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ABSTRACT 

FUNCTIONALLY DISTINT POOLS OF CALCINEURIN CONTRIBUTE TO DEPOTENTIATION-LIKE SYNAPTIC 
CHANGES IN THE LATERAL AMYGDALA DURING AUDITORY FEAR EXTINCTION 

 
By  

 
Elena Rotondo  

University of Wisconsin-Milwaukee, 2015 
Under the Supervision of Dr. Fred Helmstetter  

 
 

 Until recently, auditory fear extinction was not thought to modify substrates involved in the 

storage of the original auditory fear memory. Evidence now suggests that extinction results in the 

reversal of the fear conditioning-induced potentiation of thalamic inputs to the lateral amygdala.    

However, little is known about the molecular mechanisms that support this depotentiation of synaptic 

strength. Here we present behavioral and molecular evidence in support of the contribution of two 

distinct pools of the protein phosphatase calcineurin to depotentiation-like changes in lateral amygdala 

AMPA receptor trafficking during auditory fear extinction.  Calcineurin protein that exists prior to the 

onset of extinction training is required for the reduction in conditional fear responses during the 

extinction session, whereas calcineurin protein that is synthesized during the extinction session is 

involved in the long-term retention of extinction learning. Furthermore, the pre-existing pool of 

calcineurin mediates endocytosis of GluR2-containing AMPARs, whereas the newly translated pool of 

calcineurin mediates reductions in AMPAR-stabilizing protein PSD-95. These results suggest that 

extinction involves the concerted actions of pre-existing and newly translated calcineurin to induce and 

stabilize AMPA receptor-mediated reductions in synaptic strength in the lateral amygdala.  
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Introduction 

Though associative auditory fear memories are robust and long-lasting, memory retrieval, via re-

exposure to the feared stimulus, can modify both neural substrates and behavioral responses associated 

with the memory. For example, in the absence of an ensuing aversive event, prolonged or repeated 

exposure to the feared auditory stimulus can result in fear extinction, or the attenuation of the learned 

fear response (Myers & Davis, 2007). Though auditory fear extinction has long been conceptualized as 

the formation of a new inhibitory memory, recent work suggests that it may also act directly on the 

substrates of the original fear memory (Quirk & Mueller, 2008; Kim et al., 2007; Maren, 2014). 

Specifically, auditory fear extinction has been found to produce a reversal of a subset of fear 

conditioning-induced changes in the lateral nucleus of the amygdala (Kim et al., 2007).  Relative to the 

well-characterized regulation of lateral amygdala plasticity during auditory fear conditioning, the nature 

and function of plasticity in this region during auditory fear extinction remain poorly understood. 

However, several lines of evidence implicate signaling mediated by the protein phosphatase calcineurin 

as a critical component of the reversal of fear conditioning-induced plasticity (Lin et al., 2003a,b; Merlo 

et al., 2014).  Therefore, the present study used a combination of behavioral and molecular techniques 

to characterize the role of calcineurin in lateral amygdala plasticity during auditory fear extinction.   

Auditory Fear Conditioning  

 The behavioral and neural changes that accompany the formation of an auditory fear memory 

provide the background on which auditory fear extinction occurs. To create an auditory fear memory, an 

initially neutral auditory stimulus (conditional stimulus; CS), is paired with an aversive stimulus 

(unconditional stimulus; UCS), like a foot shock.  After several pairings, the animal learns that the CS 

predicts the UCS, and will exhibit a conditional fear response (CR), such as freezing, to subsequent 

presentations of the CS in absence of the UCS.  
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 The initial encoding of the auditory fear memory occurs during conditioning as information 

about the auditory CS and the somatosensory UCS converge on neurons in the lateral nucleus of the 

amygdala (LA) (Schafé, Doyere, & LeDoux, 2005). While both the insular cortex and the intralaminar 

complex of the thalamus send somatosensory information to the LA, the critical UCS pathways remains 

undefined (Shi & Davis, 1999; Brunzell & Kim, 2001). In contrast, the auditory CS pathways are better 

characterized. Information about the auditory CS is transmitted to the LA through a fast, direct thalamic 

pathway and a slower, indirect pathway that travels from the thalamus to the auditory cortex prior to 

traveling to the LA (Quirk, Armony, & LeDoux, 1997). The coincident timing of weak CS input with the 

strong UCS input to the LA is proposed to strengthen auditory thalamus-LA (T-LA) and auditory cortex-LA 

(C-LA) synapses through the induction of associative long-term potentiation (LTP) (Tsvetkov et al., 2002; 

Maren, 2005). Within the 24 hour period following fear conditioning, the fear memory undergoes 

consolidation, in which protein synthesis-dependent cellular changes occur to reinforce the potentiation 

of these synapses to support the long-term storage of the new memory (Schafe et al., 2001).  

While the LA is believed to be the primary site of encoding and storage of the CS-UCS 

association, the production of the CR requires information arriving at the LA to be transmitted to the 

central nucleus of the amygdala (CeM), which in turn sends projections to several structures that 

mediate defensive behavioral responses, including the hypothalamus and periaqueductal grey (LeDoux 

et al., 1988; Pare & Duvarci, 2012). There are multiple indirect pathways through which the LA can drive 

CeM activation. LA neurons send excitatory projections to the lateral division of the central nucleus of 

the amygdala (CeL), possibly to an identified population of PKCδ-negative cells known as “CeL-ON cells” 

(Haubensak et al., 2010). These PKCδ-negative cells form inhibitory connections with a population of 

PKCδ-positive cells known as “CeL-OFF cells” that tonically inhibit the CeM. Thus, the LA-driven 

activation of CeL-ON cells results in the disinhibition of the CeM and, consequently, robust expression of 

conditioned fear responses. Additionally, the LA activates the dorsal cluster of intercalated cells (ITCd), a 
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mass of GABAergic interneurons located between the basolateral amygdala complex and the central 

nucleus of the amygdala (Royer, Marina, & Pare, 1999; Ehrlich et al., 2009). Activation of ITCd cells may 

remove inhibition of the CeM mediated by the ventral cluster of ITC cells (ITCv). The LA also sends 

excitatory projections to the basal nucleus of the amygdala (BA), which in turn sends excitatory 

projections to the CeM, resulting in additional facilitation of CeM output (Pare & Duvarci, 2012). Thus, 

while expression of the CR is facilitated by LA potentiation, it also depends on the appropriate 

coordination of several intrinsic amygdala circuits.  Importantly, distinction between the potentiation of 

thalamic and cortical input to the LA and  the multi-synaptic pathways through which LA activity can 

drive output from the CeM have played a significant role in reconciling behavioral and neurobiological 

features of auditory fear extinction.  

Auditory Fear Extinction is New Learning 

 To induce auditory fear extinction, the CS is presented repeatedly in absence of the UCS 

(collectively referred to as the extinction training session). When freezing is used an as index of 

conditioned fear, extinction learning is typically assessed at two different times. The first assessment, 

within-session extinction, measures the gradual reduction in CS-evoked freezing over the course of the 

extinction training session. The second assessment, the long-term retention of extinction, measures the 

continued suppression of freezing when the extinguished CS is presented 24 hours or more following 

extinction training.   

 Despite the observed attenuation of the CR, extinction does not induce forgetting or unlearning 

of the CS-UCS association. Rather, the CR can still be expressed following extinction in absence of 

explicit repairing of the CS and UCS. For example, renewal of the CR is observed when an extinguished 

CS is presented in a context other than the one in which it was extinguished (Bouton, 1993). 

Furthermore, exposure to stress, such as an unsignaled shock, can induce reinstatement of the CR 
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(Rescorla & Heth, 1975). Most strikingly, the simple passage of time, in the absence of additional 

manipulation, can induce the spontaneous recovery of the CR (Rescorla, 2004).  Given this persistence of 

CS-UCS association, extinction is most commonly characterized as the formation of a new CS-No UCS 

memory that inhibits the expression of the original CS-UCS memory.  

 Neurobiological studies of auditory fear extinction have enriched this conceptualization of 

extinction as new learning. Central to these studies are the multiple pathways throughout the subnuclei 

of the amygdala that contribute to the regulation of CeM output. Specifically, amygdala neurons within 

these pathways receive input from a number of extrinsic structures that, following extinction, play key 

roles in determining whether the CR will be expressed or suppressed (Pare and Duvarci, 2012). Critically, 

this extrinsically-guided regulation of amygdala output provides a mechanisms that could account for 

extinction-induced suppression of the CR without degradation of the substrates of the original fear 

memory.  

 One key set of inputs to the amygdala that facilitate extinction learning come from the 

infralimbic (IL) division of the medial prefrontal cortex. During auditory fear extinction, input from the IL 

to the BA drives the potentiation of BA-ITCv synapses (Amano, Unal, & Pare, 2010; Senn et al., 2014). 

Excitation of ITCv cells increases inhibition of the CeM, favoring the suppression of the CR (Duvarci & 

Pare, 2014). In addition, the ventral hippocampus (VH) contributes indirectly to the modulation of 

amygdala activity. During extinction recall, the VH drives activity in the IL and local-circuit GABAergic 

inhibition in the PL, which favors the suppression of fear (Rosas-Vidal et al., 2014; Santini et al., 2008). 

Collectively, this extended network of structures is believed to support the long-term storage of 

extinction learning and suppress the CR during extinction recall by inhibiting the neural activity 

associated with the CS-UCS association.  



 
 

5 
 

 However, renewal of the CR following extinction does not simply involve the disinhibition of LA-

driven amygdala output. It also requires additional inputs that facilitate CeM output.  For example, VH- 

and PL-driven activation of the BA is necessary for fear renewal (Herry et al., 2008; Orsini et al., 2011; Jin 

& Maren, 2015). Additionally, the dorsal hippocampus-dependent activation of the LA has been found to 

be critical for renewal (Hobin, Maren, & Goosens, 2003; Maren & Hobin, 2007). Therefore, while the CS-

UCS association remains intact following extinction, there is data to suggest that the critical substrates 

supporting the recall of the auditory fear memory have been modified.   

Auditory Fear Extinction Modifies Substrates Involved in the Storage of the Auditory Fear Memory  

 Evidence suggests that extinction can modify the substrates supporting the storage of the 

original fear memory. In contrast to the strong, CS-evoked responses of LA neurons following fear 

conditioning, extinction induces a significant reduction in CS-evoked firing in the LA (Quirk et al., 1995). 

While the active inhibition of LA neurons cannot be ruled out as a contributing factor, there is growing 

evidence to suggest this reduced responsivity to the CS is at least partially attributable to the reversal of 

conditioning-induced changes at a subset of LA neurons. Specifically, auditory fear extinction may 

induce depotentiation (an electrophysiological phenomenon referring to the depression of a previously 

potentiated synapse to basal levels of strength) at thalamic inputs to the lateral amygdala (Kim et al., 

2007; Barrionuevo, Schottler, & Lynch, 1980). For example, one study found that simultaneous 

stimulation of efferents from the IL and auditory thalamus to the lateral amygdala resulted in 

depotentiation of T-LA inputs and an extinction-like suppression of fear response to the CS (Park & Choi, 

2013). Another study demonstrated that low frequency paired-pulse stimulation in fear conditioned rats 

resulted in depotentiation of T-LA synapses, while depotentiation was occluded in rats that had also 

received extinction (Kim et al., 2007).  
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It is possible that T-LA depotentiation is critical in reducing rapid, CS-evoked excitation of the LA, 

in favor of slower, cortically-derived modulation of CS-evoked behavior. However, empirically-based 

knowledge regarding the form and function of depotentiation as it occurs in auditory fear extinction 

remains very limited. Therefore, a critical initial step in understanding this form of plasticity is to 

characterize the molecular mechanisms underlying the induction and expression of T-LA depotentiation.  

Depotentiation-Like Synaptic Changes in Extinction  

 Because α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors (AMPARs) mediate 

the majority of fast excitatory transmission in the central nervous system, the dynamic regulation of the 

number, subunit composition, and phosphorylation state of these receptors is a critical mechanism 

underlying bidirectional change in synaptic efficacy (McCormark, Stornetta, & Zhu, 2006; Rumpel et al., 

2005).  

 Regulation of AMPARs in LTP and Auditory Fear Conditioning  

In the lateral amygdala, both LTP and auditory fear conditioning result in the enhanced synaptic 

expression of AMPARs (Shukla et al., 2014; Takahasi et al., 2003). More specifically, homomeric 

AMPARs, composed of two GluR1 subunits, are rapidly trafficked into the synapse (Kauer & Malenka, 

2006; Rumpel et al., 2005; Shi et al., 2001; Yeh, et al., 2006). These receptors are calcium permeable and 

are functionally regulated by phosphorylation of serine 831 and serine 845 to increase channel 

conductance and open probability, respectively (Oh & Derkach, 2005; Lee et al., 2013). Therefore, 

activity-dependent trafficking of these receptors to the synapse may confer additional potential for 

plasticity. In addition, phosphorylation of serine 845 is also known to provide a signal for the 

recruitment of additional AMPARs to the synapses, possibly acting as a tagging mechanism for synapses 

that will undergo learning-induced, long-term strengthening (Kauer & Malenka, 2006; Man et al., 2007). 

Gradually, these homomeric receptors are replaced by GluR2-containing AMPARs (McCormack et al, 
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2006; Takahashi, Svoboda, & Malinow, 2003). Consistent with the hypothesized role of GluR2-containing 

AMPARs in synaptic stability and memory maintenance, the presence of the GluR2 subunit confers 

several properties to the AMPAR, including calcium impermeability and an apparent insensitivity to 

modulation of channel conductance and open probability through phosphorylation of serine 831 and 

serine 845 on the GluR1 subunit, respectively (Oh & Derkach, 2005; Benke et al., 1998; Roche et al., 

1996; Migues et al., 2010). Therefore, upregulation of Glur2-containing AMPARs increases postsynaptic 

responsivity to neurotransmission while reducing potential sources of destabilizing calcium influx.  

An additional factor critical for the long-lasting enhancement in AMPAR expression is the 

upregulation of certain scaffolding proteins in the postsynaptic density (Opazo, Sainlos, & Choquet, 

2012; Xu et al., 2008; Chung et al., 2000). Because AMPARs are highly mobile and prone to lateral 

diffusion away from the synapses, scaffolding proteins interact both directly and indirectly with AMPARs 

maintain their localized expression (Isaac et al., 2007). Among these proteins, PSD-95 expression has a 

particularly strong correlation with long-lasting changes in AMPAR expression (Colledge et al., 2003). 

The enhancement of scaffolding protein PSD-95 at active synapses in the lateral amygdala synapses 

following both LTP and fear conditioning is proposed to serve a dual role in activity-dependent synaptic 

strengthening (Ehrlich & Malinow, 2004; Mao et al., 2013). Initially, newly inserted PSD-95 may act as a 

tag that guides the targeted insertion of AMPARs (Opazo et al., 2012). Subsequently, PSD-95 anchors 

AMPARs stabilize the increase in receptor expression (Chen et al., 2011; Yudowski et al., 2013). 

Collectively, this coordinated upregulation of AMPAR and scaffolding protein expression is critical for 

long-lasting enhancements in synaptic strength.  

Regulation of AMPARs in Depotentiation and Auditory Fear Extinction  

 Conversely, the coordinated downregulation of AMPAR and scaffolding protein expression is a 

major component of depotentiation (Carroll et al., 2001; Derkach et al., 2007; Corea, Doucet, & Fon, 
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2009). Critically, there are emerging similarities between the regulation of AMPARs in the LA during 

depotentiation and auditory fear extinction. For example, both depotentiation and extinction require 

regulated AMPAR endocytosis mediated by interactions with sequences on the C terminus of GluR2 (Kim 

et al., 2007; Dalton et al., 2008).   

 However, it must be noted that AMPAR endocytosis is not specific to extinction or 

depotentiation. Certain memory retrieval conditions, typically involving relatively brief re-exposure to 

the CS, can induce an active plastic process called reconsolidation at T-LA synapses (Nader, Schafe, & 

LeDoux, 2000; Kim et al., 2010). Reconsolidation begins with a destabilization phase, which is 

characterized, in part, by the endocytosis of GluR2-containing AMPARs (Jarome, 2013; Hong et al., 

2013). During subsequent restabilization, however, AMPARs are reinserted into the membrane and 

ultimately, both T-LA potentiation and CR expression are maintained (Hong et al., 2013). In contrast, 

auditory fear extinction is associated with long-lasting reductions in GluR1 and GluR2 expression that 

remain observable at for at least 24 hours following extinction training (Kim et al., 2007). Moreover, 

reductions in PSD-95 expression, which are associated with long-term reductions in AMPAR expression, 

have only been reported following extinction training (Mao et al., 2013). Therefore, extinction may be 

more uniquely defined by both the occurrence and persistence of reduced AMPAR expression.  

A Multifaceted Role for Calcineurin in the Mediation of Depotentiation-Like Plasticity   

 Calcineurin (CaN) is an abundantly expressed, serine-threonine phosphatase. It is the only 

neuronal phosphatase directly activated by calcium and is therefore a prime candidate for initiating 

activity-dependent changes in synaptic strength (Klee, Crouch, & Krinks, 1997; Baumgäretel & Mansuy, 

2012). Multiple studies have established a critical role for CaN-mediated signaling in the amygdala 

during depotentiation and auditory fear extinction.  Relatively rapid (within approximately 10 minutes) 

increases in CaN protein levels and CaN enzymatic activity in the amygdala are observed following both 
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depotentiation and auditory fear extinction (Lin et al., 2003a; b; Beattie et al., 2000). 

Electrophysiological studies have demonstrated that CaN is necessary for depotentiation in a number of 

brain structures, including the amygdala (Jouvenceau et al., 2003; Kang-Park et al., 2003; Lin et al., 

2003a). Furthermore, inhibition of CaN prevents the induction of depotentiation in the amygdala using 

the same stimulation parameters that attenuate the expression of a previously consolidated fear 

memory (Lin et al., 2003a).  Similarly, behavioral studies have shown that inhibition of CaN in the 

amygdala impairs extinction learning (Merlo et al., 2014; Lin et al., 2003b).  

 CaN-Mediated Regulation of AMPAR Expression  

A number of studies outside the extinction literature have established roles for CaN in both 

stimulating AMPAR endocytosis as well as limiting the synaptic re-insertion of AMPARs. For example, 

CaN has been shown to activate protein tyrosine phosphatase STEP61, which is required for mGluR-

stimulated endocytosis of GluR1/2 AMPARs (Goebel-Goody & Lombroso, 2012). In addition, CaN may 

directly or indirectly (via protein phosphatase 1) dephosphorylate serine 845 on GluR1 to limit activity-

dependent recruitment of AMPARs to the surface (Lee et al., 2000; Sanderson et al., 2012). Finally, CaN 

has been shown to mediate the degradation of PSD-95, which may restrict the targeted reinsertion of 

AMPARs following endocytosis (Colledge et al., 2003; Xu et al., 2008). However, the specific substrates 

targeted by CaN during auditory fear extinction remain largely uncharacterized. 

 Functionally Distinct Pools of CaN?  

Several recent observations have provided some basis to suggest that auditory fear extinction 

involves at least two distinct pools of CaN in the amygdala. As first observed by Merlo and colleagues 

(2014), these pools may be distinguishable by whether the protein existed prior to the onset of 

extinction training or whether the protein was synthesized following the onset of extinction training. 
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Newly translated CaN may be involved aspects of plasticity underlying the persistence of 

extinction learning. In support of this, inhibiting the translation of new CaN protein during extinction 

training has been shown to disrupt the long-term retention of extinction, without effecting within-

session extinction (Merlo et al., 2014). Furthermore, the synthesis of new CaN protein has been 

observed to selectively occur following extinction-inducing, but not reconsolidation-inducing, retrieval 

sessions (Merlo et al., 2014). This is consistent with evidence of differential regulation of protein 

synthesis in reconsolidation and extinction, such that a certain set of proteins are translated to 

restabilize the memory in reconsolidation whereas a distinct set of proteins are translated, some of 

which may help maintain certain elements of the memory in a “deconsolidated” state in extinction 

(Tronson et al., 2012; de la Fuente et al., 2011; Pedreira & Maldonado, 2003). Together, these 

observations suggest that the translation of new calcineurin protein may underlie at least part of the 

differences between extinction and reconsolidation related to protein synthesis and that this pool of 

CaN may be preferentially involved in changes that stabilize the state of reduced synaptic strength, such 

as the dephosphorylation of serine 845 and degradation of PSD-95.  

In contrast, pre-existing CaN may be involved in a more general destabilization process 

associated with memory retrieval. Blockade of CaN activity in the amygdala prevents retrieval-induced 

changes in learned behavior in both extinction and reconsolidation procedures. Inhibition of CaN activity 

has been found to prevent within-session auditory fear extinction, as well as the retrieval-induced 

strengthening of an inhibitory avoidance memory (Lin et al., 2003b; Fukushima et al., 2014). 

Furthermore, specifically implicating a role for pre-existing CaN, the inhibition of CaN activity prior to 

brief memory retrieval also protects against the amnestic effects of protein synthesis inhibitors 

(Fukushima et al., 2014). Therefore, the pre-existing pool of CaN may be rapidly induced following 

memory retrieval to induce a set of initial, destabilizing changes to the synaptic structure, such as the 

endocytosis if AMPARs.  
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Summary and Hypotheses  

 Extinction is a complex phenomenon involving both potentiation and depotentiation of 

synapses at different loci throughout a critical neural circuit. Several lines of evidence suggest a 

potential role for CaN activity in driving depotentiation of thalamic inputs to lateral amygdala, possibly 

through the regulation of AMPAR endocytosis. However, data concerning specific molecular 

mechanisms of extinction-induced depotentiation are limited. Furthermore, it is unclear whether the 

proposed distinction between pre-existing and newly translated CaN corresponds to dissociable 

elements of extinction-related plasticity. Therefore, the overarching aim of the present study was to 

address whether there are functionally distinct pools of CaN that contribute to depotentiation-like 

synaptic changes in the lateral amygdala during auditory fear extinction. Specifics aims included 

establishing the critical window of CaN synthesis and activity (Aim 1) and providing a behavioral (Aim 2) 

and molecular (Aim 3) characterization of the roles of pre-existing and newly translated CaN. It was 

predicted 1) that pre-existing CaN is critical for within-session extinction and mediates AMPAR 

endocytosis, whereas 2) newly translated CaN is critical for the long-term retention of extinction, and 

mediates changes that may limit the reinsertion of the AMPARs, such as the dephosphorylation of serine 

845 or the loss of PSD-95.  

Materials & Methods   

Subjects and Surgery 

Subjects were 214 adult male Long-Evans rats (300-400g; Harlan, Madison, WI). Animals were 

housed individually in shoe-box cages with food and water available ad libitum. The colony room was 

maintained under a 14:10 hour light/dark cycle. All experimental procedures were approved by the 

University of Wisconsin-Milwaukee Institutional Animal Care and Use Committee.  
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 Following 3 days of handling, animals were anesthetized with 4% isoflurane and maintained at 

2.5% isoflurane. Animals were implanted with bilateral 26-gauge stainless steel guide cannulae (Plastics 

One, Roanoke, VA) aimed at the basolateral amygdala using stereotaxic coordinates (-3.0 mm posterior; 

+5.1 mm lateral; -7.3 mm ventral) relative to bregma (Paxinos & Watson, 2007). Animals were allowed 

to recover for seven days prior to behavioral training.  

Conditioning Apparatus 

 Fear conditioning occurred in set of 4 Plexiglas chambers with stainless-steal floors connected to 

a shock generator (Context A) concealed in a sound-attenuating box. A speaker was centered at one end 

of each of the 4 chambers. Each chamber was illuminated with white light.  A ventilation fan produced 

approximately 63 dB of background noise. Between animals, chambers were cleaned with a 5% 

ammonium hydroxide solution.  

 Extinction, retrieval, and fear retention testing occurred in a novel context (Context B) in a 

separate room. Context B had Plexiglas floors, infrared lighting, and a ventilation fans providing 

approximately 58 dB of background noise. Between animals, the chambers were cleaned with a 5% 

acetic acid solution.  

Drug and Antisense Oligodeoxynucleotide Infusions   

 Rats received bilateral infusions into the amygdala. Injector tips extended 0.5 mm beyond the 

end of the guide cannulae, resulting in a final ventral coordinate of -7.8 mm relative to bregma. 

Anisomysin (125 µg/µl; Sigma Aldrich) dissolved in 20% DMSO diluted in ddH20 was infused 15 minutes 

prior or immediately following extinction or retrieval. FK506 (10 μg/μl; Sigma Aldrich) dissolved in 100% 

DMSO was infused 15 minutes prior to or immediately following extinction or retrieval. A cocktail of two 

desalted, phosphoriothiate end-capped, antisense oligodeoxynucleotides (ODNs) targeting the CaN A 

subunit (CaN A1 antisense sequences: 5’-CTC GGA CAT CTC CAG TCA-3’; CaN A2 antisense sequence: 5’-
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CTC CGG GGC GGC CAT GCT-3’) or two scrambled ODNs (CaN A1 scrambled sequence: 5’-GTC GCA GAT 

CCT CCA ACT -3’; CaN A2 scrambled sequence: 5’-GCT CGT TAG CCG GCG CGC-3’) suspended in sterile 

saline (10 nmol/μl) was infused 2.5 hours prior to extinction or retrieval (as described in Merlo et al., 

2014).  All drugs were infused at a total volume of 0.5 μl per side at a rate of 0.5 μl per minute. Injectors 

were left in place for an additional 90 seconds to ensure diffusion away from the tip.  

 Sequences for the ODNs were obtained from a previous report, in which sequences showed no 

off-target alignment in a BLAST database search (Merlo et al., 2014).  

Behavioral Procedures  

 3 days prior to behavioral training (Day 1), animals were transported, gently restrained, and 

acclimated to the sound of the infusion pump to minimize stress and novelty of the injection procedure. 

On day 1, rats were fear conditioned in Context A. Conditioning involved a 6 minute baseline followed 

by four white noise (72 dB, 10 s)-shock (1mA, 1s) pairings separated by a 90 second intertrial interval. 

Animals were removed from the context following a 4 minute post-shock period and returned to their 

homecages. Following fear conditioning, strength-matched experimental groups were created by using 

the combined average of freezing during the CS-UCS presentations and the post-shock period, such that 

each group representing each level of each factor exhibited statistically similar freezing during 

conditioning. On day 2, rats received either an extinction or brief retrieval session in Context B. Rats 

were transported to the injection room and given an infusion of anisomycin or vehicle 15 minutes prior 

to extinction or retrieval, FK506 or vehicle 15 minutes prior to extinction or retrieval, or an infusion of 

CaN ODN 2.5 hours prior to extinction or retrieval. Extinction consisted of a 1 minute baseline followed 

by 40 white noise (72 dB, 30s) presentations separated by an intertrial interval of 60 seconds. Following 

a 1 minute post-CS period, animals were removed from the context and returned to their homecages. 

Retrieval consisted of a 1 minute baseline followed by 4 white noise (72dB, 30s) presentations separated 
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by an intertrial interval of 60 seconds. Following a 55 minute post-CS period, animals were removed 

from the context and returned to their homecages. On day 3, rats underwent auditory fear retention 

testing in Context B. The test involved 1 minute baseline followed by 8 white noise (72 dB, 30s) 

presentations separated by an intertrial interval of 60 seconds. 

Percent time freezing during the white noise presentations was used to assess the conditional 

fear response. Freezing was defined as the absence of movement with the exception of those required 

for respiration. Throughout the behavioral sessions, a digital video observation system (FreezeScan, 

CleverSys Inc, Reston, VA, USA) continuously scored each rat as freezing or active. Percent time spent 

freezing, as measured by FreezeScan, was used to assess behavioral performance during fear 

conditioning and retention testing. Freezing during extinction and retrieval session was hand-scored 

because animals tend to lie down by the end of the extinction session, which would be incorrectly 

scored as freezing by FreezeScan. To hand-score behavior, each animal was scored as either freezing 

(=1) or not freezing (=0) once every 5 seconds through the extinction or retrieval session. Percent time 

spent freezing was derived from the sum of 5 second binds scored as freezing divided by the total 

number of 5 second bins scored.  

Histological Verification   

  Rats were sacrificed after completion of the auditory fear retention test with an overdose of 

isoflurane and transcardially perfused with saline followed by 10% buffered formalin. Brains were be 

removed and stored in buffered formalin for at least 24 hours before soaking in 30% sucrose formalin 

for an additional 24 or more hours. 40 µm coronal tissue sections containing the amygdala were 

mounted on slides and stained with cresyl violet to aid in the visualization of the injection site. Animals 

with injection sites outside of the amygdala were excluded from the analyses.  

Calcineurin Activity Assay  
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 Rats were sacrificed with an overdose of isoflurane and decapitated. Brain were removed, 

frozen on dry ice, and stored at -80°C until use. Amygdala tissue was collected from each brain. Lateral 

and basal amygdala tissue were not separated here as they were for western blot experiments given the 

larger amount of protein required for this assay (as described by Lin et al., 2003b). The activity assay was 

performed with the calcineurin cellular activity assay kit (Enzo Life Sciences). Tissue samples were 

washed in TBS and homogenized in lysis buffer (BML-KI35).  Desalting resin (BML-KI100) was rehydrated 

overnight and centrifuged at 800 g for 3 minutes at 4°C in the desalting column. After discarding the 

flow through, tissue sample were added to each column and centrifuged at 800 g for 3 minutes at 4°C to 

remove free phosphate from the tissue. Protein content of each sample was determined using the 

660nm protein assay (ThermoFisher) and samples were diluted to a concentration of 0.96µg/μl to 

prevent precipitation during the assay.  

 Standard curve sample wells were prepared in duplicate with seven 1:1 serial dilutions of 

phosphate standard (BML-KI132-0500) with 1X assay buffer (500 µl of 2x assay buffer [BML-KI128] 

diluted with 500 µl dH2O) and a 1X assay buffer blank. For each tissue sample, 3 wells were prepared to 

measure background phosphate release (20 µl of dH2O and 25 µl of 2X assay buffer [BML-KI128] with 

calmodulin), total phosphatase activity (10 µl of dH2O r and 25 µl of 2X assay buffer with calmodulin), 

and total phosphatase activity without CaN activity (10 µl of dH2O and 25 µl of 2X EGTA buffer [BML-

KI136]). 10 µl of phosphopeptide substrate (BML-P160) were added to each well, with the exception of 

the background control and standards wells. The samples were allowed to equilibrate to room 

temperature for 10 minutes. To initiate the assay, 5 µl of sample were added to their respective wells. 

After incubation for 30 minutes at 37°C, 100 µl of biomol green reagent (BML-AK111-9090) was added 

to all wells. Color was allowed to develop for 25 minutes at room temperature before reading OD620nm 

on a microplate reader (BioTek). 
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 A standard curve was created by plotting OD620nm vs. nmol PO4 for the phosphate standards. The 

slope and Y-intercept were used to calculate the amount of phosphate released (phosphatase activity) 

with the equation: Phosphate released = (OD620nm – Yint)/slope.  The background phosphate was 

subtracted from each sample well and specific CaN activity was determined using the equation: CaN 

activity = total phosphatase activity – total phosphatase activity less CaN activity.    

Synaptosomal Fractions  

 Rats were sacrificed with an overdose of isoflurane and decapitated. Brains were removed, 

frozen on dry ice, and stored at -80°C until dissected by hand. Careful efforts, aided by anatomical 

templates (Paxinos & Watson, 2007), were made to isolate tissue from the lateral nucleus of the 

amygdala. However, given practical limitations of hand dissection, the final tissue sample likely included 

some portions of adjacent amygdala nuclei. Tissue was homogenized in TEVP buffer (.157 g tris, .0042 g 

sodium fluoride, 1 ml sodium orthovanadate, .038 g EDTA, .038 g EGTA, 2 tables complete protease 

inhibitor, 10.944 g sucrose in ddH2O). For samples that would also be used for whole cell protein 

analysis, 18 µl of homogenate was transferred to a separate tube, lysed in homogenization buffer, and 

stored at -80°C until used. Remaining samples were centrifuged at 1,000 g for 10 minutes at 4°C to 

remove nuclei and large debris. The supernatant was removed and spun at 10,000 g for 10 minutes at 

4°C to separate cytoplasmic and synaptosomal fractions. The resulting pellet was re-suspended and 

lysed homogenization buffer (.605 g tris, .876 g NaCl, 10 ml sodium fluoride, .0042 g sodium fluoride, 1 

ml sodium orthovanadate, 2 tablets complete protease inhibitor in ddH2O) and stored at -80°C until use. 

Western Blotting  

 Following determination of protein content using the 660nm protein assay (Pierce), 7.5 µg of 

each whole-cell lysate or synaptosomal fraction was mixed with 2x Laemmli sample buffer (BioRad) and 

ran on a 7.5% TDX gel (BioRad). Proteins were transferred to PVDF membranes. Membranes were 
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incubated in blocking buffer (3.75 ml 4X TBS, .75 g dry milk, 15 µl Tween-20 in 12.5 ml ddH2O) for 60 

minutes at room temperature before being exposed to primary antibody diluted in primary buffer (5 ml 

4X TBS, 1 g BSA, 20 µl Tween-20 in 15 ml ddH2O) overnight at 4°C. Membranes were then incubated in 

15 ml blocking buffer with anti-rabbit, anti-goat, or anti-mouse secondary antibody (1:20,000; Santa 

Cruz BioTech) for 60 minutes at room temperature before exposure to a SuperSignal West Dura 

chemiluminescence solution (Thermo Fisher) for 5 minutes. Protein bands were imaged with the Gbox 

Chemi XT4 imager (SynGene) and optical density of each band was quantified with Gene Tools software 

(SynGene). Optical densities for each protein band were normalized to the optical density of the β-Actin 

band on an animal-by-animal basis.   

 Primary antibodies included pan-CaN A (1:1000; Cell Signaling), phospho-GluR1 (ser 845) 

(1:1000; Cell Signaling), total GluR1 (1:1000; Cell-Signaling), total Glur2 (1:1000; Santa Cruz BioTech), 

PSD-95 (1:1000; Santa Cruz BioTech), and β-Actin (1:1000; Cell Signaling).  

Statistical Analysis 

 Group differences were assessed using independent samples t test, two way ANOVA or mixed-

model ANOVA, as appropriate. An exception to this was the western blot and CaN activity assay 

experiments in Aim 1. The unbalanced design of these experiments produced a non-sensical interaction 

term when analyzed by two-way ANOVA. Therefore, analysis was carried out using one-way ANOVAs. In 

all two-way ANOVAs, drug and behavioral group (referring to the retrieval condition) were used as 

between-subjects factors. In mixed model ANOVAs, drug condition was used as the between-subjects 

factor and retrieval bin (referring to discrete time points within the extinction training session) was used 

as the within-subject factor. Post hoc tests were conducted with Dunnett’s method to compare each 

group to a control group. An exception to this was the CaN activity assay data, in which the Bonferroni 

correction was used to compare a pre-selected set of groups. Observations greater than 2 standard 
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deviations from the group mean were considered outliers. A p-value less than 0.05 was considered 

significant in all cases.  

Procedure: Aim 1 

 Aim 1 established central parameters relevant to the subsequent experiments. To define a 

window of behavioral sensitivity to pharmacological manipulation, animals were trained with auditory 

fear conditioning in context A. Animals were split into strength-matched experimental groups. Twenty-

four hours post-training, animals were given extinction training in context B. Animals received bilateral 

amygdala infusions of anisomycin or vehicle (immediately following extinction or 15 minutes prior to 

extinction) or FK506 or vehicle (immediately following extinction). One day following extinction training, 

animals were given an auditory fear retention test in context B to assess fear to the auditory CS.  

 To verify translation of new CaN protein in the amygdala during extinction training, cannulated 

animals were trained with auditory fear conditioning in context A and divided into strength-matched 

groups. Twenty-four hours following fear conditioning, animals received bilateral amygdala infusions of 

anisomycin or vehicle (15 minutes prior to extinction training) or CaN ODN or scrambled ODN (2.5 hours 

prior to extinction training). Animals were sacrificed immediately following the end of the extinction 

session. Expression of CaN protein in whole-cell amygdala homogenate from each animal was quantified 

using western blots.   

To assess the time course of CaN activity during training, cannulated animals were trained with 

auditory fear conditioning in context A and divided into strength-matched groups. Twenty-four hours 

post-training, animals received bilateral amygdala infusions of vehicle 15 minutes prior to extinction 

training. Animals were sacrificed at one of five time-points throughout the extinction session: 0 CS’s (0 

min), 10 CS’s (15 min), 20 CS’s (30 min), 30 CS’s (45 min), and 40 CS’s (60 min). Amygdala tissue from 

each animal was used in the CaN activity assay to determine CaN activity at each time point. An 
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additional group of rats was infused with FK506 15 minutes prior to the extinction session and sacrificed 

following 0 CS’s (0 minutes) or 20 CS’s (30 minutes) to verify pharmacological inhibition of endogenous 

CaN activity.  

Procedure: Aim 2 

 Aim 2 examined the behavioral impact of inhibiting CaN activity in the amygdala prior to 

extinction and aimed to delineate the effects of newly translated versus pre-existing CaN. Cannulated 

rats were trained with auditory fear conditioning in context A. Animals were split into strength-matched 

experimental conditions. Twenty-four hours post-training, animals received infusions of vehicle, FK506, 

scrambled ODN, or CaN ODN and were then given either an extinction or retrieval session in context B. 

Twenty-four hours later, animals were tested for fear to the CS in Context B.  

Procedure: Aim 3 

 Aim 3 assessed CaN-dependent changes in expression and phosphorylation state of AMPARs 

and AMPAR-associated proteins in the lateral amygdala following extinction training. Cannulated rats 

were trained with auditory fear conditioning in context A. Animals were split into strength-matched 

experimental groups. The next day, animals received infusions of FK506 or vehicle (15 minutes prior to 

the extinction or retrieval session) or CaN ODN or scrambled ODN (2.5 hours prior to the extinction or 

retrieval session). Immediately after the conclusion of extinction or retrieval, animals were sacrificed. A 

separate group of rats were injected with vehicle or the scrambled ODN twenty-four hours after 

auditory fear conditioning for use as a pre-extinction baseline. These animals were sacrificed 76 minutes 

(vehicle) or 3 hours and 31 minutes (scrambled ODN) following injection without receiving an extinction 

or retrieval session. These time points were chosen to match the timing between injection and sacrifice 

to animals that underwent extinction and retrieval sessions. Lateral amygdala tissue was dissected and 
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synaptosomal fractions were obtained from each sample. Tissue fractions underwent Western blot 

analysis for changes in total GluR1, total GluR2, phosphorylated GluR1 (ser845), and PSD-95. 

Results  

 A representative cannula placement is shown in Figure 1.  

Figure 1. Representative amygdala cannula 
placement. Photomicrograph of cannula placement.  

 

 

 

 

 

 

Aim 1 Extinction Induces Increases in CaN Protein and Activity Levels  

 We first conducted a series of tests to characterize critical periods of CaN translation and activity 

following the onset of extinction training.   

1.1 The Critical Window of Amygdala Protein Synthesis Occurs Within the 40 CS (60 Minute) Extinction 
Session 
  
 Despite evidence that new CaN protein in the amygdala is translated during extinction training, 

post-extinction insensitivity to protein synthesis inhibitors has also been reported (Lin et al., 2003b,c; 

Duvarci, ben Mamou, & Nader, 2006). Therefore, we sought to determine a time window of sensitivity 

to protein synthesis inhibition. 
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Figure 2. The critical window of amygdala protein synthesis occurs within the 40 CS (60 minute) 
extinction session. (A) Post-extinction infusion of protein synthesis inhibitor anisomycin in the amygdala 
did not effect performance at the extinction retention test. (B) Pre-extinction infusion of anisomycin in 
the amygdala disrupted the long-term retention of extinction but did not effect within-session 
extinction. All data represent mean (+ SEM).  *p<.05.  
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 To test whether the long-term retention of extinction could be disrupted with post-extinction 

inhibition of protein synthesis,  strength-matched drug conditions were created prior to the 

experimental manipulation based on average time spent freezing during the 4 CS-UCS pairings and the 4 

minute post-CS-UCS period of fear conditioning (independent samples t test: t(10) = 0.97, p>.05) (Fig 2A).  

The following day, rats received bilateral amygdala infusions of either the general protein synthesis 

inhibitor anisomycin (n=6) or vehicle (n=6) immediately following a 40-trial (40t) extinction session in a 

novel context. During the drug-free extinction session, there was a significant decreases in freezing 

between the first 4 CS presentations and the last 4 CS presentations (mixed-model ANOVA: F(1, 10) = 

206.71, p<.001), with no significant differences between the drug conditions(F (1, 10) = 0.66, p>.05). 

While there was a significant CS Bin*Drug interaction (F(1,10) = 20.59, p<.01), this effect was driven by 

the moderately higher level of freezing during the first 4 CS presentations in the anisomycin group 

relative to the vehicle group (p< .10). During the last 4 CS presentations of the extinction session, there 

were no differences in freezing between the drug conditions (p>.05).  Twenty-four hours later, animals 

were returned to the extinction context for a CR retention test. There were no significant differences in 

freezing behavior between the anisomycin and vehicle groups (independent samples t test: t(10) = 0.53, 

p>.05). 

 Next, we tested whether pre-extinction infusions of anisomycin would disrupt the long-term 

retention of extinction. Strength-matched drug conditions were created prior to the experimental 

manipulation based on average time spent freezing during the 4 CS-UCS pairings and the 4 minute post-

CS-UCS period of fear conditioning (independent samples t test: t(10) = 1.55; p>.05) (Fig 2B).  The 

following day, rats received bilateral amygdala infusions of either anisomycin (n=6) or vehicle (n=6) 15 

minutes prior to a 40t extinction session in a novel context. During the extinction session, there were 

significant decreases in freezing between the first 4 CS presentations and the last 4 CS presentations in 

both groups of animals (mixed-model ANOVA: F(1, 10) = 32.64, p<.001), with no significant differences 
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between drug conditions overall (F (1, 10) = .66, p>.05) or at either individual time point in the extinction 

session(F (1, 8) = 0.15, p>.05). Twenty-four hours later, animals were returned to the extinction context 

for a CR retention test. Anisomycin-injected animals froze significantly more to the CS than vehicle 

injected animals (independent samples t test: t(10) = 2.73; p<.05). 

 

 

 

Figure 3. Extinction induces synthesis of 
new CaN protein in the amygdala. (A) 
Extinction-induced increases in CaN 
expression were blocked by pre-extinction 
infusions of the general protein synthesis 
inhibitor anisomycin and (B) by a CaN-
targeted antisense ODN.  
(C) Representative protein bands from 
Western blots. All data represent mean (+ 
SEM). *p<.05. **p<.01 relative to the pre-
retrieval group. 

 

To confirm that anisomycin was preventing extinction-induced translation of CaN, animals that 

received pre-extinction infusions of anisomycin (n=5) or vehicle (n=6) were sacrificed immediately 

following 40t extinction to examine CaN expression in the amygdala (Fig 3A). An additional group of 

animals received vehicle injections (n=5) 24 hours following fear conditioning and were sacrificed 76 
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minutes later. There were significant differences in CaN expression in amygdala whole-cell lysates 

between the groups (one-way ANOVA: F (2,13) = 7.45; p<.01). Follow-up tests revealed that, compared 

to vehicle-infused animals that did not receive extinction training, animals who received vehicle 

infusions prior to extinction had significantly greater levels of amygdala CaN expression (p<.05) whereas 

this increase was not observed in animals infused with anisomycin prior to extinction (p>.05). 

 Finally, to assess whether a similar knockdown of CaN translation could be achieved using a CaN 

ODN, animals that received pre-extinction infusions of the CaN ODN (n=8) or scrambled ODN (n=8) were 

sacrificed immediately following 40t extinction to examine CaN expression in the amygdala (Fig 3B). An 

additional group of animals received scrambled ODN injections (n=8) 24 hours following fear 

conditioning and were sacrificed approximately 3.5 hours later.  There were significant differences in 

CaN expression in amygdala whole-cell lysates between the groups (one-way ANOVA: F(2,21) = .004). 

Follow-up tests revealed that, compared to scrambled ODN-infused animals that did not receive 

extinction training, animals who received scrambled ODN infusions prior to extinction had significantly 

greater levels of amygdala CaN expression (p<.01)  whereas this increase was not observed in animals 

infused with the CAN ODN prior to extinction (p>.05). 

 

1.2 The Critical Window of Amygdala CaN Activity Occurs Within the 40 CS (60 Minute) Extinction Session 
 

Although the results of the anisomycin experiments suggested that translation of CaN is not 

required in the amygdala following extinction training, this did not preclude the possibility that CaN 

activity is critical following extinction training.  Therefore, we next tested whether post-extinction 

infusions of the CaN activity inhibitor FK506 would disrupt the long-term retention of extinction (Fig 4A). 
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Figure 4. The critical window of amygdala CaN activity occurs within the 40 CS (60 minute) extinction 
session. (A) Post-extinction infusion of CaN inhibitor FK506 in the amygdala did not effect performance 
at test. (B) Amygdala CaN activity is significantly increased immediately following 10 and 20 CS 
presentations. However, CaN activity returns to approximately basal levels by the 40th CS presentation. 
Pre-extinction infusion of FK506 blocks the elevation in CaN activity observed following 20 CS 
presentations (+ SEM).  *p<.05,**p<.01 and ***p<.001 relative to the 0 CS group. &p<.001 relative to the 
20 CS vehicle group.  
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Strength-matched drug conditions were created prior to the experimental manipulation based 

on average time spent freezing during the 4 CS-UCS pairings and the 4 minute post-CS-UCS period of 

fear conditioning (independent samples t test: t(8) = 0.01; p>.05).The following day, rats received 

bilateral amygdala infusions of either FK506 (n=5) or vehicle (n=5) 15 minutes immediately following a 

40t extinction session in a novel context. During the drug-free extinction session, there were significant 

decreases in freezing between the first 4 CS presentations and the last 4 CS presentations in both groups 

of animals (mixed-model ANOVA: F (1, 8) = 37.77, p<.001), with no significant differences between drug 

conditions overall (F (1, 8) = 1.54, p>.5) or at either individual time point in the extinction session; :(F(1, 

8) = 0.15, p>.05). Twenty-four hours later, animals were returned to the extinction context for a CR 

retention test. There were no significant differences in freezing behavior between the FK506 and vehicle 

groups (independent samples t test: t(8) = 0.99; p>.05). 

 Given the apparent general insensitivity to post-extinction manipulations, we next determined 

the time course of CaN activity through the extinction session (Fig 4B). 24 hours following fear 

conditioning, animals were injected with vehicle prior to a 0 (n=4), 10 (n=4), 20 (n=4), 30 (n=4) or 40 

(n=4) CS extinction session. Additional animals received injections of FK506 (n=4) prior to a 20 CS 

extinction session to test the efficacy of the drug at inhibiting CaN activity. All groups were sacrificed 

immediately following the conclusion of their respective extinction sessions and amygdala tissue was 

used to determine CaN activity. There were significant differences in CaN activity between groups (one-

way ANOVA: F(5,18) = 15.91, p<.001). Follow up tests revealed that, relative to the 0 CS group, there 

were significant increases in the 10 CS (p<.01), 20 CS (p<.001), and 30 CS (p<.05) vehicle groups. In 

contrast, CaN activity in the 20 CS FK506 group was not different than the 0 CS vehicle group (p>.05) and 

was significantly lower than the 20 CS vehicle group (p<.001).  

 Collectively, these findings indicate that the window of translation and elevated activity of CaN 

occurs within the boundaries of our 40 trial, 60 minute extinction session.  With these experimental 
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parameters, post-extinction pharmacological manipulation of the amygdala did not produce detectable 

deficits in the long-term retention of fear extinction. Therefore, all subsequent experiments were 

conducted using pre-extinction drug infusions.  

 

Aim 2 Pre-Existing and Newly Translated CaN Have Dissociable Behavioral Roles in Extinction   

 It has previously been suggested that distinct pools of CaN, defined by whether the protein 

existed prior to the onset of extinction training or whether the protein is translated following onset of 

extinction training, differentially mediate extinction-related processes (Merlo et al., 2014). To test this 

hypothesis, we compared the behavioral effects of pre-extinction infusion of pharmacological agents 

that inhibited either the activity of CaN (FK506) or the translation of CaN (CaN antisense ODN).  

2.1 Inhibition of CaN Activity in the Amygdala Results in Deficits in Within-Session Fear Extinction and the 
Long-Term Retention of Extinction  

To test this effects of inhibiting CaN activity in the amygdala during extinction, strength-

matched drug x behavioral conditions were created prior to the experimental manipulation based on 

average time spent freezing during the 4 CS-UCS pairings and the 4 minute post-CS-UCS period of fear 

conditioning (two-way ANOVA: Fdrug(1,35) = .07, p>.05; Fbehavioral group(1,35) = 1.52, p > .05; Fdrug x behavioral 

group(1,35) = 0.03, p>.05) (Fig 5A).  The following day, rats received bilateral amygdala infusions of either 

FK506 or vehicle 15 minutes prior to a 40t extinction (FK506: n = 13; vehicle: n = 14) or 4t retrieval 

(FK506: n = 6; Vehicle: n= 6) session in a novel context. There were no group differences during the first 

4 CS presentations due to drug condition (two-way ANOVA: F (1,35) = 0.0004, p<.05), behavioral group 

(F (1,35) = 0.60), or a drug x behavioral group interaction (F (1,35) = 0.1481, p>.05 ). Within the 40t 

groups, there were significant main effects for both drug (mixed-model ANOVA: F (1,35) = 5.97, p<.05) 

and retrieval CS bin (F (1,35) =  13.49, p=.001) and a significant drug x CS bin interaction;(F (1,25) = 9.24, 

p<.01).  Follow up tests revealed a significant decrease in freezing between the first and last four CS 
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presentations of retrieval in the 40t vehicle group (p<.001) but not the 40t FK506 group (p>.05). In 

addition, the 40t FK506 group froze significantly more than the 40t vehicle group during the last 4 CS 

presentations of retrieval (p<.01). Twenty-four hours later, animals were returned to the extinction 

context for a CR retention test. There was a significant main effect of drug (two-way ANOVA: F (1,35) = 

5.48, p<.05) and behavioral group (F (1,35) = 4.66, p<.05), and a significant drug x behavioral group 

interaction;(F (1,35) = 4.59, p<.05). Follow up tests revealed that groups of animals frozen significantly 

more than than the 40t vehicle group (40t veh vs. 40t FK506: p<.001; 40t veh vs 4t veh: p<.05; 40t veh vs 

4t FK506: p<.01). 

2.2 Inhibition of Calcineurin Translation in the Amygdala Selectively Impairs the Long-Term Retention of 
Extinction  

To test the effects of inhibiting CaN translation in the amygdala during extinction, strength-

matched drug x behavioral conditions were created prior to the experimental manipulation based on 

average time spent freezing during the 4 CS-UCS pairings and the 4 minute post-CS-UCS period of fear 

conditioning (Fig 5B). Though there was a significant main effect for behavioral group (two-way ANOVA: 

F (1, 18) = 6.05, p<.05), where rats in the 40t extinction condition showed significantly greater freezing 

during training than those in the 4t retrieval condition, there were not a significant main effect for drug 

or (F (1,18) = 0.79, p > .05 a significant drug x behavioral group interaction F (1,18) = 0.001, p>.05). 

Therefore, these groups were accepted as strength-matched.  
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Figure 5. Inhibition of CaN activity or CaN translation in the amygdala produce distinct patterns of 
deficits in extinction. (A)Inhibition of CaN activity impairs within-session extinction and the long-term 
retention of extinction whereas (B) inhibition of CaN translation selectively impairs the long-term 
retention of extinction.  All data represent mean (+ SEM). *p<.05, **p<.01, ***p<.001 relative to the 40t 
vehicle group.  
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The following day, rats received bilateral amygdala infusions of either the CaN ODN or 

scrambled ODN 2.5 hours prior to a 40t extinction (CaN ODN: n=5; Scrambled ODN: n=5) or 4t retrieval 

(CaN ODN: n=6; Scrambled ODN: n=6) session in a novel context. There were no group differences 

during the first 4 CS presentations between any of the four groups due to drug condition (two-way 

ANOVA: F (1,18) = 1.60, p>0.5), behavioral group (F (1,18) = 2.14, p>.05), or a drug x behavioral group 

interaction (F  (1,18) = .21, p>.05). Within the 40t groups, there was a significant effect of retrieval CS bin 

(mixed-model ANOVA: F (1,8) =  314.07, p<.001). Follow up tests revealed that 40t Scr (p<.01) and 40t 

ODN (p<.01) animals exhibited a significant decrease in freezing between the first and last four CS 

presentations of retrieval. Importantly, there was no significant main effect for drug (mixed-model 

ANOVA: F (1,8) = 2.02, p>.05). While there was some suggestions of a drug x retrieval CS bin interaction 

(F (1,8) = 5.34, p=.05), this is likely due to the somewhat elevated freezing of the 40t ODN group during 

the first four CS presentations of retrieval. However, there were no significant difference between drug 

conditions during the final 4 CS presentations of the 40t extinction session (p>.05).  Twenty-four hours 

later, animals were returned to the extinction context for a CR retention test. There was a significant 

main effect of drug (two-way ANOVA: F (1,18) = 11.33, p<.01) and behavioral group (F (1,18) = 24.77, 

p<.001), and a significant drug x behavioral group interaction (F (1,18) = 5.31, p<.05). Follow up tests 

revealed all other groups of animals froze significantly more than animals in the 40t scrambled ODN 

group (40t Scr ODN vs. 40t CaN ODN: p<.01; 40t Scr ODN vs 4t Scr ODN: p<.001; 40t Scr ODN vs 4t CaN 

ODN: p<.001).   
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Aim 3 Pre-Existing and Newly Translated CaN Mediate Distinct Aspects of Depotentiation-Like Synaptic 

Changes in the Lateral Amygdala  

 Given the distinct impairments in extinction observed following amygdala infusions of FK506 

and the CaN antisense ODN, we next probed for differences in depotentiation-like changes in 

synaptosomal proteins following the inhibition of CaN activity and translation during extinction. While 

acute changes in AMPARs surface expression are thought to be important for the induction of synaptic 

plasticity and are likely behaviorally relevant as well, the up- or down-regulation of scaffolding proteins 

like PSD-95 tend to be indicative of longer-term changes in AMPAR expression and synaptic strength 

(Ehlers, 2000; Colledge et al., 2003; Kim et al., 2007; Dalton et al., 2007). Therefore, we predicted that 

inhibition of CaN activity would prevent extinction-induced reductions in AMPAR and PSD-95 expression 

in synaptosomal preparations of amygdala tissue, whereas selective inhibition of CaN translation would 

preserve these initial AMPAR dynamics but prevent the loss of PSD-95 expression.   

3.1 Inhibition of CaN Activity Prevents Extinction-Induced Reductions in Synaptosomal Expression of 
GluR2 and PSD-95 

 To test whether inhibition of CaN activity would prevent reduced expression of AMPARs and 

PSD-95, fear-conditioned animals were injected with either FK506 or vehicle 15 minutes prior to a 40t 

extinction (FK506: n=8; Vehicle: n=8) or 4t retrieval (FK506: n=7; Vehicle: n=7) session and were 

sacrificed 60 minutes after the onset of the first CS. An additional group of fear conditioned rats (n=8) 

was used to establish basal protein levels after conditioning but prior to any re-exposure to the CS. 

Twenty-four hours after conditioning, these animals received vehicle infusions and were returned to 

their homecage for 76 minutes before being sacrificed. LA synaptosomal fractions were used to 

characterize extinction-induced changes in AMPAR and PSD-95 expression. 
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Figure 6. Inhibition of CaN activity prevents changes in synaptosomal expression of GluR2 and PSD-95 
in the lateral amygdala. (A) Schematic of experimental procedure. Inhibition of CaN activity does not 
effect (B) reduction of GluR1 or (C) bidirectional changes in the phosphorylation of serine 845 on GluR1 
following extinction or retrieval. Inhibition of CaN activity (D) prevents reductions in GluR2 following 
extinction or retrieval and E) prevents the extinction-specific loss of PSD-95. F) Representative protein 
bands from Western blots. All data represent mean (+ SEM).  *p<.05, **p<.01, ***p<.001 relative to the 
pre-retrieval group.   
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 There was a significant effect of behavioral group on total GluR1 expression (two-way ANOVA: F  

(2,32) = 15.86, p<.001) (Fig 6B). However, there was no drug effect (F (1, 32) = 1.85, p>.05) and no 

significant drug x behavioral group interaction (F (1, 32)= 0.001, p>.05). Follow up tests revealed a 

significant reduction in GluR1 in the 40t and 4t groups relative to the pre-retrieval group (pre-ret vs. 40t: 

p<.01; pre-ret vs 4t: p<.05). Similar to the total synaptosomal expression of GluR1, there was a 

significant main effect of behavioral condition on the total amount of GluR1 subunits phosphorylated at 

serine 845 (two-way ANOVA: F (2,30) = 23.45, p<.001) without a significant main effect of drug condition 

(F (1, 30) = 0.92, p>.05 or a significant drug x behavioral group interaction (F (1, 30)= 0.76, p>.05) (Fig 

6C). However, in contrast to the unidirectional change in total GluR1 following retrieval, post-hoc 

comparisons revealed that, regardless of drug infusion, animals in the 4t retrieval condition expressed 

significantly increased level of phosphorylated Glur1 relative to the pre-retrieval control group (Pre-Ret 

vs. 4t: p<.05), whereas animals in the 40t extinction condition exhibited significantly reduced level of 

phosphorylated GluR1 (Pre-Ret vs 40t: p<.05). 

 There was a significant effect of behavioral group (two-way ANOVA: F (2, 31) = 8.22, p<.001) and 

drug condition (F (1,31) = 10.84, p<.01) on GluR2 expression (Fig 6D). However, there was no significant 

drug x behavioral group interaction (F (1, 31) = 0.46, p>.05). Follow up tests revealed a significant 

reduction in GluR2 relative to baseline in the 40t and 4t vehicle groups (pre-ret vs 40t veh: p<.001; pre-

ret vs 4t veh: p<.01) but no significant reduction in the 40t and 4t FK506 groups (pre-ret vs 40t FK506: 

p>.05; pre-ret vs 4t FK506: p>.05). There were also significant differences in levels of PSD-95 as a 

function of drug (two-way ANOVA: F(2, 31) = 5.84, p<.01) and behavioral group (F (1,31) = 5.36, p<.05), 

as well as a significant drug x behavioral group interaction(F (1, 31) = 4.18, p<.05) (Fig 6E). Follow up 

tests revealed a significant reduction in PSD-95 relative to baseline in the 40t vehicle group only (pre-ret 

vs 40t veh: p<.05; pre-ret vs 40t FK506: p>.05; pre-ret vs 4t veh: p>.05; pre-ret vs 4t FK506: p>.05).   
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3.2 Inhibition of CaN Translation Preserves AMPAR Trafficking but Prevents Extinction-Induced 
Reductions in Synaptosomal Expression of PSD-95 

 

To test whether inhibition of CaN translation would prevent reduced expression PSD-95, but 

preserve the observed CaN-dependent reduction in GluR2 in the amygdala following extinction, fear-

conditioned animals were injected with either the CaN antisense ODN or the scrambled ODN 2.5 hours 

prior to a 40t extinction (CaN ODN: n=8; Scr ODN: n=8) or 4t retrieval (CaN ODN: n=8; Scr ODN: n=8) 

session and were sacrificed 60 minutes after the onset of the first CS. An additional group of fear 

conditioned rats (Pre Ret: n=8) was used to establish basal protein levels after conditioning but prior to 

any re-exposure to the CS. Twenty-four hours after conditioning, these animals received scrambled ODN 

infusions and were returned to their homecage for 3 hours and 31 minutes before being sacrificed. LA 

synaptosomal fractions were used to assess extinction-induced changes in AMPAR and PSD-95 

expression. 

 Consistent with the results obtained with FK506, there was a significant effect of behavioral 

group on total GluR1 expression (two-way ANOVA: F (2,34) = 6.26, p<.01);  but no significant effect of 

drug (F(1, 34) = .13, p>.05) and no significant drug x behavioral group interaction  (F (1, 34)= .67, p>.05) 

(Fig 7B). Follow up tests revealed a significant reduction in GluR1 in all behavioral groups relative to the 

pre-retrieval group (pre-ret vs. 40t: p<.01; pre-ret vs 4t: p<.01). There was also a significant main effect 

of behavioral condition on the total amount of GluR1 subunits phosphorylated at serine 845 (two-way 

ANOVA: F (2,30) = 18.40, p<.001)but no significant main effect of drug condition (F (1, 30) = 0.50, p>.05) 

and no significant drug x behavioral group interaction (F (1, 30)= 0.02, p>.05) (Fig 7C). Post-hoc 

comparisons revealed that significantly increased levels of phosphorylated GluR1 in the retrieval 

condition relative to the pre-retrieval control group (Pre-Ret vs. 4t: p<.05), whereas there was a trend 

towards dephosphorylation of serine 845 in the extinction condition (Pre-Ret vs 40t: p<.10). 
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 There was a significant effect of behavioral group (two-way ANOVA: F (1, 34) = 9.60, p<.001) on 

GluR2 expression.  In contrast to findings with FK506, there was no significant effect of drug condition 

(F(1,34) = .88, p>.05) on GluR2 expression (Fig 7D). In addition, there was no significant drug x 

behavioral group interaction (F (1, 34) = 0.90, p>.05). Follow up tests revealed a significant reduction in 

GluR2 in all groups relative to the pre-retrieval group (pre-ret vs. 40t: p<.01; pre-ret vs 4t: p<.01). 

Despite the absence of drug effects on AMPAR expression, there were significant differences in levels of 

PSD-95 as a function of drug (two-way ANOVA: F(2, 33) = 5.13, p<.05) and behavioral group (F  (1,33) = 

4.92, p<.05), as well as a trend toward a significant drug x behavioral group interaction(F  (1, 33) = 3.87, 

p<.10) (Fig 7D). Follow up tests revealed a significant reduction in PSD-95 relative to baseline in the 40t 

Scr group only (pre-ret vs 40t Scr: p<.01; pre-ret vs 40t ODN: p>.05; pre-ret vs 4t Scr: p>.05; pre-ret vs 4t 

ODN: p>.05).  
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Figure 7. Inhibition of CaN translation selectively prevents the reduction in PSD-95 in the lateral 
amygdala. (A) Schematic of experimental procedure. Inhibition of CaN translation does not effect (B) 
reduction of GluR1 following extinction or retrieval, (C) the enhanced phosphorylation of serine 845 on 
GluR1 retrieval, or D) the reduction in GluR2 following extinction or retrieval. E) Inhibition of CaN 
translation prevents the extinction-specific loss of PSD-95. F) Representative protein bands from 
Western blots. All data represent mean (+ SEM). #<.01 *p<.05, **p<.01 relative to the pre-retrieval 
group.   
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Discussion 

 The present series of experiments addressed whether functionally distinct pools of CaN 

contribute to depotentiation-like synaptic changes in the lateral amygdala during auditory fear 

extinction. The results support a critical and complex role for CaN in the amygdala during auditory fear 

extinction. Surprisingly, the critical window of CaN-mediated signaling in the amygdala was found to be 

relatively brief, where CaN protein levels increase and CaN activity levels rise, peak, and fall within the 

bounds of the 40 CS (60 minute) extinction session. Despite this brief time window, CaN is involved in 

both short- and long-term extinction-related changes in conditioned fear expression. Inhibition of CaN 

activity from all potential sources with FK506 prevented the typical reduction in the CR over the course 

of the extinction session and high-levels of CS-induced freezing continued to be observed at the long-

term extinction retention test. However, selective interference with extinction-induced translation of 

CaN using a CaN-targeted ODN did not affect within-session extinction but impaired the long-term 

retention of fear extinction. In agreement with these distinct behavioral deficits, inhibition of all pools of 

CaN activity disrupted extinction-induced GluR2-containing AMPAR endocytosis and the reduction in 

PSD-95 expression, whereas inhibition of newly translated CaN prevented the reduction in PSD-95 while 

leaving AMPAR dynamics intact. Collectively, these results support a tightly regulated balance between 

pre-existing CaN, which may facilitate the induction of behavioral and molecular change, and newly 

translated CaN, which may contribute to the long-term stability of extinction.   

 The preliminary aim of this study was to characterize periods of extinction during which there 

would be sensitivity to disruption of CaN-mediated signaling in the amygdala. In line with previous 

findings, both CaN protein levels and activity increase during extinction training (Merlo et al., 2014; Lin 

et al 2003b,c).  More unexpected was that CaN activity both peaked and subsequently declined within 

the extinction session. While a portion of pre-existing CaN protein is anchored in the PSD near calcium 
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channels, which allows rapid activation and inactivation in response to calcium influx, it is unclear how 

the synthesis, activation, and inactivation of new CaN protein are also accomplished within this same 

timeframe (Dodge & Scott, 2003). Though CaN activity was not measured at any time point beyond the 

conclusion of the 40 CS (60 minute) extinction session, it is unlikely that there is a subsequent wave of 

CaN activity, as post-extinction injection of FK506 failed to disrupt extinction. Alternatively, given 

evidence that CaN is locally translated in dendrites during fear extinction, it is possible that CaN is 

synthesized quickly and in close enough proximity to the cell membrane to respond to extinction-related 

signaling on the time scale observed here (Lin et al., 2003c).  

 The narrow time window of critical CaN activity precluded the possibility of varying drug 

injection time to dissociate the roles of pre-existing and newly translated CaN.  Therefore, for the 

second aim of this study, two different pharmacological agents were employed to probe for unique 

contributions of these pools. Effects that were common to both pharmacological conditions were 

interpreted as dependent on newly translated CaN, where findings unique to the FK506 condition were 

considered to be dependent on pre-existing CaN. As predicted, newly translated CaN was found to be 

selectively involved in the long-term retention of extinction whereas pre-existing CaN was found to be 

critical for within-session changes in CR expression. Importantly, inhibition of either pool did not disrupt 

the expression or maintenance of the CR in the brief retrieval condition. Together, these observations 

support distinct roles of pre-existing and newly translated CaN in extinction-related behavioral changes.  

 In contrast to the present behavioral findings, it was recently reported that inhibition of CaN 

activity from all pools via systemic injections of FK506 produces deficits in within-session, but not the 

long-term retention of extinction (Almeida-Correa et al., 2015). Because the current study used 

amygdala-targeted micro-infusions of FK506, differences in the efficacy and spread of the CaN inhibitor 

due to the method of delivery may relate to the nature of deficits in extinction learning. Given that 

extinction requires distinct forms of plasticity in multiple brain structures, it is possible that systemic 
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delivery of FK506 alters plasticity throughout this network in a way that partially compensates for the 

disruption of CaN activity in the amygdala alone. In light of this, it is notable that all previous studies 

reporting a role for CaN in the long-term retention of fear extinction have used local micro-infusions 

(Merlo et al., 2014; de la Fuente et al., 2011). However, additional work to characterize activity-

dependent differences between and interactions among brain structures in the presence of CaN 

inhibitors is required to reconcile these results.   

 Given the distinct pattern of behavioral effects following amygdala-targeted infusion of either 

FK506 or the CaN ODN observed in the second aim, the final set of experiments assessed the nature of 

CaN-dependent plasticity. Specifically, the third aim addressed whether CaN-mediated signaling during 

fear extinction was required for depotentiation-like molecular changes in the LA and whether substrate 

specificity could be detected among the pools of pre-existing and newly translated CaN. Because both 

homomeric GluR1/1 and heteromeric GluR1/2 AMPARs are upregulated 24 hours following auditory fear 

conditioning, changes in the GluR1 and GluR2 subunit were assessed (McCormack et al., 2006; Yeh et al, 

2006; Kim et al., 2007).  

Surprisingly, manipulation of CaN activity did not strongly affect synaptosomal expression or 

phosphorylation of GluR1. Under basal conditions, CaN has been shown to dephosphorylate serine 845 

on GluR1, which limits the signal to recruit GluR1-containing AMPARs to the membrane (Sanderson et 

al., 2012). Thus, one possibility is that basal and activity-dependent regulation of serine 845 

phosphorylation rely on different substrates. Another possibility would the induction of a compensatory 

mechanism in lieu of appropriate CaN signaling. Changes in PKA or protein phosphatase 1 activity are 

two potential candidates that could underlie either of these possibilities (Snyder et al., 2003). Regardless 

of the specific mechanism, there is a clear dissociation in the regulation of serine 845 phosphorylation 

during extinction and retrieval. Consistent with previous reports, phosphorylation of serine 845 is 

increased following retrieval, suggesting subsequent recruitment of AMPARs to the surface (Jarome et 
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al, 2012; Man et al., 2007). In contrast, there appears to be no change or a mild dephosphorylation of 

serine 845 following extinction. This suggests the absence of a strong signal for subsequent AMPAR 

recruitment, which is consistent with what is known about AMPAR dynamics during phenomena that 

reduce synaptic strength (Man et al., 2007; Beattie et al., 2000; Wang, 2008).  

 Differences in the regulation of AMPAR trafficking based on subunit composition may explain 

the apparent CaN-independence of GluR1 endocytosis (Lee, Simonetta, & Sheng, 2004; Wang, 2008). 

Given that manipulations of CaN activity disrupted GluR2 endocytosis (discussed further below), it may 

be that distinct regulatory signals control the trafficking of homomeric GluR1/1 receptors (Hanley, 2014; 

Soto et al., 2009). Not only has the decrease in GluR1 been found to be of lesser magnitude than GluR2 

24 hours following fear extinction, but fear renewal following extinction has been reported to depend 

on an increase in AMPAR channel conductance induced by phosphorylation of serine 831 on GluR1 (Lee 

et al., 2013). Critically, phosphorylation at this site only regulates channel conductance in homomeric 

GluR1/1 AMPARs (Oh et al., 2005). However, this issue requires further investigation.      

In contrast to GluR1, inhibition of CaN activity, but not CaN translation, prevented reductions in 

synaptosomal GluR2 expression during extinction. Notably, Kim and colleagues (2007) previously 

reported that blocking GluR2-containing AMPAR endocytosis disrupts within-session extinction, which is 

consistent with the pattern of behavioral and molecular data observed presently with FK506. Together 

with the lack of effect of the CaN-targeted ODN on within-session extinction and GluR2 trafficking, the 

results suggest that pre-existing CaN is the critical mediator of GluR2-containing AMPAR endocytosis 

during fear extinction.  

Despite previous work demonstrating that GluR2 levels remain low even 24 hours after 

extinction, the present results, obtained immediately following the end of the extinction session, are not 

strictly indicative of a depotentiation-like phenomenon (Kim et al., 2007). Moreover, the CaN-mediated 



 
 

41 
 

reduction in GluR2 expression was not specific to extinction. Because expression of GluR2-containing 

AMPARs is linked with long-term memory stability, pre-existing CaN may be part of a more general 

destabilization process triggered under certain conditions of memory retrieval (i.e. those that induce 

extinction or reconsolidation) (Migues et al., 2010).  Given that reconsolidation does not involve long-

lasting reductions in synaptic strength, it is unlikely the pre-existing CaN provides an unambiguous signal 

for depotentiation.  

 In contrast to GluR2 trafficking, the present results reveal an extinction-specific, CaN-dependent 

reduction in PSD-95. Of great relevance here is that, during an initial learning event, PSD-95 is proposed 

to facilitate long-term increases in synaptic strength by creating “slots” at active synapses that will 

subsequently be filled AMPARs (Opazo et al., 2012). Once AMPARs are in place, PSD-95 functions as an 

anchor to maintain their synaptic localization (Chen et al., 2012; Yudowski et al., 2013). Two predictions 

derived from this are that 1) under memory retrieval conditions that destabilize the synapse but 

ultimately maintain synaptic strength, PSD-95 serves as a tag to appropriately guide the reinsertion of 

AMPARs into the membrane following endocytosis and 2) under memory retrieval conditions that 

destabilize the synapse and ultimately reduce synaptic strength, the removal of PSD-95 results in a loss 

of the signal for reinsertion. The extinction-specific reduction in PSD-95 observed here, together with 

previous data supporting long-term reductions in AMPAR expression following extinction, are consistent 

with these predictions. However, additional work is required to confirm this functional role of PSD-95 in 

retrieval and extinction. 

 Of particular interest is the finding that the reduction in PSD-95 expression is mediated by 

newly-translated CaN. Though not directly assessed here, it has been shown that the synthesis of CaN 

protein in the amygdala does not occur follow non-extinction inducing retrieval sessions (Merlo et al., 

2014). This suggests that the coupling of CaN synthesis and PSD-95 degradation is an extinction-specific 

facet of signaling in the amygdala. Moreover, in contrast to AMPAR trafficking mediated by pre-existing 
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CaN, degradation of PSD-95 is more directly suggestive of a decrease in synaptic strength (Steiner et al., 

2008; Opazo et al., 2012; Xu et al., 2008). 

However, it must be noted that significant loss of PSD-95 in the lateral amygdala has previously 

been observed to occur only with strong extinction training (where the strength of extinction training is 

assessed by the level of spontaneous recovery over multiple testing days following the extinction 

session) (Mao et al., 2013). The low degree of CR recovery between the end of extinction training and 

the retention test observed in the current study provides some indication that our behavioral 

procedures induced a relatively strong form of extinction. That some degree of behavioral extinction 

may be retained in the absence of reduction in PSD-95 may partially explain why the inhibition of CaN 

translation resulted in qualitatively intermediate CR expression at the retention test. Nonetheless, 

translation of CaN in the amygdala has been observed following even relatively mild forms of extinction 

training (Merlo et al., 2014). Therefore, additional targets of newly translated CaN, and their specificity 

for extinction, should be addressed in future studies.  

Collectively, the results provide specific links between changes in several proteins, including 

increased CaN activity, AMPAR endocytosis, and loss of PSD-95, that are consistent with depotentiation 

as an underlying mechanism of auditory fear extinction in the lateral amygdala (Lin et al., 2003a,b,c; Kim 

et al., 2007; Dalton et al., 2008). Although the contribution of at least two distinct pools of CaN is 

supported, signaling by pre-existing CaN may have a more general involvement in memory retrieval-

induced plasticity, while translation of CaN may be an extinction-specific component of plasticity that is 

preferentially involved in reducing synaptic strength. Thus, identifying conditions that induce the 

translation of CaN are of particular interest. However, the development of these conditions are unlikely 

to be understood through the study of the lateral amygdala in isolation. Careful dissection of projections 

between the lateral amygdala and other regions implicated in extinction, including the infralimbic and 

prelimbic division of the mPFC, the auditory cortex and thalamus, and other subnuclei of the amygdala, 
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is required to properly situate the function of CaN-mediated depotentiation among the multitude of 

plastic changes induced by auditory fear extinction.  
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