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ABSTRACT 

NEUROPHYSIOLOGICAL AND MORPHOLOGICAL PLASTICITY IN RAT 

HIPPOCAMPUS AND MEDIAL PREFRONTAL CORTEX FOLLOWING TRACE 

FEAR CONDITIONING 

by 
 

Chenghui Song 
 

The University of Wisconsin-Milwaukee, 2014 
Under the Supervision of Professor James R. Moyer, Jr. 

 

Pavlovian fear conditioning provides a useful model system for investigating the 

mechanisms underlying associative learning.  In recent years, there has been an increasing 

interest in “trace” fear conditioning, which requires conscious awareness of the 

contingency of CS and US therefore considered as a rodent model of explicit fear.  

Acquisition of trace fear conditioning requires an intact hippocampus and medial prefrontal 

cortex (mPFC), but the underlying mechanisms are still unclear.  The current set of studies 

investigated how trace fear conditioning affects neuronal plasticity in both hippocampus 

and mPFC in adult rats.  Trace fear conditioning significantly enhanced both intrinsic 

excitability and synaptic plasticity (LTP) in hippocampal CA1 neurons.  Interestingly, 

intrinsic excitability and synaptic plasticity were significantly correlated with behavioral 

performance, suggesting that these changes were learning-specific.  The next set of 

experiments investigated learning-related changes in mPFC.  In order to study circuit-

specific changes, only neurons that project to the basolateral nucleus of amygdala (BLA) 

were studied by injecting a retrograde tracer into BLA.  Trace fear conditioning 

significantly enhanced the excitability the layer 5 (L5) projection neurons in the infralimbic 
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(IL) subregion of mPFC whereas it decreased the excitability of L5 projection neurons in 

the prelimbic (PL) subregion.  In both IL and PL, the conditioning effect was time-

dependent because it was not observed following a retention (tested 10 days after 

conditioning).  Furthermore, extinction reversed the conditioning effect in both IL and PL, 

suggesting that these changes are transient and plastic.  For comparison, the effects of delay 

fear conditioning on mPFC neuronal excitability was also studied.  These data 

demonstrated that in adult rats delay fear conditioning significantly enhanced the intrinsic 

excitability of IL but not PL neurons.  However, this conditioning effect was only 

significant in response to stronger (e.g., larger magnitude) current injections, suggesting 

that this learning effect was weak.  Finally, how trace fear conditioning and extinction 

modulate dendritic spine density of mPFC-BLA projection neurons was also studied.  

These data suggest that the spine density is significantly higher in L2/3 neurons than that 

of L5 neurons, and that extinction facilitates the elimination of spines within L2/3 neurons 

in both IL and PL.  Together these data implicate that both neurophysiological and 

morphological changes within hippocampus and mPFC are critical for the acquisition and 

extinction of trace fear conditioning in rats.  
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CHAPTER ONE: introduction 

Pavlovian Fear Conditioning as a Model of Associative Learning 

Pavlovian fear conditioning paradigms have been used extensively to study the 

neurobiology of learning and memory (Davis & Astrachan, 1978; Davis, Redmond, & 

Baraban, 1979; Doyere, Debiec, Monfils, Schafe, & LeDoux, 2007; Fanselow & Poulos, 

2005; LeDoux, 2000; Moyer & Brown, 2006).  In these paradigms, a neutral conditioned 

stimulus (CS, such as a tone) is paired with an aversive unconditioned stimulus (US, such 

as a footshock), which evokes an unconditioned response (URs, such as fear).  After a few 

pairs of CS-US presentations, the CS alone elicits a variety of defensive responses that 

share characteristics of innate fear, such as freezing in rodents.  Because these responses 

are not elicited by the CS before conditioning, they are referred to as learned or conditioned 

responses (CRs) (Blanchard & Blanchard, 1969).   

Pavlovian fear conditioning has been investigated in laboratory rodents because the 

learned behavior (freezing) occurs in both laboratory situations and the natural 

environment.  Furthermore, findings with rodents have been replicated with humans via 

functional magnetic resonance imaging (fMRI).  For example, damage to the amygdala 

impairs fear conditioning in both humans and rodents (Bechara et al., 1995; LaBar & 

LeDoux, 1996; LaBar, LeDoux, Spencer, & Phelps, 1995), and amygdala activity is 

increased during acquisition and recall of conditioned fear (Buchel, Morris, Dolan, & 

Friston, 1998; Cheng, Knight, Smith, Stein, & Helmstetter, 2003; Knight, Smith, Stein, & 

Helmstetter, 1999; LaBar, Gatenby, Gore, LeDoux, & Phelps, 1998).  Clinically, Pavlovian 

fear conditioning has been studied as a model of post-traumatic stress disorder (PTSD), a 
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severe anxiety disorder that is characterized by intense fear and helplessness after being 

exposed to or witnessing a traumatic event such as military combat, violent personal 

assault, natural or manmade disaster (DSM–IV–TR. American Psychiatric Association, 

2000).  Thus, the study of Pavlovian fear conditioning in rodents may have important 

implications for understanding the mechanism and pathology of learning and memory in 

humans. 

Paradigms and underlying mechanisms of Pavlovian fear conditioning – an 

overview.  For cued fear conditioning, there are two commonly used paradigms depending 

on the timing of the predictive CS and the aversive US – delay and trace.  In delay 

conditioning, the CS precedes and temporally overlaps with the US (see Figure 1A).  In 

trace conditioning, however, a stimulus-free trace interval is interposed between the CS 

offset and the US onset (see Figure 1B).  This subtle temporal variation between the two 

paradigms dramatically impacts the brain structures necessary for learning the CS-US 

relationship.  The acquisition of delay fear conditioning requires intact amygdala and 

brainstem structures (for review see LeDoux, 2000).  Whereas in the trace paradigm, in 

addition to the amygdala and brainstem structures, medial temporal lobe and higher cortical 

structures are also required for learning (Gilmartin & Helmstetter, 2010; Kholodar-Smith, 

Boguszewski, & Brown, 2008; McEchron, Bouwmeester, Tseng, Weiss, & Disterhoft, 

1998; Quinn, Oommen, Morrison, & Fanselow, 2002; Suh, Rivest, Nakashiba, Tominaga, 

& Tonegawa, 2011).  In either paradigm, the conditioned fear response can also be 

established to the context where the animals received the US presentations.  Such 

contextual fear memory can be formed with or without the presence of the cue and requires 

both amygdala and hippocampus (Kim & Fanselow, 1992; LaBar et al., 1995). 
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Figure 1. Two commonly used behavioral paradigms of Pavlovian fear conditioning.  A, In delay fear 

conditioning, the CS precedes and temporally overlaps with the US.  B, In trace fear conditioning, a stimulus-

free trace interval is interposed between the CS offset and the US onset.   
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The brain circuits involved in the acquisition and recall of conditioned fear have 

been well studied and include critical brainstem structures in addition to higher cortical and 

subcortical structures (LeDoux 2000).  The major higher brain regions include the 

amygdala, the hippocampus, and the medial prefrontal cortex (mPFC).  Specifically, the 

amygdala is required for fear acquisition and fear memory expression (for review see 

LeDoux, 2000; Maren & Quirk, 2004).  The hippocampus encodes contextual information 

(Kim & Fanselow, 1992; Phillips & LeDoux, 1992) and (along with other MTL structures) 

is required in the trace fear conditioning paradigm (McEchron et al., 1998).  The mPFC is 

critical for acquisition of trace fear memory (Gilmartin & Helmstetter, 2010) and the 

retrieval of long term conditioned fear (Burgos-Robles, Vidal-Gonzalez, & Quirk, 2009; 

Runyan, Moore, & Dash, 2004).   

Bidirectional modification of synaptic efficiency (synaptic plasticity) and intrinsic 

excitability (intrinsic plasticity) is thought to underlie the cellular basis of certain types of 

learning and memory, including Pavlovian fear conditioning (Bear & Abraham, 1996; 

Dudek & Bear, 1993; M. A. Lynch, 2004; Zhang & Linden, 2003).  For example, a 

learning-specific enhancement of basal synaptic transmission or long-term potentiation 

(LTP) has been observed in amygdala (Nabavi et al., 2014) or hippocampus following fear 

conditioning (Doyere et al., 1995; Song, Detert, Sehgal, & Moyer, 2012).  Interestingly, 

acquisition of Pavlovian fear conditioning also enhances the intrinsic excitability of 

hippocampal neurons, as evidenced by a reduced post-burst afterhyperpolarization (AHP) 

and a decrease in spike-frequency adaptation (Kaczorowski & Disterhoft, 2009; McKay, 

Matthews, Oliveira, & Disterhoft, 2009; Song et al., 2012).  Furthermore, it has been 

hypothesized that the enhancement of synaptic plasticity emerges as a result of intrinsic 
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plasticity (Kramar et al., 2004; Sah & Bekkers, 1996; Song et al., 2012) and thus 

contributes to learning.   

Trace fear conditioning as a model of declarative memory.  Trace and delay fear 

conditioning have been used to study two types of memory – declarative and non-

declarative respectively.  Declarative (explicit) memory refers to memories that can be 

consciously recalled, such as facts and events (Eichenbaum, 1997).  In contrast, non-

declarative (implicit) memory refers to procedural memories that do not require conscious 

recollection.  In human subjects, measuring the ability to recall the presented stimuli has 

been used to measure conscious awareness.  Studies have demonstrated that awareness of 

the CS-US contingency is required for acquisition of trace but not delay fear conditioning 

(Clark & Squire, 1998; Knight, Cheng, Smith, Stein, & Helmstetter, 2004; Knight, Nguyen, 

& Bandettini, 2006; Weike, Schupp, & Hamm, 2007), and that the activity in hippocampus 

is stronger in the subjects that predicted the US more accurately during the trace interval 

than in the subjects that predicted poorly (Knight et al., 2004).  Thus, during trace fear 

conditioning, the subjects not only acquire the affective response to the CS but also acquire 

the explicit declarative knowledge of the CS–US contingencies (Weike et al., 2007).  

Awareness requires multiple cortical areas including MTL, PFC and parietal cortex (for 

review, see Rees, 2007), all of which are also activated during trace fear conditioning 

(Knight et al., 2004).  Thus, trace fear conditioning may be an excellent paradigm for 

studying the mechanisms of explicit memory and learning-related changes in higher-order 

brain regions, including hippocampus and mPFC.   

Extinction of Pavlovian fear memory as a model of cognitive flexibility.  

Following acquisition of conditioned fear, repeated exposure to the CS in the absence of 
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the US causes a weakening of the learned CR, a process known as extinction.  Behavioral 

studies indicate that extinction does not simply erase conditioned memory but involves a 

new learning to inhibit the CR (Barrett, Shumake, Jones, & Gonzalez-Lima, 2003; Bouton, 

1993; I. P. Pavlov, 1927; Quirk, 2002; Rescorla, 2001).  Extinction of Pavlovian fear 

conditioning therefore has been studied as a model of cognitive flexibility, which is the 

ability of an organism to change or switch established behaviors in response to changes in 

environmental contingencies or rules (Kaczorowski, Davis, & Moyer, 2012; Miyake et al., 

2000; Moore & Malinowski, 2009).   

Extinction deficits as a model of anxiety disorders.  Poor cognitive flexibility 

leads to greater resistance to extinction and is associated with anxiety disorders such as 

PTSD, which is the failure to inhibit maladaptive responses following being exposed to 

traumatic events (Orr et al., 2000; Peri, Ben-Shakhar, Orr, & Shalev, 2000; Wessa & Flor, 

2007).  The individual initially responds to the traumatic stimuli with intense fear, 

helplessness, or horror.  The characteristic symptoms resulting from being exposed to the 

trauma include re-experiencing the traumatic event, avoiding reminders of the trauma, and 

increased anxiety and arousal.  Neuroimaging studies in human PTSD patients indicate that 

the amygdala is more responsive whereas the mPFC is less responsive during the 

presentation of traumatic-related stimuli (Rauch et al., 1996; Shin et al., 2004).  

Furthermore, both mPFC and hippocampus are volumetrically smaller in PTSD patients 

than in trauma-exposed non-PTSD control subjects (Bremner et al., 2003; Gurvits et al., 

1996; Rauch et al., 2003; Yamasue et al., 2003).  These neuroimaging findings suggest 

that the traumatic stress may have damaged the hippocampus and the mPFC, thus impairing 

cognitive functions that depend on these brain areas (e.g., working memory and long-term 
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declarative memory).  Consistent with these data, aged PTSD patients are found to have a 

higher risk of dementia, which is a serious loss of cognitive ability (Yaffe et al., 2010).  

Because PTSD is characterized by intense fear to previous traumatic-related stimuli, 

elucidating the brain circuits responsible for acquisition and extinction of conditioned fear 

is not only critical for understanding the basic mechanisms of learning and memory, but 

also helpful in screening for the treatment of anxiety disorders such as PTSD and other 

age-related cognitive decline.   

Major Brain Areas Involved in Pavlovian Fear Conditioning and Extinction 

The amygdala is essential for acquisition and expression of conditioned fear.  

The amygdaloid complex is an almond-shaped structure located within the medial temporal 

lobe, and it has at least 12 interconnected sub-regions (Krettek & Price, 1978; LeDoux, 

Cicchetti, Xagoraris, & Romanski, 1990; Romanski, Clugnet, Bordi, & LeDoux, 1993; 

Romanski & LeDoux, 1992; Turner & Zimmer, 1984).  The areas that are thought to be 

most relevant to fear conditioning include the lateral (LA), basolateral (BL), accessory 

basal (AB), and central (CE) nuclei and their connections (see Figure 2).  Sometimes LA, 

BL and AB are collectively termed the basolateral complex or BLA (LeDoux, 2000; 

Maren, 2011).  

During auditory fear conditioning, both the CS (e.g., a neutral tone) and the US 

(e.g., a nociceptive footshock) inputs terminate mainly in the LA.  The CS comes from 

both the auditory thalamus and auditory cortex (LeDoux, Farb, & Ruggiero, 1990), and the 

US comes from both the thalamus and somatosensory cortex (LeDoux, Cicchetti, et al., 

1990; McDonald, 1998). The CS and US inputs converge in LA and induce synaptic 

plasticity such that after conditioning, the LA neurons are more responsive to the CS alone 
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Figure 2. Major structures of the amygdala and the information flow.  The amygdaloid complex 

(includes LA, BL, AB, ITC, CE and other nuclei) is the center of emotional control.  Sensory information 

converges in LA and then is processed in the BL and AB.  The information is finally integrated again in the 

CE, which in turn activates the periaqueductal gray area (PAG) and produce fear.  The ITC masses is a collect 

of GABAergic interneurons located between the BLA and the CE and is critical for adjusting fear expression.  

LA, lateral; BL, basolateral; AB, accessory basal; CE, central nucleus of amygdala. LA, BL, and AB are 

usually collectively termed as basolateral complex of amygdala (BLA).   
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presentation and generate larger field potentials after conditioning (McKernan & Shinnick-

Gallagher, 1997; Pare & Collins, 2000; Quirk, Repa, & LeDoux, 1995; Rogan, Staubli, & 

LeDoux, 1997).  The integrated information is then fed into other amygdala nuclei (e.g., 

BL and AB) and finally converges again in the CE (Canteras & Swanson, 1992).  The AB 

also receives contextual information from hippocampus (Bernard & Besson, 1990; 

Burstein & Potrebic, 1993).  The CE integrates both intra- (e.g., LA, BL, and AB) and 

extra- (e.g., nociceptive stimuli) amygdala stimuli and is the major output of the whole 

amygdala.  The CE produces both autonomic emotional responses (e.g., changes in heart 

rate, blood pressure, and respiration) through the output pathways to the hypothalamus and 

brain stem areas (Gray, Carney, & Magnuson, 1989; LeDoux, Iwata, Cicchetti, & Reis, 

1988).  In rodents, fear conditioning induces freezing through activation of the pathway 

from the CE to the periaqueductal gray (PAG).  Thus, the acquisition and expression of 

conditioned fear involves the coordination of multiple subregions within amygdala in 

response to sensory inputs.  

The aforementioned network within the amygdala uses glutamate as a 

neurotransmitter.  In addition to these excitatory neurons, there are also inhibitory 

GABAergic interneurons that play important roles for normal amygdala functions (Royer, 

Martina, & Pare, 1999).  Some GABAergic neurons are diversely distributed throughout 

the whole amygdala complex with higher concentration in the basolateral complex (Pare 

& Smith, 1993a).  There are also clusters of GABAergic neurons located between the 

basolateral complex and CE, which are known as intercalated cells (ITCs).  The 

GABAergic neurons in BL and the intercalated cell mass receive strong projections from 

infralimbic (IL) subregion of mPFC and is related to fear suppression during extinction 
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(McDonald & Augustine, 1993; Pare & Smith, 1993b).  It has been shown that extinction 

is associated with potentiation of BLA inputs to ITC cells, which inhibits fear expression 

(Amano, Unal, & Pare, 2010).  Thus, within the amygdala, the balance between the 

glutamatergic excitatory system and the GABAergic inhibitory system determines the level 

of fear expression. 

Hippocampus is critical for emotional responses and memory formation.  The 

hippocampus is a major component of the limbic system located in the medial temporal 

lobe.  The critical role of the hippocampus is the formation and consolidation of new 

memories.  This mnemonic function of the hippocampus was not unveiled until the report 

of patient H.M., who underwent bilateral resection of the medial temporal lobe (MTL) 

including most of the hippocampus, parahippocampal gyrus, and amygdala, in an attempt 

to stop his intractable epileptic seizures.  After surgery, the seizures were controlled, but 

H.M. suffered severe anterograde amnesia (Scoville & Milner, 1957; Squire, 2009).  Since 

then, a great deal of research has confirmed the critical role of hippocampus in memory 

acquisition and consolidation, especially for declarative memory.  During declarative 

memory formation and retrieval, hippocampus is required for processing spatial 

information (i.e., the contextual information), temporal ordering (e.g., the temporal relation 

between the CS and US in trace fear conditioning) and sequential ordering of the 

environmental signals (Bangasser, Waxler, Santollo, & Shors, 2006; Fortin, Agster, & 

Eichenbaum, 2002; O'Keefe & Dostrovsky, 1971; Sweatt, 2004). Furthermore, recent 

studies suggest that the hippocampus is functionally differentiated along the dorsoventral 

(septotemporal) axis as evidenced by variations in its connections with other cortical and 

subcortical regions (M. B. Moser & Moser, 1998).  In addition, according to studies in 
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rodents, the hippocampus only plays a transient role (up to 7 days) in memory acquisition 

(Kim & Fanselow, 1992; Moyer, Thompson, & Disterhoft, 1996).  After memory 

consolidation, the mPFC but not hippocampus is required for memory retrieval (Corcoran 

& Quirk, 2007; Sierra-Mercado, Corcoran, Lebron-Milad, & Quirk, 2006).  

Anatomical and functional dissociation between dorsal and ventral 

hippocampus.  It has been established that the hippocampus does not function uniformly 

but differently along the dorsal-ventral axis (Fanselow & Dong, 2011; M. B. Moser & 

Moser, 1998).  The dorsal hippocampus, defined as the septal two-thirds of the 

hippocampus, performs primarily cognitive functions through the reciprocal innervations 

with auditory, visual and somatosensory cortices and thalamus.  The ventral hippocampus, 

defined as the temporal one-third of the hippocampus, regulates stress, emotion, and affect 

through the reciprocal projections with the amygdala, the hypothalamus, and the nucleus 

accumbens (Czerniawski, Yoon, & Otto, 2009; M. B. Moser & Moser, 1998; M. B. Moser, 

Moser, Forrest, Andersen, & Morris, 1995; Witter, Groenewegen, Lopes da Silva, & 

Lohman, 1989).  The study conducted by Moser and colleagues (1995) demonstrated that 

lesions to dorsal (but not the ventral) hippocampus impaired spatial memory.  Furthermore, 

lesions in dorsal hippocampus impaired both contextual and trace fear conditioning 

(Chowdhury, Quinn, & Fanselow, 2005; Esclassan, Coutureau, Di Scala, & Marchand, 

2009; Kim & Fanselow, 1992), perhaps because the ability of establishing the association 

between the CS and US is attenuated.  Thus, dorsal hippocampus is crucial for the 

processing of spatial, temporal and relational associations between stimuli.  The ventral 

hippocampus is involved in emotion-related processes, through the dense projections to the 

amygdala and hypothalamus.  Lesions in ventral hippocampus impair most forms of fear 
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conditioning including contextual and trace fear conditioning, as well as delay fear 

conditioning (Bast, Zhang, & Feldon, 2001; Esclassan et al., 2009; Richmond et al., 1999).  

However, some controversial results exist regarding the role of ventral hippocampus in 

contextual fear conditioning, as ventral hippocampal lesions did not significantly attenuate 

conditioned fear (e.g., Kjelstrup et al., 2002).  

Transient role of hippocampus in memory acquisition and consolidation.  In 

patient H.M., the detrimental effect of hippocampectomy on recent, but not remote 

memories has attracted a great deal of research interest (Scoville & Milner, 1957).  This 

effect has been replicated in experiments from non-human primates and other lower 

mammals.  For example, monkeys with hippocampal lesions showed retrograde amnesia 

that was more severe for recently learned than remotely learned memories (Zola-Morgan 

& Squire, 1990).  Likewise, numerous studies in rodents have also demonstrated that 

hippocampal lesions only disrupt recent (e.g., 1 day after training), but not remote (e.g., 7 

days or later) contextual or trace memory (Anagnostaras, Maren, & Fanselow, 1999; 

Bontempi, Laurent-Demir, Destrade, & Jaffard, 1999; Frankland et al., 2004; Kim & 

Fanselow, 1992; Maren, Aharonov, & Fanselow, 1997; Teng & Squire, 1999).  It has also 

been demonstrated that the neocortices, including prefrontal and anterior cingulate cortices, 

are critical for the storage and retrieval of remote memory (Bontempi et al., 1999; Maviel, 

Durkin, Menzaghi, & Bontempi, 2004; Squire, 1992).  Thus, it seems that memories are 

initially acquired in hippocampus, then stored in other cortical areas and transformed into 

permanent memories, a process known as consolidation (Dudai, 2004; Frankland & 

Bontempi, 2005).  
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Medial prefrontal cortex (mPFC) is critical for fear memory retrieval.  The 

medial prefrontal cortex (mPFC) is important for working memory and a variety of 

executive functions, including emotional responses and decision making (Heidbreder & 

Groenewegen, 2003; Neafsey, 1990).  In rats, the mPFC can be divided into the medial 

agranular (AGm), dorsal and ventral anterior cingulate (AC), the prelimbic (PL), and the 

infralimbic (IL) cortices (Heidbreder & Groenewegen, 2003; Ongur & Price, 2000; Vertes, 

2004).  According to anatomical and functional diversities, the mPFC can be roughly 

divided into dorsal and ventral portions.  The dorsal part of mPFC (dmPFC, including AGm 

and AC) is associated with motor behaviors such as eye movements (Donoghue & Wise, 

1982), while the ventral regions (vmPFC, including PL and IL) have been implicated in 

diverse emotional, cognitive, and mnemonic processes (Heidbreder & Groenewegen, 2003; 

Vertes, 2004).  As illustrated in Figure 3, anatomical studies and in vivo recordings have 

demonstrated that ventral mPFC has reciprocal innervations with the amygdala 

(McDonald, 1991; McDonald, Mascagni, & Guo, 1996), the hippocampus (Parent, Wang, 

Su, Netoff, & Yuan, 2010), the nucleus accumbens (McGinty & Grace, 2008), the raphe 

nucleus (Baratta et al., 2009) and other cortical and subcortical regions (Hoover & Vertes, 

2007; Vertes, 2004).  The anatomical connections between the mPFC and amygdala, 

hippocampus, and accumbens are particularly important for processing the emotional 

information.  

Different roles of the PL and IL in fear regulation.  A majority of studies suggests 

that the PL and IL cortices play opposing roles in emotional responses, such that activation 

of PL neurons facilitates fear expression and impairs extinction (Burgos-Robles et al., 

2009; Vidal-Gonzalez, Vidal-Gonzalez, Rauch, & Quirk, 2006), whereas activation IL  
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Figure 3. Anatomical location and the projections of ventral mPFC.  PL and IL only receive adjacent 

cortical projections but have intense reciprocal projections with most subcortical brain regions. PL and IL 

also project to contralateral mPFC through corpus callosum. IL, infralimbic; mPFC, medial prefrontal cortex; 

PL, prelimbic.  Illustration was modified from Paxinos & Watson (1998), with permission from Elsevier.  
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neurons reduces fear and facilitates extinction (Burgos-Robles, Vidal-Gonzalez, Santini, 

& Quirk, 2007; Chang & Maren, 2011; Milad & Quirk, 2002; Milad, Vidal-Gonzalez, & 

Quirk, 2004; Vidal-Gonzalez et al., 2006).  Consistent with the differential roles of PL and 

IL activation, pharmacological inactivation of PL neurons impairs fear memory recall 

(Blum, Hebert, & Dash, 2006), whereas lesions of IL neurons impair the expression of 

extinction memory (Quirk, Russo, Barron, & Lebron, 2000).  Furthermore, in rodents PL 

lesions specifically impair the recall of conditioned fear memory, but not the acquisition of 

conditioned fear, nor any innate fear such as freezing in response to the presentation of a 

cat (Corcoran & Quirk, 2007), whereas IL lesions specifically impair the retention of 

extinction memory but not the acquisition of extinction (Burgos-Robles et al., 2007; 

Lebron, Milad, & Quirk, 2004; Quirk et al., 2000).  Moreover, Lebron’s study (2004) 

revealed that although lesions in IL impaired extinction memory when tested 1 day after 

extinction training, the animals displayed savings of extinction memory (residual low level 

of freezing) in the following 5 days.  Thus, IL lesions do not abolish extinction memory, 

suggesting that IL is not the only location where the extinction memory is stored, instead 

it may be a part of a more distributed extinction memory circuit.   

Consistent with the findings from mPFC stimulation and lesion studies, 

neuroimaging studies have also demonstrated that IL is more active during extinction 

memory recall.  For example, metabolic mapping in mice with fluorodeoxyglucose (a 

radiolabeled glucose analog) revealed that IL activity was significantly increased during 

the retrieval of extinction memory (Barrett et al., 2003).  In human subjects, retrieval of 

extinction memory increases ventral mPFC activity as indicated in an fMRI study (Phelps, 

Delgado, Nearing, & LeDoux, 2004). The increase in IL activity during extinction memory 
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retrieval suggests that the function of IL is to inhibit the conditioned fear. Therefore, IL 

malfunction would lead to extinction deficits. Consistent with this, PTSD patients 

(characterized by extinction failure) have been found to have decreased metabolism in 

vmPFC compared to control subjects without PTSD (Bremner, Narayan, et al., 1999; 

Bremner, Staib, et al., 1999; Shin et al., 2005).  All these studies suggest that IL activation 

is necessary for extinction memory retrieval. 

Although many studies support the model that PL facilitates fear expression and IL 

suppresses fear, there are studies that appear to contradict these findings.  For example, 

LeDoux and colleagues (Morgan & LeDoux, 1995) have reported that lesions in dorsal 

mPFC including cingulate area 1 and dorsal PL enhanced the expression of conditioned 

fear, which is supported by a study by Thompson and colleagues (Garcia, Vouimba, 

Baudry, & Thompson, 1999) that demonstrated that the spontaneous activity of PL neurons 

was suppressed by CS presentations and that the unit activity was negatively correlated 

with the amount of freezing during memory test.  There are also conflicting data regarding 

the role of IL in fear memory retrieval.  For example, the work by Quirk and colleagues 

(Santini 2008) indicates that fear conditioning suppresses the excitability of IL neurons but 

has no effect on PL neurons.  In contrast, an in vivo study of olfactory fear conditioning by 

Grace and colleagues (Laviolette, Lipski, & Grace, 2005) demonstrated that mPFC (both 

IL and PL) neurons that received monosynaptic and orthodromic inputs from the 

basolateral nucleus of amygdala (BL-responsive mPFC neurons) increased spontaneous 

activity in response to the odors that were previously paired with footshock.  In another 

study, Grace and colleagues (McGinty & Grace, 2008) isolated the mPFC neurons that 

project to the nucleus accumbens (mPFC-NAcc) and the mPFC to mPFC (mPFC-mPFC) 
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projection neurons and found that BLA stimulation specifically excited the BLA-

responsive mPFC-NAcc projection neurons but inhibited mPFC-NAcc nonresponsive 

neurons or mPFC-mPFC projection neurons.  Furthermore, most mPFC-NAcc responsive 

neurons were located in IL and dorsal peduncular (DP) and displayed elevated spontaneous 

activity to conditioned odor compared to other neurons.  However, no conditioning-

induced effect was discovered when all neurons were analyzed together (McGinty & 

Grace, 2008).  It is possible that these conflicting results stem from the fact that neurons 

that project to different targets have distinct physiological properties (i.e., heterogeneity) 

and play distinct roles during fear conditioning.  

Heterogeneity of mPFC projection neurons.  Cortical neurons are heterogeneous 

in anatomical and physiological properties depending on their long-range projection targets 

(Dembrow, Chitwood, & Johnston, 2010; Hattox & Nelson, 2007; Larkman & Mason, 

1990; Mason & Larkman, 1990; Xiao, Zikopoulos, & Barbas, 2009).  For example, within 

PL, neurons that project to the pons (corticopontine neurons) display lower steady-state 

input resistance and lower intrinsic excitability compared to the neurons that project to the 

contralateral PL (commissural projection neurons), perhaps because of the differential 

expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels 

(Dembrow et al., 2010).  This suggests that different projection neurons may respond 

differently to the same sensory input, and that elucidating how these neurons communicate 

within the local network may be important for understanding the mechanisms of learning 

and memory (Llano & Sherman, 2009; Molnar & Cheung, 2006).  Consistent with this, 

corticopontine neurons are found to be more responsive to cholinergic modulation than 

commissural neurons, because they are more likely to fire persistently in response to the 
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cholinergic agonist carbachol (Dembrow et al., 2010).  Persistent firing activity is 

characterized by prolonged firing activity after the neurons have received suprathreshold 

stimulation.  Because persistent activity occurs when the stimulation has ceased, it has been 

hypothesized as a cellular mechanism of working memory by holding the internally or 

externally driven sensory stimuli (Egorov, Hamam, Fransen, Hasselmo, & Alonso, 2002; 

Siegel, Kalmbach, Chitwood, & Mauk, 2011).  In fact, recent studies have indicated that 

commissural projection neurons and subcortical projection neurons might have generated 

from distinct progenitors during development, therefore have different gene expression 

profiles and display distinct properties and functions (Molyneaux et al., 2009; Molyneaux, 

Arlotta, Menezes, & Macklis, 2007).  Moreover, the different projection neurons may play 

distinct roles during cognition.  For example, it has been demonstrated that electrical 

stimulation of BLA or presentation of a Pavlovian fear conditioned odor to anesthetized 

rats selectively activates the IL neurons that project to the nucleus accumbens but not 

contralateral mPFC (McGinty & Grace, 2008).  Although enough evidence has 

demonstrated the important role of mPFC neurons in Pavlovian fear conditioning and 

extinction, most studies have been carried out in unidentified neurons.  Thus, to fully 

understand role of mPFC in Pavlovian fear conditioning and extinction, it might be 

necessary to identify the subpopulations of projection neurons and study their functions.  

Functional Plasticity of Physiological Properties as a Mechanism of Associative 

Learning 

Synaptic plasticity.  Hebb (1949) postulated that synaptic strength (or efficiency) 

increases when a postsynaptic neuron receives repeated and persistent stimulation from a 

presynaptic neuron.  This theory is known as “cells that fire together, wire together” but it 
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was not demonstrated until the discovery of the phenomenon of long-term potentiation 

(LTP), which involves a robust and persistent enhancement of synaptic strength following 

high frequency stimulation (HFS).  LTP was first discovered in the rabbit hippocampus 

(Bliss & Lomo, 1973).  The hippocampus was studied because of its well-defined 

trisynaptic circuit and important roles in learning and memory.  In the original study, Bliss 

and Lomo found a persistent potentiation (> 10 h) at the perforant path – granule cell 

synaptic transmission in the hippocampal dentate gyrus after a brief HFS.  Since then, LTP 

has been observed in a variety of other neural structures including the prefrontal cortex, the 

visual cortex, the cerebellum, the amygdala, and many others that are known to participate 

in learning and higher cognitive function (e.g., Artola & Singer, 1987; Chapman, Kairiss, 

Keenan, & Brown, 1990; Laroche, Jay, & Thierry, 1990; Racine, Wilson, Gingell, & 

Sunderland, 1986).  For example, Thomas Brown’s lab (Chapman et al., 1990) was the 

first to show LTP in cortical-LA pathways, which has been considered as a cellular 

mechanism of learning and memory of fear conditioning (LeDoux, 2000).  In addition, a 

great deal of research has been focused on the correlation between LTP and learning, trying 

to demonstrate a causal link between LTP and learning (see discussion below).   

The correlation between learning and LTP.  The first demonstration that provided 

a possible causal link between LTP and behavioral learning utilized the Morris water maze 

(MWM) paradigm, a spatial memory task that depends upon the hippocampus.  Blockade 

of NMDARs, shown to be critical for LTP induction at these synapses, was sufficient to 

impair both LTP and spatial learning in vivo (Morris, Anderson, Lynch, & Baudry, 1986).  

In vitro experiments in this same study also confirmed that NMDA receptor blockers 

impaired LTP induction on hippocampus slices.   
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Strong evidence of the correlation between behavioral learning and LTP comes 

from studies that conducted both behavioral training and electrophysiological recordings 

on the same animals.  For example, field potential recordings performed in brain slices 

from rabbits that learned trace eyeblink conditioning demonstrated a learning-specific, 

time-dependent enhancement of baseline synaptic responses in CA1 evoked by Schaffer 

collateral stimulation (e.g., Power, Thompson, Moyer, & Disterhoft, 1997).  Such 

enhancement of synaptic transmission was only observed in slices prepared 1 h (but not 24 

h) after learning (Power et al., 1997).  Likewise, field recordings from the hippocampus of 

freely moving animals suggest that acquisition of trace eyeblink (e.g., Gruart, Munoz, & 

Delgado-Garcia, 2006) or fear (e.g., Doyere et al., 1995) conditioning is accompanied by 

a facilitation of basal synaptic transmission.  In each case these LTP-like changes could be 

observed within 1 h after learning, and suggest that an LTP-like change can occur during 

certain learning tasks, but that this change is transient and not observed 24 h later.  

Interestingly, studies have also demonstrated that after learning, LTP induction is 

facilitated (Barnes, 1979; Boric, Munoz, Gallagher, & Kirkwood, 2008; Gruart et al., 2006) 

and that learning ability is positively correlated with the amount of hippocampal LTP after 

learning (Barnes, 1979; Boric et al., 2008; Song et al., 2012; Tombaugh, Rowe, Chow, 

Michael, & Rose, 2002).  The enhancement of synaptic plasticity following behavioral 

learning strongly suggests that LTP is a biological substrate for learning and memory.  

LTP saturation impairs learning.  It has been predicted that LTP and learning 

should interfere with each other if they share the common cellular pathways.  Thus, 

saturation of LTP in a given pathway should impair learning that depends on that pathway, 

and vice versa (M. A. Lynch, 2004).  This has been demonstrated by Barnes and colleagues 
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(1989), who effectively induced LTP and saturated it by repeatedly delivering HFS in the 

dentate gyrus of hippocampus, followed by behavioral training in MWM.  They found that 

LTP severely impaired spatial learning, but the learning ability tended to recover when the 

LTP has decayed to baseline levels.  Likewise, Morris and his colleagues (E. I. Moser, 

Krobert, Moser, & Morris, 1998) found that animals that received repeated tetanization of 

hippocampal inputs were impaired in acquisition of MWM task if LTP was saturated.  In 

contrast, if hippocampal LTP was not saturated, those animals were still capable of learning 

the task.  These experiments suggest that LTP and learning share the same cellular 

mechanism because they compete with each other.  

There is also evidence that associative learning blocks LTP induction.  For 

example, using the inhibitory avoidance (IA) learning paradigm, in which rats acquire the 

association between entering the dark side of the training chamber and foot shock, 

Whitlock and colleagues (2006) showed that only a small portion (12/44) of recording 

electrodes (or pathways) in hippocampal CA1 were potentiated after learning.  

Furthermore, this learning-related fEPSP potentiation blocked additional LTP induction in 

vivo (tested with repeated HFS until no further potentiation): the pathways that were 

potentiated by IA learning had smaller increase in fEPSPs than the pathways that were not 

potentiated by learning.  Again, the interference between LTP acquisition and learning 

suggests that learning shares some of the common pathways with LTP induction. 

LTP induction and learning share common cellular mechanisms.  The cellular 

mechanisms underlying LTP on excitatory synapses are well studied.  Although it is 

difficult to establish a causal link between LTP and behavioral learning, significant 

advances have been made in understanding the cellular mechanisms of this form of 
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synaptic plasticity.  In addition, there are largely two forms of LTP – NMDAR-dependent 

and non-NMDAR-dependent (Cavus & Teyler, 1996; Urban & Barrionuevo, 1996; Yeckel, 

Kapur, & Johnston, 1999).  NMDAR-dependent LTP (known as Hebbian LTP) has been 

the most widely studied and is the focus of the following discussion.  

Intracellular AMPA receptor trafficking.  Alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors (AMPARs) and NMDARs are two important 

subtypes of glutamate receptors that have been widely studied in both synaptic plasticity 

and behavioral learning.  AMPARs often co-exist with NMDARs at the synapse but are 

functionally different.  The activation of AMPARs opens non-selective cationic channels 

that primarily allow the permeation of sodium and in some cases calcium ions (Hume, 

Dingledine, & Heinemann, 1991). The influx of sodium and calcium produces excitatory 

postsynaptic potentials (EPSPs).  The number of functional AMPARs in the postsynaptic 

membrane is increased by LTP induction (Luscher, Nicoll, Malenka, & Muller, 2000; 

Malinow & Malenka, 2002; Park, Penick, Edwards, Kauer, & Ehlers, 2004), suggesting 

LTP is at least partially due to an upregulation of AMPARs in postsynaptic membrane.  

The number of AMPARs is also increased shortly (30 min) after IA training, which was 

associated with the phosphorylation of AMPAR (GluR1 subunit at Ser831) in the dorsal 

hippocampus (Whitlock et al., 2006).  This is consistent with a previous study that LTP 

induction involves the phosphorylation of the AMPA receptor subunit GluR1 at Ser831 

(Lee, Barbarosie, Kameyama, Bear, & Huganir, 2000).  Thus, both LTP induction and 

learning increase synaptic strength through up-regulation of phosphorylated AMPRs of 

postsynaptic neurons. 
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NMDAR activation is required for both LTP induction and learning.  At 

glutamatergic synapses, LTP depends on the influx of Ca2+ via NMDARs (Collingridge, 

Herron, & Lester, 1988; Collingridge, Kehl, & McLennan, 1983; G. Lynch, Larson, Kelso, 

Barrionuevo, & Schottler, 1983; S. Williams & Johnston, 1989).  However, NMDARs are 

activated only when glutamate is bound to the receptor and the postsynaptic cell is 

depolarized.  These properties – the dependence of presynaptic glutamate release and 

postsynaptic depolarization allow NMDARs to function as a “coincidence detector” for 

simultaneous presynaptic and postsynaptic activities.  Such coincidence detection is one of 

the essential elements of Hebbian plasticity, as repeated pairings of pre- and post-synaptic 

stimulation are sufficient to activate NMDARs, which allows Ca2+ entry to the neurons and 

trigger a cascade of intracellular events (e.g., phosphorylation and insertion of AMPARs, 

gene activation and protein synthesis) that are necessary for LTP induction and 

maintenance (for review, see Kandel, 2001). Conversely, chelating residual calcium with 

intracellular injection of the EGTA (G. Lynch et al., 1983) or BAPTA (S. Williams & 

Johnston, 1989) blocks LTP induction, and intracellular infusion of the NMDAR 

antagonist AP5 blocks LTP induction and impairs behavioral learning (Morris et al., 1986). 

Morphological modification of dendritic spines by LTP induction and learning.  

LTP can be induced not only by HFS, but also by direct glutamate iontophoresis onto 

postsynaptic neurons in hippocampal slices (Cormier & Kelly, 1996).  Using a repetitive 

quantum-like photo release (uncaging) of glutamate, Matsuzaki and colleagues (2004) 

found that application of glutamate at single spines of hippocampal CA1 neurons induced 

a rapid and selective enlargement of the stimulated spines, and this enlargement is 

associated with an increase in AMPARs and relies on NMDA receptors, which also 
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depends on Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation and actin 

polymerization (Matsuzaki et al., 2004).  Furthermore, LTP induction and behavioral 

learning can also induce synaptogenesis – the formation of new spines (Fedulov et al., 

2007; Kleim et al., 2002; Leuner, Falduto, & Shors, 2003; Ramirez-Amaya, Escobar, Chao, 

& Bermudez-Rattoni, 1999; Restivo, Vetere, Bontempi, & Ammassari-Teule, 2009).  One 

mechanism that underlies synaptogenesis or spine enlargement by LTP induction and 

behavioral learning is the modification of actin dynamic through phosphorylation of cofilin 

(L. Y. Chen, Rex, Casale, Gall, & Lynch, 2007; Fedulov et al., 2007; Yuste & Bonhoeffer, 

2001).  Cofilin is a family of actin-binding protein which binds and depolymerizes actin 

whereas phosphorylation of cofilin abolished its ability (N. Yang et al., 1998).  The LTP-

induced enlargement of dendritic spines is associated with higher p-cofilin levels than their 

neighboring spines (L. Y. Chen et al., 2007), suggesting that the regulation of actin 

dynamics underlies LTP induction.  In fact, a recent study has revealed that LTP induction 

involves a sequence cofilin dephosphorylation and phosphorylation which underlies 

AMPAR trafficking and spine enlargement (Gu et al., 2010).  Taken together, LTP 

induction and behavioral learning involve spine enlargement via activation of NMDARs 

and cofilin phosphorylation. 

Intracellular mechanisms of LTP induction and learning.  In hippocampus, the 

maintenance of LTP is usually divided into two distinct phases (Kandel, 2001; M. A. 

Lynch, 2004).  An early phase LTP is elicited by a moderate stimulation that activates 

NMDA receptors.  The elevated Ca2+ in postsynaptic cells activates a set of second 

messengers, such as protein kinase C (PKC) and CAMKII that phosphorylate existing 

AMPARs.  The insertion of phosphorylated AMPARs into postsynaptic membrane 
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enhances EPSPs (Kandel, 2001; Sweatt, 2003).  This form of LTP decays within 

approximately 2 hours and does not require protein synthesis.  A strong stimulation that 

induces more Ca2+ influx will elicit a late phase LTP, which lasts for hours to days.  This 

late phase LTP depends upon activation of second messengers (e.g., cAMP) that trigger 

new gene expression.  The underlying mechanisms of new gene expression include the 

activation of protein kinase A (PKA), mitogen-activated protein kinases (MAPK), and 

cAMP response element-binding (CREB).  The activation of CREB finally promotes 

protein synthesis, which results in AMPAR insertion and synaptogenesis (Bolshakov, 

Golan, Kandel, & Siegelbaum, 1997; Engert & Bonhoeffer, 1999; Impey et al., 1998; 

Nguyen, Abel, & Kandel, 1994).   

Similar with the two phases of LTP (early and late), behavioral learning also occurs 

over two phases: initial acquisition and later consolidation. For fear conditioning, the initial 

acquisition takes minutes to hours whereas the later consolidation takes days to weeks 

(Dudai, 2004).  Also similar to LTP expression, synthesis of new proteins is not required 

during initial acquisition but is necessary for memory consolidation, because protein 

synthesis inhibitors (e.g., anisomycin) or PKA inhibitors (e.g., Rp-cAMP) only disrupts 

long term memory but not initial learning (Rodrigues, Schafe, & LeDoux, 2004; Schafe & 

LeDoux, 2000).  Thus, the dependence of protein synthesis of both late phase of LTP and 

the memory consolidation suggests that LTP and learning share common mechanisms.  

Intrinsic plasticity.  One possible explanation for the activity-dependent changes 

in synaptic plasticity is an alteration to the intrinsic excitability (intrinsic plasticity) of a 

postsynaptic neuron.  Intrinsic excitability refers to the probability that the postsynaptic 

neuron fires action potentials in response to an input signal (see review in Beck & Yaari, 
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2008; Schulz, 2006).  The enhancement of intrinsic excitability is manifested by a reduction 

in post-burst afterhyperpolarization (AHP) and a decrease in spike frequency adaptation 

(e.g., Moyer et al., 1996; Thompson, Moyer, & Disterhoft, 1996b).  In addition, intrinsic 

plasticity shares common properties with synaptic plasticity as being bi-directional, long 

lasting and learning specific.  Such enhancement of intrinsic neuronal excitability is not 

only critical for memory consolidation but also facilitates LTP induction and subsequent 

learning (Kramar et al., 2004; Moyer et al., 1996; Sah & Bekkers, 1996; Song et al., 2012; 

Zelcer et al., 2006).  In contrast, failure to modulate intrinsic neuronal excitability may 

impair the learning ability in adult animals, as well as learning deficits both in normal aging 

(Kaczorowski, Sametsky, Shah, Vassar, & Disterhoft, 2009; Moyer, Power, Thompson, & 

Disterhoft, 2000) and in a mouse model of Alzheimer’s disease (Kaczorowski, Sametsky, 

Shah, Vassar, & Disterhoft, 2011). 

Learning-induced plasticity of AHP.  The post-burst AHP, especially the median 

(mAHP, defined as the AHP measured from 50 – 100 ms following the current injection) 

and slow component (sAHP, defined as the AHP measured beyond 100 ms following the 

current injection), are commonly used as an index of neuronal intrinsic excitability because 

it is correlated with the firing frequency of a neuron.  For example, during a prolonged 

current injection, hippocampal pyramidal neurons first respond with a rapid action 

potential discharge which slows, or accommodates afterward, known as spike frequency 

adaptation or accommodation (Madison & Nicoll, 1984).  In most cases, accommodation 

is reduced (more spikes) when a neuron has a smaller sAHP whereas accommodation is 

enhanced (less spikes) when a neuron has a larger sAHP. 
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Leaning-specific reductions in post-burst AHPs have been widely reported.  For 

example, reduced AHPs in hippocampal neurons have been observed after trace fear 

conditioning (Kaczorowski & Disterhoft, 2009; McKay et al., 2009; Song et al., 2012), 

trace eyeblink conditioning (Moyer et al., 2000; Moyer et al., 1996), water maze learning 

(Oh, Kuo, Wu, Sametsky, & Disterhoft, 2003), and an olfactory discrimination task (Zelcer 

et al., 2006).  Furthermore, the learning-specific increase of intrinsic excitability is time-

dependent.  For example, in a trace eyeblink conditioning paradigm, a significant reduction 

in AHP was observed as early as 1 hour after training, which reached the asymptotic level 

24 hours later, but returned to baseline level 7 days after initial learning.  In contrast, the 

behavioral performance (conditioned response) remained at a high level over 6 months 

(Moyer et al., 1996).  Thus, such time course of increased intrinsic plasticity in 

hippocampal neurons may represent the transient role of hippocampus in acquisition of 

associative learning.  After memory is consolidated, the enhanced intrinsic excitability in 

hippocampal neurons is not required for maintenance of conditioned response.  

Learning-induced modulation of AHP is also bidirectional, which has been shown 

in IL neurons following fear conditioning and extinction (Santini, Quirk, & Porter, 2008).  

The excitability of IL pyramidal neurons was suppressed after a one-day session of fear 

conditioning, but reversed by the following extinction training on the next day.  In addition, 

fear extinction did not simply reverse the suppression effect of fear conditioning on 

intrinsic excitability but also changed firing pattern of IL neurons with increased bursting 

activities after extinction (Santini et al., 2008), which may be caused by the modulation in 

M-type potassium channels (Santini & Porter, 2010).   
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Cellular mechanisms underlying AHP modification.  Previous studies suggest that 

the AHP is primarily modulated by several currents that mediated by Ca2+-activated K+ 

channels (Sehgal, Song, Ehlers, & Moyer, 2013). Specifically, the mAHP is mediated by 

several components including a voltage-and Ca2+-activated current (IC), a voltage-

dependent, muscarine-sensitive current (IM), and a Ca2+-dependent apamin-sensitive 

current (IAHP).  In contrast, the sAHP is mediated by apamin-insensitive, Ca2+-dependent 

K+ current (sIAHP) (Gasparini & DiFrancesco, 1999; Sah, 1996; Storm, 1989).  Thus, the 

size and duration of AHP is greatly affected by the concentration of intracellular Ca2+.  

While an optimal level of intracellular Ca2+ is necessary for normal neuronal function, 

excess Ca2+ in the cytoplasm may enhance the sAHP and impair LTP induction (for review, 

see Foster, 2007), even lead to cell death (Farber, 1981).  One source of intracellular Ca2+ 

is rushing into the cell through voltage-dependent calcium channels (VDCC) when the 

membrane is depolarized.  It has been established that aged animals are associated with 

increased density of L-type VDCC in hippocampal neurons, which may contribute to larger 

AHPs (Power, Wu, Sametsky, Oh, & Disterhoft, 2002).  Another source of excessive 

intracellular Ca2+ in aged animals is from intracellular Ca2+ stores, because inhibition of 

intracellular Ca2+ release significantly reduces the sAHP and facilitates LTP induction in 

aged but not young animals (Kumar & Foster, 2004).   

A recent study suggests that the sodium-potassium ATPase (the “sodium pump”) 

plays a critical role in mediating the sAHP and regulating intrinsic excitability (Gulledge 

et al., 2013). The sodium pump generates a net outward current as it exchanges three 

intracellular sodium for two extracellular potassium ions thus hyperpolarizes the cortical 

pyramidal neurons (Koike, Mano, Okada, & Oshima, 1972).  It has been shown that the 
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altered expression of sodium pump is associated with increased anxiety behavior and 

impaired spatial learning (Moseley et al., 2007).  However, it is not clear how the sodium 

pump is involved in the acquisition and expression of conditioned fear.  

Previous studies suggest that the intracellular signals that are critical for synaptic 

plasticity are also important for intrinsic excitability.  For instance, activation of PKC 

enhances intrinsic neuronal excitability through blocking calcium-dependent potassium 

channels and reduces the AHP (Baraban, Snyder, & Alger, 1985).  In aged rabbits, the 

abnormal distribution of PKC isoforms – an increase in cytosolic PKC levels and a 

decrease in membrane-associated PKC levels are associated with aging-related learning 

deficits (Colombo, Wetsel, & Gallagher, 1997; Van der Zee et al., 2004).  Similar with 

PKC, activation of CaMKII reduces the AHP and spike frequency adaptation (Muller, 

Petrozzino, Griffith, Danho, & Connor, 1992; Ohno, Sametsky, Silva, & Disterhoft, 2006), 

but the contribution of CaMKII in intrinsic excitability is still unclear because CaMKII 

mutant mice that are impaired in learning still have reduced AHP (Ohno et al., 2006).  

Morphological Plasticity in Dendritic Spines as a Mechanism of Associative learning  

In the central nervous system, most synapses occur on the dendritic spines, which 

are the small protrusions of the postsynaptic neuron.  Dendritic spines receive most of the 

excitatory impulses (EPSPs) that enter a pyramidal cell.  In the mature hippocampus and 

cortex, dendritic spines are highly heterogeneous and plastic both for their number and for 

their shape (Grutzendler, Kasthuri, & Gan, 2002; Trachtenberg et al., 2002), which are 

dynamically modified by synaptic activity.  Furthermore, recent studies have suggested 

that the number and shape of dendritic spines are associated with synaptic strength and 



30 
 

 
 

learning ability (Roberts, Tschida, Klein, & Mooney, 2010; Tschida & Mooney, 2012; T. 

Xu et al., 2009).   

Functional importance of spine structure and shape.  Each spine has a head 

(volume ~ 0.001-1 µm3) connected to the neuron by a thin (diameter < 0.1 µm) spine neck.  

According to the shape under light microscopy, spines can be classified as stubby, thin, or 

mushroom (Peters & Kaiserman-Abramof, 1970; Yuste & Bonhoeffer, 2004).  During 

early development, stubby spines (lacking clear necks) are common.  In the adult, 

mushroom spines (with large heads with thin neck) and thin spines (small heads with thin 

necks) are more common than stubby spines, although many stubby spines still exist.  In 

addition, another type of long, thin dendritic protrusion named filopodia is also common 

during early development and is thought as immature predecessors of spines (Ethell & 

Pasquale, 2005; Yuste & Bonhoeffer, 2004).   

Electron microscopy studies have revealed that the tip of the spine contains a thick 

electron dense region referred to as the "postsynaptic density" (PSD), which gives an 

asymmetrical appearance to the synaptic contact.  The PSDs contain hundreds of 

components such as receptors, cytoskeletal proteins, and associated signaling molecules 

that are involved in synaptic plasticity (Husi, Ward, Choudhary, Blackstock, & Grant, 

2000; Walikonis et al., 2000).  For example, the two major subtypes of glutamate receptors 

(AMPARs and NMDARs) are primarily distributed in the PSD (Kennedy, 1998, 2000).  

AMPARs mediate the postsynaptic depolarization that initiates neuronal firing and are the 

targets for multiple signaling pathways that regulate synaptic strength, whereas NMDARs 

initiate synaptic plasticity that regulates AMPAR trafficking and maintains the synaptic 

strength (Derkach, Oh, Guire, & Soderling, 2007).  Interestingly, NMDARs are found in 
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all spines whereas some (12 - 25%) spines lack AMPA receptors.  In the adult animal, such 

spines that lack of AMPARs are functionally “silent”, but they have also been described as 

immature glutamate synapses (Nusser et al., 1998; Racca, Stephenson, Streit, Roberts, & 

Somogyi, 2000; Takumi, Ramirez-Leon, Laake, Rinvik, & Ottersen, 1999).  Moreover, the 

area of PSD is positively correlated with the spine volume, and the density of AMPAR is 

strongly correlated with the size of PSD within a certain type of synapses such as Schaffer 

collateral–commissural synapses in the hippocampus (Nusser et al., 1998; Takumi et al., 

1999).  The correlation between the synapse size and the number of NMDA receptors in 

Schaffer collateral–commissural synapses is also significant, but is much weaker (Racca et 

al., 2000).  Thus, the synaptic strength is determined by the size of the spine and the number 

of AMPARs in the postsynaptic membrane.  

According to the PSD profile in electron micrograph of consecutive serial sections, 

axospinous synapses can be roughly divided into perforated and nonperforated 

conjunctions (Geinisman, 1993).  Perforated synapses are characterized by the appearance 

of one or more discontinuities or perforations in the PSD and can be further divided into 

fenestrated, horseshoe, or segmented shape (Geinisman, 1993; Nicholson, Yoshida, Berry, 

Gallagher, & Geinisman, 2004).  In contrast, nonperforated synapses are exclusively 

continuous in serial sections.  In general, perforated synapses are larger and contain more 

AMPARs whereas nonperforated synapses are smaller and contain less or no AMPARs 

(Geinisman, 1993).   

Structural plasticity induced by experience and synaptic stimulation.  The 

number and shape of dendritic spines are highly dynamic and modulated by ongoing 

synaptic activity, which depends on afferent signals from local or distal brain regions.  For 



32 
 

 
 

example, in vivo time-lapse imaging on individual pyramidal neurons in the mouse barrel 

cortex suggests that the synapses undergo formation and elimination over time, although 

the dendritic structure is stable (Trachtenberg et al., 2002).  The lifetime of dendritic spines 

varies greatly: ~ 50% of the spines are stable for at least one month whereas the rest are 

present only for a few days or less.  Furthermore, the percent of spines that appear and 

disappear over time (turnover ratio) was significantly increased after sensory deprivation 

induced by whisker trimming (Trachtenberg et al., 2002).  These observations suggest that 

sensory deprivation turns stable synapses into unstable synapses, which might then be 

removed.  This is consistent with earlier studies in visual cortex that the number of dendritic 

spines was reduced when the afferent input was deprived either by rearing in total darkness 

(Valverde, 1967) or by surgical lesions in the lateral geniculate body (Globus & Scheibel, 

1966).  In contrast, the number of dendritic spines in visual cortex was significantly 

increased in animals reared in an enriched environment compared with animals reared in a 

standard environment (Kozorovitskiy et al., 2005).  

In addition to sensory deprivation and environment enrichment, the induction of 

LTP and LTD through synaptic stimulation also significantly alters the number of dendritic 

spines.  For example, recent time-lapse imaging studies have shown that LTP induction 

significantly increased both spine volume and growth (Engert & Bonhoeffer, 1999; 

Hosokawa, Rusakov, Bliss, & Fine, 1995; Lang et al., 2004; Matsuzaki et al., 2004; 

Okamoto, Nagai, Miyawaki, & Hayashi, 2004).  In contrast, LTD induction elicits long 

lasting shrinkage of existing spines (Okamoto et al., 2004).  Furthermore, these structural 

changes share the same mechanisms as functional changes (i.e., potentiation of synaptic 

strength) in that they involve AMPAR insertion, are input specific, and are dependent on 
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activation of NMDA receptors and CAMKII (Engert & Bonhoeffer, 1999; Lang et al., 

2004; Matsuzaki et al., 2004).  Interestingly, the spine expansion involves actin 

polymerization (Okamoto et al., 2004) which occurs before the AMPAR insertion (Kopec, 

Li, Wei, Boehm, & Malinow, 2006), suggesting that morphological changes precede 

functional changes.  In addition, LTP induction primarily involves a persistent expansion 

or growth of small spines (Hosokawa et al., 1995; Matsuzaki et al., 2004), whereas the 

expansion of large spines is transient (Matsuzaki et al., 2004).  Taken together, these data 

suggest that bidirectional regulation of dendritic spine density and size is critical for 

synaptic function and is a mechanism underlying learning and memory.   

Structural plasticity induced by behavioral learning.  In addition to LTP 

induction, studies have revealed that behavioral learning also induces the formation of new 

dendritic spines, as well as the elimination and remodeling of existing spines (e.g., 

enlargement).  Such learning-induced structural plasticity has been observed in a variety 

of learning tasks and brain areas.  Although fear conditioning is the primary interest of the 

current study, a brief review of other learning paradigms is presented here in order to 

provide a general view of how learning affects the plasticity of dendritic spine. 

Motor skill learning induces synaptogenesis in the motor cortex.  Learning a 

simple skill to obtain food rewards (motor skill learning) temporarily increases the spine 

formation in motor cortical neurons (Kleim et al., 2002; Kleim et al., 2004; T. Xu et al., 

2009).  The learning-induced synapse formation was long lasting and was significantly 

correlated with behavioral performance (T. Xu et al., 2009; G. Yang, Pan, & Gan, 2009).  

Furthermore, when retraining the learned animals on another motor task, the spine 

formation and elimination were further increased with similar rates as naïve animals but 
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the newly formed spines were different from those formed in previous learning (T. Xu et 

al., 2009), suggesting that different learning tasks involve different sets of synapses.    

Water maze learning induces synaptogenesis in hippocampal neurons.  The 

MWM task has been widely used to measure hippocampal dependent spatial memory 

(Morris, Garrud, Rawlins, & O'Keefe, 1982).  Several studies have found an increase in 

synaptogenesis in the dentate gyrus and CA3 neurons following acquisition of the MWM 

task (O'Malley, O'Connell, Murphy, & Regan, 2000; Ramirez-Amaya, Balderas, Sandoval, 

Escobar, & Bermudez-Rattoni, 2001; Ramirez-Amaya et al., 1999).  Interestingly, this 

increase of synaptogenesis was transient because it was only observed in the dentate gyrus 

at 6-9 hours after training but not 24 (Eyre, Richter-Levin, Avital, & Stewart, 2003) or 72 

(O'Malley et al., 2000) hours later.  A similar time-dependent synaptogenesis may also 

exist in CA1 neurons after water maze training because a significant increase in mushroom 

synapses but not stubby or thin or filopodia was reported in rats that learned the task after 

2 days of training (Hongpaisan & Alkon, 2007), although earlier studies didn’t find a net 

increase in synapse formation following 5 days of training (Rusakov et al., 1997).  

Trace eyeblink conditioning induces synaptogenesis and synaptic remodeling in 

hippocampus.  Trace eyeblink conditioning is a form of hippocampus-dependent 

associative learning (Kim, Clark, & Thompson, 1995; Moyer, Deyo, & Disterhoft, 1990; 

Solomon, Vander Schaaf, Thompson, & Weisz, 1986).  It has been reported that trace 

eyeblink conditioning induced an increase of synaptogenesis on basal dendrites (Leuner et 

al., 2003) but not on apical dendrites of stratum radiatum in the CA1 area (Geinisman, 

2000; Geinisman, Berry, Disterhoft, Power, & Van der Zee, 2001; Leuner et al., 2003).  

However, on apical dendrites of CA1 neurons, an increase in PSD area and multiple 
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synaptic boutons (MSBs) in stratum radiatum was observed although no net increase in 

total synapse number was seen, indicating the involvement of a learning-specific 

remodeling of the synaptic network after acquisition of trace eyeblink conditioning 

(Geinisman, 2000; Geinisman et al., 2001).  

Fear conditioning and extinction induce bidirectional structural modification in 

the hippocampus, amygdala, and prefrontal cortex. The correlation between 

synaptogenesis and acquisition of fear conditioning has recently been reported in all of 

these brain areas.  For example, acquisition of delay fear conditioning increases synapse 

density (Dalzell et al., 2011) and synapse size (Ostroff, Cain, Jindal, Dar, & Ledoux, 2012) 

in the lateral amygdala (LA).  Such learning-induced synapse modification may contribute 

to the observed increase in AMPAR mediated synaptic transmission in the LA (McKernan 

& Shinnick-Gallagher, 1997; Rogan et al., 1997).  In addition, contextual fear conditioning 

increases spine density on apical dendrites of hippocampal CA1 and anterior cingulate 

cortical (ACC) neurons in a time-dependent manner (Restivo et al., 2009) – the learning 

induced synaptogenesis in hippocampus was only observed 1 day but not 36 days after 

learning.  In contrast, the increase in spine density in ACC was observed at 36 days but not 

1 day after conditioning, which is consistent with the transient role of the hippocampus in 

acquisition of fear conditioning (Restivo et al., 2009).  A follow-up study from the same 

group (Vetere et al., 2011) revealed that contextual fear conditioning also facilitated spine 

formation in IL 36 days after conditioning.  However, extinction reversed the effect of 

conditioning on spine formation in ACC but not in IL –spine density was reduced in ACC 

but remained high in IL after extinction.  In IL, extinction decreased in spine size, which 

was not observed in ACC (Vetere et al., 2011).   
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A bidirectional modulation of spine number through spine formation and 

elimination has also been observed in the frontal association cortex (FrA) in live animals 

after delay fear conditioning and extinction (Lai, Franke, & Gan, 2012).  In that study, the 

spines in layer 5 pyramidal neurons in the dorsal medial region of the FrA were 

dynamically observed before and after the animals underwent fear conditioning, extinction, 

and reconditioning.  Twenty-four hours after fear conditioning, the number of dendritic 

spines was significantly reduced – an effect that lasted at least 9 days.  Interestingly, 

extinction reversed the effect of conditioning such that not only the number of spines was 

restored but also that the spines formed after extinction were located at the same sites 

(within 2 µm) as those that were eliminated during conditioning.  Moreover, the spines that 

formed after extinction seem to be eliminated again after reconditioning with the same 

tone-shock pairings.  However, a different set of spines (located more than 2 µm away from 

the spines formed after extinction) was eliminated if the animals were conditioned using a 

different tone CS (Lai et al., 2012).  Thus, this study demonstrated that within FrA, fear 

conditioning and extinction have the opposite effect on spine formation and that different 

learning experiences use different sets of dendritic spines.  

Summary 

Pavlovian fear conditioning is an excellent model system to study the mechanisms 

underlying associative learning.  Although much progress has been made, the neural basis 

of fear conditioning is still unclear, including which brain regions are required and how 

they function during learning and memory retrieval.  In addition, much of our 

understanding of the mechanisms of fear conditioning and extinction comes from studies 

using delay paradigm, whereas trace fear conditioning relatively poorly studied.   
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The goal of the present project was to investigate how the synaptic plasticity, 

intrinsic excitability, as well as spine density are modulated by trace fear conditioning in 

hippocampus and mPFC.  We studied synaptic plasticity in hippocampus because of its 

well-defined tri-synaptic structure.  We did not conduct synaptic studies in the mPFC 

because of its complex afferent and efferent connections.  In addition, mPFC neurons are 

highly heterogeneous in term of morphology, electrophysiology, and interconnectivity 

depending on their long-range projection targets.  Thus, we examined how trace fear 

conditioning affects both synaptic and intrinsic plasticity in hippocampal CA1 neurons, 

and conducted a set of studies to examine the role of mPFC in trace fear conditioning and 

extinction.  We first characterized the basic membrane properties of randomly selected 

neurons by comparing the neurons between different cortical layers (layer 2/3 and layer 5) 

and between subregions (IL vs PL).  We then characterized the membrane properties of 

mPFC-amygdala projection neurons by using a combination of retrograde labeling and 

whole-cell recording.  Next, we studied the effect of trace fear conditioning and extinction 

on the intrinsic excitability of mPFC-amygdala projection neurons.  Finally, we examined 

the effect of trace fear conditioning on spine density of mPFC-amygdala projection 

neurons.  These experiments demonstrate that the trace fear conditioning enhances the 

intrinsic excitability in both hippocampal and infralimbic cortical neurons, whereas inhibits 

prelimbic neurons.  We also demonstrate that the mPFC neurons are highly heterogeneous 

and recording from neurons with known projection targets is necessary for elucidating the 

cellular mechanisms of trace fear conditioning.   
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CHAPTER TWO: trace fear conditioning enhances synaptic and intrinsic plasticity 

in hippocampal CA1 neurons 

 
Abstract 

The current study utilized trace fear conditioning as a model system to examine 

how associative learning affects both synaptic and intrinsic plasticity of hippocampal CA1 

neurons in the same behavioral characterized rats.  Rats received a one-day 10-trial trace 

fear conditioning, followed by a brief memory test in a novel context the next day.  Brain 

slices were prepared immediately after the test for electrophysiological recordings.  

Synaptic plasticity was studied by stimulating Schaffer collateral pathway and recorded in 

stratum radiatum in CA1 area.  Intrinsic excitability of CA1 neurons was studied by using 

sharp electrode intracellular recording.  Analysis with the data we found that the behavioral 

performance (percent freezing during memory test) was significantly correlated with the 

amount of LTP (r = 0.64, p < 0.05) and the size of post-burst AHP (r = -0.55, p < 0.05).  

The significant correlation was only observed in conditioned rats but not 

pseudoconditioned rats, suggesting it is learning specific.  In addition, the rats that 

displayed higher level of freezing during memory test (good learners) had significantly 

greater LTP in hippocampus than the rats that displayed lower level of freezing (poor 

learners).  Furthermore, neurons from good learners displayed enhanced intrinsic 

excitability than the neurons from poor learners and other control rats, as evidenced by 

smaller post-burst AHPs [F(4,52) = 4.77, p < 0.01] and reduced spike-frequency adaptation 

[F(3,52) = 5.62, p < 0.01].  Finally, the percent LTP was significantly correlated with the 

size of post-burst AHP (r = -0.38, p < 0.05).  Thus these data suggest that within 
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hippocampus both synaptic and intrinsic plasticity are involved in the acquisition of trace 

fear conditioning.   

 
Introduction 

Bidirectional modification of synaptic efficiency by long-term potentiation (LTP) 

and long-term depression (LTD) is believed to underlie the cellular mechanisms of learning 

and memory (Bear & Abraham, 1996; Dudek & Bear, 1993; M. A. Lynch, 2004).  For 

example, the learning-specific enhancement of baseline synaptic response has been 

observed in Schaffer collateral pathway in hippocampus following the acquisition of trace 

eyeblink conditioning (Power et al., 1997) or fear conditioning (Doyere et al., 1995).  

Interestingly, a facilitation of LTP induction has also been observed in hippocampus after 

acquisition of trace eyeblink conditioning (Gruart et al., 2006), trace fear conditioning 

(Song et al., 2012), and Morris water maze task (Boric et al., 2008).  Furthermore, the 

behavioral performance is significantly correlated with hippocampal LTP after learning 

Morris water maze task (Boric et al., 2008), suggesting the important role of synaptic 

plasticity in learning.  Such learning-induced facilitation of LTP induction has been coined 

“metaplasticity” by Abraham and colleagues (Abraham, 2008; Abraham & Bear, 1996).  

Metaplasticity is a high-order plasticity that greatly depends on previous synaptic activity 

and strongly affects subsequent synaptic plasticity (Abraham & Bear, 1996).  Although 

metaplasticity is usually attributed to synaptic activity, recent evidence suggests that 

modification of intrinsic excitability may underlie such phenomenon (Sehgal et al., 2013; 

Zhang & Linden, 2003).  For example, the enhancement of intrinsic excitability has been 

observed in hippocampal neurons following acquisition of trace eyeblink conditioning 

(Moyer et al., 1996), trace fear conditioning (Kaczorowski & Disterhoft, 2009; McKay et 
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al., 2009) Morris water maze training (Oh et al., 2003).  Thus, both intrinsic and synaptic 

plasticity are important for learning and that synaptic plasticity may arise from intrinsic 

plasticity. 

The aim of the present study was to investigate how trace fear conditioning affects 

both synaptic and intrinsic plasticity in hippocampal CA1 neurons in the same behavioral 

characterized animals.  The data suggest that acquisition of trace fear conditioning 

enhances both synaptic plasticity and intrinsic excitability, and supports the hypothesis that 

synaptic plasticity arises from intrinsic plasticity.   

Methods 

Subjects.  The subjects were 51 adult male F344 rats (4.1 ± 0.1 mo).  Rats were 

maintained in an Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) accredited facility on a 14 h light–10 h dark cycle and housed individually 

with food and water ad libitum.  All rats were handled at least one week prior to 

experiments.  Procedures were conducted in accordance with the University of Wisconsin-

Milwaukee animal care and use committee (ACUC) and NIH guidelines. 

Apparatus.  Fear conditioning chambers. Trace fear conditioning was conducted 

in a Plexiglas and stainless steel chamber (30.5 X 25.4 X 30.5 cm; Coulbourn Instruments, 

Whitehall, PA), located in a sound-attenuating box.  The chamber had a standard grid floor 

consisting of 26 parallel steel rods (5 mm diameter and 6 mm spacing).  The floor was 

connected to a precision adjustable shock generator (Coulbourn Instruments) for delivery 

of a scrambled footshock US.  Within the sound-attenuating box, a ventilation fan produced 

a constant background noise of about 58 dB (measured by a sound level meter, A scale; 

model #33-2050, Realistic, Fort Worth, TX).  The chamber was illuminated by a miniature 
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incandescent white lamp (28V, type 1819) and was wiped with a 5% ammonium hydroxide 

solution prior to each training session.  During training, the room lights were left on 

(illumination 20.9 lux) for the entire session. 

CS testing chambers.  An additional Plexiglas and stainless steel chamber was 

served as a novel context for the auditory cue test.  This chamber was located within a 

separate sound-attenuating box located in the same room.  The test chamber was physically 

different from the training chamber in that it had a curved wall, the floor was black-painted 

Plexiglas (instead of grid bars), and it was illuminated with an infrared light.  In addition, 

the tray below the test chamber floor contained clean bedding and the test chamber was 

wiped with 2% acetic acid prior to each test session to provide a different olfactory stimulus 

from that used during training.  The room lights were turned off (illumination 0.2 lux) for 

the entire testing session. 

Behavioral training.  Rats were randomly assigned into trace fear conditioned (n 

= 15), pseudoconditioned (n = 10), chamber exposed (n = 3), and naïve (21) groups.  Trace 

fear conditioned rats received one 10-trial session of auditory trace fear conditioning using 

a 15 s CS (80 dB white noise) followed by a 30 s trace interval (stimulus-free period) and 

a 1 s footshock US (1 mA).  A long (5.2 min ± 20 %) intertrial interval was used to 

maximize CS and minimize context (i.e., training chamber) conditioning (Blanchard & 

Blanchard, 1969).  Pseudoconditioned rats received the same amount of CS and US 

presentations but explicitly unpaired.  Chamber exposed were placed in the training 

chamber for the same amount of time as conditioned rats without receiving any stimuli. 

Naïve rats were never be exposed to the training or testing chambers.  To assess learning 

in the conditioned and pseudoconditioned rats, the amount of time spent freezing during 
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the baseline and the 30 s intervals following CS offset was measured (see analysis below).  

A PC running FreezeFrame 2.04 (Actimetrics Software, Coulbourn Instruments, 

Whitehall, PA) controlled the delivery of all stimuli during training and testing.  

Behavioral testing.  Twenty-four hours after training, trace conditioned and 

pseudoconditioned rats received a brief CS test session in a novel context.  After a 2 min 

baseline, trace and pseudoconditioned rats received two 15 s CS presentations with a 2.9 

min ITI.  Rats remained in the chamber for additional 2 min before they were removed 

from the chamber.  To assess memory, the amount of time spent freezing during the 

baseline, the first CS, and the first trace interval (defined as the first 30 sec after CS offset) 

was measured (see analysis below).  The chamber exposed rats were placed in the same 

novel context for the same amount of time but without any CS presentations.  

Analysis of behavioral data.  A remote CCTV video camera (model #WV-BP334; 

Panasonic Corp., Suzhou, China), mounted to the top of each behavioral chamber, was 

used to record the activity of each rat during training and testing.  The video data were fed 

to a PC running FreezeFrame 2.04.  Data were analyzed using FreezeView 2.04 

(Actimetrics Software, Coulbourn Instruments) where a 1-sec bout of immobility was 

scored as freezing.  Freezing was defined as the absence of all movement except that 

required for respiration (Blanchard & Blanchard, 1969).  To correlate learning ability and 

synaptic plasticity and intrinsic excitability, conditioned rats were classified as good 

learners and poor learners according to their performance during CS test.  Rats that froze 

more than 2 SD above the mean of chamber-exposed rats were defined as good learners (n 

= 8), and those below were defined as poor learners (n = 7).  Figure 4 shows the freezing 

levels of conditioned and pseudoconditioned rats during training and testing.  
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Figure 4. Behavioral performance of trace fear conditioned and pseudoconditioned rats during 

conditioning and testing.  Conditioned rats were divided into good learners (rats that froze more than 2 SD 

of the chamber exposed rats, n = 8) and poor learners (the rest of the rats, n = 7) according the behavior 

performance during the probe test.  A, Throughout training, good learners, poor learners, and 

pseudoconditioned rats froze at comparable levels during trace interval. B, during test, good learners froze 

significantly more than poor learners and pseudoconditioned rats (**p < 0.01 for all values) during the trace 

interval.  The dashed line in B indicates the percent freeze of chamber exposed during test.  (Adapted from 

Song et al., 2012).  



44 
 

 
 

Slice preparation.  Brain slices were prepared within 1 h of the test session by an 

individual blind to training condition.  Rats were deeply anesthetized with isoflurane and 

decapitated.  The brain was quickly removed and placed in ice-cold oxygenated (95% 

O2/5% CO2) aCSF (composition in mM: 124 NaCl, 2.8 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 

CaCl2, 26 NaHCO3, and 20 dextrose, pH 7.4).  The brain was then blocked and horizontal 

brain slices (400 µm) were cut in aCSF at ~ 0°C using a temperature-controlled vibratome 

3000 (the Vibratome Company).  Slices were then transferred to a holding chamber (Moyer 

et al., 1996) containing oxygenated aCSF at room temperature (21-23°C).  For 

experiments, slices were transferred as needed to an interface-  type recording chamber 

(Warner Instrument, Hamden, CT) where they were perfused with oxygenated aCSF at 

32°C and allowed to recover for at least one hour prior to starting an experiment.   

Electrophysiological recordings.  All recordings were obtained using a 

MultiClamp 700B amplifier system (Molecular Devices, Union City, CA).  Experiments 

were controlled by PClamp 10 software (Molecular Devices) running on a PC, and the data 

were acquired using the Digidata 1440A acquisition system (Molecular Devices).  All 

electrodes were pulled from thin-walled capillary glass (A-M Systems, Carlsborg, WA) 

using a Sutter Instruments P97 puller.  For field potential recordings, voltage signals were 

filtered at 2 kHz and digitized at 50 kHz. For intracellular recordings, voltage signals were 

filtered at 0.5 – 2 kHz and digitized at 20 kHz.   

Synaptic plasticity studies.  Dendritic field excitatory postsynaptic potentials 

(fEPSPs) were obtained from the stratum radiatum of CA1 using aCSF-filled pipettes (R1; 

see Figure 5) with resistances of 2-6 M.  Two concentric bipolar stimulating electrodes 

(FHC, Brunswick, ME) were positioned in the stratum radiatum, one on each side of the  
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Figure 5. Hippocampal slice preparation used to study learning-related changes in synaptic and 

intrinsic plasticity.  A photograph of hippocampal slice illustrating the location of stimulating electrodes for 

the test (S1) and control (S2) pathways and the location of recording electrodes for field (R1) and sharp 

intracellular (R2) recording.  Inset: representative photograph of a biocytin-filled pyramidal neuron. Scale 

bar, 5 µm.  (Adapted from Song et al., 2012). 
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field electrode at a distance of ~500 µm.  The stimulating electrode closest to CA3 (S1) 

was used as the test pathway (for inducing LTP) whereas the other stimulating electrode 

(S2) was used as the control pathway to test for input specificity (see Figure 5).  Input-

output (I-O) curves were used to find the stimulation intensity necessary to elicit an initial 

fEPSP slope that was 50% of the maximal fEPSP slope obtained in the absence of a 

population spike (see Figure 6A).  After establishing a stable baseline for 10 min, LTP was 

induced in the test pathway by delivering a single tetanic stimulation (100 Hz for 1 s) to 

S1.  Both pathways were monitored for at least 30 minutes by delivering a single stimulus 

every 30 s (alternating every 15 s between S1 and S2).  The 30-min time frame was selected 

because pilot data (see Figure 7) indicated that stable LTP was observed within ~15 min 

following HFS, and the amount of LTP did not differ when compared at 30, 45, or 60 

minutes, F(2,6) = 0.22, p = 0.7.   

Intrinsic excitability studies.  Somatic intracellular recordings were obtained from 

CA1 pyramidal neurons using sharp microelectrodes filled with 3M potassium acetate and 

20 mM KCl (60-100 M).  Only cells with a stable resting membrane potential (Vrest) more 

negative than -60 mV, overshooting action potentials, and an input resistance (RN) > 20 

M were used (Moyer et al., 1996).  To minimize the influence of voltage-dependent 

changes on membrane conductances, all cells were studied at rest and at a membrane 

potential near -65 mV (≤ 0.3 nA constant current injection, if necessary).  Neurons were 

recorded under current clamp using the following protocol: (1) Voltage–current (V-I) 

relations were obtained using 400 ms current steps (range -1.0 to +0.2 nA) and plotting the 

plateau voltage deflection against current amplitude.  Neuronal input resistance (RN) was 

determined from the slope of the linear fit of that portion of the V-I plot where the voltage.  
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Figure 6. Study of synaptic and intrinsic properties of hippocampal neurons.  A, Representative and 

averaged input-output (I-O) curves for extracellular field recordings.  Top left: fEPSPs of test pathway (S1, 

black) and control pathway (S2, gray) were obtained by stimulating the Schaffer collaterals on either side of 

the recording electrode.  The strength of synaptic transmission was measured as the initial slope indicated 

between the two arrows.  Scale bar, 0.5 mV, 2 ms.  Top right: example of an I-O curve used to calculate the 

stimulation intensity required to generate a 50% maximal fEPSP slope.  Bottom left: averaged I-O curves of 

the test pathway for all groups.  Bottom right: normalized I-O curves of the test pathway for each group.  B, 

Voltage-current (V-I) relation used to calculate neuronal input resistance (RN).  Representative voltage 

responses to a series of current injections and the accompanying V-I plot used to measure RN.  Scale bar, 20 

mV, 100 ms.  Arrowhead shows peak voltage deflection (used in measuring the depolarizing sag) and double 

arrows show steady-state voltage near the end of the current injection. (Adapted from Song et al., 2012). 
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Figure 7.  Stability of hippocampal LTP.  LTP was induced in Shaffer-collateral pathway and fEPSPs were 

recorded in stratum radiatum of CA1.  LTP did not differ between 30, 45, or 60 min [F(2,6) = 0.22, p = 0.7] 

following the high frequency stimulation (HFS) at time 0 (arrow).  Inset shows representative traces obtained 

before (gray) and 60 min after (black) LTP induction.  Scale bar, 1 mV, 10 ms.   
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sweeps did not exhibit sags or active conductance (see Figure 6B). (2) The post-burst 

afterhyperpolarization (AHP; 3X, at 20 s intervals) was evoked using a 100 ms 

depolarizing current injection sufficient to elicit a burst of four action potentials.  The AHP 

amplitude, duration, and integrated area were measured.  (3) Spike-frequency adaptation 

(accommodation; 3X, at 30 sec intervals) was studied using a 1 s depolarizing current 

injection of the same stimulus intensity used to study the AHP.  For each sweep, the number 

of action potentials were counted. (4) Resting membrane potential (Vrest) was calculated as 

the difference in membrane potential before and after withdrawing the microelectrode from 

the cell.   

Biocytin staining.  A subset of neurons were filled with biocytin to confirm the 

position and identity of pyramidal cells in the CA1 area.  For these recordings, sharp 

electrodes were filled with 2% (w/v) biocytin dissolved in 1 M potassium acetate (80 – 120 

M).  After obtaining stable resting membrane potential, biocytin was injected 

iontophoretically by using 300 ms, 800 pA depolarizing current pulses delivered every 600 

ms for 10 to 20 min.  Slices were allowed to recover in the recording chamber for 30 min 

after biocytin injection (Yankova, Hart, & Woolley, 2001), and were then be fixed in 10% 

neutral-buffered formalin at 4 °C for 1 to 3 days before being visualized with streptavidin 

Alexa Fluor 488 (Invitrogen).   

To visualize hippocampal neurons labeled by biocytin, the slices were incubated 

with 1% NaBH4 for 30 min and washed with 0.1 M PBS for 10 min (three times).  Slices 

were then incubated in 3% H2O2/10% methanol for 45 min, washed with PBS for 10 min 

(three times), followed by 0.25% Triton X-100/ 2% BSA for 60 min and 2% BSA for 10 

min.  The slices were then incubated with 1:500 streptavidin Alexa Fluor 488 (Invitrogen) 
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for 135 min in the dark, and washed with PBS for 10 min (three times), rinsed in dH2O, 

incubated for 90 min in 10 mM CuSO4, rinsed with dH2O, and rinsed in PBS (15 min, three 

times).  They were mounted onto slides, coverslipped with Ultra Cruz Mounting Medium 

(Santa Cruz Biotechnology, Santa Cruz, CA), and sealed with nail polish.  The neurons 

were viewed under a fluorescence microscope (BX51WI, Olympus) at 20X and 

photographed.  A representative biocytin-filled hippocampal CA1 pyramidal neuron and 

V-I relation are shown in Figure 5. 

Statistical analyses.  The overall treatment effects were examined using a one-way 

ANOVA or paired t-tests using SPSS 18.0 (SPSS, Chicago, IL).  A repeated measures 

ANOVA was used to compare freezing levels across training trials and the AHP across 

time for each group of rats.  For significant main effects (alpha 0.05), a Fisher’s PLSD test 

was used for post hoc comparisons.  All data were expressed as mean ± SEM.  

 

Results 

To assess the effect of trace fear conditioning on the synaptic and intrinsic 

plasticity of hippocampal neurons, rats received one-session trace fear conditioning or 

pseudoconditioning followed by a brief probe test the next day.  Chamber-exposed rats 

were placed into the same conditioning and test context for the same amount of time as 

conditioned rats but no CS or US presented.  Analysis of the behavioral data we found 

that there was heterogeneous for the conditioned rats during the probe test.  We thus 

divided the conditioned rats into good learners (the rats that froze > 2SD than the mean of 

chamber-exposed, n = 8) and poor learners (the rest, n =7) before further analysis.   
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As shown in Figure 4A, both good and poor learners exhibited comparable levels 

of freezing throughout the training session.  The pseudoconditioned rats also expressed a 

similar rapid increase in freezing, presumably due to contextual fear acquisition (Amano 

et al., 2010).  When memory was tested 24 h later, freezing levels were comparably low 

during the 2 min baseline and the 15 s CS (see Figure 4B).  In contrast, a statistically 

significant group effect was observed during the 30 s trace interval following the CS offset 

[F(2,23) = 12.11, p < 0.01].  A post hoc analyses revealed that good learners froze 

significantly more than both poor learners (p < 0.001) and pseudoconditioned rats (p < 

0.001).  

Acquisition of trace fear conditioning enhances synaptic plasticity in hippocampus 

To investigate the effect of trace fear conditioning on synaptic and intrinsic 

plasticity on hippocampal neurons, brain slices were prepared from behaviorally 

characterized or naïve rats.  To evaluate the learning-specific effects of trace fear 

conditioning on synaptic plasticity, LTP was compared between brain slices prepared from 

different experimental groups.  Two pathways were studied, but LTP was induced only in 

the test pathway.  As shown in Figure 8, Although all groups exhibited LTP in the test 

pathway, the good learners showed significantly greater LTP compared to the other groups 

[F(4,46) = 5.13, p < 0.01].  In all groups, LTP was input specific because no changes were 

observed in the control pathway (see inset in Figure 8).   

Interestingly, as shown in Figure 9A, the amount of LTP observed in the 

hippocampus of the trace fear conditioned rats was significantly correlated (r = 0.64, p < 

0.05) with their behavioral performance.  This correlation was learning-specific because it 

was not significant in the pseudoconditioned rats (r = -0.05, p = 0.88; see Figure 9B).  
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Figure 8. Acquisition of trace fear conditioning enhances synaptic plasticity in hippocampal CA1 area.  

One train of high frequency stimulation (100 Hz 1 s) induced LTP in slices from all groups. Good learners 

had hippocampal LTP that was significantly greater than all other groups (p < 0.01).  Inset, representative 

fEPSP waveforms before (gray) and 30 min after (black) LTP induction.  Scale bar, 1 mV, 10 ms.  (Adapted 

from Song et al., 2012). 
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Figure 9. Acquisition of trace fear conditioning is significantly correlated with hippocampal synaptic 

plasticity.  The percent of time spent freezing during the CS test session was significantly correlated with 

amount of LTP in slices taken from trace fear-conditioned (A; blue, poor learners; red, good learners) but not 

pseudoconditioned (B) rats.  (Adapted from Song et al., 2012).
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Furthermore, acquisition of trace fear conditioning did not appear to alter basal synaptic 

transmission in the Schaffer collateral CA1 pathway – the average I/O curves did not differ   

between groups (for all individual intensities, p > 0.25 in raw I/O curves; see Figure 6A).  

In addition, the baseline fEPSP (measured prior to LTP induction, see Methods) was not 

significantly different in slices taken from naïve, chamber-exposed, pseudoconditioned, 

poor learners, or good learners [see Table 1; F(4,46) = 0.40, p = 0.81].  These data 

demonstrate that the enhanced synaptic plasticity following trace fear conditioning is 

learning-specific and does not involve enhanced basal transmission.  

Effects of trace fear conditioning on hippocampal CA1 intrinsic neuronal excitability 

Intracellular recordings revealed a significant reduction of the post-burst AHP in 

good learners compared with poor learners, pseudoconditioned, chamber-exposed and 

naïve rats (see representative traces in Figure 10A and average values in Figure 10B).  The 

AHP amplitude was measured at different time points following offset of the somatic 

current injection (from 50 ms to 3 s).  A repeated-measures ANOVA showed that good 

learners had significantly smaller AHPs than the other groups [main effect of group, 

F(4,52) = 4.77; p < 0.01].  There was also a significant effect of time point [within-subject 

effect, F(2.0,103.8) = 210.9; p < 0.001; Greenhouse-Geisser corrected] and a group by time 

point interaction [F(8.0,103.8) = 3.36; p < 0.01; Greenhouse-Geisser corrected].  Follow-

up analyses using a one-way ANOVA revealed that from 0.1 s to 2 s following current 

offset, a statistically significant group effect on AHP amplitude was observed (all values, 

p < 0.01).  Post hoc comparisons confirmed that the AHP was significantly smaller in CA1 

neurons from good learners compared with those from poor learners, pseudoconditioned, 

chamber-exposed, and naïve rats (p < 0.05; see Figure 10B).  Our findings indicate that  
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Table 1. Facilitation of LTP after trace fear conditioning is learning-specific 

Group (number of rats)   

 Baseline fEPSP slope   Percent LTP 
 Mean (mV/ms)  Mean (% of baseline) 

Naïve (21)  -0.63 ± 0.07  125.0 ± 3.0 
Chamber-exposed (4)  -0.59 ± 0.07  126.1 ± 2.5 
Pseudo (11)  -0.67 ± 0.05  127.3 ± 3.5 
Poor Learners (7)  -0.76 ± 0.14  126.2 ± 6.4 

Good Learners (8)  -0.72 ± 0.12  148.4 ± 4.2# 
Data are mean ± SE. LTP, long-term potentiation; fEPSP, field excitatory postsynaptic potential; 

pseudo, pseudoconditioned.  Statistically different between good learners and all other groups (# p < 

0.01) 
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Figure 10. Acquisition of trace fear conditioning increased the intrinsic excitability of hippocampal 

CA1 pyramidal neurons.  A, Representative traces of the post-burst AHP illustrating that CA1 neurons 

from good learners had smaller AHPs compared to those from poor learners, pseudoconditioned, chamber-

exposed, and naïve rats.  Scale bar, 2 mV, 100 ms.  B, Plot showing the time course of the post-burst AHP 

amplitude as a function of training condition.  Neurons from good learners had a significantly smaller AHP 

compared to all other groups when measured at 0.1 – 0.8 s following current offset (p < 0.05).  C, Action 

potential output of CA1 neurons in response to a prolonged 1 s current injection. Notice that CA1 pyramidal 

neurons from good learners fired more action potentials than did CA1 neurons from poor learners, 

pseudoconditioned, chamber-exposed, or naïve rats.  Scale bar, 20 mV, 100 ms.  (Adapted from Song et al., 

2012).
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Figure 11. Behavioral performance is correlated with intrinsic excitability.  Percent freezing during the 

probe test is significantly correlated with the AHP amplitude, area, and duration in trace conditioned (A) but 

not pseudoconditioned (B) rats. (Adapted from Song et al., 2012). 
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successful acquisition of trace fear conditioning results in a significant decrease in the 

amplitude of the post-burst AHP of hippocampal CA1 neurons.  Similar findings were also 

observed during analysis of the area and the duration of the post-burst AHP (see Table 2).  

Percent freezing during the CS test was negatively correlated with the amplitude, 

area, and duration of the AHP in trace fear conditioned rats, such that better behavioral 

performance was associated with a smaller AHP (Figure 11A).  In contrast, percent 

freezing during the CS test was not significantly correlated with the amplitude, area, or 

duration of the AHP in CA1 neurons from pseudoconditioned rats (Figure 11B). The 

significant correlation between behavioral performance and the AHP in trace fear 

conditioned but not pseudoconditioned rats further demonstrates that the enhancement of 

intrinsic excitability after trace fear conditioning is learning-specific.   

In addition to altering the size and duration of the post-burst AHP, trace fear 

conditioning also altered spike-frequency adaptation (or accommodation), another index 

of intrinsic neuronal excitability.  To quantify spike-frequency adaptation, the somatic 

current injection used to study the AHP was extended to deliver a 1 s depolarizing current 

injection and the number of action potentials was counted.  Accommodation was 

significantly reduced after acquisition of trace fear conditioning [F(3,52) = 5.62, p < 0.01 

see Figure 10C and Table 2].  Post hoc analysis revealed that CA1 neurons from good 

learners fired significantly more action potentials in response to the  prolonged current 

injection than those of poor learners (p < 0.05), pseudoconditioned rats (p < 0.01), 

chamber-exposed rats (p < 0.05), or naïve rats (p < 0.01; see Table 2).  Similar reductions 

in spike-frequency adaptation have been reported in hippocampal neurons following 

acquisition of other hippocampus-dependent tasks (e.g., see McKay et al., 2009; Moyer et 
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Table 2. Summary of learning-related changes in CA1 neurons after trace fear conditioning 

Group (number  
of rats) 

Postburst afterhyperpolarization, AHP (n)  Accommodation (n) 

Amplitude (mV) Duration (s) Area (mV·s)  # of Action Potentials 

Naïve (12) -4.82 ± 1.50 (18) 3.13 ± 0.17 (18)  -5.56 ± 1.55 (18)      6.8 ± 0.5 (18)  

Chamber-exposed (3) -5.22 ± 0.46 (6) 3.29 ± 0.33 (6) -6.25 ± 0.80 (6)     7.8 ± 0.4 (6) 

Pseudo (10) -5.85 ± 0.52 (16) 3.57 ± 0.21 (16)  -7.43 ± 0.74 (16)      6.3 ± 0.4 (16)  

Poor Learners (5) -4.89 ± 0.85 (8) 3.05 ± 0.26 (8)  -5.88 ± 1.00 (8)      7.8 ± 0.8 (8)  

Good Learners (6) -2.64 ± 0.54 (9) †§ 2.10 ± 0.22 (9) †§ -2.85 ± 0.81 (9) †§   10.0 ± 0.8 (9) †§ 
Data are mean ± SE for number of cells in parentheses.  

For AHP amplitude: significantly different from all controls († poor learners, p < 0.05; § naïve, chamber-

exposed and pseudo, p < 0.01). For AHP duration: significantly different from all controls († poor learners, 
p < 0.05; § naïve, chamber-exposed and pseudo, p < 0.01). For AHP area: significantly different from all 

controls († naïve, chamber-exposed and poor learners, p < 0.05; § pseudo, p < 0.01). For Accommodation: 

significantly different from all controls († poor learners and chamber-exposed, p < 0.05; § naïve and pseudo, 

p < 0.01) 
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al., 2000; Moyer et al., 1996; Thompson et al., 1996b; Zelcer et al., 2006), suggesting that 

in the present study acquisition of trace fear conditioning results in a more efficient 

neuronal input-output function in CA1 neurons.  Furthermore, the learning-specific 

increase in CA1 pyramidal cell excitability was observed in the absence of any changes in 

resting membrane potential, input resistance, depolarizing sag, or action potential 

properties (see Table 3).  These changes were also unlikely to result from any bias in cell 

selection for several reasons.  First, all recordings were conducted by an individual who 

was blind to the training condition.  Second, the cell selection criteria were established a 

priori (see Methods).  Lastly, the percentage of cells lost during a recording was 

comparable between groups, F(4,31) = 1.35, p = 0.27.  Taken together, these data suggest 

that acquisition of trace fear conditioning enhances intrinsic excitability in a learning-

specific manner.
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Table 3. Properties of CA1 neurons that do not change after trace fear conditioning 

Group (number  
of rats)  

Vrest (n)  RN (n) 
 

AP characteristics (n)  Sag (n) 

Mean (mV) 
 

Mean (M) 
 

APamp (mV) APwidth (msec)  Mean (mV) 

Naïve (12) -68.6 ± 0.8 (18) 38.9 ± 2.1 (18) 90.4 ± 0.8 (18) 1.03 ± 0.01 (18) 5.9 ± 0.5 (18) 

Chamber-exposed (3) -66.3 ± 2.1 (6) 38.4 ± 4.1 (6) 88.2 ± 2.7 (6) 1.00 ± 0.02 (6) 6.1 ± 0.7 (6) 

Pseudo (10) -68.9 ± 1.0 (16) 42.5 ± 2.1 (16) 90.4 ± 0.8 (16) 1.04 ± 0.03 (16) 5.8 ± 0.4 (16) 

Poor Learners (5) -69.7 ± 2.2 (8) 46.2 ± 3.5 (8) 89.0 ± 1.6 (8) 1.08 ± 0.05 (8) 7.4 ± 0.9 (8) 

Good Learners (6) -70.5 ± 2.0 (9) 41.8 ± 3.5 (9) 88.4 ± 0.8 (9) 1.00 ± 0.04 (9) 5.6 ± 0.5 (9) 

Data are mean ± SE for number of cells in parentheses.  

Abbreviations: Vrest resting membrane potential; RN input resistance; AP action potential; APamp action 

potential amplitude; APwidth action potential halfwidth 
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Discussion 

The present data suggest that acquisition of trace fear conditioning induces 

learning-specific changes in hippocampal synaptic plasticity and intrinsic excitability.  By 

using a single, brief CS test, we showed that trace fear memory was correlated with 

hippocampal intrinsic excitability as well as synaptic plasticity in the same animals.  

Recordings in brain slices from rats that were classified as good learners revealed not only 

a learning-specific facilitation of LTP but also a learning-specific reduction in both the 

post-burst AHP and spike-frequency adaptation.  These data suggest that both intrinsic 

excitability and synaptic plasticity are integrally involved in shaping the efficiency of 

hippocampal processing during acquisition of trace fear conditioning. 

Acquisition of trace fear conditioning is correlated with synaptic plasticity 

Percentage of time spent freezing in trace fear conditioned rats was positively 

correlated with synaptic plasticity (Figure 9A).  Although this is the first report of a 

learning-related enhancement in synaptic plasticity following trace fear conditioning, these 

data are consistent with other in vivo or in vitro synaptic plasticity studies using other 

hippocampus-dependent learning paradigms.  For example, in adult rats the magnitude of 

LTP in hippocampus was strongly correlated with behavioral performance in the Morris 

water maze (Boric et al., 2008).  Similarly, in vivo recordings from hippocampal CA1 

neurons in behaving mice demonstrated that LTP induced during (but not before) trace 

eyeblink conditioning lasted longer and was more resistant to extinction-induced 

depotentiation (Gruart et al., 2006).  Other manipulations that either impair or enhance 

learning have also resulted in a corresponding impairment or enhancement of LTP.  For 

example, mice exposed to environmental enrichment not only performed better in 
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hippocampus-dependent contextual fear conditioning, but also exhibited greater LTP in 

hippocampal slices (e.g., Duffy, Craddock, Abel, & Nguyen, 2001).  Conversely, exposure 

to stress resulted in both impaired hippocampal LTP and impaired retention of spatial 

learning in the Morris water maze (e.g. Kim, Lee, Han, & Packard, 2001).  The current 

finding of a positive correlation between acquisition of trace fear conditioning and amount 

of hippocampal LTP suggests that the enhanced synaptic plasticity is learning-specific.  

This is supported by the fact that hippocampal LTP was highest in the good learners 

whereas LTP in the poor learners was comparable with the other control groups (Figure 8).  

These data are in line with a recent study showing that inducing LTP to the auditory input 

to lateral amygdala following fear conditioning specifically activate the conditioned 

memory whereas inducing LTD deactivate the conditioned memory (Nabavi et al., 2014).  

Furthermore, although some of our pseudoconditioned rats exhibited high levels of 

freezing following CS offset, LTP was not significantly correlated with freezing levels in 

pseudoconditioned rats (Figure 9B).  Other studies have observed high freezing levels in 

pseudoconditioned rats following CS offset (e.g., Gilmartin & Helmstetter, 2010; 

Majchrzak et al., 2006).  Since trace interval freezing (i.e., freezing following CS offset) 

is of particular interest in trace fear conditioning studies, care should be taken to minimize 

post-CS freezing (for further discussion of this topic see Smith, Gallagher, & Stanton, 

2007).  That LTP was not correlated with freezing in our pseudoconditioned rats suggests 

that the relatively high freezing levels observed in some of these animals did not result 

from hippocampal plasticity.  Taken together, these data suggest that acquisition of trace 

fear conditioning facilitates synaptic plasticity in hippocampal neurons in a learning-

specific manner.   
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Acquisition of trace fear conditioning is correlated with intrinsic excitability  

Trace fear conditioning induced a learning-specific increase in the intrinsic 

excitability of CA1 pyramidal neurons, which was due to reductions in the post-burst AHP 

and spike-frequency adaptation (Figure 10).  Furthermore, the percentage of time spent 

freezing in the trace fear conditioned rats was negatively correlated with the amplitude, 

area and duration of the post-burst AHP (see Figure 11A).  The fact that these correlations 

were not observed in neurons recorded from pseudoconditioned rats (see Figure 11B) 

further supports that these intrinsic changes were learning-specific and not a general result 

of the training or testing procedures.   

Numerous studies have investigated intrinsic plasticity following learning using 

both invertebrate and vertebrate preparations (for reviews, see Disterhoft & Oh, 2006; 

Zhang & Linden, 2003).  Our observed AHP reductions following trace fear conditioning 

are reminiscent of intrinsic plasticity in CA1 observed following acquisition of trace 

eyeblink conditioning (e.g., de Jonge, Black, Deyo, & Disterhoft, 1990; Moyer et al., 1996; 

Oh, McKay, Power, & Disterhoft, 2009).  Furthermore, a recent study by McKay et al 

(McKay et al., 2009) reported reduced AHPs in CA1 neurons from rats that received 3 

trials of trace fear conditioning.  Although the present data also observed reduced AHPs 

after trace fear conditioning, one major difference between the two studies is the number 

of training trials.  The present study used 10 training trials and found that freezing during 

the test session was significantly correlated with the size of the AHP, and that this 

correlation was observed in trace fear conditioned but not pseudoconditioned rats (see 

Figure 11A).  In contrast, McKay and colleagues used very few training trials and 

demonstrated the labile nature of these learning-related AHP reductions through the use of 
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3 extinction trials.  Although rats did not receive an extinction session in the present study, 

our prior work suggests that extinction does not begin to emerge until at least 3 or more 

CS presentations (see Figure S1 of Kaczorowski et al., 2012).  Thus, our use of two test 

trials did not obscure our ability to observe learning-related changes in CA1 excitability – 

we observed reduced AHPs in CA1 neurons from trace fear conditioned but not 

pseudoconditioned rats.   

Our studies employed a brief CS test session in order to relate freezing behavior to 

measures of hippocampal physiology.  This test, although essential for getting a read-out 

of fear memory, is also likely to engage brain mechanisms associated with the well-

described phenomenon of reconsolidation (for review, see Nader, Schafe, & Le Doux, 

2000).  Much has been learned about the cellular and molecular mechanisms of 

reconsolidation (e.g., Clem & Huganir, 2010; Miller & Marshall, 2005; Nader & Einarsson, 

2010), but exactly how this process may influence our observed electrophysiological 

changes is unclear and beyond the scope of the present study.  Although we cannot rule out 

an important influence of this CS test, we believe it is unlikely that our use of a brief test 

session substantially influenced our electrophysiological measurements for several 

reasons.  First, using rats that received a test session 1-hr prior to slice preparation, Quirk   

and colleagues (Santini et al., 2008) demonstrated electrophysiological changes in 

prefrontal neurons – changes that could be reversed by an interposed extinction session.  

Thus, the only variable was the presence of an extinction session as all rats received the 

same test session prior to slice preparation.  Similarly, Restivo and colleagues (2009) 

demonstrated changes in spine density in hippocampal neurons following context fear 

conditioning – changes that were independent of whether the rat received a test session or 
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not.  Perhaps the most compelling data come from a study by McKay and colleagues (2009) 

who demonstrated that changes in the intrinsic excitability of CA1 neurons after trace fear 

conditioning were similar between rats that did and those that did not receive a test trial 

prior to slice preparation.  Taken together, these data suggest that acquisition of trace fear 

conditioning enhances intrinsic plasticity in a learning-specific manner.   

Putative interaction between synaptic and intrinsic plasticity during learning 

The current study found that acquisition of trace fear conditioning induced both an 

increase in the intrinsic excitability of CA1 neurons and a facilitation of LTP.  The observed 

enhancement of LTP following acquisition of trace fear conditioning can be accomplished 

in a variety of ways.  First, drugs or other treatments that reduce the AHP have been found 

to facilitate the induction of LTP.  For example, the adrenergic agonist isoprenaline reduces 

the slow AHP and converts short term potentiation (STP) into LTP (Sah & Bekkers, 1996).  

Similarly, pharmacological stimulation of metabotropic glutamate receptors reduces the 

AHP of hippocampal CA1 neurons (Cohen & Abraham, 1996) and also facilitates LTP 

induction, without affecting basal synaptic transmission (Cohen, Coussens, Raymond, & 

Abraham, 1999).  Thus, the AHP may act as an adjustable gain control where larger AHPs 

(or even the presence of the AHP) can shunt synaptic inputs (Sah & Bekkers, 1996).  

Indeed, a recent study demonstrated that the larger postsynaptic AHP observed in aged 

CA1 neurons significantly impairs synaptic throughput in a frequency-dependent manner 

(Gant & Thibault, 2009).  Second, enhancement of synaptic plasticity can also be achieved 

by downregulation of transient A-type potassium channels.  These transient K+ channels 

are highly expressed in distal dendrites and shape action potential backpropagation through 

the dendrites. Furthermore, pharmacological down-regulation or deletion of A-type 



67 
 

 
 

potassium channels has been associated with an enhancement of both dendritic excitability 

and LTP (X. Chen et al., 2006; Hoffman & Johnston, 1998).  Third, LTP can be enhanced 

by application of brain-derived neurotrophic factor (BDNF).  BDNF facilitates LTP 

induction (e.g., Figurov, Pozzo-Miller, Olafsson, Wang, & Lu, 1996) by enhancing 

intrinsic excitability (reduced AHP), which involves the activation of small-conductance 

Ca2+-activated potassium (SK2) channels in hippocampal neurons (Kramar et al., 2004). 

Another line of evidence illustrating an interaction between synaptic stimulation 

and intrinsic plasticity comes from a recent report demonstrating that intrinsic plasticity 

can be induced independent of synaptic plasticity.  For example, Barkai and colleagues 

(Cohen-Matsliah, Motanis, Rosenblum, & Barkai, 2010) recorded from CA1 pyramidal 

neurons and demonstrated that high frequency synaptic stimulation (e.g., 20 stimuli at 50 

Hz), which alone was incapable of inducing LTP, was able to cause a significant reduction 

of the post-burst AHP.  That we saw reduced AHPs in the absence of a significant alteration 

in baseline synaptic responses suggests the possibility that acquisition of trace fear 

conditioning may alter intrinsic neuronal excitability, which might then facilitate synaptic 

plasticity.  Although this is highly speculative, support for this possibility comes from our 

within-animal analyses of the relationship between the size of the AHP and the amount of 

LTP.  Figure 12 shows that there was a negative correlation between the size of the AHP 

and the amount of LTP such that hippocampal LTP was greater in animals whose CA1 

neurons had smaller AHPs.  This correlation was not only significant for the amplitude (r 

= -0.38, p < 0.05; Figure 12A), but also for the area (r = -0.41, p < 0.05; Figure 12B), and 

the duration (r = -0.37, p < 0.05; Figure 12C) of the post-burst AHP.  Interestingly, if good 

learners are removed from the plots, the correlation is no longer significant (Figure 12, 
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Figure 12. Synaptic plasticity is correlated with intrinsic excitability.  The magnitude of LTP was 

significantly correlated with the amplitude (A), area (B) and duration (C) of the post-burst AHP (solid lines).  

Data are mean values for each animal where both intrinsic excitability and synaptic plasticity were studied 

in the same slice.  Interestingly, when good learners are removed from the plot, the correlation is no longer 

significant (dashed line indicates slope of the line in the absence of good learners).  (Adapted from Song et 

al., 2012). 
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dashed lines).  Thus, the data suggest that under baseline conditions (e.g., in the absence 

of learning-related changes), the AHP and LTP are not correlated.  This correlation only 

emerges when there is a perturbation, such as a learning-related AHP reduction.  Additional 

experiments, beyond the scope of this study, involving multiple time points (e.g., 

monitoring intrinsic and synaptic plasticity at different times throughout training) would 

be required to further address this complex relationship.  

Implications of learning-induced synaptic and intrinsic plasticity  

The current study demonstrated an increase in both intrinsic excitability and 

synaptic plasticity in hippocampal CA1 neurons following trace fear conditioning.  Our 

data (see also review by Zhang & Linden, 2003) suggest that both intrinsic and synaptic 

plasticity play important roles in trace fear learning.  These are dynamic and time-

dependent processes.  For example, it is known from prior studies that learning can rapidly 

induce, within an hour, an LTP-like enhancement of synaptic transmission (Power et al., 

1997; Rumpel, LeDoux, Zador, & Malinow, 2005; Whitlock et al., 2006), which has been 

shown to occlude subsequent induction of LTP.  In hippocampus, this LTP-like 

enhancement of basal synaptic transmission has been shown to result from a rapid and 

transient delivery of AMPA receptors at activated synapses (see Nabavi et al., 2014; 

Whitlock et al., 2006).  However, in contrast, this enhancement of basal synaptic 

transmission has not been consistently observed in hippocampus 24 h after learning 

(LoTurco, Coulter, & Alkon, 1988; Power et al., 1997; Zelcer et al., 2006), suggesting that, 

at least in hippocampus, this learning-related LTP-like phenomenon is short lived.  

Furthermore, it has also been shown that intrinsic excitability is altered in hippocampus as 

early as 1 h after learning (Moyer et al., 1996; Thompson et al., 1996b) and that this change 
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persists for several days (Moyer et al., 1996; Thompson et al., 1996b; Zelcer et al., 2006).  

Interestingly, it has recently been shown that synaptic activity, even activity that does not 

induce LTP, can cause a protein synthesis-dependent increase in intrinsic excitability, as 

measured by AHP reductions (Cohen-Matsliah et al., 2010).  Thus, it is possible (albeit 

speculative at this point) that as the animal learns the trace fear conditioning task, pairing 

of the CS and US transiently increases basal transmission at hippocampal synapses that 

leads to increased intrinsic excitability (e.g., a smaller AHP), and that this increased 

excitability contributes to our observed facilitation of LTP.  

How does learning-induced intrinsic and synaptic plasticity impact further 

learning?  Few studies have directly addressed this issue. However, a learning-related 

increase in CA1 excitability may facilitate learning of another hippocampus-dependent 

task.  Support for this hypothesis comes from rule learning studies, where rats show an 

increased learning capacity in discriminating between new pairs of odors once they have 

learned to discriminate the first pair (Saar & Barkai, 2003; Saar, Grossman, & Barkai, 

1998).  In addition, odor discrimination also facilitates acquisition of hippocampus-

dependent Morris water maze, but only within a brief time window of 1 – 2 days following 

rule learning, while the AHP is reduced (Zelcer et al., 2006).  Thus, learning-induced 

intrinsic and synaptic modifications of postsynaptic neurons are capable of facilitating 

subsequent learning.  In contrast, prior training in trace eyeblink conditioning did not 

enhance learning of hippocampus-dependent Morris water maze; however simultaneous 

training in both tasks facilitated trace eyeblink but not water maze learning (Kuo, Lee, & 

Disterhoft, 2006).  Additional studies will be required to determine the extent to which 

intrinsic and/or synaptic changes following trace fear conditioning impact learning of other 
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hippocampus-dependent learning tasks or whether learning of other tasks affects the 

acquisition of trace fear conditioning. 

Conclusions 

The current data are the first to demonstrate that trace fear conditioning is 

significantly correlated with both synaptic plasticity and intrinsic excitability in the 

hippocampus.  Acquisition of trace fear conditioning enhanced intrinsic excitability and 

facilitated the induction of LTP in the absence of significant changes in basal synaptic 

transmission.  These observations were learning-specific because they were not observed 

in pseudoconditioned, chamber-exposed, or naïve rats.  In addition, there was a negative 

correlation between the size of AHP and the amount of LTP such that animals whose CA1 

neurons had smaller AHPs tended to display greater LTP.  Thus, the data suggest a model 

whereby as acquisition occurs, hippocampal intrinsic excitability increases, which then 

leads to a facilitation of synaptic plasticity, which occurs during memory consolidation.  
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CHAPTER THREE: electrophysiological properties of mPFC-BLA projection neurons 

Abstract 

Medial prefrontal cortex (mPFC) is critical for the expression of long term 

conditioned fear memory.  Growing evidence suggests the opposite roles of the two 

subregions (PL and IL) within the mPFC but some results are controversial.  Such 

subregion-specific regulation of fear memory and the conflicting results may be associated 

with the heterogeneity of cortical projection neurons because different subtypes of neurons 

are distributed across the cortical layers and subregions.  However, mPFC neurons have 

distinct morphological and electrophysiological properties that vary as a function of their 

long-range projection targets.  In order to better understand how the heterogeneity of the 

mPFC neurons affects fear memory expression, the current study used visually-guided 

WCRs to characterize both randomly selected mPFC neurons (i.e., those whose projections 

are unknown) and neurons with known projections to the basolateral nucleus of amygdala 

(BLA).  Recordings from randomly selected neurons suggest that L2/3 neurons were more 

hyperpolarized and less excitable than L5 neurons, which may be due to their differential 

expression of h-channels (more h-current was expressed in L5 neurons).  Furthermore, L5 

mPFC-BLA projection neurons displayed characteristics of HCN2-mediated h-current in 

response to hyperpolarization.  We further demonstrated that HCN channels were involved 

in shaping the basic membrane properties, and that blocking HCN channels greatly affects 

the intrinsic excitability and dendritic signal integration of mPFC-BLA projection neurons.  

These data lay the foundation for a circuit-specific study of mPFC neurons in fear 

conditioning.   
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Introduction 

Much of our understanding of the neurobiology of fear learning and memory 

expression comes from the study of Pavlovian fear conditioning and extinction, in which 

mPFC is critical for expression of long-term memory (Morgan, Schulkin, & LeDoux, 

2003).  Specifically, two subregions within mPFC that have received a lot of attention are 

the prelimbic (PL) and infralimbic (IL) cortices.  Although these two subregions are 

adjacent, growing evidence suggests that the PL and IL play distinct roles during fear 

memory expression.  However, the previous reports are not all consistent with each other, 

which obscures our understanding of the neural basis underlying fear memory expression 

(for review, see Kim & Jung, 2006).  For example, it has been shown that PL activation 

facilitates the expression of conditioned fear (Burgos-Robles et al., 2009; Vidal-Gonzalez 

et al., 2006) whereas IL activation facilities extinction and reduces conditioned fear 

(Burgos-Robles et al., 2007; Chang & Maren, 2011; Milad & Quirk, 2002; Milad et al., 

2004; Vidal-Gonzalez et al., 2006).  However, studies from LeDoux’s group (Morgan & 

LeDoux, 1995) and Thompson’s group (Garcia et al., 1999) suggest that fear conditioning 

suppresses the activity of PL neurons, and studies from Grace’s group suggest that fear 

conditioning excites those IL neurons that receive monosynaptic inputs from the 

basolateral nucleus of amygdala (Laviolette et al., 2005) as well as those IL neurons that 

project to the nucleus accumbens (McGinty & Grace, 2008).  

One possible reason for the conflicting data is the heterogeneity of mPFC neurons. 

For example, PL neurons that project to the pons express larger h-current (Ih) carried by 

hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels and display lower 

steady-state input resistance thus are less excitable than neurons that project to the 
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contralateral PL (Dembrow et al., 2010).  Furthermore, these two groups of neurons also 

react differentially to neurotransmitters such as serotonin (5-HT): neurons that project to 

the pons are inhibited by 5-HT through activation of 1A receptors whereas the neurons that 

project to the contralateral mPFC are excited by 5-HT through activation of 2A receptors 

(Avesar & Gulledge, 2012).  Thus, the current study was carried out to evaluate the 

heterogeneity of mPFC neurons.  We used a combination of retrograde tracing and WCRs 

to characterize both randomly selected mPFC neurons and those mPFC neurons that project 

to BLA (mPFC-BLA projection neurons).   

Methods 

Subjects.  Subjects were 11 adult male Sprague Dawley (4.9 ± 0.9 mo) and 14 adult 

male Fischer F344 rats (4.7 ± 0.2 mo).  Data from different strains were combined because 

no significant difference was found in all measurements.  Rats were maintained in an 

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) 

accredited facility on a 14 h light–10 h dark cycle and housed individually with free access 

to food and water.  Procedures were conducted in accordance with the University of 

Wisconsin-Milwaukee animal care and use committee (ACUC) and NIH guidelines.  

RetrobeadsTM injection.  Twelve of the 25 rats (4 Sprague, 8 Fischer) received 

unilateral pressure infusion of a fluorescent retrograde tracer (red RetrobeadsTM, 

Lumafluor) into the amygdala, targeting basolateral (BL) nucleus of the amygdala (relative 

to Bregma, -3 mm AP, ± 5 mm ML; - 8.3 mm DV; see Figure 13A), with deep 

anesthetization under stereotaxic.  The infusion was made with a pipette (20 – 30 µm) 

pulled from borosilicate glass (VWR Micropipets) using a Sutter Instruments P97 puller.  

The pipette was connected to a 2 µl syringe (Hamilton) driven by an infusion pump 
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Figure 13. Unilateral infusion of a retrograde tracer into BLA used to characterize the 

electrophysiological properties of the mPFC-BLA projection neurons.  A, Schematic diagram of rat 

coronal section (illustration modified from Paxinos & Watson, 1998, with permission from Elsevier) showing 

that a glass pipette was used for the unilateral infusion of red fluorescent microspheres (RetrobeadsTM) into 

the BLA.  Inset, a representative fluorescent image showing that red RetrobeadsTM were injected into BLA.  

B, Distribution of the fluorescently labeled cortico-BLA somata in a coronal section (illustration modified 

from Paxinos & Watson, 1998, with permission from Elsevier).  Each mark represents one neuron.  In the 

ipsilateral hemisphere, intense distributions of corticoamygdala neurons were found in both mPFC and 

insular cortices.  In the contralateral hemisphere, the corticoamygdala neurons were primarily distributed 

within the mPFC.  Inset, a representative fluorescent image showing the fluorescently labeled neurons in IL. 

Abbreviations: AID, agranular insular cortex, dorsal part; AIV, agranular insular cortex, ventral part; DI, 

dysgranular insular cortex; IL, infralimbic cortex; PL, prelimbic cortex. 
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(Harvard Apparatus, model 975).  The infusion lasted 5-10 min and the pipette was 

withdrawn 10 min after infusion.  A total of 0.1 – 0.3 µl red RetrobeadsTM were infused 

into the BLA.  

PFC slice preparation for electrophysiological recording.  After a minimum of 2 

days of recovery from the RetrobeadsTM infusion, rats were anesthetized and decapitated.  

The brain was quickly removed and PFC was cut at the level of optic chiasm.  Coronal 

PFC slices (300 µm) from both hemispheres were prepared in ice-cold aCSF using a 

vibrating tissue slicer (VT1200, Leica).  The rest of the brain was then blocked and coronal 

slices that contain the amygdala were cut to confirm the location of the injection.  PFC 

slices were incubated in oxygenated aCSF (32-36°C) whereas amygdala slices were 

temporarily kept in oxygenated aCSF at room temperature.  The injection site was quickly 

verified by using fluorescent microscope (Olympus BX51WI) equipped with mercury lamp 

and a Texas Red epifluorescent filter cube immediately after cutting.  Some PFC slices 

were used to examine the distribution of fluorescently labeled neurons and thus 

photoimaged with an Olympus DP70 camera and DP Controller software (version 2.1).  

Images were stitched together and individual cortico-BLA projection neurons were marked 

on a PFC diagram using Photoshop software (Adobe Systems; see Figure 13B).   

Electrophysiological recordings.  PFC slices were transferred to a submerged 

recoding chamber mounted on an Olympus BX51WI upright microscope where they were 

continuously perfused with oxygenated aCSF at a rate of 2 ml/min, maintained at 32-36°C 

using an inline temperature controller.  WCRs were obtained under visual guidance from 

the soma of layer 5 (L5) pyramidal neurons (either fluorescently labeled or randomly 

selected) located in either infralimbic (IL) or prelimbic (PL) subregions of the mPFC.  The 
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fluorescently labeled pyramidal cells in mPFC (i.e., mPFC-BLA projection neurons) were 

visualized using an Olympus microscope (BX51WI) equipped with mercury lamp and a 

Texas Red epifluorescent filter cube.  A Hamamatsu CCD camera (Hamamatsu Camera 

Ltd., Tokyo, Japan) was used to visualize and take photograph of the brain slices and 

neurons.  After fluorescently labeled neurons were recognized, the microscope was 

switched to IR-DIC mode to guide whole-cell recording (WCRs) on these cells.  For 

WCRs, electrodes (5–8 MΩ) were prepared from thin-walled capillary glass and filled with 

the following solution (in mM): 110 K-gluconate, 20 KCl, 10 Di-TrisPCr, 10 HEPES, 2 

MgCl2, 2 Na2ATP, 0.3 Na2GTP, 0.10% Biocytin, pH to 7.3, osmolarity 285.  All recordings 

were obtained in current-clamp mode using a HEKA EPC10 amplifier system (HEKA 

Instruments Inc. Bellmore, New York).  Experiments were controlled by PatchMaster 

software (HEKA Instruments) running on a PC.  All electrodes were pulled from thin-

walled capillary glass (A-M Systems, Carlsborg, WA) using a Sutter Instruments P97 

puller.  Cells were held at -67 mV by manually adjusting the holding current.  Voltages 

were not corrected for the liquid-liquid junction potential (~+13 mV, see Moyer and 

Brown, 2007).  The electrode capacitance and series resistance (Rs) were monitored, 

compensated, and recorded frequently throughout the duration of the recording.  Cells were 

only accepted for analysis if the initial series resistance was ≤ 30 MΩ and did not change 

by > 30% throughout the recording period.  In some experiments, the effect of h-current 

on active and passive membrane properties was studied by bath applying HCN channel 

blockers ZD7288 (50 µM) or 3 mM CsCl to the aCSF for at least 10 min.  

Intrinsic properties of mPFC neurons were recorded under current clamp according 

to the following protocols: (1) I-V relations were obtained from a series of 500 ms current 
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injections (range -300 to 50 pA) and plotting the plateau voltage deflection against current 

amplitude.  Neuronal input resistance (RN) was determined from the slope of the linear fit 

of the portion of the V-I plot where the voltage sweeps did not exhibit sags or active 

conductance (see Figure 14A).  The sag ratio during hyperpolarizing membrane responses 

was expressed as [(1 – ∆Vss / ∆Vmin) × 100%], where ∆Vss = MP – Vss, ∆Vmin = MP - Vmin, 

MP is the membrane potential before current step, Vss is the steady-state potential and Vmin 

is the initial minimum potential.  For each neuron, sag ratio was calculated from -300 pA, 

-250 pA, and -200 pA current steps and averaged.  (2) AP properties, including Ithreshold (the 

minimum current necessary to elicit an AP), were studied with an ascending series of 500 

ms depolarizing pulses with a step of 10 pA (the step size was reduced whenever 

necessary). (3) Neuronal excitability was studied by injecting a series of 1 s current at 50 

– 300 pA with an intertrial interval of 20 s and a step of 50 pA, and the number of APs 

evoked was counted (see Figure 14B). (4) Post-burst AHP was measured by injecting 10 

suprathreshold current injections (2 ms; 1-3 nA) at 50 Hz (3X, at 20 sec intervals; see 

Figure 14C).   

To study synaptically-evoked EPSPs, parallel stimulating electrodes with PTFE-

coated Platinum-Iridium wires in glass pipettes (a tip size of < 60 µm) were custom made 

in the laboratory.  The small diameter tip allowed for the placement of two stimulating 

electrodes within a small space.  The synaptic properties of mPFC-BLA projection neurons 

were studied according to the following protocol: (1) Single EPSPs were evoked by 

stimulating layer 2/3 pathway. (2) Temporal summation was studied by stimulating the 

layer 2/3 pathway to elicit a train of EPSPs at 20 Hz, 50 Hz, and 100 Hz.  (3) Signal 

integration (coincidence detection) was studied by stimulating both layer 2/3 and layer 5 
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Figure 14.  Electrophysiological study of IL-BLA projection neurons.  A, Voltage responses to a series 

of current injections and the accompanying V-I plot used to measure neuronal input resistance (RN).  Arrows 

show the peak voltage deflection and the steady-state voltage near the end of the current injection (used in 

measuring the depolarizing sag).  The amplitude of sag was calculated as the different membrane potential 

between the peak and the steady state.  Scale bar, 40 mV, 0.1 s.  B, Neuronal excitability was studied by 

injecting a series of depolarizing currents and the number of spikes evoked was counted.  Scale bar, 40 

mV/100 pA, 0.1 s.  C, Post-burst AHP was studied by evoking 10 action potentials at 50 Hz.  The amplitude 

of the post-burst AHP was measured from baseline at different time points following the last action potential.  

Scale bar, 10 mV, 0.2 s. 
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inputs and varying the delay between the two stimuli.  Stimulation intensities were adjusted 

so that the cells only fired APs when the two stimulations were delivered simultaneously.  

For the rats that did not receive RetrobeadsTM injection, slice preparation and 

recording procedures were the same as above except that the neurons were randomly 

selected in both L2/3 and L5.  In addition, before terminating any recording, a 

photomicrograph of the slice showing the location of recording electrode in the brain slice 

was taken with the CCD camera for offline verification of the somatic location (IL vs. PL) 

and measurement of the somatic depth from the pial surface. 

Biocytin staining.  Neurons filled with biocytin (0.1% in internal solution) during 

recording were fixed in formalin for 1 to 4 weeks before they were processed for 

visualization by using streptavidin Alexa Flour 488 reaction.  Slices were mounted, and 

labeled neurons were visualized and imaged using a fluorescence microscope (BX51WI, 

Olympus) or laser scanning confocal fluorescence microscope (FV-1200, Olympus).  

Confocal image stacks were used for 3D reconstructions (see Figure 15A and 15B) using 

Neurolucida software (MBF bioscience).  All neurons displayed characteristics of 

pyramidal cells according to both morphological and electrophysiological criteria.   

Statistical Analyses.  All statistical analyses were performed with the aid of 

Microsoft Excel and IBM SPSS statistics software (version 22; SPSS).  For randomly 

selected neurons, although 4 groups of neurons were presented, comparisons were always 

conducted between two distinct groups.  Thus, neuronal comparisons were made as 

follows: L2/3 vs. L5 of IL; L2/3 vs. L5 of PL; L2/3 of IL vs. L2/3 of PL; L5 of IL vs. L5 

of PL.  Two-tailed independent samples t test, paired t test, and a one-way repeated-
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measures ANOVA were conducted wherever appropriate.  All results were reported as 

mean ± SEM.   

 

 

 
 

 
 
 

Figure 15. Confocal images of biocytin-filled neurons in L2/3 (A) and in L5 (B) of medial prefrontal 

cortex.  Alexa Fluor 488 was conjugated to the biocytin reaction product to produce green fluorescence.  

Note that the axons (arrows) are represented in gray in the 3D reconstructions.  Scale bars in both A and B 

are 100 µm.  
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Results 

The current study first evaluated the heterogeneity of mPFC neurons (n = 108) by 

recording from pyramidal neurons with unknown projection targets in both L2/3 and L5.  

We then studied the mPFC-BLA projection neurons (n = 37) in L5 by recording the 

fluorescently labeled neurons after the rats received unilateral injection of RetrobeadsTM 

into the BLA.  

Layer- and region-specific properties of randomly selected neurons in mPFC 

mPFC boundary definition.  The location of the recorded neuron was determined 

from online image snapshots and drawn on the corresponding plates of the rat atlas (see 

Figure 16A).  The boundary between L2/3 and L5 was defined according to the somatic 

depth (measured from the soma to the pial surface).  Neurons with somatic depth that were 

400 µm or less were defined as L2/3 neurons and the deeper neurons were defined as L5 

neurons (Gabbott & Bacon, 1996; Perez-Cruz, Muller-Keuker, Heilbronner, Fuchs, & 

Flugge, 2007).  L6 was recognized as it contains a high density of fibers (Gaillard & Sauve, 

1995).  Analysis with independent t test indicated the somatic depth was significantly 

different between L2/3 and L5 in both IL [t(51) = 9.1, p < 0.01] and PL [t(30) = 8.8, p < 

0.01].  

Layer-specific morphological characteristics of mPFC neurons.  To correlate 

morphological and electrophysiological properties, neurons were filled with biocytin 

during recording and visualized with streptavidin Alexa Fluor 488.  Neurons that showed 

strong biocytin signals were 3D reconstructed and analyzed (see representative neurons in 

Figure 16B).  All these neurons displayed typical pyramidal architecture with multiple 

basal dendrites and a single tufted apical dendrite projecting to the pia.  Specifically, L5  
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Figure 16 Location and morphology of randomly selected neurons recorded in mPFC.  A,  The location 

of each recorded neurons was obtained from a snapshot taken after each experiment and indicated as 

individual circles in brain stereotaxic atlases (Paxinos & Watson, 1998).  B, Representative neurons 

reconstructed from laser scanned confocal images in different layers in IL and PL. Arrow heads point to 

axons.  Scale bar, 100 µm. 
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neurons had a prominent apical dendrite, which rarely bifurcated or branched in L2/3 until 

they entered L1 where it was developed into dendritic tuft.  The basal dendrites of L5 

neurons were primarily located in L5.  In contrast, the basal dendrites of L2/3 neurons were 

localized within L2/3 whereas the apical dendrite also bifurcated in L1.   

Subthreshold properties of randomly selected mPFC neurons.  L2/3 neurons and 

L5 neurons were not only different in morphological properties, but also display distinct 

basic membrane properties, such as resting membrane properties, input resistance, and 

hyperpolarization-activated current (h-current or Ih).  

Resting membrane potential (RMP).  In both IL and PL, RMP was slightly but 

significantly more negative in neurons obtained from L2/3 than that from L5 [see Table 4; 

t(63) = 4.3, p < 0.01 for IL and t(41) = 4.7, p < 0.01 for PL respectively].  In addition, there 

was a significant correlation between the RMP and the somatic depth such that neurons in 

superficial layers had more negative resting potentials than neurons in deep layers (see 

Figure 17; p < 0.01 for neurons in both IL and PL).  Thus, to compensate the depth 

dependence of RMP, all cells were held at -67 mV during the rest of the recording unless 

noted.  The average holding current was positive in L2/3 neurons and negative in L5 

neurons (see Table 4) and they were significantly different in both IL [t(59) = 3.6, p < 0.01] 

and PL [t(14) = 2.7, p < 0.05; equal variances not assumed]. 

Input resistance (RN).  The input resistance was significantly different between 

neurons from IL and PL.  As shown in Figure 18B and Table 4, in both L2/3 and L5, IL 

neurons had significantly larger input resistance than that of PL neurons [t(35) = 2.7, p < 

0.05 for L2/3 and t(69) = 2.9, p < 0.01 for L5 respectively].  The input resistance was not
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Table 4. Basic membrane properties of mPFC neurons are layer- and subregion-specific 

  
Somatic Depth  

(µm) 
RMP  
(mV) 

Ihold  
(pA) 

RN  
(MΩ) 

Sag  
(%) 

IL      

L2/3 352 ± 13 (21)  -68.5 ± 1.3 (24)    19 ± 20 (22) 127 ± 11 (24) † 5.9 ± 0.8 (23) 

L5 534 ± 14 (32)#  62.1 ± 0.8 (41)# -53 ± 10 (39)# 137 ± 9 (41) § 10.3 ± 0.7 (36)# 

PL      

L2/3 325 ± 20 (11)  -69.5 ± 1.2 (13)    55 ± 34 (13)   83 ± 9 (13)       6 ± 1.3 (13) 

L5 623 ± 22 (21)#  -63.3 ± 0.7 (30)#   -40 ± 9 (28)# 104 ± 6 (30)  11.1 ± 0.8 (25)# 

Data are mean ± SE for number of cells in parentheses.  Ihold, the current used to hold neurons at -67 mV; 

IL, infralimbic cortex; PL, prelimbic cortex; RN, neuronal input resistance; RMP, resting membrane 

potential.  Soma depth is the distance measured from the soma to the pial surface. Statistically different 

between L2/3 and L5, # p < 0.01. Statistically different between IL and PL: † p < 0.05, § p < 0.01.   
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Figure 17. Resting membrane potential (RMP) is significantly correlated with the somatic depth in 

both IL (A) and PL (B).  The somatic depth was measured as the distance of the soma from the pial surface. 

RMP was measured as the membrane potential when whole-cell recording was obtained.  
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significantly different between L2/3 and L5 in either IL or PL (see Figure 18B and Table 

4; for all values, p > 0.05).  

Depolarizing sag. In response to hyperpolarizing current injections, the membrane 

voltage of mPFC neurons showed depolarizing sags that are characteristics of h current (Ih) 

activation (see Figure 18A).  Cells in deep layer (L5) displayed larger depolarizing sags 

than those in superficial layers (L2/3) in both IL and PL (Figure 18B and Table 4; t(57) = 

4.1, p < 0.01 for IL and t(36) = 3.4, p < 0.01 for PL respectively).  In addition, there was a 

significant correlation between the sag ratio and the somatic depth (see Figure 18C; p < 

0.01), suggesting that more HCN channels are expressed in deep layers than in superficial 

layers.   

L2/3 neurons are less excitable than L5 neurons in mPFC.  Although held at the 

same membrane properties, neurons in different layers had distinct passive membrane 

properties.  We then continued to examine the active membrane properties such as action 

potential properties and intrinsic excitability.  

AP characteristics. AP characteristics were studied by injecting a threshold current (500 

ms) to evoke one single action potential (see Figure 19A).  As shown in Table 5 and Figure 

19B, L2/3 IL neurons had significantly more hyperpolarized spike threshold [t(55) = 3.8, 

p < 0.01] than both L5 IL and L2/3 PL neurons (for both values, p < 0.01), suggesting they 

are more excitable.  In addition, L2/3 PL neurons had significantly larger Ithreshold (the 

minimum current necessary to evoke an AP) than both L2/3 IL and L5 PL neurons (for 

both values, p < 0.01), suggesting they are less excitable.  No significant differences were 

found when compared between different layers or subregions. 
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Table 5. Action potential characteristics of mPFC neurons 

  
APamp  
(mV) 

APwidth  
(s) 

APthresh  
(mV) 

fAHP 
(mV) 

Ithreshold  
(pA) 

IL      

L2/3 86 ± 2 (23)  0.85 ± 0.04 (23)     -36.7 ± 0.9 (23)†# 10.9 ± 0.5 (23)     136 ± 9 (23) 

L5 78 ± 2 (34) 0.94 ± 0.04 (34)  -31.6 ± 0.9 (34) 11.2 ± 0.6 (34)     131 ± 9 (34) 

PL      

L2/3 81 ± 4 (13) 0.83 ± 0.06 (13) -33.6 ± 1.3 (13)  10.8 ± 0.9 (13)   202 ± 21 (13) §# 

L5 82 ± 2 (28) 0.77 ± 0.03 (28)     -32.8 ± 1 (28) 11.6 ± 0.7 (28)     34 ± 8 (28) 
Data are mean ± SE for number of cells in parentheses.  IL, infralimbic cortex; PL, prelimbic cortex; 

APamp, action potential amplitude; APwidth, action potential half-width; APthresh, action potential threshold; 

fAHP, fast AHP.  Statistically different between L2/3 and L5, # p < 0.01. Statistically different between 

IL and PL: † p < 0.05, § p < 0.01.  
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Figure 18. Basic membrane properties of mPFC neurons.  A, Representative traces of V-I relations (left).  

The sag ratio was calculated from the depolarizing sag (between the thin arrows) in response to 

hyperpolarization. Input resistance (RN) was calculated from the slope of the linear fit of the steady-state 

voltage responses (right).  Thick arrow indicates the location where steady-state voltage response was 

measured.  Scale bar, 50 mV, 100 ms.  B, Bar graphs showing different membrane properties between layers 

and subregions.  In both L2/3 and L5, IL neurons had significantly higher input resistance than PL neurons 

(statistically different between L2/3 and L5: # p < 0.01; statistically different between IL and PL: † p < 0.05, 

§ p < 0.01).  C, Sag ratio was significantly correlated with somatic depth in both IL and PL.  
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Intrinsic excitability.  The intrinsic excitability of mPFC neurons was evaluated by 

counting the number of spikes evoked by a series of depolarizing current when held at -67 

mV (see an example trace in Figure 20A and averaged data in Figure 20C).  A repeated-

measures ANOVA revealed that the excitability was significantly different between L2/3 

and L5 neurons in PL [F(1,39) = 7.2, p < 0.05] but not in IL [F(1,52) = 0.2, p = 0.69].   

Further analysis with independent t test in PL neurons revealed that L2/3 neurons fired 

significantly fewer spikes than L5 neurons in response to depolarizing currents ranging 

from 150 – 300 pA (for all values, p < 0.05; see Figure 20C and Table 6).  Thus, these data 

suggest that L2/3 neurons are less excitable than L5 neurons in PL but not in IL.  However, 

the fact that L2/3 IL neurons were held with a positive current during recording suggests 

that they may be less excitable at rest.  To test this hypothesis, the excitability of L2/3 IL 

neurons was evaluated from a subset of L2/3 neurons (n = 4) when held at rest (-75 mV) 

and at -67 mV.  As shown in Figure 20E, these neurons fired comparable number of spikes 

with the average of all L2/3 IL neurons when held at -67 mV (Figure 20C) but fired 

significantly less at rest (paired t test, p < 0.01 for 200 pA and p < 0.05 for 250 pA and 300 

pA current injections).  Thus, these results suggest that L2/3 neurons are generally less 

excitable than L5 neurons in both IL and PL.  

Post-burst AHP.  The size of post-burst AHP is another measurement of intrinsic 

excitability (Kaczorowski & Disterhoft, 2009; Moyer et al., 1996; Oh et al., 2003; Song et 

al., 2012).  We studied the post-burst AHPs by injecting 10 brief (2 ms) depolarizing 

currents to evoke 10 APs at 50 Hz (see Figure 20B).  A repeated-measures ANOVA 

revealed that the post-burst AHP was significantly different between L2/3 and L5 neurons 

in PL [F(1,41) = 10.6, p < 0.01)] but not in IL [F(1,56) = 0.01, p = 0.91] when held at -67
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Table 6. Excitability of mPFC neurons 

  
mAHP 
(mV) 

sAHP 
(mV) 

Number 
 of spikes 

IL    

L2/3 -3.8 ± 0.3 (23) -1.2 ± 0.1 (23) 12.4 ± 1.1 (24) 

L5 -4.4 ± 0.3 (36) -0.9 ± 0.1 (36) 11.3 ± 1.3 (30) 

PL    

L2/3   -2.9 ± 0.3 (13)#  -0.5 ± 0.1 (13)*      4.9 ± 1.6 (13)*§ 

L5 -4.9 ± 0.3 (30) -1.0 ± 0.1 (30) 10.0 ± 1.0 (28) 
Data are mean ± SE for number of cells in parentheses.  IL, infralimbic cortex; 

PL, prelimbic cortex; mAHP, medium afterhyperpolarization; sAHP slow 

afterhyperpolarization.  mAHP was measured at the peak of the AHP following 

a burst of 10 APs relative to baseline.  sAHP was measured at 1 s following the 

offset of the current injection.  Number of spikes was counted in response to a 1-

s 300-pA depolarizing current injection.  Statistically different between L2/3 and 

L5: * p < 0.05, # p < 0.01. Statistically different between IL and PL: § p < 0.01. 
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Figure 19.  AP characteristics of mPFC neurons.  A, Sample traces of a single AP evoked by a threshold 

current (Ithreshold). AP threshold was defined as the voltage when dv/dt first exceeded 28 mV/ms.  AP 

amplitude was measured from threshold.  fAHP was defined as the different potential between the AP 

threshold and the initial negativity that followed the repolarization of the AP. AP width was measured as the 

width at half of the AP amplitude (from threshold).  Scale bar, 20 mV, 1/100 ms. B, Bar graphs showing the 

AP characteristics of mPFC neurons. IL L2/3 neurons had significantly lower AP threshold, whereas PL L2/3 

neurons had significantly higher Ithreshold (statistically different between L2/3 and L5: # p < 0.01; statistically 

different between IL and PL: † p < 0.05, § p < 0.01). 
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mV (see Table 3 and Figure 20D).  We thus further examined post-burst AHP at RMP in a 

subset of L2/3 IL neurons (n = 4).  Analysis with a paired t test revealed that post-burst 

AHP was significantly smaller at rest than at - 68 mV when measured 0.1 – 0.5 s as well 

as 1 s following the AP burst (for all values, p < 0.05; see Figure 20F).  Taken together, 

these data suggest that L2/3 neurons have smaller post-burst AHP but lower excitability 

than L5 neurons.   

IL neurons are more excitable than PL neurons in layer 2/3.  Previous studies 

have shown different roles of IL and PL in conditioned fear memory expression (Burgos-

Robles et al., 2009; Burgos-Robles et al., 2007; Chang & Maren, 2011; Milad et al., 2004; 

Vidal-Gonzalez et al., 2006).  We therefore compared the properties of the neurons 

between IL and PL in naïve animals.  In L2/3, IL neurons fired significantly more spikes 

than PL neurons in response to depolarizing current injections [Table 6 and Figure 20C; 

for all values, p < 0.01 when depolarizing current was 200 – 300 pA], perhaps due to lower 

spike threshold [Table 5 and Figure 19B; t(34) = 2.0, p < 0.05], larger input resistance 

[Table 4 and Figure 18B; t((35) = 2.7, p < 0.05], and smaller Ithreshold [Table 5 and Figure 

19B; t(34) = 3.3, p < 0.01].  In addition, these two groups of neurons had comparable RMP 

and sag (Table 4 and Figure 18B).  Taken together, these data suggest that IL neurons are 

more excitable than PL neurons in L2/3.  

Within L5, both IL and PL neurons fired comparable number of spikes (see Figure 

20C and Table 6) in response to the depolarizing current injection and had comparable 

RMP, fAHP, post-burst AHPs, or AP threshold, (for all measurement, p > 0.05), although 

IL neurons displayed a larger input resistance [see Table 4, t(69) = 2.9, p < 0.01] than that of
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Figure 20.  Medial prefrontal cortex pyramidal neurons in L2/3 neurons are less excitable than L5 

neurons.  Intrinsic excitability was studied by counting the number of spikes evoked by a series of 

depolarizing currents (see a representative trace in A; scale bar, 20 mV, 0.2 s).  Post-burst AHP was measured 

from different time points following a burst of 10 APs evoked by brief current injections at 50 Hz (see a 

representative trace in B; scale bar, 10 mV, 0.2 s).  PL pyramidal neurons in L2/3 showed the least excitability 

(C) and smallest post-burst AHP (D) compared to PL pyramidal neurons in L5 and IL pyramidal neurons in 

L2/3.  Although IL pyramidal neurons in L2/3 displayed comparable excitability and post-burst AHP when 

held at -67 (C & D), they were significantly less excitable (E) and displayed smaller post-burst AHP (F) at 

rest.
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PL neurons.  Thus, these data suggest that in L5, the excitability of IL and PL neurons are 

comparable.  

Different levels of HCN expression partially account for the layer-specific 

properties. To test the possible contributions of ion channels that account for the variability 

of excitability in mPFC neurons, we blocked HCN channels by bath applying either 

ZD7288 (50 µM) or CsCl (3 mM) and investigated the contribution of HCN channels on 

the electrophysiological properties of L5 mPFC neurons.  Neurons from IL (n = 11) and 

from PL (n = 4) were combined because no significant differences between these two 

groups of neurons were observed.  As shown in Figure 21A-C, blocking HCN channels 

dramatically changed the basic membrane properties and AP characteristics including 

RMP, input resistance, Sag ratio, Ithreshold, fAHP, APthreshold, and APwidth (for all 

measurements, p < 0.01).  Furthermore, blocking HCN channels significantly reduced the 

medium portion of the post-burst AHP but slightly enhanced the slow portion (see Figure 

22A).  However, no significant effect of HCN channel blockade was observed on L2/3 

neurons (n = 4, data not shown), which is consistent with previous studies showing that 

L2/3 neurons have less Ih and that HCN channels are primarily expressed in L5 neurons 

(Boudewijns et al., 2013; Lorincz, Notomi, Tamas, Shigemoto, & Nusser, 2002).  In 

addition, blocking HCN channels significantly increased the number of spikes evoked by 

depolarization when the neurons were held at -67 mV (see Figure 22B; p < 0.05 in response 

to 100, 150, and 200 pA current injections), perhaps due to the dramatic effects of Ih 

blockade on the mAHP, input resistance, and AP threshold.  Thus, these observations 
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Figure 21.  Blocking HCN channels significantly affects both passive and active membrane properties 

of L5 mPFC neurons. A – C, Blocking HCN channels significantly changed passive membrane properties 

and AP characteristics (statistically different between pre- and post-application of HCN channel blocker 

ZD7288: * p < 0.05, # p < 0.05).  Scale bars: A, 20 mV, 200 ms; B, 20 mV, 2/200 ms.  



97 
 

 
 

 
 

Figure 22.  Blocking HCN channels significantly enhances intrinsic excitability of L5 pyramidal 

neurons in medial prefrontal cortex.  A, The medium AHP was diminished but slow AHP was enhanced 

after blocking HCN channels (top, raw traces showing the response of an mPFC neuron to a 50 mM HCN 

channel blocker ZD 7288; bottom, average data showing the effect of HCN channel blockade on post-burst 

AHP).  Scale bar, 10 mV, 1 s.  B. Blocking HCN channels significantly increased the number of spikes 

evoked by current injections (statistically different between pre- and post-application of HCN channel 

blocker ZD7288: * p < 0.05, # p < 0.05).  Scale bar, 40 mV, 100 ms. 
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suggest that the different expression levels HCN channels account, at least partially for the 

observed differential membrane properties between L2/3 and L5 neurons.  

Properties of mPFC-BLA projection neurons 

Distribution of mPFC-BLA projection neurons.  To study mPFC-BLA projection 

neurons, fluorescently labeled microspheres (RetrobeadsTM) were unilaterally injected into 

BLA.  When injected, the microspheres displayed little lateral diffusion and thus produced 

a small, sharply defined injection site (see Figure 13A).  Consistent with previous data 

(Katz, Burkhalter, & Dreyer, 1984), the beads had no obvious cytotoxicity as assessed by 

behavioral observation and electrophysiological recordings.  There were also no obvious 

morphological changes observed in the RetrobeadsTM-labeled neurons (see Figure 23A) as 

compared with non-labeled neurons (Figure 23B).  In PFC, the RetrobeadsTM-labeled 

neurons were differentially distributed between the ipsilateral and contralateral side 

relative to the injection site (see Figure 13B).  On the ipsilateral side, the cortical-BLA 

projection neurons were primarily located in dorsal peduncular (DP) cortex, IL, PL, 

agranular insular cortex [AI, including ventral and dorsal subdivisions (AIV and AID)], 

and dysgranular insular cortex (DI).  Within mPFC, the RetrobeadsTM labeled neurons were 

distributed throughout L2/3 to L5, with more intensive labeling in L2/3.  In addition, there 

were more fluorescently labeled neurons in IL than PL within the ipsilateral mPFC (Figure 

13B).  On the contralateral side, most RetrobeadsTM-labeled neurons were located in 

mPFC, with much fewer labeled neurons in the insular cortices.  Furthermore, most 

RetrobeadsTM labeled neurons were located in L5 of the contralateral mPFC (Figure 13B).    

The mPFC-BLA projection neurons are more depolarized than randomly selected 

neurons.  To study the characteristics of mPFC-BLA projection neurons, we recorded 
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Figure 23.  RetrobeadsTM does not affect morphology of pyramidal neurons in medial prefrontal 

cortex.  A, Representative confocal image (top left) and 3D reconstruction (right) of a pyramidal neuron that 

was fluorescently labeled with RetrobeadsTM (bottom).  Scale bars: top, 100 µm, bottom, 10 µm. B, 

Representative confocal image (left) and 3D reconstruction (right) of a pyramidal neuron with unknown 

projection target.  Both neurons were from layer 5 in infralimbic cortex.  The arrows point to axons.  Scale 

bar, 100 µm 
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fluorescently labeled L5 neurons in both IL and PL from the rats that received 

RetrobeadsTM infusion, and compared with neurons that were selected at random (non-

labeled neurons) from rats that didn’t receive RetrobeadsTM infusion.  As shown in Table 

7, the mPFC-BLA projection neurons had significantly more depolarized resting 

membrane potential (RMP) compared with non-labeled neurons (p < 0.05 in both IL and 

PL).  Other membrane properties, including AP characteristics, post-burst AHP, and 

intrinsic excitability were not significantly different from non-labeled neurons (see Table 

7).   

Properties of Ih in mPFC-BLA projection neurons.  Although not statistically 

significant (p > 0.05 in both IL and PL), the h-current was 10% percent larger in mPFC-

BLA projection neurons than that in non-labeled neurons in both IL and PL (see Table 7).  

Because HCN channels are critical for dendritic signal integration (Magee, 1998; I. Pavlov, 

Scimemi, Savtchenko, Kullmann, & Walker, 2011) and PFC-dependent working memory 

(Wang et al., 2007), we further studied the role of HCN channels on the 

electrophysiological properties L5 IL-BLA projection neurons by bath application of an 

HCN channel blocker – ZD7288.  We focused on IL neurons only because IL and PL 

neurons share same membrane properties in L5.  Analysis of the data with paired t test 

revealed a strong effect of HCN blockade on basic membrane, intrinsic, and synaptic 

properties of mPFC-BLA projection neurons (see below).   

Blocking Ih enhances intrinsic excitability of mPFC-BLA projection neurons.  

Blocking HCN channels also had strong effects on both passive and active membrane 

properties of mPFC-BLA projection neurons (see Figure 24 and Table 8).  Furthermore,
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Table 7. Properties of mPFC-BLA projection and randomly selected neurons  

  

IL   PL 

Non-labeled Labeled    Non-Labeled Labeled 

RMP (mV) -64.6 ± 1 (13)*  -60.5 ± 1.2 (23)  -65.7 ± 1.1 (10)* -61.7 ± 0.9 (14) 

RN (MΩ)   137 ± 16 (13) 128 ± 9 (23)     100 ± 14 (10)       108 ± 7 (14) 

Sag (%)     9.1 ± 1.3 (11)   10.1 ± 0.9 (20)    11.2 ± 1.6 (9)  12.9 ± 1.2 (10) 

Ithreshold (pA)   111 ± 11 (10)   147 ± 12 (20)     129 ± 9 (10)  142 ± 11 (12) 

APthresh (mV)  -35.0 ± 1.3 (10)  -29.5 ± 1.2 (20)   -34.7 ± 1.9 (10) -30.6 ± 1.6 (12) 

APamp (mV)   81.5 ± 3.7 (10)   76.7 ± 2.4 (20)  82.7 ± 2.6 (10)      79.5 ± 3.0 (12) 

APwidth (ms)     0.92 ± 0.07 (10)     0.97 ± 0.05 (20)    0.76 ± 0.06 (10)    0.82 ± 0.04 (12) 

# of spikes     12.6 ± 2.2 (7)     8.1 ± 1.4 (10)    14.2 ± 2.6 (9)    9.4 ± 1.6 (11) 

mAHP (mV)    -4.2 ± 0.5 (10)    -4.4 ± 0.3 (22)   -5.3 ± 0.5 (10)   -4.9 ± 0.3 (14) 

sAHP (mV)   -0.9 ± 0.3 (10)    -1.0 ± 0.1 (22)    -0.9 ± 0.2 (10)   -1.0 ± 0.2 (14) 
Data are mean ± SE for number of cells in parentheses.  IL, infralimbic cortex; PL, prelimbic cortex; 

APamp, action potential amplitude; APthresh, action potential threshold; APwidth, action potential half-width; 

Ithreshold, threshold current required to elicit an action potential;. mAHP, medium afterhyperpolarization; 

sAHP slow afterhyperpolarization.  mAHP was measured at the peak of the AHP following a burst of 10 

APs relative to baseline.  sAHP was measured at 1 s following the offset of the current injection.  Number 

of spikes was counted in response to a 1-s 300-pA depolarizing current.  Statistically different between 

labeled and non-labeled neurons:* p < 0.05.  
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Table 8. Effects of HCN channel blockade on the properties of IL-BLA projection neurons 

  Pre-ZD7288 Post-ZD7288 

RMP  (mV) -61.8 ± 0.9 (9) -68.0 ± 1.3 (9)# 

RN (MΩ)  189 ± 28 (9)  468 ± 84 (9)# 
Ithreshold (pA) 103 ± 9 (7)    49 ± 11 (7)# 

APthresh -31.0 ± 1.4 (7)             -33.9 ± 1.5 (7) 

APamp (mV)  81.8 ± 2.4 (7) 75.1 ± 4.4 (7) 

APwidth (ms)    0.9 ± 0.1 (7)    1.4 ± 0.2 (6)# 

# of spikes    1.4 ± 0.7 (5)    8.2 ± 1.4 (5)* 

mAHP (mV)   -5.8 ± 0.6 (5)   -2.6 ± 0.5 (5)# 

sAHP (mV)   -1.5 ± 0.3 (5) -1.7 ± 0.5 (5) 

Sag (%)    8.5 ± 2.8 (5)    2.0 ± 1.1 (5)* 
Data are mean ± SE for number of cells in parentheses.  APamp, action potential amplitude; 

APthresh, action potential threshold; APwidth, action potential half-width; Ithreshold, threshold current 

required to elicit an action potential;. mAHP, medium afterhyperpolarization; sAHP slow 

afterhyperpolarization.  mAHP was measured at the peak of the AHP following a burst of 10 

APs relative to baseline.  sAHP was measured at 1 s following the offset of the current injection.  

Number of spikes was counted in response to a 1-s 100-pA depolarizing current.  Statistically 

different between pre- and post-ZD7288 application: * p < 0.05, # p < 0.01. 
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Figure 24.  Blocking Ih changes basic membrane properties and AP characteristics of mPFC-BLA 

projection neurons.  Blocking HCN channels significantly changed resting membrane potential (RMP), 

input resistance, sag, Ithreshold, fAHP, and AP width (statistically different between pre- and post-application 

of HCN channel blocker ZD7288: * p < 0.05, # p < 0.01), but didn’t significantly change the AP amplitude.  
The AP threshold was reduced following the blockade of HCN channels but this difference was not 

statistically significant. 
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Figure 25.  Blocking Ih enhances intrinsic excitability of mPFC-BLA projection neurons.  A, 

Representative traces (top) and averaged data (bottom) showing the time course of post-burst AHP before 

and after bath application of ZD7288.  Blocking HCN channels significantly reduced median AHP measured 

from 50 – 300 ms following the AP burst (statistically different between pre- and post-application of HCN 

channel blocker ZD7288: * p < 0.05, # p < 0.01).  Scale bar, 10 mV, 0.5 s.  B, Representative traces (top) 

and averaged data (bottom) showing the blockade of Ih significantly enhances intrinsic excitability. The 

neurons fired significantly more spikes in response to moderate (100 – 150 pA) current injections after 

blocking HCN channels (statistically different between pre- and post-ZD7288 application: * p < 0.05, # p < 

0.01).  Scale bar, 40 mV, 100 ms.  
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blockade of Ih significantly enhanced intrinsic excitability, as evidenced by a significant 

reduction in the mAHP (0.05 – 0.5 s following the AP train; see Figure 25A) and an 

increase in the number of spikes evoked by a series of 1-s depolarizing current injection 

(Figure 25B and Table 8).   

Blocking Ih facilitates signal integration.  HCN channels are more densely 

expressed in distal dendrites than proximal dendrites (Magee, 1998) and greatly affect 

temporal summation (Magee, 1999), as well as coincidence detection (I. Pavlov et al., 

2011).  We therefore studied the role of HCN channels on dendritic signal integration in 

IL-BLA projection neurons.  We first studied the effect of blocking HCN channels on 

single EPSPs by stimulating L2/3 pathway (see Figure 26A) while the cells were hold at -

67 mV.  As shown in Figure 26B, bath application of 50 µM ZD7288 increased the duration 

of single EPSPs on the mPFC-BLA projection neurons, suggesting that blocking HCN 

channels increases the time window for signal integration.  This was tested by stimulating 

layer 2/3 inputs and evoking a train of 5 EPSPs at frequencies of 20 Hz, 50 Hz, or 100 Hz.  

As shown in Figure 26C, blocking HCN channels facilitated signal integration, with it’s 

maximal effects at the lower frequency stimulation of 20 Hz.  This suggests that under 

normal conditions, h-current restricts signal integration at low frequencies but allows 

integration for high-frequency stimuli.  

Blocking Ih facilitates coincidence detection.  Blockade of Ih has been shown to 

facilitate coincidence detection in hippocampal neurons (I. Pavlov et al., 2011).  In contrast 

to temporal summation that occurred on the same synaptic input, coincidence detection is 

the process by which the neurons integrate input signals that are temporally close but 

spatially distributed.  We thus examined the effect of ZD7288 on coincidence detection of 
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Figure 26.  Blocking Ih facilitates temporal summation of mPFC-BLA projection neurons.  A, 

Schematic showing the experimental set-up used to study the effect of ZD7288 on dendritic signal 

integration.  Whole-cell recording was performed on L5 mPFC-BLA projection neurons and dendritic EPSPs 

were evoked by stimulating L2/3 fibers using an electrode located within 100 µm of the apical dendrites. B, 

Blocking Ih increased the width of single EPSPs evoked by stimulating L2/3.  Scale bar, 5 mV, 100 ms.  C: 

Blocking Ih facilitated temporal summation of dendritic EPSP, especially at lower frequencies.  AP was 

truncated in the 100 Hz traces for clarity.  Scale bar, 10 mV, 100 ms.   
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mPFC-BLA projection neurons by stimulating L2/3 and L5 to represent two afferent 

pathways (see Figure 27A). The stimulating intensities were adjusted so that the neurons 

consistently fired APs only when the two stimulations were delivered simultaneously.  We 

then observed the firing activities of the neurons while systematically varying the 

interstimulus interval (ISI).  As shown in Figure 27B, under control conditions, the neuron 

fired APs when the ISI was between 0 – 9 ms (except at 18 ms).  However, after blocking 

HCN channels, the neuron readily fired action potentials even when the ISI ranged from -

12 ms to 39 ms (except 27 ms).  Thus, under physiological conditions, the role of HCN 

channels is to restrict signal integration so that different afferent information can be 

integrated only when they occurred within a very short period of time (i.e., coincidence 

detection).  Blocking HCN channels significantly broadened the time course over which 

inputs can be integrated within a neuron.  
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Figure 27.  Blocking Ih facilitates coincidence detection.  A, Schematic showing the experimental set-up 

used to study the effect of ZD7288 on coincidence detection.  EPSPs were evoked by stimulating L2/3 and 

L5 within 100 µm of the apical dendrites of the recorded neuron. B, Bath application of ZD7288 facilitates 

coincidence detection.  Under both control condition (left) and in the presence of ZD7288 (right), threshold 

stimulation intensities were found to reliably evoke a spike when there was no delay between the two stimuli.  

The interstimulus interval was then systemically varied with 3 ms step.  Compare to pre-ZD7288 application 

(left), APs were more easily evoked by the two stimulations even when the interstimulus interval became 

larger.  Scale bar, 20 mV, 20 ms.  



109 
 

Discussion 

The current study found distinctive electrophysiological properties of pyramidal 

neurons between different layers and subdivisions within the mPFC.  In both IL and PL, 

L2/3 neurons were more hyperpolarized and less excitable than L5 neurons. Such layer-

specific properties of mPFC neurons is likely to be a result of differential dendritic 

architecture and differential ion channel expression. For example, the differential 

expression of HCN channels may be responsible for the different RMP, input resistance, 

and Ih.  Furthermore, there was also a subregion-specific intrinsic excitability in L2/3 

mPFC such that IL neurons were more excitable than PL neurons due to differential spike 

threshold and input resistance.  Finally, we demonstrated that mPFC-amygdala projection 

neurons were distributed in both L2/3 and L5.  HCN channels are important for shaping 

the basic membrane properties, intrinsic excitability, and dendritic signal integration of L5 

mPFC-BLA projection neurons.  Thus, these data may lay the foundation for understanding 

the region-specific contribution of mPFC in emotional responses and other cognitive 

processes.  

L2/3 neurons are less excitable than L5 neurons 

In both IL and PL, L2/3 neurons were significantly more hyperpolarized than L5 

neurons.  Although a significant difference in intrinsic excitability between L2/3 and L5 

was only observed in PL but not in IL when held at the same membrane potential (-67 mV), 

the excitability of L2/3 neurons in IL was significantly reduced at rest (-75 mV).  We 

conclude that L2/3 neurons are generally less excitable than L5 neurons at RMP.  

Furthermore, the RMP was significantly correlated with the somatic depth such that the 

neurons in superficial layers were more hyperpolarized.  In addition, L5 neurons had 
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significantly larger depolarizing sags, suggesting that they express more HCN channels 

than L2/3 neurons.  These observations are consistent with previous reports in that L2/3 

neurons are more hyperpolarized and lack of h-current in both visual cortical (Mason & 

Larkman, 1990; Medini, 2011) and PL neurons (Boudewijns et al., 2013).  Thus, 

elucidating how such layer-specific excitability contributes to information processing in 

mPFC may be critical for understanding the mechanisms of mPFC-dependent cognitive 

processes.  

One functional importance of the layer-specific membrane potential is the 

involvement of cortical neurons in slow oscillation (< 1 Hz), which is observed during 

quiet wakefulness or sleep and manifested by a bistability of resting membrane potential 

(Metherate, Cox, & Ashe, 1992; Steriade, Contreras, Curro Dossi, & Nunez, 1993; 

Steriade, Nunez, & Amzica, 1993).  Such slow oscillation is observed in neocortex 

including mPFC and is thought important for memory consolidation (Eschenko, Magri, 

Panzeri, & Sara, 2012; Steriade, Nunez, et al., 1993).  Interestingly, a recent study by 

Beltramo and colleagues (2013) revealed that periodic activation of L5 but not L2/3 

neurons resulted in almost complete entrainment of ongoing slow frequency field potential 

at the stimulation frequency (1 Hz).  Furthermore, Beltramo’s and other’s studies indicate 

that the slow oscillations originate in deep layers and then spread to more superficial 

cortical layers (Beltramo et al., 2013; Sakata & Harris, 2009; Sanchez-Vives & 

McCormick, 2000).  In addition, there is evidence  showing that slow oscillation only 

occurs at a specific range of membrane potential in thalamic neurons and when h-current 

is present (Luthi & McCormick, 1998; McCormick & Pape, 1990).  Thus, the current 
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observations of different RMP and of Ih levels across layers suggest that neurons in 

different layers may play distinct functions for information processing.  

IL neurons are more excitable than PL neurons 

The current study found that within L2/3, IL neurons were more excitable than PL 

neurons, as evidenced by firing more spikes in response to current injections, which is 

associated with lower AP threshold, higher input resistance and smaller Ithreshold in IL 

neurons compared to that of PL neurons.  Such different excitability of L2/3 neurons 

between IL and PL is consistent with our previous report (Kaczorowski et al., 2012), where 

we also found that the disruption of the differential excitability between IL and PL in aged 

animals may underlie the observed extinction deficits (Kaczorowski et al., 2012).  Thus, 

the maintenance of the subregion-specific intrinsic excitability in mPFC is critical for 

conditioned fear memory expression, whereas abnormal intrinsic excitability in mPFC may 

lead to extinction deficits which is associated with anxiety disorders.  

Although no significant difference was found between IL and PL neurons in L5, 

previous work has shown distinct roles of IL and PL in behavioral control, especially in 

conditioned fear memory expression. For example, lesion studies and in vivo 

electrophysiological recordings suggest that activation of PL is critical for the expression 

of conditioned fear (Blum et al., 2006; Burgos-Robles et al., 2009; Gilmartin & McEchron, 

2005) whereas activation of IL is critical for the expression of extinction memory 

(Gilmartin & McEchron, 2005; Lebron et al., 2004; Quirk et al., 2000).  Such subregion-

specific roles of mPFC in fear expression may be related to their different projection 

targets.  For example, IL and PL project to different subregions in the amygdala (McDonald 
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et al., 1996).  However, there is still a lack of strong evidence of how such region-specific 

projection pattern facilitates the different roles of IL and PL in fear memory control.  

Ih modulates intrinsic properties of mPFC-BLA projection neurons 

mPFC-BLA projection neurons express Ih that is characteristic of HCN2 current.  

The strong effect of ZD7288 on the membrane properties of mPFC-BLA projection 

neurons suggests that Ih is critical for basic neuronal function.  Ih is carried by HCN 

channels, which have 4 subunits (HCN1-HCN4).  HCN1-HCN3 subunits have been 

detected in mPFC with HCN1 and HCN2 being most abundant (Day et al., 2005).  Based 

on the slow kinetics of the depolarizing sag observed in the current study, the h-current 

expressed in the mPFC-BLA projection neurons is most likely mediated by HCN2 

homomers or HCN1 and HCN2 heteromers (S. Chen, Wang, & Siegelbaum, 2001).  This 

is in contrast to the fast Ih (carried by HCN1 subunit) observed in corticopontine projection 

neurons and lack of Ih in corticocortical projection neurons in mPFC (Dembrow et al., 

2010).  Considering the critical role of Ih in dendritic signal integration (Magee, 1998, 

1999), the special expression profile of HCN channels in mPFC-BLA projection neurons 

may be important for circuit-specific information processing.   

Although the mPFC-BLA projection neurons displayed unique HCN expression 

profile, the Ih carried by these channels share same functions with the Ih carried in other 

neurons such as regulating membrane potential, input resistance, the duration of synaptic 

EPSPs and signal integration (Dembrow et al., 2010; Luthi & McCormick, 1998; Magee, 

1998, 1999; Pape, 1996).  The enhancement of intrinsic excitability following blockade of 

HCN channels with ZD7288 in mPFC-BLA projection neurons is also consistent with 

pharmacological blockade or genetic deletion of HCN channels in hippocampal CA1 
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pyramidal neurons (Li et al., 2012), entorhinal cortical L3 neurons (Huang, Walker, & 

Shah, 2009), reticular thalamic neurons (Ying et al., 2007), cerebellar Purkinje neurons (S. 

R. Williams, Christensen, Stuart, & Hausser, 2002); but see the study by Thuault et al. 

(2013) who didn’t find a change in intrinsic excitability after HCN1 genetic deletion.  

Interestingly, genetic deletion of HCN1 but not HCN2 channel subtype produces 

phenotype that leads to provoked seizures and accelerates epileptogenesis (Huang et al., 

2009; Ludwig et al., 2003; Poolos, 2012).  Thus, these data suggest that the slightly 

different properties between the HCN subtypes may provide delicate modulatory factors 

that contribute to the heterogeneity in neuronal functions.  

Ih shapes AP waveform of mPFC-BLA projection neurons.  HCN channels are 

also involved in shaping AP waveform of mPFC-BLA neurons, as evidenced by an 

increase in spike width following the blockade of Ih with ZD7288.  This is in line with the 

observation that blocking Ih with Zd7288 slightly but significantly increased spike half-

width in rat inner hair cell afferent synapses, where HCN1, HCN2 and HCN4 subunits 

were detected (Yi, Roux, & Glowatzki, 2010).  In contrast, in the Sinoatrial node where 

HCN4 channels are expressed, application of ZD7288 reduced spontaneous firing rate but 

did not affect action potential characteristics (Liu, Dobrzynski, Yanni, Boyett, & Lei, 2007; 

Nikmaram, Boyett, Kodama, Suzuki, & Honjo, 1997).  Thus, it is possible that the HCN2 

but not HCN4 subunit is involved in shaping AP waveforms.  It is not clear, however, 

whether or not HCN1 and HCN3 also shape AP waveform because most studies have not 

reported such an effect.  
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Ih shapes dendritic EPSP and inhibits signal integration 

Blocking Ih increases the duration of EPSP and facilitates signal integration.  

Furthermore, blocking Ih facilitated temporal summation more strongly at low frequency 

(e.g., 20 Hz) but weakly at high frequency (e.g., 100 Hz), suggesting Ih specifically 

restrains the integration of low-frequency afferent signal but allow the integration of high-

frequency afferent signals.  Furthermore, blocking Ih with ZD7288 facilitated coincidence 

detection of mPFC neurons.  These observations are consistent with previous reports in 

other neurons such as in hippocampal CA1 and superior colliculus (Endo et al., 2008; 

Nolan et al., 2004; I. Pavlov et al., 2011; Vaidya & Johnston, 2013).  Such a filter effect 

may manifest a mechanism of Ih through which mPFC-BLA neurons can selectively 

respond to salient environment stimuli (e.g., high frequency signals) whereas other stimuli 

(e.g., low frequency signals) are filtered out.  On the contrary, restricted genetic deletion 

of HCN1 subunit in the forebrain (Nolan et al., 2004) or moderate pharmacological 

blockade of HCN channels have been found to facilitate spatial learning and PFC-

dependent working memory (Wang et al., 2007).  However, such enhancement of learning 

after blockade of HCN channels may occur at the expense of loss of temporal 

discrimination of inputs (I. Pavlov et al., 2011) and impair the performance of certain 

executive functions associated with working memory (Thuault et al., 2013).  In addition, 

genetic deletion of HCN1 subunit has been found to induce phenotypes that induce altered 

nociception, impaired motor learning (Nolan et al., 2003), as well as epilepsy (Huang et 

al., 2009; Santoro et al., 2010).  Thus, maintaining at an optimal level of Ih is critical for 

normal physiological functions, given the neuropathology induced by hyper- or hypo- Ih 
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activity (Lewis, Estep, & Chetkovich, 2010).  However, it remains unclear how Ih is 

involved in conditioned fear memory recall in mPFC-BLA projection neurons. 

Mechanisms and implications of layer- and subregion-specific electrophysiological 

properties of mPFC neurons 

In the current study, we found that the differential expression of HCN channels 

between L2/3 and L5 may account for the layer-specific properties, whereas the different 

input resistance between IL and PL partially accounts for the subregion-specific membrane 

properties.  It has been well established that HCN channels are the determinants of RMP, 

RN, and membrane time constant in cortical neurons (Luthi & McCormick, 1998; Magee, 

1998; Pape, 1996).  Our observation that L2/3 neurons are not affected by HCN channel 

blockers is consistent with previous reports that HCN channels are not detectable in L2/3 

(Lorincz et al., 2002).  The different input resistance between IL and PL neurons is also 

consistent with our previous study in L2/3 neurons, where we also showed that maintaining 

the differential excitability between IL and PL may be important for extinction learning 

(Kaczorowski et al., 2012).   

In addition to intrinsic properties, cortical neurons also display layer-specific 

response to the same pharmacological stimulation.  For example, activation of nicotinic 

acetylcholine receptors (nAchRs) in prefrontal cortex directly excite L5/6 pyramidal 

neurons but indirectly inhibits L2/3 pyramidal neurons, because only GABAergic 

interneurons express nAchRs in L2/3 (Poorthuis et al., 2013).  Furthermore, L2/3 and L5 

neurons play distinct roles within the neural microcircuit.  For example, in the same brain 

region, L2/3 pyramidal cells selectively innervate and excite L5 pyramidal cells whereas 

L5 pyramidal cell rarely have direct synaptic connections with L2/3 pyramidal cells 
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(Otsuka & Kawaguchi, 2008; Thomson & Bannister, 1998; Thomson, West, Wang, & 

Bannister, 2002).  Finally, even within a single layer, cortical neurons may display distinct 

morphological and electrophysiological properties depending upon their long-range 

projection targets (Dembrow et al., 2010; Otsuka & Kawaguchi, 2008; Yamashita et al., 

2013).  For example, in L5 visual cortex, neurons that project to contralateral cortex express 

more voltage-gated K+ channel subunit Kv4.3 and had smaller sag (Ih) compared to neurons 

that project to superior colliculus (Christophe et al., 2005).  Thus, the cortical neurons are 

highly heterogeneous in morphology, interconnectivity, and physiological properties 

depending upon the location of the soma and the long-range projection targets.  

Intrinsic excitability is critical for a neuron in that it translates synaptic inputs to 

the particular output function (Schulz, 2006).  Recordings from randomly selected neurons 

have found learning related increase in intrinsic excitability in the multiple brain regions 

such as hippocampus (Moyer et al., 1996; Song et al., 2012) and amygdala (Sehgal, Ehlers, 

& Moyer, 2014).  Furthermore, dysregulation of the intrinsic excitability of L2/3 neurons 

in mPFC may underlie the aging-related extinction deficits (Kaczorowski et al., 2012).  

However, studies recorded from randomly selected neurons may generate conflicting 

results regarding learning-related physiological changes from both in vivo and in vitro 

preparations (for review, see Kim & Jung, 2006).  In contrast, more recent studies have 

shown that presentation of previously Pavlovian fear conditioned odor to anesthetized rats 

selectively excites the IL neurons that receive monosynaptic inputs from the amygdala 

(Laviolette et al., 2005) and the IL neurons that project to the nucleus accumbens but not 

the neurons that project to the contralateral mPFC (McGinty & Grace, 2008).  Taken 

together, although studies from randomly selected neurons are helpful, further focus on the 
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same population of neurons at microcircuit and target-specific level is necessary to fully 

uncover the mechanisms underlying learning and memory.  

Conclusions 

The current study demonstrates that the mPFC neurons are highly heterogeneous in 

a layer- and subregion-specific manner.  L2/3 neurons are significantly hyperpolarized and 

less excitable than L5 neurons.  IL neurons are more excitable than PL neurons in L2/3 but 

not in L5.  Furthermore, within mPFC the L2/3 neurons have less h-current than do L5 

neurons.  Such layer-specific expression of HCN channels may underlie the laminar 

differences in neuronal intrinsic properties.  These data suggest that such layer- and 

subregion-specific properties may underlie distinct functional roles of IL and PL in the fear 

conditioning and extinction.   
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CHAPTER FOUR: effect of trace fear conditioning on intrinsic excitability of 

mPFC-BLA projection neurons 

Abstract 

The effect of trace fear conditioning on the medial prefrontal cortex (mPFC) to 

basolateral amygdala (BLA) projection neurons was studied by using a combination of 

retrograde labeling with in vitro whole-cell recordings in layer 5 neurons in adult rats.  

Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking 

infralimbic (IL) projection neurons, via a reduction in spike threshold and activation of 

hyperpolarization-activated current (h-current, or Ih).  In contrast, intrinsic excitability was 

reduced in regular spiking prelimbic (PL) projection neurons through a decrease in input 

resistance.  Behavior performance was positively correlated with intrinsic excitability in 

IL-BLA projection neurons following conditioning, but negatively correlated with the 

intrinsic excitability in PL-BLA projection neurons after extinction, suggesting different 

roles of IL and PL neurons in trace fear memory expression.  In both IL and PL, these 

changes were observed in neurons from the conditioned but not in the pseudoconditioned 

rats, suggesting they were learning-specific.  Furthermore, the conditioning-induced effects 

were transient, lasting up to 10 days following conditioning and they were reversed by 

extinction regardless of when extinction memory was probed.  Trace fear conditioning 

significantly increased the input resistance of burst spiking neurons in PL, which enhanced 

their intrinsic excitability.  This effect was also reversed by extinction.  Taken together, 

these data suggest that trace fear conditioning and extinction differentially modulates the 

intrinsic excitability of mPFC-BLA projection neurons in a subregion- and cell type-

specific manner.  
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Introduction 

Although neuronal activity in medial prefrontal cortex (mPFC) influences the 

expression of long-term conditioned fear memories, few studies have investigated mPFC 

contributions to the acquisition and extinction of trace fear memories (where CS and US 

are separated by a trace interval).  A growing body of literature has shown that the 

acquisition and storage of trace fear conditioning depends on the neuronal activity in the 

mPFC and hippocampus (Blum et al., 2006; Clark & Squire, 1998; Gilmartin & 

Helmstetter, 2010; Gilmartin, Miyawaki, Helmstetter, & Diba, 2013; Han et al., 2003; 

Runyan et al., 2004).  Our own and other recent studies have revealed that the acquisition 

of trace fear conditioning enhances intrinsic excitability of hippocampal neurons 

(Kaczorowski & Disterhoft, 2009; McKay et al., 2009; Song et al., 2012).  Although 

previous studies have shown that delay fear conditioning significantly modulates the 

intrinsic excitability of IL neurons (Santini & Porter, 2010; Santini et al., 2008), it is not 

clear how trace fear conditioning affects the intrinsic excitability of mPFC neurons.   

The mPFC has reciprocal innervation with a variety of cortical and subcortical brain 

regions including amygdala (Gabbott, Warner, Jays, Salway, & Busby, 2005; Hurley, 

Herbert, Moga, & Saper, 1991; Vertes, 2004).  Interestingly, the different projection 

neurons display distinct morphological and electrophysiological properties (DeFelipe & 

Farinas, 1992; Dembrow et al., 2010; Hattox & Nelson, 2007; Larkman, Hannay, Stratford, 

& Jack, 1992; Mason & Larkman, 1990), which may contribute to their ability to play 

distinct roles during cognitive behavior (McGinty & Grace, 2008).  Thus, the current study 

investigated how trace fear conditioning affects the intrinsic excitability of mPFC-BLA 

projection neurons by injecting a retrograde tracer into the basolateral nucleus of amygdala, 
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which is a critical area for fear conditioning and extinction (LeDoux, 2000).  By using a 

combination of retrograde tracing and whole-cell recording, we are the first to show that 

trace fear conditioning significantly changed the intrinsic excitability of mPFC-BLA 

projection neurons in a region- and cell type-specific manner.  The conditioning-induced 

effect lasted up to 10 days, and it was reversed by extinction. 

Methods 

Subjects.  Subjects were 49 adult male F344 rats (5.0 ± 0.1 mo).  Rats were 

maintained in an Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) accredited facility on a 14 h light–10 h dark cycle and housed individually 

with free access to food and water.  Procedures were conducted in accordance with the 

University of Wisconsin-Milwaukee animal care and use committee (ACUC) and NIH 

guidelines. 

RetrobeadsTM infusion.  All rats received unilateral pressure infusion of a red 

fluorescent retrograde tracer (RetrobeadsTM, Lumafluor) into the basolateral nucleus of the 

amygdala (relative to Bregma, -3 mm AP, ± 5 mm ML; - 8.3 mm DV), with deep 

anesthetization under stereotaxic.  The infusion was made with glass pipettes (20 – 40 µm) 

pulled from borosilicate glass (VWR Micropipets) using a Sutter Instruments P97 puller.  

The pipette was connected to a 2 µl syringe (Hamilton) driven by an infusion pump 

(Harvard Apparatus, model 975).  The infusion lasted 5-10 min and the pipette was 

withdrawn 10 min after infusion.  A total volume of 0.1 - 0.3 µl red RetrobeadsTM were 

infused into BLA.   

Apparatus.  Fear conditioning chambers. Trace fear conditioning was conducted 

in a Plexiglas and stainless steel chamber (30.5 X 25.4 X 30.5 cm; Coulbourn Instruments, 



121 
 

 
 

Whitehall, PA), located in a sound-attenuating box.  The chamber was rectangular and had 

a standard grid floor consisting of 26 parallel steel rods (5 mm diameter and 6 mm spacing).  

The floor was connected to a precision adjustable shock generator (Coulbourn Instruments) 

for delivery of a scrambled footshock US.  Within the sound-attenuating box, a ventilation 

fan produced a constant background noise of about 58 dB (measured by a sound level 

meter, A scale; model #33-2050, Realistic, Fort Worth, TX).  The chamber was illuminated 

by a miniature incandescent white lamp (28V, type 1819) and was wiped with a 5% 

ammonium hydroxide solution prior to each training session.  During training, the room 

lights were left on (illumination 20.9 lux) for the entire session. 

Extinction and CS testing chambers.  An additional Plexiglas chamber was served 

as a novel context for the auditory cue test.  This chamber was located within a separate 

sound-attenuating box located in the same room.  The test chamber was physically different 

from the training chamber in that it was octagonal (instead of rectangular), the floor was 

black-painted Plexiglas (instead of grid bars), and was illuminated with an infrared light.  

In addition, the tray below the test chamber floor contained clean bedding and the test 

chamber was wiped with 2% acetic acid prior to each test session to provide a different 

olfactory stimulus from that used during training.  The room lights were turned off 

(illumination 0.2 lux) for the entire testing session. 

Fear conditioning and extinction.  After a minimum of 7 days of recovery from 

surgery, rats were handled for at least one week before they were randomly assigned to 

naïve (NAÏVE, n = 10), pseudoconditioned (PSEUDO, n = 8), trace fear conditioned 

(TRACE, n = 9), trace fear conditioned-retention (TRACE-RET, n = 3), trace fear 

conditioned-extinction (EXT, n = 10), and trace fear conditioned extinction-retention 
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(EXT-RET, n = 9) groups (see Figure 28A).  On day 1, TRACE, TRACE-RET, EXT, and 

EXT-RET rats received one 10-trial session of auditory trace fear conditioning using a 15 

s CS (80 dB white noise) followed by a 30-s trace interval (stimulus-free period) and a 1-s 

footshock US (1.0 mA).  A long (5.2 min ± 20 %) intertrial interval (ITI) was used to 

maximize CS and minimize context (i.e., training chamber) conditioning (Detert, Kampa, 

& Moyer, 2008).  PSEUDO rats received the same amount of CS and US presentations but 

they were explicitly unpaired.  Naïve rats remained in their home cages throughout the 

experiment.  On days 2-3, rats in the TRACE, TRACE-RET and PSEUDO groups 

remained in their home cages, whereas EXT and EXT-RET rats received 2 consecutive 

sessions (1 session per day) of 10 CS-alone presentations in a novel context.  These 

sessions were identical to the training except no US was presented.  Following each 

extinction session, rats were returned to their home cages 2 min after the last extinction 

trial.   

Behavioral testing.  Twenty-four hours after extinction (day 4), PSEUDO, 

TRACE, and EXT rats received a brief CS test session in the extinction context.  TRACE-

RET and EXT-RET rats received the CS test on day 11.  During this behavioral test, rats 

were first allowed to explore the new chamber for 2-min (baseline), followed by two 15-s 

CS presentations (2.9-min ITI), and they were removed 2 min after the second CS 

presentation.  To assess memory, the amount of time spent freezing during the baseline, 

the CS, and the trace interval (defined as the first 30 sec after CS offset) was measured.  

Consistent with our earlier report (Detert et al., 2008), the freezing levels during CS were 

less than during the trace interval and therefore were not shown and the freezing levels 

during trace interval were used as the measurement of behavioral performance (see
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Figure 28.  Experimental design and behavioral performance during trace fear conditioning, 

extinction, and probe test. A, Experimental design.  Rats received one 10-trial session of trace fear 

conditioning or pseudoconditioning on day 1.  EXT and EXT-RET rats received extinction on days 2-3 in a 

novel context. TRACE, PSEUDO, and EXT rats received a brief CS-alone probe test on day 4.  TRACE-

RET and EXT-RET rats received the probe test on day 11.  Immediately following their last behavior test, 

brain slices were prepared for electrophysiological studies.  NAÏVE rats remained in their homecage 

throughout the experiment.  B, Behavioral responses of trace fear conditioned and pseudoconditioned rats 

during conditioning, extinction (first 2 trials), and testing.  During conditioning, all rats displayed a rapid 

increase in freezing levels during the first three trials and then maintained high freezing levels.  A repeated 

measures ANOVA of percent freezing revealed a significant main effect of training trials [F(9,306) = 19.5, 

p < 0.01; Greenhouse-Geisser corrected] and a significant effect of group [F(4,34) =3.2, p < 0.05] but no 

significant group by training trial interaction [F(36,306) = 1.1, p = 0.34; Greenhouse-Geisser corrected].  

During the probe test, all rats displayed comparable levels of freezing during baseline (dashed line indicates 

the average baseline freezing of all groups).  In contrast, TRACE rats froze significantly more than both 

PSEUDO and EXT rats during the trace interval following offset of the CS (p < 0.01). TRACE-RET rats 

froze significantly more than EXT-RET rats [F(1,10) = 5.37, p <0.05]. 
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Figure 28B).  In addition, the percent freezing during the 2 CS presentations during the 

probe test was averaged and used as the measurement of behavior performance (fear 

memory).  

Analysis of behavioral data.  A remote CCTV video camera (model #WV-BP334; 

Panasonic Corp., Suzhou, China), mounted to the top of each behavioral chamber, was 

used to record the activity of each rat during training and testing.  The video data were fed 

to a PC running FreezeFrame 2.04 04 (Actimetrics Software, Coulbourn Instruments).  

Data were analyzed using FreezeView 2.04 (Actimetrics Software) where a 1 sec bout of 

immobility was scored as freezing.  Freezing was defined as the absence of all movement 

except that required for respiration (Blanchard & Blanchard, 1969).    

PFC slice preparation for electrophysiological recording.  Immediately after CS 

test, rats were anesthetized and decapitated by an individual blind to training condition.  

The brains were quickly removed and placed into ice-cold artificial cerebral spinal fluid 

(aCSF, in mM): 124 NaCl, 2.8 KCl, 1.25 NaH2PO4, 2 CaCl2, 2 MgSO4, 26 NaHCO3, 20 

glucose (pH 7.5, bubbled with 95% O2/5% CO2).  Coronal slices (300 µm) containing 

prefrontal cortex (AP + 3.2 – 2.2) were cut in ice-cold aCSF using a vibrating tissue slicer 

(VT1200, Leica).  The slices were incubated at 32 – 36°C in oxygenated aCSF until use.  

The rest of the brain was then blocked and coronal slices that contained the amygdala were 

prepared to confirm infusion location.  The injection site was inspected immediately after 

cutting by placing the slice on the stage of our upright microscope (Olympus BX51WI) 

equipped with fluorescence and photographing the section.  All injection sites were within 

the basolateral complex of amygdala (BLA, including the basal, lateral, and accessory basal 
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nuclei) and intercalated cell masses (see a representative image in Figure 13A and the 

infusion location for all rats in Figure 29).  

For whole-cell recordings (WCRs), electrodes (5–8 MΩ) were prepared from thin-

walled capillary glass and filled with the following solution (in mM): 110 K-gluconate, 20 

KCl, 10 Di-Tris-P-Creatine, 10 HEPES, 2 MgCl2, 2 Na2ATP, 0.3 Na2GTP, 0.2% Biocytin, 

pH to 7.3.  The osmolarity was 290 mOsmol.  All chemicals were obtained from Sigma or 

Fisher unless noted. 

Electrophysiological recordings.  PFC slices were transferred to a submerged 

recoding chamber mounted on a fluorescence-equipped Olympus BX51WI upright 

microscope where they were continuously perfused with oxygenated aCSF at a rate of 2 

ml/min, and maintained at 32 – 36°C using an inline temperature controller.  The 

fluorescently labeled mPFC neurons were visualized using a Texas Red epifluorescent filter 

set.  A Hamamatsu CCD camera (Hamamatsu Camera Ltd., Tokyo, Japan) was used to 

visualize and photograph the neuron and the brain slice for verification of recording location.  

Neurons with somata that were ≥ 400 µm from the pial surface were defined as layer 5 (L5) 

neurons (Gabbott & Bacon, 1996; Perez-Cruz et al., 2007) and were recorded and analyzed.  

L6 was recognized as distinct from L5 because it contains a high density of fibers (Gaillard & 

Sauve, 1995).  After positively labeled neurons were recognized, the microscope was switched 

to IR-DIC mode to guide whole-cell recording.  Data were collected from those neurons whose 

RMP were more negative than -50 mV and held at -67 mV (mean holding current: -62 ± 4 pA).  

Series resistance was fully compensated and always monitored to ensure the stability of 

recording conditions.  Cells were only accepted for analysis if the initial series resistance was 

≤ 30 MΩ and did not change by > 30% throughout the recording period.  The distribution of 
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Figure 29.  Schematic drawing of coronal sections of rat brain showing the location of pipette tips used 

for RetrobeadsTM infusions in the amygdala (illustration modified from Paxinos & Watson, 1998, with 

permission from Elsevier).  RetrobeadsTM were infused into both hemispheres but all infusion locations are 

shown in left hemisphere for simplicity.  
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all recorded neurons included in this study are shown in Figure 30A (regular spiking) and 

Figure 30B (burst spiking).   

Intrinsic properties of mPFC-BLA projection neurons were recorded under current 

clamp according to the following protocols: (1) I-V relations were obtained from a series 

of 500 ms current injections (range from -300 pA to 50 pA) and plotting the plateau voltage 

deflection against current amplitude.  Neuronal input resistance (RN) was determined from 

the slope of the linear fit of the portion of the V-I plot where the voltage sweeps did not 

exhibit sags or active conductance (see Figure 30E and 30G).  The sag ratio during 

hyperpolarizing membrane responses was expressed as [(1 – ∆Vss / ∆Vmin) × 100%], where 

∆Vss = MP – Vss, ∆Vmin = MP - Vmin, MP is the membrane potential before current step, 

Vss is the steady-state potential and Vmin is the initial minimum potential.  For each neuron, 

sag ratio was calculated from -300 pA, -250 pA, and -200 pA current steps and averaged.  

(2) Action potential (AP) properties, including Ithreshold were studied with an ascending 

series of 500 ms depolarizing pulses necessary to elicit one single (regular spikers) or a 

burst of spikes (burst spikers).  Neurons that generated two or more action potentials riding 

atop the Ithreshold depolarizing current in an all-or-none fashion were classified as burst 

spiking neurons (Connors, Gutnick, & Prince, 1982).  For burst spiking neurons, AP 

properties were studied from the first spike.  AP threshold (APthresh) was defined as the 

voltage when dV/dt first exceeded 28 mV/ms (Kaczorowski et al., 2012).  The AP 

amplitude (APamp) was measured relative to the APthresh.  AP width (APwidth) was measured 

as the width at half of the AP amplitude.  (3) Post-burst afterhyperpolarization (AHP) 

relative to baseline was measured at the peak (mAHP) or 1 s (sAHP) following a burst of 

10 spikes evoked by brief (2 ms) suprathreshold current injections at 50 Hz (3X, at 20 sec 
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Figure 30.  Location and basic properties of neurons in mPFC.  Neurons with a somatic depth ≥ 400 µm 

were defined as layer 5 neurons.  A and B, schematic diagrams of rat coronal sections (Paxinos & Watson, 

1998) illustrating the distribution of all regular (A) and burst (B) spiking mPFC-BLA projection neurons 

obtained in this study. Neurons were recorded from either side but all were labeled in one hemisphere for 

simplicity.  C and D, confocal images of representative regular spiking (C) and burst spiking (D) mPFC-BLA 

projection neurons and their 3D reconstructions.  Arrows point to the axons (represented as gray) of the cells.  

E and G, voltage responses to a series of current injections and the accompanying V-I plot used to measure 

neuronal input resistance (RN).  F and H, Neuronal excitability was studied by injecting a series of 

depolarizing currents and the number of spikes evoked was counted.  Scale bars: A and B, 500 µm; C and D, 

100 µm; E and G, 20 mV, 100 ms; F and H, 40 mV/100 pA, 100 ms.
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intervals).  (4) Neuronal excitability was accessed by counting the number of spikes evoked 

in response to a series of 1-sec depolarizing steps (range 50 – 450 pA, 50 pA increments, 

20 s ITI; see Figure 30F and 30H).  

All recordings were obtained in current-clamp mode using a HEKA EPC10 

amplifier system (HEKA Elektronik).  Data were transferred to a PC computer using an 

ITC-16 digital-to-analog converter (HEKA Elektronik).  The signals were filtered at 2.9 

kHz and digitized at 20 kHz using Patchmaster software (HEKA Elektronik). Data were 

analyzed offline using Patchmaster and Igor Pro software (version 4.03; WaveMatrix).  

Voltages were not corrected for the liquid-liquid junction potential (~ +13 mV, see Moyer 

and Brown, 2007).  Recordings were made from mPFC neurons located both ipsilateral 

and contralateral to the BLA injection site.  Physiological data were combined because no 

significant differences were observed. 

Biocytin staining.  Neurons filled with biocytin (0.2% in internal solution) during 

recording were fixed in formalin for 1 to 4 weeks before they were processed for 

visualization by using streptavidin Alexa Flour 488 reaction.  Slices were mounted, and 

labeled neurons were visualized and photoimaged using either a fluorescence microscope 

(BX51WI, Olympus) or laser scanning confocal fluorescence microscope (FV-1200, 

Olympus).  Confocal image stacks were used for 3D reconstruction (see Figure 30C and 

30D) using Neurolucida software (MBF Bioscience, Williston, VT).  All neurons analyzed 

displayed characteristics of pyramidal cells according to morphology and 

electrophysiology.  Confocal images and reconstructions of a representative regular 

spiking and a representative burst spiking neuron and their reconstructions are shown in 

Figure 30C and 30D respectively. 
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Statistical Analyses.  All statistical analyses were performed with the aid of 

Microsoft Excel and IBM SPSS statistics software (version 22; SPSS).  Data were analyzed 

using parametric statistics with two-tailed Student’s t test, one-way ANOVA, or repeated 

measures ANOVA, as appropriate.  For significant main effects (alpha 0.05), a Fisher’s 

PLSD test was used for post hoc comparisons.  All data are expressed as mean ± SEM.  
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Results 

We examined the effect of trace fear conditioning and extinction on the intrinsic 

excitability of mPFC-BLA projection neurons by a combination of retrograde labeling with 

whole-cell recording.  All rats received a unilateral injection of fluorescently labeled 

microspheres before they received behavioral training (except for NAÏVE rats, who 

received RetrobeadsTM injection but remained in home cages).  Rats received conditioning 

or pseudoconditioning on day 1 followed by either extinction training or no treatment (i.e., 

they remained in their home cage) on days 2 and 3.  Rats in the trace fear conditioned 

(TRACE), pseudoconditioned (PSEUDO), and extinction (EXT) groups received a brief 

CS-alone probe test on day 4.  Rats in the trace fear conditioned-retention (TRACE-RET) 

and extinction-retention (EXT-RET) groups received the probe test on day 11 (see Figure 

28A).  Prefrontal cortical slices were prepared immediately (within one hour) after the 

probe test and the fluorescently labeled neurons in L5 of both IL and PL were recorded.  

The duration from the date of surgery to the date of slicing was not significantly different 

between groups [mean 30.8 ± 2.2 days; F(5,43) = 0.19, p = 0.97]. 

Analysis of behavioral performance during the trace interval indicated that all rats 

exhibited a rapid increase in percent freezing during the first 3 trials, after which they 

maintained a high level of freezing throughout the rest of the training trials (see Figure 

28B).  A repeated-measures ANOVA with post hoc tests showed that PSEUDO rats froze 

significantly less than TRACE (p < 0.05) or EXT-RET (p < 0.01) rats.  Although EXT rats 

froze less than EXT-RET rats (p < 0.05), they displayed comparable levels of freezing 

during the first two trials of extinction, indicating the memory of conditioned fear was 

comparable between the two groups.  When memory was tested on day 4, freezing levels 
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were comparably low [F(2,26) = 1.51, p = 0.24] during the baseline among all the groups 

(average baseline freeze was shown as a dashed line in Figure 28B).  As illustrated in 

Figure 28B, post hoc analyses indicated that TRACE rats froze significantly more than 

both PSEUDO (p < 0.01) and EXT rats (p < 0.01).  During retention test on day 11, 

TRACE-RET rats froze significantly more than EXT-RET rats (p < 0.05), suggesting good 

memory retention for both conditioning and extinction.  

Trace fear conditioning enhances intrinsic excitability of regular spiking IL-BLA 

projection neurons 

To evaluate the effect of trace fear conditioning on the intrinsic excitability of 

mPFC-BLA projection neurons, PFC slices were prepared immediately after the memory 

test and WCRs were performed on the neurons that were labeled with fluorescent 

microspheres.  Although both L2/3 and L5 neurons project to the amygdala (see Figure 

13B), we restricted our studies to L5 neurons only because they were the major output 

neurons (Groh et al., 2010) and have electrophysiological properties that are distinctly 

different from L2/3 neurons (Boudewijns et al., 2013).  To evaluate changes in neuronal 

intrinsic excitability, we counted the number of action potentials evoked by a series of 

depolarizing current pulses (50 – 450 pA) while the cells were held at -67 mV.   

Trace fear conditioning significantly increased the intrinsic excitability of regular 

spiking IL-BLA projection neurons as evidenced by firing more APs in response to 

depolarizing steps compared to NAÏVE neurons (see Figure 31A and 31C).  A repeated-

measures ANOVA revealed significant main effects of group [F(5,103) = 3.0, p < 0.05) 

and current intensity [F(1.6, 162.1) = 497.3, p < 0.01; Greenhouse-Geisser corrected].  

There was also a significant interaction of group by current intensity [F(7.9,93.6) = 2.4, p 
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Figure 31. Trace fear conditioning differentially modulates the intrinsic excitability of regular spiking 

IL and PL neurons that project to BLA.  A, Trace fear conditioning significantly enhanced the intrinsic 

excitability of IL-BLA projection neuron.  Neurons from TRACE rats fired significantly more spikes than 

neurons from NAÏVE rats (p < 0.05).  B, Trace fear conditioning significantly suppressed the intrinsic 

excitability of PL-BLA projection neurons.  Neurons from TRACE rats fired significantly less spikes than 

neurons from NAÏVE rats (p < 0.05).  In both IL and PL, extinction reversed the conditioning effect such 

that the intrinsic excitability in EXT neurons was comparable with neurons from other groups, and remained 

stable after extinction retention (EXT-RET).  The conditioning-induced plasticity observed in TRACE rats 

was transient in both IL and PL as the intrinsic excitability returned to naïve level after memory retention 

(TRACE-RET).  Inset in A and B are bar graphs showing the number of spikes evoked by a 300-pA current 

injection in mPFC-BLA projection neurons (statistically different between TRACE and other groups: * p < 

0.05, # p < 0.01).  C and D, Representative traces showing the number of spikes evoked by a 300-pA current 

injection.  Scale bar, 20 mV, 100 ms.
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< 0.05; Greenhouse-Geisser corrected].  Follow-up analyses using a one-way ANOVA 

revealed a significant group effect when the depolarizing currents that were greater than 

250 pA (all values, p < 0.05).  Post hoc comparisons confirmed that cells in TRACE rats 

fired significantly more action potentials than those in NAÏVE, PSEUDO, or TRACE-RET 

rats in response to the depolarizing currents ranged between 250 pA and 400 pA (see Figure 

31A).  Interestingly, the intrinsic excitability was not enhanced in TRACE-RET rats, 

although they displayed good retention memory 10 days after conditioning, suggesting the 

conditioning-induced effect was transient, which is consistent with previous studies in 

hippocampal neurons following trace eyeblink conditioning (Moyer et al., 1996; 

Thompson, Moyer, & Disterhoft, 1996a).  The enhancement of intrinsic excitability was 

also not observed in EXT or EXT-RET rats.  In both groups intrinsic excitability was 

comparable to that of neurons from Naïve rats (see Figure 31A and 31C), suggesting that 

extinction reversed the effects of trace fear conditioning.   

Although PSEUDO rats displayed an increase in freezing during the trace interval 

during conditioning and during probe test (see Figure 28B), the intrinsic excitability in IL-

BLA projection neurons was not significantly changed (see Figure 31A and 31C), 

suggesting the enhancement of intrinsic excitability in conditioned rats was associative and 

learning-specific.  Thus, our results indicate that acquisition of trace fear conditioning 

transiently enhances the intrinsic excitability of IL-BLA projection neurons and extinction 

reverses the effect of conditioning.  
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Trace fear conditioning modulates spike threshold and h-current in regular spiking IL-

BLA projection neurons 

Neuronal excitability is determined by the properties and distribution of ion 

channels within the plasma membrane.  To examine which ion channels may underlie these 

learning-related changes, we further compared other membrane properties of regular 

spiking IL-BLA projection neurons between the various training groups.  A planned 

comparison between neurons from naïve and conditioned animals suggests that the spike 

threshold was significantly hyperpolarized after conditioning [t(40) = 2.4, p < 0.05; see 

Figure 32A] and that there was a significant correlation between spike threshold and the 

number of spikes evoked by the depolarizing currents (r = - 0.46, p < 0.01).  Furthermore, 

conditioning significantly increased the depolarizing sag [t(38) = 3.4, p < 0.01; see Figure 

32B and Table 9], suggesting the activation of h current (Ih) mediated by hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels.  In addition, trace fear conditioning 

enhanced the mAHP (measured at the peak following a burst of 10 APs) but not sAHP 

(measured at 1 s following the burst of APs; see Figure 32C and Table 9), which is 

consistent with the activation of Ih (Kaczorowski, 2011; Oswald, Oorschot, Schulz, Lipski, 

& Reynolds, 2009).  That activation of Ih contributed to the enhanced mAHP was also 

supported by the observation that the mAHP was significantly correlated with the sag (r = 

- 0.38, p < 0.05).  Other membrane properties (e.g., RMP, input resistance, Ithreshold) were 

not significantly changed by conditioning (see Table 9).  Taken together, these data suggest 

that trace fear conditioning specifically enhances intrinsic excitability of IL-BLA 

projection neurons through modulating the expression or properties of the ion channels that 

regulate spike threshold and Ih. 
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Figure 32.  Distinct mechanisms underlying trace fear conditioning between IL and PL neurons.  In IL, 

acquisition of trace fear conditioning reduced the AP threshold (A), depolarizing sag (B), and enhanced 

mAHP (C).  Scale bars: A, 20 mV, 2 ms; B, 5 mV, 100 ms; C, 5 mV, 0.5 s.  In PL, acquisition of trace fear 

conditioning reduced the neuronal input resistance (RN) but the difference was not statistically significant 

(D).  Conditioning significantly increased the minimal current (Ithreshold) required to evoke one single AP (E), 

which may be caused by the reduction in RN because these two measurements were significantly correlated 

(F).  The conditioning-induced reduction in input resistance may have caused the decrease in the intrinsic 

excitability as the RN was significantly correlated with excitability (G). 
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Trace fear conditioning suppresses intrinsic excitability of regular spiking PL-BLA 

projection neurons  

In contrast to IL neurons, acquisition of trace fear conditioning significantly 

reduced the intrinsic excitability of regular spiking neurons in PL (see Figure 31B and 

31D).  A planned repeated measures ANOVA between Naïve and Cond neurons revealed 

a significant main effects of group [F(1,22) = 4.6, p < 0.05] and current intensity [F(1.2, 

26.7) = 70.4; p < 0.01; Greenhouse-Geisser corrected] but no significant group by current 

interaction [F(1.2, 26.7) = 3.4; p = 0.07; Greenhouse-Geisser corrected].  Further analysis 

with a one-way ANOVA revealed that conditioned rats fired significantly less spikes in 

response to the depolarizing currents of 250 – 400 pA (all values, p < 0.05).  However, the 

intrinsic excitability returned to naïve level after extinction or extinction retention, 

suggesting extinction reversed the effect of conditioning (see Figure 31B and 31D).  

Similar with IL neurons, the intrinsic excitability of PL-BLA projection neurons was not 

significantly changed between any other groups, suggesting the reduction of intrinsic 

excitability in conditioned rats was learning-specific, transient, and reversible.  

Trace fear conditioning reduces input resistance of regular spiking PL-BLA projection 

neurons  

Trace fear conditioning induced a subtle reduction in the input resistance (RN) of 

PL-BLA projection neurons [t(24) = 1.9; p = 0.07; see Figure 32D].  However, such a 

subtle change in RN significantly reduced the excitability of PL-BLA projection neurons 

such that the neurons from conditioned rats required a much larger threshold current 

(Ithreshold) to evoke a single spike [F(24) = 2.7, p < 0.05; see Figure 32E].  The relationship 

between RN and Ithreshold was supported by the strong correlation between the two 
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measurements (r = - 0.79, p < 0.0001; see Figure 32F).  Furthermore, the number of spikes 

evoked by depolarizing current was strongly correlated with both RN (p < 0.05; see Figure 

32G) and Ithreshold (p < 0.001).  Moreover, the changes in RN and Ithreshold were only observed 

in conditioned rats but not in pseudoconditioned rats (see Table 9 for other membrane 

properties that were not changed by conditioning), suggesting they are learning-specific.  

Thus, these data suggest that trace fear conditioning suppresses the intrinsic excitability of 

PL-BLA projection neurons through modulating ion channels that affect RN and Ithreshold.  

Correlations between behavioral performance and intrinsic excitability after 

conditioning and extinction 

We have previously reported that the amount of conditioned fear was significantly 

correlated with intrinsic excitability of hippocampal neurons in conditioned but not 

pseudoconditioned rats (Song et al., 2012).  We therefore examined if such correlations 

also exist in mPFC neurons after trace fear conditioning and extinction.  As shown in Figure 

33A, in IL, a significant correlation between the behavioral performance (percent freezing) 

and intrinsic excitability was only observed in trace fear conditioned group but not in any 

other groups or when all groups were combined.  In contrast, in PL a significant correlation 

was only observed in extinction group, but not in any other groups or when all groups were 

combined (see Figure 33B).  Thus, these data suggest that activity of regular spiking IL-

BLA projection neurons is critical for the expression of conditioned fear memory whereas 

the activity of regular spiking PL-BLA projection neurons is critical the expression of 

extinction memory.   
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Figure 33.  Correlations between behavioral performance and intrinsic excitability of regular spiking 

mPFC-BLA projection neurons.  A, In IL, a significant correlation was observed in trace conditioned rats 

(TRACE; r = 0.73, p < 0.05) but not in any other groups or when all groups combined together.  B, In PL, a 

significant correlation was observed in the rats that received extinction (EXT; r = -0.72, p < 0.05) but not any 

other groups. p values for other groups in A, All 0.40; PSEUDO 0.84; TRACE-RET 0.45; EXT 0.33; EXT-

RET 0.25. p values that were not significant in B, All 0.15; PSEUDO 0.75 TRACE 0.92; TRACE-RET 0.16; 

EXT-RET 0.57. 
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Trace fear conditioning enhances the intrinsic excitability of bursting PL-BLA 

projection neurons 

Neurons that generated two or more action potentials riding atop the Ithreshold 

depolarizing current in an all-or-none fashion were classified as burst spiking neurons 

(Connors et al., 1982).  A total of 30 bursting mPFC-BLA projection neurons were obtained 

in this study (see Figure 30B and Table 10).  These represent 7% and 19% of total IL- and PL-

BLA projection neurons respectively.  Within IL, no burst spiking neurons were obtained from 

naïve or pseudoconditioned rats.  Interestingly, there seems to be an increase in the percentage 

of burst spiking neurons following behavioral training, especially after extinction (percent burst 

spiking neurons in IL: TRACE, 8%; TRACE-RET, 7%; EXT, 15%; EXT-RET, 8%).  No 

further statistics were performed in IL bursting neurons because of the small sample size. 

However, such a trend of increase in bursting activity following extinction is consistent with 

previous study within IL (Santini et al., 2008).  In PL, the intrinsic excitability was significantly 

enhanced in the neurons from conditioned rats compared to those from naïve rats (see Figure 

34 and Table 10), suggesting that bursting activity is critical for the expression of conditioned 

fear in PL.  In addition, there was a slight increase in RN [t(6) = 1.8, p = 0.12; see Figure 35A] 

and a reduction in Ithreshold in bursting cells [t(6) = - 2.3, p = 0.059; see Figure 35B].  

Interestingly, this conditioning-induced plasticity in RN and Ithreshold is the opposite 

direction with the effect on regular spiking cells.  As a result, the RN, the Ithreshold and the 

intrinsic excitability of bursting cells were significantly different from those of regular 

spiking neurons (see Figure 35C), and these phenomena were only observed in conditioned 

rats but not any other groups. These data suggest that trace fear conditioning differentially 

modulates the intrinsic excitability of regular spiking and burst spiking neurons in PL. 
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Figure 34.  Trace fear conditioning enhances intrinsic excitability of burst spiking PL-BLA projection 

neurons.   A, trace fear conditioning significantly enhanced the intrinsic excitability of burst spiking PL-

BLA projection neuron [F(1,6) = 6.1, p < 0.05; repeated measures ANOVA].  Inset, bar graph showing the 

average number of spikes evoked by 200 pA depolarizing currents from all groups.  Conditioning enhanced 

the intrinsic excitability of burst spiking PL-BLA projection neurons when compared to those from the naïve 

group [F(1,6) = 7.6, p < 0.05; planned comparison].  B, representative traces illustrating that PL-BLA 

projection neurons from trace conditioned rats fired more action potentials than neurons from naïve rats (scale 

bar 40 mV, 100 ms).
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Figure 35.  Differential effects of trace fear conditioning on regular and burst spiking neurons in PL.  

Trace fear conditioning specifically reduced the input resistance (RN) of regular spikers but increased the RN 

of burst spikers in PL (A).  In contrast, trace fear conditioning increased the minimum current (Ithreshold) 

required to evoke one action potential for regular spikers but reduced the Ithreshold for burst spikers (B).  In PL, 

trace fear conditioning enhanced the excitability of burst spikers and decreased the excitability of regular 

spikers (C).  All measurements (RN, Ithreshold, and number of spikes) in panels A – C were significantly 

different between regular spikers and burst spikers in trace conditioned rats but not naïve rats (* p < 0.05, # 

p < 0.01).  
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Discussion 

With the combination of retrograde labeling and whole-cell patch clamp 

recordings, we first demonstrate that trace fear conditioning significantly affects the 

intrinsic excitability of mPFC-BLA projection neurons in a region-specific and cell type-

specific manner.  In IL, trace fear conditioning significantly enhanced the intrinsic 

excitability of regular spiking neurons through reducing the spike threshold and activation 

of h current. In PL, trace fear conditioning significantly suppressed the intrinsic excitability 

of regular spiking neurons whereas enhanced the intrinsic excitability of burst spiking 

neurons.  The conditioning-induced changes in intrinsic excitability in PL were achieved 

through modulating the same membrane property – input resistance, but in the opposite 

direction – conditioning reduced the input resistance of regular spiking neurons whereas 

increased the input resistance of burst spiking neurons.  In addition, the conditioning-

induced effects were transient, and were reversed by extinction.  Thus, our data suggest 

that within the IL, the activity of regular spiking neurons is critical for the expression of 

conditioned fear.  In contrast, the balance between regular spiking and burst spiking 

neurons in PL affects the expression of conditioned fear.   

Trace fear conditioning significantly affected the intrinsic excitability in a learning- 

and circuit-specific manner, suggesting mPFC-BLA neurons are critical for fear memory 

expression.  These results are in agreement with previous work indicating the involvement 

of mPFC in the acquisition and expression of trace fear memory (Gilmartin & Helmstetter, 

2010; Hylin, Orsi, Moore, & Dash, 2013; Runyan et al., 2004; Sui, Wang, & Li, 2008), 

and that IL and PL play distinct roles (Burgos-Robles et al., 2009; Burgos-Robles et al., 

2007; Chang & Maren, 2011; Milad & Quirk, 2002; Milad et al., 2004; Vidal-Gonzalez et 
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al., 2006).  These findings add to an increasing body of evidence suggesting that 

modulating intrinsic excitability is critical for the expression of trace fear memory 

(Kaczorowski et al., 2012; Song et al., 2012).   

Trace fear conditioning enhances intrinsic excitability of IL neurons 

Numerous studies have investigated the role of mPFC in fear conditioning and 

extinction but little is known how fear conditioning affects the intrinsic excitability of 

mPFC neurons.  Previous studies using delay paradigm have shown that fear conditioning 

suppressed the intrinsic excitability of regular spiking IL neurons and that extinction 

revered the effect of conditioning (Santini et al., 2008).  This seems contradictory to the 

current study.  However, there are a number of differences that may account for the 

different results.  In addition to different conditioning paradigms, Santini and colleagues 

(1) used juvenile rats that were 25-30 days old; (2) used KMeSO4-based internal solution 

that had 0.2 mM ATP; and (3) conducted their recordings at room temperature.  Under 

these conditions, neurons might not be in optimal status because they only fired a maximum 

of 6 spikes and reached the asymptotic level in response to a 0.8-s depolarizing current, 

whereas single unit recordings have shown that mPFC neurons were able to spike at 10 Hz 

or more in response to stimuli (Febo, 2011; Ji & Neugebauer, 2012; Milad & Quirk, 2002).  

In contrast, we used a K-gluconate based internal solution that had 2 mM ATP and recorded 

from adult neurons using more physiological temperatures (32 – 35°C).  Under these 

conditions, neurons fired more than 12 spikes in 1 s without reaching their asymptotic firing 

level.  To validate these observations, we tried using Santini’s internal solution and 

recorded from randomly selected neurons in IL.  We found that neurons from juvenile rats 

(28 days old) did fire a maximum of 6 spikes in room temperature (n =5), whereas adult 
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neurons fired a maximum of 12 spikes in 32 – 35°C in response to the same current steps 

(n = 23).  Thus, the different animal age and recording temperature may indeed have 

contributed to the different results between the current study and that of Santini’s.  

Another possible discrepancy is that we only recorded from L5 neurons that 

specifically project to the amygdala, whereas most other studies recorded neurons 

throughout the cortical layers without identifying their projection targets.  Neurons in 

different cortical layers generally display distinct membrane properties, with L2/3 neurons 

often displaying a more hyperpolarized RMP and a relative lack of h-current (Boudewijns 

et al., 2013; Mason & Larkman, 1990; Medini, 2011).  Even within the same layer (e.g., 

L5), the mPFC neurons are highly heterogeneous in morphological and 

electrophysiological properties depending on their long-range projection targets (Brown & 

Hestrin, 2009; Dembrow et al., 2010; Morishima & Kawaguchi, 2006; Otsuka & 

Kawaguchi, 2008).  Moreover, different projection neurons may play different roles during 

learning.  For example, a recent study demonstrated that presentation of a Pavlovian fear 

conditioned odor selectively activates those IL neurons that receive monosynaptic inputs 

from the basolateral nucleus of amygdala (Laviolette et al., 2005) as well as those IL 

neurons that project to the nucleus accumbens but not the IL neurons that project to the 

contralateral mPFC (McGinty & Grace, 2008).  Thus, it may be preferable to separate 

neurons into different layers as well as their different projection targets.  

The enhanced intrinsic excitably of IL-BLA projection neurons suggests that a 

primary effect of IL is to facilitate fear memory expression through activation of BLA.  

This was supported by our observation that the behavioral performance in conditioned rats 

was positively correlated with intrinsic excitability.  Although some discrepancies exist 
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(see Santini et al., 2008), our IL data are in line with the results of Vouimba et al. (2011) 

showing that fear conditioning significantly enhanced the field potentials within the IL-

BLA pathway and that the 24 h following conditioning these changes were positively 

correlated with freezing levels during the fear conditioning session.  In agreement with our 

observations, Vouimba and colleagues have also shown that the conditioning effect 

diminished when the conditioned response was extinguished.    

Cell type-specific effect of trace fear conditioning on PL neurons  

In contrast to the enhancement in the intrinsic excitability of IL neurons, we 

observed a reduction in the excitability of PL regular spiking neurons after conditioning 

(Figure 31B).  There was a negative correlation between the behavioral performance and 

intrinsic excitability, but this was only observed in the extinction group (see Figure 33).  

These results suggest that trace fear conditioning suppresses the excitability of PL-BLA 

neurons and that the activation of these neurons may facilitate extinction.  Our observations 

agree with previous findings that PL lesions enhance the expression of conditioned fear 

and impair extinction (Morgan & LeDoux, 1995) and that fear conditioning suppresses 

firing activity of PL neurons during CS presentation (Garcia et al., 1999; but see Burgos-

Robles et al., 2009; and Gilmartin & McEchron, 2005).  Furthermore, it has been shown 

that the amount of freezing is negatively correlated with the level of firing activity after 

extinction, which fits well with our current data.  These observations are also consistent 

with the reports showing that BLA stimulation predominantly inhibits PL activity (Perez-

Jaranay & Vives, 1991) and that the synaptic plasticity in thalamus-PL pathway is 

depressed after conditioning but reversed or even potentiated after extinction (Herry & 

Garcia, 2002; Herry, Vouimba, & Garcia, 1999).  These studies suggest that the 
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suppression of PL neural activity can be released by extinction, thereby reversing the 

conditioning effect in mPFC.  

In contrast to the observed suppression of firing in regular spiking neurons, trace 

fear conditioning significantly enhanced the excitability of burst spiking neurons in PL (see 

Figure 34 and Table 10).  This demonstrates a cell type-specific involvement of trace fear 

conditioning in mPFC neurons.  Presumably these two types of neurons communicate 

before they send output to the amygdala because they both have axon collaterals in mPFC 

(see Figure 30C and 30D).  It is also not known if they make synaptic connections with the 

same type of neurons in the BLA.  Although out of the scope of the current study, 

answering these research questions may help to elucidate the involvement of mPFC in trace 

fear conditioning and extinction.  

Subcellular mechanisms underlying trace fear conditioning-induced intrinsic plasticity  

The current data indicate that different mechanisms underlie the conditioning-

induced intrinsic plasticity in mPFC.  In IL, the enhancement of intrinsic excitability in 

regular spiking neurons was associated with a reduction in AP threshold (see Figure 32A) 

and an enhancement in h current (see Figure 32B and 32C).  The reduction in AP threshold 

is most likely caused by activation of voltage-gated sodium channels (VGSC), which 

underlie some forms of activity-dependent intrinsic plasticity (Ganguly, Kiss, & Poo, 2000; 

J. Xu, Kang, Jiang, Nedergaard, & Kang, 2005).  Ih is mediated by HCN channels, which 

have 4 subtypes (HCN 1-4), with HCN1 and HCN2 are most abundant in mPFC (Day et 

al., 2005).  The h-current expressed in the mPFC-BLA projection neurons is most likely 

mediated by HCN2 homomers or HCN1 and HCN2 heteromers, based on the slow kinetics 

of the depolarizing sag (see Figure 32B) (S. Chen et al., 2001).  Although the functional 
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difference is not entirely clear, it has been well established that HCN channels are highly 

expressed in distal dendrites (Lorincz et al., 2002; Magee, 1998) and are critical for 

coincidence detection (I. Pavlov et al., 2011) that may underlie associative learning such 

as classical fear conditioning (Johnson, Ledoux, & Doyere, 2009), and cortical rhythmic 

oscillation during slow wave sleep, which potentiates memory consolidation (Luthi & 

McCormick, 1998; Marshall, Helgadottir, Molle, & Born, 2006; McCormick & Pape, 

1990). 

In PL, we found that input resistance was the primary modulator that influenced 

experience-dependent changes in neuronal intrinsic excitability.  Our data demonstrated 

that after trace fear conditioning, input resistance was reduced in regular spiking but 

increased in burst spiking PL neurons.  As a consequence, the intrinsic excitability was 

reduced in regular spiking neurons but enhanced in burst spiking neurons, such that the 

burst spiking neurons were significantly more excitable than regular spiking neurons (see 

Figure 35C).  The activity-dependent modulation of input resistance has been observed in 

granule cells following high frequency stimulation of Mossy fiber in cerebellum (Armano, 

Rossi, Taglietti, & D'Angelo, 2000) and in amygdala neurons following fear conditioning 

(Rosenkranz & Grace, 2002).  In both cases, the increase in input resistance significantly 

enhanced the intrinsic excitability, suggesting that modulating intrinsic excitability is one 

mechanism that underlies learning and memory.  

Conditioning-induced plasticity is learning-specific, transient and flexible  

The transient feature of learning-induced enhancement of intrinsic excitability 

suggests that some regulatory process exists for restoring excitability to the normal baseline 

state, such that the intrinsic excitability of cortical neurons remains largely constant.  Such 
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transient learning-induced enhancement intrinsic plasticity has been observed in 

hippocampal CA1 and CA3 neurons following trace eyeblink conditioning (Moyer et al., 

1996; Thompson et al., 1996a; Zelcer et al., 2006).  However, one difference between 

hippocampus and mPFC is that hippocampus is not required for long-term memory 

retrieval (Kim et al., 1995; Kim & Fanselow, 1992) whereas long term conditioned fear is 

significantly attenuated when mPFC is inactivated during the memory retrieval (Blum et 

al., 2006).  Thus, an alternative mechanism that does not require the enhanced intrinsic 

excitability may exist during long-term memory retrieval.  Elucidating such mechanism 

will be a great interest for future studies. 

In the current study, we found that the intrinsic excitability and other membrane 

properties from extinction or extinction-retention rats were comparable to naïve levels, 

suggesting extinction reversed the effect of conditioning.  This is consistent with a previous 

study by Baeg and colleagues (2001) who used single-unit recordings and showed that 

more than 70% of mPFC (both IL and PL) neurons were responsive to the CS during 

conditioning, and that some neurons showed an increase (44%) whereas others showed a 

decrease (55%) in firing rate to the CS.  Although it is not clear whether or not the different 

responding cells were located in different subdivisions of mPFC, all the changes 

diminished following extinction training, suggesting that extinction reversed the 

conditioning-induced plasticity.  Furthermore, these results are also consistent with 

morphological studies showing that extinction reverses conditioning-induced plasticity in 

spine density (Lai et al., 2012; Vetere et al., 2011).  However, these results seem to support 

the view that extinction involves an “unlearning” process, which doesn’t agree with the 

hypothesis that extinction involves a new learning to inhibit the acquired CR (Barrett et 
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al., 2003; Bouton, 1993; I. P. Pavlov, 1927; Quirk, 2002; Rescorla, 2001).  In fact, there is 

evidence showing that extinction involves a subset of mPFC neurons that are only activated 

during extinction memory recall but not during conditioning (Milad & Quirk, 2002).  Thus, 

it is likely that both mechanisms (unlearning and new learning) coexist in mPFC and may 

underlie the acquisition and retention of extinction memory.  

Conclusions 

The current data manifest a complicated effect of trace fear conditioning on mPFC-

BLA projection neurons, in an area- and cell type-specific manner.  Specifically, trace fear 

conditioning enhanced the intrinsic excitability of regular spiking projection neurons in IL.  

Whereas in PL, trace fear conditioning suppressed the intrinsic excitability of regular 

spiking neurons but enhanced the intrinsic excitability of bursting neurons.  In both IL and 

PL, the conditioning effects were learning-specific, transient (lasted up to 10 days) and 

reversed by extinction.  In addition, the behavioral performance was significantly 

positively correlated with intrinsic excitability of IL neurons after conditioning, whereas 

negatively correlated with intrinsic excitability of PL neurons after extinction.  These data 

suggest that the overall function of IL-BLA projection neurons is to facilitate fear 

expression whereas the function of PL-BLA projection neurons is to inhibit trace 

conditioned fear.   
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CHAPTER FIVE: effect of delay fear conditioning and extinction on intrinsic 

excitability of mPFC neurons 

 
Abstract 

It has been established that the activity of medial prefrontal cortex (mPFC) is 

critical for fear memory expression through its reciprocal interaction with the amygdala.  

Two subregions that are critical for fear conditioning and extinction are the infralimbic (IL) 

and prelimbic (PL) cortices.  In experiment 4 we observed that acquisition of trace fear 

conditioning enhanced the intrinsic excitability of IL-BLA projection neurons but 

suppressed the PL-BLA projection neurons in a time-dependent manner, whereas 

extinction reversed the conditioning effect.  Although these results are in line with some 

earlier in vivo studies (Laviollette 2005; McGinty 2008), they seem to be contradictory to 

the report that acquisition of delay fear conditioning suppresses the intrinsic excitability of 

IL neurons from juvenile rats (Santini 2008).  To determine whether these conflicting 

results are due to differences between trace and delay fear conditioning paradigms, we 

performed whole-cell patch-clamp recordings from brain slices of adult rats that were 

naïve, delay fear conditioned, or delay fear conditioned-extinguished.  Analysis of data 

from 125 regular spiking neurons (71 IL, 54 PL) indicated that acquisition of delay fear 

conditioning significantly enhanced intrinsic excitability of IL neurons (p < 0.05).  The 

excitability was still high following extinction but not significantly different from Naïve.  

In addition, fear conditioning was associated with an enhancement of hyperpolarization-

activated current (Ih; p < 0.05), which remained high after extinction (p < 0.01).  Thus, 

delay fear conditioning enhanced the intrinsic excitability and Ih of randomly selected IL 

neurons, which are consistent with our observations following trace fear conditioning.  We 
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conclude that in adult rats fear conditioning enhances intrinsic excitability of IL neurons 

following both delay and trace fear conditioning.  Thus, these data rule out differences 

between the delay and trace fear paradigm as a factor contributing to the discrepancies 

between our data and those of Santini et al. (2008).   
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Introduction 

The medial prefrontal cortex is critical for emotional responses, especially for the 

recall of conditioned fear memory (Corcoran & Quirk, 2007).  In experiment 4, we 

observed that trace fear conditioning enhanced the intrinsic excitability of IL-BLA 

projection neurons but suppressed PL-BLA projection neurons in a timely manner, whereas 

extinction reversed the conditioning effect in both IL and PL.  These data suggest that 

activation of IL-BLA pathway facilitates the expression of conditioned fear whereas 

activation of PL-BLA pathway facilities extinction.  These observations are consistent with 

other studies showing that the spontaneous activity in PL neurons are negatively correlated 

with percent freezing during fear memory recall (Garcia et al., 1999), and that a low dose 

infusion of GABA(A) agonist muscimol into PL facilitated extinction (Akirav, Raizel, & 

Maroun, 2006).  In IL, in vivo recordings have also revealed that presenting the rats with a 

fear conditioned odor enhances the spontaneous activity of not only IL neurons that receive 

monosynaptic inputs from BLA (Laviolette et al., 2005) but also the IL neurons that project 

to the nucleus accumbens (McGinty & Grace, 2008).  These results also agree with more 

recent data showing that fear conditioning enhances the field potential within the IL-BLA 

pathway whereas extinction reverses this conditioning effect (Vouimba & Maroun, 2011).  

Although our observations are consistent with these studies in both IL and PL neurons, 

there are a number of studies showing contradictory results.  For example, data from Quirk 

lab suggests that activation of PL facilitates the expression of conditioned fear (Burgos-

Robles et al., 2009; Corcoran & Quirk, 2007; Vidal-Gonzalez et al., 2006) whereas 

activation of IL inhibits fear expression (Chang & Maren, 2011; Milad & Quirk, 2002; 

Milad et al., 2004).  These data also fit with their observations that acquisition of fear 



156 
 

 
 

conditioning suppressed the intrinsic excitability of IL neurons whereas extinction reversed 

the conditioning-induced effect (Santini & Porter, 2010; Santini et al., 2008).  Several 

critical differences between these studies and our data included their use of a delay 

paradigm, their use of a potassium methylsulfate recording solution, their use of room 

temperature recordings, and their use of juvenile rats (postnatal day 25 to P30; see also 

discussion in Chapter 4).  Thus, the aim of the present study was to investigate how delay 

fear conditioning and extinction affect the intrinsic excitability of randomly selected mPFC 

neurons in adult rats. 

Methods 

Subjects.  Subjects were 12 adult male Sprague-Dawley rats (3.5 – 4.2 mo).  One 

additional juvenile Sprague-Dawley rat (27 day old) was used to compare the effect of 

internal solution on intrinsic excitability.  Rats were maintained in an Association for 

Assessment and Accreditation of Laboratory Animal Care (AAALAC) accredited facility 

on a 14 h light–10 h dark cycle and housed individually with free access to food and water.  

All adult rats were handled at least one week prior to experiments.  Procedures were 

conducted in accordance with the University of Wisconsin-Milwaukee animal care and use 

committee (ACUC) and NIH guidelines. 

Apparatus.  Delay fear conditioning were conducted in a Plexiglas and stainless 

steel chamber (30.5 X 25.4 X 30.5 cm; Coulbourn Instruments, Whitehall, PA), located in 

a sound-attenuating box.  The chamber had a standard grid floor consisting of 26 parallel 

steel rods (5 mm diameter and 6 mm spacing).  The floor was connected to a precision 

adjustable shock generator (Coulbourn Instruments) for delivery of a scrambled footshock 

US.  Within the sound-attenuating box, a ventilation fan produced a constant background 
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noise of about 58 dB (measured by a sound level meter, A scale; model #33-2050, Realistic, 

Fort Worth, TX).  The chamber was illuminated by a miniature incandescent white lamp 

(28V, type 1819) and was wiped with soap prior to each training session.  During training, 

the room lights were left on (illumination 20.9 lux) for the entire session. 

Fear conditioning and extinction.  The behavioral procedure was modified from 

the study of Santini et al (2008). Rats were randomly assigned to naïve (NAÏVE, n = 4), 

conditioned (COND, n = 4), and conditioned-extinguished (EXT, n = 4).  On day 1, COND 

and EXT rats received one 4-trial session of auditory delay fear conditioning using a 30 s 

CS (4 kHz tone with an intensity of 80 dB) and a 1 s footshock US (0.5 mA).  A long (5.2 

min ± 20 %) intertrial interval was used to maximize CS and minimize context (i.e., training 

chamber) conditioning (Detert et al., 2008).  On day 2, COND rats remained in their home 

cages whereas EXT rats were returned to the conditioning chamber and received one 10-

trial session of CS-alone presentations with intertrial interval of 2 ± 20% min.  Following 

the extinction session, rats were returned to their home cages 2 min after the last extinction 

trial.   

 Behavioral testing.  On day 3, both COND and EXT rats were returned to the 

conditioning chamber where they received a brief CS session in the conditioning context.  

After a 2 min baseline, rats received 2 CS-alone presentations and were removed 2 min 

later.  To assess memory, the amount of time spent freezing during the baseline and the CS 

was measured.  Naïve rats also received the CS-alone presentations although they didn’t 

receive conditioning on day one.  Figure 36A and 36B illustrates the conditioning protocol 

and experimental procedure.  
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Analysis of behavioral data.  A remote CCTV video camera (model #WV-BP334; 

Panasonic Corp., Suzhou, China), mounted to the top of each behavioral chamber, was 

used to record the activity of each rat during training and testing.  The video data were fed 

to a PC running FreezeFrame 2.04.  Data were analyzed using FreezeView 2.04 

(Actimetrics Software, Coulbourn Instruments) where a 1-sec bout of immobility was 

scored as freezing.  Freezing is defined as the absence of all movement except that required 

for respiration (Blanchard & Blanchard, 1969).    

Slice preparation.  Brain slices containing PFC were prepared within 1 h following 

the test session by an individual blind to training condition.  Rats were deeply anesthetized 

with isoflurane and decapitated.  The brains were quickly removed and placed in ice-cold 

oxygenated (95% O2/5% CO2) aCSF (composition in mM: 124 NaCl, 2.8 KCl, 1.25 

NaH2PO4, 2 MgSO4, 2 CaCl2, 26 NaHCO3, and 20 dextrose, pH 7.4).  The brain was then 

blocked and coronal prefrontal brain slices (300 µm) were cut in aCSF at ~ 0°C aCSF using 

a vibrating tissue slicer (VT1200, Leica).  Slices were then transferred to a holding chamber 

(Moyer et al., 1996) containing oxygenated aCSF at 32-36°C.   

Electrophysiological recordings.  For experiments, slices were transferred to a 

submerged recording chamber mounted on an Olympus BX51WI upright microscope 

where they were perfused with oxygenated aCSF at a rate of 2 ml/min (maintained at 32-

36°C using an inline temperature controller).  Neurons were visualized with infrared 

differential video interference microscopy, and WCRs were obtained under visual guidance 

from the soma of layer 5 pyramidal neurons located in either the IL or PL subregions of 

the mPFC (Paxinos & Watson, 1998).  For WCRs, electrodes (5–8 MΩ) were prepared 
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Figure 36.  Experimental design and behavioral performance during delay fear conditioning, 

extinction, and probe test.  A, Behavioral paradigm used in the current study. The conditioning consists a 

30-s tone (CS) co-terminated with a 1-s footshock (US).  B, Experimental design.  On day 1, the COND and 

EXT rats received one 4-trial session of delay fear conditioning (mean ITI = 5.2 min).  On day 2, EXT rats 

received one 10-trial session of extinction in the same context where they received conditioning.  NAÏVE 

rats remained in their homecages without receiving any stimuli.  On day 4, all rats received 2 CS-alone 

presentations to test memory.  C, Percent freezing during conditioning, extinction and probe test.  During the 

probe test, COND rats froze significantly more than both EXT (p < 0.05) and NAÏVE (p < 0.01) rats.



160 
 

 

from thin-walled capillary glass and filled with the following solution (in mM): 150 

KMeSO3, 10 KCl, 0.1 EGTA, 10 HEPES, 0.3 GTP, and 0.2 ATP, pH 7.3 (292 mOsmol).  

All recordings were obtained in current-clamp mode using a HEKA EPC10 amplifier 

system (HEKA Instruments Inc. Bellmore, New York).  Experiments were controlled by 

PatchMaster software (HEKA Instruments) running on a PC.  All electrodes were pulled 

from thin-walled capillary glass (A-M Systems, Carlsborg, WA) using a Sutter Instruments 

P97 puller.  Cells were held at -67 mV by manually adjusting the holding current.  The 

electrode capacitance and series resistance (Rs) were monitored, compensated, and 

recorded frequently throughout the duration of the recording.  In some experiments, the 

recording pipettes were filled with K-gluconate based solution (composition in mM: 110 

K-gluconate, 20 KCl, 10 Di-Tris-P-Creatine, 10 HEPES, 2 MgCl2, 2 Na2ATP, 0.3 Na2GTP, 

0.2% Biocytin, pH to 7.3) to compare the effect of internal solutions on the excitability.    

Intrinsic excitability studies.  Neurons were recorded under current clamp using 

the following protocol: (1) Voltage–current (V-I) relations were obtained by injecting a 

series of 500 ms current steps (range -300 to +50 pA) and plotting the plateau voltage 

deflection as a function of current amplitude.  Neuronal input resistance (RN) was 

determined from the slope of the linear fit of that portion of the V-I plot where the voltage 

sweeps did not exhibit sags or active conductances.  The sag ratio during hyperpolarizing 

membrane responses was expressed as [(1 – ∆Vss / ∆Vmin) × 100%], where ∆Vss = MP – 

Vss, ∆Vmin = MP - Vmin, MP is the membrane potential before current step, Vss is the steady-

state potential and Vmin is the initial minimum potential.  For each neuron, sag ratio was 

calculated from -300 pA, -250 pA, and -200 pA current steps and averaged.  (2) Postburst-

AHPs were measured by injecting 10 suprathreshold (1-3 nA for 2 ms) current injections 
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at 50 Hz.  Post-burst AHPs were measured from somatic membrane potentials following 

the offset of the last current injection (3X, at 20 sec intervals). (3) Neuronal excitability 

was studied using a family of 1-s depolarizing current injection (from 100 to 1000 pA).  

For each sweep, the number of action potentials elicited were counted.  

Statistical Analyses.  The overall treatment effects were examined using a one-way 

ANOVA, or repeated measures ANOVA using IBM SPSS (version 22) whereas 

appropriate.  For significant main effects (alpha 0.05), a Fisher’s PLSD test was used for 

post hoc comparisons.  All data were expressed as mean ± SEM.  

 
Results 

The current study was conducted to explore the possible factors that may have 

contributed to the different results observed between our trace fear conditioning data and 

others’, especially the study by Quirk and colleagues (Santini et al., 2008).  We 

investigated whether the results of the Santini study using juvenile rats were applicable to 

those using adult rats by replicating their behavioral paradigm and recording methods.  

However, we performed whole-cell recordings in 32-36°C because it is more close to the 

biological state, instead of room temperature as in the Santini study.  In addition, we used 

an internal recording solution (KMeSO3-based) with which the neurons displayed 

comparable excitability as those from the Santini study (KMeO4-based).   

As shown in Figure 36C, both conditioned (COND) and conditioned-extinguished 

(EXT) rats displayed a rapid increase in freezing on day 1 during training [F(2.1, 12.5) = 

11.6, p < 0.01; Greenhouse-Geisser corrected], but no significant difference between the 

two groups [F(1,6) = 0, p = 0.99].  On day 2, EXT rats showed a reduction of freezing 

within the extinction section (from 62% to 15%).  On day 3, COND rats displayed a 
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significantly higher level of freezing than Ext (p < 0.05) and NAÏVE rats [p < 0.01].  These 

data suggest that COND rats displayed good conditioning memory whereas Ext rats 

displayed good extinction memory during the behavioral test.  

Delay fear conditioning increased intrinsic excitability of IL neurons 

To examine the effect of delay fear conditioning and extinction on the intrinsic 

excitability of mPFC neurons, PFC slices were prepared immediately after the behavioral 

test and whole-cell recordings were performed on L5 neurons in both IL and PL.  Figure 

37 shows the location of the neurons obtained in this study.  As shown in Figure 38A, delay 

fear conditioning enhanced the excitability of IL neurons but only at high current intensities 

(0.9 – 1.0 nA; p < 0.05 for both values when tested with a planned two-tailed t-test).  After 

extinction, the excitability was reduced but still higher than naïve although this effect did 

not reach statistical significance (p = 0.16 and p = 0.06 for 0.9 nA and 1.0 nA current 

injection respectively).  This suggests the extinction did not completely reverse the effect 

of conditioning.  In PL, neurons from COND rats fired a comparable number of spikes 

compared with those from Naïve rats.  Extinction tended to reduce the excitability of PL 

neurons but not significantly (see Figure 38B).  In addition, under our recording conditions, 

the Naïve neurons fired a maximum of 13 spikes in IL and 25 spikes in PL.  This is in stark 

contrast to the maximum of 5 spikes in IL and 6 spikes in PL in the Santini study (see 

Figure 2 of Santini et al., 2008). 

Delay fear conditioning enhanced depolarizing sag in IL neurons  

We observed an enhancement of depolarizing sag in IL-BLA projection neurons 

following trace fear conditioning in Chapter 5.  Consistent with this, analysis of sag ratio
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Figure 37.  Location of L5 pyramidal neurons obtained in mPFC following delay fear conditioning and 

extinction.   The location of each recorded neuron was obtained from a snapshot taken after each experiment 

and indicated as individual circles in brain stereotaxic atlases (Paxinos & Watson, 1998).  Only regular 

spiking neurons in layer 5 were studied.   
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Figure 38.  Effect of acquisition and extinction of delay fear conditioning on the intrinsic excitability 

of mPFC neurons.  A, acquisition of delay fear conditioning significantly enhanced the intrinsic excitability 

of IL neurons (p < 0.05 between COND and NAÏVE).  B, acquisition or extinction of delay fear conditioning 

didn’t significantly change the intrinsic excitability of PL neurons.   
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 (measured from - 300 to - 100 pA current injection) with a one-way ANOVA followed by 

post hoc test indicated that delay fear conditioning significantly enhanced the sag (p < 

0.01), which was still larger than naïve neurons following extinction (p < 0.05; see Figure 

39A).  In PL, the sag was not significantly changed after conditioning or extinction (see 

Figure 39B).  Other membrane properties such as input resistance and AP characteristics 

were not significantly changed following conditioning or extinction (see Table 11).  

Neurons recorded with KMeO3-based internal solution are less excitable than those 

recorded using a K-gluconate based internal solution 

We next examined whether the different pipette solution and animal age could 

account for the differential excitability of mPFC neurons observed between the current 

study and that of Santini and colleagues (2008).  We recorded from L5 IL neurons from a 

juvenile rat (27d old) in room temperature (~ 22°C) and compared the excitability between 

neurons obtained using either a KMeSO3-based or a K-Gluconate-based internal solution.  

As shown in Figure 40, neurons are much more excitable when recordings were made using 

a K-Gluconate (a maximum of 15 ± 3 spikes, n = 2) rather than a KMeSO3-based internal 

solution (a maximum of 5 ± 1 spikes, n = 5), and these differences were statistically 

significant (repeated measures ANOVA; F(1,5) =  37.9, p < 0.01, followed by an 

independent t-test  where p < 0.01 for all values of 150 – 400 pA current steps.  Thus, the 

excitability of neurons recorded with a K-Gluconate-based solution matches our study of 

trace fear conditioning in Chapter 4 and that the excitability of neurons recorded using 

KMeSO3-based solution matches that of the Santini et al., 2008 study. .  
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Figure 39.  Acquisition of delay fear conditioning significantly enhanced depolarizing sag in IL (A) but 

not in PL (B) neurons.  The voltage sag ratio in response to hyperpolarizing currents was calculated as the 

peak voltage deflection divided by the amplitude of the steady-state voltage deflection.  In IL, the sag ratio 

was significantly increased in neurons from COND and EXT rats compared to neurons from NAÏVE rats (* 

p < 0.05, # p < 0.01).  
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Figure 40.  Effect of internal solutions on intrinsic excitability of mPFC neurons.  Intrinsic excitability 

was evaluated in neurons from a young (27-d old) rat with K-gluconate (Kglu)-based and KMeSO3 (KMeth)-

based internal solutions at room temperature (~ 22ºC).  Neurons recorded with a Kglu-based internal solution 

were more excitable than neurons recorded with a KMeth-based internal solution (# p < 0.01).   
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Discussion 

We performed whole-cell patch-clamp recordings from naïve rats, or behaviorally 

characterized rats that received either conditioning or conditioning followed by extinction.  

Our data indicated that delay fear conditioning significantly enhances the intrinsic 

excitability of IL neurons.  Although the excitability remained high after extinction, it was 

not significantly different from that of naïve neurons.  Delay fear conditioning also 

significantly increased Ih, which remained high following extinction.  In contrast, delay 

fear conditioning and extinction did not significantly affect the intrinsic excitability or Ih 

in PL neurons.   

The current observations that delay fear conditioning enhances intrinsic excitability 

of IL neurons and activation of Ih are consistent with our data from IL-BLA projection 

neurons following trace fear conditioning.  However, the effect on the delay conditioning 

is weaker compared with trace conditioning because it was only observed when the neuron 

reached its asymptotic level of firing, which occurred at higher current injections (e.g., 0.9 

– 1.0 nA for 1 s).  In contrast, in experiment 4 we observed a strong conditioning-induced 

enhancement of intrinsic excitability in IL-BLA projection neurons even when the neurons 

received a moderate level of stimulation (e.g., 200 – 400 pA for 1 s), which was not 

sufficient to saturate its firing capability (see Figure 32A).  Thus, it is likely that a strong 

activation of IL neurons is not required for acquisition of delay fear conditioning, which 

agrees with previous reports (Lebron et al., 2004; Quirk et al., 2000).  Another possible 

explanation is the heterogeneity of the randomly recorded neurons.  It has been shown that 

the pyramidal neurons in mPFC have distinct electrophysiological properties depending on 

their long-range projection targets (Dembrow et al., 2010) and are modified differently 
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following fear conditioning.  For example, olfactory fear conditioning specifically 

enhances the spontaneous activity of IL neurons that receive monosynaptic inputs from the 

BLA (Laviolette et al., 2005) and IL neurons that project to the nucleus accumbens but not 

the neurons that project to the contralateral mPFC (McGinty & Grace, 2008).  In contrast 

neurons that do not have direct connection with nucleus of accumbens or BLA are not 

changed or even suppressed by fear conditioning (Laviolette et al., 2005; McGinty & 

Grace, 2008).  This agrees with our current observation that a small effect of delay fear 

conditioning occurred on randomly selected mPFC neurons.  

At first glance, our results seem contradictory with an earlier study by Santini et al. 

(2008).  This previous study reported that acquisition of delay fear conditioning 

significantly reduced the intrinsic excitability of randomly selected IL neurons whereas 

extinction reversed the conditioning effect.  However, as was discussed in Chapter 4, there 

are many differences between our study and that of Santini and colleagues (2008).  

Although we have tried to match some of their experimental protocol (e.g., animal strain, 

fear conditioning paradigm, and pipette internal solution), there are still other differences 

(e.g., animal age, recording temperature, and recording procedure) that may have 

contributed to the dramatically different results.   

One dramatically different result between the current and that of Santini et al. 

(2008) is the baseline excitability of mPFC neurons.  In the Santini et al. 2008 study, both 

IL and PL neurons obtained from juvenile rats fired a maximum of 6 spikes in response to 

0.8 s current injections.  In contrast, in our current study, the IL neurons obtained from 

naïve rats fired a maximum of 13 spikes in response to 1-s depolarizing current injections.  

This difference is most likely caused by the different animal age and recording temperature 
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because we have demonstrated that IL neurons were much less excitable (fired a maximum 

of 5 spikes) when recorded from a young rats at room temperature (see Figure 40).  Thus, 

the different results observed between our trace fear conditioning and that of Santini are 

likely caused by different experiment methods.   

The current study also observed that the acquisition of delay fear conditioning 

significantly enhanced Ih, suggesting that activation of HCN channels is critical for the 

maintenance of conditioned fear.  This is consistent with our observation that trace fear 

conditioning enhanced Ih in IL-BLA projection neurons (see Figure 32B).  However, unlike 

in the study of trace fear conditioning, extinction of delay fear conditioning didn’t reverse 

the conditioning effect.  There may be several reasons for this difference.  First, in the 

present study the rats received one-session extinction training, which might not be enough 

to reverse the conditioning effect.  In contrast, in our trace conditioning study the rats 

received a 2-session extinction training which allowed the extinction memory 

consolidated.  Second, the present study recorded from randomly selected neurons whereas 

in our trace fear conditioning study only mPFC-BLA projection neurons were recorded.  

The different effect observed following extinction between the two studies suggests that 

different projection neurons are involved in the acquisition and extinction of fear 

conditioning.  The neurons that involved conditioning (e.g., mPFC-BLA projection 

neurons) were reversed by extinction, whereas additional neurons were activated during 

extinction and were obtained by the random recordings.  Third but not last, it is also 

possible that delay and trace fear conditioning activated the mPFC neurons differently.  It 

is interesting to explore how these different results were generated by similar experimental 
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procedures.  However, it is out of the scope of the current study to completely elucidate the 

causes of these differences.  

Conclusions 

Delay fear conditioning significantly enhanced the intrinsic excitability of 

randomly selected L5 neurons in IL but not PL in adult rats.  In addition, acquisition of 

delay fear conditioning was associated with enhanced h-current in IL neurons.  These data 

are consistent with the results from Experiment 4 that IL is critical for expression of 

conditioned fear memory.  
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CHAPTER SIX: effect of trace fear conditioning and extinction on spine density of 

mPFC-BLA projection neurons 

Abstract 

The activation of mPFC neurons is required for both acquisition and extinction of 

trace fear conditioning.  Such activation may involve a temporal plasticity in neuronal 

excitability and a long-term plasticity in synaptic circuits.  In experiment 3, we have shown 

that trace fear conditioning and extinction differentially modulate intrinsic excitability of 

mPFC-BLA projection neurons.  Here, we further characterized the morphological 

properties of these neurons and examined how trace fear conditioning and extinction affect 

the spine density of these neurons.  We found that the spine density was significantly 

correlated with the somatic depth in both IL and PL (p < 0.01 for both IL and PL) such that 

neurons in superficial layers had higher spine density than those in deep layers (p < 0.01 

for both IL and PL).  In L2/3, the spine density was not significantly changed after trace 

conditioning or pseudoconditioning but was significantly reduced after extinction.  In L5, 

there was a trend that conditioning increased the spine density whereas extinction and 

extinction-retention reduced the spine density, such that the spine density was significantly 

lower after extinction-retention than after conditioning.  Furthermore, the reduction in 

spine density in IL L2/3 neurons is primarily driven by mushroom spines, whereas in PL 

the reduction in spine density in L2/3 neurons was primarily driven by thin spines.  Thus, 

such subtype- and subregion-specific modulation of spine density may underlie the 

different roles of IL and PL in the long-term expression of conditioned fear.  
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Introduction 

Medial prefrontal cortex (mPFC) has reciprocal innervation with the amygdala 

(Bacon, Headlam, Gabbott, & Smith, 1996; Gabbott et al., 2005; McDonald, 1998), 

through which the mPFC neurons affect the acquisition, consolidation, and extinction of 

conditioned fear (Burgos-Robles et al., 2009; Corcoran & Quirk, 2007; Marek, Strobel, 

Bredy, & Sah, 2013).  However, the mPFC also projects to a variety of other brain regions 

that involve multiple cognitive functions (Gabbott et al., 2005), so it is possible that 

different projection neurons within the mPFC are differentially modulated during fear 

conditioning and extinction.  This has been demonstrated in a recent study showing that 

stimulation of BLA (or presentation of a Pavlovian fear conditioned odor) selectively 

activates the IL neurons that project to the nucleus accumbens but not those that project to 

the contralateral mPFC (McGinty & Grace, 2008).  Thus, a circuit-specific study of the 

neurons within mPFC may be necessary to uncover the mechanisms underlying Pavlovian 

fear conditioning.  

Fear conditioning and extinction not only involve the modulation of 

electrophysiological properties of cortical neurons, but they also remodel the synaptic 

circuits, which may underlie the long-term fear/extinction memory.  For example, a recent 

in vivo photoimaging study in frontal association cortex (FrA) in live animals has shown 

that fear conditioning significantly eliminated existing spines in layer 5 neurons, whereas 

extinction reversed the conditioning effect such that the spines being eliminated during 

conditioning were reformed (Lai et al., 2012).  This indicates that modulation of spine 

density is critical for the formation and expression of long-term conditioned fear memory.  

However, little is known about how fear conditioning affects spine density in mPFC.  One 
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previous study found that the spine density was increased following contextual fear 

conditioning and remained high following extinction (Vetere et al., 2011).  Although it has 

been established that the acquisition of trace fear conditioning requires the activation of 

mPFC (Gilmartin & Helmstetter, 2010; Gilmartin & McEchron, 2005), it is still not clear 

how acquisition and extinction of trace fear affects the spine density in mPFC neurons, 

especially the neurons that project to amygdala.  Thus, the current study was carried out to 

investigate the effect of trace fear conditioning and extinction on spine density of mPFC-

BLA projection neuron.  In order to study the dendritic spines, the mPFC-BLA projection 

neurons were labeled with florescent microspheres (RetrobeadsTM), followed later by 

Lucifer-Yellow injection into those individual neurons.   

Methods 

Subjects.  Subjects were 19 adult male F344 rats (3.8 ± 0.1 mo).  Rats were 

maintained in an Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) accredited facility on a 14 h light–10 h dark cycle and housed individually 

with free access to food and water.  All rats were handled at least one week prior to 

experiments.  Procedures were conducted in accordance with the University of Wisconsin-

Milwaukee animal care and use committee (ACUC) and NIH guidelines. 

RetrobeadsTM infusion.  All rats received unilateral pressure infusion of a 

fluorescent retrograde tracer (RetrobeadsTM, Lumafluor) into the basolateral nucleus of the 

amygdala (relative to Bregma, -3 mm AP, ± 5 mm ML; - 8.3 mm DV), with deep 

anesthetization under stereotaxic.  The infusion was made with glass pipettes (20 – 40 µm) 

pulled from borosilicate glass (VWR Micropipets) using a Sutter Instruments P97 puller.  

The pipette was connected to a 2 µl syringe (Hamilton) driven by an infusion pump 
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(Harvard Apparatus, model 975).  The infusion lasted 5-10 min and the pipette was 

withdrawn 10 min after infusion.  A total volume of 0.1 - 0.3 µl red RetrobeadsTM were 

infused into BLA.   

Apparatus.  Fear conditioning chambers. Trace fear conditioning was conducted 

in a Plexiglas and stainless steel chamber (30.5 X 25.4 X 30.5 cm; Coulbourn Instruments, 

Whitehall, PA), located in a sound-attenuating box.  The chamber was rectangular and had 

a standard grid floor consisting of 26 parallel steel rods (5 mm diameter and 6 mm spacing).  

The floor was connected to a precision adjustable shock generator (Coulbourn Instruments) 

for delivery of a scrambled footshock US.  Within the sound-attenuating box, a ventilation 

fan produced a constant background noise of about 58 dB (measured by a sound level 

meter, A scale; model #33-2050, Realistic, Fort Worth, TX).  The chamber was illuminated 

by a miniature incandescent white lamp (28V, type 1819) and was wiped with a 5% 

ammonium hydroxide solution prior to each training session.  During training, the room 

lights were left on (illumination 20.9 lux) for the entire session. 

Extinction and CS testing chambers.  An additional Plexiglas chamber was served 

as a novel context for the auditory cue test.  This chamber was located within a separate 

sound-attenuating box located in the same room.  The test chamber was physically different 

from the training chamber in that it was octagonal (instead of rectangular), the floor was 

black-painted Plexiglas (instead of grid bars), and was illuminated with an infrared light.  

In addition, the tray below the test chamber floor contained clean bedding and the test 

chamber was wiped with 2% acetic acid prior to each test session to provide a different 

olfactory stimulus from that used during training.  The room lights were turned off 

(illumination 0.2 lux) for the entire testing session. 
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Fear conditioning and extinction.  After a minimum of 7 days of recovery from 

RetrobeadsTM infusion, rats were handled for at least a week before they were randomly 

assigned to naïve (NAÏVE, n = 2), pseudoconditioned (PSEUDO, n = 5), trace fear 

conditioned (TRACE, n = 3), trace fear conditioned-extinction (EXT, n = 5), and trace fear 

conditioned extinction-retention (EXT-RET, n = 4) groups (see Figure. 41).  On day 1, 

TRACE, EXT, and EXT-RET rats received one 10-trial session of auditory trace fear 

conditioning using a 15 s CS (80 dB white noise) followed by a 30 s trace interval 

(stimulus-free period) and a 1 s footshock US (1.0 mA).  A long (5.2 min ± 20 %) intertrial 

interval was used to maximize CS and minimize context (i.e., training chamber) 

conditioning (Detert et al., 2008).  PSEUDO rats received the same amount of CS and US 

presentations but explicitly unpaired.  On days 2-3, rats in TRACE and PSEUDO groups 

remained in their home cages, whereas EXT and EXT-RET rats received 2 consecutive 

sessions (1 session per day) of 10 CS-alone presentations in the extinction chamber.  These 

sessions were identical to training except no US was presented (i.e., 15 sec white noise CS; 

30 sec trace interval; 5.2 min ITI).  Following each extinction session, rats were returned 

to their home cages 2 min after the last extinction trial.   

Behavioral testing.  Twenty-four hours after extinction (day 4), PSEUDO, 

TRACE, and EXT rats received a brief CS test session in the extinction context.  EXT-

RET rats received the CS test on day 11.  After a 2-min baseline, rats received two 15-s CS 

presentations with a 2.9-min intertrial interval, and were removed 2 min after the second 

CS presentation.  To assess memory, the amount of time spent freezing during the baseline, 

the CS, and the trace interval (defined as the first 30 sec after CS offset) was measured.  

The percent freezing during the 2 CS presentations during the probe test was averaged and 
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used as the measurement of behavior performance (memory).  A summary of experimental 

design and behavioral performance is shown in Figure 41.   

Analysis of behavioral data.  A remote CCTV video camera (model #WV-BP334; 

Panasonic Corp., Suzhou, China), mounted to the top of each behavioral chamber, was 

used to record the activity of each rat during training and testing.  The video data were fed 

to a PC running FreezeFrame 2.04.  Data were analyzed using FreezeView 2.04 

(Actimetrics Software, Coulbourn Instruments) where a 1 sec bout of immobility was 

scored as freezing.  Freezing was defined as the absence of all movement except that 

required for respiration (Blanchard & Blanchard, 1969). 

Visualization of corticoamygdala projection neurons.  Immediately after testing, 

rats were re-anaesthetized and perfused with 200 ml 1% paraformaldehyde in 0.1 M 

phosphate buffer (PB, pH  7.4) followed by 450 ml 4% paraformaldehyde 0.125% 

glutaraldehyde in 0.1 M PB with a speed of ~ 20 ml/min.  Brains were removed and post-

fixed for 2 h in the same fixative in 4ºC (adapted from Radley et al., 2006).  After fixation, 

coronal sections (250 µm thick) were cut in 0.1 M PB with a vibratome (model 1000S, 

Vibratome, St. Louis, MO).  Slices were stored in 0.1 M PB in 4ºC until further use.  An 

example of the bilateral distributions of corticoamygdala somata is shown in Figure 13B.  

The location of RetrobeadsTM infusions for all rats included in this study is shown in Figure 

42. 

For Lucifer yellow (LY) injection, slices from the ipsilateral side of RetrobeadsTM 

infusion were mounted on a nitrocellulose filter paper and submerged in 0.1 M PB, and 

visualized under DIC and epifluorescence.  Sharp micropipettes with resistance of 100 – 

400 MΩ (when filled with 5% LY in dH2O and measured in 0.1 M PB) were used for
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Figure 41.  Experimental design and behavioral performance during trace fear conditioning, 

extinction, and probe test.  A, Experimental design.  Rats received one 10-trial session of trace fear 

conditioning or pseudoconditioning on day 1.  EXT and EXT-RET rats received 2 sessions of extinction on 

days 2-3 in a novel context. TRACE, PSEUDO, and EXT rats received a brief CS-alone probe test on day 4 

in the extinction context.  EXT-RET rats received the probe test on day 11.  Rats were euthanized immediately 

by perfusing with paraformaldehyde and glutaraldehyde following behavior test for morphological study.  

NAÏVE rats remained in their homecages throughout the experiment.  B, Behavioral responses of trace fear-

conditioned and pseudoconditioned rats during conditioning, extinction (first 2 trials), and testing.  During 

conditioning, all rats displayed a rapid increase in freezing levels during the first three trials and maintained 

at high freezing levels.  A repeated measures ANOVA of percent freezing revealed a significant main effect 

of training trials [F(9,117) = 14.0, p < 0.01] but no significant effect of group [F(3,13) =1.6, p = 0.24] nor 

significant group by training trial interaction [F(27,117) = 1.2, p = 0.22].  On both extinction days, EXT and 

EXT-RET rats displayed comparable levels of freezing during extinction sessions.  During the probe test, all 

rats displayed comparable levels of freezing during baseline (dashed line indicates the average baseline 

freezing of all groups).  In contrast, TRACE rats froze significantly more than PSEUDO (p < 0.05), EXT (p 

< 0.01), and EXT-RET (p < 0.05) rats.  All values are percent freezing during the trace interval (see Methods). 
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Figure 42. Schematic drawing of coronal sections of rat brain showing the location of pipette tips used 

for RetrobeadsTM infusions in the amygdala.  RetrobeadsTM were infused into both hemispheres but all 

infusion locations were shown in left hemisphere for simplicity.  Illustrations were modified from Paxinos & 

Watson (1998), with permission from Elsevier.  
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injection (Buhl & Lubke, 1989).  RetrobeadsTM-labeled neurons within mPFC were 

identified by exposing sections to ultraviolet light and the target cells were centered in the 

field of view.  Successful impalement of a neuron was ascertained by applying a short 

negative current pulse, leading to rapid and intense filling with LY (see Figure 43).  In 

contrast, when the pipette tip was still located extracellular, the dye spreads in a diffuse 

cloud.  LY was iontophoretically injected by applying a negative constant current (1-8 nA) 

for 5-15 min until the distal dendrites appeared brightly fluorescent (Buhl, Schwerdtfeger, 

& Germroth, 1990).  After injection, the slices were mounted, coverslipped with Ultra Cruz 

Mounting Medium (Santa Cruz Biotechnology, Santa Cruz, CA), and sealed with nail 

polish for visualization.  

Reconstruction of mPFC-BLA projection neurons.  An individual blind to the 

training condition analyzed both dendritic branching and spine density.  LY injected 

neurons were visualized and imaged on an Olympus confocal laser scanning microscope 

(FV1200) using a 488 nm excitation wavelength.  Stacks of images that contained the 

whole individual neuron were taken using a 10x objective [numerical aperture (NA), 0.4] 

at 0.62 µm increments.  This method produced images with a voxel resolution of 0.621 x 

0.621 x 0.62 µm in the x-, y-, and z- planes, respectively.  Maximum intensity projections 

were prepared with the FV10-ASW viewer software (Olympus, v 4.0) to obtain 3D images 

of the mPFC-BLA projection neurons (see Figure 43B and 43 C).  

Analysis of dendritic spines.  In order to select dendritic segments from which to 

analyze spine density, concentric circles were drawn on the 3D image at radial increments 

of 50 µm relative to the soma (see Figure 43B and 43C).  Segments were selected with a 
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Figure 43.  Visualization of dendritic arbor in L2/3 and L5 pyramidal neurons of the mPFC-BLA 

projection neurons.  A, Photoimages showing before (t = 0), during (t = 0.5 min) and after (t = 6 min) 

iontophoretic injection of Lucifer Yellow (LY) into a RetrobeadsTM-labeled pyramidal neuron (i.e., mPFC-

BLA projection).  B, Maximum z-projection of an LY-injected L2/3 neuron (see cell location in Db).  C, 

Maximum z-projection of an LY injected L5 neuron (see cell location in Dc).  The white rectangles in B and 

C indicate dendritic segments shown in Figure 44.  The concentric circles in B and C were used to select 

dendritic segments at different radial distance for the analysis of dendritic spines.  D, Confocal image 

showing multiple neurons being injected with LY in mPFC area (Bregma 3.2 mm).  b and c in panel D 

indicate cells shown in B and C.  As shown in panels B and C, the mPFC-BLA projections neurons displayed 

similar arborization patterns in basal dendrites between L2/3 and L5.  The apical dendrite of L2/3 projection 

neuron was short and bifurcated within 200 µm from the soma.  In contrast, the apical dendrite of L5 

projection neurons was prominent and had a trunk, from which oblique dendrites emerge before bifurcating 

to form a tuft dendrite.  Scale bars: A, 5 µm; D, 100 µm.  
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systematic-random design at 50, 100, and 150 µm from the soma (up to 4 segments at each 

distance) to provide a systematic sampling of proximal, intermediate, and distal dendritic 

segments.  For apical dendrites, segments were selected from secondary or tertiary 

branches that have comparable diameter because the spine density is correlated with 

segment diameter (Larkman, 1991).  Although additional distal segments were selected, 

segments within 150 µm yielded best fluorescent intensity for spine counting therefore 

were analyzed.  Stacks of image that contain the selected dendritic segments (20 – 60 µm) 

were taken using a 60x oil immersion objective (NA, 1.42) at a zoom of 6.6 and at 0.1 µm 

increment.  This method produced images with a voxel resolution of 0.1 x 0.1 x 0.1 µm in 

the x-, y-, and z-planes, respectively.  

Spine analysis was performed using the semi-automated software NeuronStudio 

(http://research.mssm.edu/cnic/tools-ns.html), which analyzes dendritic length and spine 

number in 3D (see Figure 44; see also Rodriguez, Ehlenberger, Dickstein, Hof, & Wearne, 

2008; Wearne et al., 2005).  NeuronStudio can automatically classify spines into different 

subtypes (stubby, thin, and mushroom) and has been validated by comparison with serial 

section electron microscopy (Dumitriu, Rodriguez, & Morrison, 2011).  After 

NeuronStudio processing, a human operator, blind to the condition, manually corrected 

both dendritic reconstructions and spine detections.  Spine density for each branch segment 

was expressed as spine number/µm.  

Statistical Analyses.  Total and subtype spine densities were calculated by dividing 

the total number of spines by the length of the dendritic segment.  Spine densities were 

calculated for each segment, then averaged for each cell.  Spines from apical and basal 

dendrites were combined because no significant difference were found from the same 
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Figure 44.  Analysis of dendritic spines in mPFC-BLA projection neurons.  A and B, Maximum intensity 

projections of confocal images obtained from dendritic segments of L2/3 and L5 neurons respectively.  The 

locations of the segments were indicated in the white rectangles in Figure 40B and 40C.  The shape of the 

dendritic segments and spines was well preserved following Lucifer Yellow injection.  Scale bar, 5 µm.  C 

and D, analysis of dendritic spines with NeuronStudio (Rodriguez et al., 2008).  The spines were 

automatically identified and classified as stubby (purple), thin (yellow) and mushroom (orange) in 

NeuronStudio.  Dashed lines in C and D are the traces of the dendritic segments.  Scale bar, 5 µm.  
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radial distance in all groups.  All statistical analyses were performed with the aid of 

Microsoft Excel and IBM SPSS statistics software (version 22; SPSS).  A repeated 

measures ANOVA were used to compare freezing levels across training trials for each 

group of rats.  Two-tailed t-test for independent samples were used to compare spine 

density between different cortical layers and subregions. Pearson’s correlation coefficient 

was used to analyze the correlation between spine density and somatic depth from the pial 

surface.  For significant main effects (alpha 0.05), a Fisher’s PLSD test was used for post 

hoc comparisons.  All data were expressed as mean ± SEM.   

 
Results 

To examine the effect of trace fear conditioning on spine density of mPFC-BLA 

projection neurons, rats received a unilateral infusion of a retrograde fluorescence tracer 

into BLA, followed by trace fear conditioning and extinction.  Control rats were either 

pseudoconditioned or experimentally naïve.  After a brief behavioral test, the rats were 

perfused and the brains were fixed.  The fluorescently labeled neurons (i.e., mPFC-BLA 

projection neurons) were recognized and injected with Lucifer Yellow for later 

morphological analyses. 

All rats exhibited a rapid increase in percent freezing during the first 3 trials and 

then maintained a high level of freezing throughout the rest of training trials (see Figure 

41B).  When memory was tested on day 4, freezing levels were comparably low [F(3,13) 

= 1.27, p = 0.32] during the baseline among all the groups (average baseline freeze was 

shown as a dashed line in Figure 41B).  As illustrated in Figure 41B, post hoc analyses 

indicated that TRACE rats froze significantly more than both PSEUDO (p < 0.01) and EXT 

rats (p < 0.01).  EXT-RET rats were tested on day 11, and displayed significantly lower 
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level of freezing compared to conditioned rats but comparable to that of EXT rats, 

suggesting good extinction memory.  

Layer 2/3 mPFC-BLA projection neurons have higher spine density than Layer 5 

neurons  

Individual fluorescently labeled mPFC-BLA projection neurons were 

microinjected with Lucifer yellow after the behavioral test.  IL and PL neurons within both 

L2/3 and L5 were injected but analyzed separately.  For most neurons, basal dendrites did 

not go beyond 150 µm.  Both L2/3 and L5 neurons had apical dendrites that arborized in 

L1 and extended toward the pial surface (see Figure 43D).  High-resolution confocal z-

stacks of dendrites were obtained (see Materials and Methods).  Individuals blind to the 

behavioral training condition used a semi-automatic approach to conduct unbiased spine 

morphometric analysis in 3D using NeuronStudio (Rodriguez et al., 2008).   

We first examined whether or not there were any layer- and region-specific 

differences of spine density in the mPFC neurons.  For this purpose, we combined spines 

obtained in different groups together because behavioral training didn’t change these 

properties.  Analysis of 90,709 spines obtained from 1,030 dendritic segments revealed a 

significant correlation between the somatic depth and the spine density in both IL and PL 

such that neurons in the superficial layers have higher spine density than neurons in the 

deep layers (see Figure 45).  Furthermore, such correlation between spine density and 

somatic depth is subtype- and region-specific.  As shown in Table 12, in IL, the correlation 

between spine density and somatic depth was significant in both stubby and thin spines but 

not in mushroom spines.  In PL, the correlation was significant in all spine types in all 

radial distances except mushroom spines at 150 µm.  No significant difference was



187 
  

 

 
 

Figure 45.  Medial prefrontal cortex pyramidal neurons in L2/3 have greater spine density than those 

in L5.  A and B, The spine densities were significantly greater in L2/3 neurons than those in L5 neurons (#, 

p < 0.01) in all radial distances in both IL and PL. C and D, The spine density was significantly correlated 

with somatic depth in both IL and PL. 
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Table 12.  Spine density is significantly correlated with somatic depth 

Location (# of cells) Total Stubby Thin Mushroom 

50 µm     

IL (57) - 0.58# - 0.60# - 0.54# - 0.23 

PL (34) - 0.72# - 0.69# - 0.74# - 0.47# 

100 µm     

IL (56) - 0.60# - 0.53# - 0.64# - 0.09 

PL (34) - 0.64# - 0.51# - 0.55# - 0.34* 

150 µm     

IL (49) - 0.40# - 0.45# - 0.40#  0.07 

PL (32) - 0.62# - 0.38# - 0.62# -0.20 
Data are correlation coefficients between spine density and somatic depth.   

IL, infralimbic cortex; PL, prelimbic cortex.  Statistically significant 

correlation between spine density and somatic depth: *, p < 0.05; #, p < 0.01.  
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observed when comparing between IL and PL in either L2/3 or L5.  

Extinction reduced spine density in L2/3 mPFC-BLA projection neurons 

The spine density was not significantly changed following trace fear conditioning 

when compared with NAÏVE neurons.  However, in distal dendrites (150 µm) in L5 

neurons in IL, conditioning slightly increased whereas EXT and EXT-RET reduced the 

spine density (see Figure 46B).  A planned t-test revealed that the spine density was 

significantly smaller in EXT-RET group than that of TRACE [t(9) = 2.4, p < 0.05].  In 

addition, planned comparisons revealed that extinction significantly reduced spine density 

in L2/3 neurons in both IL and PL compared to NAÏVE.  In IL, the reduction was 

significant only in distal dendrites [t(6) = 6.6, p < 0.01].  Further analysis with the subtypes 

revealed that the reduction is primarily driven by the reduction in mushroom spines [t(5) = 

2.4, p = 0.062; see Table 13].  In PL, extinction significantly reduced total spine density at 

proximal dendrites when compared to NAÏVE [t(5) = 7.7, p < 0.01], and remained low 

after extinction retention [t(4) = 6.77, p < 0.01].  The total spine density was also reduced 

in medium and distal dendrites after extinction but not significantly (see Figure 46C).  

Further analysis with the subtypes revealed that the reduction was primarily driven by the 

reduction in thin spines [t(5) = 2.3, p = 0.066; see Table 13].  In contrast, trace fear 

conditioning or extinction did not induce any significant change in spine density in L5 

projection neurons (see Table 14).  Thus, these data suggest that fear extinction facilitates 

spine elimination in mPFC-BLA projection neurons in L2/3. 
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Figure 46.  Fear extinction reduces spine density in L2/3 neurons but not L5 neurons in both IL and 

PL.  A, Extinction significantly reduced total spine density in IL L2/3 neurons at distal dendrites (150 µm; p 

< 0.01) but not proximal dendrites (50 µm). B, Trace fear conditioning and extinction did not significantly 

change total spine density in L5 neurons in IL. However, the spine density between TRACE and EXT-RET 

was significantly different (p < 0.05).  C, Extinction significantly reduced spine density of PL L2/3 neurons 

at proximal dendrites (50 µm; p < 0.01), which remained low after extinction retention.  The spine density 

was also reduced after extinction in medium and distal dendrites but not significantly. D, Trace fear 

conditioning and extinction did not significantly change spine density in L5 neurons in PL. 
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Table 13.  Subtype-specific modulation of spine density by extinction 

Location (# of cells) 

Spines/µm 

Total Stubby Thin Mushroom 

IL L2/3 (150 µm from soma)    

NAÏVE (4) 3.0 ± 0.1 1.0 ± 0.1 1.5 ± 0.1 0.6 ± 0.2 

PSEUDO (8) 3.2 ± 0.3 0.9 ± 0.1 1.8 ± 0.3 0.5 ± 0.1 

TRACE (9) 2.7 ± 0.2 0.7 ± 0.1 1.5 ± 0.1 0.4 ± 0.1 

EXT (6) 2.4 ± 0.1# 0.9 ± 0.1 1.3 ± 0.1 0.2 ± 0.1§ 

EXT-RET (8) 2.6 ± 0.2 0.8 ± 0.1 1.4 ± 0.1 0.4 ± 0.1 

PL L2/3 (50 µm from soma)    

NAÏVE (4) 3.1 ± 0.1 1.0 ± 0.1 1.5 ± 0.1 0.6 ± 0.1 

PSEUDO (4) 3.4 ± 0.2 1.1 ± 0.1 1.6 ± 0.1 0.7 ± 0.1 

TRACE (3) 3.3 ± 0.2 1.0 ± 0.1 1.6 ± 0.1 0.8 ± 0.1 

EXT (3) 2.5 ± 0.1# 0.8 ± 0.1 1.2 ± 0.1§ 0.4 ± 0.1 

EXT-RET (2) 2.7 ± 0.1 0.7 ± 0.1 1.3 ± 0.1 0.7 ± 0.1 
Data are mean ± SE.  IL, infralimbic cortex; PL, prelimbic cortex.  Rat groups: NAÏVE, rats 

that did not receive any behavioral training; PSEUDO, rats that received pseudoconditioning 

on day 1 and tested on day 4; TRACE, rats that received trace fear conditioning on day 1 and 

tested on day 4; EXT, rats that received trace fear conditioning on day 1, extinction on days 

2-3, and tested on day 4; EXT-RET, rats that received conditioning on day 1, extinction on 

days 2-3, and tested on day 11.  Statistically significant from Naïve (# p < 0.01).  Non-

significant difference from naïve: § p = 0.062 for IL-BLA projection neurons in L2/3, and p 

= 0.066 for PL-BLA projection neurons in L2/3 respectively). 
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Table 14.  Spine density in L5 neurons after trace fear conditioning or extinction 

Location (# of cells) 

Spines/µm 

Total Stubby Thin Mushroom 

IL L5 (150 µm from soma)    

NAÏVE (3) 2.0 ± 0.3 0.8 ± 0.1 0.8 ± 0.1 0.5 ± 0.2 

PSEUDO (8) 2.1 ± 0.3 0.5 ± 0.2 1.1 ± 0.1 0.4 ± 0.1 

TRACE (7) 2.4 ± 0.3 0.7 ± 0.1 1.2 ± 0.2 0.5 ± 0.1 

EXT (13) 2.0 ± 0.1 0.6 ± 0.1 1.0 ± 0.1 0.4 ± 0.1 

EXT-RET (6) 1.5 ± 0.1* 0.4 ± 0.1 0.8 ± 0.1 0.3 ± 0.1 

PL L5 (50 µm from soma)    

NAÏVE (4) 2.0 ± 0.1 0.7 ± 0.1 1.0 ± 0.2 0.4 ± 0.1 

PSEUDO (5) 2.1 ± 0.4 0.6 ± 0.2 1.0 ± 0.1 0.5 ± 0.1 

TRACE (3) 2.1 ± 0.1 0.7 ± 0.1 1.0 ± 0.1 0.4 ± 0.1 

EXT (3) 1.7 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.2 ± 0.1 

EXT-RET (4) 1.7 ± 0.3 0.5 ± 0.1 0.8 ± 0.1 0.4 ± 0.1 
Data are mean ± SE for number of cells in parentheses.  IL, infralimbic cortex; PL, 

prelimbic cortex.  Rat groups: NAÏVE, rats that did not receive any behavioral training; 

PSEUDO, rats that received pseudoconditioning on day 1 and tested on day 4; TRACE, 

rats that received trace fear conditioning on day 1 and tested on day 4; EXT, rats that 

received trace fear conditioning on day 1, extinction on days 2-3, and tested on day 4; EXT-

RET, rats that received conditioning on day 1, extinction on days 2-3, and tested on day 

11.  Statistically significant between TRACE and EXT-RET: * p < 0.05.  
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Discussion 

The current study examined the morphological properties of mPFC-BLA projection 

neurons and the effect of trace fear conditioning and extinction on the spine density of these 

neurons.  We found a significant correlation between the spine density and the somatic 

depth of the neurons such that the neurons in superficial layers have higher spine density 

than the neurons in deep layers.  We further found that trace fear conditioning facilitated 

spine formation in distal L5 neurons in IL whereas extinction and extinction-retention 

reduced the spine density.  In L2/3, extinction significantly facilitated spine elimination in 

both IL and PL.  Furthermore, the reduction in spine density in IL primarily occurred in 

mushroom spines in distal dendrites.  Whereas in PL, the reduction in spine density 

primarily occurred in thin spines in proximal dendrites.  

Although we are the first to study the morphological properties of mPFC-BLA 

projection neurons, the total spine density in L2/3 neurons is comparable to randomly 

selected mPFC neurons in previous studies (Radley et al., 2006; Radley et al., 2008).  

Interestingly, we observed that the spine density is higher in L2/3 neurons than L5 neurons.  

This was unlikely an artifact caused by any experimental procedures or bias because 

neurons in L2/3 and L5 were obtained from the same slices and the spines were counted 

by individuals blind to the cell location.  In addition, the correlation between the spine 

density and somatic depth strongly support our conclusion.  However, such a laminar-

different spine density was not observed in rat visual cortex (Larkman, 1991) and an 

opposite pattern was shown in monkey cortical area 7m and the superior temporal 

polysensory area (Elston, 2001).  In addition, our observation of different spine density 

across cortical layers is not specific to mPFC-BLA projection neurons, because analysis of 
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randomly selected, biocytin-filled neurons revealed the same pattern – the L5 neurons are 

less spiny than those in L2/3 (see Figure 47).  Thus, the specific distribution pattern of 

dendritic spines in mPFC may reflect a region-specific neuronal properties, and suggests 

that the afferent information is processed differently in L2/3 and L5 neurons.  

The current data suggest that trace fear conditioning and extinction differentially 

affect the synaptic circuits in the mPFC – trace fear conditioning may facilitate spine 

formation whereas extinction facilitates spine elimination.  However, this result seems to 

differ from previous studies.  For example, an in vivo imaging study in frontal association 

cortex indicated that delay fear conditioning eliminates dendritic spines whereas 

subsequent extinction reverses this effect (Lai et al., 2012).  Another study using Golgi 

staining showed that contextual fear conditioning increased the spine density in IL L2/3 

neurons.  Extinction didn’t change the spine density but reduced spine size (Vetere et al., 

2011).  There are several possible explanations for these seemly conflicting results.  First, 

the conditioning paradigms were different in each study.  We used trace fear conditioning 

whereas Lai and colleagues used delay fear conditioning and Vetere et al. used contextual 

fear conditioning.  The different paradigms of fear conditioning have been shown to recruit 

different brain circuits and therefore may yield different effects on the dendritic spines.  

Second, our current study focused on the neurons that only project to the BLA, which may 

be differently modulated by fear conditioning and extinction compared to randomly 

selected neurons in other studies.  Finally, the sample size in the current study is relatively 

small.  This was because we examined both L2/3 and L5 neurons in both IL and PL, which 

resulted in a small number of cells in each layer each subregion.  However, our data still 

demonstrated a significant change in spine density following fear extinction and suggest a 
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layer- and subregion- specific modulation of spine density within the mPFC following fear 

conditioning and extinction, which may provide useful information for future study.  

Conclusions 

The current data are the first to study the morphological properties of mPFC-BLA 

projection neurons.  The neurons in superficial layers have higher spine densities than that 

in deep layers, suggesting different computational functions of these projection neurons.  

Furthermore, extinction of trace fear memory specifically eliminates dendritic spines in 

both IL and PL neurons, especially in L2/3 neurons.  These data provide further evidence 

that the mPFC is critical for the expression of conditioned fear memory.  
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Figure 47.  Laminar difference in spine density in mPFC pyramidal neurons with unknown projection 

targets.  Graph depicting the mean and standard error of spine density calculated from dendritic segments. 

The spine density was significantly higher in L2/3 neurons than that in L5 neurons (* p < 0.05 for all values).  

Data were obtained from confocal images of biocytin-filled neurons and visualized with streptavidin Alexa 

Fluor 488.  

 



197 
  

 

Concluding remarks 

The experiments described in this dissertation combined a series of behavioral, 

electrophysiological, and morphological techniques to study the cellular mechanisms 

underlying learning and memory.  The current findings that trace fear conditioning induced 

neurophysiological and morphological plasticity in both hippocampus and mPFC are 

consistent with existing data that both of these brain areas are required for the acquisition 

of trace fear conditioning (McEchron et al., 1998; Gilmartin & Helmstetter, 2010).   

The increased intrinsic excitability of regular spiking neurons in both hippocampus 

and IL suggests that the activation of these neurons facilitates the expression of a 

conditioned fear memory.  Such an effect is likely achieved through activation of the 

amygdala because both regions have intensive projections to the BLA (McDonald et al., 

1996; Gabbott et al., 2005).  However, it is not clear how the hippocampus and the mPFC 

interact in this process.  Interestingly, unlike reciprocal innervations between the mPFC 

and other brain regions (see Figure 3), mPFC receives excitatory synaptic inputs from 

hippocampal CA1 neurons (Hoover & Vertes, 2007; Parent et al., 2010) but mPFC does 

not send reciprocal projections back (Hurley et al., 1991; Sesack, Deutch, Roth, & Bunney, 

1989; Vertes 2004).  In combination with the transient role of hippocampus in memory 

formation (e.g., Kim & Fanselow, 1992; Moyer et al., 1996), these data suggest that the 

activation of hippocampal neurons facilitates the formation of long-term conditioned 

memory in the mPFC (e.g., Corcoran & Quirk, 2007; Quirk et al., 2000) and other cortical 

areas (Lebron et al. 2004).  In contrast, after memory has been stored in the cortex, 

hippocampus is no longer required for the memory retrival.    
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The current study investigated three forms of plasticity as a function of trace fear 

conditioning and extinction.  Our observation of a significant correlation between intrinsic 

excitability and the amount of LTP in CA1 neurons (Figure 12) and the fact that intrinsic 

plasticity can be induced in the absence of synaptic plasticity (Cohen-Matsliah et al. 2010) 

suggest that intrinsic plasticity facilitates synaptic plasticity.  In addition, although not 

observed in the current study, the intrinsic plasticity may also facilitate morphological 

plasticity – the modulation of dendritic spine density, which is associated enhanced 

synaptic strength.  One evidence that supports this point of view comes from the 

observation that animals raised in an enriched environment had higher spine density, 

increased excitablity, and greaer LTP in hippocampal neurons compared to control animals 

(Malik & Chattarji, 2012).  Furthermore, environment enrichment facilitates contextual 

fear conditioning (Malik & Chattarji, 2012), suggesting that an interaction between all 

three forms of plasticity may contribute to the behavioral changes that occur following 

learning.    

Previous studies suggest that the calcium influx through NMDA receptors may 

serve as a common path of the three types of plasticity.  For example, the increase of 

intracellular caclium is capable of activating multiple signaling cascades that modulate the 

property and/or distribution of ion channels, as well as the phosphorylation and insertion 

of AMPA receptors to the postsynaptic membrane..  Such membrane insertion of AMPA 

receptors may not only enhance synaptic strength, but also lead to an increase in the size 

of postsynaptic density and eventually the production of perforated synapses, which then 

generate multi-spine synapses and induce synaptogenesis.  Although this is an 

oversimplified model, there is strong evidence that supports this hypothesis, especially data 
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from LTP studies that showing a rapid synpse formation following LTP induction (for 

review, see Luscher et al., 2000).  In addition, there are many other intracellular cascades 

following calcium entry that are required during this process.  For instance, the calcium 

entry may induce gene activation and protein synthesis, which are critical for the 

maintenance of long-term memory.  All these processes require the activation of a variety 

of other intracellular signals, such as CaMKII, PKC, PKA, and CREB, which are critical 

for memory formation and expression (Impey et al., 1998; Matsuzaki et al., 2004; Ohno et 

al., 2006; Sweatt, 2003).   

In summary, the current set of experiments demonstrate that intrinsic, synaptic, and 

morphological plasticity occurs during acquisition and extinction of trace fear 

conditioning.  Of critical significance remaining to be studied are the cellular cascades or 

molecular mechanisms that link these types of plasticity together.  Although these studies 

suggest that synaptic signaling can lead to intrinsic changes, which can then facilitate 

circuit-specific synaptic plasticity, without a concrete way to selectively control intrinsic 

plasticity (and the myriad of ways intrinsic excitability can be altered), how these types of 

plasticity are interwoven to produce learning-related changes is likely to remain a 

significant neuroscientific challenge. 
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