
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2010 

Empirical Evaluation Of The Effectiveness Of Eye Tracking-based Empirical Evaluation Of The Effectiveness Of Eye Tracking-based 

Search Performance Diagnosis And Feedback Methods Search Performance Diagnosis And Feedback Methods 

Meredith Carroll 
University of Central Florida 

 Part of the Psychology Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Carroll, Meredith, "Empirical Evaluation Of The Effectiveness Of Eye Tracking-based Search Performance 

Diagnosis And Feedback Methods" (2010). Electronic Theses and Dissertations, 2004-2019. 4210. 

https://stars.library.ucf.edu/etd/4210 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/404?utm_source=stars.library.ucf.edu%2Fetd%2F4210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4210?utm_source=stars.library.ucf.edu%2Fetd%2F4210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


EMPIRICAL EVALUATION OF THE EFFECTIVENESS OF EYE TRACKING-

BASED SEARCH PERFORMANCE DIAGNOSIS AND FEEDBACK METHODS  

 

 

 

 

 

 

 

 

by 

 

 

 

MEREDITH BELL CARROLL 

B.S. University of Virginia, 2001 

M.S. Florida Institute of Technology, 2003 

 

 

 

A dissertation submitted in partial fulfillment of the requirements  

for the degree of Doctor of Philosophy  

in the Department of Psychology  

in the College of Sciences  

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

 

 

 

 

 

Spring Term 

2010 

 

 

 

Major Professor:  Mustapha Mouloua 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2010 Meredith Bell Carroll 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

ABSTRACT 
 

In today’s complex combat environments, troops are often faced with increasingly 

challenging tasks different from those experienced in the past.  Warfighters must be 

trained in adaptive perceptual skill sets, such as search strategies that enable them to 

detect threats across any number of environmental, cultural, and situational conditions.  

The goal of the present study was to explore how advanced technology, specifically eye 

tracking, can be used to increase understanding of perceptual processes such as search 

and detection and provide tools that can be used to train search skills.  Experiment 1 

examined a method of diagnosing perceptual performance in order to be able to identify 

the perceptual root cause of target detection deficiencies and how these impact overall 

target detection performance.  Findings indicate the method can be used to pinpoint 

where in the perceptual process a target miss originated, whether due to ineffective search 

strategy, inability to detect the subtle cues of the threat or inability to recognize these 

cues as indicative of a threat.  Experiment 2 examined the training effectiveness of 

providing trainees with process level tailored feedback which incorporates elements of 

expert and trainee scan patterns.  Findings indicate that providing trainees with elements 

of either expert or trainee scan patterns has the ability to significantly improve the search 

strategy being employed by the trainee.  This work provides strong support for the use of 

eye tracking based perceptual performance diagnosis methods and training strategies in 

improving trainee search performance for complex target detection tasks. 
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CHAPTER ONE:  INTRODUCTION 

 

 

“The best sensor and weapon on the battlefield is a well-trained, situationally-aware 

Soldier, Sailor, Airman or Marine.” 

- Gordon England, Deputy Secretary of Defense 

  Memorandum for Secretaries of the Military Departments 

 April 24, 2006 

 

In today’s complex combat environments, troops are often faced with increasingly 

challenging tasks that are different from those experienced in the past.  Enemy use of 

Irregular Warfare (IW) techniques has motivated the military to explore new tactics and 

concepts such as Distributed Operations, a type of maneuver warfare in which small, 

highly capable units are spread across a large area of operations to provide spatial 

advantage (Ucko, 2007).  A key tenet of this concept is training Warfighters down to the 

lowest rank of soldier to obtain and exploit information in order to improve cognition and 

decision making at the small unit level.  Warfighters must have the ability to identify a 

range of threats, including snipers, Improvised Explosive Devices (IED), and suspicious 

activities and behaviors which could indicate the presence of such threats.  The skills 

necessary to detect such threats are commonly referred to in the military as observation 

skills.   

The preliminary findings of a recent study supported by the I Marine 

Expeditionary Force (I MEF), the Marine Corps Warfighting Lab (MCWL), and the 

Office of Naval Research (ONR) suggests that observational skills are critical to 

Situational Awareness (SA) and tactical decision making (Carroll, Milham, Champney, 

Eitelman, & Lockerd, 2007). The ability to detect static and dynamic environmental 
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threats such as slight changes in movement, color, and texture aids in detection of threats.  

A major challenge to the successful performance of threat detection, however, is that 

tactics are continually evolving.  It is not sufficient to train troops to look for specific 

environmental and behavioral cues, given the adaptation of the enemy.  Warfighters must 

be trained in adaptive perceptual skill sets, such as search strategies that enable them to 

detect threats across any number of environmental, cultural, and situational conditions.  

Thus, it is crucial to systematically examine the effect of training on perceptual skills as 

they relate to successful threat detection.   

Military Threat Detection Skills 

 

Threat detection has been studied across a range of domains from military 

aviation to airport security to radiography.  Threat detection in a military aviation domain 

is defined by Smith, Johnston, and Paris (2004) as the process of evaluating relevant cues  

(in their case aircraft) in the vicinity of ones environment and determining how much of a 

threat they represent by gathering and reviewing relevant information and deciding on 

what actions to take.  Fiore, Scielzo, and  Jentsch (2004) define threat detection in an 

airport screening task as consisting of the ability to rapidly recognize cues in the 

environment and interpret the meaning and importance of these cues. Nodine, Mello-

Thoms, Kundel, and Weinstein (2002) break the radiographic interpretation threat 

detection task down more granularly with respect to the perceptual components, 

describing the task as consisting of a search for an abnormality, the recognition of an 

abnormality and the decision made regarding the abnormality.   
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The focus of this research is on the perceptual aspects of threat detection in a 

military Observation Post (OP) task.  An OP is “a position from which military 

observations (visual, audible, or other means) are made” and reported in order to provide 

situation awareness for the commanding force (Army, 1992, Chapter 5, Section II, 

Paragraph 5-6).  OPs “are used during screening and reconnaissance operations” and 

from the OP, “the squad reports the enemy size, activity, location, and disposition to the 

commander.” (Army, 1992, Chapter 5, Section II, Paragraph 5-6).  In short, the OP task 

entails static observation of a designated area for what can be extended periods of time.  

A task analysis of this task revealed decomposition of this task into key competencies of 

visual search, detection of anomalous cues, recognition of these cues as indicative of a 

threat, decision to respond and action response (Carroll et al., 2007).  This research will 

focus primarily on the first of these competencies, visual search. 

Visual Search 

 

In a visual search task, subjects look for a target item among a number of 

distracting items (Leonards, Rettenbach, Nase, & Sireteanu, 2002).  Visual search is 

theorized to have two components, 1) an effortless component in which stimulus are 

processed preattentively (Sireteanu & Rettenbach, 2000), essentially “popping out” at the 

observer and 2) an effortful component in which attention must be serially allocated to 

objects in the environment (Treisman & Souther, 1985).  These components are 

influenced respectively by 1) characteristics of the environment (e.g., saliency of targets 

and distracters) and 2) learned search strategies.  These search strategies can range from a 

very structured systematic search in a regular pattern (e.g., alternate up and down scan 
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moving from left to right, (Wang, Lin, & Drury, 1997), to a less structured strategy such 

as searching by area or searching by component/object (Chabukswar, Gramopadhye, 

Melloy, & Grimes, 2003).    

In current military OPs, threats such as snipers and IEDs are searched for amid an 

urban backdrop bustling with distracters.  In order to successfully detect threats in such a 

complex and dynamic environment, it is necessary to develop efficient search strategies 

which allow the greatest number of threat identifications over the least amount of space 

and time.  Subject Matter Experts (SMEs) from the US Marine Corps were interviewed to 

obtain detailed descriptions of the search strategies used to perform the search task within 

an OP.   Both a Scout Sniper and an Observation Training Instructor identified a similar 

process used during the static observation task, described as follows:   

Search begins with a hasty search of the environment, from near to far, aimed at 

identifying the high priority areas which demand attention most.  This is 

following by a detailed search in which high priority areas are explored further, 

moving right to left, starting at ground level and working your way up and 

starting near and working your way out.  Following this, low priority areas are 

searched, spending less time (80% high, 20% low).  During this search, if a 

potential threat appears, this systematic search is temporarily halted to turn 

attention to the new element which is quickly evaluated and attention is turned 

back to detailed search, picking up where left off.   

 

In the hasty search described above, experts rely on the preattentive search 

component, hoping to quickly identify obvious threats.  In the detailed search, experts 

turned to the search strategies they have developed in their experiences to identify more 

subtle targets.   

In describing typical novice performance, these SMEs identified two common 

mistakes made during search including 1) students not being good judges of which areas 

are high priority, and 2) students not scanning in a systematic sequence.  This is inline 
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with findings in the literature which indicate experts spend more time than novices 

attending to relevant aspects of the stimulus (Jarodzka, Scheiter, Gerjets, & van Gog, 

2009) and novices have less defined scan patterns (Burgert et al., 2007; Jarodzka et al., 

2009; Kasarskis, Stehwien, Hickox, Aretz, & Wickens, 2001).  The less structured scan 

pattern is likely due to lack of a systematic search strategy with performance being 

influenced most by bottom up processes which draw attention to salient features in the 

environment (Jarodzka et al., 2009).  Given this, the two components of search which 

will be the focus of this research are “where” (i.e., where to look) and “how” (i.e., in 

what sequence to look). 

Training Visual Search 

Key to the training of visual search skills is that trainees not only have the 

opportunity to practice these skills, but also that relevant training strategies are 

incorporated to ensure learning.  Training strategies are training interventions that can be 

employed in practice environments that will optimize learning, transfer, and retention 

(Cannon-Bowers, Rhodenizer, Salas, & Bowers, 1998).  Four principles for effective 

training strategies require that they: 1) present relevant information and concepts, 2) 

demonstrate Knowledge, Skills and Abilities (KSA) to be learned, 3) create opportunities 

for trainees to practice the skills, and 4) provide feedback to trainees regarding practice 

(Salas & Cannon-Bowers, 2001).   

There has been a great deal of research into the training of search skills in tasks 

such as radiographic interpretation (Nodine, Krupinski, & Kundel, 1990; Nodine et al., 

2002), airframe inspection (Sadasivan, Greenstein, Gramopadhye, & Duchowski, 2005), 
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circuit board inspection (Nalanagula, Greenstein, & Gramopadhye, 2006), and airport 

baggage screening (Fiore et al., 2004).  Training interventions such as presentation of 

expert scan (Nalanagula et al., 2006; Sadasivan et al., 2005), metacognitive strategies 

(Chapman, Underwood, & Roberts, 2002; Nodine et al., 2002) and attentional weighting 

strategies (Hagemann, Strauss, & Canal-Bruland, 2006; Williams, Ward, Knowles, & 

Smeeton, 2002) have proven successful in improving search performance.   

Despite these extensive findings in the training science literature, few perceptual 

skills training strategies validated in the literature have reached training practitioners in 

the field.  Common practice in current Marine Corps observation training is to provide 

feedback consisting of Knowledge of Correct Response (KCR) in the form of pointing 

out all threats in the scene/scenarios or Knowledge of Results (KR) in the form of 

pointing out all threats missed.  This form of purely outcome feedback has been shown 

successful in some domains (e.g., teacher in service training; (Leach & Conto, 1999); 

however,  in other domains outcome feedback may not be at a granular enough level to 

facilitate trainees identifying and improving process level skills which show performance 

decrements (Davis, Carson, Ammeter, & Treadway, 2005; Goodman, Wood, & 

Hendrickx, 2004).  For example, in an inspection task, when compared to outcome level 

feedback, process level feedback has been shown to facilitate detection of more targets 

and development of a more systematic search strategy (Chabukswar et al., 2003). 

One problem with outcome level feedback is that it typically gives little guidance 

on how performance needs to change in order to increase performance levels.  Such is the 

case with visual search.  KCR (where all threats were located) or KR (where missed 

threats were located) has an element of “where” the trainee should be looking inherent in 
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the feedback as trainees are made aware not only of the threat missed, but the location of 

the threat as well.  However, this type of feedback does not address high priority areas in 

which no threats were located or the sequence in which the trainee should be searching, 

both process level performance aspects which may be in need of remediation for 

performance to improve.  Additionally, this feedback does not support the trainee in 

abstracting these locations to a higher level of search strategy, allowing them to apply 

this strategy in novel situations and environments.  

Challenges to Training Visual Search 

Many perceptual skills training strategies from the training science literature have 

not reached the field because of the multiple challenges associated with training 

perceptual skills such as search.  The primary challenge is the ability to adequately 

measure and diagnose search performance to facilitate process level feedback.  In order to 

be able to debrief at a subtask/process level, it is necessary to be able to distinctly 

measure a sub process (i.e., search) and effectively discriminate performance on separate 

sub processes (e.g., search and detection).  For instance, in the threat detection task, a 

performer may not have indicated a threat because either a) the performer did not utilize 

effective search strategies and hence did not search the area in which the threat was 

located (search error), or b) the performer effectively searched, but did not detect the cues 

in the environment indicative of a threat (detection error), or c) the performer effectively 

searched, detected the indicator cues, however, did not recognize these cues as a threat 

(recognition error).  Diagnosis at this level determines where in the perceptual process the 

process level error which led to an outcome error occurred and can facilitate feedback to 
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target this specific process.  In current military threat detection training practice, 

measurement and diagnosis is difficult as trainee to instructor ratios are typically high, 

placing high workload demands on instructors during performance monitoring and 

assessment stages, and perhaps more importantly, it is extremely difficult to monitor and 

diagnose the perceptual process of search as it is a subtle process inaccessible to 

instructor observation.   

A second challenge is in obtaining the ability to demonstrate search skills.  

Perceptual skills such as search and detection are subtle or internal processes which are 

unobservable.  As a result, many training strategies consisting of demonstration are 

infeasible.  As a result, search training typically consists of verbal description of skill 

performance, not actual demonstration.  One difficulty with this approach, however, is 

that research suggests that expert recall of certain motor or perceptual events is 

incomplete, and potentially erroneous (Cleeremans & McClelland, 1991).  Expert 

performers often operate on “autopilot” and are not always aware of the cues to which 

they are attending (Klein, 1998).  It may be more appropriate (i.e., more efficient and 

accurate) to incorporate effective training strategies which allow experts to demonstrate 

their expertise rather than try to verbalize them (Sidani & Gonzalez, 1994).    

Addressing the Challenges  

A promising solution to the above challenges is the use of eye tracking 

technology to measure visual performance.  With the advancements in eye tracking 

technology, information about a person’s visual attention, once inaccessible, is becoming 

more attainable.  Visual attention can provide important insights to the information used 
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in task performance, such as the importance of various features or cues (Raab & Johnson, 

2007).  Several studies (Jarodzka et al., 2009; Mello-Thoms et al., 2008; Raab & 

Johnson, 2007; White, Hutson, & Hutchinson, 1997) have used eye tracking to extract 

information about scan strategies.  These studies have demonstrated that eye tracking can 

aid in the assessment of perception through measurement of visual attention during 

observation via gaze, scan path, and fixation data.  These metrics can identify which 

Areas of Interest (AOI) were gazed upon and the amount of time the AOIs were gazed 

upon. 

With respect to the challenge of measuring and diagnosing search performance, 

researchers studying radiographic interpretation, have used eye tracking data to diagnose 

where in the perceptual-cognitive process (i.e., search, recognition, decision) errors 

occur.  Nodine et al. (2002) make distinctions in the classification of errors in 

misdiagnosis in radiographic interpretation based on fixation duration, where lack of 

fixation is interpreted as a searching error, fixation for less than 1000 milliseconds and 

lack of indication of abnormality is interpreted as a recognition error, and fixation for 

greater than 1000 milliseconds and failure to indicate as abnormality is a decision making 

error.  Such a method could be extended to the threat detection domain.  If effective 

fixation duration thresholds could be established for discriminating the different 

perceptual processes (i.e., search, detection, recognition), this method could be used in 

the diagnosis of process level threat detection errors and discrimination of search verses 

detection errors.  This would facilitate the process level feedback needed to effectively 

target the perceptual root cause of performance deficiencies. 
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With respect to the challenge of utilizing training strategies which consist of 

demonstration, eye tracking technology provides the ability to capture and present expert 

search demonstrations.  What remains is the need to determine how to effectively present 

this granular data in order to facilitate effective training of all aspects of search skills.  

Few studies have attempted to target multiple aspects of search strategies such as search 

location and sequence.  One consideration in targeting search location is that there are 

two unique aspects of “location” which warrant consideration.  The first is the perceptual 

aspect of the location or what the location visually looks like, which allows identification 

of a specific area.  For clear cut areas like windows and doors which have very distinct 

and familiar appearances, a verbal description may suffice to allow trainee identification 

of these areas.  However, for more elusive and intangible areas like “shadows” (i.e., 

shaded areas which provide concealment) or negative space (i.e., areas in which there is 

nothing to draw attention, but may prove effective for concealing threats), it may be 

necessary to provide visual representation to allow trainee recognition.  The second 

aspect of the location is the conceptual aspect of why the area is a target area (i.e., high 

priority area which should be searched), an understanding of which is necessary to 

abstract specific locations (e.g., shadows) to a higher level of categorization (e.g., a place 

which provides concealment), which would facilitate generalization to new environments 

and situations. 

There is an opportunity to leverage training strategies from the training science 

literature which have been proven successful in improving search skills and extend them 

to address all critical aspects of search performance.  For example, feed forward training 

of expert scan patterns have been tested in multiple domains including airframe 
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inspection and electronic circuit board inspection and have shown great success 

(Nalanagula et al., 2006; Sadasivan et al., 2005).  This strategy is promising as it could be 

used to target both location (perceptual) and sequence aspects of search.  This strategy 

could be enhanced to also target the conceptual aspect of location (i.e., why it must be 

searched) by layering on auditory elaborative feedback describing why locations should 

be searched to support trainees in extracting higher level scan strategies. This feed-

forward strategy could be extended into a feedback strategy and tailored to the specific 

errors a trainee has committed by also including elements of the trainee scan path to 

highlight differences between expert and trainee, a technique which has yet to be 

developed or empirically tested.   

In summary, it is necessary to first be able to effectively measure search 

performance and discriminate search from other perceptual processes such as detection 

and second to develop process level feedback which 1) provides more specific feedback 

aimed at the threat detection sub process of visual search, 2) incorporates feedback 

strategies shown to be most effective in facilitating performance improvements on this 

skill, including both location and sequence aspects of search, and 3) provides support for 

the development of generalized search strategies.  This feedback could be further 

enhanced by tailoring it to trainees’ specific performance decrements, to better target 

areas in which the trainee is in need of improvement.  The result would be tailored 

feedback, based on process level performance diagnosis, aimed to target all critical 

aspects of search, which is hypothesized to provide powerful training results. 
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Experimental Hypotheses 

This line of research will explore the effectiveness of utilizing eye tracking to 

address the challenges of training visual search discussed above by empirically 

evaluating: 

1. If search performance can be effectively measured and discriminated from other 

perceptual processes (i.e., detection) utilizing eye tracking 

2. If newly developed search feedback strategies increase training value over 

traditional feedback strategies used in the military domain   

Through a series of two experiments, two main hypotheses will be tested.  First, it is 

hypothesized that search performance metrics which utilize eye tracking and behavioral 

data can effectively and reliably measure the search component of threat detection and 

discriminate between errors made in these two consecutive stages of perceptual 

performance (i.e., search and detect).  Second, it is hypothesized that new search 

feedback strategies which utilize eye tracking to allow demonstration of search skills will 

result in greater performance gains over traditional feedback strategies used in the field.  

Specifically, it is hypothesized that elements of expert and trainee scan path data will 

significantly improve training performance over traditional KR feedback, both 

individually and when used jointly, with the additive effect of joint elements resulting in 

the greatest performance improvements. 

The following section will first summarize the literature pertaining to visual search 

theory and practice, including characteristics of visual search performance, factors that 

influence visual search, and training techniques to support visual search.  
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CHAPTER TWO: LITERATURE REVIEW 

Visual Search 

 

Visual search, the task of finding a target among distracters (Verghese, 2001), is a 

ubiquitous skill used both in work and daily life.  From searching for an exit sign in a 

shopping center to searching for an aircraft on a radar screen, visual search is required to 

function in almost any environment.  Given the varied applications of this skill, visual 

search tasks have a broad range of characteristics on which they can vary.  Visual search 

can be systematic, in which few fixation locations are repeated, or random, in which there 

is no memory for previous locations (Arani, Karwan, & Drury, 1984).  Visual search 

tasks may require eye movement (such as in scanning a three dimensional scene), or may 

not include eye movement (such as in searching for a particular shape in a small array of 

letters).  Visual search tasks can vary in difficulty from search among several distracters 

of similar appearance to search among few distracters of distinctly different appearance 

from the target.  This broad range of characteristics and the performance differences 

associated are precisely what make visual search such a complex skill.  For decades, 

researchers have been working towards decomposition of this skill to understand both the 

underlying process as well as the biological mechanisms driving human performance of 

visual search.  The following sections detail theories of visual search and how these 

theories and findings from the training science literature can be leveraged to effectively 

train visual search. 
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Visual Search Theory 

At a very basic level, there are generally considered two types of visual search: 

preattentive and attentive.  A great deal of research has been conducted regarding the 

distinction between these two types of visual search and the various factors that affect 

performance during each (Shiffrin & Schneider, 1977; Treisman, Vieira, & Hayes, 1992).  

Pre-attentive search has been referred to under several names including efficient search, 

parallel search, easy or effortless search (Leonards et al., 2002) and automatic detection 

(Treisman & Souther, 1985).  In this type of search, the targets are proposed to contain 

elementary features which are processed preattentively (Sireteanu & Rettenbach, 2000), 

essentially drawing attention to themselves.  In this type of search, the target “pops out” 

at the observer, requiring little conscious effort.  Such is the case when looking for the 

letter T on a page of letter Os or for a red baseball cap in a sea of blue baseball caps.  

Attentive search, also referred to as inefficient search (Leonards et al., 2002), serial 

search (Treisman & Souther, 1985), and controlled search (Shiffrin & Schneider, 1977), 

refers to effortful search in which attention must be serially allocated to objects in the 

environment to detect a target.   

The distinction between these two types of search is consistent with the view that 

search is driven by both bottom up and top down processes (Itti & Koch, 2001), wherein 

bottom up processes drive attention due to salient features in an environment or stimulus 

(e.g., salient target features) and top down processes drive attention through the 

application of search strategies such as the direction of attention to locations of high 

priority. 
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Figure 1.  Drivers of Visual Attention 

 

Many search tasks are comprised of both types of search.  In fact, McCarley, 

Kramer, Wickens, Vidoni, & Boot (2004) discuss a multi-stage model of visual search 

wherein the visual search component can be broken down into an early “orientation” 

stage in which an efficient or pre-attentive search occurs resulting in detection of very 

salient targets.  Following this is an attentive or inefficient search stage in which potential 

target locations are scanned via a succession of fixations in an attempt to detect less 

conspicuous targets.  This stage requires the observer to scan the appropriate regions in 

the scene as driven by appropriate search strategies.   

Two stage models of visual search such as this have been the cornerstone of many 

visual search theories.  Treisman’s Feature Integration Theory (FIT; Treisman & Gelade, 
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1980) is based on a two stage model wherein visual features (e.g., color, orientation) are 

processed and organized first into feature maps and then saliency maps that serve to 

guide attention to conspicuous objects in a scene.  FIT proposes that features are 

extracted in a pre-attentive stage across an entire scene and these features are then bound 

into objects once attention is directed to this location in an attentive stage.  From this 

theory, Treisman proposed a more practical description of the two types of search: feature 

search (similar to pre-attentive search) and conjunctive search (similar to attentive 

search) wherein feature search is based on one unique target feature and therefore does 

not require attention as the target “pops out”, and conjunctive search is based on more 

than one feature requiring attention to bind these features together to detect a target 

(Treisman & Souther, 1985). 

The Guided Search model, another two stage model, also proposes that in the 

efficient stage a quick snapshot of the scene is taken to build a saliency map, then in the 

second stage a detailed search based on specific features is performed (Wolfe, 1998).  

However, in the Guided Search Model, the preattentive stage reduces objects in a scene 

to their component features which serve to activate feature detectors associated with the 

target, effectively guiding search in the inefficient stage starting with objects most highly 

activated (Hoffman, 1999).  Despite differences, the implications of both of these models 

is that deployment of attention in the inefficient stage can be influenced by explicit top 

down information provided with respect to search strategies (both what features to look 

for and how/where to look). 

Interestingly, there has been research which also points to the ability to influence 

search through implicit top down knowledge.  Chun and Jiang (1999) explored contextual 
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cueing and found that perceptual schemas specify how objects covary in the world 

around us, and that such a schema can be created through target/context covariation, 

resulting in implicit influence on attention deployment in search.  Chun and Jiang found 

that past target locations produced faster search as opposed to novel target locations, 

however, participants could not explicitly state these locations.  This implicit learning, 

however, was robust only when the information is selectively attended and relevant and 

predictive (i.e., of target location).  These findings are incredibly promising with respect 

to training visual search as implicit operations have been shown to be durable over time, 

robust across interference and exhibit high capacity (Chun & Jiang, 1999). 

Much of the visual search theory, however, is based on experimentation 

performed on very simple laboratory tasks.  It is necessary to consider visual search in an 

operational setting to ensure theoretical foundations in visual search theory align with the 

visual search in practice 

Visual Search Theory in Practice 

The two stage model presented above, is extremely relevant when referring to 

search within the military threat detection domain.  The two stage model is consistent 

with the what/where distinction commonly referred to in visual processing (Levine, 

2000).  The preattentive stage identifies where to direct attention and the attentive stage 

subsequently identifies the object being attended.  This maps very closely to the two 

types of search taught in US Marine Corps training: hasty or general search and detailed 

search (MCI 03.35c Infantry Patrolling, 1996).  A hasty search requires a quick scan of 

the environment to identify high threat areas, which should “pop out”.  Once these have 
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been identified, a more detailed search of these areas ensues, utilizing prescribed search 

strategies (e.g., searching near to far in 180 degree arcs). 
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Figure 2. Visual Search Theory in Practice 

 

What Influences Visual Search? 

The above theory can serve as a foundation for understanding how best to 

influence visual search through training.  There are many factors that affect preattentive 

search, the most influential of which is salience.  Itti & Koch (2001) propose a model of 

bottom up pre-attentive search based on saliency and include such environmental features 

as color, intensity, orientation and motion.  Pre-attentive search has been proposed by 

researchers to be difficult to alter, ignore or suppress (Shiffrin & Schneider, 1977), 

therefore  may not prove fruitful to target with training intervention.  However, there is 

research to suggest otherwise.  For instance, after extensive practice, military observers 

have shown efficient detection of targets in cluttered scenes that novice observers search 
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for inefficiently, suggesting that they learned, through practice, to preattentively process 

the target (Doll & Home, 2001).  Leonards et al. (2002) also found that practice of 

inefficient search which included either unique features or differences in brightness 

distributions led to efficient search.  Also in support is the large body of research 

surrounding perceptual learning to increase sensitivity to stimulus and stimulus features.  

Massed practice or exposure to stimulus at or below just noticeable difference thresholds 

has shown to increase sensitivity for processes such as contrast sensitivity (Sowden, 

Rose, & Davies, 2002), motion direction discrimination (Burns, Nettelbeck, McPherson, 

& Stankov, 2007), and figure ground segregation (Yi, Olson, & Chun, 2006) as well as 

more complex stimulus such as x-ray images (Sowden, Davies, & Roling, 2000).  Such a 

strategy might render preattentive search a feasible option to target with training.        

Attentive search is widely hypothesized to be influenced by several factors, the 

most notable of which is the top down visual search schema and strategy being 

employed.  Additional factors include the number of relevant conjunctive features in a 

target or distracter objects (Wolfe, Cave, & Franzel, 1989), target type and search field 

size (Wang et al., 1997) and environmental conditions such as clutter (Doll & Home, 

2001). Another factor which affects inefficient search performance is known as the edge 

effect, a phenomenon in which observers scan paths tend to avoid the edges of a display 

(Parasuraman, Boff, Kaufman, & Thomas, 1986).  Researchers have found evidence of 

this effect by looking at target detection in search as a function of eccentricity (Parkhurst, 

Law, & Niebur, 2002).   

It is believed that the attentive search stage provides the best opportunity for 

influencing visual search through training.  Additionally, given the nature of the target 
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task (i.e., military threat detection) including complexity of the search environment, wide 

field of view, large variety of distracters, and covert nature of the enemy, the attentive 

stage of search is likely the most critical for successful threat detection.  As visual search 

strategies have been shown to be easily influenced through training (Chabukswar et al., 

2003; Chapman et al., 2002; Gramopadhye, Drury, & Sharit, 1997; Underwood, 2007; 

Wang et al., 1997) the focus of the research herein will be the molding of visual search 

through the training of search strategy. 

Visual Search Strategies 

There are several types of search strategies which can be employed ranging from 

a very structured systematic search in a regular pattern (e.g., alternate up and down scan 

moving from left to right; (Wang et al., 1997), to less structured strategies such as 

searching by area or searching by component/object (Chabukswar et al., 2003) to 

attentional weighting strategies which focus search on cues/areas deemed most critical 

(Rezec & Dobkins, 2004).  For military threat detection, a task analysis (Carroll et al., 

2007) revealed that several of these search strategies are employed by subject matter 

experts.  The first is similar to the attentional weighting strategy and prescribes where to 

search by identifying high priority areas where there is a high potential for threat (e.g., 

areas of concealment).  The second strategy, a less structured and systematic search 

prescribes how to search, requiring high priority areas to be searched before low priority 

areas, always searching the environment near to far and right to left and allocating the 

majority of time to high priority areas (80/20, high priority/low priority).  Lastly, a more 

structured systematic search prescribes searching from right to left in 50 meter arcs, 
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temporarily halting this pattern for emerging environmental elements, then turning back 

to it.  As presented above, the most common mistakes made by trainees during search for 

military threats include: 1) failure to judge which areas are high priority, and 2) failure to 

scan in a systematic sequence (e.g., no smooth patterns from right to left, not searching 

closest areas first).  Based on these, the research herein will target a portion of the search 

strategies discussed above, specifically: 1) Where to search (high vs. low priority areas) 

and 2) Sequence of search (systematic sequence encompassing high then low priority, 

near to far, left to right/right to left).  The below section explores options for how to train 

these elements of visual search. 

Training Techniques to Support Visual Search 

 

A common misconception in training design is that practice equals training; 

however, effective training of any task relies on the integration of effective training 

strategies (Cannon-Bowers et al., 1998).  The training science literature was examined to 

identify visual search training strategies which have proven successful in past research 

and application.  These strategies were then evaluated for relevancy to the military threat 

detection task and those most relevant served as the basis for development of innovative 

visual search training strategies to target military threat detection.   

Training Strategies 

McCarly et al. (2004) performed a study in which the effect of practice on visual 

search performance in a simulated airport baggage screening task was examined.  Results 

indicated that practice alone did not improve the effectiveness of visual search, and that 
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increased performance was due entirely to sensitivity increases with respect to detection 

of the target.  These findings highlight the need to provide feedback that can help 

observers improve search strategies.  There has been a great deal of research surrounding 

the training of search skills across a wide variety of domains and targeting an array of 

search strategies (Chabukswar et al., 2003; Gramopadhye et al., 1997; Salas & Cannon-

Bowers, 2001; Wang et al., 1997).  The visual search training strategies reviewed 

primarily fall into six categories: 1) Performance Feedback, 2) Process Feedback, 3) 

Attentional Weighting, 4) Difficulty Variation, 5) Metacognitive Strategies, and 6) 

Expert Performance Models.  Of these, process level feedback, attentional weighting, 

metacognitive strategies and expert performance models show the most promise. 

Performance Feedback 

Using a circuit board inspection task, Wang et al. (1997) examined whether 

search strategy was trainable, and whether systematic, natural or random search strategies 

led to better defect detection.  To train systematic search, subjects were instructed to 

move their eyes in a regular pattern across the board alternating up and down from left to 

right, with specific fixation positions defined based on the size of the circuit board.  

Trainees were then given 24 boards to scan as practice and were given feedback with 

respect to whether they had followed instructions or not (i.e., knowledge of results).  

Similar treatment for random search included instructions to follow no pattern and 24 

practice trials with knowledge of results feedback.  Findings indicated that practice with 

knowledge of results performance feedback could significantly change search strategy, 

both for the better with systematic search and for the worse with random search.  
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Knowledge of results performance feedback is the feedback method currently used in the 

field and is thus the current standard.    

Process Feedback 

Chabukswar et al. (2003) explored the effects of online process plus performance 

feedback compared to performance (outcome) feedback for a visual circuit board 

inspection task.  Process feedback included both statistical (e.g., percent of area covered) 

and graphical (i.e., graphical representation of area covered) and performance feedback 

included items such as number of defaults detected and time to detect.  The process plus 

performance group not only detected more defaults, but seemed to develop a more 

systematic search strategy than the performance feedback group.  Gramopahye et al., 

(1997) examined the effectiveness of performance feedback and cognitive feedback, both 

statistical and graphical, in improving search performance for an airframe inspection task.  

Cognitive feedback consisted of information regarding areas which the trainee had 

already searched, represented statistically by percentages or graphically via scan pattern 

indicated with shaded markers on the airframe.  Although the performance feedback 

group scored as high on the performance measures as the graphical cognitive feedback 

group, the graphical group showed the best combined response in performance and 

strategy.  As the statistical cognitive feedback group actually performed worse after 

training, Gramopahye et al. suggest that the visual feedback in the graphic display served 

as the “bridge between cognitive data and action” (p. 342).   

Nodine et al. (1990) developed a training strategy for radiographic interpretation 

in which scanned areas with dwell times greater than 1000 milliseconds and for which no 

indication of lesions occurred were interpreted as detection without recognition and were 
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fed back for reanalysis resulting in increased recognition of initial misses.  Similarly, 

Nodine, Kundel, Mello-Thoms, and Weinstein (2001) utilized a Computer Assisted 

Visual Search (CAVS) strategy which fed back regions of interest that received 

prolonged visual dwell (greater than or equal to 1000 ms) and highlighted them on the 

display so the regions could be re-evaluated and found improved detection performance.  

Such strategies are based on findings such as those reported in Nodine et al. (2002) that 

approximately 70% of lesions that are not reported in mammogram reading attract visual 

attention, as measured by the amount of visual dwell in the location of the lesion, 

implying that such misses are covert negative decisions. 

Attentional Weighting 

 Attentional weighting, focuses on targeting aspects of important cues to attend.  

Exogenous orienting or highlighting is a technique which has been used to train the use 

of attentional weighting search strategies.  Hagemann, Strauss, and Cañal-Bruland (2006) 

found that highlighting relevant cues such as areas of the trunk, arm and racket at the 

critical times during badminton training led to significant increase in test performance.  

Williams, Ward, Knowles, & Smeeton (2002) used a freeze frame and slow motion video 

playback to highlight critical cues to attend in anticipating the direction of tennis strokes.  

Critical cues were derived from expert performance data extracted via eye tracking.  

Williams et al. found significant performance improvements which also transferred to 

subsequent field exercises resulted from instruction which included 1) explicit instruction 

of critical cues and their associated outcome, and 2) guided discovery with the use of 

verbal probes encouraging trainees to look at a certain area of the body and draw 

conclusions about the relation of cues to outcomes.  Crowley, Medvedeva, and Jukic 
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(2003) developed a perceptual intelligent tutoring system for pathology diagnosis which 

incorporated a training strategy which includes “visual hints” by moving a viewer 

position to an area of interest, highlighting critical features and providing textual 

information about the type of feature.  The researchers found this method led to improved 

diagnosis performance.   

Difficulty Variation 

Research suggests that level of difficulty during training can affect the 

development of effective search strategies by facilitating development of a more 

generalizable search strategy.  Doane, Alderton, Sohn, & Pellegrino (1996) explored the 

effect of discrimination difficulty in a simple polygon discrimination task and found that 

more difficult stimulus tasks to discriminate leads to development of more effective and 

more global search strategy and hence better transfer than with easier stimulus tasks to 

discriminate.  Schmidt and Bjork (1992) found supporting evidence for this as well and 

suggested that training which maximized performance during training may not support 

transfer or generalizability to operational performance enhancements.  Operational 

performance enhancements may be better facilitated by more challenging and diverse 

training conditions that result in degraded speed and accuracy during skill acquisition 

(Schmidt & Bjork, 1992).  Schmidt & Bjork found that relative to standard practice 

conditions, three practice conditions, namely random practice, infrequent or faded 

feedback and variation in practice, slowed the rate of improvement during training 

resulting in lower training performance at the end of practice, but resulted in enhanced 

post training performance. 
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Metacognitive Strategies 

 Chapman et al. (2002) developed a training intervention aimed at improving 

visual search associated with the driving task, which incorporated both elements of 

metacognition and expert performance data.  Through a series of five training modules 

which utilized videos, trainees would 1) practice visual search for driving hazards, 

indicate hazards, commentate on what they are looking at in their search, 2) explore in 

slow motion areas indicated as hazards, commentate on why they are hazards and listen 

to an expert commentary on why these areas are hazards, 3) practice visual search while 

being prompted during pauses to indicate what just happened or what happened next, 4) 

re-explore in full speed motion areas indicated as hazards and commentate on why they 

are hazards and 5), practice visual search for driving hazards, indicate hazards, 

commentate on what they are looking at in their search.  Results showed not only 

significant immediate effects on visual search, but some of these effects remained for 3-6 

months and many of them transferred to an actual driving task.  Nodine et al. (2002) 

present a strategy which focuses on how long to dwell on suspect areas or cues and 

consideration of confidence in threat.  Nodine et al. (2002) found that in a mammography 

diagnosis task that prolonged dwell-time on a potential lesion did not notably increase the 

number of lesions discovered and did increase the error rate for lesion detection.  These 

researchers suggest mentor-guided feedback with instructions to trust only the more 

confident and early decisions and to quit searching when unsure to improve detection 

performance in search task.   
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Expert Performance Models 

 Expert search performance as illustrated through expert scan paths has been used 

to train visual search in multiple domains.  Sadasivan, et al. (2005) examined the effect of 

a feedforward of expert scan pattern training strategy in an airframe inspection task.  In 

this study, expert scan paths as well as indications of fixation duration as collected via an 

eye tracker were presented as a static overlay to an airframe image to trainees.  This 

training strategy resulted in 30% greater performance improvements in defect detection 

accuracy than a practice condition.  Similar research (Mehta, Sadasivan, Greenstein, 

Gramopadhye, & Duchowski, 2005) compared the training effectiveness of different 

types of expert feedforward training strategies and found that presentation of expert scan 

data with a decaying trace (fixations remaining on the screen for a brief period of time 

before disappearing) resulted in a mean gain in number of defects detected after training 

five times greater than a practice condition.  Additionally, Nalanagula et al. (2006), 

examined the effect of a similar feedforward strategy for a circuit board inspection task 

with an additional comparison of static, dynamic and hybrid (static + dynamic) expert 

scan feedforward strategies.  The results indicated that feedforward of expert scan paths 

improved circuit board defect detection by 26% higher levels than those without.  Results 

also indicated that dynamic or hybrid display techniques, which include the development 

of the expert’s search pattern in ‘real’ time (i.e., showing the scan unfold to illustrate, not 

only the pattern, but the chronological and temporal components of the scan) are better 

suited as feedforward training displays than static displays which only display snapshot 

representations of scan paths and regions of interest.   
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 Eccles, Walsh, & Ingledew (2006) performed a study examining expert-novice 

differences in visual attention allocation in an orienteering task in which significant 

differences were found (Eccles et al., 2006).  Based on these findings, the researchers 

propose presenting expert models of attention allocation to show trainees how to allocate 

attention properly to relevant cues, including verbal guidance on when and how to 

allocate visual attention to relevant cues in the environment.   

 The success of expert feedforward training strategies is not surprising given 

findings in research on expertise.  Data from naturalistic studies suggests that experts 

have an ability to rapidly recognize critical cues, evaluate a situation and determine an 

appropriate plan of action, a phenomenon called “recognition-primed decision making” 

(Klein, 1993).  Novices and intermediates consistently fail to “see” the same critical cues 

for the identical situation.  If novices could be trained to utilize search strategies similar 

to experts, development of expertise may be accelerated.  This becomes quite feasible 

with the availability of eye tracking technology.  Multiple studies (e.g., Raab & Johnson, 

2007; White et al., 1997) have used eye tracking to extract information about expert scan 

strategies.  Eye tracking can aid in the assessment of perception through measurement of 

visual attention during observation via gaze, scan path, and fixation data.  The metrics 

can identify what Areas of Interest (AOI) were gazed upon and the amount of time the 

AOIs were gazed upon to drive the development of feedback. 

 Several of these training strategies lend themselves to training search strategy.  

Presentation of expert scan paths provides strong support for influencing trainee scan 

strategy, including both location to search and sequence of search.  Metacognitive 

strategies incorporating trainee scan paths could allow trainees to explore their own 
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performance and reflect on areas in which their performance differed from intentions or 

planned strategies.  Attentional weighting strategies which utilize highlighting can be 

leveraged to direct trainee attention to high priority areas or areas in which their 

performance differed from expected. Additionally, attentional weighting strategies which 

provide background information about features could be used to elaborate on why an area 

should be searched, targeting the conceptual aspect of search.  Process feedback, both 

graphical and statistical, could be used to provide trainees information with regards to 

how to allocate their attention both spatially and temporally.   

Tailored Feedback 

The strategies identified above could be made more effective by tailoring them to 

specific performance decrements.  The tailoring or individualizing of feedback to address 

specific trainee performance decrements has the ability to positively impact performance.  

Providing trainees with information relevant to what performance areas are in need of 

improvement allows them to focus on these areas during future performance.  Bloom 

(1984) defined what is referred to as the “2 Sigma Problem” in which trainees who 

received one-on-one instruction or tutoring perform two standard deviations above those 

receiving traditional classroom (i.e., group) training.  Bloom believed that through the 

tutoring process (i.e., one-on-one instruction) that all students have the potential to reach 

these levels.  Bloom described this traditional tutoring process as one which provides 

constant feedback facilitating a corrective process between the tutor and the trainee.  In 

order to mirror this method, training scientists have responded with the tailoring of 

feedback to target specific performance decrement.    
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Tailoring of feedback can happen at two levels: 1) tailor to the type of skill, and 

2) tailor to a specific error.  With respect to the first level, different feedback strategies 

can more effectively target certain types of knowledge or skills as different types of 

learning tasks require different instructional strategies and methods (Mory, 2004).  

Utilizing a feedback strategy which can most effectively impact the target skill allows 

feedback to be tailored to the specific skill decrement.  For instance, it may be most 

effective to incorporate a strategy such as those discussed above which have been shown 

effective in improving visual search.  With respect to the second level, as the main 

function of feedback lies in the correction of errors (Mory, 2004), tailoring the feedback 

to specific errors allows trainees a better understanding of deficiencies in their 

performance and how to improve upon these.  Incorporating elements of trainee search in 

comparison to expert search would allow the feedback to be tailored to specific trainee 

decrements.   

As a result, the above strategies could potentially be combined to provide a 

powerful training solution which supports trainees in extracting information from both 

expert scan paths and their own scan paths to guide improvements in search strategy.  

This level of tailored feedback, however, demands error analysis (i.e., what type of error 

was made); therefore a necessary component of tailored feedback is performance 

measurement and diagnosis.  

Performance Measurement and Diagnosis 

In order to provide effective feedback, it is necessary to capture relevant 

performance to facilitate the diagnosis of performance deficiencies.  Brannick and Prince 
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(1997) describe performance measurement as an investment in which one purchases 

information to inform decisions or actions.  In the case of training, these decisions/actions 

are how to provide training remediation.  There are multiple levels of performance 

measures which can be collected including outcome and process measures.  Outcome 

measures provide information regarding the overall outcome of performance (e.g., 

mission performance) indicating successful or not (Eddy, 1998).  Process measures 

provide a more granular level of measurement which facilitates monitoring of processes 

which contributed to outcome performance (Eddy, 1998).  These provide a richer set of 

data by which performance can be assessed and assist in identification of specific 

deficiencies or performance breakdowns.   

Multiple aspects of performance can be measured to facilitate performance 

assessment.  Behaviors can be measured to determine task steps which a trainee is 

performing, including time and accuracy of steps.  Behavioral measures allow direct 

measure of procedural skills (e.g., Are the correct steps being performed, in the right 

order?).  Communications are often measured to determine what information is being 

exchanged, between who and in what format (Smith-Jentsch, Zeisig et al., 1998).  These 

also can be used to assess procedural skills as well as team coordination skills (e.g., Are 

the trainees sharing the correct information with the right teammates?).   

Based on performance measures, performance diagnosis can then facilitate 

tailored feedback.  Performance diagnosis is the analysis of performance measures to 

provide a consolidated view of performance and performance errors and facilitates 

identification of the underlying causes of performance outcomes and deficient processes 

to allow instructors to provide meaningful feedback to correct these deficiencies (Salas, 
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Rosen, Burke, Nicholson, & Howse, 2007).  As errors are considered to be valuable 

opportunities to clarify misunderstandings in learners (Mory, 2004) this diagnosis serves 

as the cornerstone of tailored feedback.  The following sections describe methods for 

measuring and diagnosing visual search performance. 

Measuring Visual Search Performance 

While skills such as procedural and team coordination skills are relatively 

accessible for measurement due to their outward nature, this is not the case with 

measurement of perceptual skills such as visual search.  Task performance components 

which are purely perceptual are not easily measured as perceptual processes are internal 

processes.  Scanning behaviors, a manifestation of visual attention (Itti & Koch, 2001; 

Treisman & Souther, 1985) can be measured at a very gross level based on observable 

head movement, however, it is not possible to assess at a granular level what objects 

trainees are visually attending.  With respect to detection, this is a purely psychophysical 

process which is inaccessible to observers.  Overall outcome of the perceptual process 

(e.g., Was a target indicated as a threat?) is accessible and inference of process level 

performance results can be made.  However, ability to measure performance at a granular 

level has not been possible in the past as instructors/researchers are not able to assess the 

perceptual state (i.e., they only have access to the action resulting from the combination 

of these processes).  This level of assessment does not provide instructors the granularity 

necessary to build an accurate picture of the perceptual processes which took place 

during performance.   
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With increasing advancements in measurement technology, however, this is 

becoming more feasible.  For example, eye tracking offers researchers an additional set 

of metrics to aid in measuring performance of perceptual skills.  While easily observable 

actions and communications provide important information regarding performance (e.g., 

trainee did not engage threat), they often do not provide the level of data necessary to 

diagnose why certain performance decrements occur (e.g., he did not engage the target 

because 1) he did not search effectively, 2) he searched effectively, but did not detect the 

threat, etc.).  Subtle physical behaviors such as scanning patterns or internal perceptual 

processes such as detection that would reveal these answers are not currently accessible 

via behavioral metrics.  Researchers have started using eye tracking to measure 

perceptual processes such as visual attention in a driving task (Underwood, Chapman, 

Brocklehurst, Underwood, & Crundall, 2003) and visual search in a mammogram 

diagnosis task (Mello-Thoms, Nodine, & Kundel, 2002).  Wang, Chignell, and Ishizuka 

(2006) used eye tracking in an Intelligent Tutoring System (ITS) to monitor users 

attention and interests to personalize agent behaviors.  Jodlowski and Doane (2004) 

utilized eye tracking in development of a model of pilot action planning during simulated 

flight for intelligent tutoring, which uses eye tracking to model user knowledge based on 

which flight instruments the user fixates.  Such advances provide invaluable data in 

understanding how performance unfolded both with respect to scan path and fixation 

durations.  Although eye tracking facilitates the measurement of perceptual performance 

at a very granular level, it is necessary to transform this detailed data into meaningful and 

actionable performance diagnoses.  The following section discusses diagnosis methods 

for visual search. 
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Diagnosing Visual Search Performance 

The diagnosis of errors within procedural knowledge and skills performance have 

proven successful through event-based methods such as event based knowledge 

elicitation (Fowlkes, Salas, Baker, Cannon-Bowers, & Stout, 2000) and event-based 

approach to training (Fowlkes, Dwyer, Oser, & Salas, 1998) in which Targeted 

Acceptable Responses to Generated Events or Tasks (TARGETs) are used to elicit 

expected knowledge or procedural responses.  For these competencies, such diagnosis 

methods equate to measurement of behavioral actions and communications to verify if all 

steps in the procedures were followed and which steps were omitted or performed 

incorrectly.  Given adequate performance measurement design, this type of diagnosis can 

be made fairly accurately.  Other knowledge and skill types have proven more of a 

challenge for performance diagnosis.  For example, diagnosis of specific breakdowns 

within team performance has proven challenging as it is difficult to separate mutual 

performance monitoring, backup and feedback (Smith-Jentsch, Johnston, Payne, Cannon-

Bowers, & Salas, 1998).  Raters found it challenging to evaluate whether team members 

were monitoring one another’s activities unless someone on the team provided feedback 

or exhibited backup behavior (Smith-Jentsch, Johnston et al., 1998). 

With respect to the threat detection task, diagnosis has previously been limited by 

the limitations of performance measurement tools.  But as discussed above, with the 

emergence of eye tracking technology, information about a person’s perceptual state, 

once inaccessible, is becoming more available.  Several researchers have utilized eye 

tracking to diagnose perceptual performance deficiencies.  For example, researchers 
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studying radiographic interpretation have used eye tracking data to diagnose where in the 

perceptual process (i.e., search, recognition, decision) errors occur.  Nodine et al. (2002) 

make distinctions in the classification of errors in misdiagnosis in radiographic 

interpretation based on fixation duration, where lack of fixation is interpreted as a 

searching error, fixation for less than 1000 milliseconds and lack of indication of 

abnormality is interpreted as a recognition error, and fixation for greater than 1000 

milliseconds and failure to indicate as abnormality is a decision making error.  A visual 

dwell time of 1000 milliseconds is equated to detection as it is considered a significant 

allocation of visual attention (Nodine et al., 2002).  Manning & Ethell (2002) used a 

similar method to classify whether a radiographic interpretation error was due to lack of 

detection or recognition.  In this study missed lesions were dwelt on for an average of 

half the time of detected nodules but within a time thought to be acceptable for detection 

to occur (900 milliseconds); hence, the researchers interpretation was that observers were 

making recognition errors although they detected the nodules (Manning & Ethell, 2002).  

The researchers’ reasoning was that detection of a specific feature may occur but the 

decision that it is an abnormality (recognition) depends on higher order cognitive 

processes (Manning, Leach, & Bunting, 2000).  Errors in detection and decision making 

were determined based on fixation duration as it was seen as indicative of depth of 

information processing of image.  Similarly, Nodine, Krupinski, and  Kundel (1990) 

tested the hypotheses that long durations indicated detection but not necessarily 

recognition of perturbations in chest images.  This hypothesis was supported by the found 

effectiveness of their detection algorithm which detected true nodules solely by localizing 

them on the basis of the observers' long gaze durations. 
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Interestingly, similar methods have been used to decompose the mental rotation 

task into separate processes of search, transformation and confirmation stages based on 

fixation duration (Just & Carpenter, 1976).  The researchers propose that eye fixations 

can “reveal the sequence of mental operations” during a mental rotation task (Just & 

Carpenter, 1976, p. 459), which is precisely the goal of using such data in perceptual 

performance diagnosis.  These diagnosis methods could be extended to the military threat 

detection domain, however, research is needed to identify effective fixation duration 

thresholds for discriminating between perceptual processes.  Additionally, it is necessary 

to evaluate the validity and reliability of such diagnosis methods for a military threat 

detection task.   

Unique Contributions of Present Study 

This study has multiple unique contributions to the scientific community.  This is the 

first study to systematically and empirically evaluate the effectiveness of fixation 

duration-based metrics in diagnosing process level aspects of target detection.  Although 

several researchers to data have used these types of process level metrics (Manning & 

Ethell, 2002; Mello-Thoms, Dunn, Nodine, Kundel, & Weinstein, 2002; Nodine et al., 

2002), none have performed a systematic evaluation of the validity and reliability of these 

metrics based on actual observer scan data.  For instance, in Nodine et al. (2002) the 

determination of 1000 milliseconds as the threshold for a fixation duration-based metric 

to discriminate between missed chest nodules due to recognition or decision making 

errors was established based on previous research.  Specifically, it was based on research 

conducted by Hillstrom and Logan (1998) which explored visual search skills on a simple 
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laboratory conjunctive search task.  The 1000 millisecond fixation duration was 

considered to be a significant allocation of visual attention as this was inline with typical 

response times to detect a target of interest in this conjunctive search task.  Mello-Thoms 

et al. (2002) also used this threshold based on the same study as it showed that the mean 

response time for searching and identifying a target in a conjunction of features ranges 

from 800-1000 milliseconds.  Not only did this threshold come from a research paradigm 

using a simple laboratory task, but the times were based on response times, not fixation 

times as eye tracking was not employed (Hillstrom & Logan, 1998).  This present study 

will use previous research as a foundation, but derive the fixation duration-based metrics 

from scan data collected during the study and evaluate the validity and reliability of the 

metrics with data collected during the study. 

This study is also the first to empirically examine the presentation of trainee scan 

patterns and comparison of trainee to exert scan patterns as a training intervention.  

Although multiple studies have explored the use of expert scan as a training intervention 

(Mehta et al., 2005; Nalanagula et al., 2006; Sadasivan et al., 2005), none to date have 

examined the effects of presentation of trainee scan data on search performance or target 

detection performance.  This is likely due to the technology required to facilitate such 

feedback.  In order to be able to present a training intervention which incorporates trainee 

scan data, researchers must have access to technology which not only allows the 

collection of trainee scan data, but also facilitates the near real time presentation of this 

scan data over the associated stimulus.  Additionally, in order to ensure learning it is 

necessary to present the trainee scan data in a manner that allows trainees to extract 

meaningful information from the scan.  Currently, there is no commercial-off-the-shelf 
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technology that has this capability.  This study was part of a larger effort funded by the 

Office of Naval Research in which training technology was being developed.  As such, 

the capability to effectively present trainee scan data as a training intervention and allow 

trainees to compare their scan data to expert scan data was developed.  As a result, the 

present study was able to explore this training intervention and the ability for it to impact 

a trainee’s search strategy.   

The results of this study will provide new theoretical contributions to the training 

science community and evidence to support or contradict current theories related to 

search skills, including performance measurement and diagnosis and the impact of 

training interventions.  Additionally, the results will have generalizable implications for 

military threat detection training, specifically on the effectiveness of using eye tracking in 

search performance assessment and feedback.  The following chapter will detail the 

experiments conducted in the present study. 
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CHAPTER THREE: PRESENT STUDY 

Based on the above reviewed literature two key methods were developed which 

aimed to improve search skills.  First, a diagnosis method for deducing where in the 

perceptual process breakdowns occur (i.e., search, detect, recognize) based on eye 

tracking data was developed.  Second, an innovative feedback strategy for improving 

search strategies through the presentation of elements of expert and trainee scan data was 

developed.  The present study aimed to examine the effectiveness of these methods in 

training military search skills by empirically evaluating: 

1. If search performance can be effectively measured and discriminated from other 

perceptual processes (i.e., detection) utilizing eye tracking 

2. If newly developed search feedback strategies add training value over traditional 

feedback strategies used in the military domain   

Experiment 1 

 

The goal of Experiment 1 was to validate that the search metrics in the diagnosis 

method developed can effectively measure search skills and reliably differentiate between 

search and detection errors.  This method, developed based on the diagnosis method used 

by Nodine et al. (2002), aims to diagnose where in the perceptual process a breakdown 

occurs during military threat detection based on fixation durations.  Specifically when a 

target is missed (i.e., not indicated as a threat), based on whether there was a fixation on 

the target and how long that fixation was, the perceptual root cause of the error is 

diagnosed as being a search error, a detection error or a recognition error.  In order for 

this diagnosis method to be successful, it was necessary to identify an effective threshold 
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for diagnosing between detection and recognition errors (the threshold between search 

and detection is simply 0 milliseconds, i.e., whether the target was fixated or not).   

The threshold proposed for the above radiography examination task seemed 

inadequate given the different nature of the task (much more ill-defined targets).  

Research surrounding an Intelligence Imagery Analyst task seemed more applicable to 

the military threat detection task.  In evaluating the ability to use eye tracking to improve 

Imagery Analyst’s accuracy, Hale et al. (2007) found significantly greater average 

fixation durations associated with missed targets than non-targets.  As fixations on non-

targets are assumed to be scanned areas in which detection did not occur, given the 

significant difference in fixation duration, some fixations on missed targets are assumed 

to be areas in which detection occurred, however recognition did not.  This data suggests 

that a reasonable threshold for detection within this domain and potentially similar 

domains is 300 milliseconds.  Although a threshold for the military detection task was to 

be derived from data collected within this experiment, this initial threshold served as a 

point of reference which was used to guide experimentation.   

The perceptual performance diagnosis method evaluated is illustrated in Table 1 

below.  This is hereafter referred to as target-based diagnosis as it is performed based on 

a target being missed.  Specifically, if a target was missed and was not fixated on, a 

search error has occurred.  If a target was missed and fixated for less than the determined 

fixation duration threshold, a detection error has occurred.  If a target was missed and 

fixated for greater than the determined fixation duration threshold, a recognition error has 

occurred. 

 



41 

Table 1. Target-based Diagnosis Method (adapted from (Nodine et al., 2002)) 

Lack of Behavioral (Key press) Target Indication  

Target Absent Target Present 

Zero ms Correct Answer Search Error 

Short Duration* Correct Answer Detection Error 

Fixation  

Duration 

Long Duration* Correct Answer Recognition Error 

* Threshold between short/long duration will be set based on data collected within this study 

 

There was an opportunity to enrich this diagnosis method.  While this method was 

sufficient for discerning why a target was not indicated as a threat (i.e., whether it due to 

a search, detection or recognition error), it was not comprehensive in assessing search 

skills beyond target-specific performance.  For instance, if there were certain high 

priority areas that should be included in a search, trainees may have searched the small 

portion of these areas in which targets were located, however, may have neglected many 

of these areas which do not contain targets in that specific instance.  Although search 

strategies utilized were insufficient, the target-based diagnosis method would indicate 

good search performance as all targets were attended.  The errors associated with non-

target areas would have gone undiagnosed.   

Therefore it was also important to include a higher level diagnosis of search errors 

in which “where” the trainee attended as indicated by scan path is compared against 

where they should have attended, providing a more global measure of search 

performance.  Therefore the target-based diagnosis method was extended by adding a 

trial-based component to the evaluation of search performance, wherein search 

performance levels are diagnosed independent of targets.  This trial-based method is 

illustrated in Table 2.  Specifically, search performance is measured by percentage of 

high priority areas scanned.   
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Table 2. Trial-based Diagnosis Method 

 Metric Description 

Metric Behavioral Fixation Data 

Search 

Performance 

NA  % of high priority areas scanned  

Detection Error Target NOT Indicated as Threat Fixated on Target for Short Duration* 

Recognition Error Target NOT Indicated as Threat Fixated on Target for Long Duration* 

* Threshold between short/long duration will be set based on data collected within this study 

 

Given the extension of the Nodine et al. (2002) diagnosis to the military threat 

detection domain and the extension of the method from target-based to trial-based, it was 

necessary to evaluate this method to validate that it can effectively diagnose where 

breakdowns in perceptual performance occur and that it is predictive of outcome 

performance.  The focus of the first experiment in this effort was 1) to validate that the 

target-based performance diagnosis metrics could discriminate between search, detection 

and recognition errors in the military threat detection domain and 2) to validate that the 

newly developed trial-based performance diagnosis metrics are able to measure process 

level aspects of performance that are predictive of outcome performance (i.e., search and 

detection).   

To accomplish this, it was necessary to ensure both search and detection errors 

occurred.  A task analysis revealed several factors which contribute to the occurrence of 

search and detection errors.  For search, these parameters include large number of high 

priority areas in the scene which demand attention, large amounts of clutter and the 

presence of distracters.  As each of these increases, difficulty to search the area increases 

and search errors will result.  For detection, parameters which contribute to errors include 
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the levels of occlusion of a threat (e.g., 90% of a sniper rifle will be occluded in a good 

sniper hide) and orientation of the threat (e.g., rifle pointed straight at you is more 

difficult than one visible in a canonical view), both of which affect the visual size of the 

threat.  By varying these parameters and creating opportunities for search and detection 

breakdowns, the ability of the diagnosis method to effectively discriminate between 

search and detection errors could be examined. 

Diagnosis Metrics 

The first metrics are the target-based metrics and were designed to determine the 

perceptual root cause of the error (i.e., whether a search error, a detection error or a 

recognition error) when a target is missed.  The target-based metrics are calculated based 

on fixation durations on the target as follows:  

 

Table 3. Components of Target-based Diagnosis Method 

Error Type Fixation Duration on Target 

 

Search Error 

 

 

0 ms 

 

Detection Error 
 

 

0ms < X < 300ms 

 

Recognition Error 

 

 

300ms</=X 

*300ms detection threshold determined based on data collected in this study 

 

The second set of metrics are trial-based metrics and were based on the target-

based metrics but were designed to describe overall search and detection performance 

and trial outcome performance.  The trial-based metrics are calculated as follows: 
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Table 4. Components of Trial-based Diagnosis Method 

Metric Name Trial (Scenario) Based Performance Metrics 

 

Search  Performance 

 

 

Percentage of high priority areas that were fixated  

 

Detection Errors 
 

 

Number of targets fixated on but not indicated as threats  

 

Outcome Performance 

 

 

Percentage of targets indicated as threats via a key stroke & 

mouse click (Hit Rate). 

 

 

Hypothesis 1 

It is hypothesized (Hypothesis 1) that the above target-based metric can 

effectively (reliably and validly) diagnose where in the perceptual process (i.e., search, 

detect, recognize) breakdowns occur using eye tracking and behavioral data. 

Prediction 1.1 

It is predicted that there will be a significant difference between average fixation 

durations associated with non-threat fixations and threat fixations not indicated as threats 

(misses) as threat fixations will have instances in which detection occurs, resulting in a 

significant allocation of visual attention.  This difference will serve as the basis for the 

threat detection threshold.    

Prediction 1.2 

It is also predicted that for misses (i.e., trials in which the participant did not 

indicate a threat or incorrectly indicated a threat), there will be either instances of 0 

millisecond fixations on this threat (search errors), short fixations (detection errors) or 
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long fixations (recognition errors).  However, it is anticipated there will be fewer missed 

targets with long fixations (recognition errors) as there was only one type of threat 

(Dragunov sniper rifle) for which detection might prove challenging, but once detected, 

misinterpretation as a non-target is unlikely. 

Hypothesis 2 

It is also hypothesized (Hypothesis 2) that the above trial-based metrics can 

effectively (reliably and validly) discriminate between search and detection performance 

using eye tracking and behavioral data, by demonstrating: 

– Reliable discrimination between search and detection performance 

– Prediction of mission Outcome Performance as indicated by Hit Rate 

Prediction 2.1 

It is predicted that Search Performance (% of high threat areas attended) and 

Detection Errors (number of threats which were attended for short period of time but not 

indicated as threats) will both be significantly correlated with Outcome Performance (as 

indicated by Hit Rate), both accounting for a significant amount of independent variance. 

Method 

Participants 

Prior to recruiting any participants and collecting data, a power analysis was 

performed to estimate the number of participants needed to obtain sufficient statistical power.  

A power analysis was performed using the software G Power 3.0 (Faul, Erdfelder, Lang, 

& Buchner, 2007).  Using a small to moderate effect size of .3, for a repeated measures 
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within group ANOVA with 1 group and 40 repetitions, the software recommended a total 

sample size of 9 participants.  In addition, the same power analysis was performed using 

the effect size from a study which explored different fixation durations associated with 

threat detection in an intelligence analyst search task (Hale et al., 2007).  Using this effect 

size of .223 resulted in a recommended sample size of 15. 

Twenty participants took part in this experiment. They consisted of nine males 

and eleven female participants and ranged from 18 to 31 (mean=22.3, s.d.=4.2) years of 

age.  Most participants were student volunteers from a Southeastern University and were 

recruited through a University system and given either extra credit or monetary 

compensation for their participation.  Additionally, students and non students were 

recruited via flyers. 

Task 

Participants performed the experimental task using screenshots from the 

ObSERVE (Observational Skills Enhancement and Retainment Virtual Environment) 

desktop simulation testbed, a Delta 3D static Virtual Environment (VE).  The screenshots 

were presented via a personal computer including a Hewlett Packard Compaq dc5800 

Microtower desktop computer with Intel Core 2 Duo with 2.66GHz processors, 4GB 

RAM, GeForce 9800 GTX+ video card, a Dell 19 inch High Definition flatscreen 

monitor, and conventional keyboard and mouse.  Participant eye movement data was 

collected via an easyGaze
TM

 eye tracker, a noninvasive desk mounted eye tracker located 

in front of the flat screen display.  Performance data was collected from the eye tracker 

and the desktop computer via a performance assessment system which calculated 

behavioral and eye tracking metrics.   
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Figure 3. Experimental Apparatus 

 

 

Participants performed a static military threat detection task.  The task involved 

trainees being stationed at a virtual Observation Post (OP) in a Middle Eastern urban 

environment.  In the virtual OP environment, participants were stationed either in a 

building looking out of a window, on a rooftop or in an alleyway.  Participants were 

given 45 seconds to search the environment from this static location, by scanning the 

display.  Participants could respond before the 45 second limit, however, after 45 

seconds, their view of the environment was obstructed and they were prompted to 

indicate if there was a threat or not in the environment by clicking the Y button to 

indicate there was a threat and the N button to indicate no threat.  Upon participant 
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indication of threat present, the scenario view was again presented and they were then 

asked to point out the location of the threat via a mouse click.  They were given 

approximately 10 seconds to do so.  Upon mouse click to indicate location of threat or N 

button to indicate no threat, the trainee was advanced to next scenario.  Prior to 

performance, participants received pre-training, in which they were taught scanning 

strategies consisting of what areas are high priority and low priority as well as general 

rules for sequence of scan (e.g., high priority first, near to far).  Within the pre-training, 

participants were also given training on threats they were searching for, specifically the 

appearance of the Dragunov sniper rifle at various levels of occlusion and various 

orientations.  Participants then performed 40 scenarios in which there was either 0 or 1 

threat present. 

Experimental Design 

Experiment 1 was a within subjects repeated measures design.  All participants 

performed 40 trials, 20 of which had targets present.  To ensure ample opportunity for 

breakdowns in search and detection performance, search and detection difficulty were 

manipulated.  Half of the 40 trials had easy levels of search difficulty and half had 

difficult levels of search difficulty.  Of the 20 trials with targets, half of the trials had easy 

detection levels and half had difficult detection levels.  Difficulty breakdowns by trial are 

illustrated in Table 5 and operationalization of search difficulty and detection difficulty 

are presented in Tables 6 and 7, respectively.  
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Table 5. Experiment 1 Difficulty Levels by Trial 

Trials (40) 

Target Present (20) 

Detection Difficulty 

 

Easy Diff 

 

Target Not Present (20) 

 

Easy 

 

 

5 

 

5 

 

10 
 

 

Search Difficulty  

 

Diff 

 

 

5 

 

5 

 

10 

 

 

 

Table 6. Operationalization of Search Difficulty 

# High Priority Areas  

0 – 30 Areas Over 30Areas 

 

Low (0-30 pieces) 

 

 

E 

 

D 
 

 

Amount of 

Clutter  

High (Over 30 pieces) 

 

 

D 

 

D 

 

 

 

Table 7. Operationalization of Detection Difficulty 

Orientation  

0 (Canonical) -45 degrees 46 degrees - 

90 degrees 

 

Low (0-50%%) 

 

 

E 

 

D 

 

Occlusion 

 

High (51-99%) 

 

 

D 

 

D 
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Dependent Variables 

The following Dependent Variables (DVs) were measured: 

 

Table 8. Dependent Variables 

 

• Behavioral indication of threat: Y/N 

• Location (and object associated) of mouse click to indicate threat  

• Fixation Locations 

• Fixation Durations 

o Threat Fixations 

o Non Threat Fixations 

• Search Performance  = % High priority areas fixated 

• Search Errors = Number of threats not fixated and not indicated as threat 

• Detection Errors  =  Number of threats fixated < 300ms but not indicated as threat 

• Recognition Errors  =  Number of threats fixated >/=300ms but not indicated as threat 

• Outcome Performance = % of threats correctly indicated (hit rate) 

• Time to detect threat (Reaction time) 

 

 

 

Procedure 

Upon arrival, participants completed an informed consent form and a series of 

questionnaires and tests listed below in Table 9. 

 

Table 9. Questionnaires 

 

1. Demographics  

2. Visual Acuity 

3. Color Blindness 

4. Spatial ability 

a. Spatial Orientation 

b. Visualization 

c. Hidden Figures 

5. Cognitive Load 

6. Visual/Verbal Learning Style 
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Participants then received pre-training targeting both search and detection 

knowledge and skills necessary to perform the task.  Pre-training was presented via a 

power point presentation in which screen shots from the simulation were utilized to 

present target and scene examples.  Participants then performed the eye tracker 

calibration process and began experimental trial performance.  Participants performed the 

threat detection task over a series of 40 trials with no feedback given during training.  

Participants were then debriefed on the study and their participation. 

Results 

The analyses reported below were performed in SPSS 11.5 for windows, and all 

alpha levels were set to .05, unless otherwise specified.  Due to anticipated eye tracking 

data loss caused by excessive participant movement as well as poor candidacy of 

participants due to causes unknown, all data was screened to identify cases in which 

significant eye tracking data was missing.  To identify these cases, eye tracking based 

metrics were graphed using histograms to identify outliers.  Outlier data sets were further 

analyzed to determine if there was significant eye tracking data loss.  Those cases for 

which there was none or little eye tracking data for more than two trials were dropped.  

This data screening process resulted in the exclusion of one of the 20 participant cases 

which had significant amounts of eye tracking data loss, resulting in 19 participants 

involved in analysis reported below.  
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Individual Differences 

To assess individual difference effects on performance, the aptitude and 

demographic variables presented in Table 10 were correlated with Outcome Performance, 

Detection Errors, Search Performance and Reaction Time.     

 

Table 10. Aptitude and Demographic Variables 

 

Aptitude 

• Visual Acuity 

• Color blindness 

• Spatial Orientation 

• Visualization 

• Hidden Figures Ability 

• Visual Verbal Learning Style 

• Cognitive Load 

 

Demographic 

• Gender 

• Age 

• Highest Level of Education 

• SAT Score 

• Gaming Experience 

• Military Training Experience 

• Hunting Experience  

• Danger level of neighborhood growing up 

 

 

 

Table 11 presents the correlations of aptitude variables with performance and 

reaction time variables and Table 12 presents the correlations of demographic variables 

with performance and reaction time variables. 
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Table 11. Aptitude Variable Correlations with Performance and Reaction Time 

 

Aptitude 

Outcome 

Performance 

Detection 

Errors 

Search 

Performance 

Reaction 

Time 

Visual Acuity R = .21 

Sig = .35 

N = 22 

R = -.10 

Sig = .70 

N = 17 

R = .17 

Sig = .46 

N = 22 

R = .17 

Sig = .45 

N = 22 

Color blindness R = .21 

Sig = .36 

N = 22 

R = .00 

Sig = 1.0 

N = 17 

R = -.09 

Sig = .71 

N = 22 

R = -.23 

Sig = .30 

N = 22 

Spatial Orientation R = .36 

Sig = .10 

N = 22 

R = -.61** 

Sig = .01 

N = 17 

R = -.16 

Sig = .48 

N = 22 

R = -.07 

Sig = .77 

N = 22 

Visualization R = .47* 

Sig = .03 

N = 22 

R = -.54* 

Sig = .03 

N = 17 

R = -.20 

Sig = .38 

N = 22 

R = -.08 

Sig = .73 

N = 22 

Hidden Figures 

Ability 

R = .36 

Sig = .10 

N = 22 

R = -.26 

Sig = .31 

N = 17 

R = .23 

Sig = .31 

N = 22 

R = .15 

Sig = .49 

N = 22 

Visual Verbal 

Learning Style 

R = -.26 

Sig = .32 

N = 22 

R = -.32 

Sig = .23 

N = 17 

R = -.06 

Sig = .80 

N = 22 

R = -.07 

Sig = .77 

N = 22 

Cognitive Load R = -.10 

Sig = .66 

N = 22 

R = -.26 

Sig = .32 

N = 17 

R = .30 

Sig = .18 

N = 22 

R = .62** 

Sig = .00 

N = 22 

** p<.01 

* p<.05 
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Table 12. Demographic Variable Correlations with Performance and Reaction Time 

Demographics Outcome 

Performance 

Detection 

Errors 
Search 

Performance 

Reaction 

Time 

Gender R = -.28 

Sig = .20 

N = 22 

R =.21 

Sig = .43 

N = 17 

R = -.10 

Sig = .67 

N = 22 

R = -.11 

Sig = .64 

N = 22 

Age R = -.38 

Sig = .08 

N = 22 

R = .41 

Sig = .11 

N = 17 

R = .31 

Sig = .16 

N = 22 

R = .22 

Sig = .32 

N = 22 

Highest Level of 

Education 

R = -.44* 

Sig = .04 

N = 22 

R = .27 

Sig = .29 

N = 17 

R = .02 

Sig = .93 

N = 22 

R = -.09 

Sig = .68 

N = 22 

SAT Score R = -.03 

Sig = .93 

N = 14 

R = .31 

Sig = .39 

N = 10 

R = -.21 

Sig = .47 

N = 14 

R = -.24 

Sig = .40 

N = 14 

Gaming Experience R = .02 

Sig = .92 

N = 22 

R = -.06 

Sig = .83 

N = 17 

R = -.31 

Sig = .16 

N = 22 

R =- .34 

Sig = .12 

N = 22 

Military Training 

Experience 

R = -.05 

Sig = .84 

N = 22 

R = .33 

Sig = .20 

N = 17 

R = .63** 

Sig = .00 

N = 22 

R = .37 

Sig = .09 

N = 22 

Hunting Experience  R = .38 

Sig = .08 

N = 22 

R = -.45 

Sig = .07 

N = 17 

R = .15 

Sig = .51 

N = 22 

R = .14 

Sig = .52 

N = 22 

Danger level of 

neighborhood growing up 

R = -.14 

Sig = .54 

N = 22 

R = -.26 

Sig = .32 

N = 17 

R = -.28 

Sig = .20 

N = 22 

R = -.26 

Sig = .24 

N = 22 

** p<.01 

* p<.05 

 

 

No consistent patterns of individual difference effects on performance emerged, 

although the spatial ability aptitude of Spatial Orientation (SO) was highly and 

significantly correlated with number of Detection Errors and the spatial ability aptitude of 

Visualization (VZ) was moderately and significantly correlated with Outcome 

Performance and number of Detection Errors.  Based on these findings, SO and VZ were 

tested as covariates for the following analyses; however, as neither were statistically 

significant covariates, they were excluded in the analyses.      
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Analysis 1.1:  Average Fixation Durations 

Analysis 1.1 was performed to identify a fixation duration threshold which 

represents the difference between 1) a missed target fixated, however, not for a 

significant amount of time indicating the participant did not detect the target (detection 

error) and 2) a missed target fixated for a significant amount of time indicating a level of 

detection (recognition error).  To identify this threshold, average fixation durations were 

calculated for the following types of Area of Interest (AOI) categories included in Table 

13. 

 

Table 13. AOI Categories 

 

• Non-target fixations in trials without targets (AOI Type 1) 

• Non-target fixations in trials with missed targets that were not fixated (AOI Type 2) 

• Non-target fixations in trials with missed targets that were fixated (AOI Type 3) 

• Target fixations in trials with missed targets that were fixated (AOI Type 4) 

• Non-target fixations in trials with targets that were found (Hits; AOI Type 5) 

• Target fixations in trials with targets that were found (Hits; AOI Type 6) 

 

 

 

The average fixation durations and standard deviations in milliseconds for each of 

these AOI categories are summarized in Table 14 below. 

 

Table 14. Average Fixation Durations 

 Trials with: 

 No Target Missed Target Not 

Fixated 

Missed Target 

Fixated 

Hit Target 

Target Avg Fix 

Duration (ms) 

 

NA 

 

NA 

 

212 (42)4 

 

294 (56)6 

Non-Target Avg 

Fix Duration (ms) 

 

204 (11)1 

 

206 (18)2  

 

207 (19)3 

 

241 (22)5 

* AOI Type Number 
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A repeated measures ANOVA was performed between average fixation durations 

associated with these AOI categories.  The analysis revealed that type of AOI had a 

significant effect (F(5, 90) = 27.85, p<.01, partial η2 
= .61.) on average fixation duration.  

Post hoc tests were performed using Tukey’s LSD to determine where significant 

differences lie.  Post hoc analyses revealed significant differences between average 

fixation durations of AOI types 1 and 5 above (p<.01), 1 and 6 (p<.01), 2 and 5 (p<.01), 2 

and 6 (p<.01), 3 and 5 (p<.01), 3 and 6 (p<.01), 4 and 6 (p<.01), and 5 and 6 (p<.01). 

Given the lack of significant difference between AOI Type 3 and 4 average fixation 

durations as predicted in prediction 1.1, the results of the above analysis prevent 

determination of a fixation duration threshold between detection and recognition errors.  

As such, multiple fixation durations thresholds were evaluated in analysis 1.2 and 2.1 to 

determine an effective threshold. 

Analysis 1.2: Missed Target Eye Tracking Response 

Analysis 1.2 was performed to further analyze missed targets based on eye 

tracking data.  Using behavioral metrics of whether a target was indicated or not (Yes/No 

response) and once indicated if the target was correctly located (via a mouse click), 

responses were categorized into Hit (H), Miss (M), False Alarm (FA), and Correct 

Rejection (CR) as illustrated in Table 15. 

Table 15. Target Behavioral Response Categorization 

Said Response  

Yes No  

 

Yes 

H  

(Correct 

Location) 

M 

(Incorrect 

Location) 

   

M 
 

 

Target Present 

 

No 

 

 

FA 

 

CR 
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Based on the four detection thresholds identified above (200ms, 250ms, 300ms, 

350ms), misses were further analyzed to determine if the miss was due to a search error, a 

detection error, or a recognition error based on fixation duration as follows:   

 

Table 16. Missed Target Eye Tracking Response Categorization 

 Fixation Duration 

 

Search Error 

 

 

0 ms 

 

Detection Error 

 

 

0ms < X < detection threshold (ms) 

 

Recognition Error 

 

 

Detection threshold (ms) </= X 

 

 

A total of 162 misses occurred across all participants over the 40 scenarios.  Table 

17 summarizes the breakdown (number and percentage) of the errors which fall into each 

of the three error categories across the 4 detection thresholds under evaluation. 

 

Table 17. Missed Target Eye Tracking Response Statistics (Number (Percentage)) 

 200Threshold 250Threshold 300Threshold 350Threshold 
 

Search Error 

 

 

121 (74%) 

 

121 (74%) 
 

121 (74%) 
 

121 (74%) 

 

Detection Error 

 

 

14 (9%) 

 

19 (12%) 

 

27 (17%) 

 

32 (20%) 

 

Recognition Error 

 

27 (17%) 

 

 

22 (14%) 

 

14 (9%) 

 

9 (6%) 
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Analysis 2.1: Sequential Multiple Regression 

Analysis 2.1 was performed with two goals.  The first goal was to evaluate if the 

Search Performance and Detection Error metrics were meaningful and unique metrics 

which were predictive of Outcome Performance.  The second goal was to determine the 

optimal fixation duration detection threshold (fixation duration on a target over which a 

level of detection is assumed) by comparing regression models created based on an array 

of different thresholds.  Four Sequential Multiple Regression analyses were performed 

with Search Performance and Detection Errors as predictors and Outcome Performance 

as criterion.  Detection Errors varied between these four analyses based on the four 

different fixation duration thresholds selected based on findings from analysis 1.1: 

200ms, 250ms, 300ms and 350 ms. 

 200ms Threshold 

A sequential multiple regression was performed with predictors of Search 

Performance and Detection Errors calculated using a 200 millisecond fixation duration 

threshold and Outcome Performance as a criterion.  R was not significantly different from 

zero at the end of each step.  After the second step with all Independent Variables (IVs) 

in the equation, R = .52, F (2, 16)=2.97, p>.05.  After step 1, with Detection Errors in the 

equation, R
2
 =.20, Finc(1, 17)=4.25, p>.05.  Detection performance when detection 

threshold is set to 200  did not contribute to a significant amount of Outcome 

Performance variance.  After step 2, with Search Performance added to Detection Errors 

to predict Outcome Performance, R
2
=.27, (adjusted R

2
=.18), Finc (1, 16)=1.55, p>.05.  
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The addition of search performance did not significantly improve the amount of variance 

accounted for.  Results are presented in Table 18. 

 

Table 18. Sequential Multiple Regression for 200ms Detection Threshold 

Source SS df MS F Sig 

Regression .10 2 .05 2.97 .08 

Residual .26 16 .02   

Total .35 18    

      

Predictor Coeff SE t Sig  

Constant .45 .15 2.97 .01  

Detection Errors -0.08 .04 -2.32 .03  

Search Performance .004 .003 1.25 .23  

      

R2 = .27 R2
adj = .18    

 

250ms Threshold 

A sequential multiple regression was performed with predictors of Search 

Performance and Detection Errors calculated using a 250 millisecond fixation duration 

threshold and Outcome Performance as a criterion.  R was not significantly different from 

zero at the end of each step.  After the second step with all IVs in the equation, R = .63, F 

(2, 16)=5.30, p<.05.  After step 1, with Detection Errors in the equation, R
2
 =.35, Finc (1, 

17)=9.08, p<.01.  After step 2, with Search Performance added to Detection Errors to 

predict Outcome Performance, R
2
=.40, (adjusted R

2
=.32), Finc (1, 16)=1.34, p>.05.  The 

addition of search performance did not significantly improve the amount of variance 

accounted for by detection errors alone.  Results are presented in Table 19. 
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Table 19. Sequential Multiple Regression for 250ms Detection Threshold 

Source SS df MS F Sig 

Regression .14 2 .07 5.29 .02 

Residual .21 16 .013   

Total .35 18    

      

Predictor Coeff SE t Sig  

Constant .51 .14 3.72 .00  

Detection Errors -0.09 .03 -3.15 .01  

Search Performance .003 .003 1.16 .27  

      

R2 = .40 R2
adj = .32    

 

300ms Threshold 

A sequential multiple regression was performed with predictors of Search 

Performance and Detection Errors calculated using a 300 millisecond fixation duration 

threshold and Outcome Performance as a criterion.  R was significantly different from 

zero at the end of each step.  After the second step with all IVs in the equation, R = .81, F 

(2, 16)=15.63, p<.01.  After step 1, with Detection Errors in the equation, R
2
 =.51, Finc (1, 

17)=17.81, p<.01.  After step 2, with Search Performance added to Detection Errors to 

predict Outcome Performance, R
2
=.66, (adjusted R

2
=.62), Finc (1, 16)=7.08, p<.05, 

significantly improving the amount of variance accounted for.  Results are presented in 

Table 20. 
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Table 20. Sequential Multiple Regression for 300ms Detection Threshold 

Source SS df MS F Sig 

Regression .23 2 .12 15.63 .00 

Residual .12 16 .01   

Total .35 18    

      

Predictor Coeff SE t Sig  

Constant .43 .10 4.21 .00  

Detection Errors -.09 .02 -5.48 .00  

Search Performance .01 .002 2.66 .02  

      

R2 = .66 R2
adj = .62    

 

350ms Threshold 

A sequential multiple regression was performed with predictors of Search 

Performance and Detection Errors calculated using a 350 millisecond fixation duration 

threshold and Outcome Performance as a criterion.  R was significantly different from 

zero at the end of each step.  After the second step with all IVs in the equation, R = .81, F 

(2, 16)=14.97, p<.01.  After step 1, with Detection Errors in the equation, R
2
 =.54, Finc (1, 

17)=19.59, p<.01.  After step 2, with Search Performance added to Detection Errors to 

predict Outcome Performance, R
2
=.65, (adjusted R

2
=.61), Finc (1, 16)=5.34, p<.05, 

significantly improving the amount of variance accounted for.  Results are presented in 

Table 21. 
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Table 21. Sequential Multiple Regression for 325ms Detection Threshold 

Source SS df MS F Sig 

Regression .23 2 .12 14.96 .00 

Residual .12 16 .01   

Total .35 18    

      

Predictor Coeff SE t Sig  

Constant .47 .10 4.50 .00  

Detection Errors -.08 .02 -5.36 .00  

Search Performance .01 .002 2.31 .03  

      

R2 = .65 R2
adj = .61    

 

 

Results revealed that the 300 millisecond threshold resulted in the model which 

accounts for the greatest amount of Outcome Performance variance.  Intercorrelations of 

performance variables based on this 300 millisecond threshold and reaction time are 

presented in Table 22. 

 

Table 22. Intercorrelation of Performance and Reaction Time Variables (N=22) 

 

 

1 2 3 4 

1. Outcome Performance 1    

2. Detection Errors -.67** 1   

3. Search Performance .09 .37 1  

4. Reaction Time .06 .33 .84** 1 

 

Mean .57 1.55 49.07 25.70 

Standard Deviation .13 1.34 10.33 7.46 

** p<.01 

* p<.05 



63 

Additional Analyses 

Additional analyses were performed to explore the effects of search difficulty and 

detection difficulty on Outcome Performance, Detection Errors, Search Performance and 

Reaction Time.   

Detection Difficulty and Search Difficulty Effects 

Participant scores on these four metrics for the twenty trials which contained a 

target were aggregated (averaged) for each individual participant across trials for each of 

the following 4 categories: Easy Detect Easy Search (EDES), Easy Detect Difficult 

Search (EDDS), Difficult Detect Easy Search (DDES), Difficult Detect Difficult Search 

(DDDS).  Four repeated measures ANOVAs were performed with IVs of search 

difficulty and detection difficulty and DVs of Outcome Performance, Detection Errors, 

Search Performance and Reaction Time.  A MANOVA was not used due to lack of high 

correlations between all dependent variables. 

Outcome Performance 

A repeated measures ANOVA was performed on Outcome Performance (hit rate) 

for the four difficulty categories mentioned above.  The analysis revealed that detection 

difficulty had a significant effect (F(1, 18) = 238.77, p<.01, partial η2
=.93) on Outcome 

Performance with performance decreasing with increasing detection difficulty.  The 

analysis also revealed that search difficulty had a significant effect (F(1, 18) = 9.15, 

p<.01, partial η2
=.34) on Outcome Performance with performance levels increasing with 

increasing levels of search difficulty.  There was also a significant interaction (F(1, 18) = 
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5.73, p<.05, partial η2
=.24).  The means and standard deviations are presented in Table 

23 and the data are illustrated in Figure 4.    

 

Table 23. Detection Difficulty and Search Difficulty Effects on Outcome Performance 

 Search Difficulty 

Detection Difficulty Easy Difficult 

Easy mean = .78 

s.d.= .15 

mean =.81 

s.d.= .16 

Difficult mean = .24 

s.d.= .17 

mean = .41 

s.d.= .24 
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Figure 4. Detection Difficulty and Search Difficulty Effects on Outcome Performance 
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Detection Errors 

 

A repeated measures ANOVA was performed on Detection Errors for the four 

difficulty categories mentioned above.  The analysis revealed that detection difficulty had 

a significant effect (F(1, 18) = 16.88, p<.01, partial η2
=.48) on Detection Errors with 

errors increasing with increasing detection difficulty.  The analysis revealed that search 

difficulty had no significant effect on Detection Errors (p>.05) and there was no 

significant interaction between detection difficulty and search difficulty (p>.05).  The 

means and standard deviations are presented in Table 24 and the data are illustrated in 

Figure 5.    

 

Table 24. Detection Difficulty and Search Difficulty Effects on Detection Errors 

 Search Difficulty 

Detection Difficulty Easy Difficult 

Easy mean = .02 

s.d.= .06 

mean = .02 

s.d.= .06 

Difficult mean =  .11 

s.d. = .12 

mean =  .15 

s.d. = .19 
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Figure 5. Detection Difficulty and Search Difficulty Effects on Detection Errors 

 

Search Performance 

 

A repeated measures ANOVA was performed on Search Performance for the four 

difficulty categories mentioned above.  The analysis revealed that detection difficulty had 

a significant effect (F(1, 18) = 32.49, p<.01, partial η2
=.64) on Search Performance with 

performance increasing with increasing detection difficulty.  The analysis also revealed a 

significant effect of search difficulty (F(1, 18) = 5.25, p<.05, partial η2
=.23) on Search 

Performance, with performance increasing as search difficulty increases.  There was also 

a significant interaction (F(1, 18) = 5.40, p<.05, partial η2
=.23).  The means and standard 

deviations are presented in Table 25 and the data are illustrated in Figure 6.    
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Table 25. Detection Difficulty and Search Difficulty Effects on Search Performance 

 Search Difficulty 

Detection Difficulty Easy Difficult 

Easy mean = 34.96 

s.d.= 10.92 

mean = 35.05 

s.d.= 10.51 

Difficult mean = 41.40 

s.d.= 8.74 

mean = 48.96 

s.d.= 10.81 
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Figure 6. Detection Difficulty and Search Difficulty Effects on Search Performance 

 

Reaction Time 

 

A repeated measures ANOVA was performed on Reaction Time for the four 

difficulty categories mentioned above.  The analysis revealed that detection difficulty had 

a significant effect (F(1, 18) = 68.49, p<.01, partial η2
=.79) on Reaction Time with 
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Reaction Time increasing with increasing detection difficulty.  The analysis revealed no 

significant effects of search difficulty on Reaction Time (p>.05) and there was a not a 

significant interaction (p>.05).  The means and standard deviations are presented in Table 

26 and the data are illustrated in Figure 7.    

 

Table 26. Detection Difficulty and Search Difficulty Effects on Reaction Time 

 Search Difficulty 

Detection Difficulty Easy Difficult 

Easy mean = 13.46 sec 

s.d.= 5.83 sec 

mean =14.00 sec 

s.d.= 7.48 sec 

Difficult mean =  24.56 sec 

s.d. = 7.50sec 

mean =  23.71 sec 

s.d. = 6.39 sec 
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Figure 7. Detection Difficulty and Search Difficulty Effects on Reaction Time 
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Search Difficulty and Target Presence Effects 

In order to assess search difficulty effects on performance across all trials, 

including interactions with target present or not, participant scores on Search 

Performance and Reaction Time for all trials were aggregated across trials for each of the 

following 4 categories: Target Not Present, Easy Search (NTES), Target Not Present, 

Difficult Search (NTDS), Target Present, Easy Search (TES), Target Present, Difficult 

Search (TDS).  Outcome Performance and Detection Errors were not included as they 

required a target present to calculate.  Two repeated measures ANOVAs were performed 

with IVs of search difficulty and target present and DVs of Search Performance and 

Reaction Time.   

Search Performance 

 

A repeated measures ANOVA was performed on Search Performance for the four 

categories mentioned above.  The analysis revealed that target presence had a significant 

effect (F(1, 18) = 92.30, p<.01, partial η2
=.84) on Search Performance with performance 

decreasing with a target present.  The analysis also revealed significant effects of search 

difficulty (F(1, 18) = 8.59, p<.01, partial η2
=.32) on Search Performance with 

performance increasing with increasing search difficulty.  There was not a significant 

interaction (p>.05).  The means and standard deviations are presented in Table 27 and the 

data are illustrated in Figure 8.    
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Table 27. Search Difficulty and Target Presence Effects on Search Performance 

 Target Presence 

Search Difficulty Target Not Present Target present 

Easy mean = 52.65 

s.d.= 13.83 

mean =37.97 

s.d.= 8.82 

Difficult mean =  55.95 

s.d. = 10.44 

mean =  42.00 

s.d. = 8.97 
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Figure 8. Search Difficulty and Target Presence Effects on Search Performance 

 

Reaction Time 

 

A repeated measures ANOVA was performed on Reaction Time for the four 

difficulty categories mentioned above.  The analysis revealed that target presence had a 

significant effect (F(1, 18) = 63.10, p<.01, partial η2
=.78) on Reaction Time with 

Reaction Time decreasing with a target present.  The analysis also revealed that search 
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difficulty had a significant effect (F(1, 18) = 9.92, p<.01, partial η2
=.36) on Reaction 

Time with Reaction Time increasing with increasing search difficulty.  There was also a 

significant interaction (F(1, 18) = 6.83, p<.05, partial η2
=.28).  The means and standard 

deviations are presented in Table 28 and the data are illustrated in Figure 9.    

 

Table 28. Search Difficulty and Target Presence Effects on Reaction Time 

 Target Presence 

Search Difficulty Target Not Present Target present 

Easy mean = 28.40 sec 

s.d.= 10.46 sec 

mean =18.42 sec 

s.d.= 5.95 sec 

Difficult mean =  33.01 sec 

s.d. = 10.06 sec 

mean =  18.85 sec 

s.d. = 5.97 sec 
    
 

 

 

Search Difficulty

Diff icultEasy

R
e

a
c
ti
o

n
 T

im
e

 (
m

s
)

40000

30000

20000

10000

Target Presence

Not Present

Present

 

Figure 9. Search Difficulty and Target Presence Effects on Reaction Time 
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Discussion 

Experiment 1 aimed to examine the effectiveness of utilizing eye tracking data to 

measure and diagnose search performance and performance deficiencies, by investigating 

1) how effectively the method could identify where in the perceptual process breakdowns 

occur (i.e., search, detection, recognition) and 2) how reliably it could predict Outcome 

Performance and differentiate Search Performance from other perceptual processes (i.e., 

detection).  Based on existing research, it was hypothesized that the diagnosis method 

would provide training practitioners and training science researchers with an effective 

method that facilitates identification of the perceptual root cause of target misses, 

allowing them to better understand process level performance deficiencies and tailor 

training remediation to address these deficiencies.   

The results provide significant support for the effectiveness of the eye tracking-

based diagnosis method.  Utilizing fixation duration measurements, an effective threshold 

was determined which facilitated the target-based diagnosis of the perceptual root cause 

of target misses, specifically whether the  miss was due to a search error, detection error 

or recognition error.  This level of perceptual performance diagnosis gives practitioners 

and researchers access to perceptual processes previously inaccessible.  Additionally, 

when these metrics were extended to diagnose trial based performance, they proved to be 

valid and reliable metrics predictive of Outcome Performance.  These findings show 

promise for the effectiveness of utilizing eye tracking to better understand perceptual 

performance, including performance on sub processes such as search and detection and 

how these contribute to Outcome Performance.  Such findings have far reaching 
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implications for practitioners and researchers alike.  Findings and implications are 

discussed in greater detail in the sections below.  

Target-based Diagnosis Method 

The goal of this analysis was to determine meaningful parameters with which to 

discriminate and classify perceptual errors.  The results indicate that, in fact, the method 

can discriminate three different types of errors which occur at 0 millisecond fixations, 

between 0 and 300 millisecond fixations and beyond 300 millisecond fixations, 

respectively.  Essentially, this indicates that there are three error categories for perceptual 

skills that are commensurate with the literature (i.e. search, detect, and recognize).  Being 

able to successfully measure these with advance technologies allows researchers to not 

only better understand how people process information perceptually, but also, the effects 

different influences have on the perceptual process (whether training remediation, 

neurological disorder or medical treatment).   

Fixation Duration Threshold 

Hypothesis 1 predicted that the average fixation duration target-based metric can 

effectively (reliably and validly) diagnose where in the perceptual process (i.e., search, 

detect, recognize) breakdowns occur using eye tracking and behavioral data.  This 

hypothesis was fully supported.  A fixation duration based threshold was identified which 

allowed the classification of errors into three categories of search, detection and 

recognition.    Although this threshold was not determined as originally anticipated 

(based on the average fixation durations of non-target verses. missed target fixations, 

which was not significantly different), an alternate method resulted in success.  Based on 
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the 300 millisecond threshold from the literature (Hale et al., 2007) and the average 

fixation durations resulting from Analysis 1.1, multiple potential thresholds were 

identified.  These four thresholds (200ms, 250ms, 300ms, 350ms) were then used to 

categorize target misses into error categories and to calculate trial-based metrics to 

correlate with Outcome Performance.  Based on the findings from these two analyses it 

was determined that 300 milliseconds was the most meaningful and effective threshold 

for categorizing perceptual errors into detection and recognition errors.  The findings are 

discussed further in the following section. 

Missed Target Responses 

Hypothesis 1 (Prediction 1.2) which predicted that for missed targets there would 

be either instances of 0 millisecond fixations on this threat (search errors), short fixations 

(detection errors) or long fixations (recognition errors) was fully supported.  Using 

detection thresholds of 200, 250, 300, and 350 milliseconds, in all cases, misses fell into 

all three categories above.  The majority of misses (75%) fell into the search error 

category, regardless of detection threshold.  This was not surprising as all performers 

were novices.  As search was the first step in the target detection process, in most cases, 

these novices did not successfully accomplish this initial step, preventing progression to 

subsequent steps.  This is inline with extant research which has found that novices lack 

defined search strategies and spend less time than experts scanning relevant aspects of the 

environment (Jarodzka et al., 2009).   

At the lowest threshold (200ms) 9% of misses fell into the detection error 

category and 17% fell into the recognition error category.  As the detection threshold was 
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raised, as expected, an increasing number of misses fell into the detection error category.  

Greater numbers of misses fell into the recognition error category than the detection error 

category for thresholds of 200 and 250 milliseconds.  Greater numbers of misses fell into 

the detection error category than the recognition error category for thresholds of 300 and 

350.  At the highest threshold (350ms) 20% of misses fell into the detection category and 

6% fell into the recognition category.   

Error breakdowns associated with 200 and 250 millisecond thresholds were not  

inline with expected outcomes.  Given the homogeneous nature of the target, it is unlikely 

that more misses were due to recognition errors than detection errors.  As all targets were 

Dragunov sniper rifles which had very distinct features (long, straight black barrel, 

brown, angular butt).  Once these features were detected, it is unlikely participants would 

fail to recognize these cues as a portion of the rifle, except in the most difficult target 

conditions in which targets were heavily occluded and in non-canonical orientation.  

Therefore, these findings suggest a threshold of either 300 or 350 millisecond as a more 

meaningful detection threshold. 

Trial-based Diagnosis Method 

The goal of this analysis was to assess the validity and reliability of the metrics 

involved in extending the target-based diagnosis method used to identify the perceptual 

root cause of errors to the trial based level to assess overall threat detection performance.  

The results indicate the metrics are both reliable and valid as demonstrated by their 

effective prediction of Outcome Performance as well as their unique contributions to 

Outcome Performance.  Essentially, this indicates that not only can eye tracking be used 
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to effectively diagnose perceptual root cause of individual errors, but also to characterize 

performance on a larger scale over multiple scenarios and when no target misses occur.   

Hypothesis 2 predicted that the trial-based diagnosis method could discriminate 

between Search Performance and Detection Performance, as well as predict Outcome 

Performance based on these two metrics, and this hypothesis was fully supported.  The 

meaningfulness and uniqueness of the metrics which comprised this diagnosis method 

(Detection Errors, Search Performance) was demonstrated by showing that both metrics 

were significantly and independently correlated with Outcome Performance.       

As Outcome Performance was measured via Hit Rate, and misses (failures in 

Outcome Performance) were categorized into one of three error types (search error, 

detection error, recognition error) in the target based diagnosis method, an almost perfect 

prediction of Outcome Performance could be made with a combination of these three 

variables.  Given this, detection is a necessary element for successful Outcome 

Performance and thus Detection Errors were hypothesized to contribute a significant 

amount of variance to Outcome Performance.  As the goal with the trial-based diagnosis 

method was to also measure a unique element of search performance not being captured 

by the target-based method (independent of target location, is the trainee searching high 

priority areas?) it was hypothesized that in addition to Detection Errors, Search 

Performance, as measured by percentage of high priority areas scanned, would contribute 

a significant amount of variance to Outcome Performance as well.  These hypotheses 

were supported by the results of the sequential multiple regression in which 

approximately 66% of the variance was accounted for by the two metrics (approximately 

51% by Detection Errors and another 15% by Search Performance).  These results 
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suggest that the trial-based diagnosis method can discriminate between search 

performance and detection performance, as well as predict Outcome Performance based 

on these two metrics.   

The above regression findings are based on a detection threshold of 300 

milliseconds.  This threshold was determined to be the most optimal threshold by 

comparing the amount of variance accounted for by models based on 200, 250, 300 and 

350 millisecond thresholds.  The Outcome Performance regression model based on a 200 

millisecond threshold did not account for a significant amount of the variance, only 27%, 

with 20% due to Detection Errors and 7% due to Search Performance.  The Outcome 

Performance regression model based on a 250 millisecond threshold did account for a 

significant amount of the variance, approximately 40%, with a significant amount due to 

Detection Errors (35%) and an insignificant amount (5%) due to Search Performance.  

The Outcome Performance regression model based on a 300 millisecond threshold also 

accounted for a significant amount of the variance, 66%, with both Detection Errors 

(51%) and Search Performance (15%) contributing a significant amount of variance.  The 

Outcome Performance regression model based on a 350 millisecond threshold also 

accounted for a significant amount of the variance, 65%, with both Detection Errors 

(54%) and Search Performance (11%) contributing a significant amount of variance.   

As increasing the detection threshold from 300 to 350 milliseconds increased the 

opportunity for (and in this case the total number of) Detection Errors, it as a result 

increased the amount of variance incorporated into the model (i.e., variance once 

excluded as recognition error variance was now included as detection error variance).  If 

the 350 millisecond threshold was indeed a better or even equally good threshold for 
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discriminating detection and recognition errors, an increase in amount of overall variance 

accounted for should have resulted.  As increasing the detection threshold to 350 

milliseconds did not increase the variance accounted for, 300 milliseconds was chosen as 

the optimal fixation duration threshold to distinguish between detection and recognition 

errors.  This threshold is also in line with fixation duration data from previous research 

(Hale et al., 2007), which found significantly different average fixation durations 

associated with hit targets (723 milliseconds), non-target false alarms (483 milliseconds) 

missed targets (366 milliseconds), and correctly rejected non-targets (275 milliseconds).    

Average Fixation Durations 

The one prediction which was not supported was prediction 1.1 which stated that 

there would be a significant difference between average fixation durations associated 

with non-target fixations and missed target fixations.  This was originally intended to 

serve as the basis for the fixation duration threshold.  One possible explanation for this 

was that it was due to the nature of the scenarios.  Specifically, lack of significant 

differences may be due to the fact that misses were comprised more of detection errors 

than recognition errors.  As detection errors would have a fixation duration similar to that 

of a non-target fixation, if these were highly disproportional to the number of recognition 

errors (which would have higher fixation duration thresholds than non-targets), the 

average fixation duration associated with a miss would be decreased.   

This is a likely explanation as the uniformity of the target would make the 

detection of the target features much more challenging than recognition that the target 

features were associated with the target of interest.  As discussed above, all targets were 
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Dragunov sniper rifles and although they were presented in a range of different 

orientations and levels of occlusion, given the unique features of the rifle (i.e., long 

straight black barrel, brown angular rifle butt) it is likely that once a feature was detected, 

recognition would occur fairly easily.  If the number of detection and recognition errors 

were greatly disproportional (many more detection errors than recognition errors), the 

average fixation duration associated with missed threats would be much lower and much 

closer to non-threat average fixation durations than in cases in which equivalent number 

of detection and recognition errors occurred.  Hale et al. (2007) found difference as 

predicted, however, the task involved locating a more heterogeneous group of targets 

(white work trucks) which could vary in appearance.  Future experiments could 

investigate this prediction using scenarios in which the target of interest varied in 

perceptual appearance such adding IED targets ranging from gas tanks to garbage heaps.  

Such a situation would likely increase the number of recognition errors, hence increasing 

the average fixation duration associated with missed threats. 

Difficulty Effects 

Difficulty effects were examined via an exploratory analysis in an attempt to 

understand what effect detection difficulty (as operationalized via target orientation and 

levels of occlusion) and search difficulty (as operationalized via amount of clutter and 

number of high priority areas) had on performance accuracy, including Outcome 

Performance, Detection Errors, Search Performance and Reaction Time.   
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Detection Difficulty and Search Difficulty  

 

The key finding with respect to difficulty was that detection difficulty seemed to 

be the driving force behind performance.  For very easy to detect targets, the targets were 

found accurately and quickly, likely due the preattentive nature of the search required to 

detect these salient targets.  The more difficult the target was to detect, the lower the hit 

rate and the greater the reaction time.   This suggests that key drivers in both detection 

accuracy and reaction time are target aspects such as target difficulty.  Additionally, the 

number of Detection Errors was significantly influenced by detection difficulty.  

Increasing detection difficulty levels led to more Detection Errors.  Search Performance 

was also significantly affected by detection difficulty.  Interestingly, as detection 

difficulty increased, Search Performance also increased.  A plausible explanation is that 

difficult target detection scenarios may force performers to shift from a pre-attentive or 

parallel search to an attentive serial search, resulting in a more analytic/systematic search 

process, hence increasing the number of high priority areas scanned.   

Search difficulty did impact performance; however, it appeared to be less 

influential than detection difficulty and actually moderated by it.  Outcome Performance 

was significantly affected by search difficulty, however, not as expected.  As search 

difficulty increased, Outcome Performance actually increased.  As hypothesized above, 

this is likely due to performers being forced to systematically search for targets, resulting 

in performers scanning a larger percent of the high priority areas leading to improved 

detection of targets.  There was also an interesting interaction.  Search difficulty had very 

little effect on Outcome Performance when targets were easy to detect.  In these cases, 

performers quickly found the targets due to their salient nature, not requiring a systematic 
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search and therefore distracters had little effect.  However, when targets were difficult to 

detect, a serial self terminating search resulted and search difficulty (which is based 

partially on number of distracters) had a greater influence on whether these targets were 

found.  Search Performance was also significantly affected by search difficulty with 

Search Performance increasing with increasing search difficulty.  However, there was a 

significant interaction and in looking at the data, search difficulty only significantly 

affected Search Performance when detection difficulty was high and participants were 

forced into a serial self terminating search.  When difficulty was low, search difficulty 

had no impact as detection was likely driven by bottom up processes due to the saliency 

of the target.  Detection Errors were not significantly affected by search difficulty.  It 

seemed that the effect of target difficulty had much more effect on Detection Errors than 

the addition of clutter.   

These findings help shed light on the impact that search and detection difficulty 

manipulation can have on performance.  Additionally, the results indicate that the 

detection and search difficulty variations were strong enough to ensure breakdowns in 

both search and detection performance, however, it appears the search difficulty 

manipulation was not nearly as strong as the detection difficulty manipulation.  To 

manipulate search difficulty, the same background scene was used and clutter (including 

high priority area clutter) was added to the environment.  Given that the background 

contained a great deal of clutter, in future attempts to manipulate search difficulty, it may 

be more effective to use different backgrounds which vary in clutter and number of high 

priority areas. 
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Target Presence and Search Difficulty  

Both the presence of a target and search difficulty affected performance.  With the 

addition of a target, Search Performance increased over trials without a target.  This is not 

surprising; within target present trials there were trials in which targets were very easy to 

detect, leading to almost immediate indication of a target.  In such cases, few high 

priority areas were likely searched before detection.  However, for trials with no target, 

performers were likely to perform a serial self terminating search, continuing to search 

until the trial time was up and covering a greater percent of high priority areas.  Reaction 

Time was also significantly influenced by presence of a target.  Trials in which targets 

were present had shorter Reaction Times compared to trials in which no targets were 

present.  This is also likely due to the almost immediate detection of easy to detect targets 

vs. the exhaustive search for targets in trials in which they were not present.   

Search difficulty significantly impacted Search Performance, with increasing 

difficulty levels leading to increased performance.  As hypothesized above, this was 

likely due to the performers being forced to use a more systematic serial self terminating 

search in more difficult search situations.  Reaction Time was also significantly affected 

by search difficulty with Reaction Time increasing with increasing levels of difficulty.  

As trials became more difficult to search, performers took longer to search the 

environment; however, a significant interaction indicates that this is really only in trials 

without targets.  For trials in which targets were present, search difficulty had much less 

influence on Reaction Time than trials in which there were no targets present.  This is 

likely due to the extreme influence that detection difficulty had on Reaction Time, 

leaving little variability due to search difficulty. 
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Experiment 2 

The goal of Experiment 2 was to explore the training effectiveness of a newly 

developed search training strategy which incorporated elements of expert scan and 

trainee scan.  This training strategy provided process level search feedback which 

incorporated proven feedback strategies and provided support for the development of 

generalized search strategies.  The experiment aimed to evaluate the effectiveness of the 

feedback strategy components on the search and detection metrics validated in 

Experiment 1 to determine training value added over traditional Knowledge of Results 

(KR) feedback.  The following sections describe the newly developed eye tracking-based 

search training strategy. 

Visual Search Training Strategy 

 An innovative training strategy referred to as the “Expert + Trainee” search 

training strategy was developed by integrating aspects of expert performance models, 

metacognitive strategies, attentional weighting strategies and process level feedback.  

These strategies were combined into a feedback method which allowed the trainee to 

compare their search strategy to an expert’s, including where they scanned and how their 

scan unfolded.  This feedback strategy had four key elements.   

1. Expert Scan 

First, the presentation of expert scan data was used as the foundation of the training 

strategy.  This strategy provided trainees with a model of “good” performance, 

addressed both location and sequence aspects of search and has empirically proven 

successful in improving visual search in a range of domains.   
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2. Trainee Scan 

Second, in order to support development of trainee metacogntion, trainee scan data 

was presented to allow trainees to explore their actual performance and understand 

how it differed from their intended or perceived performance.   

3. Highlighting of Differences between Expert and Trainee Scan 

Third, differences between expert and trainee performance were highlighted to 

illustrate areas in need of improvement.  . 

4. Elaborative Feedback 

Fourth, given the complexity of scan data it may prove challenging for a novice to 

extract key elements intended to improve trainee performance and support the 

establishment of generalizable search strategies.  Therefore auditory elaboration on 

elements of these scan paths was included to facilitate learning.   

 These elements were combined into a two component module in which trainees 

were first presented with a “Where” component which targets the location aspect of 

search followed by a “How” component which targets the sequence aspect of search.  

These components are discussed and illustrated in the following section. 

“Where” Component of Search Training Strategy 

 The “Where” component was designed to aid trainees in developing an 

understanding of what areas are high vs. low priority and should or should not be 

searched, as well as developing a strategy which balances the time spent searching these 

two types of areas.  This component presents expert scan data (to illustrate desired/target 

performance) and trainee scan data (to facilitate metacognition) side by side with 

fixations color coded into high and low priority area fixations (in order to highlight 
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differences in search strategy, i.e., allocation of attention to high vs. low priority areas).  

Areas that an expert scanned that a trainee did not scan are highlighted with semi-

transparent, color-coded (high vs. low priority) squares to illustrate differences between 

target and actual performance and hence areas in need of improvement.   

 The module then steps through the objects that an expert fixated on, while a) 

highlighting associated fixations (i.e., with a green outline) and areas the expert scanned 

that the trainee did not scan (i.e., by filling in the boxes) and b) presenting auditory 

elaborative feedback of an expert commenting on the area and why it should/should not 

be scanned.    This auditory elaborative feedback was designed to aid in abstraction of a 

specific scan pattern to higher level strategies of where they should look in novel 

situations (e.g., “You should always search areas in the shadows such as alleys”).   This 

feedback addresses both perceptual and conceptual aspects of “where to look” and is 

illustrated in Figure 10 below. 
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Figure 10. Search Location Feedback 

 

   

“How” Component of Search Training Strategy 

 The “How” component was designed to aid trainees in developing systematic 

search strategies.  This component presents the dynamic unfolding of an expert scan next 

to a the dynamic unfolding of a trainee scan, alternating scan segments between the two 

to allow an understanding of where the expert started verses the trainee and differences in 

how their scan paths unfolded.  Specifically, the firsts ten fixations of an expert scan are 

presented, including color-coding of those associated with high vs. low priority areas.  

Upon completion of this unfolding, the firsts ten fixations of the trainee scan are 

presented, including color-coding of those associated with high vs. low priority areas. 

Upon completion of this unfolding, both sets of ten fixations turn to gray.  This pattern 

continues, alternating between the two scan paths and turning old portions of the scan 
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paths to gray until both scans are complete.  The trainee is cued auditorily to ensure 

attention to the correct scan through prompts such as “The expert started scanning here”, 

“You started scanning here”, “Then the expert scanned here”, “Then you scanned here”, 

“This is the last place the expert scanned”, and “This is the last place you scanned”.  This 

is illustrated in Figure 11 below.  

     

 

Figure 11.  Search Sequence Feedback 

      

Although the presentation of expert scan paths has been empirically proven to 

enhance search strategy across multiple domains (Nalanagula et al., 2006; Sadasivan et 

al., 2005), it is necessary to explore the effectiveness of the above proposed extensions to 

this method.  Not only is it necessary to explore the effectiveness of this training strategy 

as a whole compared to traditional Knowledge of Results (KR) feedback, it is also 

1

2

3
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important to determine which elements of this feedback (expert scan, trainee scan, or 

both) contribute to the effect.  Such is the goal of Experiment 2 of this effort. 

Hypothesis 3 

The newly developed search feedback strategy (expert scan + trainee scan) will 

improve search skills over traditional Knowledge of Results (KR) and both elements of 

expert scan and trainee scan will contribute to this success. 

Prediction 3.1 

Participants who receive training with elements of an expert scan will perform 

significantly better than those who do not receive elements of an expert scan in feedback 

in Search Performance, Detection Performance and mission Outcome Performance in the 

simulation post test.   

Prediction 3.2 

Participants who receive training with elements of a trainee scan will perform 

significantly better than those who do not receive elements of a trainee scan in feedback 

in Search Performance, Detection Performance and mission Outcome Performance in the 

simulation post test.   

 

Prediction 3.3 

Participants who receive training with elements of both expert and trainee scans 

will perform significantly better than those who do not receive both elements in feedback 

in Search Performance, Detection Performance and  mission Outcome Performance in the 

simulation post test.   
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Method 

Participants 

Prior to recruiting any participants and collecting data, a power analysis was 

performed to estimate the number of participants needed to obtain sufficient statistical power.  

A power analysis was performed using the software G Power 3.0 (Faul et al., 2007).  

Using standard deviations from a study which explored the effect of feedforward expert 

scan patterns on aircraft defect detection (Sadasivan, et al., 2005), an effect size of .385 

was calculated.  Using this effect size for a repeated measures within and between group 

ANOVA with 4 groups and 2 repetitions (pretest, posttest), the software recommended a 

total sample size of 48 participants.   

Sixty six participants took part in this experiment. They consisted of thirty three 

males and thirty three female participants and ranged from 18 to 25 (mean=18.9, 

s.d.=1.5) years of age.  All participants were student volunteers from a Southeastern 

University and were recruited through a University system or via flyers and given either 

extra credit or monetary compensation for their participation.   

Task 

Participants performed the same experimental task on the apparatus described in 

Experiment 1.  The only difference was the addition of feedback presented by the 

performance assessment system via the flat screen display.  Participants performed six 

pretest scenarios after which no feedback was given, eight training scenarios after which 

feedback was given according to experimental condition and six post test scenarios after 

which no feedback was given.  Sadasivan et al. (2005), found a significant performance 
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gain on airframe inspection after five trials of feedforward expert scan data and 

Nalanagula et al. (2006), found significant performance gains on circuit board inspection 

after three trials of feedforward expert scan data.  Therefore it was determined that eight 

trials with feedback would provide ample opportunity to impact performance.  Prior to 

performance, participants received pre-training, in which they were taught scanning 

strategies consisting of what areas are high priority and low priority, general rules for 

sequence of scan (e.g., high priority first, near to far) and details of the feedback they 

were to receive after each training trial, including how to interpret and use it to improve 

future performance.   

Experimental Design 

Experiment 2 was a 2x2x2 mixed factorial repeated measures design, with 

between subjects independent variables of Expert Scan (present vs. not present) and 

Trainee Scan (present vs. not present) and within subjects independent variable of trial 

(pretest vs. posttest).   Feedback conditions are listed in Table 29 and described in detail 

in Table 30. 

 

Table 29. Experiment 2 Feedback Conditions 

 

IV 2:  Trainee Scan 

IV1: Expert Scan 

 Present Not Present 

Present Expert + Trainee + KR+ Elaboration Trainee + KR+ Elaboration 

Not Present Expert + KR+ Elaboration KR + Elaboration 
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Table 30. Feedback Descriptions 

Type of Feedback Description 

1. KR + Elaborative 

Feedback 

a. First, audio and textual presentation of % of high threat areas attended.   

b. Second, presentation of scenario view with audio elaborative feedback 

regarding where they should be looking (i.e. high vs. low priority areas) 

and why. 

c. Third, presentation of scenario view for trainees to practice scanning scene. 

2. Expert Scan + KR 

+ Elaborative 

Feedback 

a. First, audio and textual presentation of % of high threat areas attended.  

b. Second, “Where” component described above with expert scan data and 

elaborative feedback only (i.e., expert fixations highlighted & associated 

audio). 

c. Third, “How” component described above with expert scan data only. 

3. Trainee Scan +  

KR  + Elaborative 

Feedback 

a. First, audio and textual presentation of % of high threat areas attended.  

b. Second, “Where” component described above with trainee scan data and 

elaborative feedback only. (i.e., trainee fixations highlighted & associated 

audio) 

c. Third, “How” component described above with trainee scan data only. 

4. Expert Scan + 

Trainee Scan + 

KR + Elaborative 

Feedback 

a. First, audio and textual presentation of % of high threat areas attended.  

b. Second, “Where” component as described above. 

c. Third, “How” component as described above. 

*Feedback was same duration in time across conditions 

 

 

Dependent Variables 

The following Dependent Variables (DVs) were measured: 

 

Table 31. Dependent Variables 

 

• Behavioral indication of threat: Y/N 

• Location (and object associated) of mouse click to indicate threat  

• Fixation Locations 

• Fixation Durations 

o Threat Fixations 

o Non Threat Fixations 

• Search Performance  = % High priority areas fixated 

• Search Errors = Number of threats not fixated and not indicated as threat 

• Detection Errors  =  Number of threats fixated < 300ms but not indicated as threat 

• Recognition Errors  =  Number of threats fixated >/=300ms but not indicated as threat 

• Outcome Performance = % (hit rate) of threats correctly indicated  

• Pre/Post Knowledge Test 

• Participant Feedback Form 
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Procedure 

Upon arrival, participants completed an informed consent form and a series of 

questionnaires and tests listed below in Table 32. 

 

Table 32. Questionnaires 

 

1. Demographics  

2. Visual Acuity 

3. Color Blindness 

4. Spatial ability 

a. Spatial Orientation 

b. Visualization 

c. Hidden Figures. 

5. Cognitive Load 

6. Visual/Verbal Learning Style 

 

 

 

Participants then received pre-training targeting both search and detection 

knowledge and skills necessary to perform the task.  Pre-training was presented via a 

power point presentation in which screen shots from the simulation were utilized to 

present target and scene examples.  Screenshots from the feedback modules were utilized 

to present feedback examples in order to facilitate trainee interpretation of feedback 

modules.  Participants then completed a paper and pencil knowledge test addressing 

search strategies including “Where to look”.  Participants then performed the eye tracker 

calibration process and began experimental trial performance.  Participants performed the 

threat detection task over a series of 20 trials, receiving no feedback after the first six 

trials, feedback according to condition after trials 7-14 and no feedback after trials 15-20.   

Participants then completed a different paper and pencil knowledge test addressing 
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“Where to look”.  Participants then filled out a Feedback form and were debriefed on the 

study and their participation. 

Results 

The analyses reported below were performed in SPSS 11.5 for windows, and all 

alpha levels were set to .05, unless otherwise specified.  Due to anticipated eye tracking 

data loss caused by excessive participant movement as well as poor candidacy of 

participants due to causes unknown, all data was screened to identify cases in which 

significant eye tracking data was missing.  Outlier data sets were further analyzed to 

determine if there was significant eye tracking data loss; those cases for which there was 

none or little eye tracking data for more than two trials were dropped.  This data 

screening process resulted in the exclusion of seven of the 66 participant cases, resulting 

in 59 participants involved in analysis reported below.  

Individual Differences 

To assess individual difference effects on performance, the aptitude and 

demographic variables presented in Table 10 above (See Experiment 1 Results section) 

were correlated with Outcome Performance, Detection Errors, and Search Performance 

both for pretest and post test.  Tables 33, 34, 35 and 36 present the correlations of 

aptitude and demographic variables with pretest and posttest performance variables, 

respectively. 
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Table 33. Aptitude Variable Correlations with Pretest Performance 

 

Aptitude 

Outcome 

Performance 

Detection Errors Search 

Performance 

Visual Acuity R = .22 

Sig = .09 

N = 59 

R = -.23 

Sig = .08 

N = 59 

R = -.10 

Sig = .46 

N = 59 

Color blindness R = .15 

Sig = .26 

N = 22 

R =-.13 

Sig = .35 

N = 59 

R = -.06 

Sig = .68 

N = 59 

Spatial Orientation R = .31* 

Sig = .02 

N = 59 

R = -.26* 

Sig = .04 

N = 59 

R = .21 

Sig = .11 

N = 59 

Visualization R = .17 

Sig = .20 

N = 59 

R = -.05 

Sig = .72 

N = 59 

R = .13 

Sig = .33 

N = 59 

Hidden Figures 

Ability 

R = .36** 

Sig = .01 

N = 59 

R = -.08 

Sig = .57 

N = 59 

R = -.02 

Sig = .91 

N = 59 

Visual Verbal 

Learning Style 

R = -.26 

Sig = .32 

N = 59 

R = -.32 

Sig = .23 

N = 59 

R = -.06 

Sig = .80 

N = 59 

Cognitive Load R = -.14 

Sig = .31 

N = 59 

R = .03 

Sig = .80 

N = 59 

R = .27 

Sig = .04 

N = 59 

** p<.01 

* p<.05 
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Table 34. Demographic Variable Correlations with Pretest Performance  

Demographics Outcome 

Performance 

Detection Errors Search 

Performance 

Gender R = -.06 

Sig = .68 

N = 59 

R =.01 

Sig = .95 

N = 59 

R = -.30 

Sig = .02 

N = 59 

Age R = .01 

Sig = .96 

N = 59 

R = .06 

Sig = .63 

N = 59 

R = -.10 

Sig = .44 

N = 59 

Highest Level of 

Education 

R =.06 

Sig = .65 

N = 59 

R = .03 

Sig = .84 

N = 59 

R = -.23 

Sig = .08 

N = 59 

SAT Score R = -.02 

Sig = .91 

N = 34 

R = -.01 

Sig = .97 

N = 38 

R = .03 

Sig = .87 

N = 34 

Gaming Experience R = .17 

Sig = .20 

N = 59 

R = -.06 

Sig = .56 

N = 59 

R = .28* 

Sig = .03 

N = 59 

Military Training 

Experience 

No Participants had military experience so no variability. 

Hunting Experience  R = .10 

Sig = .44 

N = 59 

R = .14 

Sig = .29 

N = 59 

R = .12 

Sig = .37 

N = 59 

Danger level of 

neighborhood growing 

up 

R = .12 

Sig = .38 

N = 59 

R = -.10 

Sig = .44 

N = 59 

R = .13 

Sig = .33 

N = 59 

** p<.01 

* p<.05 
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Table 35. Aptitude Variable Correlations with Posttest Performance 

 

Aptitude 

Outcome 

Performance 

Detection Errors Search 

Performance 

Visual Acuity R = .04 

Sig = .77 

N = 59 

R = -.14 

Sig = .29 

N = 59 

R = -.02 

Sig = .488 

N = 59 

Color blindness R = .10 

Sig = .46 

N = 22 

R = .10 

Sig = .45 

N = 59 

R = -.10 

Sig = .46 

N = 59 

Spatial Orientation R = .25 

Sig = .05 

N = 59 

R = -.66* 

Sig = .00 

N = 59 

R = .15 

Sig = .25 

N = 59 

Visualization R = .14 

Sig = .29 

N = 59 

R = -.19 

Sig = .15 

N = 59 

R = .12 

Sig = .37 

N = 59 

Hidden Figures 

Ability 

R = .28* 

Sig = .03 

N = 59 

R = -.38** 

Sig = .00 

N = 59 

R = -.05 

Sig = .71 

N = 59 

Visual Verbal 

Learning Style 

R = .19 

Sig = .15 

N = 59 

R = -.05 

Sig = .68 

N = 59 

R = .02 

Sig = .90 

N = 59 

Cognitive Load R = -.02 

Sig = .89 

N = 59 

R = -.10 

Sig = .44 

N = 59 

R = .10 

Sig = .44 

N = 59 

** p<.01 

* p<.05 
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Table 36. Demographic Variable Correlations with Posttest Performance 

Demographics Outcome 

Performance 

Detection Errors Search 

Performance 

Gender R = -.30* 

Sig = .02 

N = 59 

R =.16 

Sig = .21 

N = 59 

R = -.20 

Sig = .13 

N = 59 

Age R = -.11 

Sig = .40 

N = 59 

R = -.02 

Sig = .91 

N = 59 

R = .07 

Sig = .60 

N = 59 

Highest Level of 

Education 

R =-.18 

Sig = ..18 

N = 59 

R = .05 

Sig = .71 

N = 59 

R = -.04 

Sig = .74 

N = 59 

SAT Score R = -.08 

Sig = .66 

N = 34 

R = .15 

Sig = .39 

N = 38 

R = -.04 

Sig = .81 

N = 34 

Gaming Experience R = .20 

Sig = .12 

N = 59 

R = -.13 

Sig = .34 

N = 59 

R = .13 

Sig = .32 

N = 59 

Military Training 

Experience 

No Participants had military experience so no variability. 

Hunting Experience  R = -.05 

Sig = .69 

N = 59 

R = -.05 

Sig = .71 

N = 59 

R = .02 

Sig = .86 

N = 59 

Danger level of 

neighborhood growing 

up 

R = .34** 

Sig = .01 

N = 59 

R = -.15 

Sig = .27 

N = 59 

R = .24 

Sig = .07 

N = 59 

** p<.01 

* p<.05 

 

No consistent patterns of individual difference effects on performance emerged, 

although the spatial ability aptitude of Spatial Orientation (SO) had a small but 

significant correlation with Outcome Performance and number of Detection Errors during 

pretest and number of Detection Errors during posttest.  Additionally, the spatial ability 

aptitude of Hidden Figures (HF) had a small but significant correlation with Outcome 

Performance during pretest and number of Detection Errors and Search Performance 

during posttest.  Gender also had a small but significant correlation with Search 

Performance during pretest and Outcome Performance during posttest.  Based on these 

findings, SO, HF and gender were tested as covariates for the following analyses; 
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however, as none were statistically significant covariates, they were excluded in the 

analyses.      

Analysis 3.1:  Feedback Strategy Effects 

Participant scores on Outcome Performance, Detection Errors and Search 

Performance were averaged across pre-training trials to created average pre-training 

scores and across posttest trials to create average posttest scores.  Three pretest/posttest 

repeated measures ANOVAs were performed with between subjects IVs of expert scan 

presence and trainee scan presence for Outcome Performance, Detection Errors, and 

Search Performance.  A MANOVA was not used due to lack of high correlations 

between all dependent variables.   

Outcome Performance 

 

A pretest/posttest repeated measures ANOVA was performed on Outcome 

Performance (hit rate) with between subjects variables of expert scan presence and 

trainee scan presence.  The analysis revealed that trial had a significant effect (F(1, 55) = 

65.3, p<.01, partial η2
=.54) on Outcome Performance with performance increasing from 

pretest to posttest.  The analysis revealed no significant interaction between trial and 

expert scan (p>.05), no significant interaction between trial and trainee scan (p>.05) and 

no significant interaction between trial and expert scan and trainee scan (p>.05).  The 

means and standard deviations are presented in Table 37 and Figure 12.    
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Table 37. Expert Scan and Trainee Scan Effects on Outcome Performance 

Expert Scan  

Not Present Present 

Trainee Scan Pre-test Post -test Pre-test Post-test 

Not Present mean = .48 

s.d.= .06 

mean = .73 

s.d.= .06 

mean = .55 

s.d.= .06 
mean = .75 

s.d.= .07 
Present mean = .40 

s.d.= .06 

mean = .70 

s.d.= .07 

mean = .45 

s.d.= .06 
mean = .72 

s.d.= .07 
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Figure 12.  Feedback Condition Effects on Outcome Performance 

 

Detection Errors 

 

A pretest/posttest repeated measures ANOVA was performed on Detection Errors 

with between subjects variables of expert scan presence and trainee scan presence.  The 

analysis revealed that trial had no significant effect (p>.05) on Detection Errors and that 

there was no significant interaction between trial and expert scan (p>.05), no significant 

interaction between trial and trainee scan (p>.05) and no significant interaction between 
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trial and expert scan and trainee scan (p>.05).  The means and standard deviations are 

presented in Table 38 and Figure 13.    

 

Table 38. Expert Scan and and Trainee Scan Effects on Detection Errors 

Expert Scan  

Not Present Present 

Trainee Scan Pre-test Post -test Pre-test Post-test 

Not Present mean = .13 

s.d.= .14 

mean = .13 

s.d.= .14 

mean = .47 

s.d.= .14 
mean = .27 

s.d.= .14 
Present mean = .29 

s.d.= .15 

mean = .14 

s.d.= .15 

mean = .21 

s.d.= .15 
mean = .21 

s.d.= .15 
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Figure 13. Feedback Condition Effects on Detection Errors 

 

Search Performance 

 

A pretest/posttest repeated measures ANOVA was performed on Search 

Performance with between subjects variables of expert scan presence and trainee scan 

presence.  The analysis revealed that trial had a significant effect (F(1, 55) = 77.10, 
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p<.01, partial η2
=.58) on Search Performance, with Search Performance increasing from 

pretest to posttest.  The analysis also revealed that there was a significant interaction 

between trial and expert scan (F(1, 55) = 4.21, p<.05, partial η2
=.07), with greater 

pretest/posttest Search Performance improvements for participants who received 

elements of the expert scan than those that did not.  The analysis also revealed a 

significant interaction between trial and trainee scan (F(1, 55) = 4.34, p<.05, partial 

η2
=.07) with greater pretest/posttest Search Performance improvements for participants 

who received elements of the trainee scan than those who did not.  There was not a 

significant interaction between trial and expert scan and trainee scan (p>.05).   The means 

and standard deviations are presented in Table 39 and Figure 14.    

 

Table 39. Expert Scan and Trainee Scan Effects on Search Performance 

Expert Scan  

Not Present Present 

Trainee Scan Pretest Post test Pretest Posttest 

Not Present mean = 48.9 

s.d.= 2.7 

mean = 55.0 

s.d.= 3.6 

mean = 53.1 

s.d.= 2.8 
mean = 66.9 

s.d.= 3.7 
Present mean = 55.4 

s.d.= 2.9 

mean = 69.3 

s.d.= 3.8 

mean = 52.6 

s.d.= 2.9 
mean = 71.1 

s.d.= 3.8 
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Figure 14. Feedback Condition Effects on Search Performance 

 

 

 

Additional Analyses:  Evaluation of Sensitivity and Response Criterion 

 Additional exploratory analyses were run to evaluate the signal detection theory 

metrics of Sensitivity and Response Criterion to determine if the training strategies 

affected these two variables.  Trial had a significant effect on both Sensitivity (which 

increased from pretest to posttest) and Response Criterion (which decreased from pretest 

to posttest).  Although the treatment conditions did not have a statistically significant 

effect on either of these metrics, with the addition of trainee scan data, Sensitivity trended 

toward a significant increase from pretest to posttest.  

Sensitivity 

 

A pretest/posttest repeated measures ANOVA was performed on Sensitivity with 

between subjects variables of expert scan presence and trainee scan presence.  The 
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analysis revealed that trial had a significant effect (F(1, 55) = 10.67, p<.01, partial 

η2
=.16) on Sensitivity, with Sensitivity increasing from pretest to posttest.  This analysis 

also revealed that there was no significant interaction between trial and expert scan 

(p>.05) and no significant interaction between trial and trainee scan (p>.05), although this 

trended toward significance (p=.054).  Additionally, there was no significant interaction 

between trial and expert scan and trainee scan (p>.05).  The means and standard 

deviations are presented in Table 40 and Figure 15. 

    

Table 40. Expert Scan and and Trainee Scan Effects on Sensitivity 

Expert Scan  

Not Present Present 

Trainee Scan Pre-test Post -test Pre-test Post-test 

Not Present mean = .85 

s.d.= .22 

mean = .93 

s.d.= .21 

mean = .85 

s.d.= .23 
mean = 1.02 

s.d.= .21 
Present mean = .40 

s.d.= .24 

mean = 1.15 

s.d.= .22 

mean = .45 

s.d.= .23 
mean = .95 

s.d.= .22 
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Figure 15. Feedback Condition Effects on Sensitivity 
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Response Criterion 

A pretest/posttest repeated measures ANOVA was performed on Response 

Criterion with between subjects variables of expert scan presence and trainee scan 

presence.  The analysis revealed that trial had a significant effect (F(1, 55) = 70.90, 

p<.01, partial η2
=.56) on Response Criterion, with Response Criterion decreasing from 

pretest to posttest.  The analysis revealed no significant interaction between trial and 

expert scan (p>.05), no significant interaction between trial and trainee scan (p>.05) and 

no significant interaction between trial and expert scan and trainee scan (p>.05).   The 

means and standard deviations are presented in Table 41 and Figure 16. 

 

Table 41. Expert Scan and and Trainee Scan Effects on Response Criterion 

Expert Scan  

Not Present Present 

Trainee Scan Pre-test Post -test Pre-test Post-test 

Not Present mean = .44 

s.d.= .08 

mean = -.15 

s.d.= .11 

mean = .31 

s.d.= .08 
mean = -.11 

s.d.= .11 
Present mean = .46 

s.d.= .08 

mean = .03 

s.d.= .11 

mean = .38 

s.d.= .08 
mean = -.07 

s.d.= .11 
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Figure 16. Feedback Condition Effects on Response Criterion 

 

Discussion 

Experiment 2 aimed to examine the training effectiveness of the eye tracking-

based feedback strategy which incorporated elements of expert and trainee scan data.  By 

allowing trainees to compare their scan to an expert scan and determine how their search 

strategy needed to change to achieve target performance, it was hypothesized that 

trainees would more effectively search the environment resulting in greater number of 

targets found and fewer targets that were searched but not detected.  It was also 

hypothesized that both elements of the training strategy would contribute to the success 

of the strategy as the addition of expert scan would provide trainees with a model of 

“good” performance which they should strive to achieve and the trainee scan would    

provide trainee insight into how they were actually performing, increasing their 

metacognition and enabling them to understand issues with their performance.  Together 
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these elements were hypothesized to have an additive effect, allowing trainees to 

compare actual to desired performance to identify specific instance of how performance 

needed to change.   

The study investigated this by exploring the effects that presence of each feedback 

element (expert scan, trainee scan) had on threat detection performance, specifically, 

Outcome Performance as indicated by hit rate, Search Performance, and number of 

Detection Errors.  The results provide significant support for the effectiveness of this eye 

tracking-based training strategy.  Both the addition of expert scan and trainee scan 

significantly improved how the trainee searched the environment.  The combination of 

these two elements resulted in the greatest improvements to Search Performance, 

however, this additive effect was not significantly higher, statistically.  Although trainee 

search strategies were significantly impacted by the training intervention, these effects 

did not extend to increase the number of targets found or decrease Detection Errors as 

predicted.  Findings are discussed in greater detail in the sections below.  

Presence of Expert Scan in Training Strategy 

Hypothesis 3 (prediction 3.1) predicted that participants who received training 

with elements of an expert scan would perform significantly better than those who did not 

receive elements of an expert scan in feedback in Search Performance, Detection 

Performance (i.e., detection errors) and mission Outcome Performance in the simulation 

posttest.  This prediction was partially supported.  The presence of an expert scan in 

feedback led to a significant increase in Search Performance improvement from pretest to 

posttest.  These participants increased the percentage of high priority areas scanned from 

pretest to posttest by a significantly greater percentage (16% improvement) than those 
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who received feedback which did not contain an expert scan (10% improvement).  This 

suggests that the presentation of expert scan alone provided trainees with enough 

information about desired performance that, in hand with trainee’s innate awareness of 

how they were performing, they were able to make significant changes to how they 

searched the environment.  Without the illustration of target performance (expert scan), 

trainees may not have been able to extend the elaborative feedback provided in the KR 

condition (e.g., you should always search alleys, because they provide cover and 

concealment) to actual locations in the scenarios, resulting in less impact on search 

strategies used.   

However, presence of an expert scan in feedback did not lead to significant 

pretest/posttest improvements for Outcome Performance or decrease in number of 

Detection Errors.  This is contradictory to findings in the literature in which presentation 

of expert scan data led not only to changes in search strategy, but also to increases in 

target detection (Nalanagula et al., 2006; Sadasivan et al., 2005).  These somewhat 

contradictory results could be due to multiple reasons.  The first is that there were limited 

pretest and posttest trials.  There were only six pretest trials and six posttest trials, with 

each having four trials with targets and two trials without targets.  This resulted in only 

four scores on which to compare pretest/posttest performance changes.  Furthermore, the 

four scenarios used in these four trials varied in difficulty with the four difficulty 

categories discussed above (Easy Detect Easy Search, Difficult Detect Easy Search, Easy 

Detect Difficult Search, Difficult Detect Difficult Search).  As discovered in Experiment 

1, detection difficulty significantly impacted Outcome Performance and Detection Errors 

and this effect may have been stronger than effects resulting from the addition of an 
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expert scan to feedback.  Another possible, but less likely explanation is that although the 

addition of expert scan led to improvements in the first step in target detection (i.e., 

search strategies employed), it was not successful in impacting subsequent steps in the 

perceptual process of target detection and recognition.  This explanation is less plausible 

due to 1) the findings of Experiment 1 which demonstrated that Search Performance 

accounted for a significant amount of variance associated with Outcome Performance and 

2) findings from similar research in which presentation of expert scan has led to 

significant improvements in target detection (Nalanagula et al., 2006; Sadasivan et al., 

2005).  In all three of these studies, there were significantly more opportunities for target 

detection.  Experiment 1 included 40 trials, 20 of which had targets; Sadasivan et al. 

(2005) pretest/posttest trials contained twenty two targets (i.e., defects) and Nalanagula et 

al. (2006) test trials contained 68 targets (defects).  This provides support for the first 

explanation that lack of significant improvement in Outcome Performance and decrease 

in Detection Errors was due to the limited number of pretest/posttest trials. 

Presence of Trainee Scan in Training Strategy 

Hypothesis 3 (prediction 3.2) predicted that participants who received training 

with elements of a trainee scan would perform significantly better than those who did not 

receive elements of a trainee scan in feedback in Search Performance, Detection 

Performance (i.e., Detection Errors) and mission Outcome Performance in the simulation 

posttest.  This prediction was also partially supported.  The presence of a trainee scan in 

feedback led to a significant increase in Search Performance improvement from pretest to 

posttest.  These participants increased the percentage of high priority areas scanned from 
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pretest to posttest by a significantly greater percentage (also a 16% improvement) than 

those who received feedback which did not contain a trainee scan (10% improvement).   

This suggests that the presentation of trainee scan data alone was able to impact 

performance as much as expert scan data, which is surprising.  It would seem that 

information about actual performance has limited utility without information about 

desired performance and hence how actual performance needs to change.  One plausible 

explanation is that the elaborative feedback presented with the trainee scan may have 

provided enough information about desired performance that with increased levels of 

metacognition resulting from the trainee scan data allowed trainees to make changes to 

how they scanned the environment.  An alternate explanation is that although the expert 

scan feedback provided more meaningful information, trainees paid closer attention to the 

feedback when it contained elements of their own scan.  Given a natural inclination to 

compare actual performance as remembered to actual performance captured by the 

system, participants may have attended more closely to the trainee scan feedback and 

gleaned more information from the feedback as compared to expert scan which may have 

seemed less interesting to participants. 

Similar to findings associated with expert scan presence, presence of a trainee 

scan in feedback did not lead to significant pretest/posttest improvements for Outcome 

Performance or decrease in number of Detection Errors.  This is hypothesized to be due 

to the same reason that the addition of expert scan did not significantly improve Outcome 

Performance or decrease Detection Errors, the limited number of pretest/posttest trials. 
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Presence of Expert and Trainee Scan in Training Strategy 

Hypothesis 3 (prediction 3.3) predicted that participants who received training 

with both elements of expert and trainee scan would perform significantly better than 

those who did not receive both elements of feedback in Search Performance, Detection 

Performance (i.e., Detection Errors) and mission Outcome Performance in the simulation 

posttest.  This prediction was not supported.  Although participants who received the 

feedback which contained both elements had the greatest increase in the percentage of 

high priority areas scanned from pretest to posttest (19% improvement), this was not 

significantly greater than improvements demonstrated by expert scan only (16% 

improvement) and trainee scan only (16% improvement) conditions as illustrated by the 

lack of a significant interaction between expert scan presence, trainee scan presence and 

trial.  

There are multiple plausible explanations for this finding.  First, it may be due to 

the fact that presence of either set of scan data provides trainees with enough perceptual 

feedback so that, with the addition of the auditory elaboration they are able to adjust their 

scan strategies accordingly.  One reason for the inclusion of the scan data is that while 

verbal description of how an environment should be scanned can effectively target 

conceptual aspects of the tasks (e.g., what areas should be scanned and why), it may not 

have the ability to effectively target perceptual aspects of the task (e.g., what do these 

areas look like).  Expert scan feedback was intended to provide target performance (i.e., 

performance trainee should strive for), trainee scan was intended to provide 

metacognition of trainee performance (i.e., how the trainee is actually performing) and 

the combination of both was intended to highlight performance improvements needed to 
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reach target performance levels.  Perhaps trainees possessed high enough levels of 

metacognition that by merely being exposed to the expert scan allowed them to identify 

on their own how their performance needed to change.  Additionally, the auditory 

elaboration may have provided enough information about target performance that with 

the trainee scan providing needed perceptual aspects associated with this elaboration that 

trainees were able to effectively adjust their search strategy.  The combination of the two 

may not have provided significantly different information than the expert or trainee scan 

alone. 

Alternately, the expert and trainee scan combination may have provided 

significantly different information, but the displays may have created excessive levels of 

workload preventing trainees from extracting the relevant information.  Presentation of 

both scans with differences highlighted resulted in a great deal of information trainees 

would have to process in the same amount of time as the expert and trainee only 

conditions.  In fact, the combination of the two scans and highlighted differences more 

than doubled the amount of visual information presented.  Although the displays were 

designed to try and highlight differences, eliminating the need for trainees to absorb all 

information about each scan that was presented, this may not have been the case.  When 

users are presented with large amounts of data that exceed workload limitations, 

information overload can occur resulting in failure to discover overall trends in the data 

(Chung, Chen, Chaboya, O'Toole, & Atabakhsh, 2005).  

In fact, anecdotal evidence from interactions with the participants indicated that 

the feedback which contained both expert and trainee scan data was harder to follow than 

the other feedback modules.  Specifically, although the “where” portion of the feedback 



112 

seemed equivalent across conditions, the “how” portion which presents the dynamic 

unfolding of the scan data resulted in trainees “getting lost” or “bored”.  Participants in 

the expert and trainee scan only conditions watched the unfolding of the scan and were 

given the remaining time to explore the scan pattern.  The condition which contained 

both scans had to watch twice as much scan data unfold which seemed to result in some 

trainees not paying attention to the entire feedback module, potentially due to being 

overloaded or overwhelmed.  Hence, the feedback which contained both expert and 

trainee scan data may have created high levels of workload resulting in trainees not being 

able to extract significantly more information than from the expert or trainee scan alone 

displays.   

Sensitivity and Response Criterion 

 Sensitivity and Response Criterion, two standard Signal Detection Theory 

metrics, were examined via an exploratory analysis in an attempt to gain a more thorough 

understanding of feedback effects on target detection performance.  Given the limited 

number of trials, it was thought that analysis of Sensitivity and Response Criterion might 

provide a more granular look at target detection performance, resulting in findings not 

evident by looking at hit rate alone.  

  Sensitivity 

 Sensitivity, refers to the keenness or resolution a trainee has in their ability to 

detect the target (Wickens & Hollands, 2000).  A trainee with high Sensitivity would 

have good ability to discriminate a target from a non-target and a trainee with low 

Sensitivity would have a poor ability (Macmillan & Creelman, 2005).  This measure 
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provides a supplemental look at Outcome Performance as it takes into consideration both 

hit rate and false alarm rate.  The hope was that this measure would uncover findings not 

revealed by merely looking at Outcome Performance as it increased the pretest/posttest 

trials used in the analysis from four (those with targets) to six (all trials) and provided a 

more comprehensive breakdown of trainee performance. 

 Analysis revealed no significant effects of expert scan presence on Sensitivity, no 

significant effects of trainee scan on Sensitivity and no significant interaction.  However, 

there was a trend identified with trainee scan effects on Sensitivity approaching 

significance (p=.054).  The addition of trainee scan to feedback resulted in 

pretest/posttest Sensitivity increase of approximately .6 over those who did not receive 

trainee scan.  Interestingly, this was greater than the Sensitivity increase found due to trial 

(.4).  There was no Sensitivity increase due to the addition of expert scan.  It is 

hypothesized that with increased pretest/posttest trials that this value would have reached 

a significant level.  This suggests that the presence of trainee scan data in feedback can 

potentially increase Sensitivity to the target.  This may be due to increased 

metacognition, specifically an increased understanding of areas which they failed to 

search.  With trainees having a better understanding of areas they need to include in their 

search strategy in the future, they may effectively expanded the high priority areas 

searched and decreased the number of low priority areas search, leading not only to 

improved Search Performance but also to decreased false alarms resulting in increased 

target Sensitivity.  Perhaps with a greater number of trials this Sensitivity would have 

manifested itself with improved Outcome Performance (hit rate).     
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Response Criterion 

 Response Criterion, refers to a trainees response bias; whether they are more 

liberal (i.e., prone to saying yes something is a target) and hence increasing both target 

hits and false alarms, or more conservative (i.e., prone to saying no) and hence having 

few false alarms but greater target misses (Wickens & Hollands, 2000).  This measure 

also provides a supplemental look at Outcome Performance (hit rate) by taking into 

account false alarm rate as well.   

Analysis revealed no significant effects of expert scan presence on Response 

Criterion, no significant effects of trainee scan on Response Criterion and no significant 

interaction.  Although response bias became significantly more liberal between pretest 

and posttest, the different training strategies appeared to have no effect on Response 

Criterion.    
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 CHAPTER FOUR: GENERAL DISCUSSION AND CONCLUSIONS  

General Discussion 

The goal of the present study was to explore how advanced technology, 

specifically eye tracking, can be used to increase understanding of perceptual processes 

such as search and detection as well as provide tools that can be used to impact 

perceptual performance.  With the increasing demands of the war in the Middle East, 

increasing diagnosis of diseases and disorders and increasing complexity of systems 

being used by practitioners, there is an ever increasing need to understand how the human 

body works and how technology can be leveraged to enhance it.  Central to this is a solid 

understanding of how humans collect and process information and what influences this 

process. 

Process Level Perceptual Performance Measures 

Experiment 1 aimed to examine a method of diagnosing perceptual performance 

in order to be able to identify the perceptual root cause of target detection deficiencies 

and how these impact overall target detection performance.  Findings indicate the method 

can be used to pinpoint where in the perceptual process a target miss originated, whether 

due to ineffective search strategy, inability to detect the subtle cues of the threat or 

inability to recognize these cues as indicative of a threat.  These findings are inline with 

the Human Information Processing (HIP) model (Wickens & Flach, 1988) which 

describes bottom up and top down processing conducted by individuals to build situation 

awareness (SA), conduct decision making (DM), and act upon the environment.  
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Individuals progress through the first three components of the HIP model (i.e. attention, 

sensation, perception) to perform a perceptual task and as illustrated by the results of this 

study, at any of these stages an information processing breakdown could occur.   

Breakdowns can occur at the attention stage during the process of spotlighting particular 

areas of the visual field (i.e., search; Levine, 2000), the sensation stage which refers to 

initial detection of a stimulus (Pike & Edgar, 2005), or the perception stage which 

involves the analysis of sensory information to construct a description of the surrounding 

world (i.e., recognition; Pike & Edgar, 2005). Regardless of where the breakdown occurs, 

SA and DM resulting from this process will be affected.  

This ability to identify where the performance deficiency originated, or the “Root 

Cause” of the performance deficiency facilitates a foundation for understanding how to 

prevent reoccurrence of the outcome failure.  This process has been used in accident 

investigation programs for years to identify how and why undesirable events occurred, in 

order to prevent reoccurrence (Rooney & Heuvel, 2004).  The root cause analysis process 

is designed for use in categorizing, linking, and refining probable causes of events, in 

order to be able to specify workable corrective measures that prevent future events of the 

type observed (Rooney & Heuvel, 2004).  This study illustrates that extending this 

methodology to performance measurement can provide an effective method for 

categorizing performance failures into more granular process level causes.  Integration of 

eye tracking technology gives researchers and practitioners access to process level data 

that facilitates this level of analysis.   

Such granular process level measures have allowed researchers to uncover several 

important findings.  For instance, Mello-Thoms et al. (2002) discovered that faulty visual 
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search is not the main reason why most breast cancer lesions are not detected in 

mammograms, but that perception and decision making errors are primarily responsible.  

Additionally, Manning, Ethell, Donovan and Crawford (2006) utilized process level eye 

tracking metrics to identify distinct differences between scan strategies used by 

experienced and inexperienced observers, resulting in recommendations for how to 

increase expertise.  In Experiment 2 of the present study, the process level measures 

facilitated identification of performance differences between treatment groups that were 

not apparent through behavioral measures alone.  There were clear differences in search 

strategies that would not have otherwise been evident.  All three of these examples 

provide proof that eye tracking-based process level measures such as those developed and 

validated in this effort provide critical tools for use in the study of perceptual skills. 

These measures also provide invaluable tools for training practitioners as they 

allow practitioners to focus training remediation on the most critical performance 

deficiencies.  The feedback given to address an erroneous search strategy (e.g., providing 

information on how the environment should be searched) is quite different than that 

aimed to address issues with target recognition (e.g., what are the critical cues that 

together indicate a threat and why).  By allowing instructors to tailor training based on 

process level performance deficiencies, there is an opportunity to accelerate learning.   

Influences of Visual Search 

Findings from both Experiment 1 and Experiment 2 are consistent with 

contemporary models of visual search.   For instance, a model proposed by Itti & Koch 

(2001) consists of bottom up preattentive search based on the environmental influence of 
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salience as manifested through factors such as orientation.  Findings from Experiment 1 

indicate that detection difficulty which was a product of target orientation and level of 

occlusion had a significant impact on performance and reaction time.  This supports the 

theory that search is partially influenced by bottom up environmental factors.  The same 

model (Itti & Koch, 2001) proposes that top down processes also drive attention through 

the application of search strategies.  Experiment 2 findings indicate that participant 

search performance was altered through feedback aimed at impacting the search 

strategies being employed; hence supporting the theory that search is also partially 

influenced by top down processes. 

Experiment 1 findings are also inline with models such as the Guided Search 

Model (Wolfe, 1998) and the Feature Integration Theory model (Treisman & Gelade, 

1980).  These theories predict that when search is preattentive and the target “pops out” at 

the observer that the number of distracters will have little effect on performance; 

however, when the search is attentive, requiring serial allocation of attention the 

performance will be affected by the number of distracters (Wolfe et al., 1989).  This is 

evident through the impact of search and detection difficulty on Outcome Performance 

and Search Performance found in Experiment 1.  When detection difficulty was low and 

the targets were processed preattentively, search difficultly, partially based on number of 

distracters, had little effect on Outcome Performance and Search Performance.  However, 

when detection difficulty was high, requiring a serial attentive search, search difficulty 

had a significant impact on performance.    

Experiment 1 findings are also consistent with predictions regarding the serial self 

terminating nature of attentive search (Treisman & Souther, 1985) which predicts that in 
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this type of search, observers will search through the stimulus elements until the target is 

found; hence as number of distracter increase, reaction time will also increase.  

Experiment 1 results indeed show an increase in reaction time with increasing search 

difficulty which was partially based on number of distracters.   

Training Effects on Visual Search 

Experiment 2 aimed to examine the effect of providing trainees with process level 

tailored feedback which incorporates elements of expert and trainee scan patterns.  

Findings indicate that providing trainees with elements of either expert or trainee scan 

patterns has the ability to significantly improve the search strategy being employed by the 

trainee.  These findings provide a foundation for understanding ways in which visual 

search strategies can be influenced.  For instance, it appears that the presentation of 

exemplar perceptual performance can significantly improve search strategies.  By 

presenting trainees with expert scan patterns, including all areas in which the expert 

searched as well as how the expert scan unfolded, significant improvements in number of 

critical areas covered in a trainee scan strategy may result.  This very specific process 

level perceptual feedback which illustrates how the trainee should scan the environment 

enables the trainee to make significant changes to their search strategy.   

Additionally, the presentation of actual perceptual performance, including all 

areas in which the trainee searched and how the trainee scan unfolded can also lead to 

significant improvements in number of critical areas covered in a trainee scan.  This 

process level perceptual feedback, which illustrates how the trainee scanned the 

environment, enlightens trainees to how performance actually unfolded, allowing them to 
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make significant changes to their search strategy.  These results provide strong support 

for the use of either expert or trainee scan data in perceptual feedback.  Interestingly, 

although the combination of these two elements (expert and trainee scan) resulted in the 

greatest Search Performance improvement, it was not significantly greater than 

improvements achieved by trainees who received the individual elements of expert or 

trainee scan alone.  This could be due to limitations with the feedback interface, such as 

excessive workload, resulting in trainees not being able to extract all critical information 

about target performance and how actual performance needs to change.         

Although the findings provide a foundation for understanding ways in which 

visual search strategies can be influenced, it is still necessary to understand how these 

training interventions influenced visual search.  For instance, it may be the case that the 

feedback modules actually led to alterations in trainees’ natural search strategy.  Boot, 

Becic and Kramer (2009) provide evidence for a natural or “default” search strategy that 

observers bring to the table regardless of the task.  Boot et al. (2009) found that observers 

persisted with their default search strategy (for instance, a covert search without eye 

movement) even when it proved maladaptive to the task at hand, however, when given 

simple instruction to change their search strategy, they were easily able to do so.  Perhaps 

the instruction provided by the feedback presented in this study led to changes in 

participant natural search tendencies.        

Research has shown that novice observers tend toward a less systematic search 

strategy than experts (Jarodzka et al., 2009) and in some cases what appears to be no 

strategy at all.  Research has also shown that a systematic search strategy can be trained 

and leads to improved performance over random search strategies (Wang et al., 1997).  
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Perhaps the scan feedback facilitated a modification of novice natural search strategy (or 

lack thereof) towards a more systematic search strategy.  Random search is defined as a 

search with no memory in which previously searched areas are revisited (Arani et al., 

1984).  Observers with a random search strategy sample the environment for the target 

without a clear search schema, resulting in sampling previously scanned areas and 

neglecting areas which have not been searched.  As an observer develops a more 

thorough understanding of the task, search environment and techniques that can be 

employed to improve performance, the observer would seemingly develop a search 

schema which facilitates employment of more effective search strategies.  The results 

would be a more systematic search in which an observer reduces the number of areas 

revisited and increases the total number of areas searched.   

This provides a feasible explanation for the increase in percent of high priority 

areas searched after participants received the scan feedback.  If participants were 

randomly searching the environment prior to receiving feedback the percentage of high 

priority areas searched would be limited due to the participants wasting time revisiting 

previously searched areas.  Additionally, without an understanding of what constitutes a 

high priority area, high priority areas are no more likely to be searched than low priority 

areas.  After receiving the feedback, participants were conceivably able to develop a 

search schema which included explicit knowledge of which areas were high priority and 

should therefore be searched first (e.g., windows are probably target locations).  

Additionally, participants were also conceivably able to develop a search strategy which 

allowed them to search the environment in a more structured way (e.g., start by searching 
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all window first), reducing the number of areas revisited and increasing the number of 

relevant areas scanned. 

The feedback may have not only influenced visual search through explicit 

knowledge, but also through implicit knowledge.  Research has found that a search 

schema can be created through target/context covariation, resulting in implicit influence 

on attention deployment in search that cannot be explicitly stated (Jiang & Chun, 2001).  

Based on this it is possible that through scan data/scenario object covariation within the 

feedback modules participants were able to develop implicit knowledge of critical areas 

to search which influenced their visual search strategy. 

As visual search depends on many low level processes and abilities, there are 

many aspects of visual search that the scan feedback likely did not influence.  For 

instance, one aspect of search that the scan training strategies did not target was search 

speed, specifically the speed at which the eyes move while fixating.  A search strategy of 

keeping fixations long results in slow search speed and Togami (1984) found that slower 

search speed (and hence longer fixation time) resulted in higher inspection accuracy.  

Sadasivan et al. (2005) presented fixation time as an important element of search and 

attempted to affect fixation time through training.  Feedforward presentation of expert 

scan paths included a representation of time spent fixating on each area of interest in 

graphical form.  Although the training intervention, which also included AOIs scanned 

and scan patterns, led to increased inspection accuracy, subjective feedback from trainees 

indicated they did not find the fixation time representation useful in performing the task.  

However, given the findings from Togami (1984), perhaps this is useful information to 

present and a more intuitive presentation method would yield more positive reactions.  
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Future development of the scan training strategies will aim to represent this critical 

element of search.  

Visual search also depends on many aspects of the task/environment ranging from 

spatial and temporal uncertainty to distance and lighting effects to the effects of dynamic 

aspects of the environment.  These are all factors that were beyond the scope of this study 

that will impact visual search and may influence the effectiveness of training strategies 

such as those examined in this study.  The most critical aspect not addressed by this study 

is visual search in a dynamic environment.  Warfighters are not typically faced with 

monitoring a static environment; instead, these observers are faced with identifying 

threats in situations unfolding dynamically.  Research has shown dynamic aspects of an 

environment can capture attention and alter search even when these elements are 

irrelevant to the task (Franconeri & Simons, 2003).  Such findings imply that the search 

strategies employed to successfully perform a search in a dynamic environment might be 

quite different than those employed in searching a static environment.   

An important question thus emerges:  Will these training strategies that 

successfully improved search strategies in a static environment transfer to a dynamic 

environment?  Although traditional views of effective training transfer stress the 

importance of identical elements between training and transfer environments, more 

contemporary views of transfer suggest that what is important is the similarity in 

information processing of the two tasks (Ford, Smith, Weissbein, Gully, & Salas, 1998).  

In fact, recently, emphasis has been placed on teaching higher level processes such as 

metacognition to increase transfer as “similarity in stimulus conditions between training 

and transfer situations has rarely promoted far-reaching transfer” (Cox, 1997, p. 41).  As 
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a result, it is hypothesized that the scan feedback strategies herein will facilitate 

development of generalizable search strategies which will transfer to dynamic 

environments.  Additionally, given the conceptual aspect of the feedback which focuses 

on why certain high priority areas should be searched, the feedback should facilitate 

development of a higher level search schema, also necessary for search in a dynamic 

environment.  The dynamic environments in which Warfighters operate are comprised of 

static elements similar to those in the static scenarios of this present study, for instance 

when searching a building for potential sniper hides.  Therefore this schema would prove 

extremely relevant to dynamic search.  However, despite the theoretical and practical 

reasons which suggest such strategies may transfer to a dynamic task, this remains a 

question which needs to be evaluated empirically.     

Theoretical Implications 

This research provides empirical support for previous work related to visual search 

theory and the training of visual search. The results provide support for the Human 

Information Processing (HIP) model (Wickens & Flach, 1988) and the presence of 

distinct sub processes in the perceptual components of this process (attention, sensation, 

perception).  The research findings indicate perceptual performance breakdowns fall into 

three categories of search errors, detection errors and recognition errors.  

 The findings are consistent with contemporary visual search models such as the 

Guided Search Model (Wolfe et al., 1989) and Feature Integration Theory (Treisman & 

Gelade, 1980) which propose both bottom up and top down influences of visual search.  

Present study research findings indicate visual search was indeed influenced by bottom 
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up environmental characteristics such as target orientation as well as top down visual 

search strategies resulting from training intervention. 

Findings are partially consistent with previous research which examined the 

training effects of expert scan on search performance (Nalanagula et al., 2006; Sadasivan 

et al., 2005).  Current research findings indicate that similar to previous findings, expert 

scan data led to improvements in search strategy, however, contrary to previous research 

findings, these changes did not result in increased target detection accuracy. 

These findings support the benefit of using eye tracking to assess perceptual 

performance and influence visual search through feedback.  Hopefully these findings will 

help facilitate a deeper understanding of perceptual skills such as visual search and 

factors that influence these skills, as well as facilitate successful execution of future 

research to further investigate. 

Practical Implications 

These findings also have practical implications for both training practitioners and 

researchers.  With respect to training practitioners, the diagnosis metrics validated in 

Experiment 1 provide practitioners with a set of tools to tailor training and potentially 

accelerate learning.  With the ability to pinpoint process level perceptual performance 

deficiencies, feedback can be tailored to focus on those performance deficiencies which 

need improvement, decreasing training time wasted and increasing training efficiency.  

Such an increase could result in decreased training time to reach necessary performance 

standards.  With respect to the military, this could result in a quicker deployment time or 

expansion of target skills trained, both critical needs of the military. 
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The feedback strategies found successful in Experiment 2 also provide 

practitioners with training methods that can effectively improve trainee search strategies.  

Currently, military trainees do not receive feedback on their search strategies at all as 

instructors do not typically have the ability to monitor search skills.  These training 

strategies provide a means by which to effectively remediate search skills and have far 

reaching implications for current military observation training.  If these methods could be 

used to improve the training effectiveness of current training practices, Warfighter search 

for enemy threats such as snipers and IEDs could be enhanced.  Such an enhancement 

could lead to both a decrease in Warfighter deaths and an increase in enemy destruction 

or apprehension.     

These finding also have implications for a range of other operational domains, 

such as baggage screening, air traffic control, industrial inspection and intelligence 

analysis.  As the extraction of expert and trainee scan using eye tracking technology 

becomes less expensive and less complicated, the integration of these capabilities into 

elements of performance diagnosis and feedback can provide training value across a 

range of domains, resulting in increased search performance leading to reduced success 

of terrorists and a reduction in accidents and incidents.   

These findings are relevant to the field of Human Computer Interaction (HCI) as 

well.  The methods evaluated in the present study provide HCI practitioners with tools to 

evaluate effectiveness and usability of interfaces ranging from websites to Virtual 

Environments (VE).  The ability to monitor a user’s scan patterns, including what aspects 

of a display or environment capture trainees attention or lead to deeper levels of visual 

interrogation allows a designer to understand the impact their interface has on users and 
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how the interface may need to be change to achieve desired effects.  These findings also 

have implications for the medical field.  Methods evaluated herein provide medical 

professionals with tools to diagnose disabilities such as neurological disorders and 

determine effects, both intended and unintended, of treatments prescribed. 

These findings also have practical implications for researchers.  First, they 

provide a set of validated eye tracking-based metrics for use in investigation of 

perceptual performance.  These metrics facilitate identification of the perceptual root 

cause of errors, specifically discriminating between search, detection and recognition 

errors, and can effectively characterize threat detection performance on a larger scale 

over multiple scenarios.  The ability to effectively measure process level perceptual 

performance, such as search and detection could facilitate a range of research in the 

visual search domain.  Not only could these metrics be used to study search and detection 

across varying characteristics of the search task (e.g., difficulty, size, complexity), such 

metrics could also be correlated with neurophysiologic metrics to gain a more thorough 

understanding of the underlying biological processes of search.   

Limitations of Present Study 

 There were several limitations of the present study that should be discussed.  

First, the limited number of pretest and posttest trials may have inhibited the ability to 

find feedback effects.  Results suggest that the benefits to the presence of expert and 

trainee scan data may not have been fully realized due to this limitation.  Given the 

limited number of pretest and posttest trials and the strong effects of target difficulty, 

improvements in search strategy may not have been given ample opportunity to manifest 



128 

themselves as increases in threat detection levels.  Further research is needed to more 

fully understand potential training value of these strategies.   

Additionally, limitations of the eye tracking technology may have attenuated 

effects of the feedback.  The accuracy of eye tracking technology has limiting factors 

including inaccuracies caused by the movement of the participant and individual 

difference factors associated with the participant.  As a result, some trainee fixations may 

not be accurately captured and presented in the feedback.  Additionally, feedback 

displays only included fixations in which concentration of visual attention remained 

within a 50 pixel radius for 100 milliseconds.  Given individual differences in how 

quickly individuals gather visual information during fixations, there may have been 

instances of visual attention allocation that the trainee was aware of but that were not 

classified as a fixation and hence not displayed in the feedback.  Consequently, trainees 

may have detected inconsistencies between system reported trainee scan data and self 

perceived scan data, resulting in frustration or distrust in the system and hence 

diminished effects of the feedback modules.  Future use of such technology should be 

accompanied by instructions regarding how the eye tracker calculates and displays 

fixations and limitations in the accuracy of the technology.  

Lastly, the static nature of the experimental task limits the extent to which the 

findings generalize to skill performance in the field.  Given the dynamic nature of the real 

world task and the known effects of movement on bottom up attentional mechanisms, 

further research is necessary to draw any concrete conclusions regarding the effectiveness 

of scan feedback strategies in impacting real world search performance. 
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 Future Research 

  There are several interesting research questions that remain and warrant further 

research.  First, the current study focused on identifying a universal fixation duration 

threshold between detection and recognition across all participants.  Given individual 

differences, it may be more effective to identify individualized thresholds to discriminate 

between target detection and recognition.  Togami (1984) examined the relationship 

between correct count rate in an inspection task and eye movements to determine 

individual differences.  Results revealed individual differences in fixation time for a 

simple task comprised of counting dots of the same sample (Togami, 1984).  This implies 

individuals likely have different time courses for target detection/recognition.  Future 

studies could attempt to identify individualized fixation duration thresholds and the range 

of these thresholds. 

 An additional research question is whether the search performance improvements 

resulting from these training strategies will transfer to a dynamic task or more 

importantly to the performance of a military threat detection task in the field.  It is 

hypothesized that the feedback strategies will lead to performance improvements that 

transfer, but this is an empirical question which needs to be examined experimentally.   

Currently, planning is underway to examine the effects these training strategies have on 

Marines both in training performance on the experimental task as well as transfer to 

performance in practical application exercises which require search for a range of threats 

in a dynamic environment. 
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Future work is needed to fully understand the potential benefits of utilizing eye 

tracking to improve training effectiveness both through performance assessment and 

training strategies such as feedback.  With respect to this current line of research, future 

efforts aim to explore usability and workload issues associated with the scan feedback 

displays.  Strides will be made to optimize these interfaces to allow trainees to fully 

extract the wealth of information provided without overloading the trainee.    

Conclusion 

With the emergence of more usable and cost effective eye tracking technology, 

the ability to both assess and affect trainee perceptual performance is increasing.  Subtle 

or internal perceptual processes, such as search and detection, once inaccessible can now 

be observed both by trainees and instructors, providing unprecedented access to trainee 

performance and state.   

The goal of the present study was to explore how eye tracking technology can be 

used to increase understanding of perceptual processes such as search and detection and 

provide tools that can be used to train search skills.  Experiment 1 examined a method of 

diagnosing perceptual performance in order to be able to identify the perceptual root 

cause of target detection deficiencies and how these impact overall target detection 

performance.  Findings indicate the method can be used to pinpoint where in the 

perceptual process a target miss originated, whether due to ineffective search strategy, 

inability to detect the subtle cues of the threat or inability to recognize these cues as 

indicative of a threat.  Experiment 2 examined the training effectiveness of providing 

trainees with process level tailored feedback which incorporates elements of expert and 
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trainee scan patterns.  Findings indicate that providing trainees with elements of either 

expert or trainee scan patterns has the ability to significantly improve the search strategy 

being employed by the trainee.  This work provides strong support for the use of eye 

tracking based perceptual performance diagnosis methods and training strategies in 

improving trainee search performance for complex target detection tasks. 
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APPENDIX B: INFORMED CONSENT FORM 
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 APPENDIX C: EXPERIMENT 1 DEMOGRAPHICS 

QUESTIONNAIRE 
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Background Information 
Please complete the following questions.  Any information you provide is voluntary and 

will be kept strictly confidential.  A participant number will be assigned to your 

responses and in no way will your name be associated with this data.  The information 

you provide will be used only for the purposes of this study. 

 

1. Gender:      _______  Male     _______  Female 

 

2. Age:  _______ 

 

3. Handedness (check one)?   _____Left-handed     _____Right-handed 

 

4. Year in school: ___Freshman ___Sophomore ___Junior ___Senior 

 

5. Major:  _________________________ 

 

6. In general how do you feel about working with computers? 

 

________  I don’t like working with computers. 

________  I have no strong like or dislike for working with computers. 

________  I like working with computers. 

________  Other (please explain) 

_______________________________________________ 

 

7. How would you describe your general level of computer experience? 

 

________  None (I have never used any computer applications). 

________  Low (I have used only 1 or 2 computer applications). 

________  Moderately Low (I have learned and used between 3 and 10 different 

computer applications). 

________  Moderately High (I have learned and used more than 10 different computer 

applications but have no programming skills). 

________  High (I have used many different computer applications and have some 

programming skills). 

________  Other (please explain) 

________________________________________________ 

 

8. Have you ever been in a virtual environment (VE)?     YES_____ NO____ 

 

If YES, how many times have you been in a VE? _________________ 

 

9. How would you describe your general level of gaming experience (i.e., playing video 

games)? 

 

________  None (I have never played a video game). 
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________  Low (I have played a video game a few times in the past). 

________  Moderately Low (I have played a video game a regularly in the past). 

________  Moderately High (I currently play video games weekly). 

________  High (I currently play video games daily). 

________  Other (please explain) 

________________________________________________ 

 

10. What were your SAT scores: Math __________ Verbal: ______ 

 

11. Thinking only about the last 90 days, how often, on average, do you play console 

based video games in a given week? 

a. Under 3 hours 

b. 3 - 9 hours 

c. 10 - 16 hours 

d. 17+ hours 

 

12. About how many of your total gaming hours are spent playing first-person shooter 

style video games such as Halo, Medal of Honor, and Splinter Cell?   

______________________________ 

 

13. Have you ever received any formal military training? 

a. Yes 

b. No 

 

If Yes, please describe: ___________________________________________ 

 

14. How would you describe your general level of hunting experience? 

 

________  None (I have never hunted). 

________  Low (I have hunted a few times in the past). 

________  Moderately Low (I have hunted regularly in the past). 

________  Moderately High (I currently hunt weekly). 

________  High (I currently hunt daily). 

________  Other (please explain) 

________________________________________________ 

 

15. How would you describe the neighborhood in which you grew up? 

 

________  Not Dangerous (No concern for safety at any time). 

________  Minimally Dangerous (Occasional concern for safety). 

________  Moderately Dangerous (Concern for safety some of the time). 

________  Very Dangerous (Concern for safety at all times). 

________  Other (please explain) 

________________________________________________ 
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APPENDIX D: EXPERIMENT 2 DEMOGRAPHICS 

QUESTIONNAIRE 
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Demographics Questionnaire 
 
Please complete the following questions.  Any information you provide is voluntary and will be 

kept strictly confidential.  A participant number will be assigned to your responses and in no way 

will your name be associated with this data.  The information you provide will be used only for 

the purposes of this study. 

 

1. Gender:      _______  Male     _______  Female 

 

2. Age:  _______ 

 

3. Handedness - Dominant (check one)?   _____Left-handed     _____Right-handed 

 

4. Please indicate the highest level of education completed: 

 

 Grammar school 

 High school or equivalent 

 Some college 

 College Graduate (4 yrs) 

 Master's Degree (MS) 

 Doctoral Degree (PhD) 

 Professional Degree (MD,JD, etc.) 

 

5. Major:  _________________________ 

 

6. Do you have normal or corrected-to-normal hearing: 

 

 Normal/Corrected Hearing 

 Hearing Problems (please describe) _______________ 

 

7. Do you have normal or corrected-to-normal vision: 

 

 Normal 

 Corrected (Circle One: glasses / contacts) 

 Problems 

 Please describe___________________ 

 

8. Do you have astigmatism in: 

 

 Left eye 

 Right eye 

 Both eyes 

 Neither eye 

 

9. If you have astigmatism in one or both eyes, do you wear a toric contact lens or have specially 

shaped glasses lenses to correct for this in the affected eyes? 

 

 I wear a toric contact lens in the affected eye 
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 I have specially shaped glasses for the affected eye 

 

10. Eye Color 

 Blue 

 Green 

 Hazel 

 Brown 

 

11. Have you had any previous eye injuries? 

 Yes  (Describe: ________________________________  Approximate date:__________) 

 No 

 

12. Color-blindness 

 Yes  (Describe: ___________________) 

 No 

 

13. What were your SAT scores:  

 

Math ______ Verbal: ______    Not sure / Don’t remember: ______ 

 

14. In general how do you feel about working with computers? 

 

________  I don’t like working with computers. 

________  I have no strong like or dislike for working with computers. 

________  I like working with computers. 

________  Other (please explain) _______________________________________________ 

 

15. How would you describe your general level of computer experience? 

 

________  None (I have never used any computer applications). 

________  Low (I have used only 1 or 2 computer applications). 

________  Moderately Low (I have learned and used between 3 and 10 different computer 

applications). 

________  Moderately High (I have learned and used more than 10 different computer 

applications but have no programming skills). 

________  High (I have used many different computer applications and have some programming 

skills). 

________  Other (please explain) ________________________________________________ 

 

16. Have you ever been in a virtual environment (VE)?     YES_____ NO____ 

 

If YES, how many times have you been in a VE? _________________ 

 

17. How would you describe your general level of gaming experience (i.e., playing video games)? 

 

________  None (I have never played a video game). 

________  Low (I have played a video game a few times in the past). 

________  Moderately Low (I have played a video game a regularly in the past). 

________  Moderately High (I currently play video games weekly). 
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________  High (I currently play video games daily). 

________  Other (please explain) ________________________________________________ 

 

18. Thinking only about the last 90 days, how often, on average, do you play console based video 

games in a given week? 

e. Under 3 hours 

f. 3 - 9 hours 

g. 10 - 16 hours 

h. 17+ hours 

 

19. About how many of your total gaming hours are spent playing first-person shooter style video 

games such as Halo, Medal of Honor, and Splinter Cell?   

______________________________ 

 

20. Have you ever received any formal military training? 

c. Yes 

d. No 

 

If Yes, please describe: ___________________________________________ 

 

_______________________________________________________________ 

 

21. How would you describe your general level of hunting experience? 

 

________  None (I have never hunted). 

________  Low (I have hunted a few times in the past). 

________  Moderately Low (I have hunted regularly in the past). 

________  Moderately High (I currently hunt weekly). 

________  High (I currently hunt daily). 

________  Other (please explain) ________________________________________________ 

 

22. How would you describe the neighborhood in which you grew up? 

 

________  Not Dangerous (No concern for safety at any time). 

________  Minimally Dangerous (Occasional concern for safety). 

________  Moderately Dangerous (Concern for safety some of the time). 

________  Very Dangerous (Concern for safety at all times). 

________  Other (please explain) ________________________________________________ 
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APPENDIX E: VISUAL ACUITY TEST 
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APPENDIX F: COLOR BLINDNESS TEST 
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Color Vision Test

Instructions

In the following task, you will be presented with 

a number of questions that assess your ability to 

perceive numbers embedded within patterns.

For each question, you will be asked to indicate 

what number you see revealed in the patterns of 

dots inside the picture.

If you do not see a number inside the pattern of 

dots, then write “NONE” on the answer sheet next 

to that question.

There are a total of 12 questions.  As you 

complete each question, record your response 

on the answer sheet provided.

Should you have questions about this task, 

please feel free to ask for assistance at any 

time.

Please do not write on the test booklet.

Please turn the page to continue. . . 
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Here is a sample item of the task you will perform.  Please look at the picture 
below.  What number do you see revealed in the pattern of dots below? 

Color Vision Test

Sample Item

Sample Item

You should see the number “12” inside the pattern of dots.  So, you would write 

“12” on the answer sheet on the space next to that question.  Please make sure 

to complete all items.  And please remember not to make any marks on the test 

booklet.

If you have any questions, please ask now.  Otherwise, let the experimenter 

know that you are ready to begin.

Please wait until the instruction is given 

before turning the page to begin. . . 
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What numbers do you see revealed in the patterns of dots below? Please record 
the number on the answer sheet or, if you do not see a number, write “NONE.”

Color Vision Test

Please turn the page to continue. . . 

Question 1

Question 6Question 5

Question 3 Question 4

Question 2
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What numbers do you see revealed in the patterns of dots below? Please record 

the number on the answer sheet or, if you do not see a number, write “NONE.”

Color Vision Test

Please stop here.

Question 7

Question 12Question 11

Question 9 Question 10

Question 8
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APPENDIX G: SPATIAL ORIENTATION TEST 
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APPENDIX H: VISUALIZATION TEST 
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APPENDIX I: HIDDEN FIGURES TEST 
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APPENDIX J: COGNITIVE LOAD QUESTIONNAIRE 
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Cognitive Load Question 

 
While searching for the threats, I invested (circle one only) 

1. Very, very low mental effort 

2. Very low mental effort 

3. Low mental effort 

4. Neither low nor high mental effort 

5. High mental effort 

6. Very high mental effort 

7. Very, very high mental effort 
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APPENDIX K: VISUAL VERBAL LEARNING STYLE 

QUESTIONNAIRE 
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Verbal-Visual Learning Style Rating (VVLSR, Version 1.0, 2004) 

 

 

In a learning situation sometimes information is presented verbally (e.g., with printed or 

spoken words) and sometimes information is presented visually (e.g., with labeled 

illustrations, graphs, or narrated animations).  Please place a check mark indicating your 

learning preference. 

 

 

 

 
Strongly    Moderately Slightly    Equally  Slightly    Moderately  Strongly    

more verbal more verbal more verbal verbal and  more visual  more visual more visual 

than visual than visual than visual and visual than verbal than verbal than verbal 

 

 

 

 

 

 

 

 

 

 

 

 

Validation of a One-Item Test of Verbalizer-Visualizer Cognitive Style 

Richard E. Mayer and Laura J. Massa 

University of California, Santa Barbara 

2004 
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APPENDIX L: EXPERIMENT 2 KNOWLEDGE PRE TEST 
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Observation Knowledge Pre Test 

 

Based on what you learned from the pre-training you just completed, please classify each 

type of object as low or high priority by circling the appropriate category.  Then, indicate 

whether each type of object provides cover, concealment, a concealed exit or all three by 

checking the appropriate categories with a check mark. 

 

Object Type High or 

Low 

Priority 

Provides 

Cover 

Provides 

Concealment 

Provides a 

Concealed  

Exit 

Alleys  High / Low    

Vehicles High / Low    

Trash High / Low    

Rooftops High / Low    

Humvees High / Low    

Faraway Buildings High / Low    

Women in Open High / Low    

Doors  High / Low    

Barriers High / Low    

Vegetation High / Low    

Store Fronts High / Low    

Tables & Chairs High / Low    

Baskets High / Low    

Windows High / Low    

Men on Roof High / Low    

Trashcans & Barrels High / Low    

Balconies& Porches 

Without Walls 

High / Low    

Fruit Stands High / Low    

Concrete Balcony High / Low    

Sticks High / Low    
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APPENDIX M: EXPERIMENT 2 KNOWLEDGE POST TEST 
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Observation Knowledge Post Test 

 

Based on what you learned from the training you just completed, please classify each 

type of object as low or high priority by circling the appropriate category.  Then, indicate 

whether each type of object provides cover, concealment, a concealed exit or all three by 

checking the appropriate category with a check mark. 

 

Object Type High or 

Low 

Priority 

Provides 

Cover 

Provides 

Concealment 

Provides a 

Concealed  

Exit 

Fruit Stands High / Low    

Windows High / Low    

Concrete Balcony High / Low    

Vegetation High / Low    

Doors  High / Low    

Women in Open High / Low    

Rooftops High / Low    

Trashcans & Barrels High / Low    

Faraway Buildings High / Low    

Sticks High / Low    

Men on Roof High / Low    

Alleys  High / Low    

Tables & Chairs High / Low    

Balconies& Porches 

Without Walls 

High / Low    

Vehicles High / Low    

Trash High / Low    

Baskets High / Low    

Humvees High / Low    

Store Fronts High / Low    

Barriers High / Low    
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Feedback Questionnaire 

 

1) Rate your confidence level in being able to perform a scan for a sniper threat after the 

training you just experienced 

 

Not at all  

Confident 
1 2 3 4 5 6 7 

Very  

Confident

 

 

Please respond to the questions below by circling the appropriate response 

 

2) The training taught me how to successfully scan for a sniper threat 

 

Strongly 

Disagree 
1 2 3 4 5 6 7 

Strongly 

Agree 

 

3) I became tired during the training 

 

Strongly 

Disagree 
1 2 3 4 5 6 7 

Strongly

Agree 

 

4) I could easily understand the training 

 

Strongly 

Disagree 
1 2 3 4 5 6 7 

Strongly

Agree 

 

5) I understood the purpose of the training and how it could improve my scanning 

strategy 

 

Strongly 

Disagree 
1 2 3 4 5 6 7 

Strongly

Agree 

 

6) I found the training module to be confusing 

 

Strongly 

Disagree 
1 2 3 4 5 6 7 

Strongly

Agree 

 

7) I was easily distracted during the training module 

 

Strongly 

Disagree 
1 2 3 4 5 6 7 

Strongly

Agree 

 

Other comments/feedback:__________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Experiment I 

Debriefing Form 

 

In this study, we are investigating the effectiveness of eye-tracking based search 

performance diagnosis methods for diagnosing where in the perceptual process 

performance breakdowns occur (i.e., search or detection errors).  It is hypothesized that 

this diagnosis will be effective at pinpointed why threat detection errors occur.   

 

If you would like to find out more about the results of this study, please email 

meredith@designinteractive.net after May 2009. 

 

Thank you for your participation in this study! 

mailto:meredith@designinteractive.net�
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APPENDIX P: EXPERIMENT 2 DEBRIEF FORM 
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Experiment II 

Debriefing Form 

 

In this study, we are investigating the effectiveness of eye-tracking based search 

performance diagnosis methods for diagnosing where in the perceptual process 

performance breakdowns occur (i.e., search or detection errors).  It is hypothesized that 

this diagnosis will be effective at pinpointing why threat detection errors occur. The 

training and feedback you experienced are targeted at correcting these types of detection 

errors to improve search performance.  

 

If you would like to find out more about the results of this study, please email 

meredith@designinteractive.net after May 2010. 

 

Thank you for your participation in this study! 

 

 

 

mailto:meredith@designinteractive.net�
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