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ABSTRACT!
Biodiversity is declining worldwide with detrimental effects on ecosystems 

functions and services that it sustains. The relationship between biodiversity 

and freshwater purification remains unclear. Freshwater purification is of 

paramount importance for humankind as eighty percent of the world’s 

population is exposed to high levels of threat in terms of water security. 

Bacteria are the most diverse and abundant organisms on Earth and they play, 

directly or indirectly, a key role in the majority of ecosystem services including 

water purification.  The current work aimed, in freshwater systems, to unravel 

the relationships between microbial diversity and: (a) biodegradation of toxic 

compounds (i.e. specialised function); (b) respiration (i.e. broad function) 

and; (c) stability of broad functioning. Firstly, preliminary experiments were 

carried out to establish freshwater sample size to representatively evaluate 

bacterial communities’ diversity and also suitable natural and man-made toxic 

compounds for freshwater incubation experiments.  Then, the microbial 

communities’ ability to degrade microcystin-LR was explored in the context of 

previous exposures and nutrient availability. Finally, we focused on the 

relationships between diversity and functioning. A decrease in microbial 

diversity caused a decrease in both broad and specialised ecosystem functions 

tested. Stability of broad functioning was also negatively affected by a 

decrease in microbial diversity. Both lakes (Scotland) and rivers (Australia) 

microcosms experiments resulted in comparable findings suggesting consistent 

relationships across different freshwater systems. These results highlight that, 

similarly to macro-organisms (plant and animals), declining diversity of the 

microbial communities has direct consequences for important ecosystem 
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functioning and services and therefore, microbial diversity should be explicitly 

considered in all biodiversity conservation debates. 
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1. GENERAL)INTRODUCTION)

1.1)Biodiversity)and)bacteria)

Biodiversity is the variability among living organisms from all sources, 

including terrestrial, marine, and other aquatic ecosystems and the ecological 

complexes of which they are part; this includes diversity within species, 

between species, and of ecosystems (Duraiappah et al., 2005). Biodiversity is 

declining worldwide (Barnosky et al., 2011) with detrimental consequences on 

ecosystem functions, stability and services provided to humanity (Cardinale et 

al., 2012, Hooper et al., 2012). The recognition of the importance of 

biodiversity in sustaining functional ecosystems as well as the evidence of its 

decline have stressed the need to strengthen scientific studies on this topic 

and includes evidence in national and international policies (Perrings et al., 

2011). Of all living forms, bacteria are possibly the most ubiquitous, abundant 

and diverse (Whitman et al., 1998, Torsvik and Øvreås, 2002). The immense 

diversity of this group of organisms can possibly be explained by some 

characteristics: bacteria are small, can reproduce quickly and have been on 

earth longer than any other group of organisms. The size of bacteria allows 

them to colonise and differentiate in tiny niches and microenvironments 

without the need of wide areas as larger organisms do (Horner-Devine et al., 

2004, Vos et al., 2013). The possibility to duplicate in times as short as a few 

hours, coupled with the fact that they have been on earth longer than any 

other organisms, enormously increase the possibility of DNA mutation which is 

at the base of evolution. Finally, bacteria are able to perform lateral gene 

transfer even between distantly related organisms, which “produces extremely 

dynamic genomes in which substantial amounts of DNA are introduced into 
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and deleted from the chromosome’ (Ochman et al., 2000). These are probably 

some of the reasons why the great scientist Edwards Osborne Wilson 

considered the measurement of bacterial diversity ‘beyond practical 

calculation’ (Wilson, 1992). An increasing number of authors have been 

focusing on the topic of bacterial diversity and evidence of the exponential 

interest and amount of work in bacterial diversity is presented in Figure 1.1. 

 

Figure 1.1 – Number of peer-reviewed publications with topic "bacterial diversity" from 
1990 to 2012 - Data from ISI Web Of Knowledge (Analysis done on 20-03-2013).  

 

Despite the large amount of research that is focused on bacterial diversity, 

this subject still has uncertainties about few important aspects. First of all, 

there is not a clear definition of bacterial species: the current criterion to 

distinguish bacterial species is not based on any theoretical justification. The 

criterion used is a cut-off level (70%) of pair wise genomic DNA-DNA 

hybridisation level which was chosen 20 years ago to match pre-existing 

species classification (Achtman and Wagner, 2008). Diversity has two 

components: richness and abundance. Currently there is limited understanding 

of the extent of microbial richness, even less knowledge about proportional 

abundance (Curtis, 2006). The issue arises from the fact the microbial world is 
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so vast and diverse that no techniques have been able to characterise it 

comprehensively. Most communities are dominated by a small number of 

species whereas the vast majority of populations are quite uncommon. Most of 

the current methods based on PCR are unable to detect the many uncommon 

members of these communities. While common organisms carry out most of 

the ecosystem functions in a specific time/space coordinate, uncommon 

organisms serve as a reservoir of functional and genetic diversity, often play 

key roles in ecosystems and become numerically important when 

environmental conditions changes (Bent and Forney, 2008, Sloan et al., 

2007). Their role of genetic reservoir is particularly important because bacteria 

are able to perform lateral gene transfer between different taxa, and the rate 

of this process was shown to increase during stress conditions (Coombs and 

Barkay, 2004). Moreover, due to the evidence that bacteria respect taxa-area 

distribution (Woodcock et al., 2006), assessment of bacterial diversity in 

complex environments is futile without extensive sampling (Venter et al., 

2004). Bacterial diversity is higher in soils than in planktonic communities 

(Zinger et al., 2012), and this may be explained by the lack of structure and 

resources in aquatic environment  (Rainey et al., 2000, Rainey and Travisano, 

1998). 

 )
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1.2)Ecosystem)functioning)and)bacterial)diversity)

Bacteria are essential for life on earth. They play a key role in biogeochemical 

cycling in both terrestrial and aquatic ecosystems (Nannipieri et al., 2003, 

Cotner and Biddanda, 2002). Being the most abundant organisms in both soils 

and waters, they constitute a large source and sink of nutrients. In terrestrial 

ecosystems they play a central role, amongst others, for control of greenhouse 

gas (Singh et al., 2010), plant health (Kim et al., 2011), bio-control of pests 

(Babalola, 2010), soil structure (Young et al., 1998) and biodegradation of 

toxic compounds (Singh, 2009). In aquatic environments, apart from being 

the main players in energy flow and biogeochemical cycling, bacteria perform 

biodegradation of the majority of toxic compounds both of natural origin 

(Edwards and Lawton, 2009) and man-made (Roh et al., 2009). 

Many authors have suggested a key positive role of bacterial diversity on 

communities’ functioning and stability (Bell et al., 2005b, Eisenhauer et al., 

2012). Although there is a consensus of the positive effect of bacterial 

diversity on functioning, the shape of the relationships can vary upon the 

function studied (e.g. broad vs specific), the environmental complexity and a 

number of temporal, spatial and ecological interactions (Langenheder et al., 

2010, Prosser, 2012). Hypothetical positive relationships between biodiversity 

and ecosystem functioning are represented in Figure 1.2. 
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Figure 1.2 – Possible positive relationships between biodiversity and ecosystem 
functioning. Type A=all species have equal importance; Type B= vast redundancy; 
Type C= few species are responsible for most of the functioning; Idiosyncratic= the 
impact of diversity is dependent on communities structure 

 

Figure 1.2 represents hypothetical positive relationships between biodiversity 

and ecosystem functioning that are enclosed between two “extreme” 

relationships: type B and type C.  A type “A” curve would indicate that all 

species, even rare ones, are required to maintain healthy levels of ecosystem 

function (i.e. no redundancy). A type “B” relation, on the other hand, would 

suggest that ecosystems can lose much of their diversity without 

consequences to function (i.e. vast redundancy) (Yachi and Loreau, 1999). A 

type “C” relation would suggest that even a small decrease in diversity has a 

dramatic effect on the system functioning (i.e. no redundancy). Another 

possible relationship is idiosyncratic where not only bacterial diversity but also 

communities’ composition plays an important role due to the ecological 

relationships (e.g. facilitation, competition and predation). The actual response 

of ecosystem functioning to a change in bacterial diversity may vary between 

types, and this relationship may be dependant, amongst others, upon the 

function measured. Two mechanisms were proposed to explain the relation 

between bacterial diversity and ecosystem functioning. The complementary 
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mechanism is based on the idea that different species use different resources, 

so communities with high species richness are more productive using more 

available resources. The selection mechanism is based on the concept that 

different species have a different effect on ecosystem functioning (e.g. 

different degradation rate of a compound between two species); due to this 

mechanism species rich communities are more productive because they are 

more likely to contain species with a significant effect (Bell et al., 2005b). 

Biodiversity affects the way in which ecosystems function, but the form of the 

relationship between bacterial diversity and functioning remain poorly 

understood. Studies of how bacterial diversity affects ecosystem function have 

been carried out with three main approaches: construction of communities 

from culturable microbes, dilution to extinction of natural communities and 

observation of natural bacterial communities. Unfortunately the outcome of 

the different approaches have given contrasting results (Bell et al., 2009). 

Each approach has its advantages and drawbacks.  

The construction of artificial communities from culturable bacteria allows us to 

study not only the effect of diversity per se, but also to test the impact of each 

species on the function studies and also to get an insight on interactions 

between species. Unfortunately this approach is based on culturable bacteria 

which represent less than 1% of entire natural populations. Also, in the case 

that a scientist is aiming to test all possible combinations of a set of species to 

explore all interactions and species contribution to a determinate function, the 

number of initial species that he will be able to include in the study will be 

very limited: for example, all the combinations of 10 species will require more 

than one thousand microcosms. To our knowledge the study that employed 

the highest number of bacteria species was carried out by Bell et al. (2005b) 
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and included 72 species, but only a small percentage of the total species 

combination (i.e. > 4.7 X 1021) was tested.   

Removal approaches commonly rely on dilution-to-extinction reduction of 

bacteria diversity. This diversity manipulation method allows the study of the 

functioning of natural and highly diverse microbial communities, and how 

depletion in diversity affects it. Generally bacterial species relative abundance 

is heterogeneous in natural environments, hence the dilution approach has the 

effect of removing preferentially rare species. Possibly the main drawback of 

the dilution approach is that both a gradient in diversity and in biomass are 

generated. Thanks to the short duplication time in microbes, biomass can be 

recovered within few days in aquatic environments (Szabó et al., 2007) but it 

can be very lengthy in soils (Griffiths et al., 2001). During the biomass 

recovery step microbial communities’ structure is likely to change and this can 

affects data interpretation if communities structure rather than diversity has a 

strong effect on functioning. Also, with this methodology much less 

information is available regarding the contribution to a certain function by 

each of the species present and the evaluation of ecological interactions 

between specific species becomes unfeasible. 

The observational approach, where it is attempted to link natural occurring 

differences in microbial diversity to functioning has the main advantage to 

have as subject natural and possibly highly diverse systems. The finding of 

this approach might have high relevancy for the scientific community as they 

reflect dynamics in natural ecosystems. The first and great challenge with this 

approach is to find environments differing solely on microbial diversity.  

Natural systems are very complex and many drivers, both biotic and abiotic, 
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have effects on a certain ecosystem function. The complexity of natural 

systems does not imply a little influence of biodiversity on ecosystem 

functioning, but makes difficult the evaluation of the role of different factors. 

Because of our limited knowledge about the microbial diversity, natural system 

complexity and interactions, it is rather challenging to discriminate the 

importance of the different factors.  
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1.3)Freshwater)quality)

Water supports all life on earth. Freshwater is the most precious natural 

resource on terrestrial ecosystems and its biodiversity is a conservation 

priority. The United Nations General Assembly proclaimed 2005-2015 the 

International Decade for Action – “Water for life” (December 2003, resolution 

58/217). eighty percent of the world population is exposed to high levels of 

threat in terms water security (Vörösmarty et al., 2010). Freshwater 

biodiversity has been highlighted as a key factor for freshwater preservation 

due to the ecosystem functions and services that it sustains (Dudgeon et al., 

2005, Cardinale, 2011, Hooper et al., 2012). However the factors that have 

been pointed out that mainly affect water security are pollution and water 

resource development (Vörösmarty et al., 2010). Both factors are determined 

by human activities but water pollution has the potential to be remediated by 

biotic and abiotic factors.   

1.3.1)Eutrophication,)cyanobacteria)and)cyanotoxins)

Natural waters have very low concentrations of nitrogen and phosphorous. 

Runoffs from farmlands along with wastewater deriving from urban and 

industrial activities increase nutrient levels. Increased loadings of phosphorus 

and nitrogen, two of the main pollution drivers listed in the work of 

Vörösmarty et al. (2010), determines the eutrophic status of a water body 

that often results in harmful cyanobacterial blooms (Conley et al., 2009). 

Currently eutrophication is one of the primary issues in most surface waters 

(Smith and Schindler, 2009) and the incidence of cyanobacterial blooms is 

likely to increase due to climate change (O’Neil et al., 2012, Paerl and 

Huisman, 2009).  
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Cyanobacteria are an ancient and diverse group of photosynthetic bacteria 

(Rasmussen et al., 2008, Tomitani et al., 2006). Cyanobacteria have been 

playing a fundamental role in shaping atmospheric composition (Kasting and 

Siefert, 2002) and in nitrogen cycling (Zehr, 2011). During their long 

evolution, this group of organisms have successfully colonised most 

environments present on earth and acquired the ability to produce a wide 

range of secondary metabolites: toxins, iron chelators, indole alkaloids and 

protein inhibitors (Gademann and Portmann, 2008). A number of scientific 

studies have focused on different aspects of cyanobacterial toxins as they 

represent a hazard to human and animal health (Chorus et al., 2000). 

Cyanotoxins can be categorised into: microcystins and nodularins 

(hepatotoxins and possibly carcinogens), saxitoxins and anotoxins 

(neurotoxins), and cylindrospermopsin (protein synthesis inhibitor) (Sivonen 

and Jones, 1999, Edwards and Lawton, 2009). Microcystins are the most 

widely occurring amongst cyanotoxins and are produced by several genera of 

cyanobacteria since ancient times (Rantala et al., 2004). 

The long exposure to microcystins has possibly been selected for the ability in 

many bacterial species to be able to degrade them. One of the first 

occurrences of biodegradation of microcystins comes from a work of Jones and 

Orr (1994) with microcystin-LR: the most commonly occurring microcystin. 

The high toxicity of microcystin-LR (MacKintosh et al., 1990, Grosse et al., 

2006) has led to the World Health Organisation to set a guideline value of 1 µg 

L-1 in drinking water (WHO, 1998). Microcystin-LR also occurs widely and can 

be very persistent in aquatic environments (Lahti et al., 1997). Early studies 

on biodegradation were followed by a number of works over the last two 

decades that have revealed various species able to degrade bacteria. The 
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majority of the isolated species responsible for microcystin-LR biodegradation 

belong to the Proteobacteria phylum (Edwards and Lawton, 2009), some 

exceptions are in the Actinobacteria (Manage et al., 2009b) and Firmicutes 

(Nybom et al., 2012). Other aspects of microcystin biodegradation that have 

been investigated include, but are not limited to, the effect of previous 

exposure on biodegradation ability/rate (Rapala et al., 1994, Christoffersen et 

al., 2002), the effectiveness of sand filters (Grützmacher et al., 2002, Ho et 

al., 2006), the biodegradation potential of biofilms (Babica et al., 2005), the 

characterisation of the genes involved in bacteria degradation (Bourne et al., 

2001) and molecular methods to quantify these genes (Hoefel et al., 2009). 

1.3.2)Pesticide)and)freshwater)pollution)

Pesticides were introduced to improve crop yields and face an increasing food 

demand, the latter due to the increasing global number of inhabitants along 

with a positive relationship of food requests per capita and country 

development. Industrial agriculture has its foundations on monoculture and 

heavy use of synthetic pesticides and fertilisers, hence their widespread 

environmental incidence (Gilliom, 2007). Once in the environment, the fate of 

a pesticide is determined by three processes: adsorption, transfer and 

degradation (Fishel, 1997). In the adsorption process the pesticides bind to 

soil particles influencing whether other processes can affect the pesticide. The 

transfer process is the route for widespread contamination of the surrounding 

ecosystem including surface water, groundwater and non-target species. Non-

target plants are mainly affected by volatilisation and runoff of the pesticide. 

Runoff affects surface water quality and aquatic organisms; it then has an 

effect on all the living organisms, including humans, using the contaminated 

water. Runoff and leaching can lead to groundwater contamination (Fishel, 
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1997). Pesticides reach aquatic ecosystems mainly through agricultural runoff 

(Moore et al., 2008), but manufacturing plants and other human activities can 

contribute to the process. 

Historically, the main two classes of pesticide are represented by 

organoclorine and organophosphorus. Organochlorines (e.g. 

dichlorodiphenyltrichloroethane - DDT) were initially widely used as broad-

spectrum insecticides but a better understanding of their high stability, low 

degradation rates, high toxicity and tendency to bio-accumulate (Simonich and 

Hites, 1995) led to them to be taken out of use. Organochlorines were 

substituted by organophosphorus compounds that are still highly toxic but are 

more prone to biodegradation (Singh, 2009). Chlorpyrifos is one of the most 

widely used organophosphorus insecticides: in the United States alone 

approximately four thousand tonnes of chlorpyrifos were applied annually 

between 2000 and 2006 (EPA, 2009). Chlorpyrifos is employed for controlling 

a wide range of insect pests, mosquitoes, flies, termites and various soil and 

household pests (Singh et al., 2006b).  

Evidence of rapid degradation of the OP pesticides chlorpyrifos and fenamiphos 

carried out by bacterial isolates, in both water and soil, was given by Singh et 

al. (2003, 2004, 2006b). Chlorpyrifos degrading bacteria were also isolated 

from activated sludge (Karpouzas and Singh, 2006). The identification of 

chlorpyrifos degrading fungi by Al-Mihanna et al. (1998) showed that the 

biodegradation of this pesticide is not carried out exclusively by bacteria. 

However in the natural environment half-life of chlorpyrifos ranges from days 

to years. While most of the studies have focused on persistence in soils and 

the mechanisms affecting it (Gebremariam et al., 2012), a report suggested a 
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long half-life (i.e. >100 days) in artificial wetlands (Budd et al., 2011). 

Chlorpyrifos can be found in various freshwater ecosystems posing a serious 

health risk to exposed organisms including humans (Gilliom, 2007). Different 

authors have provided evidence of chlorpyrifos toxicity to mammals including 

genotoxicity (Ojha et al., 2011), mutagenicity (Amer and Aly, 1992), 

increased cancer risk (Lee et al., 2007), endocrine disruption (Hodgson and 

Rose, 2008), reproductive toxicity (Farag et al., 2003) and developmental 

neurotoxicity (Flaskos, 2012). 

1.3.3)Triclosan:)incidence,)biodegradation)and)toxicity))

Triclosan is a chlorinated aromatic compound widely used as broad-spectrum 

antimicrobial agent. It was first registered as a pesticide in 1969 with the 

United States EPA and it has been mainly used as an antibacterial agent in a 

number of products including personal care, household and industrial products 

(Singer et al., 2002, Bester, 2003).  Triclosan targets lipid synthesis in 

bacteria, fungi and algae by mimicking the natural substrate of the enzyme 

enoyl-acyl carrier protein reductase (McMurry et al., 1998, Levy et al., 1999). 

It has a bacterial inhibiting effect from a concentration of 10 µg L-1 (Bhargava 

and Leonard, 1996) while it can affect algae at concentrations as low as 0.4 µg 

L-1 (Yang et al., 2008). Annually hundreds of tonnes of triclosan are produced 

in Europe (Bester, 2005) and Unites States (Halden and Paull, 2005) followed 

by continuous release in the environment. The release in the environment is 

accentuated by the fact that personal care products are designed for external 

use and consequently they do not undergo metabolic changes resulting in high 

levels of triclosan being transferred to wastewater (von der Ohe et al., 2012).  
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Biodegradation of triclosan has been observed in activated sludge both in 

wastewater treatment plants (Sabaliunas et al., 2003, McAvoy et al., 2002) 

and in laboratory conditions (Federle et al., 2002). Biodegradation of triclosan 

can occur in both aerobic and anaerobic conditions (Gangadharan Puthiya 

Veetil et al., 2012) and can be catalysed by various bacteria belonging to 

different groups of bacteria (Lee et al., 2012, Roh et al., 2009, Meade et al., 

2001).  Some studies have reported dissipation rate in freshwater systems 

(Sabaliunas et al., 2003, Morrall et al., 2004) but were unable to estimate the 

extent of biotic and abiotic degradation. Although most of the triclosan is 

either biodegraded or sorbed to sludge in wastewater treatment plants 

(Bester, 2003, Singer et al., 2002, Kookana et al., 2011), a portion gets into 

the aquatic environment determining the contamination of most freshwater 

systems connected to human activities (Kookana et al., 2011, Dann and 

Hontela, 2011). The widespread use of triclosan has induced many bacterial 

strains to develop resistance to the compound which is often dangerously 

associated with antibiotics’ cross resistance (Levy, 2001). Also, partial 

degradation of triclosan can result in formation to toxic dioxins (Buth et al., 

2010, Mezcua et al., 2004). Triclosan has been found in human serum (Allmyr 

et al., 2006), breast milk (Adolfsson-Erici et al., 2002) liver and adipose tissue 

(Geens et al., 2012). Detection of triclosan in different human tissues is of 

concern as it has been shown that the antibacterial has endocrine disruption 

ability (Schuur et al., 1998) and ability to impair mitochondrial activity in 

animal cells (Newton et al., 2005). 
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1.4)Aims)of)the)study)

In the current age of extinction, increasing importance has been given to 

biodiversity and to its relationship with ecosystem functioning. Bacteria are the 

most abundant and diverse organisms on earth and play key roles in the 

majority of ecosystem functions and services including freshwater purification. 

Freshwater is the most precious resource in terrestrial ecosystems but eighty 

percent of the world population is exposed to high levels of threat in terms of 

water security. Water pollutants are one of the main factors affecting water 

security and their microbial biodegradation is the main dissipation mechanism. 

This study aims to examine how a decrease in microbial diversity can influence 

ecosystem functioning and stability in aquatic systems. 

In this thesis, the following hypotheses were tested in freshwater microcosms: 

I.  A decrease in microbial diversity will not affect the rate of a broad 

ecosystem function (i.e. respiration) according to the “insurance 

hypothesis” (Yachi and Loreau, 1999); 

II. A decrease in microbial diversity will not affect the stability of a 

broad ecosystem function; 

III. A decrease in microbial diversity will affect the rate of specific 

function (i.e. biodegradation of toxic compounds) 

  



27 
 

References)

ACHTMAN, M. & WAGNER, M. 2008. Microbial diversity and the genetic nature 
of microbial species. Nature Reviews Microbiology, 6, 431-440. 

ADOLFSSON-ERICI, M., PETTERSSON, M., PARKKONEN, J. & STURVE, J. 2002. 
Triclosan, a commonly used bactericide found in human milk and in the 
aquatic environment in Sweden. Chemosphere, 46, 1485-1489. 

AL-MIHANNA, A. A., SALAMA, A. K. & ABDALLA, M. Y. 1998. Biodegradation of 
chlorpyrifos by either single or combined cultures of some soilborne 
plant pathogenic fungi. Journal of Environmental Science and Health, 
Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 33, 693 
- 704. 

ALLMYR, M., ADOLFSSON-ERICI, M., MCLACHLAN, M. S. & SANDBORGH-
ENGLUND, G. 2006. Triclosan in plasma and milk from Swedish nursing 
mothers and their exposure via personal care products. Science of The 
Total Environment, 372, 87-93. 

AMER, S. M. & ALY, F. A. 1992. Cytogenetic effects of pesticides. IV. 
Cytogenetic effects of the insecticides Gardona and Dursban. Mutation 
Research/Genetic Toxicology, 279, 165-170. 

BABALOLA, O. O. 2010. Beneficial bacteria of agricultural importance. 
Biotechnology Letters, 32, 1559-1570. 

BABICA, P., BLAHA, L. & MARSALEK, B. 2005. Removal of Microcystins by 
Phototrophic Biofilms. A Microcosm Study (6 pp). Environmental Science 
and Pollution Research, 12, 369-374. 

BARNOSKY, A. D., MATZKE, N., TOMIYA, S., WOGAN, G. O., SWARTZ, B., 
QUENTAL, T. B., MARSHALL, C., MCGUIRE, J. L., LINDSEY, E. L. & 
MAGUIRE, K. C. 2011. Has the Earth/'s sixth mass extinction already 
arrived? Nature, 471, 51-57. 

BELL, T., NEWMAN, J., SILVERMAN, B., TURNER, S. & LILLEY, A. 2005b. The 
contribution of species richness and composition to bacterial services. 
Nature, 436, 1157-1160. 

BELL, T. G., GESSNER, M. O., GRIFFITHS, R. I., MCLAREN, J. R., MORIN, P. J., 
HEIJDEN, M. & PUTTEN, W. H. V. D. 2009. Microbial biodiversity and 
ecosystems funtioning under controlled conditions in the wild. 
Biodiversity, ecosystem functioning, and human wellbeing: an ecological 
and economic perspective. Oxford University Press. 

BENT, S. J. & FORNEY, L. J. 2008. The tragedy of the uncommon: 
understanding limitations in the analysis of microbial diversity. ISME J, 
2, 689-695. 

BESTER, K. 2003. Triclosan in a sewage treatment process—balances and 
monitoring data. Water Research, 37, 3891-3896. 

BESTER, K. 2005. Fate of Triclosan and Triclosan-Methyl in Sewage Treatment 
Plants and Surface Waters. Archives of Environmental Contamination 
and Toxicology, 49, 9-17. 

BHARGAVA, H. N. & LEONARD, P. A. 1996. Triclosan: Applications and safety. 
American Journal of Infection Control, 24, 209-218. 

BOURNE, D. G., RIDDLES, P., JONES, G. J., SMITH, W. & BLAKELEY, R. L. 
2001. Characterisation of a gene cluster involved in bacterial 
degradation of the cyanobacterial toxin microcystin LR. Environmental 
Toxicology, 16, 523-534. 



28 
 

BUDD, R., O’GEEN, A., GOH, K. S., BONDARENKO, S. & GAN, J. 2011. 
Removal mechanisms and fate of insecticides in constructed wetlands. 
Chemosphere, 83, 1581-1587. 

BUTH, J. M., STEEN, P. O., SUEPER, C., BLUMENTRITT, D., VIKESLAND, P. J., 
ARNOLD, W. A. & MCNEILL, K. 2010. Dioxin Photoproducts of Triclosan 
and Its Chlorinated Derivatives in Sediment Cores. Environmental 
Science & Technology, 44, 4545-4551. 

CARDINALE, B. J. 2011. Biodiversity improves water quality through niche 
partitioning. Nature, 472, 86-89. 

CARDINALE, B. J., DUFFY, J. E., GONZALEZ, A., HOOPER, D. U., PERRINGS, 
C., VENAIL, P., NARWANI, A., MACE, G. M., TILMAN, D. & WARDLE, D. 
A. 2012. Biodiversity loss and its impact on humanity. Nature, 486, 59-
67. 

CHORUS, I., FALCONER, I. R., SALAS, H. J. & BARTRAM, J. 2000. Health risks 
caused by freshwater cyanobacteria in recreational waters. Journal of 
Toxicology and Environmental Health, Part B: Critical Reviews, 3, 323 - 
347. 

CHRISTOFFERSEN, K., LYCK, S. & WINDING, A. 2002. Microbial activity and 
bacterial community structure during degradation of microcystins. 
Aquatic Microbial Ecology, 27, 125-136. 

CONLEY, D. J., PAERL, H. W., HOWARTH, R. W., BOESCH, D. F., SEITZINGER, 
S. P., HAVENS, K. E., LANCELOT, C. & LIKENS, G. E. 2009. Controlling 
eutrophication: nitrogen and phosphorus. Science, 323, 1014-1015. 

COOMBS, J. M. & BARKAY, T. 2004. Molecular Evidence for the Evolution of 
Metal Homeostasis Genes by Lateral Gene Transfer in Bacteria from the 
Deep Terrestrial Subsurface. Appl. Environ. Microbiol., 70, 1698-1707. 

COTNER, J. B. & BIDDANDA, B. A. 2002. Small players, large role: microbial 
influence on biogeochemical processes in pelagic aquatic ecosystems. 
Ecosystems, 5, 105-121. 

CURTIS, T. 2006. Microbial ecologists: it's time to 'go large'. Nat Rev Micro, 4, 
488-488. 

DANN, A. B. & HONTELA, A. 2011. Triclosan: environmental exposure, toxicity 
and mechanisms of action. Journal of Applied Toxicology, 31, 285. 

DUDGEON, D., ARTHINGTON, A., GESSNER, M., KAWABATA, Z., KNOWLER, 
D., LÉVÊQUE, C., NAIMAN, R., PRIEUR-RICHARD, A., SOTO, D. & 
STIASSNY, M. 2005. Freshwater biodiversity: importance, threats, 
status and conservation challenges. Biological Reviews, 81, 163-182. 

DURAIAPPAH, A., NAEEM, S., AGARDI, T., ASH, N., COOPER, D., DÍAZ, S., 
FAITH, D., MACE, G., MCNEILLY, J. & MOONEY, H. 2005. Millennium 
Ecosystem Assessment Report. Ecosystems and human well-being: 
biodiversity synthesis, Washington, DC, World Resources Institute. 

EDWARDS, C. & LAWTON, L. A. 2009. Chapter 4 Bioremediation of 
Cyanotoxins. In: ALLEN I. LASKIN, S. S. & GEOFFREY, M. G. (eds.) 
Advances in Applied Microbiology. Academic Press. 

EISENHAUER, N., SCHEU, S. & JOUSSET, A. 2012. Bacterial Diversity 
Stabilizes Community Productivity. PLoS ONE, 7, e34517. 

EPA. 2009. Chlorpyrifos summary document. Registration Review: Initial 
Docket [Online]. 

FARAG, A. T., EL OKAZY, A. M. & EL-ASWED, A. F. 2003. Developmental 
toxicity study of chlorpyrifos in rats. Reproductive Toxicology, 17, 203-
208. 



29 
 

FEDERLE, T. W., KAISER, S. K. & NUCK, B. A. 2002. Fate and effects of 
triclosan in activated sludge. Environmental toxicology and chemistry, 
21, 1330-1337. 

FISHEL, F. 1997. Pesticides and the Environment. Agricultural MU Guide. 
FLASKOS, J. 2012. The developmental neurotoxicity of organophosphorus 

insecticides: a direct role for the oxon metabolites. Toxicology Letters, 
209, 86-93. 

GADEMANN, K. & PORTMANN, C. 2008. Secondary metabolites from 
cyanobacteria: complex structures and powerful bioactivities. Current 
Organic Chemistry, 12, 326-341. 

GANGADHARAN PUTHIYA VEETIL, P., VIJAYA NADARAJA, A., BHASI, A., KHAN, 
S. & BHASKARAN, K. 2012. Degradation of Triclosan under Aerobic, 
Anoxic, and Anaerobic Conditions. Applied Biochemistry and 
Biotechnology, 167, 1603-1612. 

GEBREMARIAM, S. Y., BEUTEL, M. W., YONGE, D. R., FLURY, M. & HARSH, J. 
B. 2012. Adsorption and desorption of chlorpyrifos to soils and 
sediments. Reviews of environmental contamination and toxicology. 
Springer. 

GEENS, T., NEELS, H. & COVACI, A. 2012. Distribution of bisphenol-A, 
triclosan and n-nonylphenol in human adipose tissue, liver and brain. 
Chemosphere. 

GILLIOM, R. J. 2007. Pesticides in U.S. Streams and Groundwater. 
Environmental Science & Technology, 41, 3408-3414. 

GRIFFITHS, B. S., RITZ, K., WHEATLEY, R., KUAN, H. L., BOAG, B., 
CHRISTENSEN, S., EKELUND, F., SØRENSEN, S. J., MULLER, S. & 
BLOEM, J. 2001. An examination of the biodiversity-ecosystem function 
relationship in arable soil microbial communities. Soil biology and 
Biochemistry, 33, 1713-1722. 

GROSSE, Y., BAAN, R., STRAIF, K., SECRETAN, B., EL GHISSASSI, F., 
COGLIANO, V., CANTOR, K., FALCONER, I., LEVALLOIS, P. & VERGER, 
P. 2006. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide 
toxins. Lancet Oncology, 7, 628-629. 

GRÜTZMACHER, G., BÖTTCHER, G., CHORUS, I. & BARTEL, H. 2002. Removal 
of microcystins by slow sand filtration. Environmental Toxicology, 17, 
386-394. 

HALDEN, R. U. & PAULL, D. H. 2005. Co-occurrence of triclocarban and 
triclosan in US water resources. Environmental Science & Technology, 
39, 1420-1426. 

HO, L., MEYN, T., KEEGAN, A., HOEFEL, D., BROOKES, J., SAINT, C. P. & 
NEWCOMBE, G. 2006. Bacterial degradation of microcystin toxins within 
a biologically active sand filter. Water Research, 40, 768-774. 

HODGSON, E. & ROSE, R. L. 2008. Metabolic interactions of agrochemicals in 
humans. Pest management science, 64, 617-621. 

HOEFEL, D., ADRIANSEN, C. M., BOUYSSOU, M. A., SAINT, C. P., NEWCOMBE, 
G. & HO, L. 2009. Development of an mlrA gene-directed TaqMan PCR 
assay for quantitative assessment of microcystin-degrading bacteria 
within water treatment plant sand filter biofilms. Applied and 
Environmental Microbiology, 75, 5167-5169. 

HOOPER, D. U., ADAIR, E. C., CARDINALE, B. J., BYRNES, J. E. K., HUNGATE, 
B. A., MATULICH, K. L., GONZALEZ, A., DUFFY, J. E., GAMFELDT, L. & 
O'CONNOR, M. I. 2012. A global synthesis reveals biodiversity loss as a 
major driver of ecosystem change. Nature, 486, 105-U129. 



30 
 

HORNER-DEVINE, M., CARNEY, K. & BOHANNAN, B. 2004. An ecological 
perspective on bacterial biodiversity. Proceedings of the Royal Society of 
London, Series B: Biological Sciences, 271, 113-122. 

JONES, G. J. & ORR, P. T. 1994. Release and degradation of microcystin 
following algicide treatment of a Microcystis aeruginosa bloom in a 
recreational lake, as determined by HPLC and protein phosphatase 
inhibition assay. Water Research, 28, 871-876. 

KARPOUZAS, D. & SINGH, B. 2006. Microbial degradation of 
organophosphorus xenobiotics: metabolic pathways and molecular 
basis. Advances in Microbial Physiology, 51, 119-225. 

KASTING, J. F. & SIEFERT, J. L. 2002. Life and the Evolution of Earth's 
Atmosphere. Science, 296, 1066-1068. 

KIM, Y. C., LEVEAU, J., MCSPADDEN GARDENER, B. B., PIERSON, E. A., 
PIERSON, L. S. & RYU, C.-M. 2011. The Multifactorial Basis for Plant 
Health Promotion by Plant-Associated Bacteria. Applied and 
Environmental Microbiology, 77, 1548-1555. 

KOOKANA, R. S., YING, G. G. & WALLER, N. J. 2011. Triclosan: its occurrence, 
fate and effects in the Australian environment. Water Science and 
Technology, 63, 598-604. 

LAHTI, K., RAPALA, J., FÄRDIG, M., NIEMELÄ, M. & SIVONEN, K. 1997. 
Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate 
material and dissolved in lake water. Water Research, 31, 1005-1012. 

LANGENHEDER, S., BULLING, M. T., SOLAN, M. & PROSSER, J. I. 2010. 
Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by 
Environmental Complexity. PLoS ONE, 5, e10834. 

LEE, D. G., ZHAO, F., REZENOM, Y. H., RUSSELL, D. H. & CHU, K.-H. 2012. 
Biodegradation of triclosan by a wastewater microorganism. Water 
Research, 46, 4226-4234. 

LEE, W. J., SANDLER, D. P., BLAIR, A., SAMANIC, C., CROSS, A. J. & 
ALAVANJA, M. C. R. 2007. Pesticide use and colorectal cancer risk in the 
agricultural health study. International Journal of Cancer, 121, 339-346. 

LEVY, C. W., ROUJEINIKOVA, A., SEDELNIKOVA, S., BAKER, P. J., STUITJE, A. 
R., SLABAS, A. R., RICE, D. W. & RAFFERTY, J. B. 1999. Molecular basis 
of triclosan activity. Nature, 398, 383-384. 

LEVY, S. B. 2001. Antibacterial household products: cause for concern. 
Emerging infectious diseases, 7, 512. 

MACKINTOSH, C., BEATTIE, K. A., KLUMPP, S., COHEN, P. & CODD, G. A. 
1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of 
protein phosphatases 1 and 2A from both mammals and higher plants. 
FEBS Letters, 264, 187-192. 

MANAGE, P. M., EDWARDS, C., SINGH, B. K. & LAWTON, L. A. 2009b. 
Isolation and identification of novel microcystin degrading bacteria. 
Appl. Environ. Microbiol., AEM.01928-09. 

MCAVOY, D. C., SCHATOWITZ, B., JACOB, M., HAUK, A. & ECKHOFF, W. S. 
2002. Measurement of triclosan in wastewater treatment systems. 
Environmental toxicology and chemistry, 21, 1323-1329. 

MCMURRY, L. M., OETHINGER, M. & LEVY, S. B. 1998. Triclosan targets lipid 
synthesis. Nature, 531-531. 

MEADE, M. J., WADDELL, R. L. & CALLAHAN, T. M. 2001. Soil bacteria 
Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans 
inactivate triclosan in liquid and solid substrates. FEMS Microbiology 
Letters, 204, 45-48. 



31 
 

MEZCUA, M., GÓMEZ, M. J., FERRER, I., AGUERA, A., HERNANDO, M. D. & 
FERNÁNDEZ-ALBA, A. R. 2004. Evidence of 2, 7/2, 8-dibenzodichloro-< 
i> p</i>-dioxin as a photodegradation product of triclosan in water and 
wastewater samples. Analytica Chimica Acta, 524, 241-247. 

MOORE, M., DENTON, D., COOPER, C., WRYSINSKI, J., MILLER, J., REECE, K., 
CRANE, D. & ROBINS, P. 2008. Mitigation assessment of vegetated 
drainage ditches for collecting irrigation runoff in California. Journal of 
environmental quality, 37, 486-493. 

MORRALL, D., MCAVOY, D., SCHATOWITZ, B., INAUEN, J., JACOB, M., HAUK, 
A. & ECKHOFF, W. 2004. A field study of triclosan loss rates in river 
water (Cibolo Creek, TX). Chemosphere, 54, 653-660. 

NANNIPIERI, P., ASCHER, J., CECCHERINI, M. T., LANDI, L., PIETRAMELLARA, 
G. & RENELLA, G. 2003. Microbial diversity and soil functions. European 
Journal of Soil Science, 54, 655-670. 

NEWTON, A. P. N., CADENA, S. M. S., ROCHA, M. E. M., CARNIERI, E. G. S. & 
MARTINELLI DE OLIVEIRA, M. B. 2005. Effect of triclosan (TRN) on 
energy-linked functions of rat liver mitochondria. Toxicology Letters, 
160, 49-59. 

NYBOM, S. M. K., DZIGA, D., HEIKKILÄ, J. E., KULL, T. P. J., SALMINEN, S. J. 
& MERILUOTO, J. A. O. 2012. Characterization of microcystin-LR 
removal process in the presence of probiotic bacteria. Toxicon, 59, 171-
181. 

O’NEIL, J. M., DAVIS, T. W., BURFORD, M. A. & GOBLER, C. J. 2012. The rise 
of harmful cyanobacteria blooms: The potential roles of eutrophication 
and climate change. Harmful Algae, 14, 313-334. 

OCHMAN, H., LAWRENCE, J. & GROISMAN, E. 2000. Lateral gene transfer and 
the nature of bacterial innovation. Nature, 405, 299-304. 

OJHA, A., YADUVANSHI, S. K., PANT, S. C., LOMASH, V. & SRIVASTAVA, N. 
2011. Evaluation of DNA damage and cytotoxicity induced by three 
commonly used organophosphate pesticides individually and in mixture, 
in rat tissues. Environmental Toxicology. 

PAERL, H. W. & HUISMAN, J. 2009. Climate change: a catalyst for global 
expansion of harmful cyanobacterial blooms. Environmental 
Microbiology Reports, 1, 27-37. 

PERRINGS, C., DURAIAPPAH, A., LARIGAUDERIE, A. & MOONEY, H. 2011. The 
biodiversity and ecosystem services science-policy interface. Science, 
331, 1139-1140. 

PROSSER, J. I. 2012. Ecosystem processes and interactions in a morass of 
diversity. FEMS microbiology ecology, 81, 507-519. 

RAINEY, P. B., BUCKLING, A., KASSEN, R. & TRAVISANO, M. 2000. The 
emergence and maintenance of diversity: insights from experimental 
bacterial populations. Trends in Ecology & Evolution, 15, 243-247. 

RAINEY, P. B. & TRAVISANO, M. 1998. Adaptive radiation in a heterogeneous 
environment. Nature, 394, 69-72. 

RANTALA, A., FEWER, D. P., HISBERGUES, M., ROUHIAINEN, L., VAITOMAA, 
J., BÖRNER, T. & SIVONEN, K. 2004. Phylogenetic evidence for the early 
evolution of microcystin synthesis. Proceedings of the National Academy 
of Sciences of the United States of America, 101, 568-573. 

RAPALA, J., LAHTI, K., SIVONEN, K. & NIEMELÄ, S. I. 1994. Biodegradability 
and adsorption on lake sediments of cyanobacterial hepatotoxins and 
anatoxin-a. Letters in Applied Microbiology, 19, 423-428. 



32 
 

RASMUSSEN, B., FLETCHER, I. R., BROCKS, J. J. & KILBURN, M. R. 2008. 
Reassessing the first appearance of eukaryotes and cyanobacteria. 
Nature, 455, 1101-1104. 

ROH, H., SUBRAMANYA, N., ZHAO, F., YU, C.-P., SANDT, J. & CHU, K.-H. 
2009. Biodegradation potential of wastewater micropollutants by 
ammonia-oxidizing bacteria. Chemosphere, 77, 1084-1089. 

SABALIUNAS, D., WEBB, S. F., HAUK, A., JACOB, M. & ECKHOFF, W. S. 2003. 
Environmental fate of Triclosan in the River Aire Basin, UK. Water 
Research, 37, 3145-3154. 

SCHUUR, A. G., LEGGER, F. F., VAN MEETEREN, M. E., MOONEN, M. J., VAN 
LEEUWEN-BOL, I., BERGMAN, Å., VISSER, T. J. & BROUWER, A. 1998. 
In vitro inhibition of thyroid hormone sulfation by hydroxylated 
metabolites of halogenated aromatic hydrocarbons. Chemical Research 
in Toxicology, 11, 1075-1081. 

SIMONICH, S. L. & HITES, R. A. 1995. Global Distribution of Persistent 
Organochlorine Compounds. Science, 269, 1851-1854. 

SINGER, H., MÜLLER, S., TIXIER, C. & PILLONEL, L. 2002. Triclosan:  
Occurrence and Fate of a Widely Used Biocide in the Aquatic 
Environment:  Field Measurements in Wastewater Treatment Plants, 
Surface Waters, and Lake Sediments. Environmental Science & 
Technology, 36, 4998-5004. 

SINGH, B., BARDGETT, R., SMITH, P. & REAY, D. 2010. Microorganisms and 
climate change: terrestrial feedbacks and mitigation options. Nature 
Reviews Microbiology, 8, 779-790. 

SINGH, B. K. 2009. Organophosphorus-degrading bacteria: ecology and 
industrial applications. Nat Rev Micro, 7, 156-164. 

SINGH, B. K., WALKER, A., MORGAN, J. A. W. & WRIGHT, D. J. 2003. Effects 
of Soil pH on the Biodegradation of Chlorpyrifos and Isolation of a 
Chlorpyrifos-Degrading Bacterium. Appl. Environ. Microbiol., 69, 5198-
5206. 

SINGH, B. K., WALKER, A., MORGAN, J. A. W. & WRIGHT, D. J. 2004. 
Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use 
in Bioremediation of Contaminated Soils. Appl. Environ. Microbiol., 70, 
4855-4863. 

SINGH, B. K., WALKER, A. & WRIGHT, D. J. 2006b. Bioremedial potential of 
fenamiphos and chlorpyrifos degrading isolates: Influence of different 
environmental conditions. Soil biology and Biochemistry, 38, 2682-
2693. 

SIVONEN, K. & JONES, G. 1999. Chapter 3. Cyanobacterial toxins. In: Chorus 
I, Bartram J ed. Toxic cyanobacteria in water—a guide to their public 
health consequences, monitoring and management. 

SLOAN, W., WOODCOCK, S., LUNN, M., HEAD, I. & CURTIS, T. 2007. Modeling 
Taxa-Abundance Distributions in Microbial Communities using 
Environmental Sequence Data. Microbial Ecology, 53, 443-455. 

SMITH, V. H. & SCHINDLER, D. W. 2009. Eutrophication science: where do we 
go from here? Trends in Ecology & Evolution, 24, 201-207. 

SZABÓ, K. É., ITOR, P. O. B., BERTILSSON, S., TRANVIK, L. & EILER, A. 2007. 
Importance of rare and abundant populations for the structure and 
functional potential of freshwater bacterial communities. Aquatic 
Microbial Ecology, 47, 1-10. 

TOMITANI, A., KNOLL, A. H., CAVANAUGH, C. M. & OHNO, T. 2006. The 
evolutionary diversification of cyanobacteria: Molecular–phylogenetic 



33 
 

and paleontological perspectives. Proceedings of the National Academy 
of Sciences, 103, 5442-5447. 

TORSVIK, V. & ØVREÅS, L. 2002. Microbial diversity and function in soil: from 
genes to ecosystems. Current Opinion in Microbiology, 5, 240-245. 

VENTER, J. C., REMINGTON, K., HEIDELBERG, J. F., HALPERN, A. L., RUSCH, 
D., EISEN, J. A., WU, D., PAULSEN, I., NELSON, K. E., NELSON, W., 
FOUTS, D. E., LEVY, S., KNAP, A. H., LOMAS, M. W., NEALSON, K., 
WHITE, O., PETERSON, J., HOFFMAN, J., PARSONS, R., BADEN-
TILLSON, H., PFANNKOCH, C., ROGERS, Y.-H. & SMITH, H. O. 2004. 
Environmental Genome Shotgun Sequencing of the Sargasso Sea. 
Science, 304, 66-74. 

VON DER OHE, P. C., SCHMITT-JANSEN, M., SLOBODNIK, J. & BRACK, W. 
2012. Triclosan—the forgotten priority substance? Environmental 
Science and Pollution Research, 19, 585-591. 

VÖRÖSMARTY, C. J., MCINTYRE, P., GESSNER, M. O., DUDGEON, D., 
PRUSEVICH, A., GREEN, P., GLIDDEN, S., BUNN, S. E., SULLIVAN, C. A. 
& LIERMANN, C. R. 2010. Global threats to human water security and 
river biodiversity. Nature, 467, 555-561. 

VOS, M., WOLF, A. B., JENNINGS, S. J. & KOWALCHUK, G. A. 2013. Micro-
scale determinants of bacterial diversity in soil. FEMS microbiology 
reviews, n/a-n/a. 

WHITMAN, W. B., COLEMAN, D. C. & WIEBE, W. J. 1998. Prokaryotes: The 
unseen majority. Proceedings of the National Academy of Sciences of 
the United States of America, 95, 6578-6583. 

WHO 1998. Guidelines for drinking-water quality: addendum to volume 2, 
health criteria and other supporting information, World Health 
Organization. 

WILSON, E. O. 1992. The diversity of life, Cambridge, Penguin. 
WOODCOCK, S., CURTIS, T., HEAD, I., LUNN, M. & SLOAN, W. 2006. Taxa-

area relationships for microbes: the unsampled and the unseen. Ecology 
Letters, 9, 805-812. 

YACHI, S. & LOREAU, M. 1999. Biodiversity and ecosystem productivity in a 
fluctuating environment: the insurance hypothesis. Proceedings of the 
National Academy of Sciences, 96, 1463-1468. 

YANG, L.-H., YING, G.-G., SU, H.-C., STAUBER, J. L., ADAMS, M. S. & BINET, 
M. T. 2008. Growth-inhibiting effects of 12 antibacterial agents and 
their mixtures on the freshwater microalga Pseudokirchneriella 
subcapitata. Environmental toxicology and chemistry, 27, 1201-1208. 

YOUNG, I. M., BLANCHART, E., CHENU, C., DANGERFIELD, M., FRAGOSO, C., 
GRIMALDI, M., INGRAM, J. & MONROZIER, L. J. 1998. The interaction of 
soil biota and soil structure under global change. Global Change Biology, 
4, 703-712. 

ZEHR, J. P. 2011. Nitrogen fixation by marine cyanobacteria. Trends in 
Microbiology, 19, 162-173. 

ZINGER, L., GOBET, A. & POMMIER, T. 2012. Two decades of describing the 
unseen majority of aquatic microbial diversity. Molecular Ecology, 21, 
1878-1896. 

 

 



34 
 

2. PRELIMINARY)WORK)

2.1)Introduction)

Assessing the entire bacterial species richness and evenness of a complex 

environment remains an open ecological challenge unsolved due to practical 

and technological limitations (Hughes et al., 2001, Zinger et al., 2012). To 

determine the entire bacterial richness of an aquatic ecosystem and explore 

rare species extensive sampling effort is required (Venter et al., 2004). 

However, for diversity comparison across sets of samples, sampling and 

analysis effort can be much reduced without hindering the strength of the 

findings (Bell et al., 2005a). 

Freshwater is the most precious resource of Earth and, globally, the most 

relevant water quality problem is eutrophication.  In freshwater systems one 

of the most relevant class of natural toxic compounds is represented by 

cyanotoxins that are produced by cyanobacteria during eutrophication-

triggered blooms (Paerl et al., 2001). While the ecological role of cyanotoxins 

has not been fully elucidated (Kaebernick and Neilan, 2001), their 

classification, structure, detection, toxicology and biodegradation have been 

described (Lawton et al., 1994, Chorus and Bartram, 1999, Edwards and 

Lawton, 2009) . The most common class of cyanobacterial toxins is 

represented by microcystins with microcystin-LR being its most common 

member. Microcystyin-LR is a potent inhibitor of protein phosphatases 1 and 

2A (MacKintosh et al., 1990), hence hepatotoxic and possibly carcinogenic 

(Nishiwaki-Matsushima et al., 1992, Fujiki and Suganuma, 2009). 
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Pesticide runoff from agricultural land is a key issue in freshwater preservation 

where modern agricultural practices with intense use of pesticides have been 

implemented. Organophosphorus compounds are the most widely used 

insecticide (Singh and Walker, 2006) contaminating many ecosystems, biota 

and resources (Andreu and Picó, 2012, Bonansea et al., 2013, Wang et al., 

2013). Biodegradation of organophosphorus insecticide has been widely 

investigated to elucidate ecology, organisms involved and mechanisms of 

degradation (Singh, 2009). Globally, widely used organophosphorus insectices 

include malathion, fenamiphos, parathion and chlorpyrifos. Chlorpyrifos is one 

of the most widely used organophosphorus insecticides (EPA, 2009) resulting 

in its widespread presence in the environment (Gilliom, 2007). That poses a 

serious health risk as chlorpyrifos was reported to disrupt endocrine 

functioning (Hodgson and Rose, 2008), being genotoxic (Ojha et al., 2011) 

and has a strong correlation with incidences of rectal cancer (Lee et al., 2007). 

Triclosan is a chlorinated aromatic compound first registered as a pesticide in 

1969 with the US EPA. Due to its antimicrobial activity (Regös et al., 1979) it 

has been widely used in a number of products including, but not limited to: 

toothpaste, mouthwash, hand soap, deodorants, facial tissues,  shampoo, 

fabric softeners, fabric deodorant,  antiseptics, medical devices, detergent,  

plastic additives, cutting boards, textiles, sport equipment, shoes, furniture 

and industrial machinery. A report from Bester (2005) suggests that about 

1500 t of triclosan were produced annually worldwide and, due to its 

increasing popularity and widespread use, its production is likely to have 

increased in recent years and will rise further in coming years. The widespread 

usage of triclosan determines its continuous release in wastewaters that in 

most developed countries are processed in treatment plants. Most of the 
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triclosan is either biodegraded or sorbed to sludge in waste water treatment 

plants (Bester, 2003). However, the dissipation is often not complete and a 

portion gets into the aquatic environment determining the contamination of 

most freshwater systems connected to human activities (Kookana et al., 

2011). Also, the application of the sludge on agricultural land determines 

contaminations of soils (Ying and Kookana, 2007). From a toxicological point 

of view, a review of Dann and Hontela (2011) reports that triclosan has 

bioaccumulation potential along with toxicity to aquatic organisms, endocrine 

disrupting effects, and the potential to trigger antibiotic resistance in bacteria. 

For microcystin-LR many freshwater incubation studies have been successfully 

carried out (Edwards et al., 2008, Ho et al., 2012) and sturdy methodological 

approaches to detect the toxin at environmental concentration have been 

developed (Lawton et al., 1994, McElhiney and Lawton, 2005), but the same 

does not apply to chlorpyrifos and triclosan. The great majority of incubation 

studies for chlorpyrifos have been carried out in soils and the biodegradation 

of triclosan has been mainly tested in sludge either in wastewater treatment 

plant or in incubation experiments. Also, analytical methods to detect triclosan 

do not have the resolution to detect the antibacterial agent at concentrations 

commonly found in freshwater systems (i.e. <10µg L-1) given a small sample 

size. 
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In this chapter, results are reported and discussed from three experiments. 

The were carried out to gain essential data required to appropriately design 

experiments investigating diversity-function relationship in freshwater 

bacterial communities. The aims of these experiments were to: 

• Investigate, within a practical range, how freshwater volume used for 
DNA extraction affects: a) DNA yield and; b) diversity of microbial 
communities assessed by DNA fingerprinting technique;)

• Test methodologies and experimental design to successfully set up 
freshwater incubation experiments with: a) chlorpyrifos and: b) 
triclosan; 

• Investigate the ability of natural freshwater microbial communities to 
degrade: a) microcystin-LR; b) chlorpyrifos and; c) triclosan.)
)
 )
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2.2)Materials)and)methods)

2.2.1)Sampling)and)experimental)design)of)trial)experiments))

Experiments were carried out in Scotland and Australia in lakes and rivers, 

respectively. 

In Scotland, sub-surface (i.e. within 10 cm of surface) freshwater samples 

collected from Loch Rescobie (R) (56.657029,-2.805339) on the 14th of July 

2010 were employed to test if: a) freshwater volume filtered for DNA 

extraction affects DNA yield as well as composition and diversity of microbial 

communities and; b) natural microbial communities from this site were able to 

degrade natural (i.e. microcystin-LR) and man-made (chlorpyrifos) toxic 

compounds. 

In Australia, sub-surface (i.e. within 10 cm of surface) freshwater samples 

were collected from four sites in New South Wales on the 19th of October 

2012. The sites were: Grose River (G) (-33.614047, 150.62994), Hawkesbury 

River (H) (-33.573581, 150.738859), Farmers Creek at two sites (FP: -

33.469397, 150.125899 and FC: -33.466712, 150.185895). Water was 

employed to test if natural microbial communities from these sites were able 

to degrade triclosan. Water was collected in sterile glass bottle wrapped in 

aluminium foil to ensure minimal exposure to light.  

2.2.2)DNA)extraction,)DNA)yield)and)microbial)Terminal)Restriction)Fragment)

Length)Polymorphism)(TURFLP))analysis)from)a)range)of)freshwater)volumes)

For the first sampling (i.e. 14th July 2010) water was collected in triplicate into 

10 L containers, previously acid washed and autoclaved to ensure sterility. 

Water temperature and pH were measured on site. Following sampling, the 
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water samples were processed within a few hours by filtration with a sterile 

metal sieve (pore size 150 µm) in sterile conditions to remove large particles 

and vegetation. On the same day, aliquots of 25, 50, 75, 100, 250 and 500 

mL were filtered via individual 0.22 µm pore size membrane filter units 

(Stericup filter units, Millipore) by vacuum. The filters were removed in sterile 

conditions from the disposable filter units and stored in sterile Petri dishes at -

20 ºC until DNA extraction. DNA extraction was carried out using 

PowerWater® DNA Isolation Kit (Mobio, Carlsbad, USA) following the 

manufacturers centrifuge protocol, except that the DNA was eluted in 50 µL 

and not in 100 µL as suggested by the manufacturer. After DNA isolation, the 

presence of DNA in the extract was confirmed by agarose gel electrophoresis. 

DNA was then stored at -20 ºC until further analyses. 

Amplicons for terminal restriction fragment analysis were produced using three 

sets of primers that are listed in Table 2.1 with relative label, sequence, target 

region and specificity. 

Table 2.1 - Primers used for amplification of bacterial, cyanobacterial and algal 
ribosomal DNA (rDNA). 

Primer 
ID 

Fluorescent 
Label 

Sequence (5’ to3’) Target region and 
specificity 

Specificity 

 63f VIC  CAGGCCTAACACATGCAAGTC 16S rRNA gene Eubacteria 
1087r NONE CTCGTTGCGGGACTTACCCC 
Cyan 

359f 

NED  GGGGAATYTTCCGCAATGGG  16S rRNA gene Cyanobacteria 
Cyan 

792r 

NONE TCCCCTAGCTTTCGTCCC  

Algae 

p73f 

FAM  AATCAGTTATAGTTTATTTGRTGGTACC 18S rRNA gene Microalgae 
Algae 

p47r 

NONE TCTCAGGCTCCCTCTCCGGA 

 

Within each set, one of the primers was labelled on the 5’-end with a 

fluorescent marker to allow 5’-terminal fragment detection and analysis by the 

T-RFLP method. To avoid any contamination, the PCR tubes/plates and master 
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mix tubes were UV-irradiated, before the PCR reaction, using a UV-crosslinker 

(CL-1000 model, UVP) for 2 minutes at 2.02 mJ cm-2. 

For PCR amplification of the bacteria 16S rRNA gene, the reaction mix (50 µL) 

consisted of: 1 x NH4 reaction buffer, 2 mM MgCl2, 400 µM of each 

deoxynucleoside triphosphate, and 2.5 U of Biotaq DNA polymerase (all 

reagents from BIOLINE, UK), 20 µg bovine serum albumin (BSA, Roche 

Diagnostics, UK) and 5 µL of template DNA. Bacterial primers were 63F-VIC 

and 1087R used at a concentration of 200 nM. PCR reactions were performed 

with a DYAD DNA Engine Peltier thermal cycler (MJ Research, Waltham, MA). 

The cycle consisted of 5 min at 95°C, followed by 30 cycles of denaturing at 

94°C for 30 s, annealing at 55°C for 30 s, elongation at 72°C for 1 min, and a 

last cycle of 10 minutes extension period at 72°C.   

For algal 18S rRNA gene amplification, PCR reagents and conditions were 

identical to the ones used for bacteria except for the primers: Algae18sf p73 

and Algae18sr p47. For algae, the cycle consisted of 5 min at 94°C, followed 

by 37 cycles of denaturing at 92°C for 50 s, annealing at 57 °C for 50 s, 

elongation at 72°C for 50 sec, and a last cycle of 10 minutes extension at 

72°C.  

For cyanobacterial 16S rRNA gene amplification, PCR reagent and conditions 

were identical to ones used for bacteria except primers which were used at 

400 nM. For cyanobacteria, the cycle consisted of 5 min at 95°C, followed by 

35 cycles of denaturing at 94°C for 30 s, annealing at 58 °C for 30s, 

elongation at 72 °C for 1 min, and a last cycle of 10 minutes extension at 

72°C.  
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Successful PCR amplification was confirmed by agarose gel electrophoresis of 

PCR products. The relative concentration of DNA amplicons for the bacterial, 

algal and cyanobacterial rDNA were then visually evaluated from the band 

intensity on the gel electrophoresis. For each sample, aliquots of each of the 

three amplicons (i.e. bacteria, algae, cyanobacteria) were then mixed at the 

PCR purification stage, based on relative abundance data obtained from gel 

electrophoresis, in order to obtain comparable concentrations of the three 

amplicons in the mix. A higher concentration of PCR products for bacterial 

communities was added to the mix taking into account the higher number of 

peaks expected. PCR amplicons were purified using the Wizard® SV Gel and 

PCR clean up system (Promega) following the manufacturers instructions. 

Once the samples were purified using the commercial kit, the concentration 

and purity of DNA were measured using a NanoDrop™ 1000 

spectrophotometer (Thermo Scientific). DNA concentration estimates were 

then used to normalise the amount of DNA at the restriction digestion step. 

The pools of bacterial, algal and cyanobacterial amplicons were digested at 

37˚C for 3 hours with the restriction enzymes HhaI (Promega) following 

manufacturer guidelines in a 10 µL reaction. DNA fragment analysis was 

carried out on an ABI PRISM® 3130xl Genetic Analyser (Applied Biosystems). 

After ensuring that the quality of the capillary electrophoresis run was 

satisfactory, relative abundance tables were obtained for statistical analysis 

that was carried out with GenStat (version 11.1, VSN). Before statistical 

analysis, only terminal fragments in the length range 30-500 base pairs were 

selected to comply with the range of the T-RFLP standard. Baseline was set up 

based on overall fluorescence noise of each run to exclude peaks resulting 

from technical artifacts. Also, peaks with relative abundance below 5% were 
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removed from analysis and remaining peaks were combined when differing for 

less than one base pair. In most cases for T-RFLP profile data (relative 

abundance), principal components analysis (PCA) using a co-variance 

similarity matrix was used. ANOVA was carried out on the principal component 

(PC) scores for the first five dimensions to examine the effects of the 

treatment on the microbial communities. Data were also explored using 

canonical variate analysis (CVA) on the first 5 PC to visualise probable 

significant separations between groups. 

2.2.3)MicrocystinULR)and)chlorpyrifos)biodegradation)assay)in)freshwater)

Freshwater samples from Loch Rescobie were inoculated with filter sterilised 

microcystin-LR in 100% methanol or sterile chlorpyrifos in 100% methanol at 

a final concentration of 1 mg L-1 and 10 mg L-1, respectively. The two 

treatments were incubated along with three controls. One control contained 

only freshwater without any toxic compound: to gain data about how microbial 

communities change over time due to the length and setting of the incubation.  

The other two controls were sterile freshwater inoculated with microcystin 

(MC) and chlorpyrifos (CPY): to evaluate abiotic degradation of the toxic 

compounds under study.  For the sterile controls, freshwater was filter 

sterilised (0.2 µm filter, Stericup filter unit, Millipore). Treatment and all the 

controls were examined in triplicate in 250 mL conical glass flask containing 

120 mL of freshwater. Flasks were kept sterile throughout the incubation 

assay.  Incubation of samples containing MC was carried out for 28 days. 

Incubation of samples containing CPY was carried out for 64 days. The 

incubation was carried out in the dark at room temperature (25±3 ºC) and 

with continuous shaking at 70 rpm to ensure oxygenation. For HPLC analysis, 

aliquots of 0.5 mL were taken from each flask at regular intervals (i.e. 4 days 
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for MC and 7 days for CPY) under sterile conditions and immediately frozen. 

The samples were then freeze-dried and reconstituted in 125 µL of 50% 

aqueous methanol for HPLC analysis. 

HPLC eluents were milli-Q water-0.05% trifluoroacetic acid (TFA) (Fisher 

Scientific, Leicestershire, UK) and acetonitrile (Rathburn, Walkerburn, UK) 

0.05% TFA, the latter being used as ion pairing agent. The instrument used 

was a Waters 2695 Separation Module with a Waters 2996 Photodiode Array 

Detector (Waters, Elstree, UK) at a flow rate of 0.3 ml min-1. The detector 

resolution was set at 1.2 µm and data were acquired in the wavelength range 

200-400 µm. Separation was obtained with a Sunfire C18 column (2.1 mm i.d. 

x 150 mm long x 5 µm particle size) supplied by Waters (UK) kept at a 

temperature of 40 ºC. In order to detect microcystin-LR a solvent gradient 

(Lawton et al., 1994)  was used (Table 2.2). 

Table 2.2 – HPLC solvent gradients used in the detection of microcystin-LR and 
chlorpyrifos. Both solvents had 0.05%TFA as ion pairing agent. 

 Chlorpyrifos Gradient Microcystin Gradient 

Time (min) MilliQ-water (%) Acetonitrile (%) MilliQ-water (%) Acetonitrile (%) 
0 65.0 35.0 85.0 15.0 

25 5.0 95.0 35.0 65.0 
27-29 0.0 100.0 0.0 100.0 
34-40 65.0 35.0 85.0 15.0 

 

Although some authors have previously been successful in detecting 

chlorpyrifos by HPLC with isocratic elution (Singh et al., 2002) and gas 

chromatography (Pablo et al., 2008), here HPLC with gradient elution was 

chosen as being a reliable method when compared to isocratic (Phillips et al., 

2007) as well as offering the ability to detect the compound of interest without 

the need of internal standard required in gas chromatography. The solvent 

gradient used in the detection of microcystin was initially tested for the 
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detection of chlorpyrifos, which gave poor results. The gradient was then 

optimised and the final gradient used is reported in Table 2.2. This gradient 

allowed detection of CPY after 19 minutes of injection and of TCP after 7 

minutes. At the end of the incubation 50 ml of water from each flask was 

filtered (0.2 µm, Stericup filter unit, Millipore) and the filters were stored in 

sealed sterile Petri dishes at -20ºC until DNA extraction for T-RFLP analysis. 

DNA extraction and all the following steps of T-RFLP analysis were carried out 

as described in previous section. Half-life (DT50) of microcystin-LR was 

measured assuming first order kinetics using the tool developed by the FOCUS 

Degradation Kinetics Workgroup and freely available online 

(http://focus.jrc.ec.europa.eu/dk/, last access 26-03-2013) 

 )
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2.2.4)Triclosan)biodegradation)assay)in)freshwater)

Freshwater samples (40 mL) from the sites G, H, FP and FC (see section 2.2.1 

for details) were inoculated with triclosan to a final concentration of 10 µg L-1 

along with a water control (i.e. no triclosan) and a sterile control (autoclaved 

water), all the treatments were performed in triplicate. Biodegradation assay 

for treatment and water control was started on the same day of sampling. For 

the sterile control, water was first autoclaved, cooled and then pH adjusted 

with 1M hydrocloridic acid to original value. All samples were kept in glass 

serum bottles (capacity 125 mL, Sigma Aldrich) sealed with butyl rubber 

stopper and sealed with aluminium crimp to ensure sterility. Bottles were 

wrapped with aluminium foil to ensure minimal exposure to light. The 

experiment was carried out for 12 days at 20 ±1°C shaking at 70 rpm in dark 

conditions. Serum bottles were opened in sterile conditions every two days to 

allow oxygenation and to take aliquots (i.e. 0.5 mL) for detection of triclosan. 

Aliquots were aseptically collected every 4 days, kept in brown glass vials (2 

mL) with Teflon cap and immediately frozen. Due to low incubation 

concentration and experimental design with the inability to have large volume 

to process, the detection of triclosan with analytical methods (e.g. gas 

chromatography) was not feasible. Quantification of triclosan was achieved 

using a commercial kit (Abraxis kits, PA, USA) that applies the principles of 

enzyme linked immunosorbent assay (ELISA) with quantitation range from 

0.05 to 2.5 ppb. Prior to analysis, samples were diluted with the diluent 

provided by the manufacturer to meet the assay specifications. Concentrations 

of triclosan obtained from the assay were then multiplied to the dilution factor. 

Half life (DT50) of triclosan was measured assuming first order kinetics using 
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the tool developed by the FOCUS Degradation Kinetics Workgroup (see section 

2.2.3).  
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2.3)Results)

2.3.1)DNA)extraction,)DNA)yield)and)microbial)TURFLP)analysis)from)a)range)of)

freshwater)volumes)

On the day of sampling, pH of the water was 8.66 with a temperature of 14°C 

and light rain. DNA extracted from the range of freshwater volumes (i.e. 25-

50-75-100-250-500 mL) under study was visualised by gel electrophoresis 

(Figure 2.1).   

 

Figure 2.1 - Gel electrophoresis of total DNA extraction from a range of freshwater 
volumes (in triplicate: R1, R2, R3). Each well contained 4 µl of total DNA mixed with 4 
µl of loading buffer, order of loading is outlined in the gel picture. M= 5 µl of 
Hyperladder I (Promega). Agarose 1% in 1x TBE buffer, voltage applied: 80V, run for 
25 min.   

 

The DNA yield was then quantified using a NanoDrop™ 1000 

spectrophotometer (Thermo Scientific) and the DNA concentration obtained 

was plotted against freshwater volumes used for the extraction (Figure 2.2). 

Relation between water used in DNA extraction and DNA yield was linear up to 

100 mL, but became exponential when higher volumes (i.e. 250 and 500 mL) 

were included in analysis (Figure 2.2). 

25– 50– 75-100-250-500 
R1 R2 

R3 

M 

M 

M M 

M   25– 50– 75-100-250-500 

25– 50– 75-100-250-500 
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Figure 2.2 – Relationship between filtration volume used in DNA extraction and DNA 
recovery: A) range 25-100 ml; B) range 25-500 ml. Intercept set at 0 due to the 
initial negligible amount of DNA in the sterile filter. Freshwater filtered with Millipore 
Stericup. DNA extracted from Millipore filter with Power Water DNA isolation Kit 
(Mobio). DNA quantified using NanoDrop™ 1000 spectrophotometer (Thermo 
Scientific). Bars= standard deviation; n=3. 

 

T-RFLP data for each sample were statistically analysed using analysis of 

variance (ANOVA) to determine if there was a significant difference amongst 

the communities deriving from the range of volumes tested. If a significant 

difference was found, data were further explored with a multiple comparison 

method (i.e. Tukey) to look for specific differences between pairs of groups. 

ANOVA and MANOVA analysis output for bacterioplankton communities are 

summarised in Table 2.3.  

Table 2.3 – ANOVA analysis on 5 principal components of the terminal restriction 
fragments relative fluorescence data deriving from freshwater bacterioplankton T-RFLP 
analysis against the DNA extraction volume (treatment).  Significant p values (< 0.05) 
are in bold. For Tukey multicomparison, letters indicates statistical difference (p<0.05) 
between treatments (i.e. volume of water). 

  Tukey multicomparison 
Principal component  

(% variation) 
P value 25 50 75 100 250 500 

PC1 (59.4) 0.285       
PC2 (20.59) 0.045 a a a a a a 
PC3 (10.31) 0.191       
PC4 (3.33) 0.304       
PC5 (1.87) 0.191       

MANOVA (5PCs) 0.408       
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Only ANOVA on the second principal component scores, accounting for 

20.59% of the system variance, gave a significant P value of 0.045. However, 

when Tukey multiple comparison test was carried out, no significant difference 

(P<0.05) amongst DNA extraction volumes was found.  

An identical statistical analysis was then carried out on the algae terminal 

restriction fragments relative fluorescence data. ANOVA and MANOVA analysis 

output for algal communities are summarised in Table 2.4. 

Table 2.4 - ANOVA analysis on 5 principal components of the terminal restriction 
fragments relative fluorescence data deriving from freshwater algae T-RFLP analysis 
against the DNA extraction volume (treatment).  Significant p values (< 0.05) are in 
bold. For Tukey multicomparison, letters indicate statistical difference (p<0.05) 
between treatments (i.e. volume of water). 

  Tukey multicomparison 
Principal component  

(% variation) 
P value 25 50 75 100 250 500 

PC1 (76.75) 0.024 ab a ab ab ab b 
PC2 (11.54) 0.935       
PC3 (6.18) 0.043 a ab ab ab b ab 
PC4 (2.2) 0.579       
PC5 (1.41) 0.258       

MANOVA (5PCs) 0.009       
 

ANOVA on the first and third principal components, accounting together for 

82.88% of the system variance, gave a significant P value (P<0.05). Tukey 

multiple comparison test was carried out on the first and third principal 

component scores. According to the Tukey multiple comparison test carried 

out on the first principal component scores, there was a significant difference 

between the algal communities extracted from 50 mL of freshwater (a) and 

the communities extracted from 500 mL (b). The communities deriving from 

the other freshwater volumes analysed were similar to each other (i.e. ab) and 

they represent a “trend” between a and b (not significantly different either 

from a or b).  When the Tukey test was carried out on the third principal 

component scores of the algal terminal restriction fragments relative 
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fluorescence data, there was a significant difference between the algal 

communities extracted from 25 mL of freshwater (a) and the communities 

extracted from 250 mL (b). As above, the communities deriving from the other 

freshwater volumes analysed were similar to each other (i.e.  ab) and they 

represent a “trend” between a and b (not significantly different either from a 

nor b).  

Identical statistical analysis was then carried out on the cyanobacteria 

terminal restriction fragments relative fluorescence data. Neither ANOVA nor 

MANOVA on the main 5 principal components scores showed any significant 

effect between freshwater volume from which DNA was extracted and the 

shape of cyanobacterial communities. 

Moreover, relative diversity for the different microbial communities was 

evaluated (Shannon diversity index) and a comparison of the diversity of the 

various aquatic microorganisms along the gradient of volumes used to extract 

DNA is presented in Figure 2.3. ANOVA followed by Tukey multicomparison 

was carried out to establish if significant differences were present and none 

were found. There was no impact of volume from which DNA was extracted on 

diversity measurements. 
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Figure 2.3 - Microbial relative diversity (T-RFLP data) along a range of freshwater 
volume used for DNA extraction.  Algae ; Bacteria ; Cyanobacteria  . Bars= 
standard error 

 

2.3.2)MicrocystinULR)and)chlorpyrifos)biodegradation)assay)in)freshwater)

In the study of the degradation of MC in freshwater under examination, first a 

calibration curve was prepared using a range of samples, in triplicate, with 

concentrations between 100 and 0.1 µg mL-1 (Figure 2.4). 

 

Figure 2.4 - Calibration curve for MC-LR. Analysis was carried out with a Waters 2695 
Separation Module coupled with a Waters 2996 Photodiode Array Detector.  
Separation occurred in a Sunfire C-18 column over a gradient of milliQ-water and 
acetonitrile. Detection wavelength set at 232 nm. Injection volume: 25 µL. n=3 
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The preparation of the calibration curve allowed testing of the accuracy and 

repeatability of the HPLC system and of the user, along with enabling the user 

to calculate concentrations of unknown samples in the degradation assay. 

Then, 500 µL of samples were taken at regular intervals (i.e. 4 days) in sterile 

conditions from the degradation assay and were analysed using the same 

HPLC system in order to obtain degradation curves for both treatments (i.e. 

freshwater incubated with MC) and control (i.e. sterile freshwater incubated 

with MC) over a period of 28 days (Figure 2.5).  

 

Figure 2.5 – Biodegradation of MC over time in Loch Rescobie freshwater and in sterile 
control. Freeze dried samples, aliquoted at regular intervals during the degradation 
assay, were re-suspended in 125 µL of 50% aqueous methanol, centrifuged, and 
100µL of supernatant was immediately analysed with a Waters 2695 Separation 
Module coupled with a Waters 2996 Photodiode Array Detector.  Separation occurred 
in a Sunfire C-18 column over a gradient of milliQ-water and acetonitrile. Detection 
wavelength set at 232 nm. Injection volume: 25 µL. Concentration MC in freshwater

; concentration MC in sterile freshwater . Bars = standard deviation. n=3. 

 

HPLC analysis confirmed the ability of natural freshwater microbial 

communities to degrade MC, which was undetectable on day 8 with a DT50 of 

2.4 days. Concentration of MC in the sterile control was constant for all the 

duration of the experiment except for the last measurement. Possible reasons 

for the decrease of concentration of MC in the sterile control will be explored in 

the discussion section 2.4.3. 
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The detection of CPY was initially investigated using an identical HPLC system, 

settings and solvent gradient used in the detection of MC. That led to the 

detection of a peak very late in the chromatography run (retention time ~30 

minutes) causing it to overlap with the 100% acetonitrile wash at the end of 

each run. The gradient was then modified increasing the initial concentration 

of acetonitrile first to 25% and then to a final concentration of 95% over a 20 

minutes gradient: however, this modified gradient did not significantly 

improved the quality of the chromatography. A new gradient starting at 35% 

acetonitrile to 95% in 20 minutes was tested giving satisfactory results with a 

retention time for CPY at ~19 minutes. The main degradation product of CPY 

in alkaline conditions is 3,5,6-trichloro-2-pyridinol (TCP) and that was detected 

too with the chosen solvent gradient of milliQ-water and acetonitrile with a 

retention time of ~7 minutes.  The detection wavelength was modified from 

238 nm used for the detection of MC to 295.3 nm in the detection of CPY. 

Despite that λ max for CPY was at 238 nm, the detection wavelength was 

adjusted to 295.3 nm due to a significant background noise that was present 

in the chromatograph at 238 nm, probably due to the high concentration of 

acetonitrile and steep gradient used in the detection of CPY. The background 

noise was removed when the detection wavelength was changed to 295.3 nm 

and a reliable detection of CPY and TCP was possible. Once the appropriate 

solvent gradient to detect both CPY and TCP in the HPLC system was 

developed, calibration curves were prepared for both compounds (Figure 2.6).  
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Figure 2.6 - Calibration curve CPY (A) and TCP (B). Samples were prepared from a 
stock solution of 10 mg mL-1 in 100% methanol, freshly diluted in 50% aqueous 
methanol and analysed with a Waters 2695 Separation Module coupled with a Waters 
2996 Photodiode Array Detector.  Separation occurred in a Sunfire C-18 column over a 
gradient of milliQ-water and acetonitrile. Detection wavelength set at 295.3 nm. 
Injection volume: 25 µL. 

 

Freshwater samples from the degradation assay were analysed at regular 

intervals using the same HPLC system in order to obtain information about 

degradation curves of CPY with hypothetical formation of TCP for both 

treatment (i.e. freshwater incubated with MC) and control (i.e. sterile 

freshwater incubated with MC) over a period of 64 days (Figure 2.7).  

  

Figure 2.7 – Concentration of CPY (A) and TCP (B) over time in Loch Rescobie 
freshwater and in sterile control. Freeze dried samples, aliquoted at regular intervals 
during the degradation assay, were re-suspended in 125 µL of 50% methanol, 
centrifuged, and 100 µL of supernatant was immediately analysed with a Waters 2695 
Separation Module coupled with a Waters 2996 Photodiode Array Detector.  
Separation occurred in a Sunfire C-18 column over a gradient of milliQ-water and 
acetonitrile. Detection wavelength set at 295.3 nm. Injection volumes: 25 µL (CPY). 
Concentration CPY (A) or TCP (B) in freshwater ; concentration CPY (A) or TCP (B) 
in sterile freshwater . Bars=one standard deviation. n=3 
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The results obtained by HPLC analysis for CPY were not those that were 

anticipated. At time zero, when concentration of CPY was known to be around 

10 µg mL-1, a very low concentration was observed followed by an 

unexplainable series of concentrations over the sampling period. 

Simultaneously, an increasing concentration of TCP was observed both in the 

treatment “freshwater + CPY” and in the control “sterile freshwater + CPY”, 

with variations amongst replicates increasing along with time. Further 

investigations into chlorpyrifos solubility, storage and its behaviour into 

different solvents led to the conclusion that measuring its biodegradation in 

freshwater systems was not feasible in our system.  

Bacterial T-RFLP data were produced at the end of the two biodegradation 

experiments (i.e. MC-LR and CPY) and combined with data from the beginning 

of the experiments. The statistical analysis of the complete dataset 

demonstrated that the first five PCs accounted for 84.55% of the variance. 

ANOVA of the PC scores, followed by Tukey multicomparison for significantly 

affected PCs, revealed that most of the difference in the communities was 

driven by the sampling time (i.e. begin vs end biodegradation assay) rather 

than the treatment (i.e. MC-LR and chlorpyrifos) (Table 2.5). 

Table 2.5 - ANOVA analysis on 5 principal components of the terminal restriction 
fragments relative fluorescence data derived from freshwater bacteria against the time 
(begin vs end biodegradation assay) and treatment i.e. MC-LR and chlorpyrifos).  
Significant p values (< 0.05) are in bold. For Tukey multicomparison, letters indicate 
statistical difference (p<0.05) between treatments. 

    Tukey multicomparison 
PC (%) ANOVA  Begin assay Water control  

(1 month) 
Water control 
(2 months) 

MC-LR  
(1 month) 

CPY  
(2 months) 

1 (29.54) <.001 a b b b b 
2 (22.14) 0.177       
3 (16.55) 0.004 a b b b b 
4 (11.44) 0.155       
5 (4.97) 0.038  a  ab  ab  ab  b 
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Results were confirmed by canonical variate analysis (CVA) on the principal 

components (Figure 2.8). 

 

Figure 2.8 – Canonical variate analysis biplot showing the effect of sampling time and 
treatments on bacterioplankton (T-RFLP data). CVA on 5 PC scores, circles represent 
95% confidence (CV1=77.48% - CV2=14.24%); Water zero=begin biodegradation 
assay; MC-LR= treatment with MC-LR (1 month incubation); CPY= treatment 
chlorpyrifos (2 months incubation); water 1m= water control one month incubation; 
water 2m= water control two months incubation.  

 

Once established that the variation between start/end experiment was more 

important than the variation caused by the treatments (i.e. MC-LR and 

chlorpyrifos), statistical analysis was carried out focusing on the effect of the 

treatments at the end of the assay. ANOVA on the PC scores for samples 

terminated after one month did not show any significant effect of the 

microcystin-LR on the bacterial communities’ structure. On the other hand 

ANOVA on the PC scores for samples terminated after two months showed a 

significant effect (P=0.025) of chlorpyrifos on the first principal component 

account for 66.26% of the variation of the system. 



57 
 

2.3.3)Triclosan)biodegradation)assay)in)freshwater)

Along with the samples collected during the 12 days of the biodegradation 

assay a 6-points calibration curve in duplicate was incorporated into the ELISA 

analysis (Figure 2.9).   

 

Figure 2.9 – Calibration curve for triclosan prepared following manufacturers protocol. 
Standards (i.e. 0.05, 0.1, 0.25, 0.5, 1.0, 2.5 ppb) were provided from the 
manufacturer. Dots represent average of absorbance readings (B) at 450 nm 
normalised by the absorbance of a zero standard (B0).  n=2 

 

The calibration curve equation was then used to estimate concentrations of 

triclosan over time in the biodegradation assay. Results showed that triclosan 

was totally biodegraded from communities from the site H (DT50= 4.5 days) 

and partially from the site FP (DT50= 14.8 days). The sites G and FC did not 

show a clear degradation trend. 
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Figure 2.10 – Concentration of triclosan over time in site G (A), site H (B), site FC (C) 
and site FP (D) measured via triclosan ELISA kit (Abraxis) following manufacturers 
protocol.Treatment incubated with triclosan ; sterile control . Error bars 
represents standards error. n=3 

 

The assay gave satisfactory analysis with low variability and consistent results. 

However, for all sites, a consistent discrepancy between initial concentration of 

triclosan in treatment and sterile control was observed. 
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2.4)Discussion)

2.4.1)DNA)extraction,)detection)and)quantification)from)a)range)of)freshwater)

volumes))

DNA extraction from a range of freshwater volumes showed that the yield of 

DNA increased along with the water volume used in the extraction (Figure 

2.1), with DNA concentrations ranging from 10 to 60 ng µL-1 (Figure 2.2B) 

when DNA was eluted in 50 µL. Manufacturer (i.e. MOBIO) suggests that the 

standard yield of DNA when extracted from 100 mL of lake freshwater ranges 

between 15 and 25 ng µL-1 (elution in 100 µL). In this work, when DNA was 

extracted from 100 mL of lake freshwater a yield of about 30 ng µL-1 was 

obtained. In this work, DNA was eluted in 50 µL and not 100 µL as suggested 

in the manufacturers protocol, in order to gain a higher and easier to detect 

concentration of DNA. The lower elution volume used explains that a higher 

DNA concentration was obtained when DNA was extracted from 100 mL. On 

the other hand, it was expected that a linear relation between DNA yield and 

water volume used in the extraction considering that the manufacturer stated 

a capacity of the filter to hold up to 20 µg of DNA: a concentration of 400 ng 

µL-1 when eluted in 50 µL. In this work, the relation between the DNA yield 

and the volume of freshwater used in the extraction was linear until the 

volumes 250 mL and 500 mL (Figure 2.2A). When highest volumes were 

included in the analysis the relation was logarithmic (Figure 2.2B). Some 

authors suggest that sample volume has a detrimental effect of DNA 

extraction efficiency (Boström et al., 2004). Here freshwater was filtered with 

Stericup filter units (Millipore) which have a filtration area of 40 cm2 and then 

DNA was extracted with MOBIO Power water DNA isolation kit; however, the 

latter is designed for extraction of DNA from filters with an area of 13.46 cm2. 
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Hence, even if the filters from the two manufacturers are both made out of the 

same material (i.e. polyethersulfon), it is possible that the bigger size of the 

Millipore filter affects the DNA extraction ability of the MOBIO DNA extraction 

kit when a high yield of DNA is trapped in the filter. The larger size of the 

Millipore filter may facilitate overlapping of areas of the filter in the MOBIO 

extraction tube designed for a smaller device, and that may cause the reduced 

DNA extraction capacity. Another possibility is the saturation of the kit filter 

used for DNA elution.  

2.4.2)Bacterial,)algal)and)cyanobacterial)TURFLP:)communities’)structure)and)

relative)diversity)analysis)from)a)range)of)freshwater)volumes)

The comparison between microbial T-RFLP data deriving from DNA extracted 

from a range of volumes showed that bacterial and cyanobacterial 

communities did not significantly differ across the range of volumes 

considered: neither in the community composition (Table 2.3) nor in relative 

diversity (Figure 2.3). A previous study on marine bacterial communities 

analysed by another common DNA fingerprinting technique (i.e. DGGE) 

reported little differences in communities extracted from 1 µL to 1 L (Long and 

Azam, 2001). Kirchman et al. (2001) showed little differences between 

bacterial communities rDNAs amplified with filter PCR with <10 mL samples 

and gels of amplicons from the standard approach with DNA isolated from 

about 2 L of coastal seawater. To our knowledge no other author before has 

attempted to gain an understanding of the role that freshwater volume used in 

DNA extraction has on bacterial and cyanobacterial communities. In 

freshwater environments some authors have used a range of water volumes 

for DNA extraction and then carried out molecular biological studies without 

considering the probable effect on their results (Pace et al., 1990). Bacterial 
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relative diversity measurement (T-RFLP data) for the different water volumes 

considered did not show significant differences. It is necessary to mention that 

the fingerprinting technique used in this work does not give a measure of 

absolute diversity but rather to relative diversity. Relative diversity measures 

are bound to the low resolution of the technique and its inability to detect rare 

species. For future studies other methodological approaches with higher 

resolution, such as pyrosequencing, may contribute to a better understanding 

of how the bacterial communities’ structure and diversity change along with a 

different DNA extraction volume. On the other hand algal communities 

significantly differ across the range of freshwater volumes studied in 

community structure (Table 2.4): that was due to a significant difference 

between algal communities extracted from the smallest volumes (i.e. 25-50 

mL) when compared to the highest volumes (i.e. 250-500 mL) (Table 2.4) but 

no significant difference was highlighted when diversity indexes along the 

volume gradient were compared. Although micro-algae diversity is considered 

to be huge, previous assessment of eukaryotic microalgae diversity in 

freshwater via T-RFLP found a limited number of OTUs (Dorigo et al., 2002). 

To conclude, differences in community composition of microalgae across the 

range of volumes considered in this work may be due to low evenness of the 

micro-algae communities, even amongst the low number of OTUs detected. 

The degradation assay carried out with freshwater from Loch Rescobie showed 

that the bacterial communities’ structure changed mainly due to the incubation 

per se rather than the presence of microcystin-LR or chlorpyrifos. Microbial 

communities living in a natural freshwater system are exposed to a number of 

drivers (e.g. sunlight) that have a profound impact in shaping microbial 

composition. The experiment presented here was carried out in dark 
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conditions with continuous shaking and constant temperature: all factors that 

can significantly affect microbial communities’ structure (Lindström et al., 

2005) 

2.4.3)MicrocystinULR)biodegradation)assay)

Microcystin biodegradation by natural communities present in Loch Rescobie 

was completed by 8 days after incubation (Figure 2.5) with a half-life of 2.4 

days. Christoffersen et al. (2002) showed total degradation of environmental 

relevant concentration of MC-LR within 6 days of inoculum in lake water. 

Bourne et al. (2006) showed a complete degradation of MC-LR within 12 days 

after incubation with an initial acclimation phase of 4 days. A previous work, 

carried out with water sampled from the same Scottish loch incubated with 

same concentration of MC-LR (Edwards et al., 2008),  showed a complete 

biodegradation within 15 days, with most of the removal happening within the 

first 7 days after inoculum. Here no acclimation phase was observed, in 

accordance with the work of Edwards et al. (2008), and that is explained by a 

history of cyanobacterial bloom and microcystin occurrence in this water body. 

The sudden decrease of MC-LR in the sterile control observed in the last day of 

incubation (Figure 2.5) was not expected. The stability of MC-LR in aqueous 

solution would suggest a sampling error at last sampling. Malfunctions of the 

HPLC system are excluded because all samples for the incubation of MC-LR 

were analysed in large batches over two days along with standards, and all 

other samples and standards gave consistent results. 

2.4.5)Chlorpyrifos)biodegradation)assay)

Measurement of the concentration of chlorpyrifos (CPY) gave a range of 

results unexplained according to degradation of the compound over time 
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(Figure 2.7A); on the other hand the concentration of TCP increased over 

time, as expected when degradation of CPY takes place (Figure 2.7B). 

However, formation of TCP was also observed in the sterile control suggesting 

that the degradation of CPY was mainly driven by chemical-physical conditions 

rather than microorganisms. The formation of TCP as a result of abiotic 

degradation of CPY is probably due to alkaline hydrolysis which is pH 

dependent (Macalady and Wolfe, 1983): expected at the alkaline pH of the 

lake freshwater used in this experiment (pH 8.66). Moreover, degradation of 

CPY in water has been shown to be linked to temperature with a half life of 4.8 

days at 21 ºC (Frank et al., 1991): in this experiment with an incubation 

temperature of 25±1 ºC the half life of CPY was then expected to be a few 

days. The low solubility of CPY in water (Bowman and Sans, 1983), coupled 

with its instability at alkaline pH and at room temperature determined the 

inability to evaluate the biodegradation activity of natural microbial 

communities in freshwater. 

2.4.7)Triclosan)biodegradation)assay)

A commercially available enzyme linked immunosorbent assay (ELISA) has 

been shown to be a reliable method for detecting triclosan at environmental 

concentrations with limited sampling material in wastewater samples (Brun et 

al., 2008, Kantiani et al., 2008). Here the assay was successfully applied to 

track biodegradation of triclosan in microcosm experiments of four rivers 

present in New South Wales, Australia. The Hawkesbury-Nepean river system 

covers about 22,000 square kilometres and provides 95% of drinking 

freshwater to millions of people in Sydney area along with supporting 

agriculture in the region. In this system, the four chosen sampling sites were 

differentiated by their water quality linked to pollution/nutrients exposure. Two 
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sampling sites (i.e. H and FP) represented polluted/high nutrients sites with 

wastewater treatment plants closely upstream and urban and/or agricultural 

runoff feeding into the system. The other two sampling sites (i.e. G and FC) 

represent pristine sites with no documented source of pollution within 30 km 

upstream of the sites. The triclosan biodegradation ability of the microbial 

communities differed amongst sites. Microbial communities that have been 

experiencing chronic pollution and very likely exposure to triclosan (i.e. H and 

FP) showed an ability to degrade triclosan (Figure 2.10B-D). On the other 

hand microbial communities which do not chronically experience pollution and 

exposure to triclosan (i.e.G and FC) did not show any biodegradation activity 

(Figure 2.10A-C). Triclosan has been reported to be present in many 

terrestrial and aquatic environments in Australia (Kookana et al., 2011) and 

worldwide (Dann and Hontela, 2011). The main gateway of entrance for 

triclosan to the environment is wastewater treatment plants in which triclosan 

is largely degraded mainly by biological activities (Kookana et al., 2011). In 

aquatic environments biodegradation, sorption and photocatalysis contribute 

to triclosan degradation with their contribution differing upon environmental 

factors (Sabaliunas et al., 2003). The results of the present experiment 

suggest that biodegradation is the main mechanism of triclosan dispersal in 

freshwater incubation experiments in dark conditions, confirming the work of 

Nakada et al. (2008). Results also show that triclosan biodegradation ability of 

microbial freshwater is not ubiquitous (at least not within the incubation length 

of this experiment), but rather it is linked to previous exposure of triclosan 

suggesting an exposure-driven enhanced biodegradation of triclosan in the 

environment.  
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2.5)Conclusions)and)future)work)

The results of the experiments presented in this chapter suggest that: 

• Freshwater volume (i.e. from 25 to 500mL) employed in DNA 

extraction: a) does influence the DNA yield; b) does influence the shape 

of algal communities and; c) does not influence bacterial communities’ 

diversity and structure in freshwater environments; 

• Microcystin-LR was promptly degraded from bacterial communities 

present in a freshwater body with previous exposure/biodegradation 

activity;  

• For experimental design and media of this study, chlorpyrifos is not 

suitable for biodegradation assay due to its low solubility; 

• Experimental incubation time, rather than the presence the microcystin-

LR or chlorpyrifos, has a strong effect in shaping bacterial communities 

in the system tested; 

• Triclosan showed different patterns of biodegradability in different water 

bodies depending upon their previous exposure. 

Future studies should therefore focus on bacterial freshwater communities 

with particular interest in: 

o The effect that previous exposure and environmental factors have on 

the microcystin-LR biodegradation ability from freshwater bacterial 

communities; 

o The relation between bacterial diversity and: a) broad ecosystem 

function (i.e. respiration); b) specific ecosystem function (i.e. 

biodegradation) and; c) ecosystem stability. 
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3. BACTERIAL)COMMUNITIES’)RESPONSE)TO)MICROCYSTINS)

EXPOSURE)AND)NUTRIENT)AVAILABILITY:)LINKING)

DEGRADATION)CAPACITY)TO)COMMUNITY)STRUCTURE)

3.1)Introduction)

Freshwater is one of the most precious natural resources on the planet. 

Natural waters have very low concentrations of nitrates and phosphorous. 

Runoff from farm lands, along with wastewater derived from urban and 

industrial activities increase nutrient loads. Eutrophication, a higher nutrient 

(e.g. nitrates and phosphorus) concentration, and high temperatures 

stimulates cyanobacterial blooms of inland water bodies (Chorus and Bartram, 

1999, Sharpley et al., 2003). The blooms represent an overgrowth of 

cyanobacteria, which are a diverse group of ancient autotrophs that occur 

globally. The increased incidence of toxic cyanobacterial blooms represent a 

hazard for human and animal health (Chorus and Bartram, 1999, Chorus et 

al., 2000). The toxicity of the cyanobacterial bloom is due to the presence of a 

wide range of toxins produced by cyanobacteria: microcystins and nodularins 

(hepatotoxins and possibly carcinogens), saxitoxins and anatoxins 

(neurotoxins), and cylindrospermopsin (protein synthesis inhibitor) (Edwards 

and Lawton, 2009). Microcystins (MCs) are the most common cyanotoxins and 

may be expected wherever blooms of cyanobacteria occur in surface water. 

Their occurrence is highly likely when these blooms consist of the taxa 

Microcystis, Anabaena, or Planktothrix (Chorus and Bartram, 1999). MCs are 

chemically stable in water (Jones and Orr, 1994, Harada et al., 1996) and 

resistant to eukaryotic and many bacterial peptidases (Dierstein et al., 2001), 
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but susceptible to breakdown by some aquatic bacteria found naturally in 

diverse water bodies (Jones et al., 1994). More than 70 different MCs have 

been characterised and MC-LR has been the most studied due to its high 

toxicity and frequent production. Toxicity of MCs have been described for 

animals (Milutinović et al., 2003, Žegura et al., 2008) and plants (McElhiney et 

al., 2001), while their ability to affect microbial communities’ structure was 

shown by Christoffersen et al.  (2002). The detrimental effects of MCs on a 

broad spectrum of living organisms and their effect on ecosystem functioning 

requires adequate ways for screening toxicity and for evaluating water quality 

of exposed water bodies (Codd et al., 2005). A number of works has been 

published investigating biodegradation of MCs in freshwater (Jones and Orr, 

1994, Cousins et al., 1996). Some reported a link between previous exposure 

to MCs and rate of degradation (Christoffersen et al., 2002, Edwards et al., 

2008). However, the mechanisms that dictate the relation between past 

exposure and degradation rate have not been elucidated. Microorganisms and 

in particular bacteria have been studied in a number of ways throughout 

history starting from observation with a magnifying glass by Antony van 

Leeuwenhoek back in the 17th century (van Leeuwenhoek, 1702) and arriving 

at newly-developed high-output DNA sequencing (Gobet et al., 2011). 

Different methods measure different parameters (e.g. morphology, 

physiology, biochemistry, molecular biological structure and diversity) of the 

bacterial communities and some authors showed how different methods can 

lead to diverse results (Grayston et al., 2004, Singh et al., 2006a). Here T-

RFLP was used to evaluate bacterial communities' structure and Biolog 

EcoPlate to determine their physiology.  
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This work investigated the relationship between bacterioplankton communities’ 

structure and physiology of six Scottish water bodies previously studied by 

(Edwards et al., 2008)�and: a) past exposure to MCs; b) half-life of MC-LR; c) 

water chemical and physical parameters. 

 )
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3.2)Materials)and)methods)

3.2.1)Sites)and)water)sampling)

Six Scottish water bodies were selected to include various cyanobacterial 

bloom exposure histories and MC-LR exposure. The water bodies chosen were 

Loch Rescobie (NO 525 515) and Loch Balgavies (NO 523 516) two closely 

located lakes with the outflow from the former flowing into the latter via a 

small stream (approximately 600 m long) with both water bodies supporting 

populations of microcystin producing cyanobacteria. Loch Forfar (NO 450 507) 

approximately 7 km to west of these lakes annually supports cyanobacterial 

blooms, however, microcystins have never been detected here. There is no 

direct water flow between any of these lakes. Loch Leven (NO 132 018), which 

is located 60 km south west of Forfar Loch, often supports cyanobacterial 

growth but microcystins have only been detected on a couple of occasions 

over a 20 year sampling period. River Carron (NO 877 857) and River Cowie 

(NO 876 864) are closely located rivers around 50 km north east of Forfar 

Loch and as fast-flowing rivers have no previous history of significant 

cyanobacterial growth and no microcystin occurrence. All water sources were 

also selected since they have been involved in a number of previous studies 

and their history of supporting cyanobacteria and microcystin was known. 

Details about cyanobacterial bloom history, MC-LR exposure and half-life of 

MC-LR in these water bodies are outlined in�Table 3.1. 
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Table 3.1 - Water chemistry, MCs natural exposure and MC-LR half life for Scottish 
freshwater bodies under study. Water chemistry analysis done within 24 h of sampling��

 Loch 
Rescobie  

Loch 
Forfar  

Loch 
Balgavies  

Loch 
Leven 

River 
Carron  

River 
Cowie  

NH
4
-N  (µg ml-1) 0.46 ± 

0.01 
0.65 ± 
0.04 

0.17 ± 
0.03 

0.05 ± 
0.00 

0.08 ± 
0.04 

0.12 ± 
0.06 

NO
3
-N (µg ml-1) 0.74 ± 

0.00 
2.22 ± 
0.01 

0.57 ± 
0.00 

0.07 ± 
0.01 

6.14 ± 
0.08 

1.12 ± 
0.83 

Total-N (µg ml-1) 1.75 ± 
0.04 

3.25 ± 
0.06 

1.36 ± 
0.02 

0.59 ± 
0.03 

6.33 ± 
0.04 

2.26 ± 
0.13 

Org-N (µg ml-1) 0.55 ± 
0.09 

0.37 ± 
0.06 

0.62 ± 
0.01 

0.48 ± 
0.03 

0.11 ± 
0.10 

0.53 ± 
0.12 

PO
4
-P (µg ml-1) 0.13 ± 

0.01 
0.29 ± 
0.02 

0.22 ± 
0.01 

0.04 ± 
0.06 

0.04 ± 
0.00 

0.02 ± 
0.01 

Tot-P (µg ml-1) 0.15 ± 
0.03 

0.38 ± 
0.05 

0.29 ± 
0.02 

0.06 ± 
0.06 

0.04 ± 
0.00 

0.05 ± 
0.03 

Org-P (µg ml-1) 0.02 ± 
0.01 

0.09 ± 
0.04 

0.08 ± 
0.02 

0.02 ± 
0.00 

0.01 ± 
0.01 

0.03 ± 
0.02 

DOC (µg ml-1) 7.68 ± 
0.28 

5.83 ± 
0.04 

8.52 ± 
0.33 

6.76 ± 
0.37 

3.78 ± 
0.53 

9.09 ± 
0.52 

NO
2
-N (µg ml-1) 0.03 ± 

0.00 
0.06 ± 
0.00 

0.03 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

0.00 ± 
0.00 

MCs exposurea Regular No Regular Occasional No No 

pH 11.9 ± 0.0 7.4 ± 0.0 7.8 ± 0.0 8.5 ± 0.0 7.9 ± 0.0 7.8 ± 0.0 

Temperature 11.1 ± 0.0 10.5±0.0 11.6 ± 0.0 9.5 ± 0.0 8.6 ± 0.0 8.2 ± 0.0 

MC-LR half-life 
(days) (source 
Edwards et al., 
2008) 

4 9 4 5 13 14 

a Regular = microcystins always found during typical bloom season (June–September), 

Occasional = microcystins only detected twice in >20 years, No = microcystins never detected in 

these locations  

 

Surface water samples were collected in triplicate on 26 September 2007 from 

the selected water bodies in sterile 1 L Duran glass bottles and stored at 4 °C 

over night until analysed. Surface water temperature and pH were measured 

at the site using a thermometer and pH metre (Jenway, Essex, UK). Water 

samples were filtered (0.45 µm cellulose acetate: Whatman, Kent, UK) and 

dissolved nitrogen (NO3, NO2, NH4, and TN) and phosphate (PO4 and TP) were 

determined colourimetrically using a San++ analyser (Skalar, Breda, the 

Netherlands). Dissolved organic nitrogen and phosphate were calculated as 

the difference between total and inorganic values. Dissolved organic carbon 
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(DOC) was determined automatically at 550 nm following persulphate/UV 

digestion (Schreurs, 1978). Samples for T-RFLP were immediately filtered in 

aliquots of 1 L onto 0.22 µm pore size membrane filters (Millipore Stericup). 

The filters were removed in sterile conditions from the disposable filter units 

and stored in sterile Petri dishes at �20°C until DNA extraction. 

3.2.2)Biodegradation)of)MCULR)

The half-life data of MC-LR were derived from the work of Edwards 

et al. (2008) for the same water bodies and were analysed for statistical 

linkage between the microbial community structure and rate of degradation. 

In brief, water samples were prepared by placing 50 mL of freshly collected 

water in 100 mL sterile Erlenmeyer flasks stoppered with cotton wool bungs. 

MC-LR (final concentration of 1 µg mL-1) was added aseptically in triplicate, to 

water samples and sterile control water samples (i.e. autoclaved). Incubation 

was at 29°C shaking at 100 rpm. Aliquots (500 µL) for analysis were taken 

aseptically every 3�4 days, frozen, freeze-dried, reconstituted in 80% aqueous 

methanol and centrifuged at 15 000 � g then the supernatant analysed by 

HPLC (Edwards et al., 2008). The ability of microbial communities from the 

water bodies studied in this work to degrade MC-LR has been further 

investigated in other studies (Ghimire, 2007, Manage et al., 2009a) giving 

consistent results. 

3.2.3)TURFLP)analysis)

DNA was extracted from each sample using half of the polyethersulfone filter 

obtained from the filter unit (Millipore Stericup) that were stored at �20°C. 

DNA extraction was carried out using the Power Soil DNA Extraction Kit (Mo 

Bio, Carlsbad, California) following the manufacturer's instructions. PCR 



76 
 

reaction was performed on extracted DNA for each sample to amplify the 

universal bacterial 16S rRNA genes. Briefly, PCR was performed in a final 

volume of 50 µL containing: 1 � NH4 reaction buffer, 2 mM MgCl2, 400 µM of 

each deoxynucleoside triphosphate, and 2.5 U of Biotaq DNA polymerase (all 

reagents from BIOLINE, UK), 20 µg bovine serum albumin (BSA, Roche 

Diagnostics, UK) and 5 µL of template DNA. Bacterial primers used were 63F-

VIC (Marchesi et al., 1998) and 1087R (Hauben et al., 1997) were used at a 

concentration of 200 nM. PCR reactions were performed with a DYAD DNA 

Engine Peltier thermal cycler (MJ Research, Waltham, MA). The cycle consisted 

of 5 min at 95 °C, followed by 30 cycles of denaturing at 94 °C for 30s, 

annealing at 55 °C for 30s, elongation at 72 °C for 1 min, and a last cycle of 

10 min extension period at 72 °C. PCR products were visualised with ethidium 

bromide staining on a 1% (w/v) agarose gel using UV radiation. PCR products 

were then purified using ChargeSwitch�PCR Clean-Up Kit (Invitrogen) following 

manufacturer instructions. 

For the restriction digestion, 250 ng of purified PCR product were digested 

with 20 U of Hha I and 2 µL of buffer in a final volume of 20 µL containing 

0.1 mg mL-1 of acetylated BSA (all reagents from Promega, UK). Samples 

were incubated at 37 °C for 3 hrs followed by 15 min at 95 °C to inactivate 

the enzyme. After digestion, 2 mL of each sample were mixed with 0.3 mL of 

LIZ-Labelled GS500(-250) internal size standard and 12 mL of formamide 

(Applied Biosystems, UK) and denatured at 95 °C for 5 min, then chilled on ice 

for 5 min. Fragment size analysis was carried out with an ABI PRISM3130xl 

genetic analyser (Applied Biosystems, UK). 
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Bacterial T-RFLP profiles were produced using GeneMapper software (version 

3.7; Applied Biosystems, UK) and fragments quantified using the advanced 

mode and second-order algorithm. Selected fragments ranged from 35 to 500 

basepair (bp): these were within the linear range of the internal size standard 

used while excluding primer dimers and probable undigested products. All 

TRFs with fluorescence units less than 35 were discarded from the data 

analysis to minimize the effect of artefacts. The relative abundance of a 

terminal restriction fragment (TRFs) in a profile was calculated as a proportion 

of the total peak height of all the TRFs in a profile. Any peak that was less 

than 0.5% of the total fluorescence unit was removed from the data before 

statistical analysis. 

3.2.4)Biolog)EcoPlate)analysis)

Physiological bacterial communities’ profiles were detected by the Biolog 

EcoPlates (Catalog no.1506, Biolog Inc., Hayward, CA 94545, USA) which 

contain 96 wells with 31 different carbon sources in triplicate, the other 3 

micro wells do not have any source of carbon and are used as controls. All 

water samples were processed under sterile conditions within 24 hrs of 

collection from the field. Water samples (160 µL) were inoculated into each 

well of EcoPlate (Biolog) and wrapped with wet paper towel to maintain 

humidity and incubated at 25 � 1 °C in dark. The metabolism of each carbon 

source was measured spectrophotometrically (�590) by reduction of tetrazolium 

violet to formazan. Readings were performed every 24 hrs for a period of 14 

days using of a microplate reader (�max, Molecular Devices, Oxford, UK) 

subtracting the absorbance of the control well (without carbon source). 
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3.2.5)Statistical)methods)

For T-RFLP profile data (relative abundance), principal components analysis 

(PCA) using a co-variance similarity matrix was used. ANOVA was carried out 

on the principal component (PC) scores for the first five dimensions to 

examine the effects of sampling site and previous exposure to MC-LR on the 

bacterial communities. Data were also explored using canonical variate 

analysis (CVA) on the first 5 PC scores. Linear regression analysis was done to 

test the relation between the degradation rate (i.e. half-life) of MC-LR reported 

by Edwards et al. (2008) and structure (T-RFLP principal components) of the 

bacterial communities present in the water bodies under study. In order to 

reveal relationships between bacterial communities and environmental 

variables, a redundancy analysis (RDA) was used with the CANOCO software 

4.5 (Microcomputer Power, Ithaca). RDA was used to examine a number of 

physico-chemical factors (i.e. pH, temperature, DOC, total-N, Org-N, NH4-N, 

NO3-N, NO2-N, Tot-P, Org-P, PO4-P) affecting the bacterial population (T-RFs). 

T-RFs relative abundance data were log transformed before the analysis. The 

environmental variables that significantly influenced the bacterial population 

were identified by forward selection (Braak and Verdonschot, 1995), 

eliminating factors which failed to improve significantly (� < 0.05) the 

explanatory model. This was achieved using a Monte Carlo permutation test  

(999 random permutations). 

For Biolog EcoPlate� the average well colour development (AWCD) of all 31 

carbon sources for each sample was calculated and used to transform 

individual well values to eliminate variation in AWCD caused by different cell 

densities (Garland, 1996). The AWCD of different substrate groups (i.e. 

polymers, phenolic compounds, carboxylic acids, carbohydrate, amino acids 
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and amines) was calculated and treatment effects assessed by a one way 

ANOVA (site). The Biolog data for utilisation of 31 carbon sources were also 

analysed using two forms of multivariate analysis, firstly by principal 

components analysis (PCA) to reduce the dimensionality in the data arising 

from having more variates than samples and then by canonical variate 

analysis (CVA) on the first 5 PC scores. All analyses were carried out using 

GenStat version 11 (VSN International Ltd., Hempstead, UK). 

 )
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3.3)Results)

3.3.1)Chemistry)and)properties)of)freshwater)bodies)

The water chemical and physical properties along with natural exposure to 

MCs and previously determined half-life of MC-LR are reported in�Table 3.1. 

3.3.2)TURFLP)

For bacterial T-RFLP data, the first five PC accounted for 88.97% of the 

variance. ANOVA of the PC scores revealed that the bacterial community was 

significantly affected by sampling site on the first (� = 0.023), third 

(� < 0.001), fourth (� < 0.001) and fifth dimensions (� = 0.014). The CVA 

analysis on the PC scores (Figure 3.1A) revealed a significant separation 

between bacterial communities associated with all the lakes under study while 

the communities associated with River Carron and River Cowie clustered 

together. Non-overlapping circles in CVA biplot shows significantly different 

bacterial communities (� < 0.05), the major axis (i.e. CV1) accounts for most 

of the variability of the system and shifts along this axis are to be considered 

more relevant than shifts on the second axis (i.e. CV2). Shannon diversity 

calculated on T-RFs relative abundance did not show significant differences 

amongst the different sampling sites. ANOVA on the PC scores revealed that 

bacterial communities were also significantly affected by natural exposure to 

MC-LR on the first (� = 0.04), fourth (� = 0.002) and fifth dimension 

(� = 0.033). MANOVA analysis on the 5 PC scores showed a significant 

(� < 0.001) effect of natural exposure of MC-LR on bacterioplankton 

communities. CVA biplot (Figure 3.1B) revealed significant shifts in the 

structure of the bacterial community due to natural exposure to MC-LR. 
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Figure 3.1 – Canonical variate analysis biplots. A) Effect of location on 
bacterioplankton communities’ structure (T-RFLP data). CVA on 5 PC scores, circles 
represent 95% confidence (CV1=60.85% - CV2=27.93%); B) Effect of natural 
exposure to microcystins on freshwater bacterioplankton structure (T-RFLP data). CVA 
on 5 PC scores, circles represent 95% confidence (CV1=82.78% - CV2=17.22%). 
Regular= regular exposure to MCs; No= no previous exposure to MCs; 
Occasional=occasional exposure to MC-LR. 

 

Linear regression analysis was carried out to explore whether bacterial 

community structure had an impact on rate of MC-LR degradation. It showed a 

significant correlation between the bacterial communities' structure and the 

half-life of MC-LR (see Table 3.2), as well as a significant correlation 

(P < 0.001) between previous exposure to MC-LR and half-life of MC-LR. 

Table 3.2 - Linear regression analysis of the principal components scores (T-RFLP 
data) versus half-life of MC-LR. (*95% significance) 

 

 

  

Principal component (% variation) P value 
PC1 (33.35)  0.015* 
PC2 (25.24) 0.789 
PC3 (13.08) 0.863 
PC4 (10.97)  0.001* 
PC5 (6.33) 0.349 

CV1 (60.85%) 

C
V
2 

(2
7.

93
%

) 

C
V
2 

(1
7.

22
%

) 

CV1 (82.78%) 

A B 
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To identify the main factors affecting the bacterial communities, RDA was 

carried out with physico-chemical water parameters as environmental 

variables and bacterial T-RFs as species (see triplot�Figure 3.2). Only variables 

that significantly influenced the bacterial population were included in the graph 

(i.e. DOC, NO3-N, NH4-N and Temperature) (refer to Section�3.2.5 Statistical 

methods). Plots can be interpreted qualitatively, where the length of the arrow 

indicates how much variance was explained by that factor and the direction of 

the arrows for individual environmental factors indicates an increasing 

concentration of that factor. The TRF arrows pointing in approximately the 

same direction as the environmental factor arrows indicate a high positive 

correlation (the longer the TRF arrow, the stronger the relationship) 

(Macdonald et al., 2008). Samples are indicated as small circles along with an 

identity number created from the statistical software; the wider circles 

including the replicates of a site and site names were manually drawn to 

facilitate the reading of the RDA triplot. RDA results show that only DOC, NO3-

N, NH4-N and Temperature had a significant effect (P< 0.05) on the bacterial 

communities. Nitrate-N concentration showed a positive correlation with the 

bacterial communities of River Carron. Similarly ammonium-N was positively 

correlated to the communities of Loch Leven and Forfar. Temperature was 

shown to be positively correlated with the bacterioplankton of Loch Rescobie. 
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3.3.3)Biolog)EcoPlate)

For Biolog EcoPlate data, the first five PC accounted for more that 60% of the 

variance. ANOVA carried out on the data regarding the bacterial physiology of 

each carbon source category supplied (i.e. polymers, phenolic compounds, 

carboxylic acids, carbohydrate, amino acids and amines) revealed that there 

was a significant difference in the metabolism of polymers (P < 0.001), 

phenolic compounds (P < 0.001), carboxylic acids (P < 0.001) and 

carbohydrate (P < 0.001) amongst the freshwater bodies tested. CVA revealed 

shifts in the metabolism of the microbial communities due to sampling site 

(Fig. 3.3A). Biolog EcoPlate data after 48 h incubation were used in this 

analysis because they showed the greatest discrimination between samples. 

The first three canonical variants (CVs) accounted for 98.5% of the variance 

within the first five PC dimensions. There was a clear separation between all 

the freshwater bodies under study with exception of Loch Balgavies and Loch 
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Figure 3.2 – Redundancy analysis triplot. Effect of water chemistry on bacterioplankton 
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56% 



84 
 

Rescobie, which did not show significant separation in the CVA biplot. CVA 

revealed shifts in physiology of the microbial communities due to natural 

exposure to MC-LR (Fig. 3.3B). No significant correlation was found between 

living community physiology profiles and MC-LR half-life���

        

Figure 3.3 – Canonical variate analysis biplots. A) Effect of location on living 
community physiology (Biolog EcoPlate™ data after 48 hrs). CVA on 5 PC scores, 
circles represent 95% confidence. B) Effect of natural exposure to microcystins on 
living community physiology (Biolog  EcoPlate™ data after 48hrs data). CVA on 5 PC 
scores, circles represent 95% confidence. Regular= regular exposure to MCs; No= no 
previous exposure to MCs; Occasional=occasional exposure to MC-LR. 
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3.4)Discussion)

3.4.1))Bacterioplankton)communities)structures)

The T-RFLP results indicate that bacterioplankton communities from the lakes 

included in this work are significantly different while the communities from the 

rivers cluster together (Figure 3.1A). The magnitude in difference between the 

lakes investigated in this work observed in�Figure 3.1 A reflects their 

geographical position. Loch Leven, which is geographically more distant, was 

separated from the other lakes along the major axis, which accounted for 

most of the variation of the system (i.e. 60.85%). On the other hand, the 

three lakes closely located geographically (i.e. Rescobie, Balgavies and Forfar) 

were separated only along the second axis of the CVA biplot, which accounted 

for 27.93% of the variation of the system. For T-RFLP data (Figure 3.1A), the 

fact that Loch Rescobie drains into Balgavies (Stewart et al., 1982) does not 

further contribute to the communities' structure of the two lakes beyond their 

geographical position. Similar results were found by (Crump et al., 2007), who 

showed that lakes and rivers host different bacterial communities, and that the 

two systems interact and are influenced by spatial patterns. 

Another significant driver for the freshwater bacterioplankton communities' 

structure was natural exposure to MCs Figure 3.1B. Chemical signalling, 

inhibitors/stimulators of growth activities along with toxicity to microorganisms 

are the most plausible direct effect of MCs on bacterial communities’ structure 

(Christoffersen, 1996, Kearns and Hunter, 2000, Babica et al., 2006). On the 

other hand MCs can be toxic to macro-organisms (MacKintosh et al., 1990, 

Christoffersen, 1996), and their toxicity cause death or differential feeding 

patterns at different levels in the food web and that in turn affect the bacterial 
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communities’ structure (Kaebernick and Neilan, 2001). MCs are therefore able 

to affect both directly and indirectly bacterial communities’ structure. 

It has to be considered however that MCs are commonly produced during 

cyanobacterial bloom and the blooms change the structure of bacterial 

population (Riemann and Winding, 2001, Worm et al., 2001, Eiler and 

Bertilsson, 2007) mainly due to increased organic carbon that boosts the 

growth of heterotrophic microorganisms and leads to oxygen depletion. 

Previous studies (Rapala et al., 1994, Christoffersen et al., 2002, Edwards et 

al., 2008) have shown a clear relation between past natural exposure to MCs 

and the ability of freshwater bacterioplankton communities to degrade these 

natural toxins. In this work we report a correlation between bacterial 

community structure and half-life of MC-LR (Table 3.2). This finding, linked 

with the correlation between past natural exposures to MCs and MC-LR half-

life (� < 0.001) of the present dataset, suggests that the exposure to MCs is 

able to shape the whole bacterial community structure and not only to select 

for few bacteria able to degrade these toxins as suggested from previous 

authors (Rapala et al., 1994). 

T-RFLP analysis also showed the selective presence of few OTUs (i.e. 154, 

174, 310 and 417 base pairs) in water bodies with regular exposure to MCs. 

Those OTUs should be further investigated in order to assess whether they 

selectively appear in water bodies with regular exposure to MCs also in other 

systems as they could be used as bio-indicators for water quality. If such bio-

indicators would be confirmed, they could additionally be employed to predict 

the likelihood of MCs production based on microbial data. That would be a very 

useful tool for policy makers and regulatory agencies. 
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3.4.2)Water)chemistry)and)communities’)structure)

Dissolved organic carbon, ammonia, nitrate and temperature had a significant 

effect in shaping the bacterial communities structure for the freshwater bodies 

studied in this work (Figure 3.2). Previous studies (Lindström et al., 2005, 

Yannarell and Triplett, 2005) have shown that pH is one of the key factors in 

shaping bacterial communities in freshwater lakes. Here, two nitrogen 

compounds (i.e. ammonium and nitrate) significantly influenced bacterial 

communities. Nitrogen is a key nutrient in aquatic ecosystems essential for 

productivity (Frette et al., 2009); it is considered to be the primary limiting 

nutrient for phytoplankton biomass accumulation (Rabalais, 2002) and to be 

linked with harmful algal bloom (Paerl, 1997). Nitrogen affects cyanobacterial 

bloom and the production of cyanotoxins differentially in nitrogen-fixing and 

non-nitrogen-fixing cyanobacteria (Kaebernick and Neilan, 2001). Some of the 

water bodies studied in this work have a history of eutrophication, 

cyanobacterial bloom and cyanotoxins detection (Edwards et al., 2008). 

Consequently the relation between nitrogen compounds and the structure of 

the bacterioplankton communities was expected. Temperature is a key factor 

in regulating freshwater bacterial growth (White et al., 1991, Felip et al., 

1996) and communities’ structure (Yannarell and Triplett, 2004, Yannarell and 

Triplett, 2005). Temperature is one of the key factors that dictates the 

occurrence of cyanobacterial bloom and consequent release of cyanotoxins 

(Chorus and Bartram, 1999, Kaebernick and Neilan, 2001). In this work, the 

two water bodies with higher temperature (i.e. Rescobie and Balgavies) are 

the ones with the most frequent exposure to MCs. Also in this work 

temperature appears to be a parameter closely related with bacterial 

communities structure (Figure 3.2). 
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3.4.3)Biolog)EcoPlate)

Bacterial carbon substrate utilisation profiles, determined with Biolog Ecoplate, 

were used to establish differences amongst bacterial communities' physiology. 

Biolog EcoPlates has been used in various investigations to study aquatic 

microbial communities (Comte and Del Giorgio, 2009) and their ability to 

distinguish between communities was shown by Choi and Dobbs (1999). A 

clear separation between all the water bodies with the exception of Rescobie 

and Balgavies was observed (Figure 3.3A). The similarity in physiology 

between bacterioplankton communities of Loch Rescobie and Loch Balgavies 

may be driven by their close spatial position and from overflow of water that 

goes from Rescobie to Balgavies (Stewart et al., 1982). The link between the 

two lakes certainly facilitates exchange in nutrients as well as in bacterial 

communities, and that explains the similar metabolism measured by Biolog 

Ecoplate. Previous exposure to MCs was shown to be an important factor in 

the differentiation of the physiology of bacterioplankton communities (Figure 

3.3B) and it is most probably one of the drivers of the observed separation 

between physiologies of the water bodies under study. Some authors reported 

direct effects of MCs on freshwater microbial autotrophs physiology (Singh et 

al., 2001, Hu et al., 2004), on the other hand it has to be considered that 

changes in communities' structure caused by MCs (see Section 3.5.2�) would 

then alter the observed physiological profile. 

 )
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3.5)Conclusions)

A complex pattern of relations and feedback appear to rule the production and 

degradation of MCs as well as the bacterioplankton communities’ structure and 

physiology in freshwater. In order to increase confidence in our results, here 

we used both DNA and physiological fingerprinting approaches to evaluate if 

exposure to MCs was able to affect bacterial communities. Not only was 

exposure to MCs able to affect both bacterioplankton communities' physiology 

and structure, but also communities' structure was related to half-life of MC-

LR. Moreover, DOC, nitrogen compounds and temperature had a significant 

effect in shaping bacterial communities' structure. Although previous studies 

have shown a link between previous exposure to MCs and improved ability of 

the microbial communities to degrade such toxins, this is the first report to our 

knowledge to demonstrate that a change in bacterioplankton communities’ 

structure is the link between previous exposure and biodegradation ability. It 

appears that exposure to MCs is able to affect bacterioplankton physiology and 

structure and the latter is then linked with degradation rate of MC-LR. Taking 

into account water chemical and physical parameters we suggest that nitrogen 

compounds, DOC and temperature drive bacterial communities’ structure both 

directly (i.e. nutrients availability and growth temperature) and indirectly (i.e. 

influencing the occurrence of cyanobacterial bloom and toxin production which 

then affect bacterial population). The identification of OTUs solely associated 

with water bodies regularly exposed to MCs requires further study as, if 

confirmed, such OTUs could be used as bio-indicators of water quality. 

 

       !
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4. BACTERIAL)DIVERSITY,)FUNCTION)AND)STABILITY:)RELATIONS)

IN)LAKE)WATER)

4.1)Introduction)

In the current age of extinction (Barnosky et al., 2011), increasing attention 

and importance has been given to biological diversity as a key factor 

governing ecosystems and their functioning (Naeem et al., 2012). The most 

tangible effects of biodiversity on humankind are the “services” that it 

provides (Duraiappah et al., 2005), which are a result of essential functions 

that biodiversity sustains (Duffy, 2008). A review by Cardinale et al. (2012) 

highlighted the last 20 years of research that focused on how biodiversity 

influences ecosystem functions and services, pointing out consensus and 

emerging trends obtained from literature. In the review it was reported that 

freshwater purification is one of the few ecosystem services for which studies 

conflict with prediction and give not significant relationship. A large number of 

species for both micro and macro-organisms have important roles in 

freshwater purification, but bacteria cover a key position in biogeochemical 

cycling, biodegradation and biomass production (Newton et al., 2011). 

Bacterial diversity vitally contributes to improve water quality, but diverse 

bacteria are also able to produce a very wide range of secondary metabolites 

with many being of industrial importance (Singh, 2010) and some toxic 

(Harada, 2004). The most relevant class of natural toxic compounds in aquatic 

environments is represented by cyanotoxins that are generally produced by 

cyanobacteria during eutrophication-triggered blooms (Paerl et al., 2001). Bell 

et al. (2009) categorised the different approaches to study the relationship 

between diversity and functions in microbial communities in: a) microcosm 
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experiments of artificial communities constructed from culturable microbes; b) 

removal experiments (e.g. dilution-to-extinction approach) and; c) 

observational studies (i.e. attempt to link in-situ diversity to functions). 

Despite the increasing interest in biodiversity ecosystem function relation, only 

one study explored how loss in microbial diversity affects biodegradation of 

toxic compounds (Cook et al., 2006). To test this relationship in this study, 

microcosms were set up using batch cultures of sterile freshwater inoculated 

with serial freshwater dilution (Salonius, 1981). After regrowth, the impact of 

the removal experiment on freshwater bacterial diversity was evaluated by 

both DNA fingerprinting and high-throughput sequencing. Also measured was 

how the dilution to extinction experiment affected carbon mineralisation, 

stability of the system (Tilman et al., 2006) and biodegradation of microcystin-

LR (i.e. the most relevant cyanotoxins). We then explored relations between 

the measured bacterial diversity and functions/properties mentioned above. 

 )
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4.2)Materials)and)Methods)

4.2.1)Freshwater)Sampling))

For the first experiment, sub-surface water (i.e. within 10 cm from surface) 

was sampled in triplicate on the 6th of June 2011 from two large deep Scottish 

lakes: Loch Rescobie (NO 525 515) and Loch Freuchie (NN 854 381). Loch 

Rescobie (area 0.59km2) is a well studied lake and harbours microcystin 

producing cyanobacteria as well as microcystin degrading bacteria (see 

Chapter 2 and Chapter 3). At the time of sampling its water temperature was 

14°C and pH 7.4. Loch Rescobie suffers from two sources of diffuse pollution 

(i.e. arable farming and sewage disposal) and its overall status was 

categorised as “poor” by the Scottish Environmental Protection Agency (SEPA) 

(SEPA, 2010a). Loch Freuchie (area 1.39km2) is a water body highlighted by 

SEPA (personal communication) to be one of the most pristine lakes in 

Scotland. At the time of sampling its water temperature was 11°C and pH 6.4. 

Loch Freuchie does not suffer from any known environmental pressure and its 

overall status was categorised as “good” by SEPA (SEPA, 2010b). Water was 

sampled in sterile glass bottles and kept at constant temperature while 

transported to the laboratory facilities. On the same day of sampling, all water 

from both sites was filtered via glass fibre filters (1.2 µm pore size, GF-C, 

Whatman, Maidstone, United Kingdom) to remove large particles and bacterial 

grazers. In addition, a portion of the water collected from Loch Rescobie was 

filter sterilised via Stericup filter units (0.22 µm, Millipore, Bedford, MA, USA). 

Finally, water to be used as sterile controls in the MC-LR biodegradation 

experiment (Loch Freuchie) was autoclaved at 121°C for 20 minutes along 

with the water to be used as sterile control and for the diversity manipulation 

step in the diversity/function experiment with Loch Rescobie.  
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For the second experiment, subsurface water was sampled in triplicate on the 

25th of August 2011 from Loch Rescobie and Loch Freuchie. At the moment of 

sampling Loch Rescobie water temperature was 16°C and pH 8.6, while Loch 

Freuchie water temperature was 12°C and pH 6.7. For this sampling time 

sampled water was not filtered via glass fibre filters, differently to what had 

been done in previous sampling time (see above), as this step was considered 

to be responsible for the absence of biodegradation activity. Otherwise 

samples were treated in the exact same way as performed in previous 

sampling time. 

For ease of identification, from this section on, experiments done with 

freshwater sampled in June 2011 will be named Loch Rescobie (1) and Loch 

Freuchie (1); the one with freshwater sampled in August 2011 will be named 

Loch Rescobie (2) and Loch Freuchie (2). 

4.2.2)Bacterial)diversity)manipulations)and)biomass)recovery)monitoring)

To achieve a bacterial diversity gradient without need of culturing, a dilution-

to-extinction approach was employed. In brief, water sampled from Loch 

Rescobie (1), previously filtered via 1.2 µm filters, was serially diluted with 

water sampled from Loch Rescobie (1) which had been filter sterilised and 

autoclaved to ensure sterility. Ten-fold serial dilutions were carried out in 

triplicate under sterile laminar flow and three dilutions were used for further 

studies: 1) 10exp-1; 2) 10exp-4; 3) 10exp-7 (Figure 4.1). The whole range of 

dilutions (i.e. from 10exp-1 down to 10exp-7) was not kept for logistic reasons, 

as it would have been unfeasible to carry out the whole range of analysis on 

all dilutions due to time constraints. On the other hand the dilutions kept (i.e. 

10exp-1, 10exp-4, 10exp-7) gave a range of extremes and intermediate 
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diversity levels, allowing significant reduction in the number of samples to 

make the experiment more feasible. 

 

Figure 4.1 – Schematic representation of bacterial diversity manipulation via dilution-
to-extinction approach. Arrows indicate 10-fold dilution. Large conical flasks indicate 
dilutions kept for further studies. Small conical flasks indicate dilutions discharged. 

 

The diversity gradient for Loch Rescobie (2) and Loch Freuchie (2) was 

achieved following the same approaches described above for Loch Rescobie 

(1) with the only difference being that freshwater was not filtered via 1.2 µm 

filters as this step was considered to be responsible for lack of biodegradation 

activity in Loch Rescobie (1) experiment. 

Once dilutions were achieved in a final volume of 180 mL, flasks were 

incubated for biomass recovery at 20°C shaking at 70 rpm in dark conditions. 

Biomass recovery was tested by means of bacterial 16S qPCR every three 

days starting from hour zero (i.e. the hour when dilutions were made). For 

16S qPCR, initially 25 mL of water was filtered via 0.2 µm Stericup filter units, 

the filters were then cut from the units using a sterile scalpel and placed 

aseptically into 5 mL tubes ready for DNA extraction using the PowerWater 

DNA isolation kit (MoBio Laboratories Inc.). DNA extraction was carried out 

following manufacturers instructions. Once DNA was extracted, 16S qPCR was 
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carried out using a modified protocol of Fierer et al. (2005) for the detection of 

all bacteria. qPCR assays were carried out on a Rotor Gene-3000 (Corbett 

Research, Cambridge, United Kingdom) in polypropylene thin-walled tubes. 

Each 25 µL reaction contained: 12.5 µL of GoTaq® qPCR Master Mix 

(Promega), 1 µL of bovine serum albumin (20 mg mL-1; Roche), 0.625 µL of 

primer EUB338 (20 µM, Seq: ACTCCTACGGGAGGCAGCAG) (Kolb et al., 2003), 

0.625 µL of primer EUB518 (20 µM, Seq:!ATTACCGCGGCTGCTGG) (Muyzer et 

al., 1993), 5.25 µL of nuclease-free water (Promega) and 5 µL of template. 

PCR conditions were: 5 min at 95°C, followed by 30 cycles of 94°C for 30 s, 

56°C for 30 s, 72°C for 60 s and 83°C for 15 s. To produce an amplicon 

standard, a plasmid containing the target regions was constructed and used as 

template for PCR. Amplified products were run on 2% agarose gel to confirm 

specificity. Standard curves were generated in duplicate via 10-fold dilutions of 

the quantified PCR amplicon. At least five non-zero standard concentrations 

per assay were included, with standard concentration ranging from 10exp9 to 

10exp2 copies µL-1. Melting curve analysis was carried out following each assay 

during the optimisation stage of the assay to verify the specificity of the 

fluorescence signal, however, once the assay gave optimal results (i.e. R2 ≥ 

0.99 and efficiency at 100±5%) melting curve was removed to shorten the 

assay run time. Target copy numbers for each reaction were calculated 

assuming a product size of 200 bp from the standard curves, which in all 

assays gave optimal correlation coefficient and efficiency. Once biomass 

recovery was achieved, samples were used in microcystin-LR biodegradation 

experiments. 
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4.2.3)Biodegradation)assays)of)microcystinULR)

Three biodegradation assays were set up: a) biodegradation of MC-LR with 

water from Loch Freuchie (1) with its sterile control; b) biodegradation of MC-

LR for each diversity level with water from Loch Rescobie (1) with its sterile 

and water controls and; c) biodegradation of MC-LR for each diversity level 

with water from Loch Rescobie(2) and Loch Freuchie (2) with respective sterile 

and water controls. 

4.2.3.1&Biodegradation&assay&of&MC6LR&in&Loch&Freuchie&(1)&

Freshwater samples (40mL) from Loch Freuchie (1) were added with filter 

sterilised microcystin-LR (1 mg mL-1 in milli-Q water) to a final concentration 

of 1 mg L-1 for biodegradation study. A sterile control with same amount of 

microcystin-LR was maintained. Treatment and control were tested in glass 

serum bottles (capacity 125 mL, Sigma Aldrich) sealed with butyl rubber 

stoppers and sealed with aluminium crimp to ensure sterility. The experiment 

was carried out at 20 ±1°C shaking at 70 rpm in dark conditions. Experiment 

was maintained for 14 days. Serum bottles were opened in sterile conditions 

every three days to allow oxygenation and to take aliquots (i.e. 0.5 mL) for 

analytical analysis (i.e. HPLC to detect MC-LR) and frozen immediately. 

Samples were then freeze-dried and, at the time of HPLC analysis, 

reconstituted in 125 µL of 50% aqueous methanol. Quantification of MC-LR 

over time was evaluated with the method outlined in section 2.2.3.  

4.2.3.2&Biodegradation&assay&of&MC6LR&at&different&diversity&levels&in&Loch&Rescobie&

(1),&Loch&Rescobie&(2)&and&Loch&Freuchie&(2)&

Samples were incubated for 14 days for Loch Rescobie (1) and 13 days for 

Rescobie (2) and Loch Freuchie (2) with MC-LR following the procedures 
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described in previous section. Additionally, respiration, as a proxy of total 

biological activity, was measured using infrared gas analysers (IRGA) (EGM-4, 

PP systems). Gaseous sample (10 mL) from the headspace of each serum 

bottle were taken using syringes just before opening the bottle for 

atmospheric re-equilibration at each sampling time. The gaseous samples 

were then injected to the IRGA saturating the infrared cell and giving 

immediate readings of CO2 concentration.  

Additionally, for Loch Rescobie (2) and Loch Freuchie (2), biodegradation 

experiments were set up with undiluted water to test if even one ten-fold 

dilution could be the cause of the lack of biodegradation activity. Experiments 

of undiluted samples were kept for 14 days with three measurements of 

concentration of MC-LR over time (i.e. day 0, day 7, day 14), otherwise 

experiments were set up and maintained as described in section above. Due to 

time constraints, no respiration measurements or molecular biological 

analyses were carried out on undiluted samples. 

4.2.4)Relative)bacterial)diversity)and)richness)along)a)diversity)gradient)in)Loch)

Rescobie)(1),)Loch)Rescobie)(2))and)Loch)Freuchie)(2))(TURFLP)data)))

At the end of the incubation, 25 mL of water from each bottle were filtered 

(0.2 µm, Stericup filter unit, Millipore) and the filters were stored in sealed 

sterile Petri dishes at -20 ºC until DNA extraction for T-RFLP analysis. DNA 

extraction and all the following steps for T-RFLP analysis were carried out as 

described in section 2.2.2 for bacterial communities. The only difference was 

that both primers in the PCR were labelled with a fluorescent tag (i.e. 63f-VIC 

and 1087r-FAM). T-RFs data were then analysed to extrapolate measures of 

bacterial diversity (i.e. Shannon diversity index) and bacterial richness (i.e. 



102 
 

number of Operational Taxonomic Units-OTUs). Estimates for richness and 

diversity were obtained by averaging the results of forward and reverse 

terminal restriction fragments data. 

4.2.5)Bacterial)diversity)and)richness:)pyrosequencing)

Due to low concentration of DNA in individual samples, for the pyrosequencing 

template 16s rRNA gene amplicons were used as template. The amplicons 

were obtained using the same primers and conditions described in section 

2.2.2 except that unlabelled primers were used. The amplicons were then 

cleaned up using Wizard® SV Gel and PCR Clean-Up System (Promega) 

following manufacturers protocol. Pyrosequencing of 16S rRNA gene was 

performed on a Roche Junior Titanium Series. A 466-bp fragment of 16S rRNA 

gene was amplified using the modified primers PRK341F (5’-

CCTAYGGGRBGCASCAG-3’) and PRK806R (5’-GGACTACNNGGGTATCTAAT-3’) 

(Yu et al., 2005, Xu et al., 2012). Data analysis was performed using the 

‘Quantitative Insights Into Microbial Ecology’ (QIIME v 1.6.0) software 

package (Caporaso et al., 2010). Barcode, linker primer and reverse primer 

sequences were removed from the raw sequence reads using the 

‘split_libraries.py’ script while setting minimum sequence length of 200 and 

minimum quality score of 20. ‘Acacia’ tool was used with default options to 

remove pyrosequencing noise (Bragg et al., 2012). Potential chimeras were 

removed using the UCHIME chimera detection utility of the USEARCH v6.0.307 

tool (Edgar et al., 2011). Similar sequences were binned into OTUs using 

‘UCLUST’ method (minimum pairwise identity of 97%). Observed species 

(OTUs) metric and alpha-diversity with Shannon entropy were then measured. 
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4.3)Results)

4.3.1)Bacterial)biomass)recovery)and)its)trend)over)time))

Before testing the hypothesis related to the diversity-function relation, 

biomass of the manipulated levels of biodiversity was monitored over time to 

determine its recovery.  Biomass recovery along the dilution (diversity) range 

was achieved within 6 days for Loch Rescobie (1) and maintained a constant 

magnitude until the termination of the biodegradation assay (Figure 4.2A).  

 

 

Figure 4.2 – Bacterial biomass over time at different dilution levels: data of gene copy 
number mL-1 of bacterial 16S rRNA gene number of bacteria in original sample from: 
A) Loch Rescobie (1), B)Loch Rescobie (2) and C) Loch Freuchie (2). =exp-1;  = 
exp-4;  = exp-7. W=water control, M=incubated with MC-LR. Arrow indicates time 
point when biomass recovery was achieved. Error bars indicate standard error. n=3 

 

Biomass recovery along the dilution (diversity) range was achieved within 3 
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constant magnitude until the termination of the biodegradation assay (Figure 

4.2B-C). 

4.3.2)Bacterial)diversity)and)richness)along)the)dilution)gradient:)DNA)

fingerprinting)and)pyrosequencing&

Once biomass recovery was achieved, relative bacterial diversity was 

estimated via T-RFLP analysis. OTUs relative abundance data from both 

forward and reverse terminal restriction fragments matrices were obtained and 

used to estimate diversity and richness of the bacterial communities. Diversity 

was measured by the Shannon diversity index (Equation 4.1) which is the 

most widely used diversity index, originally introduced by C.E. Shannon 

(1948) as a entropy measure.  

Equation 4.1 – Shannon Diversity Index (H'). S = total number of species; pi = relative 
abundance on each species. 

 

Richness was measured as total number of OTUs. The mean of Shannon 

diversity indexes deriving from forward and reverse terminal fragment 

restriction analysis was used as overall relative diversity estimate. Same 

procedure was followed for richness.  
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Figure 4.3 – Bar plots presenting relative diversity and richness (based on T-RFLP 
data) along the dilution gradient of: A) Loch Rescobie (1), B) Loch Rescobie (2) and C) 
Loch Freuchie (2). Solid columns=diversity, empty columns=richness. R=Loch 
Rescobie, F=Loch Freuchie. Values with different letters differ significantly (P<0.05). 
Error bars indicates standard error. n=3 

 

The dilution to extinction approach was an effective method to manipulate 

diversity and richness of bacterial communities in freshwater.  

For Loch Rescobie (1) (Figure 4.3A) the dilution significantly affected both 

diversity (P=0.009) and richness (P=0.014) with an overall 68% reduction 

(i.e. comparison R-1 to R-7) in both diversity and richness. For Loch Rescobie 

(2) (Figure 4.3B) the dilution significantly affected both diversity (P<0.001) 

and richness (P<0.001) with an overall reduction (i.e. comparison R-1 to R-7) 

in diversity and richness of 73% and 67%, respectively. For Loch Freuchie (2) 
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(P<0.001) and richness (P<0.001) with an overall reduction (i.e. comparison 

R-1 to R-7) in diversity and richness of 73% and 75%, respectively. 

Along with using DNA fingerprinting to ascertain if a significant gradient of 

relative diversity was established via the dilution-to-extinction approach, 

pyrosequencing of bacterial 16S rRNA gene was employed to confirm and 

strengthen findings. Pyrosequencing was carried out on samples from Loch 

Rescobie (2) and Loch Freuchie (2). 

  

Figure 4.4 – Bar plots presenting bacterial diversity and richness (based on 
pyrosequencing data) along the dilution gradient of: A) Loch Rescobie (2) and B) Loch 
Freuchie (2). Solid columns=diversity, empty columns=richness. R=Loch Rescobie, 
F=Loch Freuchie. Values with different letters differ significantly (P<0.05). Error bars 
indicate standard error. n=3 

 

Analysis carried out on processed pyrosequencing data at a depth of 4672 

sequences per sample confirmed an effective reduction in communities’ 

richness and diversity induced via the dilution-to-extinction approach. 

A significant reduction (P<0.001) in bacterial richness was measured in Loch 
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richness in Loch Freuchie (2) was also significant (P=0.002) with 200 species 

at exp-1, 86 (57% reduction) species at exp-4 and 11 (97% reduction) at exp-7.  

Similarly, a significant reduction (P<0.001) in bacterial diversity based on 

Shannon index was measured for Loch Rescobie (2) accounting for a reduction 

of 27% (i.e. exp-4) and 89% (i.e. exp-7) compared to the most diverse level of 

diversity (i.e. exp-1). Reduction in bacterial diversity induced via the dilution-

to-extinction approach was also significant (P<0.001) for Loch Freuchie (2) 

with 38% (i.e. exp-4) and 90% (i.e. exp-7) comparing to the most diverse level 

of diversity (i.e. exp-1). 

As diversity and richness were estimated by two techniques (i.e. T-RFLP and 

pyrosequencing), it was of interest to investigate if the results between the 

two techniques would correlate, if there was a discrepancy and if the 

discrepancy would differ along the diversity gradient. 

  

Figure 4.5 – Scatter plots presenting: A) Correlation between diversity and richness 
(number of OTUs) estimated via pyrosequencing against T-RFLP; B) correlation 
between diversity and richness (number of OTUs) estimated via pyrosequecing against 
discrepancy between diversity and richness between pyrosequencing and T-RFLP (i.e. 
discrepancy richness= richness pyrosequenicing – richness T-RFLP; discrepancy 
Shannon diversity= Shannon diversity pyrosequencing – Shannon diversity T-RFLP). 
Richness= ; diversity= . Continuous regression line= Shannon diversity, dashed 
regression line= richness.  
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As expected, richness estimated via pyrosequening was strongly correlated to 

richness estimated via T-RFLP (P<0.001) and similarly a strong correlation 

was found for Shannon index (P<0.001). The discrepancies between the two 

techniques significantly (P<0.001) positively related to the total 

diversity/richness of the communities. In other words, a strong linear relation 

describes that the higher the diversity/richness of the communities the less T-

RFLP analysis achieves to measure them.  
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4.3.3)Activity)and)stability)along)a)dilution)gradient)

Once biomass recovery was achieved, an experiment to test the relationship 

between diversity and function was initiated. Two functions were tested: total 

communities’ activity and ability to degrade microcystin-LR. Respiration data 

provided overall information on the total communities’ activity at the different 

levels of diversity. Additionally, based on respiration data, the stability of the 

systems at the different diversity levels was measured as mean-standard 

deviation ratio (Tilman et al., 2006) (Figure 4.6).  

 

 

Figure 4.6 – Overall respiration and stability along the dilution gradient for: A) Loch 
Rescobie (1), B) Loch Rescobie (2) and C) Loch Freuchie (2). Columns indicate 
respiration (i.e. solid columns=water control, empty columns=incubated with MC-LR). 
Lines indicate variability (i.e. continuous line= water control, dashed line= incubated 
with MC-LR). Values with different letter differ significantly (P<0.05). Error bars 
represent standard error. n=3 
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The diversity gradient produced via the dilution to extinction approach in the 

experiment Loch Rescobie (1) significantly affected overall respiration of 

freshwater communities in both water control (P=0.044) and treatment 

incubated with microcystin-LR (P<0.001). Overall reduction in respiration (i.e. 

comparison R-1 to R-7) was 73% in the water control and 95% in the 

treatment incubated with microcystin-LR. On the other hand, there was an 

overall reduction in stability for water control and treatment incubated with 

microcystin-LR of 83% and 98%, respectively.  

The diversity gradient produced via the dilution to extinction approach in the 

experiment Loch Rescobie (2) significantly affected overall respiration of 

freshwater communities in both water control (P=0.005) and treatment 

incubated with microcystin-LR (P=0.001). Overall reduction in respiration (i.e. 

comparison R-1 to R-7) was 93% in the water control and 87% in the 

treatment incubated with microcystin-LR. The overall reduction in stability (i.e. 

comparison R-1 to R-7) was quantified to be 95% for water control and 79% 

for treatment incubated with microcystin-LR.  

The diversity gradient produced via the dilution to extinction approach in the 

experiment Loch Freuchie (2) significantly affected overall respiration of 

freshwater communities in both water control (P=0.006) and treatment 

incubated with microcystin-LR (P=0.002). Overall reduction in respiration (i.e. 

comparison R-1 to R-7) was 94% in both the water control the treatment 

incubated with microcystin-LR. The overall reduction in stability (i.e. 

comparison R-1 to R-7) was quantified to be 76% for water control and 83% 

for treatment incubated with microcystin-LR. 

&
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4.3.4)Bacterial)diversity)and)richness:)relations)with)functions)and)variability)

The relationships between diversity and function/stability in Loch Rescobie 

(1)(2) and Loch Freuchie (2) were visualised by plotting the relative bacterial 

diversity and richness, estimated via T-RFLP analysis, against: a) cumulative 

carbon dioxide produced, as a proxy of communities function and; b) stability 

of the systems measured as mean-standard deviation ratio (Tilman et al., 

2006) derived from respiration data (Figure 4.7,Figure 4.8).   

 

Figure 4.7 – Scatter plots showing dependence of communities’ activity on bacterial 
diversity (A) and richness (B) for Loch Rescobie (1) experiment. Dependence of 
communities’ stability on bacterial diversity (C) and richness (D) for Loch Rescobie (1) 
experiment. Bacterial diversity and richness estimated via T-RFLP. For data points: 
sample incubated with MC-LR= ; Water control= . For regression values: M= 
samples incubated with MC-LR; W= water control; continuous line= regression line 
MC-LR; dashed line= regression line water control.  
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For Loch Rescobie (1), a strong positive relationship between diversity and 

function was confirmed when analysed in a univariate regression analysis: 

both bacterial diversity and richness had a highly significant effect (P<0.001) 

on communities’ activity in both treatments tested (i.e. water control and 

incubated with microcystin-LR). When analysed in a univariate regression 

analysis, bacterial richness had a high significant effect (P<0.001) on 

communities’ stability in both treatments tested. Bacterial diversity also had a 

significant impact on communities’ stability of both water control and 

treatment incubated with MC-LR with P<0.001 and P=0.002, respectively. 

 

Figure 4.8 – Scatter plots showing dependence of communities’ activity on bacterial 
diversity (A) and richness (B) for Loch Rescobie (2). Dependence of communities’ 
stability on bacterial diversity (C) and richness (D) for Loch Rescobie (2). Bacterial 
diversity and richness estimated via T-RFLP. For data points: sample incubated with 
MC-LR= ; Water control= . For regression values: M= samples incubated with MC-
LR; W= water control; continuous line= regression line MC-LR; dotted line= 
regression line water control.  
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For Loch Rescobie (2), a strong positive relationship between diversity and 

function was confirmed when analysed in a univariate regression analysis: 

both bacterial diversity and richness had a highly significant effect (P<0.001) 

on communities’ activity in both treatments tested (i.e. water control and 

incubated with microcystin-LR).  

On the other hand, bacterial richness had a highly significant effect on 

communities’ stability in the water control (P=0.004) and treatment incubated 

with MC-LR (P<0.001). Bacterial diversity also had a significant impact on 

communities’ stability in the water control (P=0.005) and treatment incubated 

with MC-LR (P<0.001). 
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Figure 4.9 – Scatter plots showing the dependence of communities’ activity on 
bacterial diversity (A) and richness (B) for Loch Freuchie (2). Dependence of 
communities’ stability on bacterial diversity (C) and richness (D) for Loch Freuchie (2). 
Bacterial diversity and richness estimated via T-RFLP. For data points: sample 
incubated with MC-LR= ; Water control= . For regression values: M= samples 
incubated with MC-LR; W= water control; continuous line= regression line MC-LR; 
dotted line= regression line water control. 

  

For Loch Freuchie (2), a strong positive relationship between diversity and 

function was confirmed when analysed in a univariate regression analysis: 

richness had a highly significant effect (P<0.001) on communities’ activity in 

both treatments tested. Diversity had a significant impact on communities’ 

activity in water control (P=0.002) and treatment incubated with MC-LR 

(P<0.001). 

Bacterial diversity had a highly significant effect (P<0.001) on communities’ 

stability in both treatments tested, likewise did bacterial richness on stability 

of water control (P=0.004) and treatment incubated with MC-LR (P<0.001).  



115 
 

Along with the informative T-RFLP data presented so far in this section, 

pyrosequencing data were available for Loch Rescobie (2) and Loch Freuchie 

(2) experiments allowing a deeper understanding of the total 

diversity/richness of the system (Figure 4.4) and a refined view of the relation 

between diversity/richness and ecosystems functioning/stability. 

 

Figure 4.10 - Dependence of communities’ activity on bacterial diversity (A) and 
richness (B) for Loch Rescobie (2). Dependence of communities’ stability on bacterial 
diversity (C) and richness (D) for Loch Rescobie (2). Bacterial diversity and richness 
estimated via pyrosequencing. For data points: sample incubated with MC-LR= ; 
Water control= . For regression values: M= samples incubated with MC-LR; W= 
water control; continuous line= regression line MC-LR; dotted line= regression line 
water control. 

 

For Loch Rescobie (2), a strong positive relationship between diversity and 

function was confirmed when analysed in a univariate regression analysis: 

both bacterial diversity and richness had a highly significant effect (P<0.001) 
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on communities’ activity in both treatments tested (i.e. water control and 

incubated with microcystin-LR).  

On the other hand, bacterial richness had a high significant effect (P<0.001) 

on communities’ stability in both treatments tested. Bacterial diversity also 

had a significant impact on communities’ stability in the water control 

(P=0.003) and treatment incubated with MC-LR (P<0.001). 

 

Figure 4.11 – Scatter plots showing dependence of communities’ activity on bacterial 
diversity (A) and richness (B) for Loch Freuchie (2). Dependence of communities’ 
stability on bacterial diversity (C) and richness (D) for Loch Freuchie (2). Bacterial 
diversity and richness estimated via pyrosequencing. For data points: sample 
incubated with MC-LR= ; Water control= . For regression values: M= samples 
incubated with MC-LR; W= water control; continuous line= regression line MC-LR; 
dotted line= regression line water control. 

 

For Loch Freuchie (2), a strong positive relationship between diversity and 

function was confirmed when analysed in a univariate regression analysis: 
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richness had a highly significant effect (P<0.001) on communities’ activity in 

both treatments tested. Diversity had a significant impact on communities’ 

activity in water control (P=0.003) and treatment incubated with MC-LR 

(P<0.001). 

Bacterial diversity had a highly significant effect (P<0.001) on communities’ 

stability of treatment incubated with microcystin-LR a significant impact 

(P=0.004) in the water control, likewise did bacterial richness on stability of 

water control (P=0.002) and treatment incubated with MC-LR (P<0.001).  

 &
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4.3.5)Biodegradation)of)MCULR)along)a)diversity)gradient)

Biodegradation of MC-LR was monitored from Loch Freuchie (1), Loch 

Rescobie (1), Loch Rescobie (2) and Loch Freuchie (2) by HPLC (Figure 4.12). 

  

  

Figure 4.12 – Trend of concentration of MC-LR over time in: A) Loch Freuchie (1), B) 
Loch Rescobie (1),C) Loch Rescobie (2) and D) Loch Freuchie (2). No dilutions MC-LR=

 ; Exp-1 MC-LR=  ; Exp-4 MC-LR=  ; Exp-7 MC-LR=  ; Sterile control MC-LR=
 . Error bars indicates standard deviation.  

 

HPLC analysis of samples showed no biodegradation of microcystin-LR for Loch 

Freuchie (1) and Loch Rescobie (1). As microbial communities from Loch 

Rescobie have been reported to consistently be able to degrade microcystin-LR 

(see Chapter 3), it was hypothesised that the lack of biodegradation ability of 

microbial communities from this water body was linked to filtration via 1.2 µm 

filter (see section 4.2.1). In experiment Loch Rescobie (2) water was not 

filtered, however the biodegradation capability was absent in all dilutions 
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levels studied (i.e. exp-1, exp-4, exp-7). However, for Loch Rescobie (2) and 

Loch Freuchie (2), undiluted treatment was set up to test if even a ten-fold 

dilution could be the cause of the lack of biodegradation ability. Microbial 

communities from undiluted samples for Loch Rescobie (2) degrade 90% of 

microcystin-LR by day 7 with a half-life of 2.1 days. Microbial communities 

from undiluted samples from Loch Freuchie (2) did not show microcystin-LR 

biodegradation ability even in undiluted samples. 

 )
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4.4)Discussion)

4.4.1)DilutionUtoUextinction,)biomass)recovery)and)diversity)measures))

The aim of this work was to evaluate the impact of a reduction in freshwater 

microbial diversity on the functioning and stability of freshwater ecosystems. A 

microbial diversity gradient was obtained via a dilution-to-extinction approach 

that preferentially removes rare species (Salonius, 1981). Since the dilution 

approach also creates a gradient in biomass, the microcosms were pre-

incubated to ensure biomass recovery that was, in all cases, achieved within 6 

days (Figure 4.2). The rapid bacterial biomass recovery is consistent with 

other works in aquatic environments (Szabó et al., 2007) and opposed to the 

lengthy bacterial biomass recovery required in soils (Griffiths et al., 2001). To 

assess how bacterial communities’ diversity and richness were affected by the 

dilution manipulation, 16S rRNA gene amplicon T-RFLP analysis and 

pyrosequencing were performed at the end of the biomass recovery period. 

The dilution-to extinction approach was, as shown from previous authors 

(Wertz et al., 2006), effective in reducing diversity of bacterial communities 

(Figure 4.3). However, some reports (Franklin et al., 2001, Franklin and Mills, 

2006) showed contrasting results, where dilution treatment did not follow a 

significant reduction in diversity/richness when measured via DNA 

fingerprinting techniques. In this work, considering DNA fingerprinting data for 

all sampling sites/times presented, a three orders of magnitude dilution 

difference (i.e. comparison exp-1 to exp-4) produced a 28%±6 reduction in 

diversity and a 33%±6 reduction in richness. A six orders of magnitude 

dilution difference (i.e. comparison exp-1 to exp-7) produced a very consistent 

reduction in diversity and richness of 71% ±2 and 70%±4, respectively. When 

the diversity and richness of bacterial communities were analysed via 
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pyrosequencing, a three orders of magnitude dilution difference (i.e. 

comparison exp-1 to exp-4) produced a 33%±6 reduction in diversity and a 

54%±2 reduction in richness. A six orders of magnitude dilution difference 

(i.e. comparison exp-1 to exp-7) produced a very consistent reduction in 

diversity and richness of 93% ±1 and 89%±1, respectively. The 

reproducibility of pyrosequencing compared to T-RFLP in the evaluation of 

aquatic microbial diversity was reported by Pilloni et al.(2012). In this work it 

was shown that the two techniques are able to effectively measure differences 

in bacterial diversity along a steep dilution gradient. However, the comparison 

with pyrosequencing showed that the proportion of species that T-RFLP 

analysis measured was negatively and strongly related with the diversity of 

the system. These findings confirms the “tragedy of the uncommon” (Bent and 

Forney, 2008) when evaluating the diversity of microbial communities via DNA 

fingerprinting approaches, and add that the diversity of the system dictates 

the scale of the “tragedy”. 

4.4.2)Communities)functioning)and)stability)along)the)dilution)gradient)

Of the three approaches available to study the relation between microbial 

diversity and function (i.e. microcosm, removal and observational studies) 

(Bell et al., 2009), when using the removal approach authors have reported 

mixed results for the relation between diversity and functions. A detrimental 

effect of dilutions treatments on aquatic microbial functioning was reported by 

Peter et al. (2011) where the authors showed a decline in chitin and cellulose 

degradation rates along the dilution gradient. Franklin et al. (2001) reported 

that dilution treatments reduces the number of carbon sources that raw 

sewage water microbial communities are able to metabolise different carbon 

sources, while Franklin and Mills (2006) did not find a significant effect of a 
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dilution gradient on metabolism of glucose, acetate, citrate and an amino acid 

mixture. Wertz et al. (2006) reported that dilutions spanning over seven order 

of magnitude did not significantly affect carbon mineralisation or denitrification 

activity. Contrasting results in literature depends, amongst others, upon the 

function measured, the sample origin, experimental approach, environmental 

factors and the combination of these factors. In this work, it was found that a 

consistent significant effect of the dilution treatment on overall microbial 

activity and stability of the system tested (Section 4.4.2.2) without a constant 

effect of the addition of microcystin-LR (Figure 4.6). Microcystin-LR is highly 

toxic to animals and humans due to its hepatotoxicity (Edwards and Lawton, 

2009) and potential carcinogen activity (Grosse et al., 2006). However, 

studies of its effect on bacterial communities have given contrasting results 

(Martins et al., 2011) and the ecological role of cyanotoxins has not been fully 

understood (Kaebernick and Neilan, 2001). In this perspective these results 

are not surprising showing an inconsistent effect of microcystin-LR on function 

and stability of microbial communities. 

 )
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4.4.3)Diversity,)richness,)overall)communities)functioning)and)stability)

Although many investigations have attempted to study the relation between 

microbial diversity and functioning with a dilution-to-extinction approach, only 

few have then observed a positive relation between diversity estimates and 

measured functions. Of the studies that did not show such relationships, either 

they did not measure a diversity gradient along the dilution gradient (Franklin 

et al., 2001, Franklin and Mills, 2006) or did not report function/stability 

differences along the diversity gradient (Griffiths et al., 2001, Wertz et al., 

2007). A study based on observational data has reported a positive relation 

between increased diversity and increased stability after perturbation (Girvan 

et al., 2005). Moreover, to date, the study of artificial communities including 

the highest number of species (i.e.72) in various combinations to study the 

relation between bacterial diversity and function in microcosm experiment 

showed the species composition and richness are both significant in influencing 

functions, with the latter having the higher impact (Bell et al., 2005b). A 

recent work based on dilution-to-extinction manipulation of microbial diversity 

by Philippot et al. (2013) showed a significant reduction in potential 

denitrification activity in soils following a dilution treatment where a reduction 

of 75% in OTUs followed a reduction in activity of 48 to 88%. This work, 

independent of the technique used to assess bacterial diversity and richness, 

showed that a significant (P<0.05) reduction in bacterial diversity that was 

achieved via a dilution-to-extinction approach followed a significant reduction 

in carbon mineralisation (P<0.05). It was also shown that, in all experiments 

sites/time considered, both carbon mineralisation and stability on the microbial 

communities were significantly (P<0.05) affected by both bacterial diversity 

and richness (Section 4.3.5). Based on the more informative pyrosequencing 
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data, considering the extreme level of diversity (i.e. exp-1 and exp-7), a 

reduction in diversity of 89-90% (92-97% richness) followed a reduction in 

carbon mineralisation from 55 to 95% and in stability from 76 to 97%. In the 

current “age of extinction” (Naeem et al., 2012) these findings stress the 

importance of biodiversity in maintaining ecosystem functioning and stability.  

4.4.4)Biodegradation)of)microcystinULR)along)the)dilution)gradient)

Because of the expected degradation of microcystin-LR by microbial 

communities in Loch Rescobie (Edwards et al., 2008), lack of biodegradation 

observed in Loch Rescobie (1) experiment was unexpected. Additionally, the 

absence of biodegradation activity even in the most bio-diverse microcosms 

did not allow investigating the relation between biodiversity and a specific 

function such as biodegradation of microcystin-LR. The cause of the absence 

of biodegradation activity was initially attributed to the filtering via 1.2 µm 

filter that was carried out in the attempt to minimise the effect of bacterial 

grazers (Szabó et al., 2007, Bell et al., 2010). Due to the extreme variable 

size of prokaryotes (Koch, 1996) the filtration did not only remove most of the 

bacterial grazers, but also a number of bacteria. Also, it has been shown that 

microbes attached to particles are the most active in aquatic environment 

(Kirchman and Mitchell, 1982) and the filtration would remove them. As no 

previous studies have been done in investigating the role of depletion of 

microbial diversity on biodegradation activity of microcystins, it was not 

considered that the lack of biodegradation could be caused by a single ten-fold 

dilution of environmental sample. Upon this assumption, the lack of 

degradation observed in the Loch Freuchie (1) experiment was also attributed 

to the filtration. However, when a second set of experiments were carried out 

again, this time without filtration, with freshwater from both lakes (i.e. Loch 
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Rescobie (2) and Loch Freuchie (2)) the results suggested that the cause of 

the lack of degradation of microbial communities from Loch Rescobie was the 

ten-fold dilution, while even undiluted microbial communities from Loch 

Freuchie were not able to degrade microcystin-LR within the duration of the 

experiment. More studies need to be done to confirm findings, however, the 

data from the Loch Rescobie (2) experiment suggests that even a little 

reduction in diversity is able to determine the loss of microcystin-LR 

biodegradation ability.  
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4.5)Conclusions)and)future)work)

For microbial communities, previous biodiversity-ecosystem functioning 

experiments have shown contrasting results, and it is commonly thought that 

microbial communities are highly redundant (Wertz et al., 2006). In this work, 

a significant reduction in microbial diversity achieved by a dilution-to-

extinction approach always followed a significant reduction in carbon 

mineralisation. Bacterial diversity and carbon mineralisation were linked by a 

significant linear relationship. Also significant was the impact of the removal 

experiment on stability of the system, and again stability was significantly 

correlated to diversity and richness of the system. Microbial ability to degrade 

microcystin-LR was lost with a single ten-fold dilution suggesting that even a 

small reduction in diversity can have a dramatic effect on ecosystem 

functioning. 

While results for carbon mineralisation are very consistent amongst sampling 

time/sites, stability of the system and biodegradation of microcystin-LR needs 

further exploration to confirm findings. For future work, it will be important to 

include undiluted treatments in experiments, as this will give information on 

diversity and functioning of the system at its natural biodiversity level. Also, it 

will strengthen the findings if the hypothesis will be tested in different 

freshwater systems and/or geographical locations. It will also be beneficial to 

test the relationship between microbial diversity and biodegradation of 

relevant toxic man-made compounds, as these are continuously introduced in 

the environment by human activities.   
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5. BACTERIAL)DIVERSITY,)FUNCTIONS)AND)STABILITY:)RELATIONS)

IN)RIVER)WATER)

5.1)Introduction)

Results from Chapter 4 suggest that microbial diversity plays a key role on 

ecosystem functioning and services in the Scottish lakes tested. Due to the 

lack of literature and contrasting evidence on the relationship between 

biodiversity and water purification (Cardinale et al., 2012), findings of Chapter 

4 are of extreme interest but need to be confirmed in other systems. To 

confirm results presented in Chapter 4, it was decided to test whether 

diversity-ecosystem functioning relationships found are consistent in river 

water that harbour different microbial communities (Pernthaler, 2013). One of 

the main man-made pollutants of river systems is triclosan. Triclosan is a 

widely used antimicrobial agent (Bester, 2005) that continuously enters 

freshwater systems due to incomplete dissipation in wastewater treatment 

plants (Kookana et al., 2011). Triclosan targets lipid synthesis in bacteria 

(McMurry et al., 1998) and is effective from a concentration of 10 µg L-1 

(Bhargava and Leonard, 1996). Numerous evidence suggests that triclosan 

has the ability to promote bacterial cross-resistance with antibiotics (Levy, 

2001). In higher organisms triclosan has adverse effects on the endocrine 

system (Schuur et al., 1998) and ability to impair mitochondrial activity 

(Newton et al., 2005). That is of particular concern as the antibacterial agent 

has been detected in various human tissues including serum (Allmyr et al., 

2006) and adipose tissue (Geens et al., 2012). 
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To further investigate the role that microbial species diversity play on 

ecosystem functions and stability in freshwater systems three hypotheses 

were tested in river systems: (1) a decrease in diversity will affect broad 

ecosystem function in opposition to “insurance hypothesis” (Yachi and Loreau, 

1999) but in accordance with the findings of Chapter 4; (2) a decrease in 

diversity will have a negative impact on system stability and ; (3) a decrease 

in diversity will have a dramatic impact on specialised ecosystem functions 

(i.e. microcystin-LR and triclosan biodegradation). 

 !
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5.2)Materials)and)Methods)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

5.2.1!Freshwater!Sampling))

Two sampling events separated by three days were carried out.  

For the first sampling, sub-surface water (i.e. within 10 cm from surface) was 

sampled on the 4th of February 2013 from the Hawkesbury River (H) and 

Farmers Creek (F) (downstream of Lithgow). The two sites represent 

polluted/high nutrient rivers belonging to the Hawkesbury-Napean river 

system in New South Wales, Australia. For details about geographic 

coordinates and characteristics of sampling sites refer to section 2.2.1 and 

2.4.6. Water was sampled in 1 L glass bottles wrapped in aluminium foil to 

minimise the input of light, water temperature was 14.8°C for F site and 

23.5°C for H site. Once in the laboratory, water pH was measured (H=6.85, 

F=7.21), then water was filter sterilised via Stericup filter units (0.22 µm, 

Millipore) and autoclaved. After cooling overnight, pH was measured again and 

was found to be higher than original sample as reported from similar studies 

(Peter et al., 2011). pH was adjusted to 7.04 for H and 7.27 for F with 1M 

hydrocloridic acid. Water was then stored at 4°C ready to be used for next 

steps. 

For the second sampling, sub-surface water (i.e. within 10 cm from surface) 

was sampled in triplicate on the 7th of February 2013 from the same sites 

mentioned above. Water was sampled in 500 mL glass wrapped in aluminium 

foil to minimise the input of light, water temperature was 16.0°C for F and 

28.0°C for H. Once in the laboratory water pH was measured (H=7.33±0.03, 

F=7.32±0.01). An AQ2 discrete analyser (Seal Analytical Inc., Maquon WI, 

USA) was used to determine water concentration of ortho-phosphate-P 
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(method: EPA-118-A Rev.5),  nitrate (method: EPA-127-A Rev.7) and 

ammonia (method: EPA-103-A Rev.6). Total nitrogen and total dissolved 

carbon were measured using a TOC-L analyser (Shimadzu, Kyoto, Japan).  

5.2.2)Bacterial)diversity)manipulations)and)biomass)recovery)monitoring)

To achieve a bacterial diversity gradient without need of culturing a “dilution 

to extinction” approach was used as described in Chapter 4. In brief, water 

sampled from H and F on the second sampling time was serially diluted with 

water sampled from H and F on the first sampling, which had been filter 

sterilised and autoclaved to ensure sterility. Ten-fold serial dilutions were 

carried out in triplicate under laminar flow and four treatments were kept for 

further studies: 1) undiluted; 2) 10 exp-1; 3) 10 exp-2; 4) 10 exp-4. Once 

dilutions were achieved in a final volume of 225 mL contained in 500 mL glass 

conical flasks, they were incubated for biomass recovery at 20°C shaking at 70 

rpm in dark conditions. Biomass recovery was tested as described in section 

4.2.2. 

5.2.3)Biodegradation)assays:)microcystinULR)and)triclosan)

Once biomass recovery was achieved, a biodegradation assay was set up with 

all dilution levels obtained from both sites in triplicate. Microcystin-LR (0.5 mg 

L-1) and triclosan (10 µg L-1) biodegradation ability of the microbial 

communities were tested along with water control for all dilution levels. Also 

sterile controls were included. Microcystin-LR treatment was set up and 

samples analysed as described in section 4.2.3.2. Triclosan treatment was set 

up and samples analysed as described in section 2.2.4. HPLC (microcystin-LR) 

and ELISA (triclosan) analysis were carried out on aliquots from both 
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treatments that were taken every 4 days and immediately frozen as described 

in sections mentioned above. 

5.2.4)Estimation)of)richness)and)diversity:)TURFLP)and)pyrosequencing))

T-RFLP and pyrosequencing analysis were carried out as described in sections 

4.2.4 and 4.2.5. 
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5.3)Results)

5.3.1)Freshwater)chemical)analysis))

Chemical analysis was carried out on freshwater to determine concentrations 

of some important water chemistry parameters (Table 5.1). 

Table 5.1 – Concentration of water chemistry parameters for Hawkesbury River and 
Farmers Creek. Mean values expressed in mg L-1± standard deviation. 

' Total'
dissolved'
carbon'

Total'
nitrogen'

Ortophosphate' Ammonia' Nitrate'

Hawkesbury'
River'

10.85±0.1! 1.24±0! 0.01±0! 0.01±0! 0.63±0!

Farmers'Creek' 5.19±0.2! 4.19±0.2! 0.01±0! 0.06±0! 3.41±0!
 

Both total nitrogen and nitrate were well above the national values considered 

able to trigger negative impact on the ecosystem (Anzecc, 2000). 

  



136 
 

5.3.1)Bacterial)biomass)recovery)and)its)trend)over)time)

Before to test the hypothesis related to the diversity-function relation, biomass 

of the manipulated levels of biodiversity was monitored over time to check its 

recovery.  Biomass recovery along the dilution (diversity) range was achieved 

within 3 days for both Hawkesbury River and Farmers Creek and maintained a 

constant magnitude until the termination of the biodegradation assay (Figure 

5.1). 

  

Figure 5.1 - Bacterial biomass over time at different dilution levels: data of gene copy 
number mL-1 of bacterial 16S rRNA gene number of bacteria in original sample from: 
A) Hawkesbury River and; B) Farmers Creek. =undiluted;  = exp-1;  = exp-

2;  = exp-4. W=water control, T=incubated with triclosan. M=incubated with MC-LR. 
Arrows indicate time point when biomass recovery was achieved. Error bars indicate 
standard error. n=3 

 

5.3.2)Bacterial)diversity)and)richness)along)the)dilution)gradient:)DNA)

fingerprinting)and)pyrosequencing)

Once biomass recovery was achieved, relative bacterial diversity was 

estimated via T-RFLP analysis. Richness and diversity estimates were obtained 

as described in section 4.3.2.  
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Figure 5.2 – Bar plots showing relative diversity and richness (based on T-RFLP data) 
along the dilution gradient of: A) Farmers Creek and; B) Hawkesbury River. Solid 
columns=diversity, empty columns=richness. F=Farmers Creek, H=Hawkesbury River. 
Values with different letters differ significantly (P<0.05). Error bars indicate standard 
error.  n=3 

 

Based on T-RFLP data, the dilution to extinction approach was an effective 

method to manipulate diversity and richness of bacterial communities in 

freshwater. For Farmers Creek (Figure 5.2A) the dilution significantly affected 

both diversity (P<0.001) and richness (P<0.001) with an overall reduction 

(i.e. comparison undiluted to exp-4) of 54% in diversity and 61% in richness. 

For Hawkesbury River (Figure 5.2B) the dilution significantly affected both 

diversity (P<0.001) and richness (P<0.001) with an overall reduction in 

diversity and richness of 52% and 59%, respectively.  
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Figure 5.3 – Bar plots showing diversity and richness (based on pyrosequencing data) 
along the dilution gradient of: A) Farmers Creek and; B) Hawkesbury River. Solid 
columns=diversity, empty columns=richness. F=Farmers Creek, H=Hawkesbury River. 
Values with different letters differ significantly (P<0.05). Error bars indicates standard 
error. n=3 

 

Based on pyrosequencing data, the dilution-to-extinction approach was an 

effective method to manipulate diversity and richness of bacterial communities 

in freshwater. For Farmers Creek (Figure 5.3A) the dilution significantly 

affected both diversity (P=0.002) and richness (P<0.001) with an overall 

reduction (i.e. comparison undiluted to exp-4) of 47% in diversity and 71% in 

richness. For Hawkesbury River (Figure 5.3B) the dilution significantly affected 

both diversity (P<0.001) and richness (P<0.001) with an overall reduction in 

diversity and richness of 57% and 84%, respectively.  

As diversity and richness were estimated by two techniques (i.e. T-RFLP and 

pyrosequencing), it was of interest to investigate whether the results between 

the two techniques would correlate, if there was a discrepancy and if the 

discrepancy would differ along the diversity gradient.  
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Figure 5.4 – Scatter plots showing: A) Correlation between diversity (D) and richness 
(R) estimated via pyrosequencing against T-RFLP; B) correlation between diversity 
and richness estimated via pyrosequencing against discrepancy between diversity and 
richness between pyrosequencing and T-RFLP (i.e. discrepancy richness= richness 
pyrosequencing – richness T-RFLP; discrepancy Shannon diversity= Shannon diversity 
pyrosequencing – Shannon diversity T-RFLP). Richness= ; diversity= . Continuous 
regression line= Shannon diversity, dashed regression line= richness. 

 

As expected, richness estimated via pyrosequencing was strongly correlated to 

richness estimated via T-RFLP (P<0.001) and similarly a strong correlation 

was found for Shannon index (P<0.001). The discrepancies between the two 

techniques significantly (P<0.001) positively related to the total 

diversity/richness of the communities. In other terms, a strong linear relation 

describes that the higher the diversity/richness of the communities, the less T-

RFLP analysis achieves to measure them.  
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5.3.3)Activity)and)stability)along)a)dilution)gradient)

Once biomass recovery was achieved, an experiment to test the relation 

between diversity and function was initiated with focus on one general 

function (i.e. carbon mineralisation) and two specialised functions (i.e. ability 

to degrade microcystin-LR and ability to degrade triclosan). Additionally, based 

on respiration data, the stability of the systems at the different diversity levels 

was measured as mean-standard deviation ratio. 

   

Figure 5.5 - Overall respiration and stability along the dilution gradient for: A) Farmers 
Creek and; B) Hawkesbury River. Columns indicate respiration (i.e. solid 
columns=water control; striped column= incubated with triclosan; empty 
columns=incubated with MC-LR). Lines indicate variability (i.e. continuous line= water 
control; dotted line=incubated with triclosan; dashed line= incubated with MC-LR). 
Values with different letters differ significantly (P<0.05). Error bars represent standard 
error. n=3 

 

The diversity gradient produced via the dilution-to-extinction approach in the 

experiment with freshwater from Farmers Creek significantly affected 

(P<0.001) overall respiration of freshwater communities in all treatments 

considered (i.e. water control, incubated with MC-LR and incubated with 

triclosan). Overall reduction in respiration (i.e. comparison undiluted to exp-4) 

was 70% in the water control, 72% in the treatment incubated with 

microcystin-LR and 46% in the treatment incubated with triclosan. On the 
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other hand, there was an overall reduction in stability of 87% for water 

control, 87% for treatment incubated with microcystin-LR and 73% for 

treatment incubated with triclosan. 

The diversity gradient produced via the dilution-to-extinction approach in the 

experiment with freshwater from Hawkesbury River significantly affected 

(P≤0.001) overall respiration of freshwater communities in all treatments 

considered. Overall reduction in respiration was 68% in the water control, 

74% in the treatment incubated with microcystin-LR and 72% in the 

treatment incubated with triclosan. The overall reduction in stability was 

quantified to be 87% for water control, 59% for treatment incubated with 

microcystin-LR and 55% for the treatment incubated with triclosan. 

 )
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5.3.4)Bacterial)diversity)and)richness:)relations)with)functions)and)variability)

5.3.4.1&Relations&based&on&T6RFLP&estimates&of&diversity&and&richness&

The relationships between diversity and function/stability in Farmers Creek 

and Hawkesbury River were visualised by plotting the relative bacterial 

diversity and richness, estimated via T-RFLP analysis, against: a) cumulative 

carbon dioxide produced, as a proxy of communities’ function and; b) stability 

of the systems measured as mean-standard deviation ratio (Tilman et al., 

2006) derived from respiration data. 

 

Figure 5.6 – Scatter plots showing the dependence of communities’ activity on 
bacterial diversity (A) and richness (B) for Farmers Creek experiment. Dependence of 
communities’ stability on bacterial diversity (C) and richness (D) for Farmers Creek 
experiment. Bacterial diversity and richness estimated via T-RFLP. For data points: 
Water control= ; samples incubated with MC-LR= ; samples incubated with 
triclosan= . For regression values: W= water control; M= samples incubated with MC-
LR; T=samples incubated with triclosan.  Dashed line= regression line water control; 
continuous line= regression line MC-LR; dotted line=regression line triclosan.  
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For freshwater microbial communities from Farmers Creek, a strong positive 

relationship between diversity and function was confirmed when analysed in a 

univariate regression analysis: both bacterial diversity and richness had a 

highly significant effect (P<0.001) on communities’ activity in all treatments 

tested (i.e. water control, incubated with microcystin-LR and incubated with 

triclosan).  

At the same time, both bacterial diversity and richness had a highly significant 

effect (P<0.001) on communities’ stability in all treatments tested. 

 

Figure 5.7 – Scatter plots showing the dependence of communities’ activity on 
bacterial diversity (A) and richness (B) for Hawkesbury River experiment. Dependence 
of communities’ stability on bacterial diversity (C) and richness (D) for Hawkesbury 
River experiment. Bacterial diversity and richness estimated via T-RFLP. For data 
points: Water control= ; samples incubated with MC-LR= ; samples incubated with 
triclosan= .  For regression values: W= water control; M= samples incubated with 
MC-LR; T=samples incubated with triclosan.  Dashed line= regression line water 
control; continuous line= regression line MC-LR; dotted line=regression line triclosan. 
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For freshwater microbial communities from Hawkesbury River, a strong 

positive relationship between diversity and function was confirmed when 

analysed in a univariate regression analysis: both bacterial diversity and 

richness had a highly significant effect (P<0.001) on communities’ activity in 

all treatments tested (i.e. water control, incubated with microcystin-LR and 

incubated with triclosan).  

Regarding the relationship between bacterial diversity/richness with stability of 

the system that appeared to be weaker in scatter plot (Figure 5.7C-D), when 

analysed via linear regression analysis it always showed a significant effect of 

diversity/richness on stability (P<0.05). In detail, diversity was significantly 

correlated with stability of water control (P<0.001), treatment incubated with 

triclosan (P=0.008) and treatment incubated with microcystin-LR (P=0.008). 

Bacterial richness was significantly correlated with stability of water control 

(P<0.001), treatment incubated with triclosan (P=0.013) and incubated with 

microcystin-LR (P=0.014). 

5.3.4.2&Relations&based&on&pyrosequencing&estimates&of&diversity&and&richness&

The relationships between diversity and function/stability in Farmers Creek 

and Hawkesbury River were visualised by plotting bacterial diversity and 

richness estimated via pyrosequencing against: a) cumulative carbon dioxide 

produced, as a proxy of communities’ function and; b) stability of the systems 

measured as mean-standard deviation ratio derived from respiration data. 
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Figure 5.8 – Scatter plots showing the dependence of communities’ activity on 
bacterial diversity (A) and richness (B) estimated via pyrosequencing for Farmers 
Creek experiment. Dependence of communities’ stability on bacterial diversity (C) and 
richness (D) for Farmers Creek experiment. For data points: Water control= ; 
samples incubated with MC-LR= ; samples incubated with triclosan= . For regression 
values: W= water control; M= samples incubated with MC-LR; T=samples incubated 
with triclosan.  Dashed line= regression line water control; continuous line= 
regression line MC-LR; dotted line=regression line triclosan.  

 

For freshwater microbial communities from Farmers Creek, a strong positive 

relationship between diversity and function was confirmed when analysed in a 

univariate regression analysis: both bacterial diversity and richness had a 

highly significant effect (P<0.001) on communities’ activity in all treatments 

tested (i.e. water control, incubated with microcystin-LR and incubated with 

triclosan).  

At the same time, both bacterial diversity and richness had a highly significant 

effect (P<0.001) on communities’ stability in all treatments tested. 
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Figure 5.9 – Scatter plots showing the dependence of communities’ activity on 
bacterial diversity (A) and richness (B) estimated via pyrosequencing for Hawkesbury 
River experiment. Dependence of communities’ stability on bacterial diversity (C) and 
richness (D) for Hawkesbury River experiment. For data points: Water control= ; 
samples incubated with MC-LR= ; samples incubated with triclosan= . For regression 
values: W= water control; M= samples incubated with MC-LR; T=samples incubated 
with triclosan.  Dashed line= regression line water control; continuous line= 
regression line MC-LR; dotted line=regression line triclosan. 

 

Based on pyrosequencing data, a strong positive relationship between 

diversity of freshwater microbial communities from Hawkesbury River and 

function was confirmed when analysed in a univariate regression analysis: 

both bacterial diversity and richness had a highly significant effect (P<0.001) 

on communities’ activity in all treatments tested (i.e. water control, incubated 

with microcystin-LR and incubated with triclosan).  

Regarding the relationship between bacterial diversity/richness with stability of 

the system that appeared to be weaker in scatter plot (Figure 5.9C-D), when 
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analysed via linear regression analysis it always showed a significant effect of 

diversity/richness on stability (P<0.05). In detail, diversity was significantly 

correlated with stability of water control (P<0.001), treatment incubated with 

triclosan (P=0.002) and treatment incubated with microcystin-LR (P=0.003). 

Bacterial richness was significantly correlated with stability of water control 

(P<0.001), treatment incubated with triclosan (P=0.007) and incubated with 

microcystin-LR (P=0.007). 

 

 )
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5.3.5)Biodegradation)of)triclosan)along)the)dilution)gradient)

Triclosan concentration was measured every four days in each of the dilution 

levels deriving from the dilution-to-extinction approach. Data for both Farmers 

Creek and Hawkesbury River showed different rates of degradation in the 

different dilution levels (Figure 5.10). 

  

Figure 5.10 – Biodegradation of triclosan along the dilution gradient over time of: A) 
Farmers Creek and; B) Hawkesbury River. =undiluted;  = exp-1;  = exp-2;

 = exp-4;  = sterile control. For all dilution levels n=3; for sterile control n=2. 
Error bars indicate standard error.  

 

Half-life (DT50) of triclosan was estimated as described in section 2.2.4 and 

results are graphically presented in Figure 5.11.  

 

Figure 5.11 – Bar plot showing triclosan half-life (DT50) along the dilution gradient. 
Solid columns=Hawkesbury River; Empty columns=Farmers Creek. Values with 
different letters differ significantly (P<0.05). Error bars indicate standard error. n=3 
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There was a significant difference in triclosan DT50 along the dilution gradient 

for both Farmers Creek (P=0.05) and Hawkesbury River (P=0.02). In Farmers 

Creek triclosan DT50 values went, on average, from 1.4 days (undiluted) to 

10.4 days (exp-4). In Hawkesbury River, triclosan DT50 values went from 1.1 

to 8.5 days. Also, although a clear pattern in stability (i.e. standard deviation-

mean ratio) was not observed along the three most diverse dilution levels (i.e. 

1X, exp-1, exp-2; data not shown), a high variability was observed for the least 

diverse dilution level.  

5.3.5)Biodegradation)of)microcystinULR)along)the)dilution)gradient)

Microcystin-LR concentration was measured every four days in each of the 

dilution levels deriving from the dilution-to-extinction approach. Data for both 

Farmers Creek and Hawkesbury River showed different rates of degradation in 

the different dilution levels (Figure 5.12). 

  

Figure 5.12 - Biodegradation of microcystin-LR along the dilution gradient of: A) 
Farmers Creek and; B) Hawkesbury River. =undiluted;  = exp-1;  = exp-2;

 = exp-4;  = sterile control. For all dilution levels n=3; for sterile control n=2. 
Error bars indicate standard error.  
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Half-life (DT50) of microcystin-LR was estimated as described in section 2.2.4 

and results are graphically presented in Figure 5.13.  

 

Figure 5.13 – Bar plot showing microcystin-LR half-life (DT50) along the dilution 
gradient. Solid columns=Hawkesbury River; Empty columns=Farmers Creek. Values 
with different letter differ significantly (P<0.05). Error bars indicate standard error. 
n=3 

 

No significant differences were present between DT50 of microcystin-LR in the 

various dilution levels in Farmers Creek despite DT50 increased steadily on 

average from undiluted (17 days) to exp-1 dilution (26 days) and exp-2 dilution 

(58 days). Lack of significance was attributed to very high variability 

measured for exp-2 dilution where DT50 ranged from 8 to 108 days. The most 

diluted treatment (exp-4) was not included in analysis as no biodegradation 

occurred. 

Significant differences (P=0.008) were present between DT50 of microcystin-

LR in the various dilution levels in Hawkesbury River. DT50 trend did not 

follow dilution gradient with, on average, a half-life of 6 days on the undiluted, 

46 days in the exp-1 and 14 in the exp-2 dilution level. Again, the most diluted 

treatment (exp-4) was not included in analysis as no biodegradation occurred.   
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5.3.6)Relationships)between)bacterial)commmunities’)diversity)and)specific)

functions)

The relationships between bacterial communities’ diversity and 

triclosan/microcystin-LR biodegradation ability in Farmers Creek and 

Hawkesbury River were visualised by plotting the bacterial diversity estimated 

via T-RFLP and pyrosequencing against the degradation rate constant (k) for 

each sample. Same analyses were carried out for bacterial communities’ 

richness. Degradation rate constants were derived using the tool developed by 

the FOCUS Degradation Kinetics Workgroup and freely available online 

(http://focus.jrc.ec.europa.eu/dk/, last access 26-03-2013). Data were then 

explored via a linear regression analysis to assess the significance of the 

relationship. 
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Figure 5.14 – Dependence of triclosan (T) and microcystin-LR (M) biodegradation rate 
constant (k) in Farmers Creek (F) and Hawkesbury River (H) on: A) bacterial diversity 
(Shannon) and B) bacterial richness estimated via pyrosequencing; C) bacterial 
diversity (Shannon) and D) bacterial richness estimated via T-RFLP. F-T= ; H-T= ; F-
M= ; H-M= . Continuous regression lines= F-T; dotted regression lines=H-T; short 
dashed regression lines= F-M; long dashed regression lines= H-M.  *=P=0.002; 
**=P<0.001. 

 

To simplify the reporting of the outcome of the linear regression analysis 

outcomes were integrated in scatter plots (Figure 5.14). In brief, for both sites 

considered, diversity and richness of bacterial communities, independently 

measured by T-RFLP or pyrosequencing, had a highly significant impact on 

both biodegradation rate constants of triclosan and microcystin-LR. 
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5.4)Discussion)

5.4.1)DilutionUtoUextinction,)biomass)recovery)and)diversity)measures)

The main aim of this work was, as per previous chapter, to study the impact of 

a reduction in freshwater microbial diversity on the functioning and stability of 

the ecosystems. In this chapter a different freshwater system was studied (i.e. 

river) in a different geographical location (i.e. New South Wales, Australia) and 

with a different set up for the dilution levels (i.e. a narrower range). Similarly 

to the previous chapter, a microbial diversity gradient was achieved via a 

dilution-to-extinction approach. The biomass recovery was monitored until it 

recovered in all dilution levels to ensure that the microcosms along the 

gradient differed in biodiversity but not in biomass (Figure 5.1, Figure 5.2). A 

rapid biomass recovery was achieved within three days, coherent with findings 

of the previous chapter (Figure 4.2) and to other studies in freshwater 

systems (Szabó et al., 2007). T-RFLP and pyrosequencing analysis carried out 

at the end of the biomass recovery period showed a significant reduction in 

diversity and richness as a result of the diversity manipulation via the dilution-

to-extinction approach. Pyrosequencing absolute measures of richness and 

diversity were much higher than T-RFLP estimates. However, when comparing 

the percentage reduction achieved by the diversity manipulation, the two 

techniques performed almost equally for Shannon diversity (i.e. based on T-

RFLP data 53% average overall reduction, based on pyrosequencing 52% 

average overall reduction). On the other hand, pyrosequencing was more 

informative for reduction in richness (i.e. based on T-RFLP data 60% average 

overall reduction, based on pyrosequencing data 77% average overall 

reduction). An overview of results from this chapter and from the previous 

chapter suggests that the dilution-to-extinction approach to manipulate 
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bacterial diversity is a reliable method in freshwater systems. T-RFLP analysis, 

despite its limitations (Blackwood et al., 2007, Bent and Forney, 2008), was 

shown to be a good tool in obtaining diversity and richness estimates that are 

a reflection of the more informative data of pyrosequencing (Figure 4.5, Figure 

5.4).   

5.4.2)Communities’)functioning)and)stability)along)the)dilution)gradient)

In this work, both broad (i.e. respiration) and specialised (i.e. triclosan and 

microcystin-LR biodegradation) communities’ functions were significantly 

reduced along the dilution gradient. The reduction in respiration, as a proxy of 

overall microbial activity, along the dilution gradient was consistent with 

results of previous chapter (Figure 4.6). Different authors have reported no 

impact of diversity gradient obtained by dilution-to-extinction approach on 

large scale ecosystem functions in soils (Wertz et al., 2006, Griffiths et al., 

2001). That has been explained assuming that a vast microbial diversity and 

functions potential in soil (Curtis, 2006, Singh, 2010) corresponds with a vast 

redundancy as many species are able to perform large scale functions such as 

carbon mineralisation (Nielsen et al., 2011). On the other hand, few authors 

(Juarez et al., 2013) have reported in soil a reduction in carbon mineralisation 

following erosion of diversity with a removal approach. Studies focusing on 

more specific functions have found, amongst others, a detrimental effect of 

the diversity removal via dilution on nitrification activity (Philippot et al., 

2013), chitinase activity (Peter et al., 2011), resistance to invasion by 

bacterial pathogens (van Elsas et al., 2012). Other works reported that a 

diversity removal via dilution approach did not follow a significant reduction in 

phenol biodegradation (Szabó et al., 2007) and nitrification and denitrification 

(Wertz et al., 2006). The only study looking at the impact of diversity removal 
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on ability to degrade a man-made pollutant (Cook et al., 2006) found a 

positive relation between biodiversity and biodegradation along a 

dilution/diversity gradient but, based upon functional data of artificial 

communities, proposed a relationship where communities’ structure is the true 

driver of system functionality irrespective of diversity. In both sites studied in 

this work, it was observed that microbial communities in most diverse 

treatments (i.e. undiluted) had the capacity to biodegrade 50% of the 

introduced toxic compound within few days. It was also observed that at the 

lowest diversity treatment (i.e. dilution exp-4), microbial communities lost the 

microcystin-LR biodegradation ability while the triclosan biodegradation ability 

was highly reduced with an increased DT50 compared to treatments with 

higher diversity. Triclosan half-life in both sites and microcystin-LR half-life in 

Farmers Creek increased gradually along the dilution gradient, while a peculiar 

trend was observed for microcystin-LR half-life in the Hawkesbury River. In 

the Hawkesbury River microcystin-LR half-life as expected increased from the 

undiluted to the first dilution (exp-1) but then oddly decreased from the first to 

second dilution (exp-2). The unexpected short half-life of microcystin-LR in the 

exp-2 dilution could be explained by a possible fast growth and/or high activity 

of species able to degrade the cyanotoxin. Fast growth could be explained by 

the removal of competitors/predators present in the exp-1: that would have 

allowed species able to carry out biodegradation to grow without disturbances. 

Comparing this work with literature, apart from the peculiarity of each function 

studied, contrasting relations observed could be explained by different initial 

microbial communities, stochastic species selection that occurs during dilutions 

and changes of communities’ structure during the regrowth phase.  Findings 
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may also be explained from interaction of environmental factors and 

complexity of the systems (Langenheder et al., 2010).  

For Farmers Creek stability of the system increased with an exponential trend 

along the dilution gradient with its highest at the undiluted treatment, on the 

other hand, in River Hawkesbury stability had an increase along the dilution 

gradient until the exp-1 dilution followed by a decrease for the undiluted 

treatment. This relationship is similar to results reported in for the experiment 

Loch Rescobie (1) and Loch Freuchie (2) in Chapter 4 (Figure 4.6A,C). An 

overall increase in stability along the dilution gradient suggests there is a 

positive relationship between diversity and stability. However the trend of the 

curve that is not consistent between the different dilutions levels would 

suggest that not only diversity but also community structure play an important 

role in the stability of the system at different diversity levels. A positive but 

idiosyncratic relationship between diversity and stability would best describe 

this relation where communities’ structure also plays an important role (see 

Figure 1.2). 

Neither microcystin-LR nor triclosan had a consistent effect on respiration or 

stability along the dilution/diversity gradient. Results for microcystin-LR are 

consistent with a similar study in a different freshwater system (Chapter 4) 

and possible reasons for lack of effect were discussed in section 4.4.2. 

Triclosan is a widely used and effective antibacterial and antifungal agent 

(McMurry et al., 1998, Levy et al., 1999) which can be found in many 

environments and organisms (Adolfsson-Erici et al., 2002, Dann and Hontela, 

2011) as a result of the vast use followed by environmental discharge (Bester, 

2005). Due to its antimicrobial activity, triclosan could be expected to reduce 



157 
 

carbon mineralisation and other bacterial functions as reported by Stasinakis 

et al. (2008). However, the low concentration (i.e.10 ppb) of triclosan 

employed in this work was not sufficient to trigger a reduction in overall 

microbial activities in the microcosm. Possibly, for microbial communities 

previously exposed to triclosan, the concentration used in this study was not 

sufficient to affect the system and similar findings have been reported in 

activated sludge (Federle et al., 2002). Also, if triclosan addition is considered 

as a stress to the system, an actual increase in overall activity could be 

expected (Schimel et al., 2007).  

 )
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5.4.3)Diversity)and)communities’)functions))

The gradient of diversity achieved via the dilution-to-extinction approach and 

measured by both T-RFLP and pyrosequencing had a highly significant impact 

on both broad and specialised ecosystem functions, as well as on stability of 

the system. Similar results were found for bacterial richness.  

A strong correlation between bacterial diversity and broad ecosystem 

functioning is coherent with work presented in Chapter 4, where the relation 

was tested in different freshwater system types, geographical location and 

with a different setting of dilution levels. Overall respiration, as a measure of 

overall microbial activity, results from all pathways leading to production of 

carbon dioxide and is indeed a function shared by the vast majority of 

microorganisms and hence redundant. Even a drastic decline in microbial 

diversity could be expected to have no impact on a very broad and redundant 

function according to the insurance hypothesis (Yachi and Loreau, 1999). It is 

then expected that the biological parameter mainly affecting a broad and 

redundant function would be microbial biomass. Clearly our findings do not 

comply with the insurance hypothesis, but rather we have shown that a 

reduction in diversity has the ability to reduce both broad and specific 

ecosystem functions, as well as stability of the system. Although it is correct 

that a broad function is carried out by many different species, it is also valid 

that different species will perform better due to niche partitioning (Cardinale, 

2011), selection and facilitation effects (Loreau and Hector, 2001). Applied to 

our simplified, stable and homogeneous microcosm design, niche partitioning 

possibly did not play the most important role but it is noteworthy to consider 

that various different gradients and niches are present even in such simplified 

microcosm design (e.g. planktonic vs sessile organisms, oxygen gradient from 
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water surface to bottom, water speed gradient from centre to edges of bottle). 

The selection effect might have also played a role for our experimental design 

where we manipulated diversity via a dilution-to-extinction approach as 

removal of key species might have occurred. But for a broad function and for 

the trend in carbon mineralisation observed, the selection effect is probably 

not the central factor in determining the gradient of function observed. We 

suggest that for the system and design tested in this work the complementary 

effect played the most important role: a high number of species resulted in a 

higher number of genes, enzymes, pathways and resources that facilitated the 

usage of a natural pool of carbon sources and hence an augmented respiration 

rate (Bell et al., 2005b). 

A strong correlation was also found between bacterial diversity and both 

specialised ecosystem functions studied: triclosan and microcystin-LR 

biodegradation. Opposite to respiration, biodegradation of a specific compound 

is not likely to be carried out by the vast majority of the microorganisms 

present in any given environment. As for many xenobiotics, many studies 

have shown that the ability to degrade triclosan is not exclusive to one 

bacterial species but rather shared by different species belonging to different 

taxonomical groups such as Alpha Proteobateria (Lee et al., 2012), Beta 

Proteobacteria (Meade et al., 2001) and Gamma Proteobacteria (Gangadharan 

Puthiya Veetil et al., 2012). Most isolated species responsible for microcystin-

LR biodegradation also belong to the Proteobacteria phylum (Edwards and 

Lawton, 2009), with few exceptions in the Actinobacteria (Manage et al., 

2009b) and Firmicutes (Nybom et al., 2012). As discussed above for 

respiration, differential ecosystem functioning along the diversity gradient 

might be explained by the different mechanisms of niche partitioning, selection 
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and facilitation.  A gradual decrease in biodegradation activity along the 

diversity gradient observed in this work (Figure 5.14) might not comply with 

the selection hypothesis where a key species is responsible for performing a 

major role for a determined function as in this case where a sudden drop in 

such activity should be recorded. It could be argued that in case species able 

to degrade were slow growing, then the selection hypothesis could stand 

where a slow growing species was gradually diluted and the function gradually 

lost. However, in this case the decrease in function should have been in the 

same order of magnitude as the dilution, while data in this work showed 

otherwise. Niche partitioning might have played a minor role in this system 

but, because information are not available for differential niches preferred 

from different species able to degrade triclosan, its importance is difficult to 

evaluate. The findings of Wohl et al. (2004) showed that, given a specific 

function, species redundancy (i.e. different species able to perform the same 

function) increases the rate at which the function will be performed through 

facilitation effect. Results of our study would suggest a similar mechanism: 

various species able to degrade the toxic compounds introduced in the system 

are present in the more diverse microcosms, and consequently a higher 

degradation rate of the pollutant is observed. In the treatments with lower 

diversity fewer or no species able to degrade the toxic compounds are present 

resulting in a lower or null degradation rate.  
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5.5)Conclusions))

This work confirmed findings of Chapter 4 showing that, independently of the 

freshwater system tested, a reduction in microbial diversity triggers: (1) a 

decrease in a broad ecosystem function such as carbon mineralisation; (2) a 

decrease in system stability; (3) a decrease in specialised function such as 

biodegradation of microcystin-LR and triclosan. 

A huge amount of triclosan is released into the environment due to human 

activities (Bester, 2005), and its main breakdown pathway is biodegradation. 

Triclosan is also a potent antimicrobial agent which has adverse effect on a 

number of aquatic and terrestrial organisms, including mammals (Dann and 

Hontela, 2011, Gee et al., 2008). Triclosan has also the potential to inhibit the 

ability of microbial communities to degrade other xenobiotics in the 

environment (Svenningsen et al., 2011). On the other hand, cyanobacterial 

blooms and the toxins that they produce are occurring with increasing rate 

worldwide mainly due to increased nutrients but also to climatic changes: both 

resulting from human activities (Paerl et al., 2011). Microcystin-LR, one of the 

most common cyanotoxins, is a potent hepatotoxin and possibly carcinogen 

which is stable and persistent in aquatic environment (Lahti et al., 1997). In 

this work it was shown that a reduction in microbial diversity triggers a 

decrease in microbial biodegradation ability for both triclosan and microcystin-

LR. Findings of this work stress the importance of maintaining microbial 

biodiversity in order to sustain important ecosystem services such as 

freshwater purification (Cardinale et al., 2012). 
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6. OVERALL)CONCLUSIONS)AND)FUTURE)WORKS)

From ecological and conservation points of view, the main findings of this 

project suggest that both broad and specialised functions of natural microbial 

communities strongly depend upon their phylogenetic diversity. Of particular 

interest was the observation that a decrease in microbial diversity resulted in a 

reduced, or removed, ability of microbial communities to degrade relevant 

toxic compounds in freshwater environments. As eighty percent of the world’s 

population is exposed to high levels of threat in terms of water security, 

results of this work resonate the importance of biodiversity for ecosystem 

broad functioning and stability and, more importantly, highlight the 

relationship between microbial biodiversity and freshwater purification 

potential. Relationships between microbial diversity and broad functioning and 

its stability were consistent in both lake and river freshwaters tested, 

suggesting the relevance of the relationships across systems. Relationships 

between microbial diversity and biodegradation of both natural and man-made 

toxic compounds were also consistent in river freshwaters tested.  

The current debate regarding biodiversity conservation has its main focus on 

macro-organisms and mostly ignores microbial diversity. This has foundation 

in the belief that there is a huge functional redundancy among microbial 

communities as a result of their vast diversity. This work demonstrated that 

declining microbial diversity has direct consequences for ecosystem 

functioning. Therefore, it is important that the debate regarding biodiversity 

conservation explicitly considers microbial diversity.  
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Other findings of ecological relevancy in this work include the significant 

correlation found between bacterial communities’ structure of natural 

freshwater bodies and historical exposure to cyanobacterial blooms and 

cyanotoxins, but also correlations found between communities’ structure and 

half-life of microcystin-LR.   

From a technical point of view, it was confirmed that a dilution-to-extinction 

approach is a reliable method to manipulate bacterial diversity in freshwater. 

It was also revealed that T-RFLP is a valid method to gain diversity estimates 

that are a reflection of the more informative ones resulting from 

pyrosequencing. Also, given the availability of limited samples sizes, it was 

shown that biodegradation of triclosan at environmental relevant 

concentrations in freshwater microcosms can be effectively followed using 

commercially available ELISA kit.  

From a theoretical point of view, this work provides direct evidence that 

ecological theories developed for macro-organisms (plant and animals) can be 

applied to explain relationships between microbial diversity and ecosystem 

functioning. This knowledge can be harnessed to demonstrate microbial 

regulation of biogeochemical cycles at global scale in order to include microbial 

data in ecosystem models and, in turn, improve their predictions. 

 

Future works should test the relationship between bacterial diversity and 

biodegradation with artificially assembled communities. This approach, despite 

its limitations, would give an insight into the mechanisms and ecological 

interaction responsible for the observed relationships. Also, coherent results 

from the two approaches (i.e. removal in microcosms and artificial 
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communities) could be the starting point for bioremediation strategies where 

microbial ability to degrade toxic compounds in the environment could be 

improved via methodologies that results in increased biodiversity. 

On the other hand, other works should seek instances of these relationships at 

ecosystem level. Determining whether microbial diversity drives 

biodegradation potential in complex natural systems would present a number 

of challenges. Nevertheless, coherent results from the two approaches (i.e. 

removal in microcosms and observation of natural systems) would have the 

potential to develop strong models allowing the prediction of toxic compounds 

persistence in the environment based on microbial data. 

Finally, future works in controlled environments should aim to explore the 

relationships between microbial diversity and specialised functioning along 

relevant environmental gradients (e.g. temperature, pH, salinity) and in 

climate change scenario (i.e. temperature and carbon dioxide increase, 

extreme weathers) in order to identify microbial diversity impacts on resilience 

and recovery of ecosystem functions under stress. 

 )
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