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ABSTRACT ARTICLE HISTORY

The recruitment of bone marrow-derived endothelial progenitor cells Received 15 May 2019

(EPCs) facilitates physiological and pathological processes involved in Accepted 21 August 2019

new blood vessel synthesis. Glucocerebroside, an extract of Cordyceps

militaris, inhibits inflammatory cytokine production and monocyte E : . .
- : - - : . s ndothelial progenitor cells;

migration, although its anti-angiogenic properties in human EPCs angiogenesis;

has remained largely unknown up until now. We describe how glucocerebroside; VEGF-A

glucocerebroside reduces migration as well as tube formation

induced by vascular endothelial growth factor (VEGF) stimulation in

human EPCs, without affecting cell viability. This inhibitory effect

was achieved through the focal adhesion kinase (FAK)/c-Src

pathways. We also found that glucocerebroside reduced VEGF-

promoted upregulation of the transcription factor Runx2 in the

EPCs. The in vivo chick embryo chorioallantoic membrane model

demonstrated that glucocerebroside reduces new vessel formation.

Our investigation is the first to show that glucocerebroside reduces

angiogenesis in human EPCs and to describe the underlying

mechanisms. Further investigations are needed to examine the

effects of glucocerebroside in other angiogenesis-related disorders.
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1. Introduction

Angiogenesis is a progression for synthesis of new capillaries (Folkman, 2006), which is an
important step in physiology involving bone remodelling, embryonic development and
tissue remodelling. Angiogenesis is also critical for pathological processes, including
cancer progression and metastasis, inflammatory diseases and retinopathy (Carmeliet &
Jain, 2000; Jain, 2014; Lii et al., 2016), which has encouraged investigations into the
reduction of angiogenesis in the treatment of tumours and other angiogenesis-associated
diseases (Chung, Lee, & Ferrara, 2010; Su, Huang, & Tang, 2016). So far, around 10 anti-
angiogenic agents, including vascular endothelial growth factor (VEGF) and VEGF recep-
tor (VEGFR) antagonists, have received US FDA approval and been introduced into the
clinic (Petrovic, 2016; Simone et al., 2017).

It is recognized that endothelial progenitor cells (EPCs) starting in the bone marrow
increase postnatal vasculogenesis in physiological and pathological process of new
vessel synthesis (Asahara et al., 1999). EPCs are capable of instigating proangiogenic
responses, such as cell proliferation, development, migration, invasion and metastasis.
Bone marrow EPCs express the cell surface markers CD133, CD34 and VEGFR2, which
contribute to new vessel formation (Yoder, 2012). It has been suggested that tumour
secretion of VEGF and other growth factors controls EPC mobilization and thus regulates
the progression and angiogenesis of certain tumours (Peters et al., 2005). EPCs are also
important modulators of the angiogenic switch that regulates tumour metastasis (Jain &
Carmeliet, 2012). In clinical studies, elevated circulating EPCs levels have been shown
to be associated with various types of malignancies (Nowak et al., 2010; Starzynska
et al,, 2013; Yu et al,, 2007). Thus, the targeting of EPCs appears promising for the treat-
ment of angiogenesis-associated diseases.

Numerous natural compounds are capable of inhibiting angiogenesis through different
mechanisms (Chan, Lien, Lee, & Huang, 2016; Miao, Feng, & Ding, 2012; Su et al., 2013;
Wang & Miao, 2013). Cordyceps militaris, an entomopathogenic fungus, has long been
used to treat inflammatory diseases in humans (Brent et al., 2016). We have previously
shown that the Cordyceps militaris extract, glucocerebroside, reduces lipopolysaccharide
(LPS)-induced production of proinflammatory cytokines, inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) in macrophages (Chiu et al., 2016). Up until now,
the roles of glucocerebroside in EPC-associated angiogenesis have been unclear. Here, we
describe how glucocerebroside reduced EPC migration and tube formation, without any
evidence of cytotoxic activity, via the focal adhesion kinase (FAK)/c-Src pathway. Gluco-
cerebroside also reduced VEGF-induced upregulation of Runx2 (runt-related transcrip-
tion factor 2) in EPCs. The in vivo chick embryo chorioallantoic membrane (CAM)
model also demonstrated that glucocerebroside reduces new blood vessel formation.
Thus, glucocerebroside shows potential as an angiogenic antagonist that targets EPCs.

2. Materials and methods
2.1. Materials

We purchased FAK, p-FAK, c-Src, p-c-Src, PI3 K, p-PI3 K, Akt, p-Akt, c-Jun, p-c-Jun,
Runx2 and B-actin primary antibodies from Santa Cruz Biotechnology (CA, USA). We
obtained recombinant human VEGF from PeproTech (Rocky Hill, NJ, USA). We bought
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Matrigel from BD Biosciences (Bedford, MA, USA). Transwell® inserts were purchased from
Corning (Kennebunk, ME, USA). MV2 basal medium was obtained from PromoCell GmbH
(Heidelberg, Germany). FBS was purchased from HyClone, (Logan, UT, USA).

2.2. Cell culture

EPCs were isolated and cultured according to our previous investigations (IRB Reference
No. P1000002) (Wang et al., 2015; Wu et al., 2014). Cells were maintained at 37°C in a
humidified 5% CO, atmosphere.

2.3. MTT assay

Cells were stimulated with glucocerebroside and then treated with MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] for 30 min. The MTT was dis-
solved in DMSO and absorbance was detected using a microplate reader (BioTek Instru-
ments, Winooski, VT, USA) (Lee et al., 2019; Liu, Chen, Chen, Chang, & Tang, 2016).

2.4. Western blot analysis

EPCs were lysed according to our previous study (Li et al., 2017). Proteins were processed
by SDS-polyacrylamide gel electrophoresis and transferred onto polyvinyldifluoride mem-
branes. Blots were blocked, then treated with primary and secondary antibodies. Finally,
the blots were visualized using an ImageQuant’ = LAS 4000 system (GE Healthcare Life
Sciences, Pewaukee, WI, USA) (Huang, Chen, Tsai, Hsu, & Tang, 2012; Liu et al., 2019).

2.5. Measurement of migratory activity in EPC

Cells were applied at a density of 5 x 10*/well onto the upper chamber of Transwell inserts
and glucocerebroside (1-10 uM) was added to VEGF-containing medium. The migrated
cells on the lower side of filters were fixed with 4% formaldehyde, stained with 0.05%
crystal violet, then photographed and counted under a microscope (Tsai et al., 2015).

2.6. Measurement of tube formation in EPCs

EPCs (3 x 10* cells) were applied to pre-coated Matrigel plates containing VEGF with glu-
cocerebroside (1-10 uM) for 24 h. Tube formation was photographed and numbers of
tube branches were calculated using MacBiophotonics Image] software (Hu et al., 2017;
Tsai et al., 2015).

2.7. CAM assay

The CAM assay was used to examine angiogenic activity in vivo, as according to our pre-
vious research (Chen et al., 2017; Wu et al., 2014). The numbers of blood vessel branches
were counted by microscopy and photographed using a digital camera. All animal inves-
tigations followed approved protocols issued by the China Medical University (Taichung,
Taiwan) Institutional Animal Care and Use Committee.
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2.8. Statistical analysis

Data are presented as the mean + the standard error of the mean. Statistical analysis of
comparisons between 2 groups was performed using the Student’s ¢-test. Statistical com-
parisons of more than 2 groups were performed using one-way analysis of variance
(ANOVA). In all cases, p <0.05 was considered to be statistically significant.

3. Results
3.1. Glucocerebroside does not affect the cell viability of EPCs

Cerebroside derivatives reportedly promote apoptotic signalling in human cancer (Fuji-
wara et al., 2011; Yazama et al,, 2015). The MTT assay was used to examine the viability
of human EPCs after glucocerebroside stimulation. Incubation with glucocerebroside
(0.3-10 uM) for 24 or 48 h did not affect the viability in human EPCs (Figure 1). These
data indicate that glucocerebroside is not cytotoxic in human EPCs.

3.2. Glucocerebroside reduces VEGF-enhanced migration and tube formation of
EPCs

Migration of EPCs via the capillary basement membrane is a critical step in new blood
vessel formation (Ammendola et al.,, 2015). We therefore used the Transwell assay to
analyze the role of glucocerebroside in EPC migration. Treatment of EPCs with VEGF
enhanced their migration activity; this was dose-dependently inhibited by glucocerebro-
side (Figure 2). The tube formation assay is a widely used in vitro mimic of vessel
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Figure 1. Glucocerebroside does not affect the viability of human EPCs. EPCs were incubated with the
indicated concentrations of glucocerebroside for 24 or 48 h and cell viability was determined using the
MTT assay. Data represent the mean + S.E.M.



FOOD AND AGRICULTURAL IMMUNOLOGY 1037

formation. This assay showed that incubation of EPCs with VEGF enhanced reorganiz-
ation and formation of capillary-like structures. In addition, glucocerebroside significantly
reduced VEGF-promoted EPC tube formation (Figure 3), suggesting that glucocerebro-
side has anti-angiogenic effects in human EPCs.

3.3. Glucocerebroside reduces VEGF-induced FAK and c-Src activation

FAK activation reportedly controls EPC angiogenesis (Li et al., 2017; Tsai et al., 2017).
We therefore examined whether glucocerebroside reduces EPC angiogenesis through
the FAK pathway. Stimulation of EPCs with VEGF facilitated phosphorylation of
FAK, while glucocerebroside reduced VEGF-augmented FAK phosphorylation (Figure
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Figure 2. Glucocerebroside reduces VEGF-induced migration of human EPCs. EPCs were stimulated
with or without VEGF (100 ng/mL) with or without the indicated concentrations of glucocerebroside
for 24 h. Cell migration was examined by the Transwell migration assay. Data represent the mean +
S.E.M. *, p < 0.05 compared with the control group; #, p < 0.05 compared with the VEGF-treated group.
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Figure 3. Glucocerebroside reduces VEGF-induced tube formation of human EPCs. EPCs were stimu-
lated with or without VEGF (100 ng/mL) with or without the indicated concentrations of glucocerebro-
side for 24 h. Capillary-like structure formation was examined using the tube formation assay. Data
represent the mean + S.E.M. *, p < 0.05 compared with the control group; #, p < 0.05 compared with
the VEGF-treated group.

4A). Moreover, c-Src has been implicated in the downstream signalling of FAK acti-
vation (Lin et al., 2013; Wang et al., 2017). In this study, VEGF increased c-Src phos-
phorylation, which was antagonized by glucocerebroside (Figure 4B). It is well
established that the PI3K and Akt signalling cascade controls several biological
effects of endothelial cells in the angiogenesis process (Chen et al, 2019; Lee et al,
2015), although we found that glucocerebroside failed to affect the phosphorylation
of the PI3K and Akt pathway (Figure 4C and D). According to our findings, FAK
and c-Src activation are required by glucocerebroside for successful reduction of
VEGF-induced EPC angiogenesis.

3.4. Glucocerebroside reduces VEGF-promoted Runx2 activation in EPCs

Recent reports indicate that the cancer-related transcription factor Runx2 regulates EPC
differentiation and angiogenesis (Li et al., 2019). We therefore examined whether Runx2
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Figure 4. Glucocerebroside suppress the FAK/c-Src pathway in human EPCs. EPCs were incubated with
VEGF-A (100 ng/mL) and the indicated concentrations of glucocerebroside for 24 h. FAK, c-Src, PI3 K
and Akt phosphorylation was examined by Western blot analysis. Data represent the mean + S.E.M.
¥, p < 0.05 compared with the control group; #, p < 0.05 compared with the VEGF-treated group.

is involved in glucocerebroside-promoted inhibition of angiogenesis driven by EPCs. We
found that VEGF-promoted Runx2 upregulation was reduced by glucocerebroside treat-
ment (Figure 5A). Moreover, the activator protein-1 (AP-1) transcription factor and a
related increase in c-Jun expression is implicated in the angiogenic activity of endothelial
cells (Huang et al, 2017). However, we failed to find any glucocerebroside-induced
effects upon VEGF-mediated c¢-Jun phosphorylation (Figure 5B). We conclude that gluco-
cerebroside reduces VEGF-induced EPC angiogenesis via Runx2 activation, not via AP-1
transcriptional activity.

(A) Glucocerebroside (uM) ®) Glucocerebroside (uM)
VEGF (100 ng/ml) VEGF (100 ng/ml)
control 0 1 3 10 control 0 1 3 10
Runx? [S S : ; p-c-Tun | k - B
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i [ ] [ )

Figure 5. Glucocerebroside reduces Runx2 activation in human EPCs. EPCs were incubated with VEGF-A
(100 ng/mL) and the indicated concentrations of glucocerebroside for 24 h. Runx2 and c-Jun expression
was examined by Western blot analysis. Data represent the mean £+ S.E.M. *, p < 0.05 compared with
the control group; #, p < 0.05 compared with the VEGF-treated group.
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3.5. Glucocerebroside reduces angiogenesis in vivo

Next, we used the CAM model to investigate in vivo anti-angiogenic effects. The results
show that VEGF promotes vessel formation in CAM and that glucocerebroside reduces
this activity (Figure 6). Thus, glucocerebroside appears to reduce in vivo angiogenesis.

4. Discussion

Therapeutic angiogenesis for ischemic disorders induces the progress of new blood vessels
from pre-existing vessels, enabling the flow of blood to ischemic tissue. The angiogenic
activities of EPCs constitute an important contribution to neovascularization (Asahara
et al., 1999). They demonstrate a high potential to differentiate into mature endothelial
cells in vitro and exhibit in vivo angiogenic ability in ischemic tissues (Asahara et al.,
1997). Several chemoattractants, including VEGF, recruit circulating EPCs from the
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Figure 6. Glucocerebroside reduces vessel formation in vivo. Five-day-old fertilized chick embryos were
treated with VEGF (100 ng/mL) with the indicated concentrations of glucocerebroside. After 3 days, the
CAMs were examined by microscopy and photographed. Data represent the mean + S.EM. *, p < 0.05
compared with the control group; #, p < 0.05 compared with the VEGF-treated group.
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bone marrow into the bloodstream, subsequently controlling integrity and promoting
tissue repair (Carmeliet, 2005). Chemotherapy agents induce the mobilization of circulat-
ing EPCs and their subsequent “homing” into the cancer (Shaked et al., 2006). Thus, EPC-
targeted treatment may help to antagonize angiogenesis-promoted tumour development
and metastasis. In this study, we report that glucocerebroside reduced VEGF-facilitated
migration and tube formation of human EPCs, without exhibiting any cytotoxic activity.
Our evidence reveals the involvement of the FAK, c-Src and Runx2 signalling cascade in
the anti-angiogenic effects of glucocerebroside. We also found that glucocerebroside
reduces new blood vessel formation in vivo, suggesting that this agent is a potential thera-
peutic candidate for angiogenesis-related diseases.

FAK activation regulates VEGF-induced control of angiogenesis (Hosseini et al., 2019)
and c-Src phosphorylation is implicated in the angiogenic functions of EPCs (Di et al,,
2013). In this study, we found that glucocerebroside reduced FAK and c-Src phosphoryl-
ation, suggesting that the FAK and c-Src pathways mediate the inhibitory effects of gluco-
cerebroside. The PI3 K/Akt signalling mechanism has also been implicated in the
regulation of VEGF-dependent angiogenesis (Liu et al., 2014). However, we failed to
find any evidence in support of glucocerebroside affecting the phosphorylation of PI3 K
and Akt, suggesting that the FAK/c-Src signalling cascade, not the PI3 K/Akt pathway,
mediates glucocerebroside-induced reduction of EPC angiogenesis.

VEGF
$
FAK
.
® o
c-Src .. )
o®
$ Glucocerebroside
Runx2

EPCs
Angiogenesis

Figure 7. Schema depicting how glucocerebroside reduces angiogenesis in human EPCs. Glucocereb-
roside inhibits EPCs angiogenesis via the downstream signalling of FAK, c-Src and Runx2.
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The transcription factor Runx2 mediates angiogenesis activated by the FAK/c-Src sig-
nalling cascade (Kim, Kim, Kim, Seong, & Kim, 2018; Li et al., 2019; Tsai, Huang, Yang, &
Tang, 2012). Here, we found that treatment of EPCs with VEGF increased Runx2 acti-
vation, which was reduced by glucocerebroside. Interestingly, glucocerebroside had no
effect upon another transcription factor, AP-1, which mediates c-Jun phosphorylation
in human EPCs. Thus, the transcription factor Runx2, but not AP-1, plays a critical
role in glucocerebroside-regulated reduction of angiogenesis.

Glucocerebroside, an extract of Cordyceps militaris, exhibits anti-inflammatory activity
in human synovial fibroblasts (Liu et al., 2017). However, the role of glucocerebroside in
EPC angiogenesis has been unclear up until now. Our report is the first to show that glu-
cocerebroside reduces VEGF-induced EPC migration and tube formation and that the
downstream signalling of FAK, c¢-Src and Runx2 is inhibited via the glucocerebroside-
mediated reduction of in vitro and in vivo angiogenesis activities (Figure 7). Notably, glu-
cocerebroside did not affect cell viability of human EPCs. Glucocerebroside deserves to be
examined further for the treatment of angiogenesis-associated diseases.
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