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ABSTRACT 

NICOTINE EFFECTS ON WHITE MATTER MICROSTRUCTURE IN MALE AND 
FEMALE YOUNG ADULTS 

 
by 

 
Megan M. Kangiser 

 
 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Krista Lisdahl 

 
 Nicotine use is still widely prevalent among adolescents and young adults. Nicotine use is 

associated with white matter microstructural changes as measured by diffusion tensor imaging 

(DTI), a magnetic resonance imaging technique that measures the diffusion of water in the brain. 

In adults, nicotine use is generally associated with poorer white matter microstructure, exhibiting 

lower fractional anisotropy (FA), but in adolescents/young adults, microstructure appears 

healthier, as indicated by higher FA. No study has examined gender differences in the effects of 

nicotine on white matter microstructure in young adults. 53 subjects (18 nicotine users [10 

female] and 35 controls [17 female]) underwent an MRI scan, neuropsychological battery, 

toxicology screening, and drug use interview. Nicotine group and gender*nicotine group were 

used to predict FA and mean diffusivity (MD) in various white matter tracts. In significant tracts, 

axial (AD) and radial (RD) diffusivity were measured. Nicotine users exhibited significantly 

lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, 

left superior longitudinal fasciculus—temporal, and left uncinate fasciculus. In these tracts, AD 

and RD did not differ, nor did MD differ in any tract. The gender*nicotine group interaction did 

not predict any diffusion measures. These results are inconsistent with other adolescent/young 

adult studies, likely due to methodological differences and a slightly older sample. Further 

studies should examine the longitudinal effects of nicotine use and gender in a larger sample. 
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1. Introduction 

1.1 Prevalence of Nicotine Use 

Tobacco smoking remains the leading cause of preventable and premature death in the 

United States (U.S. Department of Health and Human Services, 2014). Nicotine cigarette use is 

surprisingly widespread among young adults, despite recent declines in use (Center for 

Behavioral Health Statistics and Quality, 2017). In 2016, 23.5% of young adults ages 18-25 

report current (past month) cigarette use (Center for Behavioral Health Statistics and Quality, 

2017), while 12.5% of 12th graders and 6.0% of young adults ages 19-29 report use of electronic 

vaporizers (Schulenberg et al., 2017). The vast majority (98%) of smokers initiate smoking by 

age 25 (U.S. Department of Health and Human Services, 2014). Thus, characterizing the effects 

of nicotine use in adolescence and young adulthood on the developing brain is critically 

important.  

1.2 Psychopharmacology of Nicotine 

Nicotine, the psychoactive component of tobacco, reaches the brain within seconds of 

inhaling cigarette smoke (Benowitz, 2009). Nicotine activates nicotinic acetylcholine receptors 

(nAChRs), which are ligand-gated ion channel, pentameric receptors that can be composed of a 

combination of α (α2-α10) and β (β2-β4) subunits, such as α4β2 and α3β4 receptor subtypes, or may 

be homomeric, as with the α7 receptor (Benowitz, 2009). Nicotine causes release of 

neurotransmitters such as acetylcholine, GABA, serotonin, endorphins, norepinephrine, 

glutamate, and especially dopamine. Nicotine in part has reinforcing qualities due to dopamine 

release in the nucleus accumbens after upstream stimulation of nAChRs in the ventral tegmental 

area (Benowitz, 2009; Blaha et al., 1996; Corrigall, Coen, & Adamson, 1994; Nisell, Nomikos, 

& Svensson, 1994), although dopamine is also released in other areas, including the frontal 
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cortex (Benowitz, 2009). nAChRs are found throughout the brain, from highest to lowest density 

in the thalamus, basal ganglia, cortex, hippocampus, and cerebellum (Brody et al., 2006). Both 

α4β2 (Levin & Simon, 1998) and α7 (Levin, Bettegowda, Blosser, & Gordon, 1999; Levin & 

Simon, 1998) subtypes especially are implicated in learning and memory. Desensitization of 

nAChRs results from chronic exposure (Benowitz, 2009; Wang & Sun, 2005); this 

desensitization leads to nAChR up-regulation, which may be implicated in nicotine dependence 

(Benowitz, 2009). However, receptor levels do normalize after at least 2 months of abstinence in 

humans (Breese et al., 1997).  

Cigarette smoke contains a wide variety of potentially cytotoxic chemicals, such as free 

radicals, carbon monoxide, and nitrosamines (Durazzo, Meyerhoff, & Nixon, 2010), including 

some compounds associated with brain toxicity (Swan & Lessov-Schlaggar, 2007). The 

compounds come from both the tobacco plant itself and the cigarette manufacturing process 

(Swan & Lessov-Schlaggar, 2007). In rats, chronic cigarette smoke exposure can cause 

neuroinflammation and increased expression of inflammatory marker genes (Khanna, Guo, 

Mehra, & Royal, 2013). Cigarette smoke is widely known to cause oxidative damage and stress 

in the brain and body (Durazzo et al., 2010; Khanna et al., 2013; Moriarty et al., 2003; Panda, 

Chattopadhyay, Chattopadhyay, & Chatterjee, 2000; Panda, Chattopadhyay, Ghosh, 

Chattopadhyay, & Chatterjee, 1999; Swan & Lessov-Schlaggar, 2007). Also, mouse brain 

mitochondria are damaged by cigarette smoke extract but not by nicotine alone (Yang & Liu, 

2003). However, the exact mechanisms by which cigarette smoke damages the brain have yet to 

be fully elucidated (Durazzo et al., 2010; Khanna et al., 2013). 

1.3 Effect of Nicotine on Brain Structure  
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Evidence suggests that chronic nicotine use may impact brain structure. In adults, 

smokers generally exhibit lower grey matter volume or density in various parts of the brain 

(Brody et al., 2004; Fritz et al., 2014; Gallinat et al., 2006; Hanlon et al., 2016; Kuhn et al., 2012; 

R. Yu, Zhao, & Lu, 2011; Zhang et al., 2011) compared to non-smokers, although exceptions 

exist (Hanlon et al., 2016; Zhang et al., 2011). Grey matter volume/density is typically 

negatively correlated with pack-years (Brody, 2006; Fritz et al., 2014; Gallinat et al., 2006; 

Zhang et al., 2011) or nicotine dependence (Kuhn et al., 2012). While chronic nicotine use not 

only impacts grey matter, it also causes changes in white matter microstructure. 

White matter microstructure can be measured by diffusion tensor imaging (DTI), a non-

invasive magnetic resonance imaging (MRI) technique that measures the diffusion of water 

within white matter (Le Bihan, 2003; Mori & Zhang, 2006). Isotropic diffusion is characterized 

by fluid movement in all directions equally, while anisotropic diffusion is characterized by fluid 

movement dependent on direction, as with a barrier such as a neuron (Beaulieu, 2002). The most 

commonly used measure of the amount of anisotropic diffusion is fractional anisotropy, or FA 

(Alexander, Lee, Lazar, & Field, 2007; Basser & Pierpaoli, 1996). Mean diffusivity, or MD, 

measures diffusion in all directions. The diffusion measurement parallel to the fiber is referred to 

as axial diffusivity, or AD, while diffusion perpendicular to the fiber is called radial diffusivity, 

or RD (Beaulieu, 2009). FA and MD are commonly used in DTI studies, with AD and RD more 

recently being used to give specificity about microstructure. Higher FA is usually considered 

indicative of better white matter health, although the other diffusion measures need to be 

considered in order to more completely understand white matter microstructure (Alexander et al., 

2007). Increased RD without changes in AD is indicative of demyelination, while lower AD with 

modestly lower RD suggests axonal damage (Song et al., 2005). 



 

 4 

White matter microstructure has been fairly well studied in adult smokers, with generally 

consistent results. Adult smokers demonstrate lower FA in the corpus callosum as a whole 

(Umene-Nakano et al., 2014) and specifically the genu, left body (Lin, Wu, Zhu, & Lei, 2013), 

and splenium (Savjani et al., 2014); left prefrontal cortex (Zhang et al., 2011); and anterior limb 

of the internal capsule (Savjani et al., 2014). FA is typically negatively correlated with nicotine 

dependence (Hudkins, O'Neill, Tobias, Bartzokis, & London, 2012; Zhang et al., 2011), duration 

of smoking (Savjani et al., 2014), and cigarettes per day (Hudkins et al., 2012; Umene-Nakano et 

al., 2014). Findings from Savjani et al. (2014) were in 24-hour abstinent smokers; however, sated 

smokers in their sample exhibited lower FA in right fronto-motor and –habenular and left fronto-

accumbal tracts. In contrast, one study (Paul et al., 2008) found higher FA in the body of the 

corpus callosum in adult smokers, especially in the low-dependence group; additionally, 

cigarettes per day and FA in the corpus callosum genu were positively correlated. Another study 

(Hudkins et al., 2012) found increased FA in adult smokers in the corpus callosum genu (in 

contrast with Lin et al. (2013)), right prefrontal areas, and middle cingulum; confusingly, FA 

was negatively correlated with Fagerström Test for Nicotine Dependence (FTND, described in 

section 2.3.2) score and cigarettes/day in some areas. However, both of these studies have very 

small sample sizes, with 10 smokers and 10 non-smokers in Paul et al. (2008), and 18 smokers 

and 18 non-smokers in Hudkins et al. (2012). Only three adult studies have examined MD in 

smokers; two found no difference from controls (Lin et al., 2013; Paul et al., 2008), while one 

(Savjani et al., 2014) discovered increased MD within the corpus callosum and anterior limb of 

the internal capsule. Savjani et al. (2014) also found decreased AD and increased RD in those 

areas. Lin et al. (2013) discovered decreased AD and increased RD in the left anterior corpus 

callosum. Duration of regular smoking positively correlated with MD and RD within this region 
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(Lin et al., 2013). Generally, studies of white matter microstructure in adults find that smokers 

exhibit poorer white matter health than controls, but none suggest a specific mechanism for this 

change; further research is needed in this area. Fortunately, most of these studies contain an even 

amount of male and female participants (Hudkins et al., 2012; Paul et al., 2008; Savjani et al., 

2014; Zhang et al., 2011), and exclude participants with psychiatric comorbidities (Lin et al., 

2013; Paul et al., 2008; Umene-Nakano et al., 2014; Zhang et al., 2011). However, only one 

study measured alcohol use (Hudkins et al., 2012), while others measured problematic drinking 

behavior or alcohol abuse, without measuring alcohol drinks (Lin et al., 2013; Paul et al., 2008; 

Umene-Nakano et al., 2014; Zhang et al., 2011). See Table 1 for a review of adult studies of 

nicotine use and white matter integrity. 

1.4 Adolescence  

1.4.1 Brain Development During Adolescence and Young Adulthood 

Adolescence is characterized by dynamic brain development, particularly by grey matter 

pruning (Giedd et al., 1999; Giorgio et al., 2010; Giorgio et al., 2008; Sowell, Thompson, 

Tessner, & Toga, 2001; Yuan, Cross, Loughlin, & Leslie, 2015) and white matter microstructural 

improvements (Yuan et al., 2015), typically demonstrated by increases in FA (Ashtari et al., 

2007; Barnea-Goraly et al., 2005; Giorgio et al., 2010; Giorgio et al., 2008; Schmithorst, Wilke, 

Dardzinski, & Holland, 2002; Yuan et al., 2015). Decreased MD (Schmithorst et al., 2002), 

increased AD, and minimally increased RD are also seen (Ashtari et al., 2007). FA increases 

with age (Barnea-Goraly et al., 2005), and decreases in gray matter density are positively 

correlated with increases in FA (Giorgio et al., 2008).  

Many white matter tracts involved in sensorimotor function are already mature in 

childhood, such as the pontine crossing tract, posterior thalamic radiation, posterior and 
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retrolenticular portions of the internal capsule, and corona radiata. In adolescence, white matter 

maturity occurs in areas associated with executive functioning and motor response preparation, 

including the superior longitudinal fasciculus, cerebellar white matter, cortico-hippocampal 

limbic tracts (e.g. parts of the cingulum and fornix), and white matter terminations in the 

thalamus and medial temporal lobes. Growth of white matter terminations in the cortex and basal 

ganglia continued into adulthood, perhaps suggesting that subcortical networks coalesce 

cognitive and emotional information (Simmonds, Hallquist, Asato, & Luna, 2014). Of note, 

some of these areas of development in adolescence and young adulthood overlap with nAChR-

rich areas, including the basal ganglia, hippocampus, cortex, and cerebellum (Brody, 2006).  

nAChRs play a critical role in prenatal brain development, including regulating neurite 

growth, gene expression, neurotransmitter release, and GABAergic signaling; for a review, see 

Dwyer, Broide, and Leslie (2008). nAChRs exhibit unique characteristics in adolescence. In 

adolescent male rodents, nAChRs display higher functionality (Kota, Martin, Robinson, & 

Damaj, 2007) and responsiveness (Britton, Vann, & Robinson, 2007) compared to adults. 

Additionally, in male but not female rats, nAChRs on dopaminergic neurons in early adolescence 

release greater dopamine upon stimulation than in adulthood (Azam, Chen, & Leslie, 2007). 

1.4.2 Effects of Nicotine in the Adolescent Brain 

Given the many developmental changes just described, the adolescent brain is especially 

sensitive to nicotine (Slotkin, 2002; Yuan et al., 2015). When chronically administered in 

adolescence, nicotine causes neural cell death, changes in gene expression (Trauth, Seidler, & 

Slotkin, 2000a), greater neuronal activity in reward-related areas such as the nucleus accumbens 

and ventral tegmental area (Yuan et al., 2015), dopamine turnover in the midbrain and striatum 

and norepinephrine turnover in the midbrain (Trauth, Seidler, Ali, & Slotkin, 2001), and deficits 
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in serotonergic receptor activity (Xu, Seidler, Ali, Slikker, & Slotkin, 2001). Chronic nicotine 

administration also causes reductions in choline acetyltransferase (ChAT) activity—indicative of 

cholinergic cell damage—and hyperactivity of cholinergic neurons in the midbrain during 

administration, but a deficit in stimulation after cessation, and depressed activity of hippocampal 

cholinergic neurons both during and after administration (Trauth, McCook, Seidler, & Slotkin, 

2000). Additionally, adolescent female rats chronically exposed to nicotine exhibit persistent 

behavioral deficits not seen in adults (Trauth, Seidler, & Slotkin, 2000b). nAChR up-regulation 

in the hippocampus, midbrain, and cortex was equivalent in adolescent rats, while adult rats 

experienced hierarchical up-regulation; additionally, up-regulation persists longer in adolescents 

than adults (Trauth, Seidler, McCook, & Slotkin, 1999). Nicotine is more potent in late 

adolescence than in adulthood (Azam et al., 2007). 

Chronic nicotine exposure in adolescence and young adulthood also negatively impacts 

grey matter structure. Young smokers demonstrate lower grey matter volume in the left 

amygdala (Hanlon et al., 2016), left thalamus (Hanlon et al., 2016; Y. Liao, Tang, Liu, Chen, & 

Hao, 2012), left anterior cingulate and left medial frontal cortex (Y. Liao et al., 2012). Li et al. 

(2015) demonstrated cortical thinning in smokers in the cortex of parts of the frontal, parietal, 

and temporal lobes, along with larger caudate volumes in smokers. Studies disagree on the 

impact of chronic smoking on insula thickness in adolescents and young adults (Y. Liao et al., 

2012; Morales, Ghahremani, Kohno, Hellemann, & London, 2014). Cortical thickness can be 

negatively correlated with FTND score and pack-years in young adults (Li et al., 2015). Studies 

of chronic nicotine exposure on grey matter health in young adults are few, but they consistently 

demonstrate reductions in cortical volume and thickness. 

1.4.3 Nicotine and White Matter Integrity in Adolescence and Young Adulthood 
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To our knowledge, only 5 studies to date have examined the effects of nicotine on white 

matter microstructure in adolescents and young adults. All 5 studies examined FA in their 

sample (Huang et al., 2013; Jacobsen, Picciotto, et al., 2007; Y. Liao et al., 2011; van Ewijk et 

al., 2015; D. Yu et al., 2016), while 2 measured MD (van Ewijk et al., 2015; D. Yu et al., 2016) 

and 1 measured AD and RD (D. Yu et al., 2016). Huang et al. (2013) also examined streamline 

density. In a sample of 67 adolescents aged 13-18, Jacobsen, Picciotto, et al. (2007) found higher 

FA in smokers in the genu of the corpus callosum, anterior limb of the internal capsule, and the 

left inferior longitudinal fasciculus (ILF); FA was significantly positively correlated with pack-

years in the genu. Y. Liao et al. (2011) demonstrated increased FA in the bilateral superior 

longitudinal fasciculus (SLF) in 44 smokers compared to 44 controls, ages 19-39. In 11 smokers 

and 10 nonsmokers ages 18-39, Huang et al. (2013) discovered higher FA in the right anterior 

cingulate bundle (ACb) and lower streamline density in the anterior and posterior cingulum 

bundles, middle cingulum, and orbitofrontal region in smokers compared to controls. There was 

a negative correlation between the Level of Physical Dependence measure (a separate measure 

from the FTND) and FA in the left ACb (Huang et al., 2013). van Ewijk et al. (2015) studied the 

effects of smoking in 113 participants with Attention-Deficit/Hyperactivity Disorder (ADHD) 

and 73 healthy controls, divided into groups of nonsmokers (n=95), irregular smokers (n=41), 

and regular smokers (n=50), in young adults aged 14-24. Results indicated that compared to 

nonsmokers and irregular smokers, regular smokers had higher FA and lower MD in the basal 

ganglia regions, including the right SLF and bilateral corpus callosum, corticospinal tract, 

internal and external capsules, thalamus, and anterior corona radiata. Lastly, in a male-only 

sample of 23 smokers and 22 matched controls ages 14-23, D. Yu et al. (2016) elucidated higher 

FA and lower RD in the left SLF, body and splenium of the corpus callosum, and bilateral 
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posterior thalamic radiation (PTR), superior corona radiata (SCR), posterior corona radiata 

(PCR), and internal and external capsules. While no differences in MD were found, they also 

discovered increased AD in the right external capsule, superior corona radiata, and posterior limb 

of the internal capsule. FTND was negatively correlated with right SCR; RD and pack-years 

were negatively correlated in the external capsule, posterior limb of the internal capsule, and 

right SCR (D. Yu et al., 2016). 

Overall, these studies find increased FA in various white matter tracts, particularly in the 

corpus callosum and SLF, in young adult smokers. One study also found decreased MD in young 

adult smokers. Of note, this pattern opposes that seen in adults described above, in which adults 

typically display decreased FA after chronic nicotine use. However, these adolescent and young 

adult studies, summarized in Table 2, exhibit a variety of methodological differences from adult 

studies, including a lack of female participants, particularly in smoking groups (Huang et al., 

2013; Y. Liao et al., 2011; van Ewijk et al., 2015; D. Yu et al., 2016); no apparent full exclusion 

of participants with comorbid psychiatric disorders (Huang et al., 2013; van Ewijk et al., 2015; 

D. Yu et al., 2016); and small sample sizes in comparing smokers to non-smokers (Huang et al., 

2013; D. Yu et al., 2016) without prenatal exposure (Jacobsen, Picciotto, et al., 2007) or 

psychiatric comorbidity (van Ewijk et al., 2015). Further, most of these studies did not measure 

alcohol use (Huang et al., 2013; Y. Liao et al., 2011; van Ewijk et al., 2015; D. Yu et al., 2016). 

Given these limitations, it is difficult to know whether these results would replicate in a sample 

with an equal gender distribution, alcohol measured and controlled, and psychiatric disorders 

excluded. This pattern of higher regional FA in adolescent/young adult smokers is particularly 

puzzling considering adolescents who use other substances typically exhibit lower FA; for 

example, lower FA is seen in adolescent and young adult marijuana users (Ashtari et al., 2009), 
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adolescent binge drinkers (McQueeny et al., 2009) and marijuana and alcohol co-users (Bava et 

al., 2009). Higher MD is also seen in young adult marijuana users (Arnone et al., 2008; Ashtari 

et al., 2009). For a review, see Thatcher, Pajtek, Chung, Terwilliger, and Clark (2010).  

Multiple hypotheses have been put forth as to why nicotine use appears to be suggestive 

of better white matter health in young adults. One study that found higher FA in adult smokers 

(Paul et al., 2008), citing Gazdzinski et al. (2005), proposes that the FA/MD changes seen are not 

adaptive, and may in fact be due to nicotine-induced vasogenic swelling or cytotoxic cell 

swelling. Another hypothesis is that the microstructural changes are reflective of nicotine’s 

neurogenic properties (Y. Liao et al., 2011; Paul et al., 2008; van Ewijk et al., 2015). Nicotinic 

stimulation of spinal cord neurons revealed increased nerve growth factor mRNA and protein 

expression (Garrido, King-Pospisil, Son, Hennig, & Toborek, 2003), and stimulation of nAChRs 

in external granular layer neuroblasts produced increased DNA synthesis and content, likely 

indicating higher cell numbers; this effect appeared to be mediated by α3 nAChRs (Opanashuk, 

Pauly, & Hauser, 2001). Additionally, Paul et al. (2008) propose that since nAChRs are found in 

white matter (Ding et al., 2004) and on oligodendrocyte precursor cells (Rogers, Gregori, 

Carlson, Gahring, & Noble, 2001), and white matter is still developing in young adulthood 

(Simmonds et al., 2014), nAChR stimulation may affect glial cells, producing improved 

microstructural integrity and volume (Paul et al., 2008). Indeed, tobacco smoke has been found 

to decrease neurogenesis (in contrast to studies described above), but increase gliogenesis 

(Bruijnzeel et al., 2011). In rat astrocytes, nAChR overactivation leads to increased expression of 

glial call line-derived neurotrophic factor mRNA and proteins, suggesting neuroprotection is 

provided by astrocytic nAChRs (Takarada et al., 2012). However, the possibility remains that 
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higher FA and lower MD may predate smoking initiation, and/or be risk factors for nicotine 

addiction (van Ewijk et al., 2015). 

1.5 Gender 

1.5.1 Nicotine and Gender 

Nicotine differentially impacts the brain by gender. Women experience greater rewarding 

and aversive effects of nicotine compared to men, and other factors such as hunger suppression 

contribute to nicotine use in women (O'Dell & Torres, 2014). Preclinical rodent evidence shows 

that females experience heightened anxiety with chronic nicotine exposure (Caldarone, King, & 

Picciotto, 2008), and female rats experience stronger HPA axis responses compared to males 

(O'Dell & Torres, 2014). Adolescent females experience greater rewarding and fewer aversive 

withdrawal effects of nicotine compared to adult females (O'Dell & Torres, 2014). In the nAChR 

up-regulation described above, males in particular exhibit increased nAChR densities (Koylu, 

Demirgoren, London, & Pogun, 1997; Mochizuki et al., 1998), and levels persist after a month of 

abstinence in rats (Trauth et al., 1999). 

Most studies of nicotine’s effects on cognition in young adults find that male smokers 

fare worse than male non-smokers, including in attention (Jacobsen et al., 2005; Jacobsen, 

Slotkin, Mencl, Frost, & Pugh, 2007), recognition memory after abstinence (Merritt, Cobb, & 

Cook, 2012), and verbal memory (Kangiser, Lochner, Thomas, & Lisdahl, under review). 

Cognitive effects of nicotine appear to be less consistent in females, with studies finding poorer 

performance (Jacobsen, Slotkin, et al., 2007), no effect (Jacobsen et al., 2005; Merritt et al., 

2012), or better performance (Kangiser et al., under review) in female smokers compared to 

female non-smokers. Indeed, FA is generally positively associated with cognition (Bava, 
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Jacobus, Mahmood, Yang, & Tapert, 2010; Bava, Thayer, et al., 2010; Grieve, Williams, Paul, 

Clark, & Gordon, 2007). 

1.5.2 Gender Differences in White Matter Integrity 

In studies of young adolescents (average age 12-13 years), boys frequently exhibit higher 

FA throughout the brain, in white matter tracts (e.g. arcuate fasciculus) and cortical (e.g. superior 

temporal gyrus, middle/lateral occipital gyrus) and subcortical (e.g. thalamus, midbrain) 

structures (Herting, Maxwell, Irvine, & Nagel, 2012; Schmithorst, Holland, & Dardzinski, 2008; 

Silveri et al., 2006). Some studies disagree, finding that girls display higher FA in the splenium 

(Schmithorst et al., 2008), right SCR, and bilateral corticospinal tracts (Bava et al., 2011). 

Adolescent girls typically exhibit higher MD than adolescent boys (Herting et al., 2012; 

Schmithorst et al., 2008), although one study found no difference (Silveri et al., 2006), and other 

studies disagree (Bava et al., 2011; Schmithorst et al., 2008). Within Herting et al. (2012), when 

boys had higher FA, they displayed higher AD and/or lower RD in nearly all higher-FA regions; 

when girls had higher MD, they also had higher AD in the superior frontal gyrus and higher AD 

and RD in the superior temporal gyrus. Of note, this pattern is opposite that seen in adults, where 

adult females can exhibit higher FA than males (Kanaan et al., 2014; Lenroot & Giedd, 2010; 

Szeszko et al., 2003). A longitudinal study of white matter microstructural development found 

that adolescent boys had greater white matter increases and prolonged growth compared to 

females, although both sexes experienced white matter growth in adolescence. Males exhibited 

higher FA and lower RD compared to females in a variety of brain regions (Simmonds et al., 

2014). For a review of sex differences in the adolescent brain, see Lenroot and Giedd (2010).  

No studies to date have examined the effects of gender and nicotine use on white matter 

integrity in young adults. As aforementioned, most of the five studies examining the effects of 



 

 13

nicotine on white matter integrity in young adults have a noticeably low number (Huang et al., 

2013; Y. Liao et al., 2011; van Ewijk et al., 2015) or absence (R. Yu et al., 2011) of females in 

their samples (Gogliettino, Potenza, & Yip, 2016). Thatcher et al. (2010) conducted a study of 

gender differences in white matter integrity in adolescents in treatment for substance use 

disorders (SUDs). Adolescents with SUDs had lower FA in the right SLF, with lower AD, higher 

RD, and no difference in MD within the right SLF. Within the substance users, females trended 

towards lower FA than males in the SLF. This sample included heavy cigarette use, but the study 

examined SUDs broadly and nicotine use was not parsed out; also, the smoking group had no 

exclusion criteria for comorbid psychopathology while some disorders (e.g. ADHD and 

depression) were excluded in the control group (Thatcher et al., 2010). 

1.6 Study Aims 

Evidence shows that chronic nicotine use impacts white matter health. While adult 

studies generally find lower FA in smokers, studies in adolescents and young adults have 

consistently found higher FA in smokers, especially in the SLF, internal and external capsules, 

and corona radiata. Many of these studies in adolescents and young adults include few female 

participants, unmeasured alcohol use, and psychiatric comorbidities. To our knowledge, only one 

prior study of young adult males (D. Yu et al., 2016) has examined the effect of nicotine use on 

white matter microstructure in young adults using all four measures of diffusion (FA, MD, AD, 

and RD); these results need replicated, particularly in a sample that includes females. Further, no 

study to date has examined the effects of gender and nicotine use together on white matter 

integrity in young adults.  

Therefore, the aims of the present study were to thoroughly characterize white matter 

microstructure in young adult smokers and non-smokers, and to examine how gender moderates 



 

 14

any relationships. We also examined how white matter changes relate to nicotine dependence. 

Further, given the differences by gender and nicotine use on long delay free recall of the CVLT-

II (Delis, Kramer, Kaplan, & Ober, 2000), a verbal memory task, and marginal differences on the 

Paced Auditory Serial Attention Test (PASAT) (Gronwall, 1977), a sustained attention and 

working memory task, in an overlapping sample (Kangiser et al., under review), exploratory 

correlations were run to examine relationships between FA in the significant tracts in the present 

study and performance on the CVLT-II and the PASAT.  

 The present study excludes psychiatric comorbidities, includes a greater number of 

females in our sample, and measures and controls for alcohol use. Because of these changes, the 

methodology is more consistent with the adult literature, which typically finds lower FA in 

smokers. Additionally, our sample of 18-25 year olds is older than some samples in the 

adolescent/young adult literature. Moreover, young adulthood is a time of brain development 

characterized by white matter microstructure improvements, indicated by higher FA. Given all of 

these factors, it is difficult to hypothesize a direction for change in white matter microstructure 

between nicotine users and controls. Thus, we hypothesized that young adult nicotine users will 

exhibit different FA and MD compared to controls, and that within tracts of differing FA and/or 

MD, AD/RD would exhibit a significant difference from controls. Additionally, we hypothesized 

that males would exhibit lower FA and higher MD than females, given that FA is associated with 

cognition, and cognitive deficits are seen primarily in male smokers. Lastly, we hypothesized 

that FA wound negatively correlate with FTND and past year cigarettes. 

2. Methods 

2.1 Participants 
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Participants include 53 young adults ages 18-25 (27 female) sampled as part of a larger study 

(PI: Lisdahl NIH R03 DA027457). The University of Cincinnati Institutional Review Board 

approved all protocols. Inclusion criteria included: right-handedness; age 18-25; for the control 

group, <5 past year nicotine exposures, no regular exposure to second-hand nicotine smoke, and 

never having been a regular smoker; for the nicotine group, minimum weekly cigar or twice-

weekly nicotine cigarette, smokeless tobacco, and/or nicotine replacement exposure in the past 

year. Exclusion criteria included: current pregnancy; MRI contraindications (non-removable 

ferromagnetic metal in/on body); history of special education or a learning disability; history of 

chronic neurologic or medical illness (brain tumor, traumatic brain injury, >2min loss of 

consciousness and concussion symptoms, chronic migraines, epilepsy, meningitis, HIV, cerebral 

palsy, Parkinson’s disease, Huntington’s disease, stroke, uncontrolled high blood pressure, 

diabetes); current psychoactive medication use; DSM-IV Axis I disorders independent of 

substance use; prenatal exposure to nicotine (cigarette use daily for more than 1 month), alcohol 

(>4 drinks/day or >7 drinks/week), or illicit drugs (>10 uses); >9 lifetime uses of ecstasy; >20 

lifetime of any of these drug categories: opiates, inhalants, stimulants, sedatives, or 

hallucinogens; >60 cannabis joints past year; refusal to maintain abstinence from drugs and 

alcohol for 7 days before testing; and WRAT-4 Reading t-score ≤ 80. Eligible participants were 

divided into nicotine users (n= 18, 10 female) and controls (n=36, 17 female). 

2.2 Procedure 

Recruitment was conducted through advertisements in a free local newspaper and 

through fliers. Interested potential participants completed a phone screen for exclusionary 

criteria, described in further detail in Lisdahl and Price (2012). In short, a semi-structured 

interview was administered for Axis I anxiety, mood, and psychotic disorders based on DSM-IV-
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TR criteria (First, Spitzer, Gibbon, & Williams, 2001). Eligible participants with minimal other 

substance use underwent one 4.5-hour session with a neuropsychological battery, questionnaires, 

drug use interview, and MRI scan. Participants with moderate other substance use underwent 

two sessions, 2-3 days apart, with neuropsychological battery, questionnaires, and drug use 

interview at the first session, and the MRI at the second session. All participants received an 

image of their brain, local substance abuse treatment resources, and parking reimbursement; 

participants who completed one session received $110, while those with two sessions received 

$160. 

2.3 Measures 

2.3.1. Toxicology and Pregnancy Testing 

Participants provided a urine sample and were tested for recent drug use with the One 

Step Drug Screen Test (Dip Card Panel; Innovacon, Inc., San Diego, CA). Levels of cotinine, a 

nicotine metabolite that measures recent nicotine exposure or use, were also tested (NicAlert 

strips; Nymox Pharmaceutical Corporation, Hasbrouck Heights, NJ). Pregnancy tests were 

administered to female participants (HGC Pregnancy Test Card; DrugTestStrips, Greenville, 

SC). Urine was examined for adulterants (Specimen Validity Test; DrugTestStrips, Greenville, 

SC). Recent alcohol use was assessed with a breath alcohol test (Alco-Sensor IV; Intoximeters, 

Inc. St. Louis, MO). Participants testing positive for any substance other than nicotine or 

marijuana were excluded. 

2.3.2. Drug Use 

The Timeline Follow Back (TLFB) (Sobell, Maisto, Sobell, & Cooper, 1979) was used to 

measure past year drug use. In this semi-structured measure, participants are asked to recall their 

use of substances for the past year using a calendar. They may consult their personal calendar or 
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social media for reminders of important milestones or events. Substances were measured as 

follows: alcohol in standard drinks; marijuana in joints; nicotine in number of cigarettes and 

cigars, and number of uses of smokeless tobacco and nicotine replacement; ecstasy in tablets; 

inhalants (nitrous oxide, paint, gas, cleaners, glue, etc.), hallucinogens (PCP, LSD, acid, peyote), 

and opioids (opium and heroin) in number of hits; stimulants such as cocaine, crack cocaine, and 

methamphetamine in milligrams; stimulants such as amphetamine, Ritalin, Adderall, and 

ephedrine in pills; and sedatives (GHB, ketamine, downers, etc.) in pills or hits.  

Additionally, nicotine dependence was assessed using the Fagerström Test for Nicotine 

Dependence (FTND) (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991). The FTND is a 6-

item questionnaire and scores range from 0-10 points. Questions ask about difficulty refraining 

from smoking, number of cigarettes per day, and other dependence questions (Heatherton et al., 

1991). Although there are no standardized cutoff scores (Moolchan et al., 2002), Heatherton et 

al. (1991) propose the following criteria: 1-2 = very low dependence; 3-4 = low dependence; 5 = 

medium dependence; 6-7 = high dependence; 8-10 = very high dependence. 

2.4. Neuropsychological assessments 

Quality of education and verbal intelligence were estimated using the Wide Range 

Achievement Test-4th Edition (WRAT-4) Reading subtest (Wilkinson, 2006) for group 

comparison purposes; the Reading total score variable was used.  

As part of the larger study, participants underwent a neuropsychological battery, 

including measures of working memory (Paced Auditory Serial Attention Test, PASAT 

(Gronwall, 1977); Wechsler Adult Intelligence Scale-3rd Edition – Letter Number Sequencing 

subtest (Wechsler, 1997a)), verbal memory (California Verbal Learning Test-2nd edition, CVLT-

II (Delis et al., 2000)), facial memory (Wechsler Memory Scales – Faces subtest (Wechsler, 
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1997b)), attention (Ruff 2 & 7 (Ruff & Allen, 1996)), executive functioning (Wisconsin Card 

Sorting Task (Kongs, Thompson, Iverson, & Heaton, 2000); Delis-Kaplan Executive 

Functioning System (D-KEFS) – Trails, Color-Word Interference, Verbal Fluency, and Design 

Fluency subtests (Delis, Kaplan, & Kramer, 2001)), general intelligence (Wechsler Abbreviated 

Scale of Intelligence – Vocabulary and Block Design subtests (Wechsler, 1999)), and motor 

dexterity (Grooved Pegboard Test; Lafayette Instrument Company, Lafayette, IN). 

2.5. Neuroimaging 

2.5.1. Acquisition Parameters 

3D SPGR, T-1 weighted images were acquired on a 4T Varian Unity MR scanner, using 

a modified driven equilibrium Fourier transform (MDEFT) sequence (TR = 13ms, TE = 5.3ms, 

flip angle = 22°, FOV = 25.6cm, data matrix = 256 x 256 x 192, slice thickness = 1mm, in-plane 

resolution = 1 x 1mm). Anatomical scans were reviewed by a neuroradiologist, and participants 

with abnormalities were excluded. Diffusion tensor imaging data was collected with 12 diffusion 

directions, b ≈ 600s/mm2 (TR = 8000ms, TE = 88.8ms, flip angle = 90°, FOV = 25.6cm, data 

matrix = 64 x 64 x 30, resolution = 4 x 4 x 3mm3). 

2.5.2. Processing 

Images were processed using FreeSurfer version 5.3 (Dale, Fischl, & Sereno, 1999). Scan 

images were first subjected to motion correction (Reuter, Rosas, & Fischl, 2010), intensity 

normalization (Sled, Zijdenbos, & Evans, 1998), conversion to Talairach space (Collins, Neelin, 

Peters, & Evans, 1994), and skull stripping. Images were then segmented into white matter and 

grey matter structures (Fischl et al., 2002; Fischl et al., 2004), followed by registration and white 

matter segmentation. FreeSurfer’s Tracts Constrained by Underlying Anatomy (TRACULA) 

software (Yendiki et al., 2011) was used to extract the diffusion variables (average weighted FA, 
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MD, AD, and RD) in MNI space for the following tracts: forceps minor (fminor), and bilateral 

anterior thalamic radiation (ATR), cingulum cingulate gyrus (CCG), inferior longitudinal 

fasciculus (ILF), superior longitudinal fasciculus—parietal (SLFp), superior longitudinal 

fasciculus—temporal (SLFt), and uncinate fasciculus (UNC). The fminor and left ILF could not 

be constructed on one subject, and the right ILF on another. These subjects were excluded from 

the regressions for fminor and left ILF, and right ILF, respectively. 

2.6. Data Analysis 

SPSS was be used for all analyses. dfBeta weights were examined to remove any outliers. 

A series of multiple regressions was be conducted to examine whether nicotine group status and 

an interaction between nicotine group and gender predict FA, MD in the aforementioned tracts 

after controlling for gender and any demographic or drug use variables that differ between 

nicotine groups or by gender. In tracts that have significant findings for FA or MD, we examined 

whether nicotine group status and gender*nicotine group predict AD and RD. For tracts that are 

predicted by group or gender*nicotine group, follow-up correlations were conducted to examine 

the relationship between nicotine dependence score and the white matter measure (FA, MD, AD, 

or RD). Significance was determined if p<.05. Post-hoc power analyses were conducted using 

G*Power (Faul, Erdfelder, Lang, & Buchner, 2007). 

3. Results  

Demographic and drug use variables were examined using Chi-squares and ANOVAs with 

Fischer’s LSD for post-hoc analyses, after dividing participants into male nicotine users (n=8), 

male controls (n=18), female nicotine users (n=10), and female controls (n=17).  

3.1 Demographic and Mood Information 
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 Demographic and drug use results are summarized in Table 3. Groups did not differ in 

age (F[3,49]=0.28, p=.84), ethnicity (64.2% Caucasian, χ2(12)=8.24, p=.77), years of education 

(F[3,49]=0.92, p=.44), WRAT-4 Reading standard score (F[3,49]=1.02, p=.30), or Beck 

Depression Inventory-II score (F[3,49]=0.18, p=.91).  

3.2 Drug Use 

Groups significantly differed in past year cigarette use (F[3,49]=21.64, p<.001), cotinine 

level (F[3,49]=202.39, p<.001), past year hookah use (F[3,49]=2.91, p=.04), and past year 

alcohol drinks (F[3,49]=3.94, p=.04). Post-hoc analysis revealed that male and female smokers 

had significantly higher past year cigarette use and higher cotinine levels compared to male and 

female controls, all ps<.001. Male nicotine users exhibited significantly higher past year hookah 

puffs compared to male controls (p=.01), female nicotine users (p=.02), and female controls 

(p=.01). Additionally, female nicotine users consumed significantly more past year alcohol 

drinks than male and female controls, p=.03. Lastly, female nicotine users consumed marginally 

significantly more other drugs in the past year (F[3,49]=2.76, p=.052) compared to male and 

female controls (p=.02), but this marginal effect is driven by one female nicotine user with 13 

past year other drug uses. Groups did not differ in past year cigar (F[3,49]=2.57, p=.07), 

smokeless tobacco (F[3,49]=2.45, p=.08), cannabis (F[3,49]=1.25, p=.30), or ecstasy use 

(F[3,49]=1.47, p=.23). 

3.3 Primary Findings 

 Results are summarized in Table 4. After controlling for gender and past year alcohol 

use, nicotine group predicted lower FA in the left ATR [β=-.30, t(49)=-2.07, p=.04, f2=.09], left 

ILF [β=-.31, t(48)=-2.12, p=.04, f2=.09], left SLFt [β=-.35, t(49)=-2.43, p=.02. f2=.12], and left 

UNC [β=-.30, t(49)=-2.05, p<.05, f2=.09]. Nicotine group predicted marginally lower FA in the 
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left [β=-.27, t(49)=-1.824, p=.07, f2=.07] and right SLFp [β=-.29, t(49)=-1.96, p=.06, f2=.08], but 

did not predict FA in any other tracts, ps>.10. Nicotine group marginally predicted higher MD in 

the fminor [β=.26, t(48)=1.77, p=.08, f2=.06], but other tracts were not significant, ps>.10. 

Further examination of the left ATR, ILF, SLFt, and UNC revealed marginally higher RD in the 

left ILF [β=.27, t(48)=1.83, p=.07, f2=.07] and left UNC [β=.24, t(49)=1.70, p<.10, f2=.06] in 

nicotine users, but no differences in AD, ps>.10. There were no significant nicotine by gender 

interaction effects.  

3.4 Brain-Behavior Relationships  

No significant correlations were observed between FTND score and FA in the left ATR 

(r=-.34, p=.16), left ILF (r=-.24, p=.34), left SLFt (r=.04, p=.89), or left UNC (r=-.34, p=.17). 

Neither were correlations significant between past year cigarette use and FA in the left ATR (r=-

.29, p=.10), left ILF (r=-.21, p=.14), left SLFt (r=-.24, p=.08), or the left UNC (r=-.22, p=.12). 

PASAT performance positively correlated to FA in the left SLFt (r=.30, p=.03), but not 

to FA in any of the other tracts (ps>.23). FA did not correlate with CVLT-II performance in the 

left ATR, left ILF, left SLFt, or left UNC, ps>.40. Perhaps no correlations were observed with 

CVLT-II long delay free recall performance because performance differed by gender in the prior 

study but gender differences were not seen in the present study.  

3.5 Covariate Findings 

 We did statistically control for past year alcohol use, which actually predicted higher FA 

in the fminor [β=.31, t(49)=2.10, p<.05], left ATR [β=.33, t(49)=2.30, p=.03], left CCG [β=.30, 

t(49)=2.05, p<.05], left ILF [β=.34, t(49)=2.33, p=.02], left SLFp [β=.31, t(49)=2.11, p=.04], left 

SLFt [β=.33, t(49)=2.27, p=.03], right SLFt [β=.35, t(49)=2.38, p=.02], and left UNC [β=.31, 
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t(49)=2.16, p=.04]. Past year alcohol use also predicted marginally lower RD in the left ILF [β=-

.29, t(48)=-1.97, p=.06] and left UNC [β=-.26, t(49)=-1.86, p=.07]. 

4. Discussion 

4.1 Discussion of Findings 

 The aim of the present study was to examine whether nicotine use predicted white matter 

microstructural features, as measured by fractional anisotropy (FA), mean diffusivity (MD), axial 

diffusivity (AD), and radial diffusivity (RD), in a young adult sample, and whether gender 

moderated these relationships. Nicotine group status predicted lower FA in the left anterior 

thalamic radiation (ATR), left inferior longitudinal fasciculus (ILF), left superior longitudinal 

fasciculus-temporal (SLFt), and left uncinate fasciculus (UNC). There were no significant 

differences in AD or RD in any of those tracts, nor in MD in any tract. Symptoms of nicotine 

dependence were not correlated with FA in any of the significant tracts. We also found that 

gender did not moderate these effects. Using the above effect sizes and 3 predictors in the model, 

we had 56.1% power in detecting the left ATR effect, 59.0% for the left ILF, 69.5% for the left 

SLFt, and 54.8% for the left UNC. To achieve 80% power for the left UNC analysis, an 

estimated sample size of 95 participants would have been required. 

These results are inconsistent with other adolescent and young adult studies, which 

typically find higher FA in adolescent and young adult smokers, including in the SLF (Y. Liao et 

al., 2011; van Ewijk et al., 2015; D. Yu et al., 2016) and ILF (Jacobsen, Picciotto, et al., 2007). 

The inconsistency may be due to methodological and sample differences from other 

adolescent/young adult studies, such as exclusion of Axis I disorders, inclusion of participants of 

both genders, and measuring alcohol and cannabis use, all of which may influence white matter 

microstructure (Bava et al., 2011; Bessette, Nave, Caprihan, & Stevens, 2014; Gruber, Dahlgren, 
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Sagar, Gonenc, & Lukas, 2014; Herting et al., 2012; Jacobus et al., 2009; M. Liao et al., 2014; 

Ma et al., 2007; McQueeny et al., 2009; Murphy & Frodl, 2011; Schmithorst et al., 2008). 

Additionally, compared to the adolescent and young adult studies, the sample of the present 

study is slightly older, with an average age of 21.2 years; perhaps our results differ partially 

because different white matter tracts finish development in adolescence versus young adulthood 

(Simmonds et al., 2014).  

The ILF connects the occipital cortex with the anterior temporal lobes, below the optic 

pathways (Mandonnet, Nouet, Gatignol, Capelle, & Duffau, 2007); it may be associated with 

object recognition in children (Ortibus et al., 2012) and indirectly associated with language 

function in adults (Mandonnet et al., 2007). The ATR connects the medial dorsal and anterior 

thalamic nuclei to the prefrontal cortex. It appears to be associated with affect regulation 

(Coenen, Panksepp, Hurwitz, Urbach, & Madler, 2012) and social responsiveness (Cheon et al., 

2011). The SLF is an association fiber connecting the precentral gyrus with the posterior 

temporoparietal area (Bernal & Altman, 2010); it is likely not indicated in language semantics 

(Maldonado, Moritz-Gasser, & Duffau, 2011) but the left SLF has been associated with spatial 

working memory performance in children (Vestergaard et al., 2011). Consistent with this 

finding, FA in the left SLF positively correlated with performance on a working memory and 

sustained attention measure in the present study. The UNC is a bidirectional long-range 

association fiber tract connecting the anterior temporal lobes with the orbitofrontal cortex; Von 

Der Heide (2013) hypothesize that the UNC allows for the synthesis of mnemonic associations 

with information regarding reward/punishment. Of note, higher FA and/or lower MD in the UNC 

is correlated with verbal memory performance (Von Der Heide, 2013) in healthy adults and in 

adults with TBI (Niogi et al., 2008), and in children and adolescents (Mabbott, Rovet, 
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Noseworthy, Smith, & Rockel, 2009). However, FA in the left UNC did not correlate with verbal 

memory performance in the present study. 

The fact that the gender by nicotine group interaction did not predict white matter 

microstructure in any tract is surprising given the differing receptor-level (Koylu et al., 1997; 

Mochizuki et al., 1998) and cognitive (Jacobsen et al., 2005; Kangiser et al., under review; 

Merritt et al., 2012) effects of nicotine between the genders. However, this study is the first to 

examine gender differences in nicotine effects on white matter microstructure and is limited by a 

very small sample size within the nicotine group—8 males and 10 females. An effect of gender 

may be seen in larger samples. Additionally, perhaps there are simply no effects on white matter 

between the genders in chronic smoking; perhaps gender differences exist with functional 

connectivity, neurotransmitters, or grey matter. Chronic smoking is associated with sex 

differences in functional connectivity of the default mode network (Beltz, Berenbaum, & 

Wilson, 2015) and has been shown to differentially impact grey matter volumes by sex and 

region (Franklin et al., 2014). 

4.2 Possible Mechanisms 

Of the adult studies that find lower FA in smokers (Lin et al., 2013; Savjani et al., 2014; 

Umene-Nakano et al., 2014; Zhang et al., 2011), two found higher RD in their samples, likely 

indicating that the lower FA seen in smokers was likely due to demyelination (Lin et al., 2013; 

Savjani et al., 2014). While the present study did not replicate these RD findings, RD in the left 

ILF (p=.07) and left UNC (p=.10) were marginally higher in nicotine users. Effect size 

calculations determined small effect sizes for the left ILF (f2=.07) and the left UNC (f2=.06), 

indicating 47.2% power for the left ILF and 41.6% power for the left UNC with 3 predictors. To 

achieve 80% power in detecting these effects, sample sizes of 115 (left ILF) to 133 (left UNC) 
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would be needed. Thus, it is possible that the lower FA seen in smokers in the present study is 

due to demyelination, but this is purely speculation with our small sample size and limited 

power. 

 Additionally, it is possible that the compounds in cigarette smoke excluding or in 

addition to nicotine have caused the deterioration in white matter microstructure seen in the 

present study. Indeed, compounds in cigarette smoke cause neuroinflammation and oxidative 

stress (Durazzo et al., 2010; Khanna et al., 2013), and cigarette smoke extract may cause damage 

separate from nicotine itself (Yang & Liu, 2003). While the exact mechanism by which cigarette 

smoke injures neurons is not yet clear, one possibility (Durazzo et al., 2010) is that neuronal 

damage or death is caused by calcium (Ca2+) overload (Xiao, Wei, Xia, Rothman, & Yu, 2002) 

as a result of cigarette smoke exposure (Anbarasi, Vani, Balakrishna, & Devi, 2005). Nicotine’s 

effect in raising Ca2+ appears to be mediated by the α7 nAChR (Dajas-Bailador, Soliakov, & 

Wonnacott, 2002), which is up-regulated with chronic exposure to nicotine (Melroy-Greif, 

Stitzel, & Ehringer, 2016). Calcium overload not only contributes to neuronal damage and death 

(Xiao et al., 2002), but is also associated with white matter degradation (Stys, 2004), including 

degradation of axons (R. M. LoPachin & Lehning, 1997). Cytokine levels, which are involved 

with inflammation and elevated with cigarette smoke exposure (Khanna et al., 2013), can impact 

Ca2+ signaling in both neurons and glia, inducing elevated Ca2+ levels in these cells (Sama & 

Norris, 2013). Perhaps, then, the neuroinflammation associated with cigarette smoking causes 

Ca2+ overload, and subsequently damage and death, in neurons and glia, thus impacting white 

matter microstructure. Another possibility is that cigarette smoking causes hypoxia (Jensen, 

Goodson, Hopf, & Hunt, 1991). Anoxic events cause accumulation of Ca2+ in the myelin (R. M. 

LoPachin, Jr. & Stys, 1995), which, with influx, causes oligodendrocyte damage (Scolding, 
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Morgan, Campbell, & Compston, 1992). Specifically, it appears that the myelin separates from 

the axon (Waxman, Black, Ransom, & Stys, 1993), which may explain the higher RD seen in 

other studies (Lin et al., 2013; Savjani et al., 2014), and marginally in the present study. 

Mechanisms for injury to white matter are reviewed in Stys (1998) and Stys (2004). 

It is also possible that lower FA seen in the nicotine group can be attributed to an 

interaction of nicotine and alcohol use. While 94.4% of each group (17 nicotine users, 34 

controls) consumed alcohol in the past year, the nicotine group (4.16 drinks/week) consumed 

significantly more alcohol drinks in the past year compared to controls (1.38 drinks/week). 

Unexpectedly, past year alcohol use predicted higher FA in a variety of mostly left-lateralized 

tracts in our moderate-drinking sample. Lower FA is seen in adolescent binge drinkers 

(McQueeny et al., 2009) (Jacobus et al., 2009). The present study screened out very high 

drinkers, as well as had an older sample, which may explain the differences in the findings. 

Additionally, moderate alcohol consumption has some protective cardiovascular effects (Sacco 

et al., 1999), and thus, perhaps has neuroprotective qualities. Nevertheless, nicotine and alcohol 

are known to interact. Alcohol and nicotine are often used at the same time (Piasecki et al., 

2011), and alcohol is active at nAChRs (Tang & Liao, 2013). Tobacco and alcohol use alone 

appear to influence use of the other substance, and this fact may have genetic underpinnings 

(Cross, Lotfipour, & Leslie, 2017). While, to our knowledge, no studies have examined the 

effects of chronic nicotine and alcohol co-use on white matter microstructure, other studies, 

summarized in Swan and Lessov-Schlaggar (2007), have found lower frontal, temporal, total 

neocortical (Durazzo, Cardenas, Studholme, Weiner, & Meyerhoff, 2007), and parietal (Durazzo, 

Cardenas, et al., 2007; Gazdzinski et al., 2005) grey matter volume and higher temporal white 

matter volume (Gazdzinski et al., 2005) in co-users. For further review, see Durazzo, 
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Gazdzinski, and Meyerhoff (2007). Future studies should examine the effects of nicotine and 

both moderate and heavy alcohol co-use on white matter microstructure.  

4.3 Limitations 

 The results of the current study should be viewed in light of several limitations. First, the 

present study is cross-sectional in nature and thus cannot elucidate causality. It is possible that 

alterations in white matter microstructure predispose individuals to smoke cigarettes. 

Additionally, similar to other adolescent/young adult studies of nicotine and white matter 

microstructure (Huang et al., 2013; Jacobsen, Picciotto, et al., 2007; D. Yu et al., 2016), our 

sample size is small, particularly of smokers, which made the present study underpowered. 

Studies such as the Adolescent Brain and Cognitive Development Study, a prospective 

longitudinal study with a very large sample, could address both of these concerns. Also, this 

study used a self-report measure of substance use, the Timeline Follow-Back (Sobell et al., 

1979). However, the TLFB demonstrates high reliability when compared to cigarette use self-

monitoring (Brown et al., 1998). While the present study included a relatively equal number of 

males and females in the sample, no hormone or menstrual cycle phase data was collected; future 

studies should examine these variables in nicotine users. Additionally, the present study used 

only 12 diffusion directions. DTI measures may have been more accurate with a higher number 

of directions (Alexander et al., 2007; Jones, 2004; Ni, Kavcic, Zhu, Ekholm, & Zhong, 2006); 

however, a higher number of directions requires longer scan time (Alexander et al., 2007). 

Lastly, while urine cotinine was measured and all participants were not allowed to smoke one 

hour before testing, the present study did not account for acute withdrawal effects. However, 

participants were not forced into withdrawal as in other studies, and the one-hour abstinence 
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period was intended to prevent the cognitive boost (Warburton, 1992) and changes in FA 

(Kochunov et al., 2013) seen with acute nicotine exposure. 

4.4 Conclusions 

 In summary, nicotine group status predicted lower FA in the left ATR, ILF, SLFt, and 

UNC in young adults, while no other diffusion measures exhibited significant differences. 

Additionally, the gender by nicotine group interaction did not predict any differences in white 

matter microstructure, which is surprising given the differential effects of nicotine seen between 

males and females. These results indicate that chronic smoking in young adulthood may disrupt 

white matter integrity. Future studies should replicate these findings in a larger sample that 

includes hormone data, as well as elucidate the mechanism by which smoking changes white 

matter microstructure. 
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Table 4. Primary Findings 
  

 FA MD AD RD 

β p β p β p β p 

Fminor 

   Nicotine group 
   Nicotine group * Gender 

-.16 .29 .26 .08 -- -- -- -- 

-.11 .41 .03 .84 -- -- -- -- 

L ATR 

   Nicotine group 
   Nicotine group * Gender 

-.30 .04 .11 .49 .02 .88 .15 .33 

-.13 .32 .15 .30 -- -- -- -- 

R ATR 

   Nicotine group 
   Nicotine group * Gender 

-.22 .16 .01 .97 -- -- -- -- 

-.18 .20 .09 .52 -- -- -- -- 

L CCG 

   Nicotine group 
   Nicotine group * Gender 

-.23 .14 .11 .46 -- -- -- -- 

-.14 .31 .03 .85 -- -- -- -- 

R CCG 

   Nicotine group 
   Nicotine group * Gender 

-.23 .13 .11 .49 -- -- -- -- 

-.09 .52 .04 .81 -- -- -- -- 

L ILF 

   Nicotine group 
   Nicotine group * Gender 

-.31 .04 .20 .19 .05 .74 .27 .07 

-.13 .33 .15 .29 -- -- -- -- 

R ILF 

   Nicotine group 
   Nicotine group * Gender 

-.18 .25 .22 .16 -- -- -- -- 

-.19 .19 .15 .29 -- -- -- -- 

L SLFp 

   Nicotine group 
   Nicotine group * Gender 

-.27 .07 .05 .75 -- -- -- -- 

-.10 .47 .07 .61 -- -- -- -- 

R SLFp 

   Nicotine group 
   Nicotine group * Gender 

-.29 .06 .13 .41 -- -- -- -- 

-.12 .39 .05 .73 -- -- -- -- 

L SLFt 

   Nicotine group 
   Nicotine group * Gender 

-.35 .02 .11 .48 -.35 .73 .20 .18 

-.17 .20 .12 .41 -- -- -- -- 

R SLFt 

   Nicotine group -.22 .14 .04 .77 -- -- -- -- 
   Nicotine group * Gender -.01 .92 -.03 .80 -- -- -- -- 

L UNC 

   Nicotine group 
   Nicotine group * Gender 

-.30 .05 .22 .14 .13 .39 .24 .10 

-.03 .84 -.05 .74 -- -- -- -- 

R UNC 

   Nicotine group 
   Nicotine group * Gender 

-.07 .64 .13 .37 -- -- -- -- 

-.04 .78 -.01 .96 -- -- -- -- 
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