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ABSTRACT
Variational inequalities can in general support distinct solutions. In
this paper we study an algorithm for computing distinct solutions
of a variational inequality, without varying the initial guess supplied
to the solver. The central idea is the combination of a semismooth
Newton method with a deflation operator that eliminates known
solutions from consideration. Given one root of a semismooth resid-
ual, deflation constructs a new problem for which a semismooth
Newton method will not converge to the known root, even from
the same initial guess. This enables the discovery of other roots. We
prove the effectiveness of the deflation technique under the same
assumptions that guarantee locally superlinear convergence of a
semismooth Newton method. We demonstrate its utility on various
finite- and infinite-dimensional examples drawn from constrained
optimization, game theory, economics and solid mechanics.
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1. Introduction

Variational inequalities are a fundamental class of problem that arise in many branches of
applied mathematics. The problem to be solved is: given a real reflexive Banach space U, a
closed convex subset K ⊂ U, and an operator Q : K → U∗ mapping to the dual space U∗
of U, find u ∈ K such that

〈Q(u), v − u〉 ≥ 0 for all v ∈ K. (1)

This is denoted by VI(Q,K). As an elementary example, consider the problem of mini-
mizing a differentiable function f : R → R over the closed interval I ⊂ R. The necessary
condition for z ∈ R to be a (local) minimum is that z satisfies VI(f ′, I). More generally,
the minimizers of a general smooth nonlinear programme satisfy a variational inequality,
which is related to the familiar Karush–Kuhn–Tucker conditions under a suitable con-
straint qualification, see e.g. [53]. Variational inequalities also arise naturally in problems of
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solidmechanics involving contact [21,38], in game theory for the calculation of Nash equi-
libria [28], in phase separation with nonsmooth free energy [7], and other fields. For more
details on variational inequalities, see [16,20,25,26,29,39,48] and the references therein.

A very popular and successful strategy for computing a solution of a variational inequal-
ity is to reformulate it as a semismooth rootfinding problem [11,13,34,42,45,55,61], where
it is possible to do so. That is, (1) is equivalently reformulated as the task of finding z ∈ Z
such that

F(z) = 0, (2)

for a residual function F : Z → V , where Z andV are real Banach spaces and Z is reflexive.
The spaceZ is typically constructed viaZ = U ×�, where� is a suitable space of Lagrange
multipliers. The residualFmaynot be differentiable in the classical Fréchet sense but enjoys
a weaker property called semismoothness (defined later in Definition 2.3). The problem
(2) is constructed in such a way that there is a bijection between solutions of (1) and roots
of (2). While the standard Newton–Kantorovich iteration

zk+1 = zk − F′(zk)−1F(zk) (3)

requires the existence of the Fréchet derivative F′ of F, it is possible to define a semis-
mooth Newton iteration for semismooth residuals (defined later in Section 2.3). This
method exhibits locally superlinear convergence under certain regularity conditions on
the solution z.

Variational inequalities often admit multiple solutions, and these are typically signif-
icant for the application at hand. For example, a nonconvex optimization problem may
permit several local minima, while a game may permit multiple Nash equilibria. Identi-
fying these distinct solutions is important for understanding the system as a whole. The
question of calculating distinct roots of semismooth residuals such as (2) naturally fol-
lows. In this paper, we analyze a numerical technique called deflation that can successfully
identify multiple solutions of variational inequalities, provided they exist and are isolated
from each other.

The central idea of deflation is to compute distinct roots of the semismooth residual F
in the following manner. Let us suppose we are given a semismooth residual F : Z → V
and a single known root r ∈ Z that satisfies some regularity conditions to be made precise
later. Deflation constructs a modified residualG : Z → V with the following properties:

(1) G preserves roots: G(z) = 0 ⇐⇒ F(z) = 0, for z ∈ Z \ {r},
(2) A semismooth Newton method applied to G from any initial guess in Z \ {r} will not

converge to r.

This latter property holds even if semismooth Newton onG is initialized from the same
initial guess that led to the convergence to r in the first instance. That is, if semismooth
Newton is applied toG, and it converges, it will converge to a distinct solution. By enforcing
nonconvergence of the semismooth Newtonmethod to known solutions, deflation enables
the discovery of unknown ones. The deflated problem is constructed via the application of
a deflation operator to the underlying problem F.

The idea of deflation was first investigated in the context of differentiable maps F :
R
n → R

n by Brown and Gearhart [9], and was subsequently reinvented in the context of
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optimization as the tunnelling method of Levy and Gómez [47]. Birkisson [6] and Farrell
et al. [17] analyzed it in the context of Fréchet differentiable maps between Banach spaces,
allowing for its application to smooth partial differential equations. The main contribu-
tion of this work is to extend the theory to the case where F is semismooth, but not Fréchet
differentiable.

The importance of multiple solutions of variational inequalities has motivated other
authors to develop various approaches for computing them. A simple strategy is to vary
the initial guess given to the solver [64], but this is heuristic and labour-intensive [60]. By
contrast, the deflation technique does not involve modifying the initial guess; the problem
itself is modified. Judice and Mitra [36] develop an algorithm for enumerating the solu-
tions of linear complementarity problems, variational inequalities of the form: find x ∈ R

n+
such that

(Mx + q)T(y − x) ≥ 0 for all y ∈ R
n
+, (4)

where R
n+ is the non-negative orthant of Euclidean space, M ∈ R

n×n, and q ∈ R. Their
algorithm requires exhaustive exploration of a binary tree whose size is exponential in
terms of the size of the problem, and is thus impractical for large problems. Tin-Loi and
Tseng [60] develop an algorithm for finding multiple solutions of linear complementar-
ity problems by augmenting the problem with constraints that eliminate known solutions;
while very successful on the problems considered, the size of each problem increases with
each solution eliminated. By contrast, the deflation technique does not increase the size of
the problems to be solved after each solution found. Another strategy is to extend classical
path-following algorithms to parameter-dependent variational inequalities, and trace out
the bifurcation diagram as the parameter is varied [12,50]. By continuing around turning
points, distinct solutions for the same parameter values may be identified; however, this
strategy will only identify distinct solutions that happen to lie on a connected branch. The
deflation technique enables the discovery of solutions on disconnected branches.

Deflation was first applied in the context of finite-dimensional mixed complementarity
problems (a particular kind of variational inequality) by Kanzow [37]. Kanzow reports
some success on rather difficult test problems, but remarks that deflation is ‘not . . . very
reliable for larger problems’. This impression is more widely shared: Allgower & Georg [3]
remark (in the context of nonlinear equations, not variational inequalities) that “it is often a
matter of seeming chancewhether one obtains an additional solution”.Wehypothesize that
these negative experiences are a consequence of using a poor deflation operator, the norm
deflation operator proposed by Brown & Gearhart. We will demonstrate that deflation is
muchmore robust and effective for semismooth problemswith an elementarymodification
to the deflation operator that recovers the correct behaviour of the deflated problem at
infinity.

This paper is laid out as follows. In Section 2 we define a deflation operator, and
prove its effectiveness in the semismooth case. The regularity conditions required on the
known solution z are exactly those used to prove locally superlinear convergence of the
semismooth Newton method itself in [11,34]; no additional assumptions are required. In
Section 3, we apply the technique to calculating distinct solutions of several illustrative
finite-dimensional variational inequalities, while in Section 4 we apply the technique to
infinite-dimensional problems with amesh-independent function-space-based algorithm.
These examples demonstrate that the shifted deflation operator applied in this work is
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effective in numerical practice. We conclude with some remarks and open questions in
Section 5.

2. Deflation

2.1. Deflation operators

Given a known solution r, the deflated problemG(z) = 0 is constructed by the application
of a deflation operator to the original problem F(z) = 0:

G(z) = M(z; r)F(z). (5)

The requirements for M to enable the discovery of new solutions are captured in the
definition of a deflation operator. The definition has been slightly modified from [17] to
allow it to apply to semismooth problems in the sequel.

Definition 2.1 (Deflation operator for isolated solutions): Let F : D ⊂ Z → V , with its
domain of definitionD an open subset of Z. Let r ∈ D be an isolated root of F, i.e. F(r) = 0
and there exists an open ball around r with no other roots of F. We say that M(·, r) : Z \
{r} → L(V ,V) is a deflation operator for F at r if

(1) M(z; r) ∈ L(V ,V) is invertible for all z �= r in a neighbourhood of r.
(2) The deflated residual does not converge to zero as z → r:

lim inf
z→r

‖M(z; r)F(z)‖V > 0. (6)

Property (6) is referred to as the deflation property. The fundamental example of a
deflation operator, proposed by Brown & Gearhart in 1971 [9], is

M(z; r) = IV
‖z − r‖pZ

, (7)

where IV is the identity map on V , and p ≥ 1. The power p controls the rate of blowup
as z → r. This is known to be a deflation operator in the case where F is continuously
Fréchet differentiable [17]. This operator was one of two considered by Kanzow, and the
operator considered byAllgower&Georg.However, this operator has amajor drawback: as
‖z − r‖ → ∞ in any direction,M(z; r) → 0. This often leads toG(z) → 0 aswell, depend-
ing on the behaviour of F(z) at infinity. Farrell et al. [17] suggested a simple modification
to the deflation operator to recover the behaviourM(z; r) → 1 and hence G(z) → F(z) at
infinity: the addition of a shift. The shifted deflation operator is

M(z; r) =
(

1
‖z − r‖pZ

+ 1

)
IV . (8)

This ismuchmore effective in numerical practice than (7); the incorrect behaviour at infin-
ity likely accounts for the unsatisfactory performance reported by Kanzow and Allgower
& Georg. This will be investigated further in the examples in Section 3.
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Remark 2.1: After the deflated problem (5) is constructed, the Newton–Kantorovich or
semismooth Newton algorithms will be applied to it, and therefore the differentiability
of the deflation operator should be established. These deflation operators (7) and (8) are
differentiable away from z= r if the norm used on the Banach space Z is differentiable
away from zero, i.e. if the Banach space Z is Fréchet smooth. Note that a reflexive Banach
space always admits an equivalent Fréchet smooth norm [23], and hence this requirement
is satisfied after possibly renorming. We therefore assume this property henceforth.

Remark 2.2: In practice only an approximation r̃ ≈ r is available for use in the deflation
operator. The question then arises of how this approximation affects the computation of
the roots of G (e.g. Wilkinson [65, pp. 55] considered this issue in the context of unshifted
deflation for polynomial rootfinding). Since the shifted deflation operator (8) satisfies
M(z; r̃) ≈ 1 away from r̃ (and r), no difficulties are encountered for solutions that are suf-
ficiently far apart. If two solutions are very close together, a simple remedy discussed by
Wilkinson is to calculate a root of G(z), then use that as initial guess for further Newton
iterations on F(z) = 0.

2.2. The Fréchet-differentiable case

For completeness, we state the result arguing that (7) and (8) are deflation operators in
the Fréchet-differentiable case. Incidentally, this result can be proven analogously to the
semismooth case as in Theorem 2.4 below, which provides an alternative proof to the one
found in [17].

Theorem 2.2 (Deflation for Fréchet differentiable problems [17]): Let F : D → V be a
continuously Fréchet differentiable operator with derivative F′ : D → L(Z,V), and let M be
given by (7) or (8). Let r ∈ D be an isolated solution of F, i.e. satisfy F(r) = 0 with F′(r)
invertible. Then M is a deflation operator for F at r.

Remark 2.3: It may be more convenient to use another norm ‖ · ‖X in the defla-
tion operator, provided Z ↪→ X. It is also possible to use a seminorm | · |X , provided
limz→r ‖T(z)‖V/|z − r|X = 0, where T(z) is the Taylor remainder associated with F(z) =
F(r)+ F′(r)(z − r)+ T(z).

2.3. The semismooth case

We now consider the semismooth case.

Definition 2.3 (Semismoothness [11,34,49]): Let Z andV be Banach spaces. Let F : D ⊂
Z → V , where D is an open subset of Z. F is semismooth at z ∈ D if it is locally Lipschitz
continuous at z and there exists an openneighbourhoodN ⊂ D containing zwith aNewton
derivative, i.e. a mapping H : D → L(Z,V) with the property that

F(z + h)− F(z)− H(z + h)h = o(h) (9)

for all z in N.
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With this Newton derivative, the semismooth Newton iteration is given by

zk+1 = zk − H(zk)−1F(zk). (10)

We now state the main result of this work. The following theorem is novel.

Theorem 2.4 (Deflation for semismooth problems): Let Z and V be Banach spaces, and
let F : D ⊂ Z → V. Let r be a root of F. Suppose F is semismooth at r with Newton derivative
H : D → L(Z,V) in a neighbourhood N ⊂ Z around r. Further assume that H(z) is invert-
ible for all z ∈ N and {‖H(z)−1‖ : z ∈ N} has a finite upper bound�. Then the operators (7)
and (8) are deflation operators for p ≥ 1.

Remark 2.4: These are the same assumptions used to prove the locally superlinear
convergence of the semismooth Newton method in [11,34].

Proof: For brevity, define

M(z; r) =
(

1
‖z − r‖pZ

+ σ

)
IV , (11)

with σ = 0 corresponding to (7) and σ = 1 corresponding to (8). Invertibility of M(z; r)
for all z �= r is obvious. Consider z ∈ N \ {r}. Let γ = �−1, and define

T(z) = F(z)− F(r)− H(z)(z − r). (12)

As before, T(z) = o(z − r) from the definition of semismoothness. We then have

‖M(z; r)F(z)‖V ≥ ‖F(z)− F(r)− H(z)(z − r)+ H(z)(z − r)‖V
‖z − r‖pZ

− σ‖F(z)‖V (13)

≥ |‖H(z)(z − r)‖V − ‖T(z)‖V |
‖z − r‖pZ

− σ‖F(z)‖V (14)

≥ ‖H(z)(z − r)‖V − ‖T(z)‖V
‖z − r‖pZ

− σ‖F(z)‖V (15)

≥ γ ‖z − r‖Z − ‖T(z)‖V
‖z − r‖pZ

− σ‖F(z)‖V . (16)

Since ‖F(z)‖V → 0 and ‖T(z)‖V/‖z − r‖Z → 0 as z → r, we have

lim inf
z→r

‖M(z; r)F(z)‖V ≥ lim inf
z→r

γ ‖z − r‖1−p
Z > 0, (17)

as required. �

It remains to show that the deflated problem (5) is in fact semismooth. This property is
verified in the following result.
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Lemma 2.5: Let F : D ⊂ Z → V be semismooth at z ∈ D, z �= r with Newton derivative
HF. Let M be given by

M(z; r) =
(

1
‖z − r‖pZ

+ σ

)
IV , (18)

for some σ ≥ 0. Then the product G(z) = M(z; r)F(z) is also semismooth at D with Newton
derivative action

HG(z)h =
(
σ + 1

‖z − r‖pZ

)
HF(z)h − p

〈z∗, h〉Z∗,Z

‖z − r‖p+1
Z

F(z), (19)

where z∗ ∈ Z∗ is the derivative of the norm ‖ · ‖Z at z − r, i.e. satisfies

‖z∗‖Z∗ ≤ 1, 〈z∗, z − r〉Z∗,Z = ‖z − r‖Z . (20)

Remark 2.5: If Z is a Hilbert space, then the Riesz representation of z∗ is (z − r)/‖z − r‖.

Proof: This follows from the well-known calculus rules for semismooth and continuously
Fréchet differentiable mappings, see e.g. [34,61] �

Remark 2.6: Since the deflated problem is semismooth, the usual sufficient conditions
guaranteeing local superlinear convergence may be applied [34] to the deflated residual.

Remark 2.7: Since the deflated problem is also semismooth, any devices developed for
globalizing convergence may be applied, such as line search techniques and continuation
e.g. [37,57].

Remark 2.8: It would be of significant interest to derive sufficient conditions guaranteeing
the convergence of the same initial guess to two distinct solutions via deflation. Some initial
results in this vein in the smooth case are discussed in [18], where it is shown that repeated
applications of the well-known Rall-Rheinboldt global convergence theorem [56,59] can
assure convergence to two distinct solutions starting from the same initial guess. A Rall-
Rheinboldt-type result, as opposed to Newton-Kantorovich, would be essential to prove
convergence to multiple solutions in the context of deflation. This is because the Rall-
Rheinboldt theorem places conditions on the radii of convergence of the balls centred at
the solutions, rather than guaranteeing the existence of a unique solution in a ball around
the initial guess. We briefly investigate the limitations of the classical theory in the frame-
work of semismooth equations below, and in doing so we explain the need for a result of
Rall-Rheinboldt-type that is native to the semismooth case.

Many infinite-dimensional semismooth equations of interest share a common structure.
In particular, due to low multiplier regularity for bound constrained variational problems,
one often resorts to a Moreau-Yosida-type approximation and considers a sequence of
(semismooth) equations with residuals taking the form

Fγ (z) := A(z)+ γ�(z)− f ,

whereA is a continuously Fréchet differentiable operator,� is a semismooth superposition
operator, γ > 0 is a penalty parameter, and f is constant, cf. [31]. For the sake of argu-
ment, assume that � ⊂ R

n is a nonempty, open, and bounded set; Z = H1(�) the usual



OPTIMIZATION METHODS & SOFTWARE 1255

Sobolev space of L2-functions with weak derivatives in L2, and� is generated by the func-
tion φ(x) := max{0, x}, i.e. �(z)(x) := max{0, z(x)}. Since φ and thus � are nonsmooth,
we cannot directly employ the arguments in [18].

However, by smoothing themax-function, we can obtain a further approximation of the
original problem that is regular enough to exploit the Rall-Rheinboldt theory. The remain-
ing question is whether the convergence guarantees for the smooth problem are stable as
ε ↓ 0. Suppose we replace max{0, x} by

(x)ε+ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x − ε

2
, x ≥ ε,

x2

2ε
, x ∈ (0, ε),

0, x ≤ 0.

and define �ε(z)(x) := (z(x))ε+ and Fγ ,ε(z) := A(z)+ γ�ε(z)− f . One of the essential
ingredients of the sufficient conditions in the Rall-Rheinboldt theorem are the (local) Lip-
schitz properties of the derivative F′

γ ,ε at the distinct solutions. In particular, we require an
open neighbourhood Ei,ε of each solution zi,ε along with a constant ωi,ε > 0 such that

‖F′
γ ,ε(zi,ε)

−1
(
F′
γ ,ε(u)− F′

γ ,ε(v)
)

‖ ≤ ωi,ε‖u − v‖ ∀ u, v ∈ Ei,ε .

Whereas the operator A can be assumed to be unproblematic, one readily derives the
estimates

‖[(·)ε+]′(u)− [(·)ε+]′(v)‖(H1)∗ ≤ 1,

|[(·)ε+]′(u(x))− [(·)ε+]′(v(x))| ≤ 1
ε
|u(x)− v(x)| a.e.�

for any two functions u, v ∈ H1(�). Although the difference of the smoothed operators
is uniformly bounded in u, v, and ε ≥ 0, the pointwise relation, which holds as an equal-
ity on the set {x ∈ �|u(x), v(x) ∈ (0, ε)}, would indicate that any form of affine-covariant
Lipschitz constant ωi,ε would unfavourably depend on ε. As a result, the ωi,ε-dependent
radii associated with the balls of convergence for the distinct roots would converge to zero.
Additional assumptions on the structure of Ei,ε that would avoid these issues are unre-
alistic, e.g. suppose � ⊂ R

1 so that H1(�) ↪→ C(�) and assume that there exists η > 0
(independent of ε) such that zi,ε ≤ −η < 0.

3. Finite-dimensional examples

We investigate the effectiveness of the deflation approach by applying it to various semis-
mooth problems in the literature that exhibit distinct solutions.

3.1. Complementarity problems

We consider the nonlinear complementarity problem NCP(F): given F : Rn → R
n, find

z ∈ R
n such that

z ≥ 0, F(z) ≥ 0, z ⊥ F(z). (21)
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This is equivalent to the variational inequality

find z ∈ K s.t. F(z)T(y − z) ≥ 0 for all y ∈ K, (22)

where

K = {z ∈ R
n : z ≥ 0}, (23)

with all inequalities understood componentwise. We apply a standard semismooth refor-
mulation of the problem using the Fischer–Burmeister NCP function

φFB : R × R → R

φFB(a, b) =
√
a2 + b2 − a − b, (24)

which has the property that φFB(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0 [22]. The nonlinear
complementarity problem (21) is equivalent to finding roots of the semismooth residual
� : Rn → R

n defined by

�i(z) = φFB(zi, Fi(z)). (25)

This is then solved with a semismoothNewtonmethod [37,44,55]. As roots {r1, . . . , rn} are
discovered, semismooth Newton is applied to

G(z) = M(z; r1)M(z; r2) · · ·M(z; rn)�(z), (26)

whereM is given by (8). That is, the deflation operators for each solution are concatenated
to deflate all known solutions. Unless noted otherwise, the parameter choice p=2 was
used.

3.2. Kojima and Shindoh (1986)

This problemwas first proposed byKojima and Shindoh [43] and is anNCPwith F : R4 →
R
4 given by

F(z) =

⎡
⎢⎢⎣
3z21 + 2z1z2 + 2z22 + z3 + 3z4 − 6
2z21 + z22 + z1 + 10z3 + 2z4 − 2
3z21 + z1z2 + 2z22 + 2z3 + 9z4 − 9

z21 + 3z22 + 2z3 + 3z4 − 3

⎤
⎥⎥⎦ . (27)

It admits two solutions,

z(1) = [1, 0, 3, 0]T ,
z(2) = [

√
6/2, 0, 0, 1/2]T ,

with residuals
F(z1) = [0, 31, 0, 4]T ,
F(z2) = [0, 2 + √

6/2, 0, 0]T .

This problemwas used again byDirkse and Ferris [14] as an example of a problem inwhich
classical Newton solvers struggle to find a solution. This is because one of the two solutions,
z(2), has a degenerate third component, i.e. z(2)3 = F3(z(2)) = 0, and hence does not satisfy
strict complementarity. Another feature of this problem is that the linear complementar-
ity problem formed through linearization of the residual F around zero has no solution,
causing difficulties for the Josephy–Newton method there [35].
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This is a relatively easy problem to solve and deflation with shifting (σ = 1) successfully
finds both solutions from many initial guesses. We chose initial guess [7/10, . . . , 7/10]T .
With no line search, semismooth Newton converged to z(1) in 7 iterations; after deflation,
semismooth Newton converged to z(2) in 12 iterations. By contrast, without shifting (σ =
0) deflation did not identify any additional solutions.

3.3. Gould (2001)

This is a nonconvex quadratic programming problem with linear constraints suggested by
N. I. M. Gould in an invited lecture to the 19th biennial conference on numerical analysis
[27]. It is a quadratic minimization problem with an indefinite Hessian of the form

min
x

f (x) = −2(x1 − 1/4)2 + 2(x2 − 1/2)2, s.t.

⎧⎪⎨
⎪⎩
x1 + x2 ≤ 1,
6x1 + 2x2 ≤ 3,
x1, x2 ≥ 0.

The first order Karush–Kuhn–Tucker optimality conditions yield an NCP with residual

F(z) =

⎡
⎢⎢⎣

−4(x1 − 1/4)+ 3λ1 + λ2
4(x2 − 1/2)+ λ1 + λ2

3 − 6x1 − 2x2
1 − x1 − x2

⎤
⎥⎥⎦ , (28)

where z = [x, λ], with λ = [λ1, λ2] the vector of the Lagrange multipliers associated with
F3(z) ≥ 0 and F4(z) ≥ 0 respectively. Note that in this case it is not necessary to use
Lagrange multipliers to enforce x ≥ 0 as this is implicit in the NCP formulation. The non-
convexity of the function f makes this problem difficult; it attains twominima with similar
functional values and has a saddle point at x = [1/4, 1/2]T . The central path to be followed
by an interior point method is pathological, with different paths converging to the different
minima.

We directly solve the arising NCP with the semismooth Newton method with deflation
with shifting and without line search. The initial guess was [2/10, 2/10, 0, 0]T . In order, the
three solutions found were

z(1) = [1/4, 1/2, 0, 0]T ,
z(2) = [0, 1/2, 0, 0]T ,
z(3) = [11/32, 15/32, 1/8, 0]T ,

with residuals
F(z(1)) = [0, 0, 1/4, 1/4]T ,
F(z(2)) = [1, 0, 1, 1/2]T ,
F(z(3)) = [0, 0, 0, 3/16]T .

These are the saddle point, the global minimum and the local minimum respectively. The
KKT conditions make no distinction between minima and saddle points, and hence the
solver finds both kinds of stationary points. The number of iterations required was 5, 7
and 10 respectively. As before, without shifting deflation did not successfully identify any
additional solutions.

3.4. Aggarwal (1973)

This is a Nash bimatrix equilibrium problem arising in game theory. This kind of problem
was first introduced by von Neumann and Morgenstern [63] and the existence of its solu-
tions was further studied by Nash [52] and Lemke and Howson [46]. In the same paper,
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Lemke andHowson also presented a numerical algorithm for computing solutions to these
kinds of problems. This example was introduced by Aggarwal [2] to prove that it is impos-
sible to find all solutions of such problems using a modification of the Lemke–Howson
method that had been conjectured to compute all solutions.

The problem consists of finding the equilibrium points of a bimatrix (non-zero sum,
two person) game. Let A and B be the n × n payoff matrices of players 1 and 2 respec-
tively. Let us assume that player 1 plays the ith pure strategy and player 2 selects the jth
pure strategy amongst the n strategies available to each. The entries of A and B, ai,j and
bi,j respectively, correspond to the payoff received by each player. It is then possible to
define a mixed strategy for a player which consists of a n × 1 vector x such that xi ≥ 0 and
x1 + · · · + xn = 1. Denote by x and y the mixed strategies for player 1 and 2 respectively.
The entries of these vectors stand for the probability of the player adopting the corre-
sponding pure strategy. The expected payoffs of the two players are then xTAy and xTBy
respectively. An equilibrium point (x∗, y∗) is reached when, for all x, y,

(x∗)TAy∗ ≥ xTAy∗, and (x∗)TBy∗ ≥ (x∗)TBy, (29)

i.e. neither player can unilaterally improve their payoff.
Aggarwal’s counterexample admits three Nash equilibria. These equilibria are related to

the solutions of the NCP with residual

F(z) =
(
Ay − e
BTx − e

)
, (30)

where z = [x, y]T and e = [1, 1, . . . , 1]T , A and B are positive-valued loss matrices related
toA and B respectively, and x and y relate to themixed strategy adopted by each player [51,
§ 1.4]. The data for this problem is

A =
[
30 20
10 25

]
, and B =

[
30 10
20 25

]
.

This problem is quite difficult, and we therefore turned to continuation to aid convergence,
as described below. The problem was modified to introduce an artificial parameter μ

Fμ(z) =
(
μAy − e
μBTx − e

)
, (31)

with the original problem given by μ = 1. With deflation with shifting, three solutions
were found for μ = 1/1000 from the initial guess [0, . . . , 0]T , in 5, 24 and 26 iterations of
semismooth Newton respectively. (As in the previous examples, deflation without shifting
did not identify any additional solutions.) All three branches were then successfully contin-
ued to μ = 1 using 50 equispaced continuation steps and simple zero-order continuation,
i.e. the solution for the previous valueμ− is used as initial guess for the solution of the next
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value μ+. The three solutions found were

z(1) = [0, 1/20, 1/10, 0]T ,
z(2) = [1/110, 4/110, 1/110, 4/110]T ,
z(3) = [1/10, 0, 0, 1/20]T ,

with residuals
F(z(1)) = [2, 0, 0, 1/4]T ,
F(z(2)) = [0, 0, 0, 0]T ,
F(z(3)) = [0, 1/4, 2, 0]T .

Aggarwal observed that the conjectured scheme mentioned above could compute z(1) and
z(3), but could not compute z(2).

3.5. Gérard, Leclère and Philpott (2017)

Gérard et al. describe a stochastic market where the agents are risk-averse, i.e. estimate
their welfare using a coherent risk measure [24]. They give an example of an incomplete
market with three different equilibria, two stable and one unstable. The authors exam-
ine the convergence of the well-known PATH solver [15,19], and discover that PATH
always yields the unstable equilibrium, even when initialized from many distinct initial
guesses. (An alternative tâtonnement algorithm does discover all three equilibria when
initialized from different initial guesses.) We therefore investigate whether deflation can
assist a semismooth Newton method in discovering all three solutions from a single initial
guess.

Mathematically, the problem is a mixed complementarity problem, a generalization of
nonlinear complementarity problems. Let R∞ := R ∪ {−∞,+∞}. Given F : RN → R

N ,
a lower bound l ∈ R

N∞ and an upper bound u ∈ R
N∞, the task is to find z ∈ R

N such that
exactly one of the following holds for each i = 1, . . . ,N:

(a) li ≤ zi ≤ ui and Fi(z) = 0;
(b) li = zi and Fi(z) > 0;
(c) zi = ui and Fi(z) < 0.

This is referred to as MCP(F,l,u). NCP(F) is a special case with the particular choice
l = [0, . . . , 0]T and u = [∞, . . . ,∞]T .

The problem at hand is given by F : R10 → R
10, where

F(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ( 3
4 (π1 − 23

2 x0)+ 1
4
(
π2 − 23

2 x0
))
u4 − ( 1

4
(
π1 − 23

2 x0
) + 3

4
(
π2 − 23

2 x0
))
u5(− 3

4 (π1 − x11)
)
u4 + (− 1

4 (π1 − x11)
)
u5(− 1

4
(
π2 − 7

2x12
))
u4 + (− 3

4
(
π2 − 7

2x12
))
u5

−(4 − π1 − 2y1)
−(9.6 − π2 − 10y2)

x0 + x11 − y1
x0 + x12 − y2

3
4
(
π1(x0 + x11)− 23

4 x
2
0 − 1

2x
2
11
) + 1

4
(
π2(x0 + x12)− 23

4 x
2
0 − 7

4x
2
12
) − θP

1
4
(
π1(x0 + x11)− 23

4 x
2
0 − 1

2x
2
11
) + 3

4
(
π2(x0 + x12)− 23

4 x
2
0 − 7

4x
2
12
) − θP

u4 + u5 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(32)
with z= (x0, x11, x12, y1, y2,π1,π2, u4, u5, θP). The bounds are given by l= [0, . . . 0,−∞]T

and u = [∞, . . . ,∞]T , i.e. all variables except θP have lower bound 0, and θP is uncon-
strained.
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To demonstrate that the deflation concept is not confined to a particular semismooth
reformulation, in this example we use an alternative NCP function. Define

φMP : R × R → R

φMP(a, b) = b − max (0, b − a) (33)

which again has the property that φMP(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. The semis-
mooth reformulation of the MCP employed is

�i(z) =
{
φMP(zi, Fi(z)) i = 1, . . . 9
Fi(z) i = 10.

(34)

Deflation with shifting was applied from the initial guess z0 = [0, . . . , 0]T with p=1, and
a line search algorithm was used to aid convergence (Alg. 2 of Brune et al. [10]). With
these parameters, the procedure identified all three solutions. With p=2 or without the
line search, only two solutions were found. In order, the three solutions found were

[π1,π2](1) = [1.2256, 2.0698], (35)

[π1,π2](2) = [1.2478, 2.1564], (36)

[π1,π2](3) = [1.2358, 2.1095], (37)

where only the equilibrium prices are shown for brevity. The solutions were found with
15, 9 and 17 semismooth Newton iterations respectively. The solution found by PATH is
the latter. As with the previous examples, deflation without shifting did not identify any
additional solutions.

4. Infinite-dimensional examples

4.1. Solving infinite-dimensional variational inequalities

When solving inequality-constrained infinite-dimensional problems, additional care must
be taken. The main issue here is a general lack of regularity of the Lagrange multipli-
ers. As a result, it is often impossible to derive a complementarity system (analogous to
KKT-conditions for nonlinear programs) that can be reformulated as a single semismooth
equation. Even in situations where the associatedmultiplier is regular enough to allow such
a reformulation, we encounter insurmountable issues in the derivation of a function-space-
based generalizedNewtonmethod. Ignoring these issues and taking a first-discretize-then-
optimize approach will generally lead to mesh-dependent convergence, i.e. the number of
iterations required to converge increases significantly as the mesh is refined.

This is illustrated in the following example. Suppose� ⊂ R
n is a nonempty, open, and

bounded subset and let J : H1
0(�) → R be Gâteaux differentiable. Consider the model

problem

min
{J (u) over u ∈ H1

0(�) | u(x) ≥ 0 a.e. x ∈ �}
. (38)

We denote the feasible set by K. If (38) admits a solution u, then we have

J ′(u)(v − u) ≥ 0 ∀ v ∈ K
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with J ′(u) ∈ H−1(�). Since K is a cone, an equivalent formulation holds:

J ′(ū)+ λ = 0, u ∈ K, λ ∈ K◦, 〈λ, u〉 = 0, (39)

where K◦ is the polar cone to K given by

K◦ := {
v ∈ H−1(�)

∣∣ 〈v,ϕ〉 ≤ 0 ∀ ϕ ∈ H1(�) : ϕ ≥ 0
}
.

According to the Radon–Riesz theorem, λ ∈ K◦ is in fact a locally finite Radonmeasure on
� [8, pg. 564]. Therefore, λ cannot in general be evaluated pointwise, in which case (39)
cannot be reformulated as a semismooth system of equations.

Suppose further that � is a convex polyhedron and that J ′(u) = Au − f , with A a
second-order linear elliptic operator with smooth coefficients and f ∈ L2(�). Then u ∈
H2(�) ∩ H1

0(�) [39, Chap. IV] and thus λ ∈ L2(�). We may then rewrite (39) as

J ′(ū)+ λ = 0, λ = (λ− u)+, (40)

where (x)+ := max{0, x}. Even in this ideal case, the nonsmooth superposition operator
�(λ, u) := λ− (λ− u)+ must be defined from L2(�)× H1

0(�) into L2(�). The natural
choice for the generalized derivative of� is given by

G(λ, u)(δλ, δu) = χ{λ−u>0}δu + χ{λ−u≤0}δλ.

In order for this to be a Newton derivative, the following approximation property must
hold:

‖�(λ+ δλ, u + δu)−�(λ, u)− G(λ+ δλ, u + δu)(δλ, δu)‖ = o(‖(δλ, δu)‖).
However, this only holds true if � is defined from L2+ε(�)× H1

0(�) → L2(�) for ε > 0
[34,61], which is not available even in this ideal case. This so-called ‘missing norm gap’ per-
sists for all other knownNCP-functions. As a result, the infinite-dimensional problem (40)
is not semismooth, which manifests itself as mesh-dependence on the discrete level [33].

An alternative mesh-independent scheme can be constructed from the Moreau–Yosida
regularization of the indicator functional for the constraints with respect to the L2(�)
topology. The key property of this scheme is that the plus function (·)+ is only applied to
u, and since u ∈ H1

0(�) ↪→ L2+ε(�), a norm gap holds and this operator is semismooth.
We sketch the approach taken in our implementation; for more details, see [31,32]. Let

I(u) :=
∫
�

iR+ (u(x)) dx, (41)

where iR+(x) is the indicator function for R+ (i.e. 0 if x ≤ 0 and +∞ otherwise). The
minimization problem (38) is equivalent to the unconstrained problem

min
{J (u)+ I(u) over u ∈ H1

0(�)
}
. (42)

Approximating I(u) by its L2(�)Moreau–Yosida regularization

Iγ (u) := inf
v∈L2(�)

{
I(v)+ γ

2
‖u − v‖2L2(�)

}
= γ

2

∫
�

(−u)2+ dx, (43)
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we obtain a sequence of γ -dependent problems of the form

min
{J (u)+ Iγ (u) over u ∈ H1

0(�)
}
, (44)

with penalty parameter γ → ∞. The associated first-order necessary condition is

J ′(u)− γ (−u)+ = 0, (45)

which is semismooth for the reasons outlined above. An initial γ is chosen and uγ com-
puted. Once this is found, the solver continues in γ , using an analytical path-following
scheme to drive the penalty parameter γ → ∞ efficiently [1,31,32]. The mesh and γ
are linked; as γ → ∞, the mesh is uniformly refined to ensure balanced error estimates
(cf. [30]). At every update of γ , the mesh is refined zero or more times until

h ≤ 1√
γ

(46)

is satisfied, where h is the characteristic mesh size. The process terminates once γ reaches
a target value γmax, which in this work is taken to be γmax = 106.

4.2. Computingmultiple solutions of infinite-dimensional variational inequalities
with deflation

Deflation can be combined with the Moreau–Yosida solver as follows. For the initial value
of γ , a set of initial guesses is supplied. Each guess is used as a starting point for semis-
mooth Newton applied to (45); if the guess is successful, the solution found is deflated, and
the guess is attempted again. When all guesses have been exhausted, the analytical path-
following strategy is applied to all solutions found, and the next value of γ is taken to be
the minimum of these (the most conservative update of all solutions found). If necessary,
the mesh is refined and all solutions prolonged. The solutions found for the previous step
are then used as initial guesses for the next, until the process terminates with γ ≥ γmax.

4.3. Zeidler (1988)

Zeidler [66, pg. 320] and Phú [54] study a long thin elastic rod under the action of a
compressive load constrained to lie in a channel of fixed width. Let s ∈ [0, L] denote the
arclength of the rod, y ∈ H1

0(0, L) denote its vertical displacement from centreline of the
channel, and θ ∈ H1(0, L) denote the angle between the rod and the centreline of the
channel. The potential energy of the system is given by

E(y, θ) =
∫ L

0
B
(
θ ′(s)

)2 + P cos θ(s)− P − ρgy ds, (47)

whereB ∈ R is the bending stiffness of the rod,P ∈ R is the compressive load applied to the
right end-point, ρ ∈ R is the mass per unit length of the rod, and g ∈ R is the acceleration
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due to gravity. The rod is placed in a channel of width 2α such that

y(s) ∈ [−α,α] (48)

is satisfied almost everywhere. Equilibria of the system are therefore given by the local
minimizers of

minimize
y∈H1

0(0,L), θ∈H1(0,L)
E(y, θ)

subject to sin(θ) = y′,∣∣y∣∣ ≤ α a.e.

(49)

Zeidler and Phú consider small deformations and linearize the system using the Taylor
expansions

sin(θ) ≈ θ , cos(θ) ≈ 1 − θ2

2
(50)

yielding the system

minimize
y∈H1

0(0,L), θ∈H1(0,L)
E(y, θ) =

∫ L

0
B(θ ′)2 − Pθ2 − ρgy ds

subject to θ = y′,∣∣y∣∣ ≤ α a.e.

(51)

where irrelevant constant terms in the functional have been neglected. Substituting the
constraint θ = y′, we arrive at the final system

minimize
y∈H2(0,L)∩H1

0(0,L)
J(y) =

∫ L

0
B(y′′)2 − P(y′)2 − ρgy ds

subject to
∣∣y∣∣ ≤ α a.e.

(52)

In the absence of the inequality constraint on y, the optimality conditions for this lin-
earized problem comprise a linear beam equation, with either a unique solution or a
one-dimensional nullspace. However, in the presence of the inequality constraint |y| ≤ α,
the problem remains nonlinear and can support distinct isolated solutions.

The system (52) was discretized using H2(0, L)-conforming cubic Hermite finite ele-
ments [40,41] using Firedrake [58]. The arising linear systems were solved using the sparse
LU factorization of PETSc [5].

In the absence of gravity (g=0), Phú proved that the first bifurcation of the system (51)
occurs at P = Bπ2/L2. In the presence of small gravity, the reflective symmetry of the sys-
tem is broken and the zero solution is no longer a trivial solution, but the bifurcation point
will be nearby. We therefore consider the system for parameter values B = 1, g = 1, ρ =
1, L = 1,α = 0.4 and P=10.4. This choice of P is sufficiently greater than Bπ2/L2 ≈ 9.87
that it is reasonable to expect the system to support distinct solutions.

The mesh-independent Moreau–Yosida solver with deflation was applied with initial
guess y=0 for γ = 10. This converged in one iteration to the first solution, Figure 1(a).
This is expected as the inequality constraints are inactive at this solution and the problem
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Figure 1. Solutions of the linearized beam problem (52). The dashed red lines denote the inequality
constraints on the vertical displacement of the beam.

is therefore equivalent to the linear beam equation.Deflationwith shiftingwas then applied
with deflation operator

M
(
y, ry

) = ‖y − ry‖−2
L2(0,L) + 1, (53)

where ry denotes the solution already known. The solver was reinitialized from the zero
initial guess and converged after 6 semismooth Newton iterations to a second solution
that violates the lower bound. (For this low value of γ , the bound constraints are only
weakly enforced.) This solution was then deflated using the same operator (53) and the
solver was re-initialized from the zero initial guess. The procedure then converged after 14
semismooth Newton iterations to the third solution that violates the upper bound.1 These
three solutions were then continued to γ = γmax in 9 continuation steps, with no further
solutions found. The three solutions found for γ = γmax are shown in Figures 1(a–c).

This experiment demonstrates an important property of the deflation strategy: deflation
is capable of computing distinct solutions of infinite-dimensional variational inequalities
whose solutions exhibit both nontrivial active sets and no activity whatsoever, from the
same initial guess.

4.4. A two-dimensional beamunder axial compressionwith obstacle constraints

In this example we consider a two-dimensional analogue of the previous problem, and
compute several equilibrium configurations of a hyperelastic beam under axial compres-
sion with obstacle constraints.

The physical model employed is compressible neo-Hookean hyperelasticity. Let � =
(0, 1)× (0, 1/10) denote the undeformed reference configuration, with boundary ∂� =
∂�left ∪ ∂�bottom ∪ ∂�right ∪ ∂�top. Homogeneous Dirichlet conditions are imposed on
∂�left, axial compression Dirichlet conditions are imposed on ∂�right, and natural bound-
ary conditions are imposed on ∂�top and ∂�bottom.

In addition, box constraints are imposed on the vertical component u2 of the displace-
ment vector field u : � → R

2 on ∂�top and ∂�bottom. Let

τtop(u) = tr∂�top(u2) (54)

where tr� : H1(�) → H1/2(�) is the standard trace operator, and let τbottom be defined
analogously. SinceH1/2(�) ↪→ L2(�), we may impose pointwise bound constraints of the
type τtop(u) ≤ α and τbottom(u) ≥ α.
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For a given axial compression ε, we seek a displacement vector

u ∈ Vε := {v ∈ H1(�;R2) : v|∂�left = (0, 0), v|∂�right = (−ε, 0)} (55)

that satisfies

minimize
u∈Vε

J(u) =
∫
�

ψ(u) dx −
∫
�

B · u dx

subject to τtop(u) ≤ α a.e.
τbottom(u) ≥ −α a.e.,

(56)

whereψ(u) is the isotropic compressible neo–Hookean strain energy density with Young’s
modulus E = 106 and Poisson ratio ν = 0.3, B = (0,−1000) is the body force density due
to gravity, and α is the value of the bound constraint enforced. The problem is discretized
using piecewise linear finite elements; the coarsest grid employed has 3200 triangular
elements.

The goal is to solve this problem for ε = 0.15 with α = 8 × 10−2. To do this, continu-
ation is employed. The Moreau–Yosida regularization of (56) is solved with fixed γ = 100
from ε = 10−3 to ε = 0.15 with steps of�ε = 10−3, with deflation employed at each con-
tinuation step. This initial continuation process yields seven solutions at ε = 0.15, three

Table 1. The values of ε at which new solutions were
discovered via deflation, along with the number of
semismooth Newton iterations required.

Solution Discovered at
Semismooth Newton

iterations

1 ε = 0 3
2 ε = 4.0 × 10−2 13
3 ε = 4.1 × 10−2 9
4 ε = 7.0 × 10−2 7
5 ε = 7.1 × 10−2 13
6 ε = 1.44 × 10−1 16
7 ε = 1.45 × 10−1 17

Table 2. Number of mesh refinements, degrees of freedom, nonlinear and
linear iteration counts required for the continuation in γ along ε = 0.15.

γ # Refs. Dofs Avg SSN its
Avg GMRES/MG
its per SSN step

1.00 × 102 0 3.36 × 103 3.28 –
1.33 × 102 0 3.36 × 103 4.00 –
2.23 × 102 0 3.36 × 103 4.50 –
4.47 × 102 0 3.36 × 103 5.00 –
1.05 × 103 0 3.36 × 103 4.25 –
2.80 × 103 1 1.31 × 104 4.14 19.03
8.42 × 103 2 5.18 × 104 3.85 19.63
2.81 × 104 3 2.06 × 105 3.85 22.30
1.03 × 105 4 8.21 × 105 4.14 24.62
4.13 × 105 5 3.28 × 106 5.00 26.17
1.00 × 106 5 3.28 × 106 4.00 25.75

Note: The semismooth Newton solver exhibits γ - and mesh-independence, while the
number of Krylov iterations per semismooth Newton step grows very slowly as γ and h
are refined.
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Figure 2. Active solutions of the two-dimensional hyperelastic beam under axial compression with
obstacle constraints. The colour bar denotes the vertical component of displacementu2. The correspond-
ing unconstrained solution is shown semi-transparently.
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Figure 3. Inactive solutions of the two-dimensional hyperelastic beam under axial compression with
obstacle constraints. The colour bar denotes the vertical component of displacement u2.

inactive solutions and four active solutions. The continuation procedure with mesh refine-
ment described in Section 4.2 is then applied to continue these solutions from γ = 100
to γ = 106. On the coarsest grid, the LU algorithm of MUMPS [4] is used to solve the
linear systems arising in semismooth Newton; on finer meshes GMRES-accelerated geo-
metric multigrid is employed, using all levels in the hierarchy, with three iterations of
Chebyshev-accelerated point-block SOR as a smoother (see Ulbrich et al. [62] for rigorous
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analysis of multigrid in a Moreau–Yosida regularization context). For all solves, the full
undamped semismooth Newton step is used, i.e. no line search is found to be necessary for
this problem.

This procedure yields seven solutions for ε = 0.15 and γ = 106. To give a sense of the
work involved, we report the number of semismooth Newton iterations required for the
initial discovery of each solution as ε is continued in Table 1, and the average number of
semismooth Newton iterations per solve and GMRES iterations per semismooth Newton
step as γ is continued in Table 2. The absolute and relative tolerances of the nonlinear
solver were both set to 10−8, while the absolute and relative tolerances of the linear solver
were set to 0 and 10−8. In all cases iteration counts are modest. In particular, the results of
Table 2 show that the number of semismooth Newton iterations required does not increase
as γ and h are refined, while the number of GMRES-accelerated multigrid V-cycles grows
very slowly.

The active solutions are shown in Figure 2 and the inactive solutions are shown in
Figure 3. For each active solution, we solve (56)without the obstacle constraints; the corre-
sponding solutions are also plotted to indicate the extent to which the obstacle constraints
influence the solutions. As can be seen, the bound constraints significantly change the
solutions, and are active on a set of positive measure on the boundary.

These results are encouraging. The function-space-based semismooth Newton method
combined with analytical path-following, parameter continuation, multigrid and deflation
appears very promising for constrained non-convex variational problems with multiple
solutions.

5. Conclusion

Deflation is a useful technique for identifying distinct solutions of variational inequalities
with semismooth Newton methods. In particular, employing shifted deflation operators
significantly improves the robustness of the approach. The main strengths of the defla-
tion method are that it is effective, straightforward to implement and that it does not
significantly increase the cost per Newton iteration.

While the method is found to be effective in numerical experiments, at present no
sufficient conditions are known that guarantee convergence of the method to additional
solutions.While such conditions are unlikely to be necessary, andmay be difficult to verify
a priori in computational practice, their availability would establish the foundations of the
method and give insight into the design of appropriate deflation operators. The identifi-
cation of such sufficient conditions forms an important open question and a direction for
future research.

Note

1. We also experimented with a mesh-dependent semismooth Newton method applied to this
problem. The second solution was found after 42 iterations, while the third was found after 45,
and both required a line search. In this case the convergence of the mesh-independent scheme
is much more robust.
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