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ABSTRACT 

 

HOW DOES ANXIETY AFFECT COGNITIVE CONTROL?   

PROACTIVE AND REACTIVE CONTROL UNDER STATE ANXIETY 

 

by 

 

Youcai Yang 

 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Christine L. Larson 

 

 

Cognitive control is a construct that prioritizes how we process stimuli and information 

and execute behaviors to flexibly and efficiently adapt to internal goals and external 

environmental changes. A recent theory, the Dual Mechanism of Control (DMC), distinguishes 

this phenomenon by two distinct cognitive control operations: proactive control and reactive 

control (Braver, 2012). Anxiety increases the allocation of attentional and working memory 

resources to threat-related stimuli, which impairs cognitive performance (Sarason, 1988), but 

additional work is needed to assess how anxiety impacts these two distinct forms of cognitive 

control. In this study, I examined how state anxiety affected proactive control, using the AX-

continuous performance task (AX-CPT), and reactive control, using the classic Stroop task. The 

results showed that state anxiety inhibited proactive control in AX-CPT test, but increased 

reactive control in the Stroop task. Ultimately, by completing this study, we will better 

understand how anxiety impacts the proactive and reactive control. 
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Introduction 

Cognitive control is defined as the process of regulation, coordination and management 

of thoughts and action in accordance with internally maintained behavioral goals and flexibly 

responding to salient environmental demands (Braver, 2012). It mainly includes attention, 

inhibitory control, working memory, cognitive flexibility, planning, reasoning and problem 

solving (Chan, Shum, Toulopoulou, & Chen, 2008; Diamond, 2013). Cognitive control can help 

people respond to detected stimuli quickly, override prepotent responses, ignore irrelevant 

information that interferes with the current task, or perform multiple tasks simultaneously. For 

example, cognitive control can assist you if you are hungry but you do not have permission to 

take your roommate’s pizza, or if you are looking for your white car in the parking lot, in which 

case you need to select your car among all the other white cars while ignoring cars of other 

colors (Miller & Cohen, 2001). In the laboratory, one classic way to index cognitive control is 

the Stroop task (Stroop, 1935). When a person is instructed to name the colors of the ink or font 

that the word “GREEN” is presented in (e.g., green or red ink), much more time is required when 

the color of the ink is incongruent with the meaning of the word (e.g., “green” presented in red 

ink), compared to when the color of ink matches the printed word. Therefore, cognitive control is 

important for us to react to important stimuli quickly (such as avoiding danger) and to override 

distracting task-irrelevant stimuli to stay on task to achieve internal goals.   

Due to the ever changing balance of internal goal-directed behavior and stimulus-driven 

demands of the external environment, cognitive control must be flexible to adapt to changes and 

execute tasks efficiently. This flexibility allows goal-directed actions to be facilitated and 

conflicting actions to be suppressed. Cognitive control varies within and across individuals 

(Braver, 2012). Cognitive control can be changed, developed and improved across the lifespan as 
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it is affected by experience and events (Diamond, 2013). Ideally proactive and reactive control 

are optimally balanced to appropriately react to salient stimuli, but also complete necessary 

tasks. At its most adaptive cognitive control is implemented to shift flexibly as the situation 

demands.  

That cognitive control can shift between internally-focused goals and externally-driven 

stimuli in the same task under different instructions and conditions raises the possibility that 

there may be two different cognitive control processes. Although many studies have been 

conducted to clarify these mechanisms (Braver, 2012; Engle & Kane, 2003; Goldman-Rakic, 

Cools, & Srivastava, 1996; Koechlin & Summerfield, 2007; Miller & Cohen, 2001; Monsell & 

Driver, 2000; O'Reilly, 2006), research in this area is still in its early stages. A recent theory, the 

dual mechanisms of control (DMC) attempts to provide a framework for different cognitive 

control processes by two operational models: proactive control and reactive control (Braver, 

2012). Proactive control is conceptualized as a goal-driven system which maintains task-related 

information in order to bias attention and guide perception and action systems to prepare for the 

oncoming occurrence of a cognitively demanding event. Reactive control is conceptualized as 

stimulus-driven control that is mobilized only as needed. When salient stimulus is attended, a 

transient consequential response can be made. Reactive control is referred to as a ‘late correction 

mechanism’ by Braver (2012). 

The advantage of DMC is that the computational tradeoff based on the benefits and costs 

of proactive and reactive control allows information to be processed efficiently (Braver, 2012). 

Under proactive control, a goal can be triggered in advance and maintained until the appearance 

of a salient stimulus, decreasing internal and external interference, flexibly adjusting and 

facilitating information processing. However, goal maintenance is costly; it consumes resources 
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and occupies capacity-limited working memory stores, which is required for focal attention 

(Cowan, 2001; McElree, 2001; Oberauer, 2002). In contrast, under reactive control, goal 

representation is only active after the onset of a stimulus, which is transient and efficient, but the 

disadvantage is that attention will be easily reallocated whenever there is a trigger event, which 

can interrupt the execution of a goal.  

The DMC model is supported by neuropsychological and neuroimaging studies (Braver, 

2012; Lesh et al., 2013; Paxton, Barch, Racine, & Braver, 2008). The prefrontal cortex (PFC) is 

important for cognitive control, especially top-down control needed to reallocate attention and 

execute behaviors towards a goal (Cohen, Dunbar, & McClelland, 1990; Desimone & Duncan, 

1995; Miller & Cohen, 2001). The dorsolateral PFC (DLPFC) plays a key role in the 

maintenance of goals and action execution (Asaad, Rainer, & Miller, 2000; Watanabe, 1990). 

The ability to mount a sustained pattern of neural activity to maintain a goal has been repeatedly 

shown in DLPFC in non-human primates (Goldman-Rakic, 1995) and humans (MacDonald, 

Cohen, Stenger, & Carter, 2000). Conversely, the bottom-up reactivation of task goals is 

mediated by interference detection and conflict monitoring regions like the anterior cingulate 

cortex (ACC) (Botvinick, Braver, Barch, Carter, & Cohen, 2001). Patients with schizophrenia 

who showed impairments of the DLPFC and associated circuitry, such as the parietal cortex, 

exhibit cognitive control deficits (D. M. Barch, Carter, Braver, & et al., 2001; Cohen, Barch, 

Carter, & Servan-Schreiber, 1999a; Cohen, Braver, & O'Reilly, 1996; Cohen & Servan-

Schreiber, 1992). Based on the DMC theory, proactive control may be represented by sustained 

activation of the DLPFC, which supports the active maintenance of task goals and facilitates the 

top-down response to meet cognitive (Cohen, Barch, Carter, & Servan-Schreiber, 1999b) 

demands. In contrast, reactive control may be reflected as a transient activation of the DLPFC 
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along with heightened recruitment of conflict-monitoring regions, such as the ACC (Braver, 

2012; Braver, Paxton, Locke, & Barch, 2009; Kerns et al., 2005; MacDonald et al., 2000). One 

neuroimaging study found increased DLPFC and parietal activity in proactive versus reactive 

control in healthy participants (Lesh et al., 2013). In addition, schizophrenia patients with 

impaired cognitive control did not show significant DLPFC activation in proactive control 

conditions, but showed similar activation to control subjects during reactive control (Lesh et al., 

2013). However, another study found both decreased conflict and error-related activity in the 

patients’ACC, consistent with impaired reactive control, and no post-conflict or post-error 

behavioral adjustment was found, suggesting impaired proactive control. It suggests that 

impaired conflict monitoring in the ACC leads to a deficit in cognitive control by failing to 

prevent interference of irrelevant information (Kerns et al., 2005). Therefore, the DMC theory is 

supported by the sustained and transient activation of the DLPFC for proactive and reactive 

control, respectively, as well as environmentally appropriate engagement of the ACC.  

Other studies have also found distinct activation of these two control mechanisms 

(Braver, 2012) and a shift between these two models under different manipulations (Speer, 

Jacoby, & Braver, 2003). In Speer’s (2003) study, participants were instructed to maintain a 

short (1 to 6) or long list (6 to 11) of words over a delay then indicate whether the probe words 

were on the list. In the less demanding short-list block, activation of the left inferior PFC only 

increased when triggered by a probe word; while in long-list block, lateral PFC activation was 

sustained during the delay until the probe onset. This suggests that mnemonic processes are 

preferentially engaged during the delay response period (sustained top-down processing) and 

retrieval period (transient processing) depending on the task demands.  

Many tasks have been used to assess proactive and reactive control. I will focus here on 
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two of the most common, which I propose to use in the current study, the AX Continuous 

Performance Task (AX-CPT) and the Stroop task. AX-CPT is frequently used to assess proactive 

control (Braver et al., 2001; Braver, Satpute, Rush, Racine, & Barch, 2005; Locke & Braver, 

2008; Paxton et al., 2008). During the AX-CPT, participants are required to make a response to 

the target probe, which is the letter “X,” but only when it follows the cue letter “A” (target trial). 

When the probe “X” follows any other letters non-target responses are required. Target trials 

(AX trials) are presented with high frequency compared to non-target trials. Thus, during these 

non-target trials, participants must inhibit the prepotent response to the probe “X”. This task 

measures goal maintenance and updating. All the responses to the probe rely on the memory of 

the cue letter, which must be maintained during the delay between cue and probe for the rapid 

target decisions. Therefore, the AX-CPT provides a way to measure the proactive control 

required for this goal-directed behavior. 

The Stroop task (Stroop, 1935) is frequently used to assess reactive control (Gonthier, 

Braver, & Bugg, 2016; Lesh et al., 2013). In the Stroop task, the color words are presented in 

congruent or incongruent color inks (e.g. Congruent: the word “GREEN” in green ink; 

Incongruent: the word “GREEN” in red ink). The participants are instructed to read the words or 

name the colors. Word reading is faster and more automatic than color naming (MacLeod, 1991). 

In addition, frequent congruent trials bias participants to respond faster and more accurately rely 

on word reading. Thus, when the infrequent incongruent trials are presented, participants have to 

inhibit the strong tendency to read the word and switch to the weaker color naming response to 

avoid incorrect responses. Unlike the AX-CPT, making a response in the Stroop test does not 

require contextual information or maintenance of a goal, but simply a reaction to the current 

stimuli. As expected by this task design, evidence shows that the color naming on incongruent 
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trials in the Stroop task reflects reactive control (Botvinick et al., 2001; Gonthier et al., 2016; 

Lesh et al., 2013).  

Anxiety has been shown to impact cognitive control processes, and some theoretical 

models suggest that anxiety might differentially impact proactive and reactive control (Eysenck, 

Derakshan, Santos, & Calvo, 2007; Hu, Bauer, Padmala, & Pessoa, 2012). However, little work 

has examined its specific impact on these two types of cognitive control (Krug & Carter, 2012; 

Lamm, Pine, & Fox, 2013). Anxiety is an aversive emotional and motivational state in 

threatening conditions (Eysenck et al., 2007). The main distinction between its two main types, 

state and trait anxiety, is that state anxiety is a temporary unpleasant emotional response to some 

perceived threat, whereas trait anxiety is a personality characteristic in which individuals 

experience more frequent and more intense anxiety, even in the absence of external threat 

(Spielberger & Sydeman, 1994). State anxiety increases the allocation of attention resources to 

threat-related stimuli internally and externally, which was initially posited to impair performance 

(Sarason, 1988). However, there is also evidence that anxiety does not impair performance 

(Blankstein, Flett, Boase, & Toner, 1990; Blankstein, Toner, & Flett, 1989). Eysenck and 

colleagues (2007)’s attentional control theory (ACT) attempted to reconcile this. They proposed 

that anxiety affects processing efficiency, resulting in the need for compensatory processes to 

spare performance (Eysenck et al., 2007). Anxiety is thought to impair processing efficiency by 

restricting the capacity of working memory; indeed high anxiety subjects have been found to 

have less capacity than those low on anxiety (Darke, 1988). In a working memory test, subjects 

heard a series of letters or digits then were instructed to report the items in a reverse order, high 

anxiety subjects performed worse than low anxiety subjects (Moran, 2016). It suggests that goal 

maintenance in proactive control also depends on working memory. Proactive control, which 
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relies on a goal-directed attentional system is posited to be impaired by anxiety. However, 

anxiety may lead to a decrease of attentional control, and impairment of inhibition and shifting 

and that allows for increased reactive control which relies on stimulus-driven attention (Eysenck 

et al., 2007).  

Anxiety may also impact utilization of proactive and reactive control by evaluating 

benefits and costs to avoid punishment. For example, in a punishment-oriented motivation study, 

improvement in error rate and RT were predicted by high punishment sensitivity, which suggests 

these individual utilized proactive control after evaluating the punishment and cost (Savine, 

Beck, Edwards, Chiew, & Braver, 2010). In a working memory task, Fales et al (2008) found 

that a negative mood induction led to a shift from sustained to transient activation in working 

memory regions. Interestingly, this pattern of heightened transient versus sustained activation 

was evident in high anxious individuals even following a neutral mood induction, in contrast to 

the sustained working memory area activation in low anxious participants. The authors suggested 

that due to limited working memory capacity anxiety caused the shifting of attention allocation 

to unpredictable threats and anxiety-related internal thoughts, thus limiting the availability of 

working memory for the processing task-irrelevant information. This interferes with maintaining 

leads ongoing task goals and may impair performance or necessitate more resources to perform 

appropriately. This suggests a relation between anxiety and utilization of proactive (sustained 

activity) and reactive (transient activity) control which is consistent with the DMC theory.  

Even though some initial evidence suggests anxiety differentially affects proactive and 

reactive control, more investigation is needed. The differential effect of state anxiety on 

proactive versus reactive control has not yet been directly compared in the same individuals. The 

aim of my work is examine how proactive and reactive control will be effected under state 
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anxiety by conducting an AX-CPT and a Stroop task under threat of shock and safety. My 

hypothesis was: when we induce state anxiety during the AX-CPT test and the Color Naming 

Stroop test under threat conditions, we would find that proactive control (BX trial type in the 

AX-CPT) is impaired relative to safe conditions, while reactive control (color naming on 

incongruent trials in the Stroop task) is increased. 

Method 

Participants  

Seventy-three participants aged 18 to 35 were recruited from the University of 

Wisconsin-Milwaukee. All participants were granted 2 hours of course extra credit and one $10 

gift card. All participants had normal color vision. The sequences of the AX-CPT and Stroop 

tasks were counterbalanced across participants. Ten participants were excluded because of 

technical problems with shock delivery. Two participants were excluded because less than 50% 

of trials were answered correctly. One participant had poor performance in the AX-CPT and the 

other in the Stroop task. They were dropped from both tasks so the samples were the same across 

task. (Aged 18-39, mean = 21.4, SD = 4.1. NMale = 9,  NFemale = 52. NWhite, not of Hispanic Origin = 42,  

NLatino/Hispanic = 5,  NMiddle Eastern = 4, NAfrican American/Black = 3, NAsian/Pacific Islander = 3, NAmerican 

Indian/Alaskan Native = 1, NOther = 1.) 
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Figure 1. (a) Each trial started from a color word shown on the screen for 600ms, 

followed by a white fixation cross shown on the screen varying from 600-1400ms. The 

participants were asked to respond to the color of the words but not the meaning by pressing the 

same color button on the keyboard. There were two word conditions: Congruent and 

Incongruent. In congruent condition, the word reading and color naming were the same whereas 

the incongruent are not. (b) Each trial started when a white cue appeared on screen for 300ms 

then masked for 400ms. A fixation appeared on the screen for 1600ms, then the target was 

presented for 300ms, then masked for 400ms. The ITI varied from 600-1400ms, then the next 

trials started. Participants had 2100ms to respond. 

 

Stroop Task Design and Procedures 

This Stroop task was modified from the classic color-word Stroop task (Stroop, 1935). 

Each trial included a color word shown on the screen for 600ms, followed by a white fixation 

cross varying from 600-1400ms. The participants was asked to respond to the color of the text 
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the word is displayed in but not the meaning of the word by pressing the same color button on 

the keyboard as accurately and quickly as possible. There were two word conditions: Congruent 

and Incongruent. In the congruent condition, the words ‘GREEN’, ‘RED’ and ‘BLUE’ were 

presented in their own color to maintain congruence of word reading and color naming. In the 

Incongruent condition, the word ‘GREEN’, ‘RED’ and ‘BLUE’ were presented in different 

colors from their meaning to cause interference. For example, when the word ‘GREEN’ was 

shown on the screen in the color red the participant should press the red button on the keyboard.  

 There were two trial conditions: safe and shock conditions. For the safe condition, there 

was a 30 pixel wide blue border around the edge of the screen and participants were explicitly 

told that they would not receive any shocks. For the shock conditions, the 30 pixel wide border 

would be red and participants were explicitly told that they might receive shock(s) on their ankle 

at any time. Before the test began, participants underwent a shock workup procedure to establish 

a level of shock that was ‘Painful but can tolerable’. The electrical shock was a constant current 

at this level delivered via an electrode placed on the outside of the participant’s right wrist for 

500ms.  

In each of six blocks, there were 35 congruent trials (70% of trials) and 15 incongruent 

trials (30%), with the trial order randomly assigned. There were three safe blocks and three threat 

of shock blocks (a total of 150 trials in each condition, shock and safe). Each safe block was 

followed by a shock block. During the shock block, participants might receive one, two or three 

electrical shock(s) on the wrist. After each block, participants rated their current anxiety level by 

pressing a button between 1 (low anxiety) and 7 (high anxiety). 
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AX-CPT Task Design and Procedures 

The AX-CPT task consisted of continuous trials with a single letter presented on the 

computer, with each letter requiring a button press response from the participant. In each trial, a 

letter (cue) was displayed and followed by its paired letter (probe), which together comprised a 

Cue-Probe sequence. There were four Cue-Probe sequence trial types: AX, AY, BX and BY. The 

‘A’ represented the target cue while ‘B’ represented the non-target cue, ‘X’ represented the 

target probe while the ‘Y’ represented the non-target probe. During the AX target trials, only the 

letters A and X were presented. However, in addition to A, B, X, and Y the non-target trials (AY, 

BX, and BY) also included the letters E, F, G, J, M, P, Q, R, S, U and V. The participants were 

instructed to response to each letter (cue and probe) by pressing button ‘1 (Yes, the target 

sequence completed) or ‘2’ (No, the target sequence did not complete). That is, participants only 

pressed ‘1’ when letter X (probe) was following the letter A (cue), which completed a target cue-

probe sequence. Other than this, participants were instructed to press ‘2’ to any cues and probe 

(e.g. B-X, A-G, M-Q). Each trial started when a white cue appeared on screen for 300ms then 

was masked for 400ms (see Figure 1(a)). After a fixation appeared on the screen for 1600ms, the 

target appeared on the screen for 300ms then was masked for 400ms. The ITI varied from 600-

1400ms. Participants had 2100ms to make a response.  

To manipulate proactive control, we attempted to instill a prepotent response to respond 

to the X (with a ‘1’ button press) by presenting the AX target trial type more frequently (70% of 

trials) than the non-target trial types: 10% each for AY, BX, and BY. See Figure 1(b) for a 

depiction of the task design. 

There were two trial conditions: safe and shock conditions. The shock procedure was the 

same as the Stroop test. The safe block had the 30 pixel wide blue border around the edge of the 
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screen and 30 pixel wide red border for shock blocks. Participants were explicitly told whether 

they would receive any shocks or not before each block.  

The whole AX-CPT task consisted of 10 blocks, with 5 safe and 5 shock blocks. Each 

safe block was followed by a shock block. In each block there were 40 trials, including 28 AX, 4 

AY, 4 BX and 4 BY trials. All trial types were presented in a random order. During the five 

shock blocks participants received between 0 and 3 shocks (one block each of 0, 1, and 3 shocks, 

2 blocks with 2 shocks). The order of these blocks was randomly assigned among shock blocks. 

Before the experimental trials, participants conducted a practice block. Only when 

participants achieved 50% correct could they move on to the experimental trials. After each 

block, subjects were asked to rate their anxiety on a 7 point scale (1 = low, 7 = high). 

Data Analysis 

Stroop. 2.56% trials were excluded from analysis due to lack of response, 0.18% trials 

were excluded because the RT was less than 200ms, 1.91% trials were excluded because the 

shock occurred during this trial, and 0.76% trials were excluded because of RT longer than 3 

standard deviations from the mean. 

All accuracy and RT data were examined using a 2 (Condition: Safe vs. Threat) × 2 (Trial 

Type: Congruent vs. Incongruent) repeated measures ANOVA. A series of paired t-tests were 

used for the comparisons among conditions and trial types. 

AX-CPT. The dependent variables will be accuracy and reaction time for responses to the 

probe letters. Only trials for which participants responded correctly to the cue will be analyzed. 

2% trials were excluded from analysis because the shock occurred, 4.28% trials were excluded 

because of incorrect or no response to the cue. The median of the reaction time (RT) of each 

participant for each condition and trial type were used for the RT analysis. 
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AX-CPT accuracy and RT were examined using a 2 (Condition: Safe vs. Threat) × 4 

(Trial Type: AX, AY, BX and BY) repeated measures analysis of variance (ANOVA). Paired t-

tests were used for the comparisons among conditions and trial types. 

In the repeated measure ANOVAs, if the Mauchly’s test of sphericity assumption was 

violated, the Greenhouse-Geisser epsilon was used to correct the degrees of freedom. 

Results 

Stroop  

The anxiety rating shows the shock did make participants felt significant more anxious 

t(120) = 4.411, p < .001, Cohen’s d = .399.  

Accuracy 

A Condition (Safe, Threat) × Trial Type (Congruent, Incongruent) repeated measures 

ANOVA yielded significant interaction, F(1,60) = 4.246, p = .044, ηp
2 = .007, and main effects 

of Condition, F(1,60) = 9.404, p = .003, ηp
2 = .135, and Trial Type, F(1,60) = 87.436, p < .001, 

ηp
2 = .593 (See Figure 2(a)). The performance for incongruent trial type was poorer than 

congruent for both safe and threat conditions. However, as reflected by the interaction threat 

affected performance differently for congruent and incongruent trials. For incongruent trials, 

participants made fewer errors under threat of shock than during safety, t(60) = 3.002, p = .004, 

Cohen’s d = .388. However, error rates did not differ between threat and safe for congruent trials, 

t(60) = .980, p = .331, Cohen’s d = .127. This suggests that anxiety facilitated performance on 

the incongruent trials, in which reactive control is required to prevent engaging in the dominant 

word reading response.  
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Figure 2. (a) Mean error rate for Stroop task for the safe and shock conditions for 

congruent and incongruent trials Error bars represent the standard error of the mean. (b) Mean 

reaction time for Stroop task for safe and shock conditions across trial types. Error bars represent 

the standard error of the mean. Asterisk represents significant RT difference. * p < 0.05; **p < 

0.01. 

 

Reaction Time 

The identical Condition × Trial Type ANOVA was conducted with RT as the dependent 



 

 

15 

 

variable. This ANOVA yielded a significant interaction, F(1,60) = 6.362, p = .014, ηp
2 = .096, 

and main effect of Trial Type, F(1,60) = 69.855, p < .001, ηp
2 = .538 (See Figure 2(b)). As 

expected RTs were faster for the easier congruent trials compared to incongruent trials. 

Following up on the significant interaction revealed that RTs were slower for congruent trials 

during shock compared to safe conditions, t(60) = 2.064, p = .043, Cohen’s d = .267. 

AX-CPT 

The anxiety rating shows the shock did make participants felt significant more anxious 

t(120) = 7.086, p < .001, Cohen’s d = .642.  

Accuracy 

A Condition (Safe, Threat) × Trial Type (AX, AY, BX and BY) repeated measures 

ANOVA yielded a significant interaction, F(2.469, 148.134 = 4.675, p = .004, ηp
2 = .072, and 

main effect of Trial Type, F(1.803, 108.168) = 127.966, p < .001, ηp
2 = .681, but no main effect 

of Condition (See Figure 3(a)). Post-hoc comparisons across threat and safe conditions 

(Bonferroni corrected) showed that the error rate for the AX trial type was significant lower than 

AY (p < .001), and BX (p < .001), but not BY (p = .088). Participants also made more errors 

during AY than BX (p < .001) and BY (p < .001) trials. The error rate for BX was also higher 

than BY (p < .001). Following up on the significant interaction, I found that the error rate was 

higher in the threat compared to safe condition for the BX, t(60) = 2.109, p = .039, Cohen’s d 

= .272, and BY, t(60) = 2.690, p = .009, Cohen’s d = .347, trial types. There was a trend for 

fewer errors under threat of shock in the AX condition, t(60) = 1.906, p = .061, Cohen’s d 

= .246.  
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Figure 3. (a) Mean error rate for the AX-CPT task for safe and shock conditions across 

trial types. Error bars represent the standard error of the mean. (b) Mean reaction time for the 

AX-CPT task for safe and shock conditions across trial types. Error bars represent the standard 

error of the mean. Asterisk represents significant RT differences. * p < 0.05; **p < 0.01. 

 

Reaction Time 

A Condition (Safe, Threat) × Trial Type (AX, AY, BX and BY) ANOVA was calculated 
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with RT as the dependent variable.  There was a significant main effect of Trial Type, F(2.085, 

123.007) = 499.809, p < .001, ηp
2 = .894, but no main effect for Condition, F(1, 59) = .530, p 

= .470, ηp
2 = .009, or Condition × Trial Type interaction, F(2.085,123.007) = 499.809, p = .933, 

ηp
2 = .002 (See Figure 3(b)). Post-hoc comparisons across threat and safe conditions (Bonferroni 

corrected) showed that RT for the AX trial type was faster than AY (p < .001), slower than BX 

(p = .004), and did not differ from BY (p = .090). RT for AY was also slower than BX (p < .001) 

and BY (p < .001). RT during BX was not significant faster than BY (p = .602). Despite the lack 

of interaction we did conduct post-hoc comparisons to test our a priori hypotheses. There was no 

significant difference between threat and safe during the AY, BX, or BY conditions, F (1, 59) = 

0.530, p = .470, ηp
2 = .002. We did find that RT was significantly slower during threat than safe 

for AX trials, t(60) = 3.336, p = .001, Cohen’s d = .431]. 

Discussion 

Our study’s purpose was to assess how state anxiety impacts two distinct forms of 

cognitive control. The current results support our hypothesis that state anxiety impairs proactive 

control but enhances reactive control.  

The Stroop task served as our index of reactive control. In the Stroop task, contextual 

information or trial-by-trial maintenance of a goal is not required to make a response, but simply 

a reaction to the current stimulus. Together the dominant tendency to read the word and the high 

frequency of congruent trials in our design biased participants to respond relying more on 

wording reading, which is more automatic than color naming. Thus, word reading is the 

prepotent response and in order to respond correctly on incongruent trials individuals react 

quickly to engage control mechanisms to avoid word reading resulting in an incorrect response 

(Botvinick et al., 2001). Evidence shows that color naming on incongruent trials in the Stroop 
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task reflects reactive control, particularly when the majority of trials are congruent (Botvinick et 

al., 2001; Gonthier et al., 2016; Lesh et al., 2013). Our results are consistent with previous 

findings that the error rate for the incongruent condition (collapsed across safe and shock 

conditions) was higher than congruent condition (Botvinick et al., 2001; MacLeod, 1991).  It has 

been suggested this incongruence causes conflict which requires the conflict monitoring system 

to be triggered and attention is deployed to modify behavior to meet this task goal. Reactive 

control is related to this conflict monitoring system and enhancement of this system facilitates 

reactive control performance (Egner & Hirsch, 2005; Kerns et al., 2005). Activation of the ACC, 

a region implicated in conflict monitoring and cognitive control, has been shown to be higher 

when frequency of incongruent trials was lower (C. S. Carter et al., 2000). 

Considering the effects of state anxiety, as we hypothesized, we found that fewer errors 

were made on incongruent trials in the shock condition compared to safe. That is, under threat of 

shock, the task-irrelevant process (word reading) was inhibited and the task-relevant process (ink 

color naming) was enhanced, and as a result fewer incorrect responses were made. When the 

color naming is incongruent with word reading, two incompatible response tendencies are 

activated (word reading, color naming) and the conflict monitoring system is engaged to inhibit 

the prepotent word reading response. Our findings indicate that state anxiety enhances inhibition 

of word reading to modify behavior to avoid making an incorrect response. This result is 

consistent with a similar Stroop test in which shock threat slowed responding during neutral 

Stroop trials but facilitated responding on incongruent trials (Hu et al., 2012). This facilitation 

could be interpreted in keeping with the attention narrowing hypothesis that anxiety decreases 

the processing of task irrelevant dimensions (Callaway, 1959; Callaway & Dembo, 1958; Chajut 

& Algom, 2003; Eysenck & Calvo, 1992; Eysenck et al., 2007).  
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As noted above, the inhibition necessary for incongruent Stroop trials requires reactive 

control, thus our findings support our hypothesis that state anxiety would improve reactive 

control. This is consistent with previous findings. N2 amplitudes, which are generated by the 

ACC and associated with enhanced attentional performance, have been found to be greater to 

incongruent versus congruent flankers prior to a correct response suggesting greater involvement 

of ACC in conflict monitoring and successfully overcoming response conflict (Schmid, Kleiman, 

& Amodio, 2015). Another study found only the N2 amplitudes of congruent but not incongruent 

flankers significantly increased when anxiety increased (Dennis & Chen, 2009; Yeung, Holroyd, 

& Cohen, 2005). The authors suggest that under higher anxiety the N2 is enhanced in low 

conflict condition and the reduced N2 difference may reflect a compensatory mechanism to 

minimize potential attentional interference in the face of threat. These findings suggest that threat 

may facilitate reactive control by enhancing the activity of ACC. The ACC is a critical node in 

the conflict monitoring system, which responsible for the overriding prepotent responses, 

(Botvinick, Cohen, & Carter, 2004). fMRI studies have shown that during high conflict correct 

responses, the ACC is responsible for conflict monitoring including error detection and 

behavioral correction, and it is the only area that shows greater activation when behavior is 

subsequently adjusted after conflict is detected.  (Cameron S. Carter et al., 1998; Garavan, Ross, 

Murphy, Roche, & Stein, 2002). Therefore, the anxiety enhance the reactive control by 

facilitating the conflict monitoring system of ACC. 

If state anxiety enhances reactive control, then it might be expected that RT for the 

incongruent trial type may also be facilitated, along with accuracy. However, no significant RT 

difference was found for incongruent trials between safe and threat. This suggests that state 

anxiety facilitated accurate performance and that this did not come at the expense of a longer 
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response time.  

Turning to proactive control, our AX-CPT task findings indicate that regardless of threat 

condition both BX and AY trial types, which required more context-based responding (i.e., 

maintenance of the cue-probe relationship), resulted in more errors than AX and BY trial types. 

This result is consistent with other findings (D. M. Barch, Carter, MacDonald, Braver, & Cohen, 

2003; Cohen et al., 1999b; Lopez-Garcia et al., 2016; MacDonald Iii et al., 2005). In addition, 

the error rate for AY trials was significantly higher than the other three trial types and no 

significant difference was found between safe and threat condition. Thus, as is intended the high 

frequency of the AX trials established a prepotent response tendency, which impaired accuracy 

on AY and BX trials as participants were biased to respond incorrectly. For these conditions 

more effort was required to maintain and update the task goal and inhibit the prepotent response 

and prevent a false alarm response. Overall, the pattern of findings across the four trial types is 

largely consistent with previous work (D. M. Barch et al., 2001; Cohen et al., 1999b; Lopez-

Garcia et al., 2016). 

As we hypothesized, the introduction of state anxiety resulted in more errors on trials 

demanding more proactive control, in this case both BX and BY trials. For BX trials, the 

occurrence of probe X biased participants to respond as though it were a target (AX) trial. To 

properly respond in the BX condition, the contextual information provided by the cue B should 

be used in an inhibitory fashion to override the tendency to false alarm in response to the probe 

X (Braver et al., 2001). Braver and his colleagues (2001) claimed that both attention and 

inhibitory functions in the AX-CPT test are subserved by an internal representation of context 

information within DLPFC. This context-necessitated inhibition requires proactive control in the 

BX trial type.  
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Anxiety is thought to impair processing efficiency by restricting the capacity of working 

memory (Darke, 1988) and increasing the allocation of attention resources to threat-related 

stimuli internally and externally, thus impairing performance (Sarason, 1988). Following this 

logic, we expected performance on BX trials to be impaired under anxiety as they require more 

attention and maintenance to prevent a false alarm response to the “X”. Indeed we found the 

error rate for BX was higher in the threat than safe condition. This finding is consistent with the 

hypothesis that anxiety impairs proactive control. Specifically, anxiety impaired the override of 

the prepotent response to the probe X, which requires maintenance of the contextual information 

provided by the B cue during the delay. Because working memory function is assumed to be 

involved in tasks of delayed contingent response (Braver et al., 2001), it is suggested that state 

anxiety occupied more working memory resources and impaired the goal-driven system by 

insufficiently maintaining task-related information, which caused more errors.  

In addition to threat’s impact on BX trials we also somewhat unexpectedly found that 

threat similarly impacted BY performance, such that more errors were made in threat compared 

to safe condition. This may be caused by the need for more attention and utilization of working 

memory allocated to the infrequent non-target cue B. In contrast to the easier AX trials, the BY 

trials required more proactive control, and thus were also affected by threat of shock like the BX 

trials.  

The RT results show that the AY trial type required more time than other types to 

respond, which is consistent with other findings (D. M. Barch et al., 2003; Deanna M. Barch et 

al., 2004; Braver et al., 2001; Lopez-Garcia et al., 2016). AY responses are thought to be slowed 

because the anticipated target response to an “X” needs to be inhibited which requires additional 

time. The RT for BX trial type was faster than AX and AY, but not BY. Similar results were also 
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found in other studies (D. M. Barch et al., 2003; Deanna M. Barch et al., 2004). It suggests the 

non-target cue B can facilitate the response speed. However, no significant RT difference was 

found between safe and threat for AY and BX trial types.  

Interestingly, the only significant RT difference between shock and safe conditions was 

found for the AX trial type, with RT being slower under state anxiety. This is similar to the RT 

performance for the congruent trial type in the Stroop test. In both cases these trials were 

presented with high frequency (70%) establishing a more automatic prepotent response. Across 

tasks we find that state anxiety compromised speed in performing these simplest task conditions. 

It suggests that state anxiety may slow down response speed by relocating attention to potential 

threat.  

Attentional Control Theory (Eysenck et al., 2007) claims the anxiety impairs efficient 

functioning of the goal directed attentional system and enhances processing by the stimulus-

driven attentional system. Thus, attentional control is decreased, but attention to threat-related 

stimuli is enhanced. Inhibition and shifting are the two central executive functions supporting 

processing efficiency that are adversely affected by anxiety (Eysenck et al., 2007). Studies have 

found that when task demands on working memory capacity are high, the adverse effects of 

distractors on task performance increased (Graydon & Eysenck, 1989). Individuals with lower 

working memory capacity are more susceptible to distractors (Barrett, Tugade, & Engle, 2004). 

In a selective attention task, the same adverse effects of distractors was found and it was greater 

when these distractors were involved with shifting function (Lavie, Hirst, de Fockert, & Viding, 

2004). Attentional Control Theory suggests the anxiety occupies the limited working memory 

capacity with threat-related information, both task-relevant and irrelevant. They posit that this 

leads to low central executive performance, but high performance on conflict monitoring. In 
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other words, anxiety may unitize more working memory resources on relocation of attention to 

task-unrelated stimuli, which serves to enhance reactive control but impair proactive control.  

In keeping with this, we found that state anxiety differentially impacted reactive and 

proactive cognitive control during Stroop and AX-CPT test. State anxiety enhanced accuracy on 

incongruent Stroop trials, which require reactive control, but impaired performance on BX and 

BY trials in the AX-CPT, which depend on proactive control. As would follow from the effects 

of anxiety on attention and working memory described above, we posit that state anxiety 

enhanced attention to threat, in this case via the conflict monitoring system, to quickly modify 

behavior on the incongruent Stroop trials. In contrast, state anxiety impaired goal maintenance 

on the AY, BX and BY trials by occupying limited working memory capacity, leading to 

impaired context processing. This is consistent with a recent study that found that low anxiety 

subjects were engaged with proactive control driven by DLPFC and high anxiety subjects were 

engaged with reactive control by conflicted related dorsal ACC (Schmid et al., 2015). The 

distinction between proactive and reactive control in the DMC theory is supported by this 

differential task performance under threat. 

A limitation of this task is that the inter-stimulus interval for the AX-CPT was quite 

short. A longer duration would require more working memory resources to maintain the cue 

information, which is highly relied on for proactive control. Even though we found a difference 

in error rate for BX trials, no speed difference was found. If the inter-stimulus interval was 

longer, thus increasing the difficulty of goal maintenance, RT may also have been impaired on 

proactive control trials, such as the BX.  

Conclusion 

We found that state anxiety differentially impacted proactive and reactive cognitive 
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control. State anxiety enhanced reactive control, potentially by facilitating the conflict 

monitoring system, enabling modification of behaviors according to environmental changes. 

Enhanced reactive control under threat may have adaptive functions in altering ongoing behavior 

to respond appropriately to potential threats. In contrast, state anxiety impaired performance in 

situations requiring proactive control. Additional goal maintenance demands in these proactive 

control-demanding tasks likely impinges on limited working memory capacity. The processing 

of task irrelevant information, particularly potential threat, interferes with execution of ongoing 

task goals, and impairs performance. The interesting additional finding of state anxiety slowing 

of responses in simple task conditions also supports the idea that potential threat occupies limited 

resources and impacts task performance. In sum, state anxiety differentially impacts reactive and 

proactive control, in ways that reflect adaptive responding to potential threats in the environment 

and that disadvantage performance in more complex conditions that require maintenance of 

contextual information to facilitate performance. 

 

 

 

 

 

 

 

 

 

 



 

 

25 

 

References 

Asaad, W. F., Rainer, G., & Miller, E. K. (2000). Task-specific neural activity in the primate 

prefrontal cortex. J Neurophysiol, 84(1), 451-459.  

Barch, D. M., Carter, C. S., Braver, T. S., & et al. (2001). SElective deficits in prefrontal cortex 

function in medication-naive patients with schizophrenia. Arch Gen Psychiatry, 58(3), 

280-288. doi: 10.1001/archpsyc.58.3.280 

Barch, D. M., Carter, C. S., MacDonald, A. W., 3rd, Braver, T. S., & Cohen, J. D. (2003). 

Context-processing deficits in schizophrenia: diagnostic specificity, 4-week course, and 

relationships to clinical symptoms. J Abnorm Psychol, 112(1), 132-143.  

Barch, D. M., Mitropoulou, V., Harvey, P. D., New, A. S., Silverman, J. M., & Siever, L. J. 

(2004). Context-Processing Deficits in Schizotypal Personality Disorder. J Abnorm 

Psychol, 113(4), 556-568. doi: 10.1037/0021-843X.113.4.556 

Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory 

capacity and dual-process theories of the mind. Psychol Bull, 130(4), 553-573. doi: 

10.1037/0033-2909.130.4.553 

Blankstein, K. R., Flett, G. L., Boase, P., & Toner, B. B. (1990). Thought listing and 

endorsement measures of self-referential thinking in test anxiety. Anxiety Research, 2(2), 

103-112. doi: 10.1080/08917779008249329 



 

 

26 

 

Blankstein, K. R., Toner, B. B., & Flett, G. L. (1989). Test anxiety and the contents of 

consciousness: Thought-listing and endorsement measures. Journal of Research in 

Personality, 23(3), 269-286. doi: http://dx.doi.org/10.1016/0092-6566(89)90001-9 

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict 

monitoring and cognitive control. Psychological Review, 108(3), 624-652. doi: 

10.1037/0033-295X.108.3.624 

Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior 

cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539-546. doi: 

https://doi.org/10.1016/j.tics.2004.10.003 

Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. 

Trends in Cognitive Sciences, 16(2), 106-113. doi: 10.1016/j.tics.2011.12.010 

Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., . . . Reed, B. R. 

(2001). Context processing in older adults: evidence for a theory relating cognitive 

control to neurobiology in healthy aging. J Exp Psychol Gen, 130(4), 746-763.  

Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of 

cognitive control within human prefrontal cortex. Proc Natl Acad Sci U S A, 106(18), 

7351-7356. doi: 10.1073/pnas.0808187106 

Braver, T. S., Satpute, A. B., Rush, B. K., Racine, C. A., & Barch, D. M. (2005). Context 

Processing and Context Maintenance in Healthy Aging and Early Stage Dementia of the 



 

 

27 

 

Alzheimer's Type. Psychology and Aging, 20(1), 33-46. doi: 

http://dx.doi.org/10.1037/0882-7974.20.1.33 

Callaway. (1959). The influence of amobarbital (amylobarbitone) and methamphetamine on the 

focus of attention. J Ment Sci, 105(439), 382-392.  

Callaway, & Dembo, D. (1958). Narrowed attention; a psychological phenomenon that 

accompanies a certain physiological change. AMA Arch Neurol Psychiatry, 79(1), 74-90.  

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). 

Anterior Cingulate Cortex, Error Detection, and the Online Monitoring of Performance. 

Science, 280(5364), 747-749. doi: 10.1126/science.280.5364.747 

Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., & Cohen, 

J. D. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior 

cingulate cortex. Proc Natl Acad Sci U S A, 97(4), 1944-1948.  

Chajut, E., & Algom, D. (2003). Selective attention improves under stress: implications for 

theories of social cognition. J Pers Soc Psychol, 85(2), 231-248.  

Chan, R. C. K., Shum, D., Toulopoulou, T., & Chen, E. Y. H. (2008). Assessment of executive 

functions: Review of instruments and identification of critical issues. Archives of Clinical 

Neuropsychology, 23(2), 201-216. doi: http://dx.doi.org/10.1016/j.acn.2007.08.010 

Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999a). Context-processing 

deficits in schizophrenia: converging evidence from three theoretically motivated 

cognitive tasks. J Abnorm Psychol, 108(1), 120-133.  



 

 

28 

 

Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999b). Context-processing 

deficits in schizophrenia: Converging evidence from three theoretically motivated 

cognitive tasks. J Abnorm Psychol, 108(1), 120-133. doi: 10.1037/0021-843X.108.1.120 

Cohen, J. D., Braver, T. S., & O'Reilly, R. C. (1996). A Computational Approach to Prefrontal 

Cortex, Cognitive Control and Schizophrenia: Recent Developments and Current 

Challenges. Philosophical Transactions of the Royal Society of London. Series B: 

Biological Sciences, 351(1346), 1515-1527. doi: 10.1098/rstb.1996.0138 

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A 

parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 

332-361. doi: 10.1037/0033-295X.97.3.332 

Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex, and dopamine: A connectionist 

approach to behavior and biology in schizophrenia. Psychological Review, 99(1), 45-77. 

doi: 10.1037/0033-295X.99.1.45 

Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental 

storage capacity. Behav Brain Sci, 24(1), 87-114; discussion 114-185.  

Darke, S. (1988). Anxiety and working memory capacity. Cognition and Emotion, 2(2), 145-154. 

doi: 10.1080/02699938808408071 

Dennis, T. A., & Chen, C.-C. (2009). Trait anxiety and conflict monitoring following threat: An 

ERP study. Psychophysiology, 46(1), 122-131. doi: 10.1111/j.1469-8986.2008.00758.x 



 

 

29 

 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annu Rev 

Neurosci, 18, 193-222. doi: 10.1146/annurev.ne.18.030195.001205 

Diamond, A. (2013). Executive functions. Annu Rev Psychol, 64, 135-168. doi: 

10.1146/annurev-psych-113011-143750 

Engle, R. W., & Kane, M. J. (2003). Executive attention, working memory capacity, and a two-

factor theory of cognitive control. Psychology of learning and motivation, 44, 145-199.  

Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and Performance: The Processing Efficiency 

Theory. Cognition and Emotion, 6(6), 409-434. doi: 10.1080/02699939208409696 

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive 

performance: Attentional control theory. Emotion, 7(2), 336-353. doi: 10.1037/1528-

3542.7.2.336 

Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable 

Executive Functions in the Dynamic Control of Behavior: Inhibition, Error Detection, 

and Correction. Neuroimage, 17(4), 1820-1829. doi: 

https://doi.org/10.1006/nimg.2002.1326 

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485.  

Goldman-Rakic, P. S., Cools, A. R., & Srivastava, K. (1996). The Prefrontal Landscape: 

Implications of Functional Architecture for Understanding Human Mentation and the 

Central Executive [and Discussion]. Philosophical Transactions of the Royal Society of 



 

 

30 

 

London. Series B: Biological Sciences, 351(1346), 1445-1453. doi: 

10.1098/rstb.1996.0129 

Gonthier, C., Braver, T. S., & Bugg, J. M. (2016). Dissociating proactive and reactive control in 

the Stroop task. Mem Cognit, 44(5), 778-788. doi: 10.3758/s13421-016-0591-1 

Graydon, J., & Eysenck, M. W. (1989). Distraction and cognitive performance. European 

Journal of Cognitive Psychology, 1(2), 161-179. doi: 10.1080/09541448908403078 

Hu, K., Bauer, A., Padmala, S., & Pessoa, L. (2012). Threat of bodily harm has opposing effects 

on cognition. Emotion, 12(1), 28-32. doi: 10.1037/a0024345 

Kerns, J. G., Cohen, J. D., MacDonald III, A. W., Johnson, M. K., Stenger, V. A., Aizenstein, H., 

& Carter, C. S. (2005). Decreased Conflict- and Error-Related Activity in the Anterior 

Cingulate Cortex in Subjects With Schizophrenia. American Journal of Psychiatry, 

162(10), 1833-1839. doi: 10.1176/appi.ajp.162.10.1833 

Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal 

executive function. Trends in Cognitive Sciences, 11(6), 229-235. doi: 

http://dx.doi.org/10.1016/j.tics.2007.04.005 

Krug, M. K., & Carter, C. S. (2012). Proactive and reactive control during emotional interference 

and its relationship to trait anxiety. Brain Res, 1481, 13-36. doi: 

10.1016/j.brainres.2012.08.045 



 

 

31 

 

Lamm, C., Pine, D. S., & Fox, N. A. (2013). Impact of negative affectively charged stimuli and 

response style on cognitive-control-related neural activation: An ERP study. Brain and 

Cognition, 83(2), 234-243. doi: http://dx.doi.org/10.1016/j.bandc.2013.07.012 

Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention 

and cognitive control. J Exp Psychol Gen, 133(3), 339-354. doi: 10.1037/0096-

3445.133.3.339 

Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., . . . 

Carter, C. S. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal 

cortex dysfunction in first episode schizophrenia. Neuroimage Clin, 2, 590-599. doi: 

10.1016/j.nicl.2013.04.010 

Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: behavior, 

brain activation, and individual differences. Cogn Affect Behav Neurosci, 8(1), 99-112.  

Lopez-Garcia, P., Lesh, T. A., Salo, T., Barch, D. M., MacDonald, A. W., 3rd, Gold, J. M., . . . 

Carter, C. S. (2016). The neural circuitry supporting goal maintenance during cognitive 

control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. Cogn 

Affect Behav Neurosci, 16(1), 164-175. doi: 10.3758/s13415-015-0384-1 

MacDonald, A. W., Cohen, J. D., Stenger, A. V., & Carter, C. S. (2000). Dissociating the Role of 

the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 

288(5472), 1835-1838. doi: 10.1126/science.288.5472.1835 



 

 

32 

 

MacDonald Iii, A. W., Goghari, V. M., Hicks, B. M., Flory, J. D., Carter, C. S., & Manuck, S. B. 

(2005). A Convergent-Divergent Approach to Context Processing, General Intellectual 

Functioning, and the Genetic Liability to Schizophrenia. Neuropsychology, 19(6), 814-

821. doi: 10.1037/0894-4105.19.6.814 

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. 

Psychol Bull, 109(2), 163-203.  

McElree, B. (2001). Working memory and focal attention. J Exp Psychol Learn Mem Cogn, 

27(3), 817-835.  

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu 

Rev Neurosci, 24, 167-202. doi: 10.1146/annurev.neuro.24.1.167 

Monsell, S., & Driver, J. (2000). Control of cognitive processes: Attention and performance 

XVIII (Vol. 18): MIT Press. 

Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative 

review. Psychol Bull, 142(8), 831-864. doi: 10.1037/bul0000051 

O'Reilly, R. C. (2006). Biologically Based Computational Models of High-Level Cognition. 

Science, 314(5796), 91-94. doi: 10.1126/science.1127242 

Oberauer, K. (2002). Access to information in working memory: exploring the focus of attention. 

J Exp Psychol Learn Mem Cogn, 28(3), 411-421.  



 

 

33 

 

Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2008). Cognitive control, goal 

maintenance, and prefrontal function in healthy aging. Cereb Cortex, 18(5), 1010-1028. 

doi: 10.1093/cercor/bhm135 

Sarason, I. G. (1988). Anxiety, self-preoccupation and attention. Anxiety Research, 1(1), 3-7. 

doi: 10.1080/10615808808248215 

Savine, A. C., Beck, S. M., Edwards, B. G., Chiew, K. S., & Braver, T. S. (2010). Enhancement 

of cognitive control by approach and avoidance motivational states. Cogn Emot, 24(2), 

338-356. doi: 10.1080/02699930903381564 

Schmid, P. C., Kleiman, T., & Amodio, D. M. (2015). Neural mechanisms of proactive and 

reactive cognitive control in social anxiety. Cortex, 70(Supplement C), 137-145. doi: 

https://doi.org/10.1016/j.cortex.2015.05.030 

Speer, N. K., Jacoby, L. L., & Braver, T. S. (2003). Strategy-dependent changes in memory: 

effects on behavior and brain activity. Cogn Affect Behav Neurosci, 3(3), 155-167.  

Spielberger, C. D., & Sydeman, S. J. (1994). State-Trait Anxiety Inventory and State-Trait Anger 

Expression Inventory The use of psychological testing for treatment planning and 

outcome assessment (pp. 292-321). Hillsdale, NJ, US: Lawrence Erlbaum Associates, 

Inc. 

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental 

Psychology, 18(6), 643-662. doi: http://dx.doi.org/10.1037/h0054651 



 

 

34 

 

Watanabe, M. (1990). Prefrontal unit activity during associative learning in the monkey. 

Experimental Brain Research, 80(2), 296-309. doi: 10.1007/bf00228157 

Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward 

processing in the presence and absence of response choice. Cereb Cortex, 15(5), 535-544. 

doi: 10.1093/cercor/bhh153 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

35 

 

CURRICULUM VITAE 

Youcai Yang  

EDUCATION 

 University of Wisconsin-Milwaukee - Milwaukee, WI             May 2014 - May 2018 

Medical College of Wisconsin, WI                                                              Jan 2014 - May 2014 

PhD candidate in Experimental Psychology 

Master in Experimental Psychology                Sept 2010 - May 2014 

Northeast Normal University - Changchun, Jilin, China                        Sept 2002 - June 2006 
Bachelor in Bioscience 

EXPERIENCE 

Graduate Assistant 

University of Wisconsin - Milwaukee, WI                                                  August 2010 to Present  

 Led a team of 10 research assistants to complete two human and computer interaction based 

emotion and cognitive control tasks, using Qualtrics to design, survey and collect data, 

analyzed using SPSS. 

 Directed a team to completion of an eye-tracking and visual cognition experiment, six 

months ahead of expected deadline.  

 Teach undergraduate courses 'Psychology Statistics' 'Research Methods'; Online courses; 

Eye-Tracking method and SPSS.  

 Grade, analyze and track students’ performance in each semester while providing feedback 

and strategies to students at different levels. 

 Analyzed behavior and eye movement when they were reading web page experience based 

on over 100 participants. 

 Deliver conference presentations about my research on implicit learning and cognitive 

control. (2012, 2014 Cognitive Neuroscience Annual Meeting, 2014 Society for 

Neuroscience).  

 

Senior Teacher  

Zhuhai Experimental High School - Zhuhai, CN                                   August 2006 to June 2010  

 Taught biology courses for four years, including a course that tested as the most difficult on 

Chinese college entrance exam. 

 Designed teaching materials and tests which monitored teaching quality, provided feedback 

to the school committee.  

 Supervised teaching performance while providing training, skill development, evaluation and 

planning to new teachers.  

 

RESEARCH AND PUBLICATION 

 Zhao, N., Zhang, X., Yang, Y., Song, C., He, B. & Xu, B.(2018). The effects of treadmill 

exercise on autophagy in hippocampus of APP/PS1 Transgenic mice. (NeuroReport, SCI, In 

Press.)  

 Yang, Y., Miskovich, T. & Larson, C.L. (2018). State Anxiety Impairs Proactive But 

Enhances Reactive Control. (Ready to be published in Emotion. SSCI.)  



 

 

36 

 

 Yang, Y., Hanson, R., Coutinho, M.V.C., Greene, A.J., & Hannula, D.E.(2018). Contextual 

Cueing is Inflexible and Best Characterized as Associative Rather than Relational Learning. 

(Ready to be published in Journal of Experimental Psychology. SSCI.) 

 Yang, Y., Miskovich, T. & Larson, C.L. (2017).  How does anxiety affect cognitive control? 

Proactive and reactive control under state anxiety. Poster session presented at Wisconsin 

Symposium on Emotion. Madison, WI 

 Yang, Y., Greene, A.J.& Hannula, D.E. (2014). Is implicit memory flexible? An eye-

movement contextual cueing task’. Poster session presented at Milwaukee Chapter SFN 2011 

Annual Meeting. Milwaukee, WI. 

 Yang, Y., Coutinho, M. V. C., Greene, A.J. & Hannula, D.E. (2014). Is implicit memory 

flexible? An eye-movement contextual cueing task. Poster session presented at Cognitive 

Neuroscience Society Annual Meeting. Boston, MA 

 Greene, A.J., Hopkins, L., Leo, P., Yang, Y., Hinman, A., Heffernan, P.H., Figueira, S., 

Browning, E., Balling, K., & Kattan, O. (2012). The Hippocampus In Inference: Distinct 

Hippocampal Activation For Implicit Versus Explicit Performance. Poster session presented 

in Cognitive Neuroscience Society Annual Meeting. Chicago, IL 

 Leo, P., Hopkins, L., Yang, Y. Greene, A.J.(2012). Hippocampal Involvement in Implicit 

Memory. Poster session presented at Milwaukee Chapter SfN 2011 Annual Meeting. 

Milwaukee, WI. 
 Sigma Xi Member, 2013-2014 

 

AWARDS 

 Distinguished Teaching Award, 2007, 2008, 2009,              Zhuhai Experimental High School 

 Excellent Young Teacher, 2007, 2008, 2009,                       Zhuhai Experimental High School 

 Distinguished Instructor Award of Zhuhai Youth Science & Technology Innovation 

Competition, 2009                                                                                                    Zhuhai City 

 Teaching Assistantship, 2010,2011,2012,2013,2014,2015,2016                                         

University of Wisconsin Milwaukee 

 UWM Travel Award, 2012, 2014                                      University of Wisconsin Milwaukee 

 

SKILLS 

Trilingual: | Mandarin | Cantonese | English | 

Technical: | UX research | Data Analysis | Excel | SPSS | Userability Hub | Userzoom | Qualtrics 

| Eye-tracking | HTML | User Experience Design | User Interface Design | Google Analytics | 

Illustrator | E-Prime | Axure RP | Sketch | Optimizely | A/B Test | Microsoft Office | Photoshop | 

Premiere  
evaluative research product development usability testing business objectives   


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2018

	How Does Anxiety Affect Cognitive Control? Proactive and Reactive Control Under State Anxiety
	Youcai Yang
	Recommended Citation


	tmp.1545148452.pdf.D9rdd

