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GIS-based multicriteria decision analysis (MCDA) methods are increasingly being
used in landslide susceptibility mapping. However, the uncertainties that are associated
with MCDA techniques may significantly impact the results. This may sometimes lead
to inaccurate outcomes and undesirable consequences. This article introduces a new
GIS-based MCDA approach. We illustrate the consequences of applying different
MCDA methods within a decision-making process through uncertainty analysis.
Three GIS-MCDA methods in conjunction with Monte Carlo simulation (MCS) and
Dempster–Shafer theory are analyzed for landslide susceptibility mapping (LSM) in
the Urmia lake basin in Iran, which is highly susceptible to landslide hazards. The
methodology comprises three stages. First, the LSM criteria are ranked and a sensi-
tivity analysis is implemented to simulate error propagation based on the MCS. The
resulting weights are expressed through probability density functions. Accordingly,
within the second stage, three MCDA methods, namely analytical hierarchy process
(AHP), weighted linear combination (WLC) and ordered weighted average (OWA), are
used to produce the landslide susceptibility maps. In the third stage, accuracy assess-
ments are carried out and the uncertainties of the different results are measured. We
compare the accuracies of the three MCDA methods based on (1) the Dempster–Shafer
theory and (2) a validation of the results using an inventory of known landslides and
their respective coverage based on object-based image analysis of IRS-ID satellite
images. The results of this study reveal that through the integration of GIS and MCDA
models, it is possible to identify strategies for choosing an appropriate method for
LSM. Furthermore, our findings indicate that the integration of MCDA and MCS can
significantly improve the accuracy of the results. In LSM, the AHP method performed
best, while the OWA reveals better performance in the reliability assessment. The
WLC operation yielded poor results.

Keywords: landslide susceptibility mapping; GIS-MCDA; Monte Carlo simulation;
sensitivity analysis; Dempster–Shafer Theory; Urmia lake basin

1. Introduction

Multicriteria decision analysis (MCDA) is one of the most fundamental decision support
operations in GIS (Jiang and Eastman 2000). The capability of MCDA, when integrated
with GIS, makes GIS-based MCDA one of the most useful methods for spatial planning
and management (Joerin et al. 2001, Chen et al. 2007, 2009, Karnatak et al. 2007). GIS-
MCDA can be defined as ‘a process that transforms and combines geographical data and
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value judgments (the decision-maker’s preferences) to obtain information for decision-
making’ (Malczewski 2006, p. 703). The GIS-MCDA process consists of procedures that
involve the utilization of geographical data, as well as the decision-maker’s preferences,
and the manipulation of these data and preferences (Farkas 2009). MCDA methods have
become important tools in terms of the management sciences and operations research
(Drobne and Lisec 2009). MCDA provides a rich collection of procedures and algorithms
for structuring decision problems, as well as designing, evaluating, and prioritizing
alternative decisions. It is in the context of the synergetic capabilities of GIS and
MCDA that one can observe the benefits for advancing theoretical and applied research
on the integration of GIS and MCDA (Malczewski 1999, 2006, Boroushaki and
Malczewski 2010).

It is increasingly recognized that MCDA’s outcomes are prone to the inherent uncer-
tainties related to the MCDA process (Feizizadeh et al. 2012). The principal sources of
GIS-MCDA uncertainty are due to errors and variability in model choice, system under-
standing, weighting factors, data used, and human judgment (Crosetto et al. 2000).
Malczewski (2006) noted that many real-world decisions are uncertain because they
involve some aspects with unknown uncertainties in decision-making (Comber et al.
2010). He identified two basic types of uncertainty that may be associated with a decision
situation including ‘(1) uncertainty associated with limited information about the decision
situation and (2) uncertainty associated with fuzziness (imprecision) concerning the
description of the semantic meaning of the events, phenomena, or statements themselves’
(Malczewski 2006, p. 713). Even though uncertainty in GIS-MCDA may come from
various sources (Malczewski 2006), we need to assume a high influence of the criteria
weighting process. Criteria weights are often the greatest contributor to controversy and
uncertainty. This could be because decision-makers are not totally aware of their prefer-
ences regarding the criteria or perhaps because nature and scale of the criteria is not
known. Furthermore, especially when multiple decision-makers are involved, it is often
not possible to derive only one set of weights, but rather ranges of weights, thus
producing more than one set of results (Chen and Zhu 2010). Even small changes in
decision weights and methods may have a significant impact on the rank ordering of the
criteria and accordingly the results of the GIS-MCDA, which sometimes leads to inaccu-
rate outcomes and undesirable consequences (Feizizadeh and Blaschke 2013a). To reduce
the chance of error in GIS-MCDA methods, uncertainty analysis is a process that leads to
the assessment of the reliability of MCDA’s results in both quantitative and qualitative
approaches. Within this study, we therefore aim to contribute to a better understanding of
the uncertainties inherent to GIS-MCDA methods and to increase the stability of their
outputs by illustrating the impact of small changes to specific input parameters on
evaluation outcomes.

In this article, we start from the hypothesis that GIS-MCDA uncertainty analysis
provides a possibility of measuring the level of confidence in the decision-maker (Chen
et al. 2011). MCDA uncertainty analysis embraces issues beyond traditional risk defini-
tions. These broader issues include the propagation of errors in predictive environmental
models (Oberkampf et al. 2004, Benke and Pelizaro 2010). Such issues require an
analysis of probability distributions, rather than a risk specification based on a single
imprecise probability or consequence (Benke et al. 2007). One specific approach to
uncertainty analysis applicable to MCDA is to gain a sense of error or uncertainty in the
predictions, given the uncertainty in the criterion weights (Benke and Pelizaro 2010). It
is believed that it is essential to handle GIS-MCDA errors and uncertainty in decision-
making, particularly when decisions are based on probabilistic ranges rather than on
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deterministic results (Aerts et al. 2003, Tenerelli and Carver 2012). The combination of
uncertainty and sensitivity analyses is crucial to the validation and calibration of MCDA
(Chen et al. 2009). Uncertainty analysis aims to identify and quantify confidence
intervals for a model output by assessing the response to uncertainties in the model
inputs (Crosetto et al. 2000). Sensitivity analysis has also been defined as a process that
aims to assess the response of a model to changes in input parameters (Ligmann-
Zielinska and Jankowski 2008). Technically, sensitivity analysis partitions the results,
under different conditions of the model components and parameters, for identifying the
key determining variables (Smith 2002). It can help to reduce uncertainty in MCDA and
to increase the stability of its outputs. This is achieved by illustrating the impact of
introducing small changes to specific input parameters on evaluation outcomes (Crosetto
et al. 2000, Crosetto and Tarantola 2001, Chen et al. 2010, Ravalico et al. 2010).
However, the combination of uncertainty and sensitivity analyses aims for a better
understanding of the respective influences of the assumptions and input parameters of
a model (Crosetto et al. 2000).

In the context of applying GIS-MCDA to landslide susceptibility mapping (LSM), the
authors already employed several MCDA methods and analyzed their particular capabil-
ities and limitations (Feizizadeh et al. 2013a, Feizizadeh and Blaschke 2013b). Our
earlier studies revealed that GIS-MCDA methods are highly sensitive to the parameter
selection and weighting processes in the decision-making stage (see Feizizadeh et al.
2012). Building on this earlier works, in the remainder of this article, we carry out a GIS-
MCDA study for LSM with emphasis on the respective sensitivity and uncertainty
analyses. The aim is to improve the accuracy of the results while identifying and
minimizing the uncertainties associated with the respective MCDA methods. We employ
three conventional GIS-MCDA methods and compare the results with the respective
results of our proposed novel approach, which integrates sensitivity and uncertainty
analyses.

2. Study area and data

The study area was the Urmia lake basin, which is located in the north-west of Iran (see
Figure 1). The study area with a size of 19,913 km2 and 3.2 million inhabitants is
important for the East Azerbaijan province in terms of housing, as well as industrial and
agricultural activities. The elevation increases from 1260 m at Urmia Lake to 3710 m
above sea level in the Sahand Mountains. The climate of this area is semi-arid and the
annual precipitation is about 300 mm (Feizizadeh and Blaschke 2013a). Landslides are
common in the Urmia lake basin, and the complexity of the geological structure in the
associated lithological units, comprised of several formations, causes volcanic hazards,
earthquakes, and landslides (Feizizadeh and Blaschke 2011). A landslide inventory
database for the East Azerbaijan Province lists 132 known landslide events (MNR
et al. 2010). The geophysical setting makes the slopes of this area potentially vulnerable
to mass movements such as rock fall, creeps, flows, topples, and landslides. In this
study, topography, geology, climate, vegetation, and anthropogenic factors were selected
based on field studies related to active landslides. Based on this fieldwork and on expert
knowledge, geological lineaments and artifacts such as roads were included. The selec-
tion of the nine causal factors finally used in this study is based on these four main
criteria (topography, geology, climate, vegetation, and anthropogenic factors). A more
detailed description of the physical properties of the study area and of the criteria
selection strategy is presented in Feizizadeh et al. (2013a) and Feizizadeh and
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Blaschke (2013a). After all necessary geometric and thematic editing, topology correc-
tion and simple basic calculations (e.g., buffers around faults, streams, and roads) were
completed, all datasets were arranged in ArcGIS software as raster maps with a resolu-
tion of 20 m for further analysis.

3. Methodology

3.1. GIS-MCDA and uncertainty analysis: workflow

The integration of MCDA techniques with GIS has considerably advanced the conven-
tional map overlay approaches (Malczewski 2004). Over the last 20 years or so, there
have been a number of multi-criteria decision rules implemented in the GIS environment,
including the weighted linear combination (WLC) or weighted summation/Boolean over-
lay methods (e.g., Carver 1991), the analytical hierarchy process (AHP) (e.g., Saaty
1977), the ideal/reference point method (e.g., Joerin et al. 2001), and the ordered weighted
average (OWA) method (Boroushaki and Malczewski 2010, see Malczewski 2006 for an
overview of the GIS-MCDA methods). However, there are many ways in which decision
criteria can be combined in MCDA. WLC and its variants (Carver 1991, Eastman 1997,
2006, Drobne and Lisec 2009) and OWA require summation of the weighted criteria. The
AHP is considered to be the primary MCDA method. In combination with WLC and
OWA, AHP can be used in two distinctive ways within a GIS environment: first, it can be
employed to derive the weights associated with criteria map layers and, secondly, the

Figure 1. Location of the case study area in Iran (left) and within northern Iran (right).
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AHP principle can be used to aggregate the priority for a particular hierarchical level as
well as for alternative levels (Saaty 1977, Banai 1993). Concordance–discordance ana-
lyses are methods in which each pair of alternatives, represented as raster pixels or
polygons, is analyzed to determine the degree to which one outranks the other in the
specified criteria (Drobne and Lisec 2009).

Combining GIS and MCDA is a powerful approach to LSM, and GIS-MCDA
methods are increasingly being used in LSM for the prediction of future hazards,
decision-making, and hazard mitigation plans (Kritikos and Davies 2011, Pourghasemi
et al. 2012a, Feizizadeh et al. 2013b, Feizizadeh and Blaschke 2013a). Table 1 lists
categories of MCDA methods based on their combination rules. Starting from Malczewski
(2006), the most relevant literature was analyzed in regard to GIS-MCDA decision rules
(e.g., Boolean and Fuzzy) for LSM. In addition, as mentioned in the introduction section,
uncertainty is inevitable in MCDA, which emphasizes the importance of assessing the
associated uncertainty of each method. However, these approaches have rarely been
studied for MCDA methods, particularly for LSM. In an effort to investigate the inherent
uncertainties in GIS-MCDA, the Monte Carlo simulation (MCS) and Dempster–Shafer
theory (DST) are used to measure the uncertainty both spatially and quantitatively, aiming
for a flexible representation of uncertainties for data sources of different types and, in
particular, of the underlying expert judgments. Multiple experts’ knowledge is considered
to provide more reliable information for an observation (e.g., the failure probability of a
component) than a single expert’s knowledge. Nevertheless, expert judgments can suffer
from incompleteness and conflicts. DST addresses these issues effectively and is able to
combine multi-expert knowledge by taking into account ignorance and conflicts through a
belief structure (Sallak et al. 2010).

In this study, we want to analyze the described uncertainties for three different LSM
methods (AHP, WLC, and OWA). The methodology is composed of three stages as
following:

● The first stage ranks the LSM criteria and sensitivity analyses based on the AHP
technique to simulate the error propagation. We employ an AHP pairwise matrix to
derive the criteria weights. Then, the MCS assesses the sensitivity weight space,
whereby weights are expressed through probability density functions (PDFs).

● Within the second stage, the three MCDA methods are used to produce the LSM in
order to optimize and quantitatively and qualitatively assess the results. In the
second approaches, we pursue two approaches. The first (‘conventional’) approach
is based on the common MCDA, which assesses the susceptibility of different areas
to potential landslide hazards by considering nine causal criteria. This approach
allows multiple and often conflicting criteria to be taken into account and weights
to be applied to input criteria depending on the level of importance ascribed to
these by the user (Carver 1991, Tenerelli and Carver 2012). In the second (‘novel’)
approach, we aim to produce the landslide susceptibility maps based on the results
of the sensitivity analyses and the outcomes of MCS.

● In the third stage, the accuracy of the respective methods are assessed by (1)
applying DST and (2) through a validation of the results using the landslide
inventory database. The accuracies of the AHP, WLC, and OWA methods for
LSM are investigated in respect to the improved respective accuracies, based on
the sensitivity and uncertainty analyses.

Figure 2 summarizes the main steps that are used as the methodology of this research.
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3.2. Criteria standardization

In our LSM decision model, each criterion is represented by a raster map. This includes
classified maps based on categorical data (e.g., land use or geology) and value maps (e.g.,
slope or elevation). Hence, the values and classes of all maps are to be converted into a
common scale to reduce the dimensionality. Such conversion is called standardization
(Azizur Rahman et al. 2012). Within this approach, the criteria are standardized before
combined according to the nature of the pairwise comparison technique, which is typically
used for rating and standardizing the ordinal values (Malczewski 2004). The first step
involves standardizing the predictor variables to a common numeric range using fuzzy
membership functions (Jiang and Eastman 2000). In our research, criteria at the lowest
level, and the resulting memberships of different potential classes, were subsequently
standardized using the maximum eigenvectors approach on a 0 to 1 scale. A fuzzy set is
essentially a set whose members may have degrees of membership between 0 and 1, as
opposed to a classic binary set in which each element must have either 0 or 1 as the
membership degree (Malczewski 2004). Based on this approach, the cells in a map, which
are highly suitable for achieving the goal, obtain high standardized values, and less
suitable cells obtain low values (Azizur Rahman et al. 2012).

3.3. Assessing the weights: obtaining decision rules through AHP

Criteria weights represent the influence of each criterion in the model on the distribution
(Robinson et al. 2010). In GIS-MCDA, criteria weights are subjectively defined and can

Figure 2. Methodology flowchart of the research.
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affect decision outcomes substantially. They are often the source of great controversy and
uncertainty, especially in pluralistic decision-making contexts (Belton and Hodgkin 1999).
Since the weights are reflective of the relative importance of each criterion, they were
assigned to all criteria. The AHP (Saaty 1977) can be applied to help decision-makers
make pairwise comparisons of the criteria and to assign appropriate weights for the
individual factors being considered and thus deal with this type of vagueness (Li and Li
2009). The AHP methodology provides a hierarchical mechanism for combining expert
opinions in order to derive the standard weights of the criteria (Ghosh et al. 2011). In the
AHP, the weights for the criteria are calculated separately for each hierarchical level. The
AHP allocates a pairwise comparison matrix for each hierarchical level (Kordi and Brandt
2012). Within this process, these comparison matrices are defined by ranking the criteria
of the corresponding level over each other. Decision-makers determine the ranking of the
criteria on the basis of the importance of each criterion over the other, considering their
significance in the problem (Kordi and Brandt 2012). GIS-MCDAwith weight assignment
using AHP provides the capability to produce a decision support tool that (1) blends or
integrates both subjective and objective data, (2) models consensus for groups of subject
matter experts or stakeholders, and (3) for decision criteria, accounts for inconsistent or
possibly incomplete judgments and preferences in the analysis of the possible alternatives
(Benke and Pelizaro 2010).

In the application of the AHP method, it is important that the weights derived from a
pairwise comparison matrix are consistent. Therefore, one of the strengths of AHP is that
it allows for inconsistent relationships, while, at the same time, providing a consistency
ratio (CR) as an indicator for the degree of consistency or inconsistency (Forman and
Selly 2001, Chen et al. 2010, Feizizadeh and Blaschke 2013b). The CR is used to indicate
the likelihood that the matrix judgments were generated randomly (Saaty 1977, Park et al.
2011):

CR ¼ CI

RI
(1)

where random index (RI) is the consistency index of the randomly generated pairwise
comparison matrix according to the number of elements being compared (Drobne and
Lisec 2009). Table 2 shows the RI for different numbers of criteria given by Saaty (1977).
Further, the CI can be expressed as

CI ¼ λmax�nð Þ
n� 1

(2)

in which λmax is the largest or principal eigenvalue of the matrix and n is the order of the
matrix. A CR of 0.10 or less indicates a reasonable level of consistency (Saaty 1977, Park
et al. 2011). If the CR < 0.10, it deems that the pairwise comparison matrix has an
acceptable consistency and that the weight values are valid and can be utilized. Otherwise,
if the CR ≥ 0.10, it means that the pairwise comparisons lack consistency and the matrix
needs to be adjusted and the element values should be modified (Feizizadeh and Blaschke
2013b). In our research, to use the advantage of spatial weighting of criteria, the pairwise
comparison matrix was performed in Idrisi software. The derived weights are shown in
Table 3 and Figure 3. Further, the resulting CR value was 0.053.
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3.4. Sensitivity in AHP’s pairwise matrix and sensitivity analysis in weightings of
objectives and criteria

As discussed in Section 3.3, the AHP is a widely used method for criteria weighting in
MCDA. However, since it considers the expert opinions for assigning weights, it

Table 3. Pairwise comparison matrix for data set layers of landslide analysis.

Criterion 1 2 3 4 5 6 7 8 9 Weight

(1) Aspect 1 0.025
(2) Distance to road 1/5 1 0.036
(3) Elevation 1/2 1/3 1 0.020
(4) Distance to stream 1/3 1/3 1/3 1 0.112
(5) Distance to fault 1/3 1/5 1/5 1/3 1 0.124
(6) Slope 7 1/5 9 1/3 1/4 1 0.141
(7) Land use 8 6 1/5 1/5 1/3 1/3 1 0.160
(8) Precipitation 8 6 7 7 4 3 1/5 1 0.172
(9) lithology 9 7 1/3 8 7 4 1/5 8 1 0.210

Note: CR: 0.053.

Table 2. The mean consistency index of randomly generated matrices (Saaty 1977).

n 1 2 3 4 5 6 7

RI 0 0 0.52 0.89 1.12 1.26 1.36
n 8 9 10 11 12 13 14 15
RI 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59

Figure 3. AHP decision tree for LSM.
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essentially allows a degree of subjectivity in the pairwise comparisons between the
criteria. As a result, any incorrect perception on the role of the different LSM criteria
can easily be conveyed from the expert’s opinion into the weight assignment (Kritikos and
Davies 2011, Feizizadeh and Blaschke 2013a). The uncertainty of weights lies in the
subjective expert or stakeholder judgment of the relative importance of different attributes,
given the range of their impacts (Chen et al. 2011). Therefore, after obtaining a ranking of
alternatives, a sensitivity analysis may be performed to determine robustness. In the
context of LSM, to reliably assess LSMs, sensitivity analyses show how a solution
changes when the input factors are changed. If the selection of a factor results in a
relatively large change in the outcome, the outcome is said to depend on that factor.
Sensitivity analyses model behavior by determining the rate of change in the model output
as parameters or by varying input data, thus giving an understanding of how changes in
the inputs influence the output. Such analyses explain how inputs affect the output and
quantify the strengths of the inputs based on the variations in the output (Oh et al. 2011).
Figure 3 shows the AHP decision tree weights assessment for criteria and sub-criteria. The
decision tree produced by the deterministic AHP approach for the MCDA model contains
weights with discrete values. However, in practice, these values represent imprecise point
estimates without indication of error or confidence (Benke and Pelizaro 2010). The
weights in the decision tree have a possible range of [0, 1]. If we arbitrarily set xmin = 0
for all weights at the lower bound and set xmax = 1 for all weights at the upper bound and
then multiply all the weights through the hierarchy, in both cases (lower and upper
bounds), the output range of the model would be the maximum possible. It would
represent only the maximum theoretical range that values could assume for the specified
ratings data. This result would have very limited use for uncertainty analysis (Benke and
Pelizaro 2010).

3.5. Probability distributions

In the presence of epistemic uncertainty, classic probability theories are based on the
representation of failure probabilities of components at a certain time using PDFs. The
PDF fi(x) at time t indicates the probability that the value of the failure probability for a
component i at time t falls between x and x + dx. Probability theories based on MCS can
then be used to evaluate the reliability of the whole system (Sallak et al. 2010). When
moving from a deterministic approach to a probabilistic approach, these constraints must
also be observed when sampling from the PDF used to represent uncertainty. The actual
ratings at the base of the tree have associated uncertainties and are also sampled from a
probability distribution. In this study, the PDF modeling variability of the weights was
represented by the program evaluation and review technique (PERT) probability distribu-
tion. The PERT is a method to address uncertainty in the estimation of project parameters.
The probability distribution of the individual weight parameters was assumed to be
symmetrical, and the given minima and maxima were interpreted as the 99th percentiles
of a normal distribution (Benke and Pelizaro 2010). The PERT distribution is distin-
guished by its smoothness and continuity, as well as its greater weighting to the most
likely values rather than to the tails. Other advantages include computational flexibility
and greater suitability for modeling expert opinions because of its nonlinear nature. When
the deterministic weight value in the decision tree is replaced by a probabilistic value, the
sampling distribution of possible weight values is defined by the set {xmin, xmode, xmax},
where xmode is the point estimate from the workshop experts, and the bounds are
prescribed by the AHP (Benke and Pelizaro 2010). Constraint satisfaction requires

International Journal of Geographical Information Science 619



nonnegative lower and upper bounds on weights and ratings, as defined by the AHP
model inputs, and also the unit-sum normality condition on weights, WK, to hold for each
layer in the AHP hierarchy, that is, for K = 1,2,...,m criterion weights Xk,

Xk ¼ Xk 2 Rþ jak � Xk � bk and
Xk¼m

k¼1

Xk ¼ 1

( )
(3)

Note that ak and bk represent lower and upper methods, respectively, and together with wk

are members of the set positive real members, R+ The rating values at the base of decision
tree are not subject to the normality condition. The PERT probability distribution is a
special case of the Beta distribution. The probability density function for the Beta
distribution is described succinctly by Croarkin and Tobias (2006) (see also Benke and
Pelizaro 2010).

f xð Þ ¼
xv�1 1�xð Þw�1

B v;wð Þ 0 � x � 1; v;w>0
0 otherwise

(
(4)

when the term in denominator is the Beta function,

B v;wð Þ ¼
Z1

0

tv�1 1� tð Þw�1dt (5)

the shape parameters, v and w, are given by

v ¼ xmean � xmin

xmax � xmin

� �
2xmode � xmin � xmax

xmode � xmean

� �
(6)

w ¼ v
xmax � xmean

xmean � xmin

� �
(7)

and the mean value, xmean, is defined as

xmean ¼ ð1= λþ 2ð Þ xmin þ xmaxð Þ (8)

The scale parameter for the height of the distribution has the default value λ = 1. The
PERT distribution is center-weighted but can be either symmetric or highly skewed,
depending on the parameters. The ability to simulate a single peaked asymmetric dis-
tribution with predefined mode and range makes this a convenient model for representing
uncertainty in the weights (as the original deterministic weights may be located near the
boundaries of the feasible region) (Benke and Pelizaro 2010). Table 4 shows the minimum
and maximum weights used for the PDF simulation. The AHP-based criteria weights were
used as minimum weights along with user-defined maximum values for the simulation of
PDF function, whereby the uncertainty analysis is intended to provide an indication of
error bounds in the final result and take it into account of the LSM values by way of 1:1
correspondence. For this to happen, this process was pursued by performing the MCS as
discussed in the following section.
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3.6. Simulation based on Monte Carlo method

A difficulty with traditional deterministic MCDA models is that the criterion weights in
reality represent imprecise point estimates. The model prediction itself is also a point
estimate with no indication of error or confidence (Benke et al. 2008, Benke and Pelizaro
2010). In an effort to deal with such sources of uncertainty and to overcome this
deficiency, previous studies (e.g., Hus and Pan 2009, Benke and Pelizaro 2010,
Feizizadeh and Blaschke 2013a, 2013b) have suggested to integrate MCS in conventional
AHP in order to enhance the screening capability when there is a need to identify the best
among the leading alternatives (Hus and Pan 2009). In our approach, we use the MCS to
carry out the uncertainty analysis associated with AHP weights. For this to happen, our
research methodology makes use of the concept of AHP-MCS, where we consider the
criteria weights derived from the AHP pairwise matrix for the MCS uncertainty analysis.
To implement AHP-MCS, the AHP decision tree was constructed for each criterion
relevant to the LSM (See Figure 3). Uncertainties in the AHP decision tree occur in the
weights, ratings, and landslide prediction (i.e., expert opinion, data, and predictions). The
uncertainty associated with landslide predictions is determined by the sequential applica-
tion of MCS in order to produce a series of model predictions for landslide susceptibility.
Hereby, in each case, the corresponding uncertainty metric is computed from the simula-
tion output PDF. Uncertainty in the weights was of paramount interest, and the extraction
of marginal distributions was the prime objective (Benke and Pelizaro 2010).

The initial determination of point-estimates of weights depends on information avail-
able to the experts, in order that there is a component of ‘lack of knowledge’ or epistemic
uncertainty, as well as ‘variability’ or aleatory uncertainty. As the uncertainty analysis
uses a probability distribution to cover the full range of possible weight values, both cases
are included in the MCS. Metrics for the quantification of aleatory uncertainty include
standard deviation, variance, confidence interval, and percentile data from the probability
distribution (See applications by Benke and Hamilton 2008 and Benke et al. 2008). In
recent studies, MCS often uses the software packages @RISK or the RANDOM function
incorporated in the Idrisi software. Within our study, random samples were drawn from
PERT for each weight parameter, which, based on qualitative information, had been
defined via the mean value, as well as assumptions about the range of the relative
importance of objectives. It is hypothesized that the public perception of the relative
importance of management objectives will most likely always be heterogeneous (Elizondo
et al. 2008).

Table 4. Minimum and maximum withed for PDF.

Factor Reference weights Maximum weights

Aspect 0.025 0.2
Distance to road 0.036 0.5
Elevation 0.020 0.55
Distance to stream 0.112 0.6
Distance to fault 0.124 0.7
Slope 0.141 0.75
Land use 0.160 0. 65
Precipitation 0.172 0.6
lithology 0.210 0.95
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In this study, we ran the MCS by considering R = 0.75 rating as the output of the LSM
(mean and distribution) using @RISK. A series of MCSs were executed while increment-
ing the R value for each run (e.g., R = 0.50, 0.60, 0.75). Each run provided a LSM mean
value, together with distribution data from @RISK. R = 0.75 was selected as the rating
output of LSM, and simulations were run 100–10,000 times, depending on the computa-
tional load, the complexity of the model, and the desired accuracy. We obtained the
distribution data from @RISK to address the spatial distribution of the diagnostic criteria.
Accordingly, the RANDOM function in Idrisi software was used to add random values to
the raster data set and to obtain new data sets for LSM (See Figure 4). It should be noted
that the Idrisi RANDOM function allows the creation of the random data sets based on
rectilinear, normal, or lognormal distribution models. In our study, the error of each factor
was added to the deterministic part of the parameter using the normal distribution function
in Idrisi. Normal distribution means that random values are generated with a likelihood
following a normal distribution: values close to the mean are more probable and those far
away will be less likely (Eastman 2006). For example, to add simulated error for distance
to faults with an RMS error of ±100 m, a random function can be used to produce a layer
using a normal model. Then, a simulation is performed on the original data using this
random value for the particular layer such as distance to fault. For qualitative data
(including lithology, land use/cover, and aspect), we introduced the simulated error by
relocating the polygon borders. The result has no specific claim to reality, other than
containing an error of the same nature as those believed to exist in the original. Figure 4
shows how the random replicates are used in the MCS.

3.7. Certainty analysis based on Dempster–Shafer theory

The DST of evidence, which was originally based on Dempster’s work on the general-
ization of the Bayesian theory (Dempster 1967) and was formalized by Shafer (1976), can
provide a mathematical framework for the description of incomplete knowledge (Park

Figure 4. Scheme of MCSs to GIS-MCDA-based LSM.
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2011). DST is sometimes interpreted as an approximate generalization of Bayes’ rule but
the priors and conditionals need not to be specified. One basic assumption of DST is that
ignorance exists instead of supplying prior probabilities. It defines hypotheses in a
hierarchical structure developed from a basic set of hypotheses that form the frame of
discernment (Eastman 2012). DST provides additional flexibility for the specification of
uncertainty in probabilistic models and hypothesis testing (Ducey 2001). It has mostly
focused on uncertain reasoning in artificial intelligence and expert systems (Shafer and
Pearl 1990). DST is suitable to reason with uncertainty and has been developed to
overcome some limitations of conventional probability theory by distinguishing between
uncertainty and imprecision. This is achieved in particular by making it possible to handle
composite hypotheses (Kaftandjian et al. 2003). The DST of evidence is based on
approximate reasoning where imprecision and uncertainties are introduced into the deci-
sion-making process by considering probability intervals with lower and upper bounds
(Mertikas and Zervakis 2001, Gorsevski and Jankowski 2005). Dempster’s rule of
combination provides a tool for combining multiple spatial data layers. The interval
between belief and plausibility presents the uncertainty of the knowledge about the target
proposition (Park 2011). In this theory, a frame of discernment Θ = {T1, T2,…, T1n},
which is a set of mutually exclusive and exhaustive propositions, is first established. Then,
a mass function [m(T)] assigns the belief committed to each proposition, as shown (Park
2011):

M : 2Θ ! 0; 1½ �
Xm ð6OÞ¼1

T�Θ

(
m Tð Þ ¼ 1 (9)

where � is the empty set.
Based on the mass function, the belief (Bel) and plausibility (Pls) functions are

defined, respectively, by

X
T˙H

mðTÞ (10)

X
T˙H��

mðTÞ (11)

where for every H � Θ, Bel(H) is a measure of the total amount of beliefs committed
exactly to every subset of H by m. Pls(H) represents the degree to which the evidence
remains plausible. These two functions, which are regarded as the lower and upper
probabilities, respectively (An et al. 1994, Park 2011), have the following properties:

Bel Hð Þ � Pls Hð Þ (12)

Bel Hð Þ ¼ 1Bel� ð �HÞ

where �H is the negation of H and Bel( �H) is also called the disbelief function (Park 2011).
The above properties indicate that the unknown true probability or likelihood lies some-
where between the belief and plausibility functions. The difference between these two
functions, also called the belief interval or ignorance, represents the ignorance of one’s
belief of the target proposition H and can be regarded as a measure of uncertainty. This
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belief interval or ignorance is the main distinct characteristic of the DST of evidence
compared to the traditional probability theory. Based on the DST approach, the belief
function denotes the lower bound for an (unknown) probability function, whereas the
plausibility function denotes the upper bound for an (unknown) probability function (See
Figure 5 as a schematic representation of DST combinations). In this approach, the
difference between the plausibility (Pls) and the belief (Bel) function represents a measure
of uncertainty. The belief Bel and plausibility Pls functions for subset A are defined in the
following manner:

Bel Að Þ ¼
X
B�A

mX Bð Þ (13)

and

ls Að Þ ¼
X

B˙A¼�

mX Bð Þ (14)

Bel(A) measures the total assignment of belief to A and all its subsets. The plausibility
function measures the extent to which we assume the hypothesis of A. [Bel(A), Pls(A)] can
be viewed as the confidence interval, which describes the uncertainty A. The functions Bel
and Pls, although they too are functions that serve to map events of A onto [0,1] and Ø, 0,
and Ω into 1, generally do not fulfill the sub-additivity properties for probability (Sallak
et al. 2010). The ignorance value can be used to represent the lack of evidence (complete
ignorance is represented by 0).

In our research, the DST approach was used to determine the certainty of LSM results.
For this to happen, the belief function as implemented in the Idrisi software was used to
carry out the spatial distribution of certainty for landslide susceptibility maps. The Belief
function in Idrisi software aggregates the data from different lines of evidence by applying
rules of combination based on Dempster–Shafer weight-of-evidence modeling. Each input
data file contains basic probability assignments that indirectly relate evidence toward a
hypothesis within a frame of decisions. The frame of decisions within a specific decision
context includes all possible hypotheses and their hierarchical combinations. Belief con-
structs a knowledge base from the input data and the user-specified hypotheses each data
layer supports. It then allows the user to extract belief, plausibility, and belief interval data

Figure 5. Schematic relationships of evidential belief functions (Althuwaynee et al. 2012).
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layers for each hypothesis for which there is supporting evidence (Idrisi Selva 2012). To
extract these three outcomes, our DST approach included the following steps (Eastman
2012):

● Creating a knowledge base file containing the hierarchical combinations of hypoth-
eses in the decision set, a listing of evidence to aggregate, descriptions of each line
of evidence, and the designations of the hypotheses for which evidence was
created.

● Building a knowledge base by aggregating basic probability assignments from the
evidence for all hypotheses, including those generated by the hierarchical combina-
tion of primary (singleton) hypotheses.

● Extracting summary images: a hypothesis for belief, plausibility, and belief interval
images were extracted for the selected hypothesis from the constructed knowledge
base.

● Aggregating new evidence to the existing state of knowledge and rebuild a knowl-
edge base. The knowledge base is rebuilt if any lines of evidence are altered or if
any of the knowledge base have been altered or deleted.

As a result, the belief, plausibility, and belief interval layers were derived. The belief layer
provides a measure of the degree to which the evidence provides concrete support for the
hypothesis. It is the lower bound of the belief in the hypothesis (Comber et al. 2010) and
represents the degree to which the evidence provides concrete support for the proposition.
It is important to interpret it together with the plausibility and belief interval images.
Plausibility provides the upper boundary (Comber et al. 2010, Eastman 2012) and
represents the degree to which the evidence does not refute the proposition. This actually
represents the relationship of evidence to a particular outcome (hypothesis) (Eastman
2012). The belief interval records the range between belief and plausibility, providing a
measure of the uncertainty in the hypothesis (Comber et al. 2010). The relationship
between probability and belief interval layers is crucial for evaluating what decisions to
make. Even if concrete evidence for a proposition is poor, that is, belief values are low, it
is still possible to have high plausibility values in those areas. This would identify
potential areas where enough information exists to make a concrete decision about the
use of these spaces or the allocation of resources to them. At the very least, it will identify
areas where the gathering of more evidence seems necessary. The uncertainty is the
difference between plausibility and belief support and acts as a measure of uncertainty
about a proposition (Tangestani and Moore 2002, Feizizadeh et al. 2012). The detailed
results of DST for representing the certainty of LSM maps are discussed in Section 4.2.

4. Results

4.1. Producing initial landslide susceptibility maps

The data sets were combined using the different MCDA methods, with a twofold analysis
approach for the LSM. In the first approach, three landslide susceptibility maps were
derived based on three different GIS-MCDA methods, namely, WLC, AHP, and OWA.
Since this approach is based on a common GIS-MCDA methodology, it is called ‘con-
ventional approach’. Figure 6a, b, and c depicts the landslide susceptibility maps derived
by these three different methods of the ‘conventional approach’. Then, in a second step,
we introduce a novel approach for GIS-MCDA by means of integrating MCS and GIS-
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MCDA under the concepts of sensitivity and uncertainty analyses. Here, susceptibility
maps were developed based on the new raster layers, which were obtained from the MCS,
resulting from the sensitivity and uncertainty analyses. Figure 6d, e, and f shows results of
this novel LSM approach. To compare the different results and to assess the improved
MCDA accuracies by means of sensitivity analysis, all six landslide susceptibility maps
derived from both approaches were classified into four groups, namely, high, moderate,
low, and no susceptibility to landslides, using the natural breaks classification method.
The natural breaks method (or ‘Jenks optimization’) uses group values within a class,
generating classes of similar values separated by breakpoints (Kritikos and Davies 2011,
Feizizadeh and Blaschke 2013a).

4.2. DST for representing the certainty of results

As we discussed in Section 3.7, we used DST to visualize certainty of LSM results. Figure
7a, b, and c shows the certainty results of the conventional approach. Figure 7d, e, and f

Figure 6. Landslide susceptibility maps (LSM) of ‘conventional’ and ‘novel’ approaches: (a) LSM
derived from WLC, (b) LSM based on the AHP method, (c) LSM from the OWA method, (d) LSM
derived from MCS-WLC, (e) LSM based on the MCS-AHP method, and (f) LSM from the MCS-
OWA method.
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depicts the certainty of the maps derived from the novel approach. In the context of
certainty assessment for the conventional approach of WLC method, the belief function
reveals that certainty ranges between 0.15 and 0.67. This certainty range is significantly
increased to 0.50–0.77 when the WLC method is employed in conjunction with MCS
(MCS-WLC) within the novel approach. In terms of certainty assessment for the AHP
method, the results show a certainty range of 0.22–0.87 for the conventional approach.
However, this range is increased to 0.68–0.89 by integrating the AHP and MCS methods
(MCS-AHP) in the novel approach. In the case of the certainty analysis for the OWA
method, results of the conventional approach reveal a certainty range of 0.24–0.89, while
the accuracy is significantly increased to 0.71–0.93 when integrating the MCS method
(MCS-OWA) through the novel approach. To compare the spatial certainty and the
differences between conventional and novel approaches, we present in Figure 8 an
enlargement of a selected part of the study area. A cross-comparison of the certainty in

Figure 7. Uncertainty assessment (UA) for results of landslide susceptibility maps (LSM) of
‘conventional’ and ‘novel’ approaches: (a) UA results of the belief function for LSM derived
from WLC, (b) UA results of the belief function for LSM based on the AHP method, (c) UA
results of the belief function for LSM of the OWA method, (d) UA results of the belief function for
LSM based on the MCS-WLC method, (e) UA results of the belief function for LSM of the MCS-
AHP method, and (f) UA results of the belief function for LSM of the MCS-OWA method.
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GIS-MCDA results shows that the OWA method represents the greatest certainty range of
all three MCDA methods used (see Figure 10a). The improvement indicates the flexibility
of this method in association with other decision methods such as the MCS. This is
important when trying to increase the accuracy of a MCDA. The detailed results of DST-
based certainties for the different MCDA methods are listed in Table 5. The overall
certainty and the improvement range for each method is also shown in Table 6 and
Figure 10.

4.3. Validation of the models used

Validation is a fundamental part of the development of a susceptibility map, that is, for the
determination of its prediction ability. The prediction capability of a landslide suscept-
ibility model is usually estimated by using independent information such as a landslide
inventory data set (Pourghasemi et al. 2012b). Within this research, to assess the accuracy

Figure 8. Results of UA for a selected area for ‘conventional’ and ‘novel’ approaches of landslide
susceptibility maps (LSM) of (a) UA results of the belief function for LSM derived based on WLC,
(b) UA results of the belief function for LSM based on AHP, (c) UA results of the belief function for
LSM based on OWA, (d) UA results of the belief function for LSM based on MCS-WLC, (e) UA
results of the belief function for LSM based on MCS-AHP, and (f) UA results of the belief function
for LSM based on MCS-OWA.
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of the LSM methods and to validate the results, the resulting LSMs were tested against
known landslide locations within the study area. The landslide inventory database of the
Urmia Lake Basin comprises 132 landslide events (MNR et al. 2010), but does not
include exact outlines for these events. We therefore also use the results of a landslide
delineation study based on IRS-ID satellite images (5.8 m spatial resolution). This study
was previously carried out through object-based image analysis (Feizizadeh and Blaschke
2013c). Figure 9 shows the delineated landslide areas, which result in a total of 22.49
hectares. In doing so, the relative operating characteristics (ROC) (Nandi and Shakoor
2009) and the respective presences of landslide events (in percent) are calculated for each
category for each landslide susceptibility map. The ROC curve is a plot of the probability
of having a true positive (correctly predicted event response) versus the probability of a
false positive (falsely predicted event response) as the cut-off probability varies
(Gorsevski et al. 2006). This method has been widely used as a measure of performance
of a predictive rule (Baeza et al. 2010). ROC plots the different accuracy values obtained

Table 6. Representation overall certainty and validation of results by DST and ROC curve.

Approach MCDA Plausibility Belief interval Belief AUC

Convectional WLC 0.09–0.63 0.07–0.36 0.15–0.67 0.42451
AHP 0.48–0.89 0.14–0.41 0.22–0.87 0.76912
OWA 0.16–0.46 0.15–0.51 0.24–0.89 0.75645

Novel MCS-WLC 0.21–0.71 0.23–0.57 0.50–0.77 0.71457
MCS-AHP 0.52–0.91 0.44–0.63 0.68–0.89 0.87945
MCS-OWA 0.63–0.92 0.49–0.71 0.71–0.93 0.83457

Figure 9. Landslide areas delineated by OBIA from IRS-ID satellite images (Feizizadeh and
Blaschke 2013c).
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against the whole range of possible threshold values of the functions, and the area under
the ROC curve (AUC) serves as a global accuracy statistic for the model, regardless of a
specific discriminate threshold. This curve is obtained by plotting all combinations of
sensitivities and proportions of false negatives (1-specificity), which may be obtained by
varying the decision threshold. In the ROC curve, the ideal model shows a value close
to1.0. However, the range of values of the AUC is 0.5–1 for a good-fit, while values
below 0.5 represent a random fit (Pourghasemi et al. 2012b). The results of the ROC
method for four landslide susceptibility maps are shown in Table 6 and Figure 10.

5. Discussion

Our research started off by applying sensitivity and uncertainty analyses for GIS-MCDA
with the aim to improve the accuracy of the results and to compare three different GIS-
MCDA methods to identify the most beneficial method amongst them. It is well know that
the basic idea of any MCDA evaluation is primarily concerned with how to combine the

Figure 10. Comparative results of GIS-MCDA methods: (a) results of DST method for measuring
the certainty and improved accuracy of GIS-MCDA by novel approach and (b) results of validation
of methods based on ROC curve.
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information from several criteria to form a single index of evaluation (Gorsevski et al.
2012). In context of GIS-MCDA-based LSM, MCDA combines different layers of spatial
information or factors to generate an aggregated measure of landslide susceptibility
(Comber et al. 2010). In this regard, results of this research indicate that the integration
of GIS-MCDA and MCS may improve the accuracy of GIS-MCDA significantly. Hereby,
in the context of GIS-MCDA-based LSM, the AHP method performed best among three
LSM methods, namely the AHP, WLC, and OWA. However, in terms of the certainty
analysis, OWA represented the best reliability compared to the AHP and WLC methods.
Finally, the WLC method delivered significantly poorer results for LSM, as well as for
certainty analysis.

5.1. WLC method

It should be noted that the WLC is an aggregation method, which explains how different
factors counterbalance each other, indicating their relative importance (Gorsevski et al.
2012). This method of GIS-MCDA is based on the concept of a weighted average in
which continuous criteria are standardized to a common numeric range and then combined
by means of a weighted average (Drobne and Lisec 2009). Technically speaking, WLC is
often used for continuous factors in crisp MCDA processes (Voogd 1983). This approach
uses compensatory aggregation rules where the decision set includes the overall value of
the alternatives and where favorable criteria can outweigh unfavorable criteria (Gorsevski
et al. 2012). The decision solutions obtained by the WLC method are located between the
extreme ‘AND’ and ‘OR’ operators, while the decision sets are influenced by the weights
representing the relative importance of the evaluation criteria. Weights given to each
criterion determine the tradeoff level relative to other criteria, which implies that high
scores and weights of some criteria can compensate for low scores and weights of other
criteria. However, when scores from standardized criteria are low while the weights are
high, they can only weakly compensate for the poor scores of other criteria (Jiang and
Eastman 2000, Gorsevski and Jankowski 2010, Feizizadeh and Blaschke 2013a).
Technically, the WLC approach suffers from three difficulties (Drobne and Lisec 2009).
First, WLC used as a decision rule is influenced by the different aggregation methods
employed in the decision-making process. Contrarily to an expectation that the WLC
method and the Boolean method should yield similar results, they very often fail to do so
because of logically different methods of aggregation. In the WLC method, a low score on
one criterion can be compensated by a high score on another. This is different from
Boolean options, which are absolute in nature. The second issue of the WLC stems from
its standardization of factors. The most common approach here is to rescale the range to a
common numerical basis by simple linear transformation. However, the rationale for
doing so is unclear (Voogd 1983, Eastman et al. 1993, Drobne and Lisec 2009), and in
some cases, a nonlinear scaling may seem appropriate. Third and most importantly,
decision risk may be considered as the probability that the decision will fail. For a
Boolean procedure, decision risk can be estimated by propagating measurement error
through the decision rule, thereby determining the risk that the decision made for a given
location can fail. However, in the context of continuous criteria of WLC, uncertainty is
not so readily estimated with stochastic methods (Drobne and Lisec 2009). In an effort to
deal with these issues, Jiang and Eastman (2000) suggested that those kinds of difficulties
could be solved by considering decision-making as a set problem and through the
application of fuzzy measures in multicriteria evaluation. They suggested that the OWA
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approach may provide an extension to and generalization of the conventional map
combination methods in GIS (Drobne and Lisec 2009).

5.2. OWA method

The OWA method was originally developed in the context of fuzzy set theory (Jiang and
Eastman 2000). Many decision-makers are happy with fuzzy representations of features,
as the fuzzy method produces a more faithful picture, reflecting the continuum (Comber
et al. 2010). OWA has been used in GIS context as method to overcome the systematic
problems related to risk and tradeoff in MCDA (Comber et al. 2010). Using the OWA
method, one can select any degree of tradeoff among the criteria ranging between no
tradeoff and full tradeoff, according to the decision-making strategy (Jiang and Eastman
2000). OWA provides continuous fuzzy aggregation operations between fuzzy intersec-
tion (MIN or AND) and union (MAX or OR). It allows a variety of operators between
MIN (AND) and MAX (OR), control over the degree of tradeoff between factors in
MCDA and thereby allows the overall level of risk to be controlled (Comber et al. 2010).
This is due to the fact that the OWA operators can fuse multi-attribute values into single
aggregated values. It can be used to assign different weights to every attribute.

Based on the OWA approach, it is assumed that the decision-maker can intuitively
identify the order weights based on the degree of ‘ORness’ (or ‘ANDness’) and tradeoff
between criteria (Malczewski et al. 2003). To this end, it is important to notice that for a
given value of ‘ORness’ one can obtain a large number of different sets of order weights
and associated tradeoffs. Also, for a given degree of tradeoff, one can generate a large
number of different sets of order weights and associated degrees of ‘ORness’ (Jiang and
Eastman 2000, Malczewski et al. 2003). For a well-defined problem with clear and well
understood parameters, OWA may offer obvious advantages: the factor and order weights
can be used to constrain the aggregation process in a way that represents the current or
best understanding of the problem being examined. However, this requires a very robust
understanding of all the parameters involved in the decision and how they interact and
influence the final outcome (Comber et al. 2010). In the context of landslide mapping,
fuzzy methods, whether Min (AND), Max (OR), or in between, can provide a LSM full
fuzzy model, which is able to better reflect the doubt in the minds of the decision-makers.
In many situations where GIS is being applied to map suitability/susceptibility, decision-
makers may not have a full understanding of how the application of MCDA methods (and
therefore tradeoff and risk) relates to their problem and how weights interact with the
resulting solutions. This informatics aspect is important when assessing tradeoff and risk
in light of decision-making (Comber et al. 2010).

5.3. OWA/AHP combination

AHP has been suggested as a solution to the problem described in the last paragraph. AHP
integrates fuzzy linguistic operators (Boroushaki and Malczewski 2008). However, the
AHP still requires the domain knowledge and a clear definition of suitability/susceptibility
to understand how to parameterize the input appropriately and then to interpret the rich
and fuzzy output in light of those input decisions (Comber et al. 2010). Results of our
research reveal that the OWA method, used in combination with criteria weights derived
through the AHP approach, is very powerful for spatial decision-making. The integration
of these two approaches has been verified to produce flexible and reliable results for LSM
(Feizizadeh and Blaschke 2013a, 2013b). Results also demonstrate the possibility of
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improving accuracies of the methods by means of applying sensitivity and uncertainty
analysis for MCDA methods. However, we should note that the differing accuracies are
due to the different decision rules of the respective MCDA operators. Naturally, a variety
of decision rules will result in various MCDA accuracies (Feizizadeh and Blascke 2013a).
Nevertheless, based on the results of this study, we can conclude that the variety of
options in MCDA may almost always yield variable results, and therefore, uncertainty
analysis can be considered as a solution for the reliability assessment, as well as for the
selection of the most appropriate method.

6. Conclusions and future work

The purpose of this work was to illustrate the resulting variabilities for different MCDA
methods in the light of decision-making with and without sensitivity and uncertainty
analysis approaches. We carried out a GIS-MCDA uncertainty analysis and demonstrated
a solution for the uncertainty modeling by introducing a new approach for GIS-MCDA. In
conclusion, the work has explored different methods for combining spatial data in a multi-
criteria evaluation of landslide mapping. Based on the results, we can conclude that the
parameterization of fuzzy MCDA approaches (e.g., OWA) requires a full understanding of
how the factors’ tradeoffs against each other determine the resulting uncertainty. Results
also indicated that different MCDA methods can modify the original factor weights and
produce either very conservative or very liberal results in between (tradeoff) mappings of
landslides (Comber et al. 2010). The novel approach described could significantly
improve the results of GIS-MCDA.

The authors hypothesize that it should become obligatory to assess the reliability of
the methods used for GIS-MCDA. This work has also shown that in situations where
expert opinions for whatever reason are not available for the parameterization of the
MCDA operation (in terms of factor weights, order weights, degrees of acceptable trade-
off, and thresholds to interpret the resulting aggregation), the DST can provide an
alternative or complement to ‘traditional’ fuzzy MCDA approaches for suitability ana-
lyses. In such situations, the outputs of DST-MCDA may be more appropriate than a fully
fuzzy model of suitability (Comber et al. 2010).

Future research is foreseen, which will include the application of the DST and
spatially explicit reliability models for spatial sensitivity and uncertainty analyses of
GIS-MCDA. The integration of a fuzzy set with GIS-MCDA (Fuzzy-AHP and OWA)
and certainty analysis of the results will also be addressed in future work in order to make
use of the flexibility of the OWA method for LSM. Our future work will include neural
networks and comparisons with frequency ratio and bivariate logistic regression modeling
for LSM. We plan to study the accuracy of these approaches and will assess them through
certainty analyses using DST and fuzzy-AHP MCDA. In this regard, we may emphasize
the importance of accuracy in landslide susceptibility maps, when it is used as a basis for
decision-making plans in order to reduce and mitigate further landslide hazards. We
conclude that the six resulting landslide prediction maps were not only accomplished
for the sake of comparison. We will provide all six versions with respective explanations
to the responsible authorities in the East Azerbaijan province for risk management. The
information provided by these maps shall help citizens, planners, and engineers to reduce
losses caused by existing and future landslides by means of prevention, mitigation, and
avoidance.
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