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ABSTRACT
In vivo skin sensitization assays have to be provided by applicants
to the competent authorities in the European Union for the
approval of active substances (AS) in pesticides. This study aimed
to test the practicability of in silico predictions for AS by freely
available (Q)SAR tools to evaluate their use as a time- and cost-
effective alternative to animal testing in the context of the 3R
concept. Predictions of skin sensitization for 48 selected sensitizing
and non-sensitizing AS by the software programs CAESAR, Toxtree,
OECD (Q)SAR Toolbox, CASE Ultra, Leadscope and SciQSAR were
collected and compared. Different data evaluation methodologies
(score definition, mean, weighted mean, threshold score defini-
tion) were applied to optimize the predictions. The calculation
methods were internally cross-validated and further validated
with an additional validation set of 80 AS. Although the presented
calculation methodologies are not suitable as a stand-alone
method, this study has shown weaknesses and strengths of
some prominent (Q)SAR programs and diverse combinatorial
options in the prediction of skin sensitization by pesticidal AS.
The present study will help to foster discussions on in silico alter-
natives to animal testing in the pesticide area.
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Introduction

Allergic contact dermatitis (ACD) is a type IV hypersensitivity reaction caused by contact
of chemicals or haptens with the human skin. The equivalent experimental model in
rodents is called contact hypersensitivity (CHS). Skin sensitization is the term that
denotes the regulatory hazard of ACD and is composed of two phases: induction and
elicitation [1]. Induction of skin sensitization can be divided into several key events (KE)
according to the Adverse Outcome Pathway (AOP) concept by the OECD: At first the
chemical gets in contact with the skin. A molecular weight limit of 500 Da for penetra-
tion of the skin has long been believed [2], but more recently it has been shown that
sensitizing chemicals with higher molecular weights exist [3]. Inside the skin the chemi-
cals might react with proteins (KE1). However, this is not a mandatory requirement [4].
The actual allergen that is not necessarily identical to the sensitizing chemical interacts
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with keratinocytes, epidermal Langerhans cells and dermal dendritic cells. Upon expo-
sure, keratinocytes produce danger signals (KE2) that help dendritic cells (DCs) to
become activated (KE3). Activated DCs then migrate to the local lymph nodes, where
they encounter naïve T lymphocytes (T-cells). On their cell surface DCs present the
allergen on major histocompatibility complex proteins to T-cells which are thereby
activated (KE4) and differentiate into specific sub-populations. Primed T-cells migrate
back to the skin by the help of imprinted homing receptors. In the course of a second
encounter with the sensitizing chemical, adverse reactions are elicited. The specific
cytotoxic T-cells lead to skin inflammation and the actual clinical symptoms known
as ACD.

ACD affects ~ 20% of the North American and Western European population [5] and
is a major occupational disease [6] with increasing trend. ACD is a well-known problem
for farmers and rural society that come into contact with chemicals in the form of
pesticides routinely [7,8]. Chlorothalonil [9,10] or fluazinam [11] – only to name a few –
are pesticidal active substances (AS) which might lead to ACD in exposed workers. To
protect farmers and rural society, legal requirements dictate that skin sensitization of
pesticides must be investigated by the applicants and assessed by competent autho-
rities prior to market approval.

Pesticides are usually composed of different ingredients, including the AS, that
mediate the specific biological activity towards the plant or harmful organism, e.g. as
herbicide. In the European Union, the approval of AS is regulated by the Regulation
(EC) No 1107/2009 [12]. If approval for the AS is granted, the pesticide as a whole
might be authorized in the respective EU member states. In Germany, it is the
German Federal Institute for Risk Assessment (BfR) that assesses the health risks of
pesticides for humans. To do so, the BfR is provided with necessary data by the
applicants who have to submit appropriate dossiers. The mandatory data is laid down
in the Commission Regulation (EU) No 283/2013 [13] comprising amongst others a
number of toxicological endpoints which have to be tested by means of animal
experiments. For pesticidal AS, in vivo assays according to OECD Test Guidelines
406 and 429 (Bühler test, Guinea pig maximization test (GPMT) and Local lymph
node assay (LLNA)) are usually accepted for assessment of skin sensitization. For
details on the experimental set-up of these tests, please refer to the original OECD
Test Guidelines [14,15].

For cosmetic purposes, animal testing for skin sensitization is already banned and a
general marketing ban for cosmetic products has existed since 2013 [16]. Efforts to
reduce animal testing are also undertaken in the pesticide area, as well as for chemicals
regulated under REACH such as substances alone or as components of mixtures and
released ingredients of a product. In the scope of the 3R concept [17], it is favourable to
replace, reduce, or refine animal testing. Possible alternatives comprise – amongst
others – in silico methods such as (Q)SAR ((Quantitative) structure activity relationship)
which are especially convenient because of the time and cost effectiveness compared to
in vivo or in vitro assays. (Q)SAR models are based upon complex algorithms that
correlate a chemical structure or structural features with a physicochemical property
or biological activity. Algorithms can be mathematical equations or knowledge-based
rules [18]. To develop such algorithms, a training data set consisting of chemicals with
known properties/activities is used.
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The (Q)SAR programs used in the present study span the prominent freely
available software with the skin sensitization prediction ability: VEGA (Virtual mod-
els for property Evaluation of chemicals within a Global Architecture) with incorpo-
rated CAESAR (Computer Assisted Evaluation of Industrial Chemical Substances
According to Regulations) 2.1.6 [19], Danish (Q)SAR Database with predictions of
CASE Ultra, Leadscope and SciQSAR [20], Toxtree 2.6.13 [21] and OECD (Q)SAR
Toolbox 3.4 [22]. The above-mentioned (Q)SAR programs were originally used to
assess general chemicals, pharmaceuticals and cosmetics [23–25] so that training
sets consist mainly of such substances. As the assessment of skin sensitization is an
important issue in pesticide approval, we wanted to test to what extent (Q)SAR
programs are suitable to predict skin sensitization of pesticidal AS. In this study, the
predictivity of seven different (Q)SAR models in six freely available (Q)SAR programs
(one model in each program and two in the OECD (Q)SAR Toolbox) was assessed
with a test set of 48 AS. Predictions were optimized by diverse strategies (trans-
formation of results in uniform scores, mean formation, weighted mean formation,
usage of a score threshold). The best calculation method concerning PPV included
weighted mean formation of scores from six models/five programs and threshold
usage and was 8-fold cross-validated and it could be shown by 8-fold cross-valida-
tion that the relative and absolute outcome of the calculation steps are not
dependent on single AS, but represent the whole test set. Furthermore, the calcu-
lation methods were applied to a balanced set of 80 additional AS for validation
purposes.

Materials and methods

Selection of chemicals

AS of pesticides with known sensitizing potential (sensitizing or non-sensitizing) were
chosen for evaluation of different (Q)SAR models. The Federal Institute for Risk
Assessment is involved in the approval process of AS in pesticides. This way, the authors
had access to an internal database on skin sensitization. Available in vivo data (Buehler,
GPMT and LLNA) of approved AS were screened according to defined quality criteria
(Supplementary Table S1). A balanced set of 24 sensitizing and 24 non-sensitizing AS
with a respective data background was selected (Supplementary Table S2). According to
the above-mentioned criteria (Supplementary Table S1) the validation data set was
selected, subjected to the same quality criteria as the training set and consisted of an
additional 40 sensitizing and 40 non-sensitizing AS (Supplementary Table S3). Each
sensitizing AS is classified as sensitizing by the EFSA or by ECHA (European Chemicals
Agency) according to the Harmonized Classification and Labelling. The non-sensitizing
AS are all classified as non-sensitizing by the EFSA. The selected AS were not part of the
training datasets of Toxtree and CAESAR [26]. As the models from the Danish (Q)SAR
Database are commercial, the training data set is not provided in the downloaded (Q)
SAR reports. The training sets of OECD (Q)SAR Toolbox protein reactivity tools as rule-
based systems are not known [27] and not accessible. Therefore, no statement can be
made about possible inclusion of individual AS in the training sets of the latter (Q)SAR
models.
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Characterization of active substances

The tool ‘Organic Functional Groups’ inside the OECD (Q)SAR Toolbox was used for
chemical characterization of AS. The tool recognizes 506 different structural elements.

(Q)SAR programs

All freely available (Q)SAR programs used for this evaluation were listed for skin sensi-
tization prediction in a recently published guidance document by the European
Chemicals Agency [28].

VEGA
The VEGA platform (Virtual models for property Evaluation of chemicals within a Global
Architecture) version 2.1.6 provides access to different (Q)SAR programs and their
models. Among these, there is the CAESAR (Computer Assisted Evaluation of Industrial
Chemical Substances According to Regulations) software with a statistical model for skin
sensitization [29]. Chemicals are entered as SMILES-code (Simplified Molecular Input Line
Entry Specification) and the prediction result can be output as an Excel-readable txt file.
The model differentiates between ‘sensitizer’ and ‘non-sensitizer’. Additionally, a relia-
bility statement by an independent model, ranging from ‘low’ over ‘moderate’ to ‘good’,
is included in the results.

Danish (Q)SAR database
The Danish (Q)SAR Database (DQD) version 2017 by the Technical University of Denmark is
an online accessible repository of predictions for ~ 600,000 chemicals. The predictions are
derived from the programs CASE Ultra 1.4.6.6 64-bit, Leadscope version 3.1.1-10 and
SciQSAR version 3.1.00 which provide models for different endpoints including skin sensi-
tization. The predictions are abbreviated and do not contain the full information originally
provided by the systems. Skin sensitization is predicted as ‘POS’ (positive for skin sensitiza-
tion), ‘NEG’ (negative for skin sensitization) or ‘INC’ (inconclusive). Additionally, information
about the applicability domain is given in the form of an ‘IN’ (inside applicability domain) or
‘OUT’ (outside applicability domain). Predictions outside the applicability domain are not
necessarily incorrect and those inside not necessarily correct. This simply provides informa-
tion about whether the target compound is sufficiently similar to the training set in
relevant descriptors. In addition, the DQD provides an overall Battery prediction for each
endpoint integrating the predictions of the three single programs. For details on the
Battery algorithm, please refer to the original DQD manual [30].

Toxtree
Toxtree [31] v2.6.13 is a rule-based expert system containing model ‘skin sensitization
reactivity domains’ to predict five electrophilic reactivity alerts: SNAr electrophiles, Schiff
base formers, Michael acceptors, acylating agents, and SN2 electrophiles.

OECD (Q)SAR toolbox
The OECD (Q)SAR toolbox (QTB) is a software application with statistic-based
models in the form of tools. Concerning skin sensitization, four tools are most
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relevant: ‘Protein binding by OASIS v1.4’; ‘Protein binding by OECD v2.3’; ‘Protein
binding potency v2.4’; and ‘Protein binding alerts for skin sensitization by OASIS
v1.4’. These were used in combination as they all predict the reactivity towards
proteins and are referred to as a ‘QTB, reactivity’ model predicting ‘QTB-alerts’. A
‘QTB-alert’ results from one alerting tool independent of the number of alerts, so
that an AS can maximally provoke four QTB-alerts (one from each tool).

The QTB also offers the possibility to perform a read-across approach. A target chemical
can be profiled by different tools the user can select freely. Groups of chemicals similar to
the target in freely chosen properties can then be created. Different groups can be
combined with a logical ‘and’ or ‘or’. For skin sensitization and other endpoints, experi-
mental data can be retrieved for the target and/or similar chemicals. We defined a strict
way of performing a ‘manual’ read-across: Based on the predicted skin sensitization-related
properties by the above-mentioned QTB tools, as well as based on the predicted chemical
properties by the tool ‘US EPA New Chemical Categories v2.0’, groups were defined and
screened manually for very or partially similar chemicals. ‘Very similar’ was defined with a
maximum of one and ‘partially similar’with a maximum of three differing functional groups
between the target and read-across chemicals. The experimental endpoint value for the
similar chemicals was assigned to the target as a qualitative result (positive/negative). This
procedure is referred to as the ‘QTB, read-across’ model in the following.

Calculations

For each individual AS the score mean of all models (1: CASE Ultra; 2: Leadscope; 3:
SciQSAR; 4: CAESAR; 5: Toxtree; 6: QTB, reactivity; 7: QTB, read-across) was calculated
according to equation (1). Assignment of scores to the individual output of each model
is described in the results section.

score meanall models ¼
P

i ¼ model 1�7Scoremodel i

number of models
(1)

Equation (2) shows the calculation for the score mean of all models without one
exemplarily for the case of leaving out CASE Ultra.

score meanall models minus CASE Ultra ¼
P

i ¼ model 2�7Scoremodel i

6
(2)

The weighted score means (WSM) for each individual AS were calculated according to
equation (3). For each AS, the weighting factors indexed 1–7 were used for the score of
the respective programs 1–7. Assignment of weighting factors to the individual scores of
each model is described in the results section.

WSMallmodels ¼
P

i ¼ model 1�7 scoremodel i � weighting factoriP
i ¼ 1�7 weighting factori

(3)

Equation (4) shows the calculation for the WSM of all models without one exemplarily
for the case of leaving out CASE Ultra.

WSMall models minus CASE Ultra ¼
P

i ¼ model2�7scoremodel i � weighting factoriP
i ¼ 2�7weighting factori

(4)
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The positive and negative predictive values (PPV and NPV) were calculated according to
equations (5) and (6), respectively.

PPV ¼ number of true� positive predictions
number of positive predictions

(5)

NPV ¼ number of true� negative predictions
number of negative predictions

(6)

The sensitivity, specificity and accuracy values were calculated according to equations
(7), (8) and (9), respectively.

sensitivity ¼ number of true� positive predictions
number of sensitizing AS

(7)

specificity ¼ number of true� negative predictions
number of non� sensitizing AS

(8)

accuracy ¼ number of true predictions
number of all AS

(9)

It should be noted that all these performance measures depend on the actual
prevalence. Here, they are always given for the artificial prevalence of 50% in the test
and validation set.

Statistical analysis and cross-validation

For comparison of score values between sensitizing and non-sensitizing AS, statistical
analysis was performed with SigmaPlot 13 version 1. The non-parametric Mann-Whitney
U-test was applied. For this purpose, normal distribution was checked and rejected with
the Shapiro-Wilk test. Differences between scores of sensitizing and non-sensitizing AS
were considered significant when p ≤ 0.05.

Data shown in box plots comprise the following: continuous lines represent median
values, dotted lines represent mean values; the bottom and top of the boxes are the
25th and 75th percentiles; the whiskers below and above are the 10th and 90th
percentiles. Outliers are shown as small circles above and below the whiskers.

An 8-fold cross-validation was performed to check whether the quality of the prediction
with single models and with the different calculation methods was dependent on a few
individual substances. Therefore, the dataset of 48 AS was randomly divided into eight sub-
sets, each containing the same number of sensitizing and non-sensitizing AS. All calculation
steps performed with the whole dataset were repeated with the eight cross-validation-
datasets that consisted of the whole set diminished by one of the eight parts, respectively.
Mean and standard deviation over all eight cross-validation datasets were calculated.

Results

For description of the predictions, the following terminology will be used: The terms
‘positive’ and ‘negative’ describe skin sensitization properties that were predicted by
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(Q)SAR programs, while the terms ‘sensitizing’ and ‘non-sensitizing’ describe properties
that were found in animal experiments.

Selection and characterization of active substances

Forty-eight AS (Supplementary Table S2) of pesticides whose in vivo skin sensitization data
fitted defined criteria (Supplementary Table S1) were selected for the initial evaluation of
(Q)SAR programs. For the validation set (Supplementary Table S3) the selection of an
additional 40 sensitizing and 40 non-sensitizing AS was based on classification by EFSA
and/or by ECHA according to the Harmonized Classification and Labelling. To identify
possible differences in the chemical structure between sensitizing and non-sensitizing AS,
chemical characteristics of all AS were identified by the OECD QTB ‘Organic functional
groups’ that are able to recognize 506 different structural elements. Ninety-one different
organic groups were recognized among the test set and 107 among the validation set.
Sixty-seven functional groups were shared between the test and validation set.

The frequency of occurrence of each of the organic groups present in sensitizing and
non-sensitizing AS of the two sets was inspected. However, no remarkable differences
were identified.

Performance of individual programs

Programs from the Danish (Q)SAR database
The Danish (Q)SAR database (DQD) comprises three programs: CASE Ultra, Leadscope
and SciQSAR. DQD predictions from these programs were downloaded for 42 out of 48
AS, whereas for three sensitizing (Mancozeb, Maneb, Fluazinam) and three non-sensitiz-
ing AS (Fenpyrazamine, Fluopyram, Fluxapyroxad) (Q)SAR data were not available from
the database (Figure 1a). There were more sensitizing than non-sensitizing AS categor-
ized as POS_IN (predicted sensitizer, inside applicability domain) with all three programs
and the Battery prediction. This picture remained unchanged for CASE Ultra and the
Battery prediction, when also the POS_OUT (predicted sensitizer, outside applicability
domain) predictions were considered, whereas for Leadscope more non-sensitizing than
sensitizing AS were predicted positive. Leadscope was also the only program that
classified more sensitizing than non-sensitizing AS as NEG_IN, which means more
false-negatives than true-negatives. The Battery prediction generated an equal number
of NEG_IN-predictions for sensitizing and non-sensitizing AS. CASE Ultra failed to provide
any NEG_IN predictions. Only SciQSAR provided two more NEG_IN-predictions for non-
sensitizing than sensitizing AS. In combination with the NEG_OUT-predictions SciQSAR
performed best among the three programs CASE Ultra, Leadscope and SciQSAR con-
cerning the number of true-negatives. Generally, the number of inconclusively predicted
AS was very high (28 with CASE Ultra, 10 with Leadscope, 19 with SciQSAR, 23 with
Battery prediction). As the Battery prediction was not superior to the three single
programs, it was not included into the later combination of programs.

CAESAR
The output of the CAESAR skin sensitization model was a simple statement, whether the
substance was a ‘sensitizer’ or a ‘non-sensitizer’. Additionally, information about the
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degree of reliability was provided, stated as ‘low’, ‘moderate’ or ‘good’. Two out of 24
sensitizing AS (Mancozeb and Maneb) could not be predicted because the SMILES code
could not be recognized by the software, probably due to the complexation with
manganese and zinc ions. For the remaining AS, the number of positive and negative
predictions did not clearly differ between sensitizing and non-sensitizing AS. There were
even more non-sensitizing than sensitizing AS that were predicted as positive
(Figure 1b).

Toxtree
The Toxtree skin sensitization model does not provide a prediction as direct as the
aforementioned programs with their models: Instead, electrophilic protein reactivity
alerts (SNAr electrophiles, Schiff base formers, Michael acceptors, acylating agents and
SN2 electrophiles) are predicted (Figure 1c) that are assumed to correlate with KE1 in the
skin sensitization process (covalent interaction with proteins). Four out of the five
reaction types were predicted to a similar extent for sensitizing and non-sensitizing AS
(Figure 1c), with slightly more sensitizers yielding SNAr electrophile alerts and more non-
sensitizers being Schiff base formers. Only sensitizing AS were Michael acceptors. The
number of alerts distinguished sensitizing from non-sensitizing AS slightly better
(Figure 1d). The maximum observed number of alerts (three) was only reached by two
sensitizing AS (Fluxapyroxad and Carfentrazone-ethyl). Further, there were more non-
sensitizing AS eliciting no alert.

OECD (Q)SAR toolbox
Four tools from the QTB predict protein reactivity similar to Toxtree, but with a far broader
rangeofmechanistic domains. Themaximumobservednumber of alertswith all toolswasfive,
but most AS elicited no or one alert (Figure 1e). Only with the tool ‘Protein binding by OASIS
v1.3’ some AS provoked more than two alerts. The maximally observed number of five alerts
was provoked by one sensitizing AS, Tribenuron-methyl. However, four alerts were provoked
bymore non-sensitizing AS than by sensitizing AS. Similar to the Toxtreemodel, the QTB tools

Figure 1. Predictions of skin sensitization by individual (Q)SAR models for 24 sensitizing and 24 non-
sensitizing AS. (a) Via the Danish (Q)SAR database predictions of three different (Q)SAR models were
available together with a Battery prediction combining the three individual predictions. CAS numbers of six
AS were not found by the software. (b) CAESAR predictions available via the VEGA software are shown. CAS
numbers of two AS were not found by the program. Scores are defined in Supplementary Table S4. The
individual scores for sensitizers and non-sensitizers are listed in Supplementary Table S5. (c, d) Toxtree
predicts five different chemical reactivities (alerts) related to protein binding in the skin sensitization process.
The number of sensitizing or non-sensitizing AS provoking the respective alert (c) and the number of alerts
that was provoked by sensitizing or non-sensitizing AS (d) are shown. (e) The number of alerts of four
different tools inside the (Q)SAR Toolbox (QTB) is shown that were provoked by sensitizing or non-
sensitizing AS. (f) The individual alerts of the four QTB tools were merged into one QTB alert parameter.
Accordingly for one AS four alerts were maximally possible (one from each of four tools). The number of
QTB-alerts provoked by sensitizing or non-sensitizing AS is shown. Sens = sensitizing; n-sens = non-
sensitizing. POS/NEG/INC = positive/negative/inconclusive prediction; IN/OUT = inside/outside of the
respective applicability domain.
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did not distinguish sensitizing from non-sensitizing AS by the number of alerts. It was tested
whether the integrationof the individual alerts by the four different tools into onemergedQTB
alert parameter would improve the correlation between predictions and experimentally
determined skin sensitization. For this purpose, one or more alerts by one tool were counted
as one QTB-alert. This way an AS could elicit a maximum of four QTB-alerts (one from each
tool). Indeed, the highest number of QTB-alerts was only provoked by sensitizing, but not by
non-sensitizing AS (Figure 1f). The concept of QTB-alerts was later used in the combination of
models. By using QTB it is also possible to perform read-across approaches with defined
groups of chemicals which are similar to the target chemical (e.g. the same alert by ‘Protein
binding by OASIS v1.3’). However, by this approach similar substances were found for only
eight of the 48 substances.

For eight AS very and partially similar chemicals were found inside the created groups
(Table 1) which were all true-positives. However, non-sensitizing AS in the test set could
not be predicted by that approach.

Score definition

For comparison of allmodels, the individual output of eachwas translated into a uniform score
system ranging from 1 (positive) over 0 (inconclusive) to –1 (negative) (Supplementary
Table S4), similarly to previous studies [32,33]. Thereby, the sign indicates a sensitizing or
non-sensitizing potential. Attention should be paid to the interpretation of the score value: the
score value represents the predicted general probability of an AS to be sensitizing, not its
sensitization potential.

As the practicability of the models should be assessed, the inability of certain models to
generate predictions as a consequence of not recognizing CAS numbers or SMILES codes was
counted as an inconclusive prediction (score = 0). Non-recognition might also be due to the
way SMILES arewritten or the presence of salts (notmanaged in almost all QSAR systems). The
four different tools of theQTBwere used in combined form, because the combination allowed
a clearer prediction for sensitizing AS (see above). Further, the predictions of the models that
predicted protein reactivity, but not directly skin sensitization (Toxtree and QTB protein
reactivity) were set to achieve the score 1 with themaximal amount of protein reactivity alerts
and the score –1 with no alerts. Any further score incrementingmight not bemeaningful, due
to the fact that protein reactivity does not necessarily lead to skin sensitization.

The introduction of scores enabled statistical testing, whether the predictions of
sensitizing AS differed significantly from those of non-sensitizing AS (Figure 2 ; scores

Table 1. Active substances (AS) and the similar chemicals found in the OECD (Q)SAR Toolbox by
category definition.
AS CAS Similar chemical CAS

Captan 133-06-2 n-(Fluorodichloro-methylthio)-phthalimide 0-05-0
Chlorothalonil 1897-45-6 Pentachlorophenol 87-86-5
Dimethachlor 50563-36-5 Alachlor 15972-60-8
Folpet 133-07-3 n-(Fluorodichloro-methylthio)-phthalimide 0-05-0
Mancozeb 8018-01-7 Zinc diethyldithiocarbamate 14324-55-1
Maneb 12427-38-2 Zinc diethyldithiocarbamate 14324-55-1
S-Metolachlor 51218-45-2 Alachlor 15972-60-8
Tolclofos-methyl 57018-04-9 Chlorpyrifos 2921-88-2
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for each AS can be found in Supplementary Table S5). Significant differences were only
observed with ‘QTB, reactivity’ and ‘QTB, read-across’. However, with ‘QTB, reactivity’ the
scores of sensitizing AS were homogenously distributed from –1 to 1, so that positive
predictions for sensitizing AS cannot be considered certain. The approach ‘QTB, read-
across’ did not yield any predictions for non-sensitizing AS. As the statistical significance
was not found to be a measure for good predictivity, it was not the main focus for
optimizing predictive performance.

Combination of models by mean

The mean value of all scores by the different models was calculated for each AS to test
whether the combination of all models would result in more robust and clear predic-
tions. Further, the mean value with all models without one was determined to exclude
that predictions of one program would have a special impact. On average, the score
mean calculations yielded higher numbers of true-positives and -negatives (Table 2)
compared to the individual models. Only the program CAESAR yielded more true-
positives, but at the same time also less true-negatives. The score means without one
showed that there was no individual model that was considerably more favorable to
predict skin sensitization than the other models (Figure 3a). Generally, the most striking
difference between individual and combined programs is the accuracy that is nearly
doubled (Table 2). The score mean without Leadscope, for example, reached an accuracy
of 60%. Additionally, the averaged sensitivity and specificity of the mean calculations
was 49% and 59%, while for the individual programs it was only 30% and 21%,
respectively (not shown). However, the PPV and NPV are decreased compared to some
individual programs (Table 2). In general, performance measures such as sensitivity,
specificity, etc. (Table 2) have to be interpreted with care in the present context: for
instance, a PPV of 100% may result from less than 10 predictions (e.g. QTB, reactivity: 5

Figure 2. Comparison of score values from sensitizing and non-sensitizing AS derived of different (Q)
SAR predictions. The dotted line denotes the mean of the score values, respectively. Sens =
sensitizing; n-sens = non-sensitizing. * p ≤ 0.05.
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predictions; QTB, read-across: 8 predictions) and is very probably combined with very
low values in other categories (accuracy, etc.). Besides, these performance measures
were originally intended to describe binary classification systems predicting only ‘posi-
tive’ and ‘negative’. Here they are used to describe a ternary classification system that
additionally includes ‘inconclusive’ predictions.

A dual combination of the programs CAESAR and CASE Ultra and a ternary combina-
tion of CEASAR, CASE Ultra, and ‘QTB, read-across’ was calculated as well (data not
shown). These programs were selected because of their comparatively high sensitivity.
However, these combinations could not exceed the specificity or accuracy of combina-
tions of all programs and all without one. As the combination of six or seven models is
expected to be more robust, this approach was pursued for performance optimization.

The prediction of non-sensitizing AS with all score mean variants was better com-
pared to those of sensitizing AS, because ~ 50% (marked by the boxes in the box plots
in Figure 3a) of AS had a score value of < 0 (i.e. showed a tendency for negative
prediction), while half of the sensitizing AS had predictions with score values ~ 0 (i.e.
no clear tendency for positive prediction). The distribution of score values (Figure 3b)
showed that the clear predictions of a few models for certain AS were counteracted by
inconclusive predictions of other models when the mean was calculated. This way, most
of the mean score values for all AS ranged around 0. The few clear predictions were not
limited to an individual program, as can be seen when leaving out one system: the

Figure 3. Comparison of score means and weighted score means. (a and c) For each AS the (weighted)
mean of the score values of all (Q)SAR models or all minus one was calculated. Dotted lines denote the
mean of the score values for all sensitizing or non-sensitizing AS, respectively. (b and d) Distribution of
(weighted) score mean values from sensitizing and non-sensitizing AS is shown. Sens = sensitizing;
n-sens = non-sensitizing. * p ≤ 0.05.
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differences between the mean and the ‘mean without one’ calculations were not
remarkable (Figure 3a).

Combination of models by weighted mean

To combine the conclusive predictions of all models for each AS, weighting factors for
the scores of each program were applied, followed by subsequent calculation of the
mean of the weighted individual scores. Weighting factors different from the default
weighting of 1 were applied under certain conditions: a weighting factor of 0 was
assigned to a score of 0 so that all inconclusive predictions were excluded. In case an
AS was scored with the value 0 by all models, the weighting factor was set to 1 because
otherwise no mean could be calculated.

By applying weighting factors, it was possible to yield higher scores for sensitizing AS and
lower scores for non-sensitizing AS (Figures 3c and d) compared to the mean without
weighting (Figure 3a and b). Although theweighting did not result in a change in the numbers
of true and false predictions as compared to the simple mean calculation, a difference was
clearly visible: The number of AS with predictions that provided a clear and correct statement
(sensitizing AS with score values ≥ 0.5 and non-sensitizing AS with score values ≤ –0.5)
(Figure 4) was higher with the weighting than without. Mean with all models resulted in one
sensitizing AS with a score ≥ 0.5 and no non-sensitizing AS with a score ≤ 0.5, while the
weightedmean with all models resulted in nine sensitizing AS with scores ≥ 0.5 and two non-
sensitizing AS with a score ≤ 0.5. Nonetheless, there were still a considerable number of false
predictions (total of 21; sensitizing AS with scores < 0 and non-sensitizing AS with scores > 0)
(Figure 4 and Table 2).

Performance of threshold value application

To reduce the number of false predictions and improve the PPV, threshold scores were
set. Positive and negative thresholds were determined. These are set score values above
or below which a prediction can be considered as truly positive or negative with a high
probability, respectively. A positive threshold score of 0.4 and a negative threshold score
of –0.6 provided the best results. When applying these threshold definitions, the
thresholded weighted score means (WSM) had much improved PPV, but at the expense
of the total number of true predictions (accuracy) compared to non-thresholded WSM,
which is also reflected in sensitivity and specificity (Table 2). With 27%, the thresholded
WSM without Toxtree yielded the second highest percentage of positive predictions
scored ≥ 0.4 (Figure 5a), of which 85% were true-positives (Figure 5b) (for comparison
please refer to the PPV values presented in Table 2). Using the same mean calculation,
only 2.1% of all AS were predicted as negative (Figure 5a). That is only a small
percentage compared to the possible 50% and corresponds to only one AS, but this
prediction was true-negative (Figure 5c). The thresholded WSM without CEASAR resulted
in higher numbers of negative predictions with better specificity, but the positive
predictions were less certain, with a PPV of only 64% (Table 2). Although WSM without
Leadscope yielded the highest PPV with 89%, accuracy and NPV of WSM without Toxtree
is higher. Therefore, the latter calculation method is considered as the ‘best’.
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Internal validation

To prove that the relative (values such as PPV, NPV, etc. of one calculationmethod in relation
to individual programs/other calculations) and absolute (absolute values such as PPV, NPV,
etc.) results of the different calculation variants were not dependent on some few AS, an 8-
fold cross-validation was performed. For this purpose, the dataset of 48 AS was randomly
divided into eight sub-sets of six substances. All sub-sets contained an equal number of
sensitizing and non-sensitizing AS. All mean values and WSM values were calculated with
each individual dataset, and the thresholds were applied as defined above. The resulting
standard deviations were small (< 20% of the mean values) so that it can be assumed that
the results represent the whole dataset and not only some individual AS (Supplementary
Figure S1). The calculation of the thresholded WSM without Toxtree still achieved the most
true-positive predictions when applying the positive threshold of 0.4 (Supplementary
Figures S1A and B). Among the WSM calculation methods, this method was also the one
that allowed the fewest false-positive and -negative predictions (non-sensitizing AS with
scores ≥ 0.4 and sensitizing AS with scores ≤ –0.6).

Figure 4. Comparison of the prediction quality of the individual models, of the mean values and the
weightedmean values (WSM). Sensitizing ASwith scores≥ 0.5 and non-sensitizing ASwith scores≤ –0.5 are
considered clearly correctly predicted. Sensitizing AS with scores < 0.5 > 0 and non-sensitizing AS with
scores < 0 > –0.5 are considered correctly predicted. Sensitizing AS with scores < 0 and non-sensitizing AS
with scores > 0 are considered false-negatives and false-positives, respectively. Mean and weighted mean
were calculated by using the scores of all models for each AS and by excluding scores of one program at a
time. Sens = sensitizing; n-sens = non-sensitizing.
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Figure 5. Comparison of prediction quality of score mean and WSM values by applying threshold
scores. Threshold scores defining a certain score above or below a prediction are considered positive
(≥ 0.4) or negative (≤ –0.6). (a) The percentages of AS with positive or negative predictions
according to thresholds are shown. (b) The percentage of true- and false-positives of all positive
predictions is shown. (c) The percentage of true- and false-negatives of all negative predictions is
shown. Sens = sensitizing; n-sens = non-sensitizing.
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External validation

An external validation was performed with an independent set of 80 AS (Supplementary
Table S6). Results are presented in Supplementary Figure S2 and Table S7 (cp. with
Table 2 for the results from the different sets of AS). The performance of the individual
models CASE Ultra and ‘QTB, reactivity’ was slightly different compared to the test set:
for the validation set CASE Ultra predicted fewer sensitizing AS as positive within the
application domain, as compared to non-sensitizing AS. Nonetheless, the total of posi-
tive predictions (within and outside the application domain) was still higher for sensitiz-
ing AS. Furthermore, there were less sensitizing AS, with four QTB-alerts in the validation
set than in the test set. This way, the calculation of mean and WSM with threshold
application yielded not exactly the same absolute results with the test and validation set
(Supplementary Figure S3). Nonetheless, using the threshold application WSM without
Toxtree led to the best prediction concerning PPV and NPV of 60% and 86%
(Supplementary Table S7), respectively.

Discussion

The present study was aimed at the evaluation of the suitability of six freely available (Q)
SAR programs/seven (Q)SAR models (one from each program, but two from the program
QTB) to predict skin sensitization caused by AS in pesticides.

Discussion on the feasibility of (Q)SAR programs

Skin sensitization is a very complex endpoint involving the formation of, in most cases,
an unknown allergen and a cascade of highly specific interactions. Therefore, it may be
too simple to correlate individual functional groups or small structural elements with
skin sensitization. Concordantly, an analysis of functional groups in the AS performed in
the present study did not reveal remarkable differences between sensitizing and non-
sensitizing AS. Two programs – namely Toxtree and QTB – predict skin sensitization
indirectly in the form of protein reactivity alerts. These protein reactivity alerts aim to
correlate directly with skin sensitization as the training data set consists of LLNA data, at
least in the case of Toxtree [26,31]. In the case of QTB, the protein reactivity tools used
are directly recommended as relevant to skin sensitization by the OECD [34]. Protein
reactivity follows skin penetration in the skin sensitization process and, therefore, tends
to correlate with the in vivo measurable endpoint contact hypersensitivity. However, as
there are also chemicals that are reactive towards proteins and do not elicit skin
sensitization, it is generally difficult to deduce skin sensitization potential directly from
protein reactivity. The reactive chemistry as an absolute requirement for skin sensitiza-
tion elicitation is doubted by experts [4]. In the case of AS in pesticides, protein reactivity
alerts did not necessarily correlate with skin sensitization. The results have shown that
neither the number nor the type of protein reactivity alert could clearly distinguish
sensitizing from non-sensitizing AS. The sensitivity of the ‘QTB, reactivity’ approach was
very poor, with 21% for the test set and 5% for the validation set. Nonetheless, others
have shown that protein reactivity alerts have informative value for other substance
classes [3].
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An approach that appeared applicable is the ‘QTB, read-across’, as all positive pre-
dictions were true-positive for the test set in this study (Table 2). For the validation set,
the PPV was 75%, with six true-positive predictions. The read-across approach is based
on the transfer of an endpoint value from a structurally very similar chemical to the
chemical of interest. The program QTB provides the possibility to perform such an
approach, but there are still major problems with the feasibility of the procedure as it
is intended: According to the QTB tutorials [34], a read-across is performed by predicting
the missing endpoint value of the target with the experimental data of the five most
similar chemicals within the group that was created with the help of the profiling tools.
The number of similar chemicals (default: 5) which are used for read-across as well as the
descriptor defining the similarity can be chosen by the user. Additionally, the number
and sort of chemicals in the created group depend on the user. Our preliminary
investigations showed that the broad range of possible adjustments resulted in arbitrary
predictions in the case of AS in pesticides. The insufficient accuracy with unstructured
use of the OECD (Q)SAR Toolbox has been mentioned earlier [35], referring to version
1.1. No significant improvement was found with version 3.4 used here, as the results
were still user-dependent. Independently from the intended read-across procedure, the
manual read-across alternative used here also bears some problems. Group creation
with the tools is difficult because the tools can only be used for group creation when the
AS has provoked an alert (with protein reactivity tools) or was sorted into a group (with
‘US EPA New Chemical Categories v2.0’). Technically, a group can be created with the
tools nonetheless. However, such a group would then consist of all chemicals inside the
QTB database that did not provoke an alert or could not be categorized with the
respective tool. That, of course, does not mean that these chemicals possess any
similarities among each other. In the case of the protein reactivity tools, a group
consisting of chemicals with no protein reactivity would be reasonable, but the absence
of an alert cannot be interpreted as the absence of protein reactivity. The absence of an
alert can also mean the inability of the tool to recognize the chemical structure or to
detect a respective structural feature. The tools are anyhow not expected to reflect all
existing possibilities of protein reactivity. This way, the creation of a group with an
appropriate size that enables manual scanning was not possible in every case.
Nonetheless, by defining strict parameters for chemical similarity, the read-across
approach performed here is user-independent.

Another problem with the read-across approach is the lack of sufficiently similar
chemicals in the databases. The typical training datasets do not include AS, but focus
on common chemicals and cosmetic ingredients. A review article by Patlewicz and
Worth [36] describes commonly used data sets for development of (Q)SARs: 270 in
vivo skin sensitization tests (mainly GPMT) [37], animal and human studies for 1034
compounds [38], the BgVV (Bundesinstitut für gesundheitlichen Verbraucherschutz und
Veterinärmedizin) list of 264 categorized chemicals according to literature data (human
data and animal experiments) [39, 40], LLNA data for 106 chemicals [41], LLNA data for
41 chemicals [42], 211 chemicals [26] and 93 chemicals [43]. The Gerberick dataset from
2005 was used for building the CAESAR model for skin sensitization [29] and also the
Toxtree skin sensitization domains [31]. Although some skin sensitization (Q)SARs are
based on the same training data sets, the developed algorithms are different. That leads
to divergent results with testing chemicals outside the training set, whereas the
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applicability domain should be the same, based on the identity of the training sets.
When creating new training sets from in vivo data, attention should be paid to chemical
diversity of the compounds and development of local models. This will make skin
sensitization prediction by (Q)SARs applicable to a broader range of chemicals or
more specific, respectively. Based on this, the demand for high quality data that has
been mentioned by other parties [35] is supported by this study.

A problem encountered with many (Q)SAR models are salts. The test set used here
included two ionic AS: Mancozeb and Maneb. Although both Mancozeb and Maneb are
very similar and only differ in the complexation with metal ions (Mancozeb is complexed
with manganese and zinc ions, Maneb is complexed only with manganese ions), they are
treated as independent AS in regulatory issues. Due to the different cations it is indeed
possible that the mechanism of action in skin sensitization is different. However, it was
not possible to obtain predictions for Mancozeb or Maneb with CAESAR, CASE Ultra,
Leadscope, and SciQSAR. Similarly, the ionic substances of the validation set Diquat-
dibromide, Metam-sodium, Propineb, and Ziram did no yield predictions with CAESAR.
DQD did not provide predictions for Diquat-dibromide and Metam-sodium directly, but
Diquat and Metam as structures are abbreviated in some cases by removal of ions [30]. It
is not clear whether the DQD programs are unable to recognize ionic substances or the
ions are simply not taken into account. The only software that was able to provide
predictions was the QTB. Toxtree could recognize the SMILES, but did not provide any
alerts. Thus, although the read-across procedure in the QTB still leaves room for
substantial improvement, as discussed above, it is a valuable in silico approach, as it
seems to be one of the few approaches available so far able to predict the sensitizing
potential of ionic substances, given that other compounds with sufficient structural
similarity are available in the databases for comparison.

Discussion on the applicability of (Q)SAR programs

During the evaluation process of the present study it became obvious that the accuracy of
predictions by individualmodels is very limited – the best valuewas 44% for CAESAR (test set).
Each program had strengths and weaknesses with regard to the ability to correctly identify a
number of individual AS as sensitizing or not (Table 2). Calculation of themean of the scores of
all models still resulted in high numbers of false-positives and -negatives, while the accuracy
was nearly doubled –both for the test and the validation set. Fewer false resultswere achieved
by applying weighting factors. An additional application of thresholds yielded a remarkable
reduction of false predictions which was reflected especially in PPV. With the latter calculation
method, the WSM without Toxtree showed the best predictive performance, but on the
expense of the total number of true predictions. This was also the case when performing a
cross-validation or a validation with an additional set of 80 AS. In general, the (Q)SARmethods
can be evaluated based on performance measures such as accuracy, etc., dependent on the
individual aimof the user. If the reliability of the positive predictions is especially important, the
thresholded WSM without Toxtree showed the highest PPV but performed less well in other
respects. If another parameter is of special interest, another calculationmethodor an individual
program might be favored.

In this study, the ‘best’ calculation method for combining the predictions of several
individual (Q)SAR models (thresholded WSM without Toxtree) yielded a PPV of 85% (test set)
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and 60% (validation set), based on 11 and 12 true-positive AS, respectively. Nonetheless, the
accuracy was only 25% (test set) and 23% (validation set). Accordingly, the method would be
well suitable to reduce animal testing by classifying pesticidal AS yielding scores greater than
or equal to the threshold of 0.4 as potential sensitizers. However, for the AS with inconclusive
results or negative predictions, conventional skin sensitization assays would still be necessary
in either case. The aberrances between test and validation set outcome could be explained by
the not completely identical chemical properties between the two sets. As chemical similarity
is an important criterion for the predictive values of (Q)SARs in general, this might be themost
probable reason, but also indicates that further evaluation is necessary.

The weighting system could be extended by correlating certain weighting factors with
structural properties. We also investigated whether false predictions (here: sensitizing AS with
a score < 0 or non-sensitizing AS with a score > 0) were linked to certain functional groups in
the AS. To do so, the occurrence of all functional groups between true-positives and false-
positives, as well as between true-negatives and false-negatives with each program was
compared. The wide range of different functional groups did significantly differ between
true-positive/-negative and false-positive/-negative AS, respectively (data not shown). Besides,
such a weighting should be applied with care to avoid overfitting of the test set.

In the future, combination of in silico and in vitro assays might possibly result in enhanced
predictivity. In vitro assaysmay include, for example, theDirect Peptide Reactivity Assay (DPRA,
OECD Test Guideline 442C), ARE-Nrf2 Luciferase Test Method (KeratinoSensTM, OECD Test
Guideline 442D) and the Human Cell Line Activation Test (h-CLAT, OECD Test Guideline 442E)
covering the first three KEs in the AOP concept of skin sensitization. Compared to in silico
methods, these assays are of coursemore time-consuming and costly, so that a combinationof
both would allow minimizing in vitro testing by prioritizing further testing using in silico
methods. A combination of different assays has already been proposed by others [35,44–47].
DPRA, KeratinoSensTM, h-CLAT, as well as the two in vitro assays MUSST and LuSens and a
protein reactivity predicting QTB tool were differently combined, yielding accuracy values
ranging between 80% and 90% [48]. However, the compounds analyzed in the latter study
included none of the AS used here. A combination of currently available alternative test
methods agreed upon by the OECD has lately also been recommended in the European
Chemicals Legislation [49,50]. A recent publication about state of the art non-animal
approaches also reviews integrated testing strategies (ITS), sequential testing strategies (STS)
and integrated approaches to testing and assessment (IATA) [51]. Most of the approaches
include only in vitro tests. The few approaches that include (Q)SAR programs employ primarily
commercial programs such as DEREKNexus or TIMES. According toOECD, commercialmodels
do not ensure the same level of transparency as publicly available models, which might
represent a barrier for regulatory acceptance [52].

There have been several studies assessing (Q)SAR tools or evaluating their feasibility. To the
best of our knowledge, however, no study exists which has evaluated somany freely available
(Q)SAR models for skin sensitization prediction of AS in pesticides. Further, a combination of
models by weighted mean with a similar weighting system has not been applied before. The
handling of VEGA, amongst others, was extensively describedwith three example compounds
[53], but for bioconcentration factor prediction, not for the prediction of sensitization. Another
study evaluated Toxtree, QTB and VEGA with pesticides, but was focused on different end-
points, namely the prediction of carcinogenicity, mutagenicity and reproductive toxicity [54].
There is an extensive review about (Q)SARs [55] that includes the endpoint skin sensitization,
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but does not focus on pesticides or the programs used here. Another study assessing Toxtree
andQTB for skin sensitization predictionwith a test set of 45 sensitizing and 55 non-sensitizing
substances (not including pesticides) used a kind of weighting system [27]. This depended on
the majority of programs predicting the same result, but yielded, nonetheless, a high false-
positive rate of 47%. We also applied that approach to our test set (data not shown) yielding
similar sensitivity, PPV and NPV like the score mean method, but with lower specificity (21%)
and accuracy (35%). The standardization of different programs by translating the individual
output into scores has beenused for the endpoints genotoxicity and carcinogenicity predicted
by DEREK and Topkat® for heat-generated food contaminants [32,33], but, to the best of our
knowledge, not yet in the field of skin sensitization.

Pesticides have been rather neglected in the development of (Q)SARs so that resulting
models are not yet optimal to predict skin sensitization for pesticidal AS. At the moment, for
the purpose of AS risk assessment in the field of cosmetics and REACH chemicals rather
combinatory approaches of in silico with in chemico and in vitro methods are under devel-
opment. For the endpoint skin sensitization, integrated approaches to testing and assessment
(IATA) were published by OECD and optimized combinations are concluded as so called
defined approaches with a fixed data interpretation procedure [56]. However, the choice of
the individual methods depends on the group of chemicals selected. The in silico methods
used in these IATAs comprise the local approachQSAR, globalmodels andexpert systems such
as TOPKAT, MCASE, TIME-SS and Derek Nexus. Although these chemicals are in focus of
regulatory and public interest, approaches specific for pesticides are not reported up to
now. Therefore, our study could contribute by presentation of predictions by combination
of QSAR tools to develop specific and optimized IATAs for pesticides.

Although the presented calculation methodologies are not suitable as a stand-alone
method, we have shown weaknesses and strengths of some prominent (Q)SAR programs
and diverse combinatorial options in the prediction of skin sensitization for pesticidal AS. We
hope that the present study will help to foster discussions on in silico alternatives to animal
testing in the pesticide area.
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