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ABSTRACT

In today’s complex combat environments, troops are often faced with increasingly
challenging tasks different from those experienced in the past. Warfighters must be
trained in adaptive perceptual skill sets, such as search strategies that enable them to
detect threats across any number of environmental, cultural, and situational conditions.
The goal of the present study was to explore how advanced technology, specifically eye
tracking, can be used to increase understanding of perceptual processes such as search
and detection and provide tools that can be used to train search skills. Experiment 1
examined a method of diagnosing perceptual performance in order to be able to identify
the perceptual root cause of target detection deficiencies and how these impact overall
target detection performance. Findings indicate the method can be used to pinpoint
where in the perceptual process a target miss originated, whether due to ineffective search
strategy, inability to detect the subtle cues of the threat or inability to recognize these
cues as indicative of a threat. Experiment 2 examined the training effectiveness of
providing trainees with process level tailored feedback which incorporates elements of
expert and trainee scan patterns. Findings indicate that providing trainees with elements
of either expert or trainee scan patterns has the ability to significantly improve the search
strategy being employed by the trainee. This work provides strong support for the use of
eye tracking based perceptual performance diagnosis methods and training strategies in

improving trainee search performance for complex target detection tasks.
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CHAPTER ONE: INTRODUCTION

“The best sensor and weapon on the battlefield is a well-trained, situationally-aware
Soldier, Sailor, Airman or Marine.”
- Gordon England, Deputy Secretary of Defense
Memorandum for Secretaries of the Military Departments
April 24, 2006

In today’s complex combat environments, troops are often faced with increasingly
challenging tasks that are different from those experienced in the past. Enemy use of
Irregular Warfare (IW) techniques has motivated the military to explore new tactics and
concepts such as Distributed Operations, a type of maneuver warfare in which small,
highly capable units are spread across a large area of operations to provide spatial
advantage (Ucko, 2007). A key tenet of this concept is training Warfighters down to the
lowest rank of soldier to obtain and exploit information in order to improve cognition and
decision making at the small unit level. Warfighters must have the ability to identify a
range of threats, including snipers, Improvised Explosive Devices (IED), and suspicious
activities and behaviors which could indicate the presence of such threats. The skills
necessary to detect such threats are commonly referred to in the military as observation
skills.

The preliminary findings of a recent study supported by the I Marine
Expeditionary Force (I MEF), the Marine Corps Warfighting Lab (MCWL), and the
Office of Naval Research (ONR) suggests that observational skills are critical to

Situational Awareness (SA) and tactical decision making (Carroll, Milham, Champney,

Eitelman, & Lockerd, 2007). The ability to detect static and dynamic environmental



threats such as slight changes in movement, color, and texture aids in detection of threats.
A major challenge to the successful performance of threat detection, however, is that
tactics are continually evolving. It is not sufficient to train troops to look for specific
environmental and behavioral cues, given the adaptation of the enemy. Warfighters must
be trained in adaptive perceptual skill sets, such as search strategies that enable them to
detect threats across any number of environmental, cultural, and situational conditions.
Thus, it is crucial to systematically examine the effect of training on perceptual skills as

they relate to successful threat detection.

Military Threat Detection Skills

Threat detection has been studied across a range of domains from military
aviation to airport security to radiography. Threat detection in a military aviation domain
is defined by Smith, Johnston, and Paris (2004) as the process of evaluating relevant cues
(in their case aircraft) in the vicinity of ones environment and determining how much of a
threat they represent by gathering and reviewing relevant information and deciding on
what actions to take. Fiore, Scielzo, and Jentsch (2004) define threat detection in an
airport screening task as consisting of the ability to rapidly recognize cues in the
environment and interpret the meaning and importance of these cues. Nodine, Mello-
Thoms, Kundel, and Weinstein (2002) break the radiographic interpretation threat
detection task down more granularly with respect to the perceptual components,
describing the task as consisting of a search for an abnormality, the recognition of an

abnormality and the decision made regarding the abnormality.



The focus of this research is on the perceptual aspects of threat detection in a
military Observation Post (OP) task. An OP is “a position from which military
observations (visual, audible, or other means) are made” and reported in order to provide
situation awareness for the commanding force (Army, 1992, Chapter 5, Section II,
Paragraph 5-6). OPs “are used during screening and reconnaissance operations” and
from the OP, “the squad reports the enemy size, activity, location, and disposition to the
commander.” (Army, 1992, Chapter 5, Section II, Paragraph 5-6). In short, the OP task
entails static observation of a designated area for what can be extended periods of time.
A task analysis of this task revealed decomposition of this task into key competencies of
visual search, detection of anomalous cues, recognition of these cues as indicative of a
threat, decision to respond and action response (Carroll et al., 2007). This research will

focus primarily on the first of these competencies, visual search.

Visual Search

In a visual search task, subjects look for a target item among a number of
distracting items (Leonards, Rettenbach, Nase, & Sireteanu, 2002). Visual search is
theorized to have two components, 1) an effortless component in which stimulus are
processed preattentively (Sireteanu & Rettenbach, 2000), essentially “popping out” at the
observer and 2) an effortful component in which attention must be serially allocated to
objects in the environment (Treisman & Souther, 1985). These components are
influenced respectively by 1) characteristics of the environment (e.g., saliency of targets
and distracters) and 2) learned search strategies. These search strategies can range from a

very structured systematic search in a regular pattern (e.g., alternate up and down scan



moving from left to right, (Wang, Lin, & Drury, 1997), to a less structured strategy such
as searching by area or searching by component/object (Chabukswar, Gramopadhye,
Melloy, & Grimes, 2003).

In current military OPs, threats such as snipers and IEDs are searched for amid an
urban backdrop bustling with distracters. In order to successfully detect threats in such a
complex and dynamic environment, it is necessary to develop efficient search strategies
which allow the greatest number of threat identifications over the least amount of space
and time. Subject Matter Experts (SMEs) from the US Marine Corps were interviewed to
obtain detailed descriptions of the search strategies used to perform the search task within
an OP. Both a Scout Sniper and an Observation Training Instructor identified a similar
process used during the static observation task, described as follows:

Search begins with a hasty search of the environment, from near to far, aimed at

identifying the high priority areas which demand attention most. This is

following by a detailed search in which high priority areas are explored further,
moving right to left, starting at ground level and working your way up and
starting near and working your way out. Following this, low priority areas are

searched, spending less time (80% high, 20% low). During this search, if a

potential threat appears, this systematic search is temporarily halted to turn

attention to the new element which is quickly evaluated and attention is turned
back to detailed search, picking up where left off.

In the hasty search described above, experts rely on the preattentive search
component, hoping to quickly identify obvious threats. In the detailed search, experts
turned to the search strategies they have developed in their experiences to identify more
subtle targets.

In describing typical novice performance, these SMEs identified two common

mistakes made during search including 1) students not being good judges of which areas

are high priority, and 2) students not scanning in a systematic sequence. This is inline



with findings in the literature which indicate experts spend more time than novices
attending to relevant aspects of the stimulus (Jarodzka, Scheiter, Gerjets, & van Gog,
2009) and novices have less defined scan patterns (Burgert et al., 2007; Jarodzka et al.,
2009; Kasarskis, Stehwien, Hickox, Aretz, & Wickens, 2001). The less structured scan
pattern is likely due to lack of a systematic search strategy with performance being
influenced most by bottom up processes which draw attention to salient features in the
environment (Jarodzka et al., 2009). Given this, the two components of search which
will be the focus of this research are “where” (i.e., where to look) and “how” (i.e., in

what sequence to look).

Training Visual Search

Key to the training of visual search skills is that trainees not only have the
opportunity to practice these skills, but also that relevant training strategies are
incorporated to ensure learning. Training strategies are training interventions that can be
employed in practice environments that will optimize learning, transfer, and retention
(Cannon-Bowers, Rhodenizer, Salas, & Bowers, 1998). Four principles for effective
training strategies require that they: 1) present relevant information and concepts, 2)
demonstrate Knowledge, Skills and Abilities (KSA) to be learned, 3) create opportunities
for trainees to practice the skills, and 4) provide feedback to trainees regarding practice
(Salas & Cannon-Bowers, 2001).

There has been a great deal of research into the training of search skills in tasks
such as radiographic interpretation (Nodine, Krupinski, & Kundel, 1990; Nodine et al.,

2002), airframe inspection (Sadasivan, Greenstein, Gramopadhye, & Duchowski, 2005),



circuit board inspection (Nalanagula, Greenstein, & Gramopadhye, 2006), and airport
baggage screening (Fiore et al., 2004). Training interventions such as presentation of
expert scan (Nalanagula et al., 2006; Sadasivan et al., 2005), metacognitive strategies
(Chapman, Underwood, & Roberts, 2002; Nodine et al., 2002) and attentional weighting
strategies (Hagemann, Strauss, & Canal-Bruland, 2006; Williams, Ward, Knowles, &
Smeeton, 2002) have proven successful in improving search performance.

Despite these extensive findings in the training science literature, few perceptual
skills training strategies validated in the literature have reached training practitioners in
the field. Common practice in current Marine Corps observation training is to provide
feedback consisting of Knowledge of Correct Response (KCR) in the form of pointing
out all threats in the scene/scenarios or Knowledge of Results (KR) in the form of
pointing out all threats missed. This form of purely outcome feedback has been shown
successful in some domains (e.g., teacher in service training; (Leach & Conto, 1999);
however, in other domains outcome feedback may not be at a granular enough level to
facilitate trainees identifying and improving process level skills which show performance
decrements (Davis, Carson, Ammeter, & Treadway, 2005; Goodman, Wood, &
Hendrickx, 2004). For example, in an inspection task, when compared to outcome level
feedback, process level feedback has been shown to facilitate detection of more targets
and development of a more systematic search strategy (Chabukswar et al., 2003).

One problem with outcome level feedback is that it typically gives little guidance
on how performance needs to change in order to increase performance levels. Such is the
case with visual search. KCR (where all threats were located) or KR (where missed

threats were located) has an element of “where” the trainee should be looking inherent in



the feedback as trainees are made aware not only of the threat missed, but the location of
the threat as well. However, this type of feedback does not address high priority areas in
which no threats were located or the sequence in which the trainee should be searching,
both process level performance aspects which may be in need of remediation for
performance to improve. Additionally, this feedback does not support the trainee in
abstracting these locations to a higher level of search strategy, allowing them to apply

this strategy in novel situations and environments.

Challenges to Training Visual Search

Many perceptual skills training strategies from the training science literature have
not reached the field because of the multiple challenges associated with training
perceptual skills such as search. The primary challenge is the ability to adequately
measure and diagnose search performance to facilitate process level feedback. In order to
be able to debrief at a subtask/process level, it is necessary to be able to distinctly
measure a sub process (i.e., search) and effectively discriminate performance on separate
sub processes (e.g., search and detection). For instance, in the threat detection task, a
performer may not have indicated a threat because either a) the performer did not utilize
effective search strategies and hence did not search the area in which the threat was
located (search error), or b) the performer effectively searched, but did not detect the cues
in the environment indicative of a threat (detection error), or ¢) the performer effectively
searched, detected the indicator cues, however, did not recognize these cues as a threat
(recognition error). Diagnosis at this level determines where in the perceptual process the

process level error which led to an outcome error occurred and can facilitate feedback to



target this specific process. In current military threat detection training practice,
measurement and diagnosis is difficult as trainee to instructor ratios are typically high,
placing high workload demands on instructors during performance monitoring and
assessment stages, and perhaps more importantly, it is extremely difficult to monitor and
diagnose the perceptual process of search as it is a subtle process inaccessible to
instructor observation.

A second challenge is in obtaining the ability to demonstrate search skills.
Perceptual skills such as search and detection are subtle or internal processes which are
unobservable. As a result, many training strategies consisting of demonstration are
infeasible. As a result, search training typically consists of verbal description of skill
performance, not actual demonstration. One difficulty with this approach, however, is
that research suggests that expert recall of certain motor or perceptual events is
incomplete, and potentially erroneous (Cleeremans & McClelland, 1991). Expert
performers often operate on “autopilot” and are not always aware of the cues to which
they are attending (Klein, 1998). It may be more appropriate (i.e., more efficient and
accurate) to incorporate effective training strategies which allow experts to demonstrate

their expertise rather than try to verbalize them (Sidani & Gonzalez, 1994).

Addressing the Challenges

A promising solution to the above challenges is the use of eye tracking
technology to measure visual performance. With the advancements in eye tracking
technology, information about a person’s visual attention, once inaccessible, is becoming

more attainable. Visual attention can provide important insights to the information used



in task performance, such as the importance of various features or cues (Raab & Johnson,
2007). Several studies (Jarodzka et al., 2009; Mello-Thoms et al., 2008; Raab &
Johnson, 2007; White, Hutson, & Hutchinson, 1997) have used eye tracking to extract
information about scan strategies. These studies have demonstrated that eye tracking can
aid in the assessment of perception through measurement of visual attention during
observation via gaze, scan path, and fixation data. These metrics can identify which
Areas of Interest (AOI) were gazed upon and the amount of time the AOIs were gazed
upon.

With respect to the challenge of measuring and diagnosing search performance,
researchers studying radiographic interpretation, have used eye tracking data to diagnose
where in the perceptual-cognitive process (i.e., search, recognition, decision) errors
occur. Nodine et al. (2002) make distinctions in the classification of errors in
misdiagnosis in radiographic interpretation based on fixation duration, where lack of
fixation is interpreted as a searching error, fixation for less than 1000 milliseconds and
lack of indication of abnormality is interpreted as a recognition error, and fixation for
greater than 1000 milliseconds and failure to indicate as abnormality is a decision making
error. Such a method could be extended to the threat detection domain. If effective
fixation duration thresholds could be established for discriminating the different
perceptual processes (i.e., search, detection, recognition), this method could be used in
the diagnosis of process level threat detection errors and discrimination of search verses
detection errors. This would facilitate the process level feedback needed to effectively

target the perceptual root cause of performance deficiencies.



With respect to the challenge of utilizing training strategies which consist of
demonstration, eye tracking technology provides the ability to capture and present expert
search demonstrations. What remains is the need to determine how to effectively present
this granular data in order to facilitate effective training of all aspects of search skills.
Few studies have attempted to target multiple aspects of search strategies such as search
location and sequence. One consideration in targeting search location is that there are
two unique aspects of “location” which warrant consideration. The first is the perceptual
aspect of the location or what the location visually looks like, which allows identification
of a specific area. For clear cut areas like windows and doors which have very distinct
and familiar appearances, a verbal description may suffice to allow trainee identification
of these areas. However, for more elusive and intangible areas like “shadows” (i.e.,
shaded areas which provide concealment) or negative space (i.e., areas in which there is
nothing to draw attention, but may prove effective for concealing threats), it may be
necessary to provide visual representation to allow trainee recognition. The second
aspect of the location is the conceptual aspect of why the area is a target area (i.e., high
priority area which should be searched), an understanding of which is necessary to
abstract specific locations (e.g., shadows) to a higher level of categorization (e.g., a place
which provides concealment), which would facilitate generalization to new environments
and situations.

There is an opportunity to leverage training strategies from the training science
literature which have been proven successful in improving search skills and extend them
to address all critical aspects of search performance. For example, feed forward training

of expert scan patterns have been tested in multiple domains including airframe
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inspection and electronic circuit board inspection and have shown great success
(Nalanagula et al., 2006; Sadasivan et al., 2005). This strategy is promising as it could be
used to target both location (perceptual) and sequence aspects of search. This strategy
could be enhanced to also target the conceptual aspect of location (i.e., why it must be
searched) by layering on auditory elaborative feedback describing why locations should
be searched to support trainees in extracting higher level scan strategies. This feed-
forward strategy could be extended into a feedback strategy and tailored to the specific
errors a trainee has committed by also including elements of the trainee scan path to
highlight differences between expert and trainee, a technique which has yet to be
developed or empirically tested.

In summary, it is necessary to first be able to effectively measure search
performance and discriminate search from other perceptual processes such as detection
and second to develop process level feedback which 1) provides more specific feedback
aimed at the threat detection sub process of visual search, 2) incorporates feedback
strategies shown to be most effective in facilitating performance improvements on this
skill, including both location and sequence aspects of search, and 3) provides support for
the development of generalized search strategies. This feedback could be further
enhanced by tailoring it to trainees’ specific performance decrements, to better target
areas in which the trainee is in need of improvement. The result would be tailored
feedback, based on process level performance diagnosis, aimed to target all critical

aspects of search, which is hypothesized to provide powerful training results.
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Experimental Hypotheses

This line of research will explore the effectiveness of utilizing eye tracking to
address the challenges of training visual search discussed above by empirically
evaluating:

1. If search performance can be effectively measured and discriminated from other

perceptual processes (i.e., detection) utilizing eye tracking

2. If newly developed search feedback strategies increase training value over

traditional feedback strategies used in the military domain

Through a series of two experiments, two main hypotheses will be tested. First, it is
hypothesized that search performance metrics which utilize eye tracking and behavioral
data can effectively and reliably measure the search component of threat detection and
discriminate between errors made in these two consecutive stages of perceptual
performance (i.e., search and detect). Second, it is hypothesized that new search
feedback strategies which utilize eye tracking to allow demonstration of search skills will
result in greater performance gains over traditional feedback strategies used in the field.
Specifically, it is hypothesized that elements of expert and trainee scan path data will
significantly improve training performance over traditional KR feedback, both
individually and when used jointly, with the additive effect of joint elements resulting in
the greatest performance improvements.

The following section will first summarize the literature pertaining to visual search
theory and practice, including characteristics of visual search performance, factors that

influence visual search, and training techniques to support visual search.
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CHAPTER TWO: LITERATURE REVIEW

Visual Search

Visual search, the task of finding a target among distracters (Verghese, 2001), is a
ubiquitous skill used both in work and daily life. From searching for an exit sign in a
shopping center to searching for an aircraft on a radar screen, visual search is required to
function in almost any environment. Given the varied applications of this skill, visual
search tasks have a broad range of characteristics on which they can vary. Visual search
can be systematic, in which few fixation locations are repeated, or random, in which there
is no memory for previous locations (Arani, Karwan, & Drury, 1984). Visual search
tasks may require eye movement (such as in scanning a three dimensional scene), or may
not include eye movement (such as in searching for a particular shape in a small array of
letters). Visual search tasks can vary in difficulty from search among several distracters
of similar appearance to search among few distracters of distinctly different appearance
from the target. This broad range of characteristics and the performance differences
associated are precisely what make visual search such a complex skill. For decades,
researchers have been working towards decomposition of this skill to understand both the
underlying process as well as the biological mechanisms driving human performance of
visual search. The following sections detail theories of visual search and how these
theories and findings from the training science literature can be leveraged to effectively

train visual search.
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Visual Search Theory

At a very basic level, there are generally considered two types of visual search:
preattentive and attentive. A great deal of research has been conducted regarding the
distinction between these two types of visual search and the various factors that affect
performance during each (Shiffrin & Schneider, 1977; Treisman, Vieira, & Hayes, 1992).
Pre-attentive search has been referred to under several names including efficient search,
parallel search, easy or effortless search (Leonards et al., 2002) and automatic detection
(Treisman & Souther, 1985). In this type of search, the targets are proposed to contain
elementary features which are processed preattentively (Sireteanu & Rettenbach, 2000),
essentially drawing attention to themselves. In this type of search, the target “pops out”
at the observer, requiring little conscious effort. Such is the case when looking for the
letter T on a page of letter Os or for a red baseball cap in a sea of blue baseball caps.
Attentive search, also referred to as inefficient search (Leonards et al., 2002), serial
search (Treisman & Souther, 1985), and controlled search (Shiffrin & Schneider, 1977),
refers to effortful search in which attention must be serially allocated to objects in the
environment to detect a target.

The distinction between these two types of search is consistent with the view that
search is driven by both bottom up and top down processes (Itti & Koch, 2001), wherein
bottom up processes drive attention due to salient features in an environment or stimulus
(e.g., salient target features) and top down processes drive attention through the
application of search strategies such as the direction of attention to locations of high

priority.
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Figure 1. Drivers of Visual Attention

Many search tasks are comprised of both types of search. In fact, McCarley,
Kramer, Wickens, Vidoni, & Boot (2004) discuss a multi-stage model of visual search
wherein the visual search component can be broken down into an early “orientation”
stage in which an efficient or pre-attentive search occurs resulting in detection of very
salient targets. Following this is an attentive or inefficient search stage in which potential
target locations are scanned via a succession of fixations in an attempt to detect less
conspicuous targets. This stage requires the observer to scan the appropriate regions in
the scene as driven by appropriate search strategies.

Two stage models of visual search such as this have been the cornerstone of many

visual search theories. Treisman’s Feature Integration Theory (FIT; Treisman & Gelade,
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1980) is based on a two stage model wherein visual features (e.g., color, orientation) are
processed and organized first into feature maps and then saliency maps that serve to
guide attention to conspicuous objects in a scene. FIT proposes that features are
extracted in a pre-attentive stage across an entire scene and these features are then bound
into objects once attention is directed to this location in an attentive stage. From this
theory, Treisman proposed a more practical description of the two types of search: feature
search (similar to pre-attentive search) and conjunctive search (similar to attentive
search) wherein feature search is based on one unique target feature and therefore does
not require attention as the target “pops out”, and conjunctive search is based on more
than one feature requiring attention to bind these features together to detect a target
(Treisman & Souther, 1985).

The Guided Search model, another two stage model, also proposes that in the
efficient stage a quick snapshot of the scene is taken to build a saliency map, then in the
second stage a detailed search based on specific features is performed (Wolfe, 1998).
However, in the Guided Search Model, the preattentive stage reduces objects in a scene
to their component features which serve to activate feature detectors associated with the
target, effectively guiding search in the inefficient stage starting with objects most highly
activated (Hoffman, 1999). Despite differences, the implications of both of these models
is that deployment of attention in the inefficient stage can be influenced by explicit top
down information provided with respect to search strategies (both what features to look
for and how/where to look).

Interestingly, there has been research which also points to the ability to influence

search through implicit top down knowledge. Chun and Jiang (1999) explored contextual
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cueing and found that perceptual schemas specify how objects covary in the world
around us, and that such a schema can be created through target/context covariation,
resulting in implicit influence on attention deployment in search. Chun and Jiang found
that past target locations produced faster search as opposed to novel target locations,
however, participants could not explicitly state these locations. This implicit learning,
however, was robust only when the information is selectively attended and relevant and
predictive (i.e., of target location). These findings are incredibly promising with respect
to training visual search as implicit operations have been shown to be durable over time,
robust across interference and exhibit high capacity (Chun & Jiang, 1999).

Much of the visual search theory, however, is based on experimentation
performed on very simple laboratory tasks. It is necessary to consider visual search in an
operational setting to ensure theoretical foundations in visual search theory align with the

visual search in practice

Visual Search Theory in Practice

The two stage model presented above, is extremely relevant when referring to
search within the military threat detection domain. The two stage model is consistent
with the what/where distinction commonly referred to in visual processing (Levine,
2000). The preattentive stage identifies where to direct attention and the attentive stage
subsequently identifies the object being attended. This maps very closely to the two
types of search taught in US Marine Corps training: hasty or general search and detailed
search (MCI 03.35¢ Infantry Patrolling, 1996). A hasty search requires a quick scan of

the environment to identify high threat areas, which should “pop out”. Once these have
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been identified, a more detailed search of these areas ensues, utilizing prescribed search

strategies (e.g., searching near to far in 180 degree arcs).

Knowledge!
Schama

Hasty Search

Visual Attention

Preattentive ——————— Altentive

Cetailed Search

Envirecnmental
Stimuli

Figure 2. Visual Search Theory in Practice

What Influences Visual Search?

The above theory can serve as a foundation for understanding how best to
influence visual search through training. There are many factors that affect preattentive
search, the most influential of which is salience. Itti & Koch (2001) propose a model of
bottom up pre-attentive search based on saliency and include such environmental features
as color, intensity, orientation and motion. Pre-attentive search has been proposed by
researchers to be difficult to alter, ignore or suppress (Shiffrin & Schneider, 1977),
therefore may not prove fruitful to target with training intervention. However, there is
research to suggest otherwise. For instance, after extensive practice, military observers

have shown efficient detection of targets in cluttered scenes that novice observers search
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for inefficiently, suggesting that they learned, through practice, to preattentively process
the target (Doll & Home, 2001). Leonards et al. (2002) also found that practice of
inefficient search which included either unique features or differences in brightness
distributions led to efficient search. Also in support is the large body of research
surrounding perceptual learning to increase sensitivity to stimulus and stimulus features.
Massed practice or exposure to stimulus at or below just noticeable difference thresholds
has shown to increase sensitivity for processes such as contrast sensitivity (Sowden,
Rose, & Davies, 2002), motion direction discrimination (Burns, Nettelbeck, McPherson,
& Stankov, 2007), and figure ground segregation (Y1, Olson, & Chun, 2006) as well as
more complex stimulus such as x-ray images (Sowden, Davies, & Roling, 2000). Such a
strategy might render preattentive search a feasible option to target with training.

Attentive search is widely hypothesized to be influenced by several factors, the
most notable of which is the top down visual search schema and strategy being
employed. Additional factors include the number of relevant conjunctive features in a
target or distracter objects (Wolfe, Cave, & Franzel, 1989), target type and search field
size (Wang et al., 1997) and environmental conditions such as clutter (Doll & Home,
2001). Another factor which affects inefficient search performance is known as the edge
effect, a phenomenon in which observers scan paths tend to avoid the edges of a display
(Parasuraman, Boff, Kaufman, & Thomas, 1986). Researchers have found evidence of
this effect by looking at target detection in search as a function of eccentricity (Parkhurst,
Law, & Niebur, 2002).

It is believed that the attentive search stage provides the best opportunity for

influencing visual search through training. Additionally, given the nature of the target
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task (i.e., military threat detection) including complexity of the search environment, wide
field of view, large variety of distracters, and covert nature of the enemy, the attentive
stage of search is likely the most critical for successful threat detection. As visual search
strategies have been shown to be easily influenced through training (Chabukswar et al.,
2003; Chapman et al., 2002; Gramopadhye, Drury, & Sharit, 1997; Underwood, 2007;
Wang et al., 1997) the focus of the research herein will be the molding of visual search

through the training of search strategy.

Visual Search Strategies

There are several types of search strategies which can be employed ranging from
a very structured systematic search in a regular pattern (e.g., alternate up and down scan
moving from left to right; (Wang et al., 1997), to less structured strategies such as
searching by area or searching by component/object (Chabukswar et al., 2003) to
attentional weighting strategies which focus search on cues/areas deemed most critical
(Rezec & Dobkins, 2004). For military threat detection, a task analysis (Carroll et al.,
2007) revealed that several of these search strategies are employed by subject matter
experts. The first is similar to the attentional weighting strategy and prescribes where to
search by identifying high priority areas where there is a high potential for threat (e.g.,
areas of concealment). The second strategy, a less structured and systematic search
prescribes how to search, requiring high priority areas to be searched before low priority
areas, always searching the environment near to far and right to left and allocating the
majority of time to high priority areas (80/20, high priority/low priority). Lastly, a more

structured systematic search prescribes searching from right to left in 50 meter arcs,
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temporarily halting this pattern for emerging environmental elements, then turning back
to it. As presented above, the most common mistakes made by trainees during search for
military threats include: 1) failure to judge which areas are high priority, and 2) failure to
scan in a systematic sequence (e.g., no smooth patterns from right to left, not searching
closest areas first). Based on these, the research herein will target a portion of the search
strategies discussed above, specifically: 1) Where to search (high vs. low priority areas)
and 2) Sequence of search (systematic sequence encompassing high then low priority,
near to far, left to right/right to left). The below section explores options for how to train

these elements of visual search.

Training Techniques to Support Visual Search

A common misconception in training design is that practice equals training;
however, effective training of any task relies on the integration of effective training
strategies (Cannon-Bowers et al., 1998). The training science literature was examined to
identify visual search training strategies which have proven successful in past research
and application. These strategies were then evaluated for relevancy to the military threat
detection task and those most relevant served as the basis for development of innovative

visual search training strategies to target military threat detection.

Training Strategies

McCarly et al. (2004) performed a study in which the effect of practice on visual
search performance in a simulated airport baggage screening task was examined. Results

indicated that practice alone did not improve the effectiveness of visual search, and that
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increased performance was due entirely to sensitivity increases with respect to detection
of the target. These findings highlight the need to provide feedback that can help
observers improve search strategies. There has been a great deal of research surrounding
the training of search skills across a wide variety of domains and targeting an array of
search strategies (Chabukswar et al., 2003; Gramopadhye et al., 1997; Salas & Cannon-
Bowers, 2001; Wang et al., 1997). The visual search training strategies reviewed
primarily fall into six categories: 1) Performance Feedback, 2) Process Feedback, 3)
Attentional Weighting, 4) Difficulty Variation, 5) Metacognitive Strategies, and 6)
Expert Performance Models. Of these, process level feedback, attentional weighting,
metacognitive strategies and expert performance models show the most promise.
Performance Feedback

Using a circuit board inspection task, Wang et al. (1997) examined whether
search strategy was trainable, and whether systematic, natural or random search strategies
led to better defect detection. To train systematic search, subjects were instructed to
move their eyes in a regular pattern across the board alternating up and down from left to
right, with specific fixation positions defined based on the size of the circuit board.
Trainees were then given 24 boards to scan as practice and were given feedback with
respect to whether they had followed instructions or not (i.e., knowledge of results).
Similar treatment for random search included instructions to follow no pattern and 24
practice trials with knowledge of results feedback. Findings indicated that practice with
knowledge of results performance feedback could significantly change search strategy,

both for the better with systematic search and for the worse with random search.
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Knowledge of results performance feedback is the feedback method currently used in the
field and is thus the current standard.
Process Feedback

Chabukswar et al. (2003) explored the effects of online process plus performance
feedback compared to performance (outcome) feedback for a wvisual circuit board
inspection task. Process feedback included both statistical (e.g., percent of area covered)
and graphical (i.e., graphical representation of area covered) and performance feedback
included items such as number of defaults detected and time to detect. The process plus
performance group not only detected more defaults, but seemed to develop a more
systematic search strategy than the performance feedback group. Gramopahye et al.,
(1997) examined the effectiveness of performance feedback and cognitive feedback, both
statistical and graphical, in improving search performance for an airframe inspection task.
Cognitive feedback consisted of information regarding areas which the trainee had
already searched, represented statistically by percentages or graphically via scan pattern
indicated with shaded markers on the airframe. Although the performance feedback
group scored as high on the performance measures as the graphical cognitive feedback
group, the graphical group showed the best combined response in performance and
strategy. As the statistical cognitive feedback group actually performed worse after
training, Gramopahye et al. suggest that the visual feedback in the graphic display served
as the “bridge between cognitive data and action” (p. 342).

Nodine et al. (1990) developed a training strategy for radiographic interpretation
in which scanned areas with dwell times greater than 1000 milliseconds and for which no

indication of lesions occurred were interpreted as detection without recognition and were

23



fed back for reanalysis resulting in increased recognition of initial misses. Similarly,
Nodine, Kundel, Mello-Thoms, and Weinstein (2001) utilized a Computer Assisted
Visual Search (CAVS) strategy which fed back regions of interest that received
prolonged visual dwell (greater than or equal to 1000 ms) and highlighted them on the
display so the regions could be re-evaluated and found improved detection performance.
Such strategies are based on findings such as those reported in Nodine et al. (2002) that
approximately 70% of lesions that are not reported in mammogram reading attract visual
attention, as measured by the amount of visual dwell in the location of the lesion,
implying that such misses are covert negative decisions.
Attentional Weighting

Attentional weighting, focuses on targeting aspects of important cues to attend.
Exogenous orienting or highlighting is a technique which has been used to train the use
of attentional weighting search strategies. Hagemann, Strauss, and Cafial-Bruland (2006)
found that highlighting relevant cues such as areas of the trunk, arm and racket at the
critical times during badminton training led to significant increase in test performance.
Williams, Ward, Knowles, & Smeeton (2002) used a freeze frame and slow motion video
playback to highlight critical cues to attend in anticipating the direction of tennis strokes.
Critical cues were derived from expert performance data extracted via eye tracking.
Williams et al. found significant performance improvements which also transferred to
subsequent field exercises resulted from instruction which included 1) explicit instruction
of critical cues and their associated outcome, and 2) guided discovery with the use of
verbal probes encouraging trainees to look at a certain area of the body and draw

conclusions about the relation of cues to outcomes. Crowley, Medvedeva, and Jukic
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(2003) developed a perceptual intelligent tutoring system for pathology diagnosis which
incorporated a training strategy which includes “visual hints” by moving a viewer
position to an area of interest, highlighting critical features and providing textual
information about the type of feature. The researchers found this method led to improved
diagnosis performance.
Difficulty Variation

Research suggests that level of difficulty during training can affect the
development of effective search strategies by facilitating development of a more
generalizable search strategy. Doane, Alderton, Sohn, & Pellegrino (1996) explored the
effect of discrimination difficulty in a simple polygon discrimination task and found that
more difficult stimulus tasks to discriminate leads to development of more effective and
more global search strategy and hence better transfer than with easier stimulus tasks to
discriminate. Schmidt and Bjork (1992) found supporting evidence for this as well and
suggested that training which maximized performance during training may not support
transfer or generalizability to operational performance enhancements. Operational
performance enhancements may be better facilitated by more challenging and diverse
training conditions that result in degraded speed and accuracy during skill acquisition
(Schmidt & Bjork, 1992). Schmidt & Bjork found that relative to standard practice
conditions, three practice conditions, namely random practice, infrequent or faded
feedback and variation in practice, slowed the rate of improvement during training
resulting in lower training performance at the end of practice, but resulted in enhanced

post training performance.
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Metacognitive Strategies

Chapman et al. (2002) developed a training intervention aimed at improving
visual search associated with the driving task, which incorporated both elements of
metacognition and expert performance data. Through a series of five training modules
which utilized videos, trainees would 1) practice visual search for driving hazards,
indicate hazards, commentate on what they are looking at in their search, 2) explore in
slow motion areas indicated as hazards, commentate on why they are hazards and listen
to an expert commentary on why these areas are hazards, 3) practice visual search while
being prompted during pauses to indicate what just happened or what happened next, 4)
re-explore in full speed motion areas indicated as hazards and commentate on why they
are hazards and 5), practice visual search for driving hazards, indicate hazards,
commentate on what they are looking at in their search. Results showed not only
significant immediate effects on visual search, but some of these effects remained for 3-6
months and many of them transferred to an actual driving task. Nodine et al. (2002)
present a strategy which focuses on how long to dwell on suspect areas or cues and
consideration of confidence in threat. Nodine et al. (2002) found that in a mammography
diagnosis task that prolonged dwell-time on a potential lesion did not notably increase the
number of lesions discovered and did increase the error rate for lesion detection. These
researchers suggest mentor-guided feedback with instructions to trust only the more
confident and early decisions and to quit searching when unsure to improve detection

performance in search task.
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Expert Performance Models

Expert search performance as illustrated through expert scan paths has been used
to train visual search in multiple domains. Sadasivan, et al. (2005) examined the effect of
a feedforward of expert scan pattern training strategy in an airframe inspection task. In
this study, expert scan paths as well as indications of fixation duration as collected via an
eye tracker were presented as a static overlay to an airframe image to trainees. This
training strategy resulted in 30% greater performance improvements in defect detection
accuracy than a practice condition. Similar research (Mehta, Sadasivan, Greenstein,
Gramopadhye, & Duchowski, 2005) compared the training effectiveness of different
types of expert feedforward training strategies and found that presentation of expert scan
data with a decaying trace (fixations remaining on the screen for a brief period of time
before disappearing) resulted in a mean gain in number of defects detected after training
five times greater than a practice condition. Additionally, Nalanagula et al. (2006),
examined the effect of a similar feedforward strategy for a circuit board inspection task
with an additional comparison of static, dynamic and hybrid (static + dynamic) expert
scan feedforward strategies. The results indicated that feedforward of expert scan paths
improved circuit board defect detection by 26% higher levels than those without. Results
also indicated that dynamic or hybrid display techniques, which include the development
of the expert’s search pattern in ‘real’ time (i.e., showing the scan unfold to illustrate, not
only the pattern, but the chronological and temporal components of the scan) are better
suited as feedforward training displays than static displays which only display snapshot

representations of scan paths and regions of interest.
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Eccles, Walsh, & Ingledew (2006) performed a study examining expert-novice
differences in visual attention allocation in an orienteering task in which significant
differences were found (Eccles et al., 2006). Based on these findings, the researchers
propose presenting expert models of attention allocation to show trainees how to allocate
attention properly to relevant cues, including verbal guidance on when and how to
allocate visual attention to relevant cues in the environment.

The success of expert feedforward training strategies is not surprising given
findings in research on expertise. Data from naturalistic studies suggests that experts
have an ability to rapidly recognize critical cues, evaluate a situation and determine an
appropriate plan of action, a phenomenon called “recognition-primed decision making”
(Klein, 1993). Novices and intermediates consistently fail to “see” the same critical cues
for the identical situation. If novices could be trained to utilize search strategies similar
to experts, development of expertise may be accelerated. This becomes quite feasible
with the availability of eye tracking technology. Multiple studies (e.g., Raab & Johnson,
2007; White et al., 1997) have used eye tracking to extract information about expert scan
strategies. Eye tracking can aid in the assessment of perception through measurement of
visual attention during observation via gaze, scan path, and fixation data. The metrics
can identify what Areas of Interest (AOI) were gazed upon and the amount of time the
AOIs were gazed upon to drive the development of feedback.

Several of these training strategies lend themselves to training search strategy.
Presentation of expert scan paths provides strong support for influencing trainee scan
strategy, including both location to search and sequence of search. Metacognitive

strategies incorporating trainee scan paths could allow trainees to explore their own
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performance and reflect on areas in which their performance differed from intentions or
planned strategies. Attentional weighting strategies which utilize highlighting can be
leveraged to direct trainee attention to high priority areas or areas in which their
performance differed from expected. Additionally, attentional weighting strategies which
provide background information about features could be used to elaborate on why an area
should be searched, targeting the conceptual aspect of search. Process feedback, both
graphical and statistical, could be used to provide trainees information with regards to

how to allocate their attention both spatially and temporally.

Tailored Feedback

The strategies identified above could be made more effective by tailoring them to
specific performance decrements. The tailoring or individualizing of feedback to address
specific trainee performance decrements has the ability to positively impact performance.
Providing trainees with information relevant to what performance areas are in need of
improvement allows them to focus on these areas during future performance. Bloom
(1984) defined what is referred to as the “2 Sigma Problem” in which trainees who
received one-on-one instruction or tutoring perform two standard deviations above those
receiving traditional classroom (i.e., group) training. Bloom believed that through the
tutoring process (i.e., one-on-one instruction) that all students have the potential to reach
these levels. Bloom described this traditional tutoring process as one which provides
constant feedback facilitating a corrective process between the tutor and the trainee. In
order to mirror this method, training scientists have responded with the tailoring of

feedback to target specific performance decrement.
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Tailoring of feedback can happen at two levels: 1) tailor to the type of skill, and
2) tailor to a specific error. With respect to the first level, different feedback strategies
can more effectively target certain types of knowledge or skills as different types of
learning tasks require different instructional strategies and methods (Mory, 2004).
Utilizing a feedback strategy which can most effectively impact the target skill allows
feedback to be tailored to the specific skill decrement. For instance, it may be most
effective to incorporate a strategy such as those discussed above which have been shown
effective in improving visual search. With respect to the second level, as the main
function of feedback lies in the correction of errors (Mory, 2004), tailoring the feedback
to specific errors allows trainees a better understanding of deficiencies in their
performance and how to improve upon these. Incorporating elements of trainee search in
comparison to expert search would allow the feedback to be tailored to specific trainee
decrements.

As a result, the above strategies could potentially be combined to provide a
powerful training solution which supports trainees in extracting information from both
expert scan paths and their own scan paths to guide improvements in search strategy.
This level of tailored feedback, however, demands error analysis (i.e., what type of error
was made); therefore a necessary component of tailored feedback is performance

measurement and diagnosis.

Performance Measurement and Diagnosis

In order to provide effective feedback, it is necessary to capture relevant

performance to facilitate the diagnosis of performance deficiencies. Brannick and Prince
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(1997) describe performance measurement as an investment in which one purchases
information to inform decisions or actions. In the case of training, these decisions/actions
are how to provide training remediation. There are multiple levels of performance
measures which can be collected including outcome and process measures. Outcome
measures provide information regarding the overall outcome of performance (e.g.,
mission performance) indicating successful or not (Eddy, 1998). Process measures
provide a more granular level of measurement which facilitates monitoring of processes
which contributed to outcome performance (Eddy, 1998). These provide a richer set of
data by which performance can be assessed and assist in identification of specific
deficiencies or performance breakdowns.

Multiple aspects of performance can be measured to facilitate performance
assessment. Behaviors can be measured to determine task steps which a trainee is
performing, including time and accuracy of steps. Behavioral measures allow direct
measure of procedural skills (e.g., Are the correct steps being performed, in the right
order?). Communications are often measured to determine what information is being
exchanged, between who and in what format (Smith-Jentsch, Zeisig et al., 1998). These
also can be used to assess procedural skills as well as team coordination skills (e.g., Are
the trainees sharing the correct information with the right teammates?).

Based on performance measures, performance diagnosis can then facilitate
tailored feedback. Performance diagnosis is the analysis of performance measures to
provide a consolidated view of performance and performance errors and facilitates
identification of the underlying causes of performance outcomes and deficient processes

to allow instructors to provide meaningful feedback to correct these deficiencies (Salas,
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Rosen, Burke, Nicholson, & Howse, 2007). As errors are considered to be valuable
opportunities to clarify misunderstandings in learners (Mory, 2004) this diagnosis serves
as the cornerstone of tailored feedback. The following sections describe methods for

measuring and diagnosing visual search performance.

Measuring Visual Search Performance

While skills such as procedural and team coordination skills are relatively
accessible for measurement due to their outward nature, this is not the case with
measurement of perceptual skills such as visual search. Task performance components
which are purely perceptual are not easily measured as perceptual processes are internal
processes. Scanning behaviors, a manifestation of visual attention (Itti & Koch, 2001;
Treisman & Souther, 1985) can be measured at a very gross level based on observable
head movement, however, it is not possible to assess at a granular level what objects
trainees are visually attending. With respect to detection, this is a purely psychophysical
process which is inaccessible to observers. Overall outcome of the perceptual process
(e.g., Was a target indicated as a threat?) is accessible and inference of process level
performance results can be made. However, ability to measure performance at a granular
level has not been possible in the past as instructors/researchers are not able to assess the
perceptual state (i.e., they only have access to the action resulting from the combination
of these processes). This level of assessment does not provide instructors the granularity
necessary to build an accurate picture of the perceptual processes which took place

during performance.
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With increasing advancements in measurement technology, however, this is
becoming more feasible. For example, eye tracking offers researchers an additional set
of metrics to aid in measuring performance of perceptual skills. While easily observable
actions and communications provide important information regarding performance (e.g.,
trainee did not engage threat), they often do not provide the level of data necessary to
diagnose why certain performance decrements occur (e.g., he did not engage the target
because 1) he did not search effectively, 2) he searched effectively, but did not detect the
threat, etc.). Subtle physical behaviors such as scanning patterns or internal perceptual
processes such as detection that would reveal these answers are not currently accessible
via behavioral metrics. Researchers have started using eye tracking to measure
perceptual processes such as visual attention in a driving task (Underwood, Chapman,
Brocklehurst, Underwood, & Crundall, 2003) and visual search in a mammogram
diagnosis task (Mello-Thoms, Nodine, & Kundel, 2002). Wang, Chignell, and Ishizuka
(2006) used eye tracking in an Intelligent Tutoring System (ITS) to monitor users
attention and interests to personalize agent behaviors. Jodlowski and Doane (2004)
utilized eye tracking in development of a model of pilot action planning during simulated
flight for intelligent tutoring, which uses eye tracking to model user knowledge based on
which flight instruments the user fixates. Such advances provide invaluable data in
understanding how performance unfolded both with respect to scan path and fixation
durations. Although eye tracking facilitates the measurement of perceptual performance
at a very granular level, it is necessary to transform this detailed data into meaningful and
actionable performance diagnoses. The following section discusses diagnosis methods

for visual search.
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Diagnosing Visual Search Performance

The diagnosis of errors within procedural knowledge and skills performance have
proven successful through event-based methods such as event based knowledge
elicitation (Fowlkes, Salas, Baker, Cannon-Bowers, & Stout, 2000) and event-based
approach to training (Fowlkes, Dwyer, Oser, & Salas, 1998) in which Targeted
Acceptable Responses to Generated Events or Tasks (TARGETSs) are used to elicit
expected knowledge or procedural responses. For these competencies, such diagnosis
methods equate to measurement of behavioral actions and communications to verify if all
steps in the procedures were followed and which steps were omitted or performed
incorrectly. Given adequate performance measurement design, this type of diagnosis can
be made fairly accurately. Other knowledge and skill types have proven more of a
challenge for performance diagnosis. For example, diagnosis of specific breakdowns
within team performance has proven challenging as it is difficult to separate mutual
performance monitoring, backup and feedback (Smith-Jentsch, Johnston, Payne, Cannon-
Bowers, & Salas, 1998). Raters found it challenging to evaluate whether team members
were monitoring one another’s activities unless someone on the team provided feedback
or exhibited backup behavior (Smith-Jentsch, Johnston et al., 1998).

With respect to the threat detection task, diagnosis has previously been limited by
the limitations of performance measurement tools. But as discussed above, with the
emergence of eye tracking technology, information about a person’s perceptual state,
once inaccessible, is becoming more available. Several researchers have utilized eye

tracking to diagnose perceptual performance deficiencies. For example, researchers
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studying radiographic interpretation have used eye tracking data to diagnose where in the
perceptual process (i.e., search, recognition, decision) errors occur. Nodine et al. (2002)
make distinctions in the classification of errors in misdiagnosis in radiographic
interpretation based on fixation duration, where lack of fixation is interpreted as a
searching error, fixation for less than 1000 milliseconds and lack of indication of
abnormality is interpreted as a recognition error, and fixation for greater than 1000
milliseconds and failure to indicate as abnormality is a decision making error. A visual
dwell time of 1000 milliseconds is equated to detection as it is considered a significant
allocation of visual attention (Nodine et al., 2002). Manning & Ethell (2002) used a
similar method to classify whether a radiographic interpretation error was due to lack of
detection or recognition. In this study missed lesions were dwelt on for an average of
half the time of detected nodules but within a time thought to be acceptable for detection
to occur (900 milliseconds); hence, the researchers interpretation was that observers were
making recognition errors although they detected the nodules (Manning & Ethell, 2002).
The researchers’ reasoning was that detection of a specific feature may occur but the
decision that it is an abnormality (recognition) depends on higher order cognitive
processes (Manning, Leach, & Bunting, 2000). Errors in detection and decision making
were determined based on fixation duration as it was seen as indicative of depth of
information processing of image. Similarly, Nodine, Krupinski, and Kundel (1990)
tested the hypotheses that long durations indicated detection but not necessarily
recognition of perturbations in chest images. This hypothesis was supported by the found
effectiveness of their detection algorithm which detected true nodules solely by localizing

them on the basis of the observers' long gaze durations.
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Interestingly, similar methods have been used to decompose the mental rotation
task into separate processes of search, transformation and confirmation stages based on
fixation duration (Just & Carpenter, 1976). The researchers propose that eye fixations
can “reveal the sequence of mental operations” during a mental rotation task (Just &
Carpenter, 1976, p. 459), which is precisely the goal of using such data in perceptual
performance diagnosis. These diagnosis methods could be extended to the military threat
detection domain, however, research is needed to identify effective fixation duration
thresholds for discriminating between perceptual processes. Additionally, it is necessary
to evaluate the validity and reliability of such diagnosis methods for a military threat

detection task.

Unique Contributions of Present Study

This study has multiple unique contributions to the scientific community. This is the
first study to systematically and empirically evaluate the effectiveness of fixation
duration-based metrics in diagnosing process level aspects of target detection. Although
several researchers to data have used these types of process level metrics (Manning &
Ethell, 2002; Mello-Thoms, Dunn, Nodine, Kundel, & Weinstein, 2002; Nodine et al.,
2002), none have performed a systematic evaluation of the validity and reliability of these
metrics based on actual observer scan data. For instance, in Nodine et al. (2002) the
determination of 1000 milliseconds as the threshold for a fixation duration-based metric
to discriminate between missed chest nodules due to recognition or decision making
errors was established based on previous research. Specifically, it was based on research

conducted by Hillstrom and Logan (1998) which explored visual search skills on a simple

36



laboratory conjunctive search task. The 1000 millisecond fixation duration was
considered to be a significant allocation of visual attention as this was inline with typical
response times to detect a target of interest in this conjunctive search task. Mello-Thoms
et al. (2002) also used this threshold based on the same study as it showed that the mean
response time for searching and identifying a target in a conjunction of features ranges
from 800-1000 milliseconds. Not only did this threshold come from a research paradigm
using a simple laboratory task, but the times were based on response times, not fixation
times as eye tracking was not employed (Hillstrom & Logan, 1998). This present study
will use previous research as a foundation, but derive the fixation duration-based metrics
from scan data collected during the study and evaluate the validity and reliability of the
metrics with data collected during the study.

This study is also the first to empirically examine the presentation of trainee scan
patterns and comparison of trainee to exert scan patterns as a training intervention.
Although multiple studies have explored the use of expert scan as a training intervention
(Mehta et al., 2005; Nalanagula et al., 2006; Sadasivan et al., 2005), none to date have
examined the effects of presentation of trainee scan data on search performance or target
detection performance. This is likely due to the technology required to facilitate such
feedback. In order to be able to present a training intervention which incorporates trainee
scan data, researchers must have access to technology which not only allows the
collection of trainee scan data, but also facilitates the near real time presentation of this
scan data over the associated stimulus. Additionally, in order to ensure learning it is
necessary to present the trainee scan data in a manner that allows trainees to extract

meaningful information from the scan. Currently, there is no commercial-off-the-shelf
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technology that has this capability. This study was part of a larger effort funded by the
Office of Naval Research in which training technology was being developed. As such,
the capability to effectively present trainee scan data as a training intervention and allow
trainees to compare their scan data to expert scan data was developed. As a result, the
present study was able to explore this training intervention and the ability for it to impact
a trainee’s search strategy.

The results of this study will provide new theoretical contributions to the training
science community and evidence to support or contradict current theories related to
search skills, including performance measurement and diagnosis and the impact of
training interventions. Additionally, the results will have generalizable implications for
military threat detection training, specifically on the effectiveness of using eye tracking in
search performance assessment and feedback. The following chapter will detail the

experiments conducted in the present study.
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CHAPTER THREE: PRESENT STUDY

Based on the above reviewed literature two key methods were developed which
aimed to improve search skills. First, a diagnosis method for deducing where in the
perceptual process breakdowns occur (i.e., search, detect, recognize) based on eye
tracking data was developed. Second, an innovative feedback strategy for improving
search strategies through the presentation of elements of expert and trainee scan data was
developed. The present study aimed to examine the effectiveness of these methods in
training military search skills by empirically evaluating:

1. If search performance can be effectively measured and discriminated from other
perceptual processes (i.e., detection) utilizing eye tracking
2. If newly developed search feedback strategies add training value over traditional

feedback strategies used in the military domain

Experiment 1

The goal of Experiment 1 was to validate that the search metrics in the diagnosis
method developed can effectively measure search skills and reliably differentiate between
search and detection errors. This method, developed based on the diagnosis method used
by Nodine et al. (2002), aims to diagnose where in the perceptual process a breakdown
occurs during military threat detection based on fixation durations. Specifically when a
target is missed (i.e., not indicated as a threat), based on whether there was a fixation on
the target and how long that fixation was, the perceptual root cause of the error is
diagnosed as being a search error, a detection error or a recognition error. In order for

this diagnosis method to be successful, it was necessary to identify an effective threshold
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for diagnosing between detection and recognition errors (the threshold between search
and detection is simply 0 milliseconds, i.e., whether the target was fixated or not).

The threshold proposed for the above radiography examination task seemed
inadequate given the different nature of the task (much more ill-defined targets).
Research surrounding an Intelligence Imagery Analyst task seemed more applicable to
the military threat detection task. In evaluating the ability to use eye tracking to improve
Imagery Analyst’s accuracy, Hale et al. (2007) found significantly greater average
fixation durations associated with missed targets than non-targets. As fixations on non-
targets are assumed to be scanned areas in which detection did not occur, given the
significant difference in fixation duration, some fixations on missed targets are assumed
to be areas in which detection occurred, however recognition did not. This data suggests
that a reasonable threshold for detection within this domain and potentially similar
domains is 300 milliseconds. Although a threshold for the military detection task was to
be derived from data collected within this experiment, this initial threshold served as a
point of reference which was used to guide experimentation.

The perceptual performance diagnosis method evaluated is illustrated in Table 1
below. This is hereafter referred to as target-based diagnosis as it is performed based on
a target being missed. Specifically, if a target was missed and was not fixated on, a
search error has occurred. If a target was missed and fixated for less than the determined
fixation duration threshold, a detection error has occurred. If a target was missed and
fixated for greater than the determined fixation duration threshold, a recognition error has

occurred.
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Table 1. Target-based Diagnosis Method (adapted from (Nodine et al., 2002))

Lack of Behavioral (Key press) Target Indication
Target Absent Target Present
Fixation Zero ms Correct Answer Search Error
Duration Short Duration* Correct Answer Detection Error
|Long Duration* Correct Answer Recognition Error

* Threshold between short/long duration will be set based on data collected within this study

There was an opportunity to enrich this diagnosis method. While this method was
sufficient for discerning why a target was not indicated as a threat (i.e., whether it due to
a search, detection or recognition error), it was not comprehensive in assessing search
skills beyond target-specific performance. For instance, if there were certain high
priority areas that should be included in a search, trainees may have searched the small
portion of these areas in which targets were located, however, may have neglected many
of these areas which do not contain targets in that specific instance. Although search
strategies utilized were insufficient, the target-based diagnosis method would indicate
good search performance as all targets were attended. The errors associated with non-
target areas would have gone undiagnosed.

Therefore it was also important to include a higher level diagnosis of search errors
in which “where” the trainee attended as indicated by scan path is compared against
where they should have attended, providing a more global measure of search
performance. Therefore the target-based diagnosis method was extended by adding a
trial-based component to the evaluation of search performance, wherein search
performance levels are diagnosed independent of targets. This trial-based method is
illustrated in Table 2. Specifically, search performance is measured by percentage of

high priority areas scanned.
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Table 2. Trial-based Diagnosis Method

Metric Description

Metric Behavioral Fixation Data
Search INA % of high priority areas scanned
Performance

Detection Error  |[Target NOT Indicated as Threat |Fixated on Target for Short Duration*
Recognition Error [Target NOT Indicated as Threat |Fixated on Target for Long Duration*

* Threshold between short/long duration will be set based on data collected within this study

Given the extension of the Nodine et al. (2002) diagnosis to the military threat
detection domain and the extension of the method from target-based to trial-based, it was
necessary to evaluate this method to validate that it can effectively diagnose where
breakdowns in perceptual performance occur and that it is predictive of outcome
performance. The focus of the first experiment in this effort was 1) to validate that the
target-based performance diagnosis metrics could discriminate between search, detection
and recognition errors in the military threat detection domain and 2) to validate that the
newly developed trial-based performance diagnosis metrics are able to measure process
level aspects of performance that are predictive of outcome performance (i.e., search and
detection).

To accomplish this, it was necessary to ensure both search and detection errors
occurred. A task analysis revealed several factors which contribute to the occurrence of
search and detection errors. For search, these parameters include large number of high
priority areas in the scene which demand attention, large amounts of clutter and the
presence of distracters. As each of these increases, difficulty to search the area increases

and search errors will result. For detection, parameters which contribute to errors include
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the levels of occlusion of a threat (e.g., 90% of a sniper rifle will be occluded in a good
sniper hide) and orientation of the threat (e.g., rifle pointed straight at you is more
difficult than one visible in a canonical view), both of which affect the visual size of the
threat. By varying these parameters and creating opportunities for search and detection
breakdowns, the ability of the diagnosis method to effectively discriminate between

search and detection errors could be examined.

Diagnosis Metrics

The first metrics are the target-based metrics and were designed to determine the
perceptual root cause of the error (i.e., whether a search error, a detection error or a
recognition error) when a target is missed. The target-based metrics are calculated based

on fixation durations on the target as follows:

Table 3. Components of Target-based Diagnosis Method

Error Type Fixation Duration on Target
Search Error 0 ms
Detection Error Oms < X < 300ms
Recognition Error 300ms</=X

*300ms detection threshold determined based on data collected in this study

The second set of metrics are trial-based metrics and were based on the target-
based metrics but were designed to describe overall search and detection performance

and trial outcome performance. The trial-based metrics are calculated as follows:
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Table 4. Components of Trial-based Diagnosis Method

Metric Name

Trial (Scenario) Based Performance Metrics

Search Performance

Percentage of high priority areas that were fixated

Detection Errors

Number of targets fixated on but not indicated as threats

Outcome Performance

Percentage of targets indicated as threats via a key stroke &
mouse click (Hit Rate).

It is hypothesized

Hypothesis 1

(Hypothesis 1) that the above target-based metric can

effectively (reliably and validly) diagnose where in the perceptual process (i.e., search,

detect, recognize) breakdowns occur using eye tracking and behavioral data.

Prediction 1.1

It is predicted that there will be a significant difference between average fixation

durations associated with non-threat fixations and threat fixations not indicated as threats

(misses) as threat fixations will have instances in which detection occurs, resulting in a

significant allocation of visual attention. This difference will serve as the basis for the

threat detection threshold.

Prediction 1.2

It is also predicted that for misses (i.e., trials in which the participant did not

indicate a threat or incorrectly indicated a threat), there will be either instances of 0

millisecond fixations on this threat (search errors), short fixations (detection errors) or
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long fixations (recognition errors). However, it is anticipated there will be fewer missed
targets with long fixations (recognition errors) as there was only one type of threat
(Dragunov sniper rifle) for which detection might prove challenging, but once detected,

misinterpretation as a non-target is unlikely.

Hypothesis 2

It is also hypothesized (Hypothesis 2) that the above trial-based metrics can
effectively (reliably and validly) discriminate between search and detection performance
using eye tracking and behavioral data, by demonstrating:

— Reliable discrimination between search and detection performance
— Prediction of mission Outcome Performance as indicated by Hit Rate
Prediction 2.1

It is predicted that Search Performance (% of high threat areas attended) and
Detection Errors (number of threats which were attended for short period of time but not
indicated as threats) will both be significantly correlated with Outcome Performance (as

indicated by Hit Rate), both accounting for a significant amount of independent variance.

Method

Participants

Prior to recruiting any participants and collecting data, a power analysis was
performed to estimate the number of participants needed to obtain sufficient statistical power.
A power analysis was performed using the software G Power 3.0 (Faul, Erdfelder, Lang,

& Buchner, 2007). Using a small to moderate effect size of .3, for a repeated measures
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within group ANOVA with 1 group and 40 repetitions, the software recommended a total
sample size of 9 participants. In addition, the same power analysis was performed using
the effect size from a study which explored different fixation durations associated with
threat detection in an intelligence analyst search task (Hale et al., 2007). Using this effect
size of .223 resulted in a recommended sample size of 15.

Twenty participants took part in this experiment. They consisted of nine males
and eleven female participants and ranged from 18 to 31 (mean=22.3, s.d.=4.2) years of
age. Most participants were student volunteers from a Southeastern University and were
recruited through a University system and given either extra credit or monetary
compensation for their participation. Additionally, students and non students were
recruited via flyers.

Task

Participants performed the experimental task using screenshots from the
ObSERVE (Observational Skills Enhancement and Retainment Virtual Environment)
desktop simulation testbed, a Delta 3D static Virtual Environment (VE). The screenshots
were presented via a personal computer including a Hewlett Packard Compaq dc5800
Microtower desktop computer with Intel Core 2 Duo with 2.66GHz processors, 4GB
RAM, GeForce 9800 GTX+ video card, a Dell 19 inch High Definition flatscreen
monitor, and conventional keyboard and mouse. Participant eye movement data was
collected via an easyGaze' " eye tracker, a noninvasive desk mounted eye tracker located
in front of the flat screen display. Performance data was collected from the eye tracker
and the desktop computer via a performance assessment system which calculated

behavioral and eye tracking metrics.
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Figure 3. Experimental Apparatus

Participants performed a static military threat detection task. The task involved
trainees being stationed at a virtual Observation Post (OP) in a Middle Eastern urban
environment. In the virtual OP environment, participants were stationed either in a
building looking out of a window, on a rooftop or in an alleyway. Participants were
given 45 seconds to search the environment from this static location, by scanning the
display. Participants could respond before the 45 second limit, however, after 45
seconds, their view of the environment was obstructed and they were prompted to
indicate if there was a threat or not in the environment by clicking the Y button to

indicate there was a threat and the N button to indicate no threat. Upon participant
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indication of threat present, the scenario view was again presented and they were then
asked to point out the location of the threat via a mouse click. They were given
approximately 10 seconds to do so. Upon mouse click to indicate location of threat or N
button to indicate no threat, the trainee was advanced to next scenario. Prior to
performance, participants received pre-training, in which they were taught scanning
strategies consisting of what areas are high priority and low priority as well as general
rules for sequence of scan (e.g., high priority first, near to far). Within the pre-training,
participants were also given training on threats they were searching for, specifically the
appearance of the Dragunov sniper rifle at various levels of occlusion and various
orientations. Participants then performed 40 scenarios in which there was either 0 or 1
threat present.
Experimental Design

Experiment 1 was a within subjects repeated measures design. All participants
performed 40 trials, 20 of which had targets present. To ensure ample opportunity for
breakdowns in search and detection performance, search and detection difficulty were
manipulated. Half of the 40 trials had easy levels of search difficulty and half had
difficult levels of search difficulty. Of the 20 trials with targets, half of the trials had easy
detection levels and half had difficult detection levels. Difficulty breakdowns by trial are
illustrated in Table 5 and operationalization of search difficulty and detection difficulty

are presented in Tables 6 and 7, respectively.
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Table 5. Experiment 1 Difficulty Levels by Trial

Trials (40)
Target Present (20)
Detection Difficulty Target Not Present (20)
Easy Diff
Easy 5 5 10
Search Difficulty
Diff 5 5 10
Table 6. Operationalization of Search Difficulty
# High Priority Areas
0—30 Areas Over 30Areas
Low (0-30 pieces) E D
Amount of
Clutter
High (Over 30 pieces) D D
Table 7. Operationalization of Detection Difficulty
Orientation
0 (Canonical) -45 degrees 46 degrees -
90 degrees
Occlusion Low (0-50%%) E D
High (51-99%) D D
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Dependent Variables

The following Dependent Variables (DVs) were measured:

Table 8. Dependent Variables

Behavioral indication of threat: Y/N
Location (and object associated) of mouse click to indicate threat
Fixation Locations
Fixation Durations
o Threat Fixations
o Non Threat Fixations
Search Performance = % High priority areas fixated
Search Errors = Number of threats not fixated and not indicated as threat
Detection Errors = Number of threats fixated < 300ms but not indicated as threat
Recognition Errors = Number of threats fixated >/=300ms but not indicated as threat
Outcome Performance = % of threats correctly indicated (hit rate)
Time to detect threat (Reaction time)

Procedure
Upon arrival, participants completed an informed consent form and a series of

questionnaires and tests listed below in Table 9.

Table 9. Questionnaires

Demographics
Visual Acuity
Color Blindness
Spatial ability
a. Spatial Orientation
b. Visualization
c. Hidden Figures
Cognitive Load
6. Visual/Verbal Learning Style

B Lo~

9]
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Participants then received pre-training targeting both search and detection
knowledge and skills necessary to perform the task. Pre-training was presented via a
power point presentation in which screen shots from the simulation were utilized to
present target and scene examples. Participants then performed the eye tracker
calibration process and began experimental trial performance. Participants performed the
threat detection task over a series of 40 trials with no feedback given during training.

Participants were then debriefed on the study and their participation.

Results

The analyses reported below were performed in SPSS 11.5 for windows, and all
alpha levels were set to .05, unless otherwise specified. Due to anticipated eye tracking
data loss caused by excessive participant movement as well as poor candidacy of
participants due to causes unknown, all data was screened to identify cases in which
significant eye tracking data was missing. To identify these cases, eye tracking based
metrics were graphed using histograms to identify outliers. Outlier data sets were further
analyzed to determine if there was significant eye tracking data loss. Those cases for
which there was none or little eye tracking data for more than two trials were dropped.
This data screening process resulted in the exclusion of one of the 20 participant cases
which had significant amounts of eye tracking data loss, resulting in 19 participants

involved in analysis reported below.
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Individual Differences
To assess individual difference effects on performance, the aptitude and
demographic variables presented in Table 10 were correlated with Outcome Performance,

Detection Errors, Search Performance and Reaction Time.

Table 10. Aptitude and Demographic Variables

Aptitude

e Visual Acuity

e Color blindness
Spatial Orientation
Visualization
Hidden Figures Ability
Visual Verbal Learning Style
Cognitive Load

Demographic

Gender

Age

Highest Level of Education

SAT Score

Gaming Experience

e Military Training Experience

Hunting Experience

e Danger level of neighborhood growing up

Table 11 presents the correlations of aptitude variables with performance and
reaction time variables and Table 12 presents the correlations of demographic variables

with performance and reaction time variables.
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Table 11. Aptitude Variable Correlations with Performance and Reaction Time

Outcome Detection Search Reaction
Aptitude Performance Errors Performance Time
Visual Acuity R=.21 =-.10 R=.17 R=.17
Sig = .35 Sig=.70 Sig = .46 Sig = .45
N=22 N=17 N=22 N=22
Color blindness R=.21 R=.00 R=-.09 R=-23
Sig =.36 Sig=1.0 Sig=.71 Sig =.30
N=22 N=17 N=22 N=22
Spatial Orientation R=.36 R=-.61** =-.16 =-.07
Sig=.10 Sig = .01 Sig = .48 Sig=.77
N=22 N=17 N=22 N=22
Visualization R =.47* R =-.54*% R=-20 R=-.08
Sig =.03 Sig = .03 Sig = .38 Sig=.73
N=22 N=17 N=22 N=22
Hidden Figures R=.36 R=-26 R=.23 R=.15
Ability Sig=.10 Sig = .31 Sig =.31 Sig = .49
N =22 N=17 N=22 N=22
Visual Verbal R=-.26 R=-32 R=-.06 R=-.07
Learning Style Sig=.32 Sig=.23 Sig =.80 Sig=.77
N=22 N=17 N=22 N=22
Cognitive Load R=-.10 R=-.26 R=.30 R = .62**
Sig = .66 Sig = .32 Sig=.18 Sig =.00
N=22 N=17 N=22 N=22

** p<.01
*p<.05
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Table 12. Demographic Variable Correlations with Performance and Reaction Time

Demographics Outcome Detection Search Reaction
Performance Errors Performance Time
Gender =-28 R=21 =-.10 R=-11
Sig =.20 Sig = .43 Sig = .67 Sig = .64
N=22 N=17 N=22 N=22
Age R=-38 R=41 R=.31 R=.22
Sig = .08 Sig=.11 Sig=.16 Sig = .32
N=22 N=17 N=22 N=22
Highest Level of =-44* R=.27 R=.02 =-.09
Education Sig = .04 Sig =.29 Sig=.93 Sig = .68
N=22 N=17 N=22 N=22
SAT Score R=-03 R=.31 R=-21 R=-24
Sig=.93 Sig =.39 Sig = .47 Sig = .40
N=14 N=10 N=14 N=14
Gaming Experience R=.02 R=-.06 R=-31 R=-.34
Sig = .92 Sig = .83 Sig=.16 Sig=.12
N=22 N=17 N=22 N=22
Military Training R=-.05 R=.33 R =.63** R=.37
Experience Sig=.84 Sig=.20 Sig =.00 Sig=.09
N=22 N=17 N=22 N=22
Hunting Experience R =38 R=-45 R=.15 R=.14
Sig = .08 Sig = .07 Sig = .51 Sig = .52
N=22 N=17 N=22 N=22
Danger level of R=-.14 R=-.26 R=-28 R=-.26
neighborhood growing up | Sig =.54 Sig = .32 Sig =.20 Sig = .24
N=22 N=17 N=22 N=22
#* p<.01
*p<.05

No consistent patterns of individual difference effects on performance emerged,
although the spatial ability aptitude of Spatial Orientation (SO) was highly and
significantly correlated with number of Detection Errors and the spatial ability aptitude of
Visualization (VZ) was moderately and significantly correlated with Outcome
Performance and number of Detection Errors. Based on these findings, SO and VZ were
tested as covariates for the following analyses; however, as neither were statistically

significant covariates, they were excluded in the analyses.
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Analysis 1.1: Average Fixation Durations

Analysis 1.1 was performed to identify a fixation duration threshold which
represents the difference between 1) a missed target fixated, however, not for a
significant amount of time indicating the participant did not detect the target (detection
error) and 2) a missed target fixated for a significant amount of time indicating a level of
detection (recognition error). To identify this threshold, average fixation durations were

calculated for the following types of Area of Interest (AOI) categories included in Table

13.

Table 13. AOI Categories

Non-target fixations in trials without targets (AOI Type 1)
Non-target fixations in trials with missed targets that were not fixated (AOI Type 2)
Non-target fixations in trials with missed targets that were fixated (AOI Type 3)
Target fixations in trials with missed targets that were fixated (AOI Type 4)
Non-target fixations in trials with targets that were found (Hits; AOI Type 5)
Target fixations in trials with targets that were found (Hits; AOI Type 6)

The average fixation durations and standard deviations in milliseconds for each of

these AOI categories are summarized in Table 14 below.

Table 14. Average Fixation Durations

Trials with:
No Target Missed Target Not | Missed Target Hit Target
Fixated Fixated
Target Avg Fix
Duration (ms) NA NA 212 (42)* 294 (56)°
Non-Target Avg
Fix Duration (ms) 204 (11) 206 (18)° 207 (19)° 241 (22)°

* AOI Type Number
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A repeated measures ANOVA was performed between average fixation durations
associated with these AOI categories. The analysis revealed that type of AOI had a
significant effect (E(5, 90) = 27.85, p<.01, partial n’ = .61.) on average fixation duration.
Post hoc tests were performed using Tukey’s LSD to determine where significant
differences lie. Post hoc analyses revealed significant differences between average
fixation durations of AOI types 1 and 5 above (p<.01), 1 and 6 (p<.01), 2 and 5 (p<.01), 2
and 6 (p<.01), 3 and 5 (p<.01), 3 and 6 (p<.01), 4 and 6 (p<.01), and 5 and 6 (p<.01).

Given the lack of significant difference between AOI Type 3 and 4 average fixation
durations as predicted in prediction 1.1, the results of the above analysis prevent
determination of a fixation duration threshold between detection and recognition errors.
As such, multiple fixation durations thresholds were evaluated in analysis 1.2 and 2.1 to

determine an effective threshold.

Analysis 1.2: Missed Target Eye Tracking Response

Analysis 1.2 was performed to further analyze missed targets based on eye
tracking data. Using behavioral metrics of whether a target was indicated or not (Yes/No
response) and once indicated if the target was correctly located (via a mouse click),
responses were categorized into Hit (H), Miss (M), False Alarm (FA), and Correct

Rejection (CR) as illustrated in Table 15.

Table 15. Target Behavioral Response Categorization

Said Response

Yes No
H
Yes (Correct
Target Present Location)
No FA CR

56



Based on the four detection thresholds identified above (200ms, 250ms, 300ms,
350ms), misses were further analyzed to determine if the miss was due to a search error, a

detection error, or a recognition error based on fixation duration as follows:

Table 16. Missed Target Eye Tracking Response Categorization

Fixation Duration
Search Error 0 ms
Detection Error Oms < X < detection threshold (ms)
Recognition Error Detection threshold (ms) </=X

A total of 162 misses occurred across all participants over the 40 scenarios. Table
17 summarizes the breakdown (number and percentage) of the errors which fall into each

of the three error categories across the 4 detection thresholds under evaluation.

Table 17. Missed Target Eye Tracking Response Statistics (Number (Percentage))

200Threshold 250Threshold 300Threshold 350Threshold
Search Error 121 (74%) 121 (74%) 121 (74%) 121 (74%)
Detection Error 14 (9%) 19 (12%) 27 (17%) 32 (20%)
Recognition Error 27 (17%) 22 (14%) 14 (9%) 9 (6%)
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Analysis 2.1: Sequential Multiple Regression

Analysis 2.1 was performed with two goals. The first goal was to evaluate if the
Search Performance and Detection Error metrics were meaningful and unique metrics
which were predictive of Outcome Performance. The second goal was to determine the
optimal fixation duration detection threshold (fixation duration on a target over which a
level of detection is assumed) by comparing regression models created based on an array
of different thresholds. Four Sequential Multiple Regression analyses were performed
with Search Performance and Detection Errors as predictors and Outcome Performance
as criterion. Detection Errors varied between these four analyses based on the four
different fixation duration thresholds selected based on findings from analysis 1.1:

200ms, 250ms, 300ms and 350 ms.

200ms Threshold

A sequential multiple regression was performed with predictors of Search
Performance and Detection Errors calculated using a 200 millisecond fixation duration
threshold and Outcome Performance as a criterion. R was not significantly different from
zero at the end of each step. After the second step with all Independent Variables (IVs)
in the equation, R = .52, F (2, 16)=2.97, p>.05. After step 1, with Detection Errors in the
equation, R? =20, Fin(1, 17)=4.25, p>.05. Detection performance when detection
threshold is set to 200 did not contribute to a significant amount of Outcome
Performance variance. After step 2, with Search Performance added to Detection Errors

to predict Outcome Performance, R2=.27, (adjusted R2=.18), Fine (1, 16)=1.55, p>.05.
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The addition of search performance did not significantly improve the amount of variance

accounted for. Results are presented in Table 18.

Table 18. Sequential Multiple Regression for 200ms Detection Threshold

Source SS df MS F Sig
Regression .10 2 .05 2.97 .08
Residual .26 16 .02

Total 35 18

Predictor Coeff SE t Sig

Constant 45 15 2.97 .01

Detection Errors -0.08 .04 -2.32 .03

Search Performance .004 .003 1.25 23

R’= .27 R’ = .18

250ms Threshold

A sequential multiple regression was performed with predictors of Search
Performance and Detection Errors calculated using a 250 millisecond fixation duration
threshold and Outcome Performance as a criterion. R was not significantly different from
zero at the end of each step. After the second step with all IVs in the equation, R = .63, F
(2, 16)=5.30, p<.05. After step 1, with Detection Errors in the equation, R? =.35, Finc (1,
17)=9.08, p<.01. After step 2, with Search Performance added to Detection Errors to
predict Outcome Performance, R*=.40, (adjusted R*=.32), Finc (1, 16)=1.34, p>.05. The
addition of search performance did not significantly improve the amount of variance

accounted for by detection errors alone. Results are presented in Table 19.
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Table 19. Sequential Multiple Regression for 250ms Detection Threshold

Source SS df MS F Sig
Regression .14 2 .07 5.29 .02
Residual 21 16 .013

Total 35 18

Predictor Coeff SE t Sig

Constant Sl .14 3.72 .00

Detection Errors -0.09 .03 -3.15 .01

Search Performance .003 .003 1.16 27

1{2 =.40 Rzadj =.32

300ms Threshold

A sequential multiple regression was performed with predictors of Search
Performance and Detection Errors calculated using a 300 millisecond fixation duration
threshold and Outcome Performance as a criterion. R was significantly different from
zero at the end of each step. After the second step with all IVs in the equation, R = .81, F
(2, 16)=15.63, p<.01. After step 1, with Detection Errors in the equation, R* =.51, Fiy (1,
17)=17.81, p<.01. After step 2, with Search Performance added to Detection Errors to
predict Outcome Performance, R?=.66, (adjusted R2=.62), Fine (1, 16)=7.08, p<.05,
significantly improving the amount of variance accounted for. Results are presented in

Table 20.
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Table 20. Sequential Multiple Regression for 300ms Detection Threshold

Source SS df MS F Sig
Regression 23 2 A2 15.63 .00
Residual 12 16 .01

Total 35 18

Predictor Coeff SE t Sig

Constant 43 .10 421 .00

Detection Errors -.09 .02 -5.48 .00

Search Performance .01 .002 2.66 .02

R’=.66 R’ = .62

350ms Threshold

A sequential multiple regression was performed with predictors of Search
Performance and Detection Errors calculated using a 350 millisecond fixation duration
threshold and Outcome Performance as a criterion. R was significantly different from
zero at the end of each step. After the second step with all [Vs in the equation, R = .81, F
(2,16)=14.97, p<.01. After step 1, with Detection Errors in the equation, R? =.54, Fine (1,
17)=19.59, p<.01. After step 2, with Search Performance added to Detection Errors to
predict Outcome Performance, R2=.65, (adjusted R2=.61), Fine (1, 16)=5.34, p<.05,
significantly improving the amount of variance accounted for. Results are presented in

Table 21.
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Table 21. Sequential Multiple Regression for 325ms Detection Threshold

Source SS df MS F Sig
Regression 23 2 A2 14.96 .00
Residual 12 16 .01

Total 35 18

Predictor Coeff SE t Sig

Constant 47 .10 4.50 .00

Detection Errors -.08 .02 -5.36 .00

Search Performance .01 .002 2.31 .03

R*=.65 R, = .61

Results revealed that the 300 millisecond threshold resulted in the model which
accounts for the greatest amount of Outcome Performance variance. Intercorrelations of
performance variables based on this 300 millisecond threshold and reaction time are

presented in Table 22.

Table 22. Intercorrelation of Performance and Reaction Time Variables (N=22)

1 2 3 4
1. Outcome Performance 1
2. Detection Errors -.67** 1
3. Search Performance .09 37 1
4. Reaction Time .06 33 .84 %% 1
Mean .57 1.55 49.07 25.70
Standard Deviation 13 1.34 10.33 7.46
**p<.0l
*p<.05
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Additional Analyses

Additional analyses were performed to explore the effects of search difficulty and
detection difficulty on Outcome Performance, Detection Errors, Search Performance and
Reaction Time.

Detection Difficulty and Search Difficulty Effects

Participant scores on these four metrics for the twenty trials which contained a
target were aggregated (averaged) for each individual participant across trials for each of
the following 4 categories: Easy Detect Easy Search (EDES), Easy Detect Difficult
Search (EDDS), Difficult Detect Easy Search (DDES), Difficult Detect Difficult Search
(DDDS). Four repeated measures ANOVAs were performed with IVs of search
difficulty and detection difficulty and DVs of Outcome Performance, Detection Errors,
Search Performance and Reaction Time. A MANOVA was not used due to lack of high

correlations between all dependent variables.

Outcome Performance

A repeated measures ANOVA was performed on Outcome Performance (hit rate)
for the four difficulty categories mentioned above. The analysis revealed that detection
difficulty had a significant effect (F(1, 18) = 238.77, p<.01, partial 1°=.93) on Outcome
Performance with performance decreasing with increasing detection difficulty. The
analysis also revealed that search difficulty had a significant effect (F(1, 18) = 9.15,
p<.01, partial n°=.34) on Outcome Performance with performance levels increasing with

increasing levels of search difficulty. There was also a significant interaction (F(1, 18) =
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5.73, p<.05, partial n2=.24). The means and standard deviations are presented in Table

23 and the data are illustrated in Figure 4.

Table 23. Detection Difficulty and Search Difficulty Effects on Outcome Performance

Search Difficulty
Detection Difficulty Easy Difficult
Easy mean = .78 mean =.81
s.d=.15 s.d.=.16
Difficult mean = .24 mean = .41
s.d=.17 s.d.=.24
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e .54
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g T = Easy
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5 i o
O 2 Difficult
Easy Difficult

Detection Difficulty

Figure 4. Detection Difficulty and Search Difficulty Effects on Outcome Performance
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Detection Errors

A repeated measures ANOVA was performed on Detection Errors for the four
difficulty categories mentioned above. The analysis revealed that detection difficulty had
a significant effect (F(1, 18) = 16.88, p<.01, partial n°=.48) on Detection Errors with
errors increasing with increasing detection difficulty. The analysis revealed that search
difficulty had no significant effect on Detection Errors (p>.05) and there was no
significant interaction between detection difficulty and search difficulty (p>.05). The
means and standard deviations are presented in Table 24 and the data are illustrated in

Figure 5.

Table 24. Detection Difficulty and Search Difficulty Effects on Detection Errors

Search Difficulty
Detection Difficulty Easy Difficult
Easy mean = .02 mean = .02
s.d.=.06 s.d.=.06
Difficult mean = .11 mean = .15
s.d.=.12 s.d.=.19

65




16
14 4
124
1]
10 4
g 08
2 -
(0]
>
< 064
@
o
o O Search Difficulty
g -
o 028 o Easy
Q
3 o000 Difficult
Easy Difficult

Detection Difficulty

Figure 5. Detection Difficulty and Search Difficulty Effects on Detection Errors

Search Performance

A repeated measures ANOVA was performed on Search Performance for the four
difficulty categories mentioned above. The analysis revealed that detection difficulty had
a significant effect (F(1, 18) = 32.49, p<.01, partial n°=.64) on Search Performance with
performance increasing with increasing detection difficulty. The analysis also revealed a
significant effect of search difficulty (F(1, 18) = 5.25, p<.05, partial 1°=.23) on Search
Performance, with performance increasing as search difficulty increases. There was also
a significant interaction (F(1, 18) = 5.40, p<.05, partial n°=.23). The means and standard

deviations are presented in Table 25 and the data are illustrated in Figure 6.
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Table 25. Detection Difficulty and Search Difficulty Effects on Search Performance

Search Difficulty
Detection Difficulty Easy Difficult
Easy mean = 34.96 mean = 35.05
s.d.=10.92 s.d.=10.51
Difficult mean = 41.40 mean = 48.96
s.d.=8.74 s.d.=10.81
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Figure 6. Detection Difficulty and Search Difficulty Effects on Search Performance

Reaction Time

A repeated measures ANOVA was performed on Reaction Time for the four
difficulty categories mentioned above. The analysis revealed that detection difficulty had

a significant effect (F(1, 18) = 68.49, p<.01, partial n’=.79) on Reaction Time with
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Reaction Time increasing with increasing detection difficulty. The analysis revealed no
significant effects of search difficulty on Reaction Time (p>.05) and there was a not a
significant interaction (p>.05). The means and standard deviations are presented in Table

26 and the data are illustrated in Figure 7.

Table 26. Detection Difficulty and Search Difficulty Effects on Reaction Time

Search Difficulty
Detection Difficulty Easy Difficult
Easy mean = 13.46 sec mean =14.00 sec
s.d.=5.83 sec s.d.=7.48 sec
Difficult mean = 24.56 sec mean = 23.71 sec
s.d. = 7.50sec s.d. =6.39 sec
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Reaction Time (ms)
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Easy Difficult
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Figure 7. Detection Difficulty and Search Difficulty Effects on Reaction Time
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Search Difficulty and Target Presence Effects

In order to assess search difficulty effects on performance across all trials,
including interactions with target present or not, participant scores on Search
Performance and Reaction Time for all trials were aggregated across trials for each of the
following 4 categories: Target Not Present, Easy Search (NTES), Target Not Present,
Difficult Search (NTDS), Target Present, Easy Search (TES), Target Present, Difficult
Search (TDS). Outcome Performance and Detection Errors were not included as they
required a target present to calculate. Two repeated measures ANOVAs were performed
with IVs of search difficulty and target present and DVs of Search Performance and

Reaction Time.

Search Performance

A repeated measures ANOVA was performed on Search Performance for the four
categories mentioned above. The analysis revealed that target presence had a significant
effect (F(1, 18) = 92.30, p<.01, partial n’=.84) on Search Performance with performance
decreasing with a target present. The analysis also revealed significant effects of search
difficulty (F(1, 18) = 8.59, p<.0l, partial 1°=.32) on Search Performance with
performance increasing with increasing search difficulty. There was not a significant
interaction (p>.05). The means and standard deviations are presented in Table 27 and the

data are illustrated in Figure 8.
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Table 27. Search Difficulty and Target Presence Effects on Search Performance

Target Presence

Search Difficulty Target Not Present Target present
Easy mean = 52.65 mean =37.97
s.d.=13.83 s.d.=8.82
Difficult mean = 55.95 mean = 42.00
s.d.=10.44 s.d. =8.97
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Figure 8. Search Difficulty and Target Presence Effects on Search Performance

Reaction Time

A repeated measures ANOVA was performed on Reaction Time for the four
difficulty categories mentioned above. The analysis revealed that target presence had a
significant effect (F(1, 18) = 63.10, p<.01, partial n°=.78) on Reaction Time with

Reaction Time decreasing with a target present. The analysis also revealed that search
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difficulty had a significant effect (F(1, 18) = 9.92, p<.01, partial 1°=.36) on Reaction

Time with Reaction Time increasing with increasing search difficulty. There was also a

significant interaction (F(1, 18) = 6.83, p<.05, partial n2=.28). The means and standard

deviations are presented in Table 28 and the data are illustrated in Figure 9.

Table 28. Search Difficulty and Target Presence Effects on Reaction Time

Target Presence

Search Difficulty Target Not Present Target present
Easy mean = 28.40 sec mean =18.42 sec
s.d.=10.46 sec s.d.= 5.95 sec
Difficult mean = 33.01 sec mean = 18.85 sec
s.d. = 10.06 sec s.d. =5.97 sec
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Figure 9. Search Difficulty and Target Presence Effects on Reaction Time
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Discussion

Experiment 1 aimed to examine the effectiveness of utilizing eye tracking data to
measure and diagnose search performance and performance deficiencies, by investigating
1) how effectively the method could identify where in the perceptual process breakdowns
occur (i.e., search, detection, recognition) and 2) how reliably it could predict Outcome
Performance and differentiate Search Performance from other perceptual processes (i.e.,
detection). Based on existing research, it was hypothesized that the diagnosis method
would provide training practitioners and training science researchers with an effective
method that facilitates identification of the perceptual root cause of target misses,
allowing them to better understand process level performance deficiencies and tailor
training remediation to address these deficiencies.

The results provide significant support for the effectiveness of the eye tracking-
based diagnosis method. Utilizing fixation duration measurements, an effective threshold
was determined which facilitated the target-based diagnosis of the perceptual root cause
of target misses, specifically whether the miss was due to a search error, detection error
or recognition error. This level of perceptual performance diagnosis gives practitioners
and researchers access to perceptual processes previously inaccessible. Additionally,
when these metrics were extended to diagnose trial based performance, they proved to be
valid and reliable metrics predictive of Outcome Performance. These findings show
promise for the effectiveness of utilizing eye tracking to better understand perceptual
performance, including performance on sub processes such as search and detection and

how these contribute to Outcome Performance. Such findings have far reaching
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implications for practitioners and researchers alike. Findings and implications are
discussed in greater detail in the sections below.
Target-based Diagnosis Method

The goal of this analysis was to determine meaningful parameters with which to
discriminate and classify perceptual errors. The results indicate that, in fact, the method
can discriminate three different types of errors which occur at 0 millisecond fixations,
between 0 and 300 millisecond fixations and beyond 300 millisecond fixations,
respectively. Essentially, this indicates that there are three error categories for perceptual
skills that are commensurate with the literature (i.e. search, detect, and recognize). Being
able to successfully measure these with advance technologies allows researchers to not
only better understand how people process information perceptually, but also, the effects
different influences have on the perceptual process (whether training remediation,

neurological disorder or medical treatment).

Fixation Duration Threshold

Hypothesis 1 predicted that the average fixation duration target-based metric can
effectively (reliably and validly) diagnose where in the perceptual process (i.e., search,
detect, recognize) breakdowns occur using eye tracking and behavioral data. This
hypothesis was fully supported. A fixation duration based threshold was identified which
allowed the classification of errors into three categories of search, detection and
recognition. Although this threshold was not determined as originally anticipated
(based on the average fixation durations of non-target verses. missed target fixations,

which was not significantly different), an alternate method resulted in success. Based on
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the 300 millisecond threshold from the literature (Hale et al., 2007) and the average
fixation durations resulting from Analysis 1.1, multiple potential thresholds were
identified. These four thresholds (200ms, 250ms, 300ms, 350ms) were then used to
categorize target misses into error categories and to calculate trial-based metrics to
correlate with Outcome Performance. Based on the findings from these two analyses it
was determined that 300 milliseconds was the most meaningful and effective threshold
for categorizing perceptual errors into detection and recognition errors. The findings are

discussed further in the following section.

Missed Target Responses

Hypothesis 1 (Prediction 1.2) which predicted that for missed targets there would
be either instances of 0 millisecond fixations on this threat (search errors), short fixations
(detection errors) or long fixations (recognition errors) was fully supported. Using
detection thresholds of 200, 250, 300, and 350 milliseconds, in all cases, misses fell into
all three categories above. The majority of misses (75%) fell into the search error
category, regardless of detection threshold. This was not surprising as all performers
were novices. As search was the first step in the target detection process, in most cases,
these novices did not successfully accomplish this initial step, preventing progression to
subsequent steps. This is inline with extant research which has found that novices lack
defined search strategies and spend less time than experts scanning relevant aspects of the
environment (Jarodzka et al., 2009).

At the lowest threshold (200ms) 9% of misses fell into the detection error

category and 17% fell into the recognition error category. As the detection threshold was
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raised, as expected, an increasing number of misses fell into the detection error category.
Greater numbers of misses fell into the recognition error category than the detection error
category for thresholds of 200 and 250 milliseconds. Greater numbers of misses fell into
the detection error category than the recognition error category for thresholds of 300 and
350. At the highest threshold (350ms) 20% of misses fell into the detection category and
6% fell into the recognition category.

Error breakdowns associated with 200 and 250 millisecond thresholds were not
inline with expected outcomes. Given the homogeneous nature of the target, it is unlikely
that more misses were due to recognition errors than detection errors. As all targets were
Dragunov sniper rifles which had very distinct features (long, straight black barrel,
brown, angular butt). Once these features were detected, it is unlikely participants would
fail to recognize these cues as a portion of the rifle, except in the most difficult target
conditions in which targets were heavily occluded and in non-canonical orientation.
Therefore, these findings suggest a threshold of either 300 or 350 millisecond as a more
meaningful detection threshold.

Trial-based Diagnosis Method

The goal of this analysis was to assess the validity and reliability of the metrics
involved in extending the target-based diagnosis method used to identify the perceptual
root cause of errors to the trial based level to assess overall threat detection performance.
The results indicate the metrics are both reliable and valid as demonstrated by their
effective prediction of Outcome Performance as well as their unique contributions to

Outcome Performance. Essentially, this indicates that not only can eye tracking be used
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to effectively diagnose perceptual root cause of individual errors, but also to characterize
performance on a larger scale over multiple scenarios and when no target misses occur.

Hypothesis 2 predicted that the trial-based diagnosis method could discriminate
between Search Performance and Detection Performance, as well as predict Outcome
Performance based on these two metrics, and this hypothesis was fully supported. The
meaningfulness and uniqueness of the metrics which comprised this diagnosis method
(Detection Errors, Search Performance) was demonstrated by showing that both metrics
were significantly and independently correlated with Outcome Performance.

As Outcome Performance was measured via Hit Rate, and misses (failures in
Outcome Performance) were categorized into one of three error types (search error,
detection error, recognition error) in the target based diagnosis method, an almost perfect
prediction of Outcome Performance could be made with a combination of these three
variables.  Given this, detection is a necessary element for successful Outcome
Performance and thus Detection Errors were hypothesized to contribute a significant
amount of variance to Outcome Performance. As the goal with the trial-based diagnosis
method was to also measure a unique element of search performance not being captured
by the target-based method (independent of target location, is the trainee searching high
priority areas?) it was hypothesized that in addition to Detection Errors, Search
Performance, as measured by percentage of high priority areas scanned, would contribute
a significant amount of variance to Outcome Performance as well. These hypotheses
were supported by the results of the sequential multiple regression in which
approximately 66% of the variance was accounted for by the two metrics (approximately

51% by Detection Errors and another 15% by Search Performance). These results

76



suggest that the trial-based diagnosis method can discriminate between search
performance and detection performance, as well as predict Outcome Performance based
on these two metrics.

The above regression findings are based on a detection threshold of 300
milliseconds. This threshold was determined to be the most optimal threshold by
comparing the amount of variance accounted for by models based on 200, 250, 300 and
350 millisecond thresholds. The Outcome Performance regression model based on a 200
millisecond threshold did not account for a significant amount of the variance, only 27%,
with 20% due to Detection Errors and 7% due to Search Performance. The Outcome
Performance regression model based on a 250 millisecond threshold did account for a
significant amount of the variance, approximately 40%, with a significant amount due to
Detection Errors (35%) and an insignificant amount (5%) due to Search Performance.
The Outcome Performance regression model based on a 300 millisecond threshold also
accounted for a significant amount of the variance, 66%, with both Detection Errors
(51%) and Search Performance (15%) contributing a significant amount of variance. The
Outcome Performance regression model based on a 350 millisecond threshold also
accounted for a significant amount of the variance, 65%, with both Detection Errors
(54%) and Search Performance (11%) contributing a significant amount of variance.

As increasing the detection threshold from 300 to 350 milliseconds increased the
opportunity for (and in this case the total number of) Detection Errors, it as a result
increased the amount of variance incorporated into the model (i.e., variance once
excluded as recognition error variance was now included as detection error variance). If

the 350 millisecond threshold was indeed a better or even equally good threshold for

77



discriminating detection and recognition errors, an increase in amount of overall variance
accounted for should have resulted. As increasing the detection threshold to 350
milliseconds did not increase the variance accounted for, 300 milliseconds was chosen as
the optimal fixation duration threshold to distinguish between detection and recognition
errors. This threshold is also in line with fixation duration data from previous research
(Hale et al., 2007), which found significantly different average fixation durations
associated with hit targets (723 milliseconds), non-target false alarms (483 milliseconds)

missed targets (366 milliseconds), and correctly rejected non-targets (275 milliseconds).

Average Fixation Durations

The one prediction which was not supported was prediction 1.1 which stated that
there would be a significant difference between average fixation durations associated
with non-target fixations and missed target fixations. This was originally intended to
serve as the basis for the fixation duration threshold. One possible explanation for this
was that it was due to the nature of the scenarios. Specifically, lack of significant
differences may be due to the fact that misses were comprised more of detection errors
than recognition errors. As detection errors would have a fixation duration similar to that
of a non-target fixation, if these were highly disproportional to the number of recognition
errors (which would have higher fixation duration thresholds than non-targets), the
average fixation duration associated with a miss would be decreased.

This is a likely explanation as the uniformity of the target would make the
detection of the target features much more challenging than recognition that the target

features were associated with the target of interest. As discussed above, all targets were
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Dragunov sniper rifles and although they were presented in a range of different
orientations and levels of occlusion, given the unique features of the rifle (i.e., long
straight black barrel, brown angular rifle butt) it is likely that once a feature was detected,
recognition would occur fairly easily. If the number of detection and recognition errors
were greatly disproportional (many more detection errors than recognition errors), the
average fixation duration associated with missed threats would be much lower and much
closer to non-threat average fixation durations than in cases in which equivalent number
of detection and recognition errors occurred. Hale et al. (2007) found difference as
predicted, however, the task involved locating a more heterogeneous group of targets
(white work trucks) which could vary in appearance. Future experiments could
investigate this prediction using scenarios in which the target of interest varied in
perceptual appearance such adding IED targets ranging from gas tanks to garbage heaps.
Such a situation would likely increase the number of recognition errors, hence increasing
the average fixation duration associated with missed threats.
Difficulty Effects

Difficulty effects were examined via an exploratory analysis in an attempt to
understand what effect detection difficulty (as operationalized via target orientation and
levels of occlusion) and search difficulty (as operationalized via amount of clutter and
number of high priority areas) had on performance accuracy, including Outcome

Performance, Detection Errors, Search Performance and Reaction Time.
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Detection Difficulty and Search Difficulty

The key finding with respect to difficulty was that detection difficulty seemed to
be the driving force behind performance. For very easy to detect targets, the targets were
found accurately and quickly, likely due the preattentive nature of the search required to
detect these salient targets. The more difficult the target was to detect, the lower the hit
rate and the greater the reaction time. This suggests that key drivers in both detection
accuracy and reaction time are target aspects such as target difficulty. Additionally, the
number of Detection Errors was significantly influenced by detection difficulty.
Increasing detection difficulty levels led to more Detection Errors. Search Performance
was also significantly affected by detection difficulty. Interestingly, as detection
difficulty increased, Search Performance also increased. A plausible explanation is that
difficult target detection scenarios may force performers to shift from a pre-attentive or
parallel search to an attentive serial search, resulting in a more analytic/systematic search
process, hence increasing the number of high priority areas scanned.

Search difficulty did impact performance; however, it appeared to be less
influential than detection difficulty and actually moderated by it. Outcome Performance
was significantly affected by search difficulty, however, not as expected. As search
difficulty increased, Outcome Performance actually increased. As hypothesized above,
this is likely due to performers being forced to systematically search for targets, resulting
in performers scanning a larger percent of the high priority areas leading to improved
detection of targets. There was also an interesting interaction. Search difficulty had very
little effect on Outcome Performance when targets were easy to detect. In these cases,

performers quickly found the targets due to their salient nature, not requiring a systematic
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search and therefore distracters had little effect. However, when targets were difficult to
detect, a serial self terminating search resulted and search difficulty (which is based
partially on number of distracters) had a greater influence on whether these targets were
found. Search Performance was also significantly affected by search difficulty with
Search Performance increasing with increasing search difficulty. However, there was a
significant interaction and in looking at the data, search difficulty only significantly
affected Search Performance when detection difficulty was high and participants were
forced into a serial self terminating search. When difficulty was low, search difficulty
had no impact as detection was likely driven by bottom up processes due to the saliency
of the target. Detection Errors were not significantly affected by search difficulty. It
seemed that the effect of target difficulty had much more effect on Detection Errors than
the addition of clutter.

These findings help shed light on the impact that search and detection difficulty
manipulation can have on performance. Additionally, the results indicate that the
detection and search difficulty variations were strong enough to ensure breakdowns in
both search and detection performance, however, it appears the search difficulty
manipulation was not nearly as strong as the detection difficulty manipulation. To
manipulate search difficulty, the same background scene was used and clutter (including
high priority area clutter) was added to the environment. Given that the background
contained a great deal of clutter, in future attempts to manipulate search difficulty, it may
be more effective to use different backgrounds which vary in clutter and number of high

priority areas.

81



Target Presence and Search Difficulty

Both the presence of a target and search difficulty affected performance. With the
addition of a target, Search Performance increased over trials without a target. This is not
surprising; within target present trials there were trials in which targets were very easy to
detect, leading to almost immediate indication of a target. In such cases, few high
priority areas were likely searched before detection. However, for trials with no target,
performers were likely to perform a serial self terminating search, continuing to search
until the trial time was up and covering a greater percent of high priority areas. Reaction
Time was also significantly influenced by presence of a target. Trials in which targets
were present had shorter Reaction Times compared to trials in which no targets were
present. This is also likely due to the almost immediate detection of easy to detect targets
vs. the exhaustive search for targets in trials in which they were not present.

Search difficulty significantly impacted Search Performance, with increasing
difficulty levels leading to increased performance. As hypothesized above, this was
likely due to the performers being forced to use a more systematic serial self terminating
search in more difficult search situations. Reaction Time was also significantly affected
by search difficulty with Reaction Time increasing with increasing levels of difficulty.
As trials became more difficult to search, performers took longer to search the
environment; however, a significant interaction indicates that this is really only in trials
without targets. For trials in which targets were present, search difficulty had much less
influence on Reaction Time than trials in which there were no targets present. This is
likely due to the extreme influence that detection difficulty had on Reaction Time,

leaving little variability due to search difficulty.
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Experiment 2

The goal of Experiment 2 was to explore the training effectiveness of a newly
developed search training strategy which incorporated elements of expert scan and
trainee scan. This training strategy provided process level search feedback which
incorporated proven feedback strategies and provided support for the development of
generalized search strategies. The experiment aimed to evaluate the effectiveness of the
feedback strategy components on the search and detection metrics validated in
Experiment 1 to determine training value added over traditional Knowledge of Results
(KR) feedback. The following sections describe the newly developed eye tracking-based

search training strategy.

Visual Search Training Strategy

An innovative training strategy referred to as the “Expert + Trainee” search
training strategy was developed by integrating aspects of expert performance models,
metacognitive strategies, attentional weighting strategies and process level feedback.
These strategies were combined into a feedback method which allowed the trainee to
compare their search strategy to an expert’s, including where they scanned and how their
scan unfolded. This feedback strategy had four key elements.

1. Expert Scan

First, the presentation of expert scan data was used as the foundation of the training
strategy. This strategy provided trainees with a model of “good” performance,
addressed both location and sequence aspects of search and has empirically proven

successful in improving visual search in a range of domains.
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2. Trainee Scan

Second, in order to support development of trainee metacogntion, trainee scan data
was presented to allow trainees to explore their actual performance and understand
how it differed from their intended or perceived performance.

3. Highlighting of Differences between Expert and Trainee Scan

Third, differences between expert and trainee performance were highlighted to
illustrate areas in need of improvement. .

4. Elaborative Feedback

Fourth, given the complexity of scan data it may prove challenging for a novice to
extract key elements intended to improve trainee performance and support the
establishment of generalizable search strategies. Therefore auditory elaboration on
elements of these scan paths was included to facilitate learning.

These elements were combined into a two component module in which trainees

were first presented with a “Where” component which targets the location aspect of

search followed by a “How” component which targets the sequence aspect of search.

These components are discussed and illustrated in the following section.

“Where” Component of Search Training Strategy

The “Where” component was designed to aid trainees in developing an

understanding of what areas are high vs. low priority and should or should not be

searched, as well as developing a strategy which balances the time spent searching these

two types of areas. This component presents expert scan data (to illustrate desired/target

performance) and trainee scan data (to facilitate metacognition) side by side with

fixations color coded into high and low priority area fixations (in order to highlight
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differences in search strategy, i.e., allocation of attention to high vs. low priority areas).
Areas that an expert scanned that a trainee did not scan are highlighted with semi-
transparent, color-coded (high vs. low priority) squares to illustrate differences between
target and actual performance and hence areas in need of improvement.

The module then steps through the objects that an expert fixated on, while a)
highlighting associated fixations (i.e., with a green outline) and areas the expert scanned
that the trainee did not scan (i.e., by filling in the boxes) and b) presenting auditory
elaborative feedback of an expert commenting on the area and why it should/should not
be scanned.  This auditory elaborative feedback was designed to aid in abstraction of a
specific scan pattern to higher level strategies of where they should look in novel
situations (e.g., “You should always search areas in the shadows such as alleys”). This
feedback addresses both perceptual and conceptual aspects of “where to look™” and is

illustrated in Figure 10 below.
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Figure 10. Search Location Feedback

“How” Component of Search Training Strategy

The “How” component was designed to aid trainees in developing systematic
search strategies. This component presents the dynamic unfolding of an expert scan next
to a the dynamic unfolding of a trainee scan, alternating scan segments between the two
to allow an understanding of where the expert started verses the trainee and differences in
how their scan paths unfolded. Specifically, the firsts ten fixations of an expert scan are
presented, including color-coding of those associated with high vs. low priority areas.
Upon completion of this unfolding, the firsts ten fixations of the trainee scan are
presented, including color-coding of those associated with high vs. low priority areas.
Upon completion of this unfolding, both sets of ten fixations turn to gray. This pattern

continues, alternating between the two scan paths and turning old portions of the scan
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paths to gray until both scans are complete. The trainee is cued auditorily to ensure
attention to the correct scan through prompts such as “The expert started scanning here”,
“You started scanning here”, “Then the expert scanned here”, “Then you scanned here”,
“This is the last place the expert scanned”, and “This is the last place you scanned”. This

is illustrated in Figure 11 below.
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Figure 11. Search Sequence Feedback

Although the presentation of expert scan paths has been empirically proven to
enhance search strategy across multiple domains (Nalanagula et al., 2006; Sadasivan et
al., 2005), it is necessary to explore the effectiveness of the above proposed extensions to
this method. Not only is it necessary to explore the effectiveness of this training strategy

as a whole compared to traditional Knowledge of Results (KR) feedback, it is also
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important to determine which elements of this feedback (expert scan, trainee scan, or

both) contribute to the effect. Such is the goal of Experiment 2 of this effort.

Hypothesis 3

The newly developed search feedback strategy (expert scan + trainee scan) will
improve search skills over traditional Knowledge of Results (KR) and both elements of
expert scan and trainee scan will contribute to this success.

Prediction 3.1

Participants who receive training with elements of an expert scan will perform
significantly better than those who do not receive elements of an expert scan in feedback
in Search Performance, Detection Performance and mission Outcome Performance in the
simulation post test.

Prediction 3.2

Participants who receive training with elements of a trainee scan will perform
significantly better than those who do not receive elements of a trainee scan in feedback
in Search Performance, Detection Performance and mission Outcome Performance in the

simulation post test.

Prediction 3.3

Participants who receive training with elements of both expert and trainee scans
will perform significantly better than those who do not receive both elements in feedback
in Search Performance, Detection Performance and mission Outcome Performance in the

simulation post test.
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Method

Participants

Prior to recruiting any participants and collecting data, a power analysis was
performed to estimate the number of participants needed to obtain sufficient statistical power.
A power analysis was performed using the software G Power 3.0 (Faul et al., 2007).
Using standard deviations from a study which explored the effect of feedforward expert
scan patterns on aircraft defect detection (Sadasivan, et al., 2005), an effect size of .385
was calculated. Using this effect size for a repeated measures within and between group
ANOVA with 4 groups and 2 repetitions (pretest, posttest), the software recommended a
total sample size of 48 participants.

Sixty six participants took part in this experiment. They consisted of thirty three
males and thirty three female participants and ranged from 18 to 25 (mean=18.9,
s.d.=1.5) years of age. All participants were student volunteers from a Southeastern
University and were recruited through a University system or via flyers and given either
extra credit or monetary compensation for their participation.

Task

Participants performed the same experimental task on the apparatus described in
Experiment 1. The only difference was the addition of feedback presented by the
performance assessment system via the flat screen display. Participants performed six
pretest scenarios after which no feedback was given, eight training scenarios after which
feedback was given according to experimental condition and six post test scenarios after

which no feedback was given. Sadasivan et al. (2005), found a significant performance
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gain on airframe inspection after five trials of feedforward expert scan data and
Nalanagula et al. (2006), found significant performance gains on circuit board inspection
after three trials of feedforward expert scan data. Therefore it was determined that eight
trials with feedback would provide ample opportunity to impact performance. Prior to
performance, participants received pre-training, in which they were taught scanning
strategies consisting of what areas are high priority and low priority, general rules for
sequence of scan (e.g., high priority first, near to far) and details of the feedback they
were to receive after each training trial, including how to interpret and use it to improve
future performance.
Experimental Design

Experiment 2 was a 2x2x2 mixed factorial repeated measures design, with
between subjects independent variables of Expert Scan (present vs. not present) and
Trainee Scan (present vs. not present) and within subjects independent variable of trial
(pretest vs. posttest). Feedback conditions are listed in Table 29 and described in detail

in Table 30.

Table 29. Experiment 2 Feedback Conditions

IV1: Expert Scan
IV 2: Trainee Scan

Present Not Present
Present Expert + Trainee + KR+ Elaboration Trainee + KR+ Elaboration
Not Present Expert + KR+ Elaboration KR + Elaboration
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Table 30. Feedback Descriptions

Type of Feedback Description
1. KR+ Elaborative | a. First, audio and textual presentation of % of high threat areas attended.
Feedback b. Second, presentation of scenario view with audio elaborative feedback
regarding where they should be looking (i.e. high vs. low priority areas)
and why.
c. Third, presentation of scenario view for trainees to practice scanning scene.
2. Expert Scan + KR | a. First, audio and textual presentation of % of high threat areas attended.
+ Elaborative b. Second, “Where” component described above with expert scan data and
Feedback elaborative feedback only (i.e., expert fixations highlighted & associated
audio).
c. Third, “How” component described above with expert scan data only.
3. Trainee Scan + a. First, audio and textual presentation of % of high threat areas attended.
KR + Elaborative | b. Second, “Where” component described above with trainee scan data and
Feedback elaborative feedback only. (i.e., trainee fixations highlighted & associated
audio)
c. Third, “How” component described above with trainee scan data only.
4. Expert Scan + a. First, audio and textual presentation of % of high threat areas attended.
Trainee Scan + b. Second, “Where” component as described above.
KR + Elaborative | ¢. Third, “How” component as described above.
Feedback

*Feedback was same duration in time across conditions

Dependent Variables

The following Dependent Variables (DVs) were measured:

Table 31. Dependent Variables

Behavioral indication of threat: Y/N
Location (and object associated) of mouse click to indicate threat

Search Performance = % High priority areas fixated

Search Errors = Number of threats not fixated and not indicated as threat

Detection Errors = Number of threats fixated < 300ms but not indicated as threat
Recognition Errors = Number of threats fixated >/=300ms but not indicated as threat
Outcome Performance = % (hit rate) of threats correctly indicated

]

[ ]

e Fixation Locations

e Fixation Durations
o Threat Fixations
o Non Threat Fixations

[ ]

[ ]

[ ]

]

]

e  Pre/Post Knowledge Test

[ ]

Participant Feedback Form
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Procedure
Upon arrival, participants completed an informed consent form and a series of

questionnaires and tests listed below in Table 32.

Table 32. Questionnaires

Demographics
Visual Acuity
Color Blindness
Spatial ability
a. Spatial Orientation
b. Visualization
c. Hidden Figures.
Cognitive Load
6. Visual/Verbal Learning Style

B

9]

Participants then received pre-training targeting both search and detection
knowledge and skills necessary to perform the task. Pre-training was presented via a
power point presentation in which screen shots from the simulation were utilized to
present target and scene examples. Screenshots from the feedback modules were utilized
to present feedback examples in order to facilitate trainee interpretation of feedback
modules. Participants then completed a paper and pencil knowledge test addressing
search strategies including “Where to look”. Participants then performed the eye tracker
calibration process and began experimental trial performance. Participants performed the
threat detection task over a series of 20 trials, receiving no feedback after the first six
trials, feedback according to condition after trials 7-14 and no feedback after trials 15-20.

Participants then completed a different paper and pencil knowledge test addressing
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“Where to look™. Participants then filled out a Feedback form and were debriefed on the

study and their participation.

Results

The analyses reported below were performed in SPSS 11.5 for windows, and all
alpha levels were set to .05, unless otherwise specified. Due to anticipated eye tracking
data loss caused by excessive participant movement as well as poor candidacy of
participants due to causes unknown, all data was screened to identify cases in which
significant eye tracking data was missing. Outlier data sets were further analyzed to
determine if there was significant eye tracking data loss; those cases for which there was
none or little eye tracking data for more than two trials were dropped. This data
screening process resulted in the exclusion of seven of the 66 participant cases, resulting
in 59 participants involved in analysis reported below.

Individual Differences

To assess individual difference effects on performance, the aptitude and
demographic variables presented in Table 10 above (See Experiment 1 Results section)
were correlated with Outcome Performance, Detection Errors, and Search Performance
both for pretest and post test. Tables 33, 34, 35 and 36 present the correlations of
aptitude and demographic variables with pretest and posttest performance variables,

respectively.
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Table 33. Aptitude Variable Correlations with Pretest Performance

Outcome Detection Errors Search
Aptitude Performance Performance
Visual Acuity R=.22 R=-23 R=-10
Sig =.09 Sig=.08 Sig = .46
N=159 N=159 N=59
Color blindness R=.15 R=-13 =-.06
Sig = .26 Sig = .35 Sig = .68
N=22 N=59 N=59
Spatial Orientation R=.31% R =-26%* R=.21
Sig = .02 Sig = .04 Sig=.11
N=59 N=59 N=59
Visualization R=.17 R=-.05 R=.13
Sig =.20 Sig=.72 Sig = .33
N=59 N=59 N=59
Hidden Figures R =.36%* R=-.08 R=-02
Ability Sig=.01 Sig=.57 Sig = .91
N=59 N=59 N=59
Visual Verbal R=-26 R=-32 R=-.06
Learning Style Sig = .32 Sig=.23 Sig =.80
N=59 N=159 N=59
Cognitive Load =-14 R=.03 R=.27
Sig =.31 Sig =.80 Sig =.04
N=59 N=59 N=59

** p<.01
*p<.05
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Table 34. Demographic Variable Correlations with Pretest Performance

Demographics Outcome Detection Errors Search
Performance Performance
Gender =-.06 R=.01 R=-30
Sig = .68 Sig = .95 Sig = .02
N=59 N=59 N=59
Age R=.01 R=.06 R=-10
Sig = .96 Sig =.63 Sig = .44
N=59 N=59 N=59
Highest Level of R =.06 R=.03 R=-23
Education Sig = .65 Sig = .84 Sig =.08
N=59 N=59 N=59
SAT Score R=-.02 R=-.01 R=.03
Sig =91 Sig = .97 Sig = .87
N=34 N=38 N=34
Gaming Experience R=.17 R=-.06 R =.28%
Sig=.20 Sig =.56 Sig =.03
N=59 N=59 N=59
Military Training No Participants had military experience so no variability.
Experience
Hunting Experience R=.10 R=.14 R=.12
Sig = .44 Sig =.29 Sig = .37
N=59 N=59 N=59
Danger level of R=.12 =-.10 R=.13
neighborhood growing Sig = .38 Sig = .44 Sig=.33
up N=59 N=159 N=159

** p<.01
*p<.05
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Table 35. Aptitude Variable Correlations with Posttest Performance

Outcome Detection Errors Search
Aptitude Performance Performance
Visual Acuity R=.04 =-14 =-.02
Sig=.77 Sig=.29 Sig = .488
N=159 N=159 N=59
Color blindness R=.10 R=.10 R=-.10
Sig = .46 Sig = .45 Sig = .46
N=22 N=59 N=59
Spatial Orientation R=.25 R =-.66* R=.15
Sig = .05 Sig =.00 Sig = .25
N=59 N=59 N=59
Visualization R=.14 R=-19 R=.12
Sig =.29 Sig=.15 Sig = .37
N=59 N=59 N=59
Hidden Figures R =.28% R=-38%* R=-.05
Ability Sig=.03 Sig=.00 Sig =.71
N=59 N=59 N=59
Visual Verbal R=.19 R=-.05 R=.02
Learning Style Sig=.15 Sig = .68 Sig =.90
N=59 N=159 N=59
Cognitive Load R=-.02 R=-10 R=.10
Sig = .89 Sig = .44 Sig = .44
N=59 N=59 N=159

** p<.01
*p<.05
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Table 36. Demographic Variable Correlations with Posttest Performance

Demographics Outcome Detection Errors Search
Performance Performance
Gender R=-30% R=.16 =-20
Sig = .02 Sig = .21 Sig=.13
N=59 N=59 N=59
Age R=-11 R=-.02 R=.07
Sig = .40 Sig=.91 Sig =.60
N=59 N=59 N=59
Highest Level of R=-.18 R=.05 R=-.04
Education Sig=..18 Sig=.71 Sig=.74
N=59 N=59 N=59
SAT Score R=-.08 R=.15 R=-.04
Sig = .66 Sig =.39 Sig = .81
N=34 N=38 N=34
Gaming Experience R=.20 R=-.13 R=.13
Sig=.12 Sig = .34 Sig = .32
N=59 N=59 N=59
Military Training No Participants had military experience so no variability.
Experience
Hunting Experience =-.05 =-.05 R=.02
Sig = .69 Sig=.71 Sig = .86
N=59 N=59 N=59
Danger level of R = 34** R=-15 R=.24
neighborhood growing Sig=.01 Sig = .27 Sig = .07
up N=59 N=59 N=59
#* p<.01
*p<.05

No consistent patterns of individual difference effects on performance emerged,
although the spatial ability aptitude of Spatial Orientation (SO) had a small but
significant correlation with Outcome Performance and number of Detection Errors during
pretest and number of Detection Errors during posttest. Additionally, the spatial ability
aptitude of Hidden Figures (HF) had a small but significant correlation with Outcome
Performance during pretest and number of Detection Errors and Search Performance
during posttest. Gender also had a small but significant correlation with Search
Performance during pretest and Outcome Performance during posttest. Based on these

findings, SO, HF and gender were tested as covariates for the following analyses;
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however, as none were statistically significant covariates, they were excluded in the
analyses.
Analysis 3.1: Feedback Strategy Effects

Participant scores on Outcome Performance, Detection Errors and Search
Performance were averaged across pre-training trials to created average pre-training
scores and across posttest trials to create average posttest scores. Three pretest/posttest
repeated measures ANOVAs were performed with between subjects IVs of expert scan
presence and trainee scan presence for Outcome Performance, Detection Errors, and
Search Performance. A MANOVA was not used due to lack of high correlations

between all dependent variables.

Outcome Performance

A pretest/posttest repeated measures ANOVA was performed on Outcome
Performance (hit rate) with between subjects variables of expert scan presence and
trainee scan presence. The analysis revealed that trial had a significant effect (F(1, 55) =
65.3, p<.01, partial n°=.54) on Outcome Performance with performance increasing from
pretest to posttest. The analysis revealed no significant interaction between trial and
expert scan (p>.05), no significant interaction between trial and trainee scan (p>.05) and
no significant interaction between trial and expert scan and trainee scan (p>.05). The

means and standard deviations are presented in Table 37 and Figure 12.
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Table 37. Expert Scan and Trainee Scan Effects on Outcome Performance

Expert Scan
Not Present Present
Trainee Scan Pre-test Post -test Pre-test Post-test
Not Present mean = .48 mean = .73 mean = .55 mean = .75
s.d.=.06 s.d.=.06 s.d.=.06 s.d=.07
Present mean = .40 mean = .70 mean = .45 mean = .72
s.d.=.06 s.d.=.07 s.d.=.06 s.d=.07
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Figure 12. Feedback Condition Effects on Outcome Performance

Detection Errors

A pretest/posttest repeated measures ANOV A was performed on Detection Errors
with between subjects variables of expert scan presence and trainee scan presence. The
analysis revealed that trial had no significant effect (p>.05) on Detection Errors and that
there was no significant interaction between trial and expert scan (p>.05), no significant

interaction between trial and trainee scan (p>.05) and no significant interaction between
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trial and expert scan and trainee scan (p>.05). The means and standard deviations are

presented in Table 38 and Figure 13.

Table 38. Expert Scan and and Trainee Scan Effects on Detection Errors

Expert Scan
Not Present Present
Trainee Scan Pre-test Post -test Pre-test Post-test
Not Present mean = .13 mean = .13 mean = .47 mean = .27
s.d=.14 s.d=.14 s.d=.14 s.d=.14
Present mean = .29 mean = .14 mean = .21 mean = .21
s.d="_.15 s.d=_.15 s.d=.15 s.d=.15
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Figure 13. Feedback Condition Effects on Detection Errors

Search Performance

A pretest/posttest repeated measures ANOVA was performed on Search
Performance with between subjects variables of expert scan presence and trainee scan

presence. The analysis revealed that trial had a significant effect (F(1, 55) = 77.10,
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p<.01, partial n°=.58) on Search Performance, with Search Performance increasing from
pretest to posttest. The analysis also revealed that there was a significant interaction
between trial and expert scan (F(1, 55) = 4.21, p<.05, partial 1°=.07), with greater
pretest/posttest Search Performance improvements for participants who received
elements of the expert scan than those that did not. The analysis also revealed a
significant interaction between trial and trainee scan (F(1, 55) = 4.34, p<.05, partial
n°=.07) with greater pretest/posttest Search Performance improvements for participants
who received elements of the trainee scan than those who did not. There was not a
significant interaction between trial and expert scan and trainee scan (p>.05). The means

and standard deviations are presented in Table 39 and Figure 14.

Table 39. Expert Scan and Trainee Scan Effects on Search Performance

Expert Scan
Not Present Present
Trainee Scan Pretest Post test Pretest Posttest
Not Present mean = 48.9 mean = 55.0 mean = 53.1 mean = 66.9
s.d.=2.7 s.d.=3.6 s.d=2.8 s.d=3.7
Present mean = 55.4 mean = 69.3 mean = 52.6 mean = 71.1
s.d.=29 s.d.=3.8 s.d.=29 s.d=3.8
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Figure 14. Feedback Condition Effects on Search Performance

Additional Analyses: Evaluation of Sensitivity and Response Criterion

Additional exploratory analyses were run to evaluate the signal detection theory
metrics of Sensitivity and Response Criterion to determine if the training strategies
affected these two variables. Trial had a significant effect on both Sensitivity (which
increased from pretest to posttest) and Response Criterion (which decreased from pretest
to posttest). Although the treatment conditions did not have a statistically significant
effect on either of these metrics, with the addition of trainee scan data, Sensitivity trended

toward a significant increase from pretest to posttest.

Sensitivity
A pretest/posttest repeated measures ANOVA was performed on Sensitivity with

between subjects variables of expert scan presence and trainee scan presence. The
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analysis revealed that trial had a significant effect (F(1, 55) = 10.67, p<.01, partial
n2=.16) on Sensitivity, with Sensitivity increasing from pretest to posttest. This analysis
also revealed that there was no significant interaction between trial and expert scan
(p>.05) and no significant interaction between trial and trainee scan (p>.05), although this
trended toward significance (p=.054). Additionally, there was no significant interaction
The means and standard

between trial and expert scan and trainee scan (p>.05).

deviations are presented in Table 40 and Figure 15.

Table 40. Expert Scan and and Trainee Scan Effects on Sensitivity

Expert Scan
Not Present Present
Trainee Scan Pre-test Post -test Pre-test Post-test
Not Present mean = .85 mean = .93 mean = .85 mean = 1.02
s.d=.22 s.d=.21 s.d=.23 s.d=21
Present mean = .40 mean = 1.15 mean = .45 mean = .95
s.d=.24 s.d=.22 s.d=.23 s.d=.22
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Figure 15. Feedback Condition Effects on Sensitivity
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Response Criterion

A pretest/posttest repeated measures ANOVA was performed on Response
Criterion with between subjects variables of expert scan presence and trainee scan
presence. The analysis revealed that trial had a significant effect (F(1, 55) = 70.90,
p<.01, partial n°=.56) on Response Criterion, with Response Criterion decreasing from
pretest to posttest. The analysis revealed no significant interaction between trial and
expert scan (p>.05), no significant interaction between trial and trainee scan (p>.05) and
no significant interaction between trial and expert scan and trainee scan (p>.05). The

means and standard deviations are presented in Table 41 and Figure 16.

Table 41. Expert Scan and and Trainee Scan Effects on Response Criterion

Expert Scan
Not Present Present
Trainee Scan Pre-test Post -test Pre-test Post-test
Not Present mean = .44 mean = -.15 mean = .31 mean = -.11
s.d.=.08 s.d=.11 s.d.=.08 s.d.=.11
Present mean = .46 mean = .03 mean = .38 mean = -.07
s.d.=.08 s.d=.11 s.d.=.08 s.d="_.11
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Figure 16. Feedback Condition Effects on Response Criterion

Discussion

Experiment 2 aimed to examine the training effectiveness of the eye tracking-
based feedback strategy which incorporated elements of expert and trainee scan data. By
allowing trainees to compare their scan to an expert scan and determine how their search
strategy needed to change to achieve target performance, it was hypothesized that
trainees would more effectively search the environment resulting in greater number of
targets found and fewer targets that were searched but not detected. It was also
hypothesized that both elements of the training strategy would contribute to the success
of the strategy as the addition of expert scan would provide trainees with a model of
“good” performance which they should strive to achieve and the trainee scan would
provide trainee insight into how they were actually performing, increasing their

metacognition and enabling them to understand issues with their performance. Together
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these elements were hypothesized to have an additive effect, allowing trainees to
compare actual to desired performance to identify specific instance of how performance
needed to change.

The study investigated this by exploring the effects that presence of each feedback
element (expert scan, trainee scan) had on threat detection performance, specifically,
Outcome Performance as indicated by hit rate, Search Performance, and number of
Detection Errors. The results provide significant support for the effectiveness of this eye
tracking-based training strategy. Both the addition of expert scan and trainee scan
significantly improved how the trainee searched the environment. The combination of
these two elements resulted in the greatest improvements to Search Performance,
however, this additive effect was not significantly higher, statistically. Although trainee
search strategies were significantly impacted by the training intervention, these effects
did not extend to increase the number of targets found or decrease Detection Errors as
predicted. Findings are discussed in greater detail in the sections below.

Presence of Expert Scan in Training Strategy

Hypothesis 3 (prediction 3.1) predicted that participants who received training
with elements of an expert scan would perform significantly better than those who did not
receive elements of an expert scan in feedback in Search Performance, Detection
Performance (i.e., detection errors) and mission Outcome Performance in the simulation
posttest. This prediction was partially supported. The presence of an expert scan in
feedback led to a significant increase in Search Performance improvement from pretest to
posttest. These participants increased the percentage of high priority areas scanned from

pretest to posttest by a significantly greater percentage (16% improvement) than those
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who received feedback which did not contain an expert scan (10% improvement). This
suggests that the presentation of expert scan alone provided trainees with enough
information about desired performance that, in hand with trainee’s innate awareness of
how they were performing, they were able to make significant changes to how they
searched the environment. Without the illustration of target performance (expert scan),
trainees may not have been able to extend the elaborative feedback provided in the KR
condition (e.g., you should always search alleys, because they provide cover and
concealment) to actual locations in the scenarios, resulting in less impact on search
strategies used.

However, presence of an expert scan in feedback did not lead to significant
pretest/posttest improvements for Outcome Performance or decrease in number of
Detection Errors. This is contradictory to findings in the literature in which presentation
of expert scan data led not only to changes in search strategy, but also to increases in
target detection (Nalanagula et al., 2006; Sadasivan et al., 2005). These somewhat
contradictory results could be due to multiple reasons. The first is that there were limited
pretest and posttest trials. There were only six pretest trials and six posttest trials, with
each having four trials with targets and two trials without targets. This resulted in only
four scores on which to compare pretest/posttest performance changes. Furthermore, the
four scenarios used in these four trials varied in difficulty with the four difficulty
categories discussed above (Easy Detect Easy Search, Difficult Detect Easy Search, Easy
Detect Difficult Search, Difficult Detect Difficult Search). As discovered in Experiment
1, detection difficulty significantly impacted Outcome Performance and Detection Errors

and this effect may have been stronger than effects resulting from the addition of an
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expert scan to feedback. Another possible, but less likely explanation is that although the
addition of expert scan led to improvements in the first step in target detection (i.e.,
search strategies employed), it was not successful in impacting subsequent steps in the
perceptual process of target detection and recognition. This explanation is less plausible
due to 1) the findings of Experiment 1 which demonstrated that Search Performance
accounted for a significant amount of variance associated with Outcome Performance and
2) findings from similar research in which presentation of expert scan has led to
significant improvements in target detection (Nalanagula et al., 2006; Sadasivan et al.,
2005). In all three of these studies, there were significantly more opportunities for target
detection. Experiment 1 included 40 trials, 20 of which had targets; Sadasivan et al.
(2005) pretest/posttest trials contained twenty two targets (i.e., defects) and Nalanagula et
al. (20006) test trials contained 68 targets (defects). This provides support for the first
explanation that lack of significant improvement in Outcome Performance and decrease
in Detection Errors was due to the limited number of pretest/posttest trials.
Presence of Trainee Scan in Training Strategy

Hypothesis 3 (prediction 3.2) predicted that participants who received training
with elements of a trainee scan would perform significantly better than those who did not
receive elements of a trainee scan in feedback in Search Performance, Detection
Performance (i.e., Detection Errors) and mission Outcome Performance in the simulation
posttest. This prediction was also partially supported. The presence of a trainee scan in
feedback led to a significant increase in Search Performance improvement from pretest to

posttest. These participants increased the percentage of high priority areas scanned from
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pretest to posttest by a significantly greater percentage (also a 16% improvement) than
those who received feedback which did not contain a trainee scan (10% improvement).

This suggests that the presentation of trainee scan data alone was able to impact
performance as much as expert scan data, which is surprising. It would seem that
information about actual performance has limited utility without information about
desired performance and hence how actual performance needs to change. One plausible
explanation is that the elaborative feedback presented with the trainee scan may have
provided enough information about desired performance that with increased levels of
metacognition resulting from the trainee scan data allowed trainees to make changes to
how they scanned the environment. An alternate explanation is that although the expert
scan feedback provided more meaningful information, trainees paid closer attention to the
feedback when it contained elements of their own scan. Given a natural inclination to
compare actual performance as remembered to actual performance captured by the
system, participants may have attended more closely to the trainee scan feedback and
gleaned more information from the feedback as compared to expert scan which may have
seemed less interesting to participants.

Similar to findings associated with expert scan presence, presence of a trainee
scan in feedback did not lead to significant pretest/posttest improvements for Outcome
Performance or decrease in number of Detection Errors. This is hypothesized to be due
to the same reason that the addition of expert scan did not significantly improve Outcome

Performance or decrease Detection Errors, the limited number of pretest/posttest trials.
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Presence of Expert and Trainee Scan in Training Strategy

Hypothesis 3 (prediction 3.3) predicted that participants who received training
with both elements of expert and trainee scan would perform significantly better than
those who did not receive both elements of feedback in Search Performance, Detection
Performance (i.e., Detection Errors) and mission Outcome Performance in the simulation
posttest. This prediction was not supported. Although participants who received the
feedback which contained both elements had the greatest increase in the percentage of
high priority areas scanned from pretest to posttest (19% improvement), this was not
significantly greater than improvements demonstrated by expert scan only (16%
improvement) and trainee scan only (16% improvement) conditions as illustrated by the
lack of a significant interaction between expert scan presence, trainee scan presence and
trial.

There are multiple plausible explanations for this finding. First, it may be due to
the fact that presence of either set of scan data provides trainees with enough perceptual
feedback so that, with the addition of the auditory elaboration they are able to adjust their
scan strategies accordingly. One reason for the inclusion of the scan data is that while
verbal description of how an environment should be scanned can effectively target
conceptual aspects of the tasks (e.g., what areas should be scanned and why), it may not
have the ability to effectively target perceptual aspects of the task (e.g., what do these
areas look like). Expert scan feedback was intended to provide target performance (i.e.,
performance trainee should strive for), trainee scan was intended to provide
metacognition of trainee performance (i.e., how the trainee is actually performing) and

the combination of both was intended to highlight performance improvements needed to
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reach target performance levels. Perhaps trainees possessed high enough levels of
metacognition that by merely being exposed to the expert scan allowed them to identify
on their own how their performance needed to change. Additionally, the auditory
elaboration may have provided enough information about target performance that with
the trainee scan providing needed perceptual aspects associated with this elaboration that
trainees were able to effectively adjust their search strategy. The combination of the two
may not have provided significantly different information than the expert or trainee scan
alone.

Alternately, the expert and trainee scan combination may have provided
significantly different information, but the displays may have created excessive levels of
workload preventing trainees from extracting the relevant information. Presentation of
both scans with differences highlighted resulted in a great deal of information trainees
would have to process in the same amount of time as the expert and trainee only
conditions. In fact, the combination of the two scans and highlighted differences more
than doubled the amount of visual information presented. Although the displays were
designed to try and highlight differences, eliminating the need for trainees to absorb all
information about each scan that was presented, this may not have been the case. When
users are presented with large amounts of data that exceed workload limitations,
information overload can occur resulting in failure to discover overall trends in the data
(Chung, Chen, Chaboya, O'Toole, & Atabakhsh, 2005).

In fact, anecdotal evidence from interactions with the participants indicated that
the feedback which contained both expert and trainee scan data was harder to follow than

the other feedback modules. Specifically, although the “where” portion of the feedback
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seemed equivalent across conditions, the “how” portion which presents the dynamic
unfolding of the scan data resulted in trainees “getting lost” or “bored”. Participants in
the expert and trainee scan only conditions watched the unfolding of the scan and were
given the remaining time to explore the scan pattern. The condition which contained
both scans had to watch twice as much scan data unfold which seemed to result in some
trainees not paying attention to the entire feedback module, potentially due to being
overloaded or overwhelmed. Hence, the feedback which contained both expert and
trainee scan data may have created high levels of workload resulting in trainees not being
able to extract significantly more information than from the expert or trainee scan alone
displays.
Sensitivity and Response Criterion

Sensitivity and Response Criterion, two standard Signal Detection Theory
metrics, were examined via an exploratory analysis in an attempt to gain a more thorough
understanding of feedback effects on target detection performance. Given the limited
number of trials, it was thought that analysis of Sensitivity and Response Criterion might
provide a more granular look at target detection performance, resulting in findings not

evident by looking at hit rate alone.

Sensitivity
Sensitivity, refers to the keenness or resolution a trainee has in their ability to
detect the target (Wickens & Hollands, 2000). A trainee with high Sensitivity would
have good ability to discriminate a target from a non-target and a trainee with low

Sensitivity would have a poor ability (Macmillan & Creelman, 2005). This measure
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provides a supplemental look at Outcome Performance as it takes into consideration both
hit rate and false alarm rate. The hope was that this measure would uncover findings not
revealed by merely looking at Outcome Performance as it increased the pretest/posttest
trials used in the analysis from four (those with targets) to six (all trials) and provided a
more comprehensive breakdown of trainee performance.

Analysis revealed no significant effects of expert scan presence on Sensitivity, no
significant effects of trainee scan on Sensitivity and no significant interaction. However,
there was a trend identified with trainee scan effects on Sensitivity approaching
significance (p=.054). The addition of trainee scan to feedback resulted in
pretest/posttest Sensitivity increase of approximately .6 over those who did not receive
trainee scan. Interestingly, this was greater than the Sensitivity increase found due to trial
(.4). There was no Sensitivity increase due to the addition of expert scan. It is
hypothesized that with increased pretest/posttest trials that this value would have reached
a significant level. This suggests that the presence of trainee scan data in feedback can
potentially increase Sensitivity to the target. This may be due to increased
metacognition, specifically an increased understanding of areas which they failed to
search. With trainees having a better understanding of areas they need to include in their
search strategy in the future, they may effectively expanded the high priority areas
searched and decreased the number of low priority areas search, leading not only to
improved Search Performance but also to decreased false alarms resulting in increased
target Sensitivity. Perhaps with a greater number of trials this Sensitivity would have

manifested itself with improved Outcome Performance (hit rate).

113



Response Criterion

Response Criterion, refers to a trainees response bias; whether they are more
liberal (i.e., prone to saying yes something is a target) and hence increasing both target
hits and false alarms, or more conservative (i.e., prone to saying no) and hence having
few false alarms but greater target misses (Wickens & Hollands, 2000). This measure
also provides a supplemental look at Outcome Performance (hit rate) by taking into
account false alarm rate as well.

Analysis revealed no significant effects of expert scan presence on Response
Criterion, no significant effects of trainee scan on Response Criterion and no significant
interaction. Although response bias became significantly more liberal between pretest
and posttest, the different training strategies appeared to have no effect on Response

Criterion.
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CHAPTER FOUR: GENERAL DISCUSSION AND CONCLUSIONS

General Discussion

The goal of the present study was to explore how advanced technology,
specifically eye tracking, can be used to increase understanding of perceptual processes
such as search and detection as well as provide tools that can be used to impact
perceptual performance. With the increasing demands of the war in the Middle East,
increasing diagnosis of diseases and disorders and increasing complexity of systems
being used by practitioners, there is an ever increasing need to understand how the human
body works and how technology can be leveraged to enhance it. Central to this is a solid
understanding of how humans collect and process information and what influences this

process.

Process Level Perceptual Performance Measures

Experiment 1 aimed to examine a method of diagnosing perceptual performance
in order to be able to identify the perceptual root cause of target detection deficiencies
and how these impact overall target detection performance. Findings indicate the method
can be used to pinpoint where in the perceptual process a target miss originated, whether
due to ineffective search strategy, inability to detect the subtle cues of the threat or
inability to recognize these cues as indicative of a threat. These findings are inline with
the Human Information Processing (HIP) model (Wickens & Flach, 1988) which
describes bottom up and top down processing conducted by individuals to build situation

awareness (SA), conduct decision making (DM), and act upon the environment.
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Individuals progress through the first three components of the HIP model (i.e. attention,
sensation, perception) to perform a perceptual task and as illustrated by the results of this
study, at any of these stages an information processing breakdown could occur.
Breakdowns can occur at the attention stage during the process of spotlighting particular
areas of the visual field (i.e., search; Levine, 2000), the sensation stage which refers to
initial detection of a stimulus (Pike & Edgar, 2005), or the perception stage which
involves the analysis of sensory information to construct a description of the surrounding
world (i.e., recognition; Pike & Edgar, 2005). Regardless of where the breakdown occurs,
SA and DM resulting from this process will be affected.

This ability to identify where the performance deficiency originated, or the “Root
Cause” of the performance deficiency facilitates a foundation for understanding how to
prevent reoccurrence of the outcome failure. This process has been used in accident
investigation programs for years to identify how and why undesirable events occurred, in
order to prevent reoccurrence (Rooney & Heuvel, 2004). The root cause analysis process
is designed for use in categorizing, linking, and refining probable causes of events, in
order to be able to specify workable corrective measures that prevent future events of the
type observed (Rooney & Heuvel, 2004). This study illustrates that extending this
methodology to performance measurement can provide an effective method for
categorizing performance failures into more granular process level causes. Integration of
eye tracking technology gives researchers and practitioners access to process level data
that facilitates this level of analysis.

Such granular process level measures have allowed researchers to uncover several

important findings. For instance, Mello-Thoms et al. (2002) discovered that faulty visual
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search is not the main reason why most breast cancer lesions are not detected in
mammograms, but that perception and decision making errors are primarily responsible.
Additionally, Manning, Ethell, Donovan and Crawford (2006) utilized process level eye
tracking metrics to identify distinct differences between scan strategies used by
experienced and inexperienced observers, resulting in recommendations for how to
increase expertise. In Experiment 2 of the present study, the process level measures
facilitated identification of performance differences between treatment groups that were
not apparent through behavioral measures alone. There were clear differences in search
strategies that would not have otherwise been evident. All three of these examples
provide proof that eye tracking-based process level measures such as those developed and
validated in this effort provide critical tools for use in the study of perceptual skills.

These measures also provide invaluable tools for training practitioners as they
allow practitioners to focus training remediation on the most critical performance
deficiencies. The feedback given to address an erroneous search strategy (e.g., providing
information on how the environment should be searched) is quite different than that
aimed to address issues with target recognition (e.g., what are the critical cues that
together indicate a threat and why). By allowing instructors to tailor training based on

process level performance deficiencies, there is an opportunity to accelerate learning.

Influences of Visual Search

Findings from both Experiment 1 and Experiment 2 are consistent with
contemporary models of visual search. For instance, a model proposed by Itti & Koch

(2001) consists of bottom up preattentive search based on the environmental influence of
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salience as manifested through factors such as orientation. Findings from Experiment 1
indicate that detection difficulty which was a product of target orientation and level of
occlusion had a significant impact on performance and reaction time. This supports the
theory that search is partially influenced by bottom up environmental factors. The same
model (Itti & Koch, 2001) proposes that top down processes also drive attention through
the application of search strategies. Experiment 2 findings indicate that participant
search performance was altered through feedback aimed at impacting the search
strategies being employed; hence supporting the theory that search is also partially
influenced by top down processes.

Experiment 1 findings are also inline with models such as the Guided Search
Model (Wolfe, 1998) and the Feature Integration Theory model (Treisman & Gelade,
1980). These theories predict that when search is preattentive and the target “pops out” at
the observer that the number of distracters will have little effect on performance;
however, when the search is attentive, requiring serial allocation of attention the
performance will be affected by the number of distracters (Wolfe et al., 1989). This is
evident through the impact of search and detection difficulty on Outcome Performance
and Search Performance found in Experiment 1. When detection difficulty was low and
the targets were processed preattentively, search difficultly, partially based on number of
distracters, had little effect on Outcome Performance and Search Performance. However,
when detection difficulty was high, requiring a serial attentive search, search difficulty
had a significant impact on performance.

Experiment 1 findings are also consistent with predictions regarding the serial self

terminating nature of attentive search (Treisman & Souther, 1985) which predicts that in
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this type of search, observers will search through the stimulus elements until the target is
found; hence as number of distracter increase, reaction time will also increase.
Experiment 1 results indeed show an increase in reaction time with increasing search

difficulty which was partially based on number of distracters.

Training Effects on Visual Search

Experiment 2 aimed to examine the effect of providing trainees with process level
tailored feedback which incorporates elements of expert and trainee scan patterns.
Findings indicate that providing trainees with elements of either expert or trainee scan
patterns has the ability to significantly improve the search strategy being employed by the
trainee. These findings provide a foundation for understanding ways in which visual
search strategies can be influenced. For instance, it appears that the presentation of
exemplar perceptual performance can significantly improve search strategies. By
presenting trainees with expert scan patterns, including all areas in which the expert
searched as well as how the expert scan unfolded, significant improvements in number of
critical areas covered in a trainee scan strategy may result. This very specific process
level perceptual feedback which illustrates how the trainee should scan the environment
enables the trainee to make significant changes to their search strategy.

Additionally, the presentation of actual perceptual performance, including all
areas in which the trainee searched and how the trainee scan unfolded can also lead to
significant improvements in number of critical areas covered in a trainee scan. This
process level perceptual feedback, which illustrates how the trainee scanned the

environment, enlightens trainees to how performance actually unfolded, allowing them to
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make significant changes to their search strategy. These results provide strong support
for the use of either expert or trainee scan data in perceptual feedback. Interestingly,
although the combination of these two elements (expert and trainee scan) resulted in the
greatest Search Performance improvement, it was not significantly greater than
improvements achieved by trainees who received the individual elements of expert or
trainee scan alone. This could be due to limitations with the feedback interface, such as
excessive workload, resulting in trainees not being able to extract all critical information
about target performance and how actual performance needs to change.

Although the findings provide a foundation for understanding ways in which
visual search strategies can be influenced, it is still necessary to understand how these
training interventions influenced visual search. For instance, it may be the case that the
feedback modules actually led to alterations in trainees’ natural search strategy. Boot,
Becic and Kramer (2009) provide evidence for a natural or “default” search strategy that
observers bring to the table regardless of the task. Boot et al. (2009) found that observers
persisted with their default search strategy (for instance, a covert search without eye
movement) even when it proved maladaptive to the task at hand, however, when given
simple instruction to change their search strategy, they were easily able to do so. Perhaps
the instruction provided by the feedback presented in this study led to changes in
participant natural search tendencies.

Research has shown that novice observers tend toward a less systematic search
strategy than experts (Jarodzka et al., 2009) and in some cases what appears to be no
strategy at all. Research has also shown that a systematic search strategy can be trained

and leads to improved performance over random search strategies (Wang et al., 1997).
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Perhaps the scan feedback facilitated a modification of novice natural search strategy (or
lack thereof) towards a more systematic search strategy. Random search is defined as a
search with no memory in which previously searched areas are revisited (Arani et al.,
1984). Observers with a random search strategy sample the environment for the target
without a clear search schema, resulting in sampling previously scanned areas and
neglecting areas which have not been searched. As an observer develops a more
thorough understanding of the task, search environment and techniques that can be
employed to improve performance, the observer would seemingly develop a search
schema which facilitates employment of more effective search strategies. The results
would be a more systematic search in which an observer reduces the number of areas
revisited and increases the total number of areas searched.

This provides a feasible explanation for the increase in percent of high priority
areas searched after participants received the scan feedback. If participants were
randomly searching the environment prior to receiving feedback the percentage of high
priority areas searched would be limited due to the participants wasting time revisiting
previously searched areas. Additionally, without an understanding of what constitutes a
high priority area, high priority areas are no more likely to be searched than low priority
areas. After receiving the feedback, participants were conceivably able to develop a
search schema which included explicit knowledge of which areas were high priority and
should therefore be searched first (e.g., windows are probably target locations).
Additionally, participants were also conceivably able to develop a search strategy which

allowed them to search the environment in a more structured way (e.g., start by searching
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all window first), reducing the number of areas revisited and increasing the number of
relevant areas scanned.

The feedback may have not only influenced visual search through explicit
knowledge, but also through implicit knowledge. Research has found that a search
schema can be created through target/context covariation, resulting in implicit influence
on attention deployment in search that cannot be explicitly stated (Jiang & Chun, 2001).
Based on this it is possible that through scan data/scenario object covariation within the
feedback modules participants were able to develop implicit knowledge of critical areas
to search which influenced their visual search strategy.

As visual search depends on many low level processes and abilities, there are
many aspects of visual search that the scan feedback likely did not influence. For
instance, one aspect of search that the scan training strategies did not target was search
speed, specifically the speed at which the eyes move while fixating. A search strategy of
keeping fixations long results in slow search speed and Togami (1984) found that slower
search speed (and hence longer fixation time) resulted in higher inspection accuracy.
Sadasivan et al. (2005) presented fixation time as an important element of search and
attempted to affect fixation time through training. Feedforward presentation of expert
scan paths included a representation of time spent fixating on each area of interest in
graphical form. Although the training intervention, which also included AOIs scanned
and scan patterns, led to increased inspection accuracy, subjective feedback from trainees
indicated they did not find the fixation time representation useful in performing the task.
However, given the findings from Togami (1984), perhaps this is useful information to

present and a more intuitive presentation method would yield more positive reactions.
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Future development of the scan training strategies will aim to represent this critical
element of search.

Visual search also depends on many aspects of the task/environment ranging from
spatial and temporal uncertainty to distance and lighting effects to the effects of dynamic
aspects of the environment. These are all factors that were beyond the scope of this study
that will impact visual search and may influence the effectiveness of training strategies
such as those examined in this study. The most critical aspect not addressed by this study
is visual search in a dynamic environment. Warfighters are not typically faced with
monitoring a static environment; instead, these observers are faced with identifying
threats in situations unfolding dynamically. Research has shown dynamic aspects of an
environment can capture attention and alter search even when these elements are
irrelevant to the task (Franconeri & Simons, 2003). Such findings imply that the search
strategies employed to successfully perform a search in a dynamic environment might be
quite different than those employed in searching a static environment.

An important question thus emerges: Will these training strategies that
successfully improved search strategies in a static environment transfer to a dynamic
environment?  Although traditional views of effective training transfer stress the
importance of identical elements between training and transfer environments, more
contemporary views of transfer suggest that what is important is the similarity in
information processing of the two tasks (Ford, Smith, Weissbein, Gully, & Salas, 1998).
In fact, recently, emphasis has been placed on teaching higher level processes such as
metacognition to increase transfer as “similarity in stimulus conditions between training

and transfer situations has rarely promoted far-reaching transfer” (Cox, 1997, p. 41). As
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a result, it is hypothesized that the scan feedback strategies herein will facilitate
development of generalizable search strategies which will transfer to dynamic
environments. Additionally, given the conceptual aspect of the feedback which focuses
on why certain high priority areas should be searched, the feedback should facilitate
development of a higher level search schema, also necessary for search in a dynamic
environment. The dynamic environments in which Warfighters operate are comprised of
static elements similar to those in the static scenarios of this present study, for instance
when searching a building for potential sniper hides. Therefore this schema would prove
extremely relevant to dynamic search. However, despite the theoretical and practical
reasons which suggest such strategies may transfer to a dynamic task, this remains a

question which needs to be evaluated empirically.

Theoretical Implications

This research provides empirical support for previous work related to visual search
theory and the training of visual search. The results provide support for the Human
Information Processing (HIP) model (Wickens & Flach, 1988) and the presence of
distinct sub processes in the perceptual components of this process (attention, sensation,
perception). The research findings indicate perceptual performance breakdowns fall into
three categories of search errors, detection errors and recognition errors.

The findings are consistent with contemporary visual search models such as the
Guided Search Model (Wolfe et al., 1989) and Feature Integration Theory (Treisman &
Gelade, 1980) which propose both bottom up and top down influences of visual search.

Present study research findings indicate visual search was indeed influenced by bottom
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up environmental characteristics such as target orientation as well as top down visual
search strategies resulting from training intervention.

Findings are partially consistent with previous research which examined the
training effects of expert scan on search performance (Nalanagula et al., 2006; Sadasivan
et al., 2005). Current research findings indicate that similar to previous findings, expert
scan data led to improvements in search strategy, however, contrary to previous research
findings, these changes did not result in increased target detection accuracy.

These findings support the benefit of using eye tracking to assess perceptual
performance and influence visual search through feedback. Hopefully these findings will
help facilitate a deeper understanding of perceptual skills such as visual search and
factors that influence these skills, as well as facilitate successful execution of future

research to further investigate.

Practical Implications

These findings also have practical implications for both training practitioners and
researchers. With respect to training practitioners, the diagnosis metrics validated in
Experiment 1 provide practitioners with a set of tools to tailor training and potentially
accelerate learning. With the ability to pinpoint process level perceptual performance
deficiencies, feedback can be tailored to focus on those performance deficiencies which
need improvement, decreasing training time wasted and increasing training efficiency.
Such an increase could result in decreased training time to reach necessary performance
standards. With respect to the military, this could result in a quicker deployment time or

expansion of target skills trained, both critical needs of the military.
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The feedback strategies found successful in Experiment 2 also provide
practitioners with training methods that can effectively improve trainee search strategies.
Currently, military trainees do not receive feedback on their search strategies at all as
instructors do not typically have the ability to monitor search skills. These training
strategies provide a means by which to effectively remediate search skills and have far
reaching implications for current military observation training. If these methods could be
used to improve the training effectiveness of current training practices, Warfighter search
for enemy threats such as snipers and IEDs could be enhanced. Such an enhancement
could lead to both a decrease in Warfighter deaths and an increase in enemy destruction
or apprehension.

These finding also have implications for a range of other operational domains,
such as baggage screening, air traffic control, industrial inspection and intelligence
analysis. As the extraction of expert and trainee scan using eye tracking technology
becomes less expensive and less complicated, the integration of these capabilities into
elements of performance diagnosis and feedback can provide training value across a
range of domains, resulting in increased search performance leading to reduced success
of terrorists and a reduction in accidents and incidents.

These findings are relevant to the field of Human Computer Interaction (HCI) as
well. The methods evaluated in the present study provide HCI practitioners with tools to
evaluate effectiveness and usability of interfaces ranging from websites to Virtual
Environments (VE). The ability to monitor a user’s scan patterns, including what aspects
of a display or environment capture trainees attention or lead to deeper levels of visual

interrogation allows a designer to understand the impact their interface has on users and
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how the interface may need to be change to achieve desired effects. These findings also
have implications for the medical field. Methods evaluated herein provide medical
professionals with tools to diagnose disabilities such as neurological disorders and
determine effects, both intended and unintended, of treatments prescribed.

These findings also have practical implications for researchers. First, they
provide a set of validated eye tracking-based metrics for use in investigation of
perceptual performance. These metrics facilitate identification of the perceptual root
cause of errors, specifically discriminating between search, detection and recognition
errors, and can effectively characterize threat detection performance on a larger scale
over multiple scenarios. The ability to effectively measure process level perceptual
performance, such as search and detection could facilitate a range of research in the
visual search domain. Not only could these metrics be used to study search and detection
across varying characteristics of the search task (e.g., difficulty, size, complexity), such
metrics could also be correlated with neurophysiologic metrics to gain a more thorough

understanding of the underlying biological processes of search.

Limitations of Present Study

There were several limitations of the present study that should be discussed.
First, the limited number of pretest and posttest trials may have inhibited the ability to
find feedback effects. Results suggest that the benefits to the presence of expert and
trainee scan data may not have been fully realized due to this limitation. Given the
limited number of pretest and posttest trials and the strong effects of target difficulty,

improvements in search strategy may not have been given ample opportunity to manifest
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themselves as increases in threat detection levels. Further research is needed to more
fully understand potential training value of these strategies.

Additionally, limitations of the eye tracking technology may have attenuated
effects of the feedback. The accuracy of eye tracking technology has limiting factors
including inaccuracies caused by the movement of the participant and individual
difference factors associated with the participant. As a result, some trainee fixations may
not be accurately captured and presented in the feedback. Additionally, feedback
displays only included fixations in which concentration of visual attention remained
within a 50 pixel radius for 100 milliseconds. Given individual differences in how
quickly individuals gather visual information during fixations, there may have been
instances of visual attention allocation that the trainee was aware of but that were not
classified as a fixation and hence not displayed in the feedback. Consequently, trainees
may have detected inconsistencies between system reported trainee scan data and self
perceived scan data, resulting in frustration or distrust in the system and hence
diminished effects of the feedback modules. Future use of such technology should be
accompanied by instructions regarding how the eye tracker calculates and displays
fixations and limitations in the accuracy of the technology.

Lastly, the static nature of the experimental task limits the extent to which the
findings generalize to skill performance in the field. Given the dynamic nature of the real
world task and the known effects of movement on bottom up attentional mechanisms,
further research is necessary to draw any concrete conclusions regarding the effectiveness

of scan feedback strategies in impacting real world search performance.
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Future Research

There are several interesting research questions that remain and warrant further
research. First, the current study focused on identifying a universal fixation duration
threshold between detection and recognition across all participants. Given individual
differences, it may be more effective to identify individualized thresholds to discriminate
between target detection and recognition. Togami (1984) examined the relationship
between correct count rate in an inspection task and eye movements to determine
individual differences. Results revealed individual differences in fixation time for a
simple task comprised of counting dots of the same sample (Togami, 1984). This implies
individuals likely have different time courses for target detection/recognition. Future
studies could attempt to identify individualized fixation duration thresholds and the range
of these thresholds.

An additional research question is whether the search performance improvements
resulting from these training strategies will transfer to a dynamic task or more
importantly to the performance of a military threat detection task in the field. It is
hypothesized that the feedback strategies will lead to performance improvements that
transfer, but this is an empirical question which needs to be examined experimentally.
Currently, planning is underway to examine the effects these training strategies have on
Marines both in training performance on the experimental task as well as transfer to
performance in practical application exercises which require search for a range of threats

in a dynamic environment.
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Future work is needed to fully understand the potential benefits of utilizing eye
tracking to improve training effectiveness both through performance assessment and
training strategies such as feedback. With respect to this current line of research, future
efforts aim to explore usability and workload issues associated with the scan feedback
displays. Strides will be made to optimize these interfaces to allow trainees to fully

extract the wealth of information provided without overloading the trainee.

Conclusion

With the emergence of more usable and cost effective eye tracking technology,
the ability to both assess and affect trainee perceptual performance is increasing. Subtle
or internal perceptual processes, such as search and detection, once inaccessible can now
be observed both by trainees and instructors, providing unprecedented access to trainee
performance and state.

The goal of the present study was to explore how eye tracking technology can be
used to increase understanding of perceptual processes such as search and detection and
provide tools that can be used to train search skills. Experiment 1 examined a method of
diagnosing perceptual performance in order to be able to identify the perceptual root
cause of target detection deficiencies and how these impact overall target detection
performance. Findings indicate the method can be used to pinpoint where in the
perceptual process a target miss originated, whether due to ineffective search strategy,
inability to detect the subtle cues of the threat or inability to recognize these cues as
indicative of a threat. Experiment 2 examined the training effectiveness of providing

trainees with process level tailored feedback which incorporates elements of expert and
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trainee scan patterns. Findings indicate that providing trainees with elements of either
expert or trainee scan patterns has the ability to significantly improve the search strategy
being employed by the trainee. This work provides strong support for the use of eye
tracking based perceptual performance diagnosis methods and training strategies in

improving trainee search performance for complex target detection tasks.
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Background Information

Please complete the following questions. Any information you provide is voluntary and
will be kept strictly confidential. A participant number will be assigned to your
responses and in no way will your name be associated with this data. The information
you provide will be used only for the purposes of this study.

Gender: Male Female
. Age:
. Handedness (check one)?  Left-handed ____ Right-handed
. Yearinschool:  Freshman ~ Sophomore ___Junior ____Senior
. Major:

. In general how do you feel about working with computers?

I don’t like working with computers.

I have no strong like or dislike for working with computers.
I like working with computers.

Other (please explain)

. How would you describe your general level of computer experience?

None (I have never used any computer applications).

Low (I have used only 1 or 2 computer applications).

Moderately Low (I have learned and used between 3 and 10 different
computer applications).

Moderately High (I have learned and used more than 10 different computer
applications but have no programming skills).

High (I have used many different computer applications and have some
programming skills).

Other (please explain)

. Have you ever been in a virtual environment (VE)? YES NO

If YES, how many times have you been in a VE?

. How would you describe your general level of gaming experience (i.e., playing video
games)?

None (I have never played a video game).
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Low (I have played a video game a few times in the past).
Moderately Low (I have played a video game a regularly in the past).
Moderately High (1 currently play video games weekly).

High (I currently play video games daily).

Other (please explain)

10. What were your SAT scores: Math Verbal:

11. Thinking only about the last 90 days, how often, on average, do you play console
based video games in a given week?
a. Under 3 hours

b. 3 -9 hours
c. 10-16hours
d. 17+ hours

12. About how many of your total gaming hours are spent playing first-person shooter
style video games such as Halo, Medal of Honor, and Splinter Cell?

13.  Have you ever received any formal military training?
a. Yes
b. No

If Yes, please describe:

14. How would you describe your general level of hunting experience?

None (I have never hunted).

Low (1 have hunted a few times in the past).
Moderately Low (1 have hunted regularly in the past).
Moderately High (1 currently hunt weekly).

High (I currently hunt daily).

Other (please explain)

15. How would you describe the neighborhood in which you grew up?

Not Dangerous (No concern for safety at any time).
Minimally Dangerous (Occasional concern for safety).
Moderately Dangerous (Concern for safety some of the time).
Very Dangerous (Concern for safety at all times).

Other (please explain)
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Demographics Questionnaire

Please complete the following questions. Any information you provide is voluntary and will be
kept strictly confidential. A participant number will be assigned to your responses and in no way
will your name be associated with this data. The information you provide will be used only for
the purposes of this study.

1. Gender: Male Female
2. Age:
3. Handedness - Dominant (check one)? Left-handed Right-handed

4. Please indicate the highest level of education completed:

Grammar school

High school or equivalent

Some college

College Graduate (4 yrs)

Master's Degree (MS)

Doctoral Degree (PhD)
Professional Degree (MD,JD, etc.)

OO0O0O00O0O0O

5. Major:

6. Do you have normal or corrected-to-normal hearing:

O Normal/Corrected Hearing
0 Hearing Problems (please describe)

7. Do you have normal or corrected-to-normal vision:

0 Normal
O Corrected (Circle One: glasses / contacts)
0 Problems

Please describe

8. Do you have astigmatism in:

Left eye
Right eye
Both eyes
Neither eye

oooag

9. If you have astigmatism in one or both eyes, do you wear a toric contact lens or have specially
shaped glasses lenses to correct for this in the affected eyes?

[0 T wear a toric contact lens in the affected eye
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OO0 T have specially shaped glasses for the affected eye

10. Eye Color
O Blue
O Green
O Hazel
O Brown

11. Have you had any previous eye injuries?
OO Yes (Describe:

O No

12. Color-blindness
0 Yes (Describe: )
O No

13. What were your SAT scores:

Approximate date: )

Math Verbal: Not sure / Don’t remember:

14. In general how do you feel about working with computers?

I don’t like working with computers.

I have no strong like or dislike for working with computers.

I like working with computers.
Other (please explain)

15. How would you describe your general level of computer experience?

None (I have never used any computer applications).
Low (I have used only 1 or 2 computer applications).

Moderately Low (I have learned and used between 3 and 10 different computer

applications).

Moderately High (1 have learned and used more than 10 different computer

applications but have no programming skills).

High (I have used many different computer applications and have some programming

skills).
Other (please explain)

16. Have you ever been in a virtual environment (VE)?

If YES, how many times have you been in a VE?

YES NO

17. How would you describe your general level of gaming experience (i.e., playing video games)?

None (I have never played a video game).

Low (I have played a video game a few times in the past).
Moderately Low (I have played a video game a regularly in the past).
Moderately High (I currently play video games weekly).
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High (I currently play video games daily).
Other (please explain)

18. Thinking only about the last 90 days, how often, on average, do you play console based video
games in a given week?
e. Under 3 hours

f. 3 -9 hours
g. 10-16 hours
h. 17+ hours

19. About how many of your total gaming hours are spent playing first-person shooter style video
games such as Halo, Medal of Honor, and Splinter Cell?

20. Have you ever received any formal military training?
c. Yes
d. No

If Yes, please describe:

21. How would you describe your general level of hunting experience?

None (I have never hunted).

Low (I have hunted a few times in the past).
Moderately Low (I have hunted regularly in the past).
Moderately High (I currently hunt weekly).

High (1 currently hunt daily).

Other (please explain)

22. How would you describe the neighborhood in which you grew up?

Not Dangerous (No concern for safety at any time).
Minimally Dangerous (Occasional concern for safety).
Moderately Dangerous (Concern for safety some of the time).
Very Dangerous (Concern for safety at all times).

Other (please explain)
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Color Vision Test
Instructions

m In the following task, you will be presented with
a number of questions that assess your ability to
perceive numbers embedded within patterns.

m For each question, you will be asked to indicate

what number you see revealed in the patterns of
dots inside the picture.

» If you do not see a number inside the pattern of
dots, then write “NONE” on the answer sheet next
to that question.

m lhere are a total of 12 questions. As you
complete each question, record your response
on the answer sheet provided.

m Should you have questions about this task,
please feel free to ask for assistance at any
time.

m Please do not write on the test booklet.

Please turn the page to continue. . . )
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Color Vision Test
Sample Item

Here is a sample item of the task you will perform. Please look at the picture
below. What number do you see revealed in the pattern of dots below?

Sample Item

You should see the number “12” inside the pattern of dots. So, you would write
“12” on the answer sheet on the space next to that question. Please make sure
to complete all items. And please remember not to make any marks on the test
booklet.

If you have any questions, please ask now. Otherwise, let the experimenter
know that you are ready to begin.

Please wait until the instruction is given
before turning the page to begin. . . -
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Color Vision Test

What numbers do you see revealed in the patterns of dots below? Please record
the number on the answer sheet or, if you do not see a number, write “NONE.”

Question 1 Question 2

Question 3 Question 4

Question 5 Question 6

Please turn the page to continue. .. =)
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Color Vision Test

What numbers do you see revealed in the patterns of dots below? Please record
the number on the answer sheet or, if you do not see a number, write “NONE.”

et

Question 7

Question 9 Question 10

Question 11 Question 12

Please stop here.
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The Guilford-Zimmerman Aptitude Survey

~ Part5/Spatial Orientation

Name

Score —____ Sext M F

INSTRUCTIONS.

This is a test of your ability to see changes in direction and position. In each item you are to note how the
position of the boat has changed in the second picture from the original position in the first picture.

Here is Sample item 1.

/

These are the five possible answers to the item.

These bars represent the boat's ;‘
row.
Te = e
This is the correct answer. It shows
that the prow of the boat has drop- Gt
ped below the aiming point. \ [}
D e
(If the prow had risen, instead of —
dropped, the correct answer would E =me
have been C, instead of D.)
Sample Item 1

This is the prow (front end) of a
motor boat in which you are riding.

— This is the aiming point. Itis the

exact spot you would see on land
if you sighted right over the point
of the prow.

[~ This is the same aiming point
shown above. Note that the prow
has dropped below it.

To work each item: First, look at the top picture and see where the motor boat is headed. Second, look at the
bottom picture and note the CHANGE in the boat's heading. Third, mark the answer that shows the same change on

the separate answer sheet.

Try Sample Item 2,

This also shows that the prow of
the boat is to the right of the aiming
point. So, it is the correct answer. =]

(If the boat had turned to the left,
instead of 1o the right, the correct
answer would have been A.)

E .,

Sample ltem 2

— This is the aiming point.

— This is the same aiming point.
The motor boat is now headed to
the right of it.

m’/c:onsuhing Psychologists Press, Inc., 3803 E. Bayshore Road, Palo Alto, California 94303

GZAS Part 5 Copyright © 1976 by Consulting Psychologists Press, Inc. This copyrighted publication is not offered for sale: it is for licensed use only, and then only by qualified pro-
fessionals whose qualifications are on file with and have been accepted by CPP. CPP reserves all rights beyond the limited scope of this license. including. without limitation. all rights
under U.S. and international copyright and trademark laws. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or media or by

any means, . pt

or . without the prior written permission of CPP. This copyrighted publication may not be resold, sublicensed,
exported, redistributed. otherwise transferred, or used in any manner by any party other than the persen or entity to whom it is licensed for use by CPP; any viclation of these restric-
tions may infringe CPP's copyright under 17 U.S.C.§108(3), and any such viclation shall automatically terminate any license 1o use this publication.

Printed in the United States of America. 03 02 01 00 99 14 13 12 11
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Now try Sample Item 3.

This is the correct answer. It shows
that the motor boat changed its slant
to the left, but is still heading

toward the aiming point.

Look at Sample Item 4.

D is the correct answer. It shows
that the boat changed its heading
both downward and to the right;
also that it changed its slant toward
the right.

Sample Item 3

Here the motor boat is slanted
slightly to the right. (Note that
the horizon appears to slant in
the opposite direction.)

L— Here the boat has changed its slant
toward the left. (To become level,
the boat slanted back toward the
right.)

Imagine that these pictures were taken with a motion picture camera. The camera is
fastened rigidly to the boat so that it bobs up and down and turns and slants with the
boat. Thus, when the boat tips or slants 1o the left (as in the lower sample in SAMPLE
ITEM 3), the scene through the camera view finder looks slanted like this.

——
A o=
B e,
c e

D e
E=—o

|

Sample Item 4

The prow of the boat has moved
- downward and toward the right.
Also, it has changed its slant
toward the right.
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Now do Practice Items 5, 6, and 7. Record your answers on the separate answer sheet.

The aiming point is not marked in the test items. You must see the change in the boat’s position without the aid
of the dots.

To review:

First — Look at the top picture. See where the motor boat is headed.
Second — Look at the bottom picture. Note the change in the boat’s heading.
Third — Mark the answer that shows the same change (in reference to the aiming point before the change).

A

B

c

D

E
Item 5 ltem 6 Item 7

C is the correct answer. The prow B is the correct answer. The prow E is the correct answer. The prow
appears to have moved to the left appears to have moved to the left appears to have moved upward,
and downward. It has not changed and downward. Also, it has and to have tipped left. It has not
its slant. changed its slant to the left. turned.

If you have any questions, ask them NOW.
Al the signal of the examiner, not before, turn the page and begin working on the test. Mark all answers on the sepa-
rate answer sheet. Work rapidly. If you are not sure of any item, you may guess, but avoid wild guessing. Your score

will be the number of answers correct minus a small fraction of the number wrong. You will have ten minutes to work
on the test. WAIT FOR THE SIGNAL TO BEGIN.

DO NOT WRITE IN THIS BOOKLET.

153



154



(Continue)

155



w

w0
(2]

156



(Continue)

157



158



APPENDIX H: VISUALIZATION TEST

159



Mame

. s . e

FATER. FRIDING TEET — Yoz

In tids L owon@re To lmeeine the felidng =rd unfolding of plecea of
Dapar. I= cneii Probleg In the Teat LhHers bra gore f:g'_.:‘ec drayr =2t The last
ol & wvertical lipe anc there are obbsrs dreawn ot the rdght of the Lines.
Tigurss at the left represspt a sguaTe plece of peper being Polded . sod the

lgat o thkees Zipures has cue or two ewall clreles drawvn oo it to show where
the psper hazs beer puneched. Each hole is punched through all the thicimesees
ol Taper at that wvoint. One of the Pive Plguree =t the »ight of the werticsl
lipe ckEown diare e poles Wwill be wqen the oaper 16 ::u'n'_c.le‘:,el}' wnfolisd, Yok
are o decide Whizk onz of bheooo Pigurco o porrect and dray an X throush thet

L
.-.

R

Mzure:
Waw try ths smoplise problen below. (I3 this zreblen only oos hole was

Taper. |

i = s ] E
1 - —
IS .| L £ o o ] o = o=
.
P !
1 r 1 (=3 o o
-1 e <

Pre sorrech nower 20 the semole opoblsn obove 200 and so Iz glould lizye
i the paper wes Dolded el

Pipures Lel

sesly parded with an ¥. The
0 ia the corToct AdsEwen.

aicR=gd=P=N=

1 T 1 H
| H 1
s | P =i Emamant

In these problems 81T of the filds Lhal ore moadc trc showo dn the Sigices
at the led= of the line, ard <hs pepor iz nos turnod or moved in
to mewre The folde shown in the figercc. Bemembor, the ooewes da 4
thet shows the pogiticne of the holes whon the poper s coupleately

WES ExeerT

¥oulr eure on Fis fEsT W] ke Lhe hamber werked corrvieiiy nifas a
fracuion of the nurher merked loeorrectly. Therefoys, it will not e to FOGE
edventegs to guess Unless you Are able to elimivete ons v more of The
cholees as wrong.

Yeou will have 3 minutocs Sar esch of the fwn parts of this Sest. Zacl
rary BeE 1 peize.  When yod Rove Sinfehed Teer 1, STOP, Plesss Go not goooa

to Zaot o2 uwntll you sre asicd toodo so.

DO 20T TR ML T IREIL ADFED TO 0 S

fepyriant (2] 1962 or Bigeoticnsl Testins Sevvies, A2l rignbs woacwwved

160



wm
{1
=

]
o
8

- = = :
T I L
L o Lz P ) F 4
Mo i P E_ 3 ‘q ] b ™
| s r/\ LC/\\ ) e e}
NPT T R
B @7 A0 S Y e b e
R (SRR ol | ['E_ |—| Y
Nt A SRR
|_\"‘“~J xj_l s Eenctoal s b
JOFTT RO ! e .

OO NS0 OB 18 MU NEX L CPAGE LTI ASEET TG DO S0,

Cnpyright@ 1962 by Educatlendl Tesbinpg Service. All eights ressvvad.

161

e



[ R

&

{% minutes)

rELH
-

art !

=2

STUF.

et o |

S0

-

T Ik

D

L
-

=

TaR

I UNTIL A

e
W

of _ o = ' oo _..__ g
£ a =
= @ a n ) _
| 4 m
3 o | L] L]
o = _ o 3 a i |
3 5 = o n
a o) [ ﬂ a Ty i d
] n .
o | El n..l_
-]
- a
. S LR - S——— I |
o o a B .
0 . Pl
]
i S e CR-] ] =
=g a 4 ¥ 3 o v a
fm E) [ o 1 o [
i -
o i e a o aa - 5 5 .v
| n ] @ | & 5o
- it n " | o
- e L =  S— .
SR |
H B _ [ o [ 4
< o o a a a >0
o n e
= - a 8
& _ o 0 ua A 1"
@ | o l on & o
- .= R P
. ._ __ r 1 i
i i H [ i i
'
. /7 N
b .d : - s

==
1
1
L]
= ad

T
L

7

A

e ]
3

=

1

B i
il |

!

:

i - i
=
N

e an cos
s maaa

% ]

e

=

i

i

!

r

I

i

[

0.
<
N dN4

:-._ romn 4
!

|

sl ald

P ! — -

e

SACK T
162

4

I

o

Ll

I T <o
DO HOT GO O 1O

N



APPENDIX I: HIDDEN FIGURES TEST

163



HIDDER FLULERS b

5 Tire sdenie Frguras
coen ekt Lo dhia usst
Tzrerzh ewscha »uow ol
IrTTern hanerzh 1o,
L=k

Ta-e =z & Lezi 70 oo anilite oo i
sap b Lt s oo comrlox vaellerr . :
ars Tive slxpoc Ciewces leTmavad Ay 2, U0 Dy odbes Fu

1 wazaz ig a pagc ol o7 o mt,err by ioroae nt
TeAdlvato v wirger by ruaiilng o Xonorengh The lelanr of il Zliacs
vl fied i Lhe pef-ern.

EOTZ:  Jlore by 07l
TirLIF o ziwars bo riskl sole ap

7"' ro _ethared figarss.,

[

ol rewTerr, 212 this
o ntEe aa ok ol L

e Thaae Zigurzz Lo

i exsotls bos

N DD

snetaanon Lo s Frallins.
Tois Tas aesird,

RS |
Fiagmoe 0 o_

v
]
o owsre 0f R

‘*’ﬁ']“ soOTE M J:'.j.._' b wony L= The muwnior o
irorerast’ . Tharefo: .
salezs Fou wsv 2l le Lo =Tie'nete ooz

Fora wi_l bave 1% ilpoiocs Lo ecch ol b twn parnts of thlz lost.
o ¥ TEmt L, TlOE. bplsass

g, iy 2 pigs L. ween vyl hews fInlakeg
Yoo e P orTil owou omra zgkaIotn

Ci moLoEn ool Yo

IT P TURY OTIITS LERDD IFEDNDT ADICTD U O NG

Goprright @HﬁL 15975 oy Bducatiomal Testing Service. A1l rignts roessrveds

164



Puge 2

Farc 1 (0% adpules]

TN <D DND

2,\\_ ) 3
\\;
L B L D E AL U U K A E L D E
.. . 4 . -
a8 F O L Ik A8 L b E A S L L E

L H L U h 4 8 &« I E A ®W C I E

GO o IO THE HERT FaSE

Coprright @ 1962, 1975 by Rdurational Teabine Service. All riphts Taserved.

165



Page A “Fm

Pars | [cootinued)

A B v 0 E
?
10, .
! 12
|
4 B U T E A E oD Z A B C U i
- . 14,
i
d
A B OO0 I L 20 L FE
15, 16.
|; s
A =2 ¢ L E r E L o E
P HOT TIRA THIS FeDE URCIL ASIED TO DO S0 s7uF.

Copyvtleht @ 1962, 1%75 2¥ Educoblomal Yesbing Becvice. A1l righla rererved.

166



Fart & {12 miloites)

A Ters

1. 18- 19.

&8 & LG L B A B D U L A B G D 3

0. 2. az. *
[ il
L4 B CDE 4 BB D E L B0 B E
13, 24, 23,
L E G LD = a4 B LOL 7 & o v &

SO TO TREE AREAT PAGE

Coperight @;—.952, 1335 by Fducstional Testing Secvdce. Al riphta reserved.

167



Prpe 0 oF—1

Eari. X {coml inuwd)

TV OLDL

20.

s
o

A2 B L D =2 FLR S R | B

he
=

C I E

[ B F 5 § L I T

il.

o
R
.

Y NS

A K C D % A F ¢ b E

D3 WGE GO BaGE TO PAIT 1. ENL
IO KOT GO O TO Y OTEER THST UNTIL ASKSC TC D0 50.
STOP.

Gapyright @ 15352, L%75 by Eduracional Trsting Service. ALl righis reserved.

168



APPENDIX J: COGNITIVE LOAD QUESTIONNAIRE
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Cognitive Load Question

While searching for the threats, [ invested (circle one only)
. Very, very low mental effort

. Very low mental effort

. Low mental effort

. Neither low nor high mental effort

. High mental effort

. Very high mental effort

. Very, very high mental effort

~N N kW
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APPENDIX K: VISUAL VERBAL LEARNING STYLE
QUESTIONNAIRE
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Verbal-Visual Learning Style Rating (VVLSR, Version 1.0, 2004)

In a learning situation sometimes information is presented verbally (e.g., with printed or
spoken words) and sometimes information is presented visually (e.g., with labeled
illustrations, graphs, or narrated animations). Please place a check mark indicating your
learning preference.

O O O O O O O

Strongly Moderately  Slightly Equally Slightly Moderately ~ Strongly
more verbal more verbal more verbal  verbal and more visual more visual more visual
than visual than visual than visual and visual than verbal than verbal than verbal

Validation of a One-Item Test of Verbalizer-Visualizer Cognitive Style
Richard E. Mayer and Laura J. Massa
University of California, Santa Barbara
2004
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Observation Knowledge Pre Test

Based on what you learned from the pre-training you just completed, please classify each
type of object as low or high priority by circling the appropriate category. Then, indicate
whether each type of object provides cover, concealment, a concealed exit or all three by

checking the appropriate categories with a check mark.

Object Type High or Provides Provides Provides a
Low Cover Concealment Concealed
Priority Exit

Alleys High / Low
Vehicles High / Low
Trash High / Low
Rooftops High / Low
Humvees High / Low
Faraway Buildings High / Low
Women in Open High / Low
Doors High / Low
Barriers High / Low
Vegetation High / Low
Store Fronts High / Low
Tables & Chairs High / Low
Baskets High / Low
Windows High / Low
Men on Roof High / Low
Trashcans & Barrels High / Low
Balconies& Porches High / Low
Without Walls

Fruit Stands High / Low
Concrete Balcony High / Low
Sticks High / Low
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APPENDIX M: EXPERIMENT 2 KNOWLEDGE POST TEST
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Observation Knowledge Post Test

Based on what you learned from the training you just completed, please classify each

type of object as low or high priority by circling the appropriate category. Then, indicate
whether each type of object provides cover, concealment, a concealed exit or all three by
checking the appropriate category with a check mark.

Object Type High or Provides Provides Provides a
Low Cover Concealment Concealed
Priority Exit

Fruit Stands High / Low
Windows High / Low
Concrete Balcony High / Low
Vegetation High / Low
Doors High / Low
Women in Open High / Low
Rooftops High / Low
Trashcans & Barrels High / Low
Faraway Buildings High / Low
Sticks High / Low
Men on Roof High / Low
Alleys High / Low
Tables & Chairs High / Low
Balconies& Porches High / Low
Without Walls

Vehicles High / Low
Trash High / Low
Baskets High / Low
Humvees High / Low
Store Fronts High / Low
Barriers High / Low
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APPENDIX N: EXPERIMENT 2 PARTICIPANT FEEDBACK FORM
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Feedback Questionnaire

1) Rate your confidence level in being able to perform a scan for a sniper threat after the
training you just experienced

Not at all 1 Very
Confident Confident
Please respond to the questions below by circling the appropriate response

2) The training taught me how to successfully scan for a sniper threat

St'rongly ’ 3 4 5 6 7 Strongly
Disagree Agree
3) I became tired during the training

St‘rongly ) 3 4 5 6 7 Strongly
Disagree Agree
4) I could easily understand the training

St'rongly ) 3 4 5 6 7 Strongly
Disagree Agree

5) I understood the purpose of the training and how it could improve my scanning
strategy

St'rongly ) 3 4 5 6 7 Strongly
Disagree Agree
6) I found the training module to be confusing

St‘rongly ) 3 4 5 6 7 Strongly
Disagree Agree
7) I was easily distracted during the training module

St'rongly ) 3 4 5 6 7 Strongly
Disagree Agree

Other comments/feedback:
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APPENDIX O: EXPERIMENT 1 DEBRIEF FORM
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Experiment |
Debriefing Form

In this study, we are investigating the effectiveness of eye-tracking based search
performance diagnosis methods for diagnosing where in the perceptual process
performance breakdowns occur (i.e., search or detection errors). It is hypothesized that
this diagnosis will be effective at pinpointed why threat detection errors occur.

If you would like to find out more about the results of this study, please email
meredith@designinteractive.net after May 2009.

Thank you for your participation in this study!
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APPENDIX P: EXPERIMENT 2 DEBRIEF FORM
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Experiment I1
Debriefing Form

In this study, we are investigating the effectiveness of eye-tracking based search
performance diagnosis methods for diagnosing where in the perceptual process
performance breakdowns occur (i.e., search or detection errors). It is hypothesized that
this diagnosis will be effective at pinpointing why threat detection errors occur. The
training and feedback you experienced are targeted at correcting these types of detection
errors to improve search performance.

If you would like to find out more about the results of this study, please email
meredith@designinteractive.net after May 2010.

Thank you for your participation in this study!
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