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The spatial resolution of imaging sensors has increased dramatically in recent years, and
so too have the challenges associated with extracting meaningful information from their
data products. Object-based image analysis (OBIA) is gaining rapid popularity in remote
sensing science as a means of bridging very high spatial resolution (VHSR) imagery and
GIS. Multiscalar image segmentation is a fundamental step in OBIA, yet there is
currently no tool available to objectively guide the selection of appropriate scales for
segmentation. We present a technique for estimating the scale parameter in image
segmentation of remotely sensed data with Definiens Developer�. The degree of hetero-
geneity within an image-object is controlled by a subjective measure called the ‘scale
parameter’, as implemented in the mentioned software. We propose a tool, called
estimation of scale parameter (ESP), that builds on the idea of local variance (LV) of
object heterogeneity within a scene. The ESP tool iteratively generates image-objects at
multiple scale levels in a bottom-up approach and calculates the LV for each scale.
Variation in heterogeneity is explored by evaluating LV plotted against the corresponding
scale. The thresholds in rates of change of LV (ROC-LV) indicate the scale levels at
which the image can be segmented in the most appropriate manner, relative to the data
properties at the scene level. Our tests on different types of imagery indicated fast
processing times and accurate results. The simple yet robust ESP tool enables fast and
objective parametrization when performing image segmentation and holds great potential
for OBIA applications.

Keywords: local variance; OBIA; tessellation; characteristic scales; Definiens

1. Introduction

Traditional pixel-based image classification approaches are poorly suited to very high spatial
resolution (VHSR) imagery because within-class spectral variation increases with increased
spatial resolution (Schiewe et al. 2001, Aplin 2006). Object-based image analysis (OBIA)
arose through the realization that image-objects hold more real-world value than pixels alone
(Fisher 1997, Blaschke and Strobl 2001, Smith et al. 2007). Representation of the world in
terms of discrete objects better satisfies human understanding (Goodchild et al. 2007). The
first and most critical step in OBIA is the creation of image-objects through the aggregation
of pixels by image segmentation. Segmentation is the process of dividing remotely sensed
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images into discrete regions or objects that are homogeneous with regard to spatial or
spectral characteristics (Ryherd and Woodcock 1996). The segmentation process reduces
the within-class spectral variation of VHR imagery, and can increase the classification and
statistical accuracy if conducted at an appropriate scale (Blaschke 2003, Addink et al. 2007).

Defining the most suitable scale for image segmentation is problematic, however, as no
objective method currently exists for setting the scale parameter in segmentation algorithms
(Kim et al. 2008). Despite the fact that OBIA is becoming increasingly prominent in remote
sensing science (Blaschke et al. 2008), the selection of segmentation scale parameters is
often dependent on subjective trial-and-error methods (Meinel and Neubert 2004). As Hay
et al. (2005) pointed out, ‘the real challenge is to define appropriate segmentation parameters
(typically based on spectral homogeneity, size, or both) for the varying sized, shaped, and
spatially distributed image-objects composing a scene, so that segments can be generated
that satisfy user requirements.’ (p. 341).

The challenges of linking scale to the intrinsic spatial attributes of images are not new in
remote sensing science (Marceau and Hay 1999). Based on previous work of Strahler et al.
(1986), a groundbreaking concept in this area was introduced by Woodcock and Strahler
(1987), who used local variance (LV) graphs to reveal the spatial structure of images. This
idea was later introduced in the context of OBIA by Kim et al. (2008). In parallel, a suite of
papers (Hay et al. 1997, Hall et al. 2004, Hay et al. 2005) developed this approach further.
However, a ready-to-use application allowing the user to evaluate the scale parameter as a
function of the intrinsic spatial structure of images is still missing in OBIA.

We carry the concept of LV further and present an automated tool that we have developed
to objectively identify the most suitable range of scale parameters at which to conduct image
segmentation within the Definiens Developer� software suite. In this article, we test the
suitability of the estimation of scale parameter (ESP) tool for defining meaningful segmen-
tation scale parameters across a range of different image types and landscapes. The tool we
present here answers the requirements for ‘more automated procedures of segmentation for
the extraction of high quality features from very high resolution digital images’ (Kim et al.
2008, p. 300).

2. Local variance and multiscale representation in object-based image analysis

The method builds upon Woodcock and Strahler’s (1987) fundamental idea of the relation-
ship between spatial structure of images, size of the objects in the real world (or scene
following the terminology used by authors), and pixel resolution. The key to matching real-
world objects when analyzing their model (image) is finding the appropriate pixel resolution.
The cited authors proposed measuring LVas the value of standard deviation (SD) in a small
neighborhood (3 · 3 moving window), then computing the mean of these values over the
entire image. The obtained value is an indicator of the local variability in the image. The
procedure is applied on successively coarser scales, achieved through resampling techni-
ques. Graphs of values across scales are used to measure spatial structure in images. The
authors explain the mechanism as follows: ‘If the spatial resolution is considerably finer than
the objects in the scene, most of the measurements in the image will be highly correlated with
their neighbors and a measure of local variance will be low. If the objects approximate the
size of the resolution cells, then the likelihood of neighbors being similar decreases and the
local variance rises’ (p. 313). Basically, the application of LV concept exploits spatial
autocorrelation, which is a fundamental image characteristic (Lees 2006).

Kim et al. (2008) made advances toward addressing this issue in the context of OBIA by
exploring the relationship between segment variance and spatial autocorrelation at different
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scale parameters to define the optimal object size. Instead of calculating SD from a 3 · 3
moving window, however, they derived it from objects obtained through segmentation.
Their results are particularly important for understanding how changes in the spatial
structure of images across scales can be evaluated as a function of LV, spatial autocorrela-
tion, and the number of objects.

The above methods focused on one optimal scale, which is appropriate for simple scene
models (cf. Strahler et al. 1986). Because many environmental problems cannot be handled
at a single scale of observation (Marceau 1999, Silván-Cárdenas et al. 2009), researchers
often have to deal with nested models of a scene (Strahler et al. 1986,Woodcock and Strahler
1987). As such, multiscale analysis and representation require more than one suitable scale
parameter to account for different levels of organization in landscape structure. The same
applies to complex scenes, particularly when they include different categories of objects with
different sizes. Therefore, we extend the concept of LV into multiscale analysis.

The hypothesis underpinning our method is as follows: When growing the size of a
segment, its SD increases continuously, up to the point that it matches the object in the real
world. Assuming a certain amount of spectral contrast between the object and background,
the object boundaries will be preserved in segmentation at a number of higher levels, where
the SD of this object remains the same. In the same way, objects of similar size and spectral
response are expected to match their correspondents in the real world around the same scale
level. As such, their boundaries, and implicitly their SD values, will be conserved along a
number of further coarser scale levels. If this type of object is well represented in the image,
the cumulative effect of preserving the SD values of objects right above the meaningful scale
level will be strong enough to impact upon the LVof that image. On a graph, the LV curve
would flatten out, thus pointing to a scale-level representative for that type of object.

Similarly, supposing the object is part of a larger one (e.g., a tree as part of a forest stand),
increasing the scale parameter will also lead to an increase in SD, until the segment matches
its correspondent at a higher level of organization (i.e., the forest stand), above which SD
stagnates again and LV changes. This process repeats as a function of both scene complexity
(e.g., variety in object categories) and number of levels in which its objects are organized.

When plotting LV against scale parameter values, we expect to obtain an ascendant
graph, with break points indicating optimal scale parameters, at which segmentation pro-
duces meaningful levels (e.g., levels of image-objects delineated as they are organized
within the scene).

3. Methods

TheESP tool allows for a fast estimation of scale parameters for amultiresolution segmentation
in the Definiens� software environment. The ESP tool automatically segments the user-
defined data with fixed increments of scale parameter, and calculates LVas the mean SD of
the objects for each object level obtained through segmentation. Graphics of LVare used to
evaluate the appropriate scale parameters, relative to data properties of the scene.

Multiresolution segmentation in the Definiens� software is a bottom-up region-merging
technique starting with one-pixel objects. In numerous iterative steps, smaller image-objects
are merged into larger ones. The objects created following this stepwise approach undergo
an optimization process, which tries to minimize the internal weighted heterogeneity of each
object. Thus, for each object the smallest possible growth is calculated. If the object
properties exceed the heterogeneity threshold, defined by the scale parameter, the growth
of this object stops (local optimization procedure; Benz et al. 2004). Heterogeneity is
defined in terms of the color (spectral values of the pixels forming the object) and shape
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of the object. These factors can be interactively weighted by the user: the higher the shape
factor is weighted, the lower the influence of color values in the segmentation, and vice
versa. For the shape factor, it is also necessary to calibrate a compactness and smoothness value
influencing the object generation. If compactness is weighted low, the smoothness factor is
increased and objects with a more linear shape are favored in the weighting of heterogeneity.
On the contrary, higher compactness values will result in more compact objects. In short, a
higher scale parameter leads to larger and less homogeneous objects by increasing the
threshold of heterogeneity per object. But it is important to note that the scale parameter
not be straightforwardly linked to a certain object size. This makes it very difficult to find an
appropriate value of scale parameter without performing some ‘trial-and-error’ attempts.

The ESP tool is programmed in Cognition Network Language (CNL) in the Definiens
Developer� software, a modular programming language for OBIA applications (Tiede and
Hoffmann 2006). It is implemented as a customized process to be applied easily like other
processes in object-based rule set creation in the Definiens� software (Figure 1). Six user-
defined parameters are adjustable: (1) step size of the increasing scale parameter, (2) starting
scale parameter for the analysis, (3) the use of an object hierarchy during segmentation, (4)
number of loops (i.e., number of scales to be tested), (5) shape weighting, and (6) compact-
ness weighting. Parameters (2), (5), and (6) are used as implemented in the multiresolution
segmentation and described by Baatz and Schäpe (2000) and Benz et al. (2004). The tool can
be used for analysis of a single layer of image data or other continuous data (e.g., digital
surface models).

Consideration of hierarchy for image segmentation is of particular importance. If no
hierarchy is selected, each segmentation level will be created from scratch. When using the
hierarchy option in the ESP tool, each level except for the first one will be based on the
previous segmentation. Because the OBIA concept in the Definiens� software uses a strict

Figure 1. Screenshot of the estimation of scale parameter tool, implemented as process in the
Definiens Developer� software.
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object hierarchy (i.e., object boundaries of coarser levels are existent in all finer scales), it
influences the segmentation process. Therefore, users should carefully decide between using
either a multiscale segmentation (MSS) (Burnett and Blaschke 2003) or a one-level repre-
sentation (OLR) approach (Lang and Langanke 2006), in order to use the tool appropriately.

The results are exported as text files and can be analyzed in any standard spreadsheet
application.

To assess the dynamics of LV from an object level to another, we use a measure called
rate of change (ROC):

ROC ¼ L� ðL� 1Þ
L� 1

� �
� 100

where L = LVat target level and L - 1 = LVat next lower level.
The rate of change is a technical indicator used in stock market analyses to measure ‘the

amount of stock’s price [that] has changed over a given number of past periods’ (Bauer and
Dahlquist 1998, p. 144). This indicator should not be confused with the commonly used
receiver operating characteristic (ROC). To avoid this possible confusion, we further refer to
rate of change of local variance as ROC-LV. In its original application, this indicator
measures changes in time, where ROC-LV measures the amount of change in LV from
one object level to another.

We created a spreadsheet template for Excel, where ROC-LV is automatically calculated
and plotted.

We hypothesize that peaks in the ROC-LV graph will indicate the object levels at which
the image can be segmented in the most appropriate manner, relative to data properties at the
scene level. At these peaks, the segments match the types of objects characterized by
(relatively) equal degrees of homogeneity. This approach is likely to hold for any type of
image-derived objects provided these objects are representative enough to impact on the
ROC-LVat the scene level.

We tested the tool on a variety of image types and landscapes (Table 1). Sites were chosen
to incorporate a diverse array of scene complexities for exploring the general applicability of
the tool. We used familiar data and sites to maximize our expertise in the visual assessment of
results. In the first test area (A in Table 1), object types (as represented through their heights in
the digital surface model) ranged from individual buildings to blocks of buildings, and from
trees to forest stands. In the riparian zone in savanna, objects (as represented on the red channel
of a color aerial photograph) are structured in trees and shrubs (continuous transition from
individual to stands), with bare soil or grass as background. In the temporary human settlement

Table 1. Summary of the three test areas and imagery types.

Site Imagery Resolution Channel Landscape Location

A LiDAR 1 m Digital surface
model
(DSM)

Mixed residential/
forest

Austria. North of Salzburg
near the village of
Bürmoos.

B Color aerial
photography

0.25 m Red Riparian zone in
savanna
landscape

South Africa. Bububu River in
the Kruger National Park.

C QuickBird
(pan
sharpened)

0.6 m NIR Temporary human
settlement

Sudan. Zam Zam internally
displaced people camp in
Dafur.
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area, objects are structured in traditional huts and tents, different in size and spectral properties,
with a heterogeneous background.

4. Results

ESP processing times ranged from 1 to 3 min under the ‘hierarchical’ setting and 13–70 min
for the ‘nonhierarchical’ option on 1000 · 1000- to 1500 · 1500-pixel subsets of the three
test areas (2.5 GHz dual core processor, 4 GB RAM).

Figure 2. ESP tool outputs for the three study sites: (a) mixed residential/forested (nonhierarchical), (b)
savanna riparian zone (hierarchical), and (c) temporary human settlement (nonhierarchical). Graphs
depict changes in local variance (LV) (solid black) and rate of change (ROC) (solid gray) with increasing
scale parameter. Dotted vertical lines indicate optimal scale parameters selected for each scene.
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4.1. LVand ROC-LV graphs

Both the hierarchical and nonhierarchical options yielded similar results: while LV increased
abruptly with increasing segment size at the finer scale parameters, ROC-LV followed an
opposite trend (Figure 2). This pattern reveals the transition from pixels to the smallest
characteristic objects in scenes of interest. The graphs show that LValone does not indicate at
which scale meaningful objects emerge. However, ROC-LVenhances visualization of these
thresholds. We define a threshold as the first break in ROC-LV curve after continuous and
abrupt decay. Such a threshold can appear as a step (Figure 2a and b) or as a small peak
(Figure 2c).

Because of the huge differences in ROC-LV values at the finest scales, variations in
ROC-LV curves at coarser scales were obscured. To visually disclose them, vertical axes
were rescaled to values just above the first identifiable threshold. All ROC-LV graphs
(Figure 2) show sudden oscillations between peaks and plunges, on descendant trends,
whereas LV graphs are far smoother. Theoretically, the peaks in an ROC-LV curve indicate
the levels where LV increases as segments delineate their correspondents in the real world.
However, the variation induced by segmentation of the background also generates peaks,
thereby complicating the interpretation of graphs, proportionally to the complexity of
scenes. The least complex scene, dominated by two categories of objects (Figure 2c), clearly
indicates two peaks (first one corresponding to the threshold as mentioned above), whereas

Figure 3. Mixed residential/forested test area: The entire image as segmented and the subset used for
visualizing the results (a). Segmentation results with scale parameters of 14 (b), 45 (c), and 82 (d).
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the most complex scene (Figure 2a) shows a much more challenging graph. We selected the
most obvious peaks, which dominate their neighborhood, together with the first thresholds
in graphs, as indicators for optimal scale parameters (Figure 2).

4.2. Segmentation results

For all images, we selected the peaks as marked in Figure 2 and performed segmentation
using the correspondent scale parameters. A visual assessment of these three sites
(Figures 3–6) shows that the ESP tool accurately identified the suitable scale parameters

Figure 4. Mixed residential/forested test area: segmentation results at the lowest scale parameter (14)
indicated by the ESP tool (middle). For comparison, see segmentation results at scale parameters 13 (left)
and 15 (right). The following number of segments was generated of the respective scale parameters:
6896 (13), 6117 (14), and 5536 (15).
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for segmentation, which delineated meaningful objects that were representative of the
various levels of organization within the scenes of interest.

For the mixed residential/forested test area, we selected scale parameters of 14, 45, and
82 as indicated by the ESP tool (Figure 2a). These scale parameters correctly delineated three
levels of image-objects representative of this subset (Figure 3): individual buildings (scale
parameter 14), blocks of buildings (scale parameter 45), and broadest land cover classes as
depicted by their heights (scale parameter 82). Scale parameters of 20 and 72 were less
evident on this subset, but they mark levels in the vertical structure of forests, which are well
represented in the bottom half of the scene (Figure 3).

For the same test area, we compared the segmentation results at the finest scale parameter
indicated by the ESP tool with the subsequent lower and higher levels, respectively (Figure 4).
Figure 4 confirms our assumption in Section 2: once segments match representative objects in
real world (here individual houses), their boundaries are preserved along a number of scale
levels, which slows down the general increase in LV. Indeed, it is visible in Figure 4 that
boundaries of houses are not modified, although segmentation has been performed with
nonhierarchical option. Objects in the background, however, became oversegmented at
finer scale parameters (Figure 4b), and began to exceed the boundaries of the objects in the
scene at coarser scale parameters (Figure 4a and b), causing some loss of details (Figure 4c).

Segmentations performed on the savanna riparian zone (Figure 5) and the temporary
human settlement imagery (Figure 6) were equally good when the scale parameter settings
suggested by ESP were used.

In Figure 5, a scale parameter of 16 produced segmentation at the level of individual trees
and shrubs. A higher level of forest stands was produced with a scale parameter of 36, while
an obvious separation between bare soils, grass, forests, and shrubs was achieved with a
scale parameter of 88.

For the temporary settlement area, the focus was to find the suitable scale parameters for
feature extraction, that is, extraction of two different dwelling types: (1) traditional (dark)
huts and (2) bright tents. Therefore, only scales from 1 to 50 (Figure 2c) were tested. ESP
outputs revealed that dark huts are best segmented with a scale parameter of approximately
18. Bright tents are oversegmented at this scale (Figure 6c), whereas at a scale parameter of
35 the tents are satisfactorily delineated (Figure 6d).

Figure 5. Natural savanna: segmentation results with scale parameters of 88 (a), 36 (b), and 16 (c).
Patches of bare soil/grass are clearly delineated from individual trees and shrubs.
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5. Discussion and conclusions

Although the production of multiscale representations of spatial entities has been technically
enhanced in OBIA through image segmentation, choosing the suitable levels of representa-
tion has remained a challenge. What ‘suitable’ means depends primarily on how scale is
conceptualized: as an inherent property of phenomena and their associated physical entities
(and implicitly of their digital representations), or as a ‘window of perception’ (Marceau
1999). Building on the results of Kim et al. (2008), we used the concept of LV (Woodcock
and Strahler 1987) to create a tool that informs suitable scale parameter selection for
segmentation in Definiens Developer�.

The ESP tool has been tested at three sites on images of different data type (LiDAR, color
photography, and QuickBird) and scene complexity (mixed residential/forest, savanna
riparian zone, and desert settlement). The results in the three test areas confirm the findings
of Kim et al. (2008) that the inherent data properties can be effectively used in detecting
levels where segmentation results match structures in the real world. Kim et al. (2008)
proved that LV graphs indicate the optimal scale parameter for delineating forest stands,
when compared against manual delineation. The cited work focused on a single scale. In

Figure 6. Temporary settlement area: The entire image as segmented (a) and the subset used for
visualization (b). Traditional huts appear as dark gray/black whereas tents show up as bright white.
Exemplary segmentation results were achieved with scale parameters of 18 (c) and 35 (d).
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contrast to pixel-based approaches (Woodcock and Strahler 1987), where LV graphs peaked
or declined, the LV graphs we obtained followed a relatively smooth variogram shape as in
Kim et al. (2008). While appropriate for detecting a single scale, the LV graph is not suitable
for a multiscale approach. That is why we introduced ROC-LVas a measure of LV dynamics
across scales. The graph of ROC-LVenabled the detection of multiple scale parameters.

Segmentation results have been evaluated visually, based on expert knowledge. We
decided upon using visual assessment only, as the human eye is acknowledged as ‘a strong
and experienced source for evaluation of segmentation techniques’ (Baatz and Schäpe 2000,
p. 15). Quantitative accuracy assessment would actually refer to classification, which falls
beyond the scope of this paper. Quantitative assessment is particularly challenging in a
multiscale approach, since it would rely on thematic resolution, which is still a subject of
research (Castilla et al. 2009).

To date, the selection of appropriate scale parameter settings has been heavily dependent
upon trial-and-error exploration. We aimed to speed up this process, all the while complying
with current standards in evaluating segmentation outputs, that is, visual approximation in
trial-and-error exploration. In this light, the ESP tool proved successful in determining the
most suitable scale parameters for image segmentation. The object levels delineated with
these scale parameters matched the structures in real world for all the test areas. The results
shown here revealed that even minor changes in scale parameter (using a setting of 13 or 15
instead of 14) markedly alter the segmentation results, which exceeded our expectations.
These results highlight the value of employing the ESP tool.

The hierarchy versus nonhierarchy option in the ESP tool helps targeting the application
to the aim of the research. One example in this context is the difference between feature
extraction and wall-to-wall classification. Thus, when focusing on feature extraction using
OBIA, the ‘perfect’ scale is not as important as in wall-to-wall classifications. For feature
extraction, as presented in the temporary settlement area, it is often sufficient to get a
preliminary approximation of scale parameter. In the process of rule set development
using CNL, the single features are reshaped and delineated starting from some initial scales
in a cyclic process (‘class modeling’; cf. Tiede and Lang 2008). However, speed often being
the most important factor in the extraction of these features (Tiede and Lang 2008), the ESP
tool saves critical time by identifying initial scales for evaluation. Because the constraints
from lower or upper levels impact on the shapes of features, the user might consider using the
nonhierarchical option to avoid such issues.

The number of possible tessellations has increased infinitely in OBIA (Addink et al.
2007), requiring solutions to cope with finding appropriate parameters for image segmenta-
tion. The technique that we have developed will aid image analysts and researchers in
selecting the most suitable range of scales for segmentation, thus enabling cost- and time-
effective image analysis. This is particularly important for multiscale analysis as developed
in some recent applications in various domains (Drăguţ and Blaschke 2006, 2008, Lamonaca
et al. 2008, Levick and Rogers 2008, Lhermitte et al. 2008, Möller et al. 2008).

Besides the scale parameter, shape and compactness weighting might heavily impact on
the segmentation results, particularly in classifications facing the challenge of spectrally
similar objects (Luscier et al. 2006, Van der Werff and van der Meer 2008). The ESP tool
offers the option of looking for the desired combination by iteratively running it with various
combinations of shape and its attribute parameters.

So far, we have developed the ESP tool for application on a single layer, to make it
independent of specific sensors or parametrization issues (Drăguţ et al. 2009). However, it
can be adapted for multiple layers. Here we tested ROC-LV for scale ranges up to 100, with
an increment of 1. Further research is needed to evaluate the sensitivity of this indicator to
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changes in scale ranges and increments. Since both scale range and increment are user
defined in the ESP tool, we can expect more insights into this matter coming from specific
applications.
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Baatz, M. and Schäpe, A., 2000. Multiresolution segmentation–an optimization approach for high
quality multi-scale image segmentation. In: J. Strobl, T. Blaschke, and G. Griesebner, eds.
Angewandte geographische informationsverarbeitung. Heidelberg: Wichmann-Verlag, 12–23.

Bauer, R. and Dahlquist, J., 1998. Technical market indicators: analysis and performance. New York:
Wiley.

Benz, U.C., et al., 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for
GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239–258.

Blaschke, T., 2003. Object-based contextual image classification built on image segmentation.
Advances in Techniques for Analysis of Remotely Sensed Data, 2003 IEEE Workshop, 113–119.

Blaschke, T. and Strobl, J., 2001. What’s wrong with pixels? Some recent developments interfacing
remote sensing and GIS. Zeitschrift für Geoinformationssysteme, 6, 12–17.

Blaschke, T., Lang, S., and Hay, G., 2008. Object-based image analysis: spatial concepts for
knowledge-driven remote sensing applications. Berlin: Springer-Verlag.

Burnett, C. and Blaschke, T., 2003. A multi-scale segmentation/object relationship modelling metho-
dology for landscape analysis. Ecological Modelling, 168, 233–249.

Castilla, G., et al., 2009. The impact of thematic resolution on the patch-mosaic model of natural
landscapes. Landscape Ecology, 24, 15–23.
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