cholerae-type quorum sensing regulates bioluminescence in a manner similar to 

that of V. harveyi. 
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Conclusion 

 

The research presented in this thesis is critical for understanding the regulation of 

quorum sensing transcription factors.  In V. harveyi, LuxRVH controls over 600 genes that 

cover virulence factors, biofilm formation, and bioluminescence (118).  Additionally, 

other studies indicate that high cellular density increases lateral gene transfer among 

species, an important topic as more bacteria acquire clinical antibiotic resistance (2, 54, 

63, 67).  This research may provide additional insight into preventing the spread of 

antibiotic resistance through greater understanding of gene regulation by quorum 

sensing.    Overall, this research generates a greater understanding of gene regulation, 

phylogenetic relationships, and diversity in bioluminescent bacteria.  

Future research may focus on confirmation of the proposed V. orientalis transcriptional 

factor as the lux operon regulator.  Additionally, a V. chagasii transcriptional factor 

homologous to LuxRVH should be identified.  Also, further testing of known LuxRVH 

homologs in V. vulnificus (SmcR) and V. cholerae (HapR) should be tested to confirm 

transcriptional activation of each respective lux operon.  Additionally, known and yet to 

be determined transcriptional activators of V. chagasii, V. cholerae, V. orientalis and V. 

chagasii need to be further investigated to elucidate activator binding sites.  Finally, 

quorum sensing regulation mechanisms of the transcriptional regulators in these Vibrios 

need to be identified to confirm V. harveyi-type quorum sensing. 

This study indicates that these Vibrio species: harveyi, chagasii, cholerae, orientalis, and 

vulnificus, undergo quorum sensing regulation of bioluminescence. Additionally, the 
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arabinose-induced increase in light production shows that LuxRVH successfully activates 

the lux operons of each of the Vibrio species in the dual vector E. coli system.  This 

LuxRVH activation implies that LuxRVH recognizes a binding site near the lux promoter of 

different Vibrio lux operons.  Additionally, the fact that LuxRVH induces lux operons of V. 

chagasii, V. cholerae, V. orientalis and V. vulnificus implies conservation of the 

regulatory mechanism among these Vibrios, suggesting that the other Vibrios may use a 

LuxRVH-type transcription factor for their respective lux operon regulation. The extent of 

activation likely depends on the similarity of the other Vibrios lux operons to that in V. 

harveyi (Figure 1).  The increased lux gene upregulation by LuxRVH seen for the lux 

operons of V. orientalis, and V. vulnificus likely reflects their closer evolutionary 

relationship to V. harveyi, followed by V. chagasii and V. cholerae, which shows less 

significant induction (Figure 21, Table 5).  This research reinforces the argument that lux 

operon regulation is mechanistically conserved among closely related Vibrio strains. 

Collectively, these results show cross species activation of V. chagasii, V. cholerae, V. 

orientalis, and V. vulnificus lux operons by LuxRVH as well as implying that the regulation 

of the lux operon transcriptional factors of V. chagasii, V. orientalis, V. vulnificus as well 

as V. cholerae is of the V. harveyi-type quorum sensing. 
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Appendix A: Relative Light Calculations for Vibrio Samples 

 

V. harveyi  

Species Sample Hour Light OD600 Relative Light 

Vibrio harveyi Sample 1 0 95355867 0.044 2192088897.00 

 1 2776584 0.097 28713381.60 

 2 308167 0.213 1448834.04 

 3 69685 0.438 159207.22 

 4 773217 0.792 975914.43 

 5 30436604 1.267 24022576.16 

 6 751000008 1.440 521527783.30 

Vibrio harveyi Sample 2 0 89634337 0.068 1313323619.00 

 1 9971637 0.137 72785671.53 

 2 260167 0.353 737017.00 

 3 45643 0.788 57959.37 

 4 725593 1.296 559871.14 

 5 27015407 1.830 14762517.49 

 6 697009472 1.990 350256016.10 

Vibrio harveyi Sample 3 0 1003358492 0.031 32896999738.00 

 1 8237444 0.079 104935592.40 

 2 500896 0.166 3026561.93 

 3 66852 0.319 209896.39 

 4 822174 0.586 1403027.30 

 5 26088719 0.906 28795495.58 

 6 197846630 1.027 192645209.30 
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V. chagasii 

Species Sample Hour Light OD600 Relative Light 

Vibrio chagasii Sample 1 0 1127 0.078 14448.72 

 1 112 0.142 788.73 

 2 9 0.386 23.32 

 3 49 0.783 62.58 

 4 289 1.848 156.39 

 5 1466 2.844 515.47 

 6 3933 3.232 1216.89 

Vibrio chagasii Sample 2 0 1156 0.069 16753.62 

 1 117 0.154 759.74 

 2 24 0.430 55.81 

 3 89 0.903 98.56 

 4 398 1.802 220.87 

 5 1796 2.772 647.91 

 6 4128 3.032 1361.48 

Vibrio chagasii Sample 3 0 1248 0.074 16979.59 

 1 120 0.148 810.81 

 2 8 0.408 19.61 

 3 62 0.843 73.55 

 4 352 1.825 192.88 

 5 1406 2.808 500.71 

 6 2251 3.132 718.71 
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V. cholerae 

Species Sample Hour Light OD600 Relative Light 

Vibrio cholerae Sample 1 0 580604 0.046 12621826.09 

 1 76573 0.081 945345.68 

 2 23655 0.217 109009.22 

 3 43453 0.374 116184.49 

 4 122604 0.523 234424.47 

 5 343291 0.742 462656.33 

 6 686582 0.816 841193.34 

Vibrio cholerae Sample 2 0 594116 0.060 9901933.33 

 1 78762 0.103 764679.61 

 2 21980 0.226 97256.64 

 3 46477 0.387 120095.61 

 4 130135 0.547 237906.76 

 5 364378 0.724 503284.53 

 6 728756 0.796 915062.78 

Vibrio cholerae Sample 3 0 584405 0.053 11026509.43 

 1 77270 0.092 839891.30 

 2 24748 0.151 164438.53 

 3 43368 0.237 182987.34 

 4 134799 0.383 352415.69 

 5 377437 0.535 705489.72 

 6 754874 0.631 1197262.49 
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V. orientalis 

Species Sample Hour Light OD600 Relative Light 

Vibrio orientalis Sample 1 0 73951 0.143 517139.86 

 1 8901 0.243 36629.63 

 2 1660 0.585 2837.61 

 3 537 1.181 454.70 

 4 1023 1.784 573.43 

 5 8244 1.381 5969.59 

 6 51741 1.125 45992.00 

Vibrio orientalis Sample 2 0 40669 0.094 432648.94 

 1 5506 0.206 26728.16 

 2 1237 0.551 2245.01 

 3 518 1.150 450.43 

 4 403 1.640 245.73 

 5 1784 1.310 1361.83 

 6 12074 1.110 10877.48 

Vibrio orientalis Sample 3 0 16887 0.067 252044.78 

 1 5373 0.106 50688.68 

 2 828 0.223 3713.00 

 3 161 0.632 254.75 

 4 84 1.107 75.88 

 5 1083 1.396 775.79 

 6 10458 1.475 7090.17 
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V. vulnificus 

Species Sample Hour Light OD600 Relative Light 

Vibrio vulnificus Sample 1 0 121 0.009 13444.44 

 1 313 0.045 6955.56 

 2 144 0.16 900.00 

 3 6829 0.459 14878.00 

 4 18502 0.76 24344.74 

 5 25560 1 25560.00 

Vibrio vulnificus Sample 2 0 152 0.012 12666.67 

 1 318 0.055 5781.82 

 2 127 0.176 721.59 

 3 3678 0.5 7356.00 

 4 14795 0.801 18470.66 

 5 20927 0.98 21354.08 

Vibrio vulnificus Sample 3 0 145 0.013 11153.85 

 1 330 0.056 5892.86 

 2 143 0.175 817.14 

 3 4294 0.485 8853.61 

 4 49348 0.78 63266.67 

 5 63548 0.97 65513.40 
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Appendix B: Individual E. coli Growth & Light Curves 
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Test: Vibrio harveyi lux Operon 

Condition: E. coli containing pARA-LUX/pLUXVH 
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Condition: E. coli containing pLUXVH control 
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Condition: E. coli containing pLUXVH/pLS6 control 
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Test: Vibrio chagasii lux Operon 

Condition: E. coli containing pARA-LUXR/pLUXVCha 
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Condition: E. coli containing pLUXVCha control 
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Condition: E. coli containing pLUXVCha /pLS6 control 
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Test: Vibrio cholerae lux Operon 

Condition: E. coli containing pARA-LUXR/pLUXVCho 
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Condition: E. coli containing pLUXVCho control 
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Condition: E. coli containing pLUXVCho /pLS6 control 
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Test: Vibrio orientalis lux Operon 

Condition: E. coli containing pARA-LUXR/pLUXVO 
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Condition: E. coli containing pLUXVO control 
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Condition: E. coli containing pLUXVO/pLS6 control 
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Test: Vibrio vulnificus lux Operon 

Condition: E. coli containing pARA-LUXR/pLUXVV 
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Condition: E. coli containing pLUXVV control 
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Condition: E. coli containing pLUXVV /pLS6 control 
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Appendix C: Average Relative Light Calculations for E. coli Samples 
Calculation for individual samples performed at hour four. 

Test: The Vibrio harveyi lux Operon 

Condition Sample Light OD600 Relative Light (Light/OD600) 

pARA-LUXR/pLuxVH Induced 1 3699540 0.586 6313208.19 
 2 2986050 0.831 3593321.30 
 3 3491480 0.741 4711848.85 
  Average 3392357 0.719 4872792.78 

pARA-LUXR/pLuxVH Uninduced 1 381 0.643 592.53 
 2 351 0.868 404.38 
 3 360 0.723 497.93 
  Average 364 0.745 498.28 

pLuxVH Control Induced 1 10 0.636 15.72 

 2 9 0.742 12.13 
 3 9 1.051 8.56 
  Average 9 0.810 12.14 

pLuxVH Control Uninduced 1 6 0.613 9.79 

 2 7 0.748 9.36 
 3 6 1.082 5.55 
  Average 6 0.814 8.23 

pLuxVH/pLS6 Control Induced 1 9 1.079 8.34 
 2 6 0.497 12.07 
 3 5 0.963 5.19 
  Average 7 0.846 8.54 

pLuxVH/pLS6 Control Uninduced 1 6 1.151 5.21 
 2 5 0.433 11.55 
 3 5 0.892 5.61 

  Average 5 0.825 7.46 
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Test: The Vibrio chagasii lux Operon 

Condition Sample Light OD600 Relative Light (Light/OD600) 
pARA-LUXR/pLuxVCha Induced 1 683694 0.809 845110.01 
 2 3003692 0.641 4685946.96 
 3 3976793 0.471 8443297.24 
  Average 2554726 0.640 4658118.07 

pARA-LUXR/pLuxVCha Uninduced 1 4312 0.904 4769.91 
 2 20970 0.609 34433.50 
 3 28707 0.546 52576.92 
  Average 17996 0.686 30593.44 

pLuxVCha Control Induced 1 52 1.011 51.43 
 2 49 1.044 46.93 
 3 48 0.759 63.24 
  Average 50 0.938 53.87 

pLuxVCha Control Uninduced 1 40 1.020 39.22 
 2 37 0.996 37.15 
 3 39 0.696 56.03 
  Average 39 0.904 44.13 

pLuxVCha/pLS6 Induced 1 48 0.871 55.11 
 2 45 0.909 49.50 
 3 39 0.568 68.66 
  Average 44 0.783 57.76 

pLuxVCha /pLS6 Control Uninduced 1 43 0.910 47.25 
 2 42 0.955 43.98 
 3 34 0.514 66.15 
  Average 40 0.793 52.46 
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Test: The Vibrio cholerae lux Operon 

Condition Sample Light OD600 Relative Light (Light/OD600) 
pARA-LUXR/pLuxVCho Induced 1 806477 1.224 658886.438 

 2 751280 0.829 906248.492 
 3 576672 0.736 783521.739 
  Average 711476 0.930 782885.556 

pARA-LUXR/pLuxVCho Uninduced 1 7057 1.169 6036.784 
 2 6694 0.801 8357.054 
 3 4751 0.729 6517.147 
  Average 6167 0.900 6970.328 

pLuxVCho Control Induced 1 1341 0.680 1972.059 
 2 1601 0.852 1879.108 
 3 3117 0.534 5837.079 
  Average 2020 0.689 3229.415 

pLuxVCho Control Uninduced 1 1280 0.738 1734.417 
 2 1249 0.878 1422.551 
 3 2100 0.461 4555.315 
  Average 1543 0.692 2570.761 

pLuxVCho /pLS6 Control Induced 1 5297 0.578 9164.360 
 2 5521 0.841 6564.804 
 3 5583 0.899 6210.234 
  Average 5467 0.773 7313.132 

pLuxVCho /pLS6 Control Uninduced 1 4005 0.474 8449.367 
 2 5182 0.886 5848.758 
 3 5390 0.928 5808.190 
  Average 4859 0.763 6702.105 
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Test: The Vibrio orientalis lux Operon 

Condition Sample Light OD600 Relative Light (Light/OD600) 
pARA-LUXR/pLuxVO Induced 1 997726 0.475 2100475.79 
 2 738051 0.506 1458598.81 
 3 891980 0.775 1150941.94 
  Average 875919 0.585 1570005.51 

pARA-LUXR/pLuxVO Uninduced 1 702 0.435 1613.79 
 2 732 0.513 1426.90 
 3 738 0.748 986.63 
  Average 724 0.565 1342.44 

pLuxVO Control Induced 1 27 0.627 43.06 
 2 32 0.386 82.90 
 3 34 0.774 43.93 
  Average 31 0.596 56.63 

pLuxVO Control Uninduced 1 16 0.577 27.73 
 2 17 0.339 50.15 
 3 15 0.727 20.63 
  Average 16 0.548 32.84 

pLuxVO /pLS6 Control Induced 1 12 0.540 22.22 
 2 12 0.969 12.38 
 3 13 0.751 17.31 
  Average 12 0.753 17.31 

pLuxVO /pLS6 Control Uninduced 1 10 0.614 16.29 
 2 9 0.986 9.13 
 3 10 0.689 14.51 
  Average 10 0.763 13.31 
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Test: The Vibrio vulnificus lux Operon 

Condition Sample Light OD600 Relative Light (Light/OD600) 
pARA-LUXR/pLuxVV Induced 1 3313547 0.837 3958837.51 
 2 3190540 0.751 4248388.81 
 3 3394761 0.737 4606188.60 
  Average 3299616 0.775 4271138.31 

pARA-LUXR/pLuxVV Uninduced 1 829 0.777 1066.92 
 2 798 0.761 1048.62 
 3 863 0.784 1100.77 
  Average 830 0.774 1072.10 

pLuxVV Control Induced 1 32 0.885 36.16 
 2 38 0.959 39.62 
 3 35 0.998 35.07 
  Average 35 0.947 36.95 

pLuxVV Control Uninduced 1 20 0.794 25.19 
 2 23 0.878 26.20 

 3 20 0.934 21.41 
  Average 21 0.869 24.27 

pLuxVV/pLS6 Control Induced 1 28 1.030 27.18 
 2 38 0.863 44.03 
 3 37 0.967 38.26 
  Average 34 0.953 36.49 

pLuxVV/pLS6 Control Uninduced 1 25 1.032 24.22 
 2 24 0.899 26.70 
 3 24 0.873 27.49 
  Average 24 0.935 26.14 
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