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ABSTRACT 
IMPACT OF FAAH GENOTYPE AND MARIJUANA USE ON BRAIN STRUCTURE 

AND NEUROPSYCHOLOGICAL PERFORMANCE IN EMERGING ADULTS 
by 

Skyler G. Shollenbarger 
 

The University of Wisconsin-Milwaukee, 2014 
Under the Supervision of Professor Krista Lisdahl, Ph.D. 

 
Introduction: Chronic MJ use may be associated with higher cognitive ability 

impairments (see Lisdahl et al., 2013). Regions undergoing later maturation (Gogtay 

2004), may be at increased risk for MJ-induced alterations. Endogenous cannabinoid 

signaling (ECS) is modulated by the function the enzyme Fatty Acid Amide Hydrolase 

(see Ho & Hilard, 2005), thus the gene encoding for this enzyme (FAAH) impacts ECS 

(Sipe et al., 2002). Here, we examine the impact of MJ use and FAAH genotype on PFC 

complexity and underlying frontal white matter (WM) integrity in young adults. 

Methods: Participants included 37 MJ users and 37 non-using young adults (ages 18-25). 

Of those, 27 were FAAH A carriers and 47 were homozygous (C/C) carriers. Exclusion 

criteria included co-morbid psychiatric and neurologic disorders and excessive other drug 

use. Brain complexity and WM integrity was measured using local gyrification index and 

Tracula programs. The Letter Number Sequencing, PASAT and D-Kefs c/w interference 

measured complex attention and inhibition. Multiple regressions and Pearson r 

correlations were used to predict LGI, WM integrity and cognitive performance indices 

from MJ use status, FAAH status, and MJ*FAAH interactions controlling for 

demographic variables and comorbid drug use.  Results: MJ users demonstrated 

decreased LGI in bilateral vmPFC (RH: [beta=-.54, p<.001] and LH: [beta=-.55, 

p<.001]); bilateral mPFC (RH: [beta=-.48, p=.001] and LH: [beta=-.51, p<.001]); and 

bilateral frontal poles (RH: [beta=-.31, p=.02]; LH: [beta=-.43, p=.004]), with increased 
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LGI in LH DLPFC [beta=.40, p=.004]. Controlling for the same variables, reduced WM 

integrity was found in bilateral UCF (RH: [beta=.32, p=.03] and LH: [beta=.31, p=.03]) 

and fMinor [beta=.27, p=.05] tracts of MJ users. Significant interactions between 

MJ*FAAH were seen predicting LGI in LH OFC [beta=-.24, p=.04] and WM integrity in 

fMinor [beta=.26, p=.04] and LH ATR [beta=.36, p=.003]. In MJ users, increased 

gyrification was associated with better LNS performance in RH mPFC [r=.51, p=.001], 

RH vmPFC [r=.41, p=.01], and RH frontal pole [r=.45, p=.005] and a negative 

correlation with gyrification and color-word completion time in LH vmPFC [r=-.32, 

p=.05]. In MJ users, decreased WM integrity was associated with greater PASAT 

performance in the RH UNC [r=.38, p=.02]. Discussion: MJ use was associated with 

reduced LGI in several PFC regions with one region showing an opposite relationship. 

These results are consistent with Mata and colleagues (2010). We also found reduced 

WM integrity in fronto-temporal tracts, which may have important emotion regulation 

implications. These brain characteristics were also moderated by FAAH genotype. 

Additional implications of ECS and brain health will be discussed.  
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I. INTRODUCTION 

SIGNIFICANCE  

 Marijuana (MJ) use continues to be on the rise among youth populations, with up 

to 25% of adolescents reporting annual use, a nearly 4% significant increase from 2007 

(Johnston, O’Malley, Bachman, 2011a). Additionally, over one third of college students 

reported past year use (Johnston, O'Malley, Bachman & Schulenberg, 2011b) and in 

young adults aged 21-22 almost 20% reported past month use with roughly 6% reporting 

daily use in 2012 (Johnston, O’Malley, Bachman, Schulenberg, 2013). Among chronic 

MJ-using youth, evidence suggests impairments in higher order cognition, such as 

complex attention and working memory (Harvey, Sellman, Porter, & Frampton, 2007; 

Hanson et al., 2010; Medina et al., 2007; Lisdahl & Price, 2012).  

The central active ingredient in MJ, Δ 9- tetrahydrocannabinol (THC), binds to 

cannabinoid receptors (CB1) in the brain. In-vivo human research indicates the presence 

of CB1 receptors in several cortical regions, including the hippocampus and cerebellum, 

with increased densities in the prefrontal cortex (PFC) (Terry et al., 2009), a region 

associated with attention and executive functions (see Goldberg, 2009; see Yurgelun-

Todd, 2007). The CB1 receptor is part of a neurotransmitter system that responds to 

cannabinoids and this signaling, known as endocannabinoid signaling (ECS), is what 

causes the subjective experience of MJ use through retrograde regulation of monoamines, 

including dopamine (DA) (see Katona & Freund, 2012). Given that such processes may 

have an influence on addiction risk (Koob & Volkow, 2010) and executive functioning 

(EF) performance (for review see Egerton, Allison & Brett, 2006), it is plausible that 

variability in MJ-related neurocognitive consequences may be mediated by genes that 
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regulate ECS. One such candidate is fatty acid amide hydrolase (FAAH). To date, no 

studies have examined the impact of FAAH genotype on structural brain changes 

associated with adolescent and emerging adult MJ exposure. Consequently, there is great 

incentive to further understand the effects MJ has on the emerging adult brain. 

NEUROCHEMISTRY  

 Endogenous cannabinoids are produced naturally in the brain and exogenous MJ 

administration mimics the typical chemical function. In reaction to calcium build-up in 

the post synaptic cell, endogenous cannabinoids (e.g. N-arachidonylethanolamide or 

AEA) indirectly affect glutamate (GLU) and γ-Aminobutyric acid (GABA) release by 

binding to G-protein coupled CB1 receptors in pre-synaptic neurons (Gomez-Ruiz, 

Hernandez & Ramos, 2007; Howlett et al., 2004; Iversen, 2003; Kogan & Mechoulam, 

2006). FAAH inactivates and degrades AEA into two elements arachidonic acid and 

ethanolamine, which prevents AEA from activating the CB1 receptor (McKinney & 

Cravatt, 2005; Ho & Hillard, 2005). During MJ use, THC also binds to CB1 receptors and 

similarly affects GLU and GABA release (Iverson, 2003). This has both excitatory 

(decrease in GABA) and inhibitory (decrease in GLU) effects on the post-synaptic 

neurons, including other monoamines (Szabo & Schlicker, 2005), which may induce 

behavioral consequences. Throughout adolescence, neurochemical changes in AEA 

regulation occur through increasing reliance on the action of FAAH in regions within the 

PFC (Long, Lind, Webster & Weickert, 2012).  Additionally, chronic MJ using adults 

(ages 20-36) demonstrate significant, though reversible downregulation of CB1 receptors 

in the PFC (Hirvonen et al., 2012). Thus, a continuum of FAAH activity may have 
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unique structural implications for adolescent and emerging adult MJ users, particularly in 

areas such as the PFC.  

FAAH GENOTYPE AND ENDOCANNABINOID SIGNALING  

 Several genes contributing to individual variation in neurochemical responses 

may mediate ECS (Onaivi et al., 2002); recent data also suggest environmental influences 

on ECS response, specifically via unique fluctuations of endocannabinoids (Hill et al., 

2010). Though CB1 activation via AEA may be inhibited through AEA transport or 

FAAH activity, the latter was found to be the preferential constituent in the rat brain 

(Solinas et al., 2007). As previously mentioned, a potential biomarker of ECS is the gene 

encoding for the enzyme FAAH (FAAH; note: gene encoding for the FAAH enzyme is 

also called FAAH –all references to the gene will be FAAH) located on chromosome 

1p35-34 in humans. Specifically, a single nucleotide polymorphism (SNP) from C to A at 

position 385 (rs324420) in the human FAAH gene results in a conversion of amino acid 

proline to threonine (P129T), which renders the enzyme instable as evidenced in immune 

cell examination (Sipe et al., 2002; Chiang, Gerber, Sipe, & Cravatt, 2004). 

Consequently, the three most common genotypes are as follows: C/C (63.19%), C/A 

(30.56%), A/A (6.25%), and those carrying the rare nucleotide ‘A’ demonstrate elevated 

levels of AEA in blood plasma levels (Sipe et al., 2010). 

ECS has an important role in fetal and postnatal development, and FAAH activity 

is an important mediator in ECS regulation (Glaser et al., 2003; McFarland, Rakhshan, 

Wilson & Barker, 2004; Fernández-Ruiz, Berrendero, Hernández, Romero & Ramos 

1999; Fride, 2008; Harkany, Keimpema, Barabás & Mulder, 2008). Maturational 



 

 
 

4 

disruption, as evidenced in animal models (Bernard et al., 2005), may negatively impact 

network activity.  

ADOLESCENCE A SENSITIVE NEURODEVELOPMENTAL PERIOD? 

  In addition to ongoing development of the endocannabinoid system, there are also 

substantial neurodevelopmental changes present during adolescence through emerging 

adulthood, especially in the PFC (see Gogtay & Thompson, 2010; Gogtay et al., 2004). 

Underlying microstructural analysis demonstrate gray matter pruning in the PFC 

coincides with white matter (WM) tract development into early adulthood (Bava et al., 

2010), producing increased axonal insulation. Dynamic changes in reward centers predate 

maturation in the PFC (Casey, Jones & Hare, 2008; Ernst, Pine & Harden, 2006; Galvan 

et al., 2006), suggesting fewer resources available for top-down executive control and 

heightened impulsivity behaviors (Kelley et al., 2004), including initiation of MJ and 

other drug use during adolescence (Bava & Tapert, 2010). Animal and human studies 

investigating the impact of adolescent MJ use suggests marked changes in cognition, 

structure and neural recruitment (Jager & Ramsey, 2008), as well as neuropsychological 

decline (Meier et al., 2012). Adolescents also demonstrate pronounced vulnerability to 

MJ exposure (see Trezza, Cuomo & Vanderschuren, 2008), thus determining the 

influence of MJ use on regions undergoing neural maturation is necessary.  

  In addition to gray matter pruning, underlying maturation also occurs in WM with 

changes in both volumetric and cohesiveness of axons (Giedd, 2004; Lenroot & Giedd, 

2006; Schmithorst, Wilke, Dardzinski & Holland, 2002; Barnea-Goraly et al., 2005). 

Diffusion tensor imaging (DTI) provides in-vivo analysis of WM integrity through 

examining diffusion of water molecules. Quantification can be made on the direction, 
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which can be isotropic or anisotropic (fractional anisotropy; FA), and magnitude of 

diffusion (mean diffusivity; MD), and can be influenced by the geometric dimensions of 

the tissue (Beaulieu, 2002; Mamata et al., 2002; Pierpaoli, Jezzard, Basser, Barnett & Di 

Chiro, 1996). FA values range from 0-1,with greater values representing highly organized 

and cohesive tissue. Typically developing WM tracts demonstrate an inverse relationship 

between FA and MD. For example, during late adolescence and early adulthood WM 

cohesion increases, which causes increases in FA and decreases in MD within the PFC 

(Qiu, Li, Liu, Xie, & Wang, 2010) to support cognitive performance and guide 

increasingly complex behavior as we age (see Giedd, 2008; Bava et al., 2010). Increases 

in both FA and WM volume have been observed in healthy adolescent and emerging 

adults samples, particularly in PFC regions, which were associated with enhanced 

cognitive and intellectual abilities (Barnea-Goraly et al., 2005; Bava et al., 2010; Tamnes 

et al., 2011).  

  Functional neuroimaging studies found increased brain activation abnormalities in 

early-onset versus late-onset marijuana users (Becker, Wagner, Gouzoulis-Mayfrank, 

Spuentrup & Daumann, 2010; Gruber, Dahlgren, Sagar, Gönenc & Killgore 2012; Jager, 

Block, Lulten & Rarnsey, 2010). With critical changes in brain maturation occurring, 

human research must address MJ-induced cognitive and structural changes, particularly 

in later developing regions such as the PFC (Barnea-Goraly et al., 2005; Bava et al., 

2010; Gogtay et al., 2004).   

MARIJUANA COGNITIVE IMPACT IN ADOLECENTS AND EMERGING ADULTS 

 When examining neurocognition as it relates to MJ exposure, length of abstinence 

may impact behavior, especially for the chronic users, given traceable metabolites can be 
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detected 27 days following past use (Ellies, Mann, Judson, Schramm & Tashchian, 

1985). Though there is no evidence that metabolites can impact behavior, this aligns with 

subjective withdrawal symptoms persisting up to 28 days following abstinence (Kouri & 

Pope, 2000).  

 Studies requiring between 7 and 28 days of abstinence have found significantly 

slower processing speed, poorer complex attention, and cognitive inhibition (Lisdahl & 

Price, 2012); verbal memory, planning and sequencing ability (Medina et al., 2007); 

memory (Bartholomew, Holroyd & Heffernan, 2010); attention/executive performance 

(Tapert, Baratta, Abrantes & Brown, 2002); perseverative errors in problem-solving 

(Lane et al., 2007), and altered decision-making (Whitlow et al., 2004). In a non-

abstinent group of poly-substance using teens, neuropsychological performance was not 

associated with MJ use, though the group was also diagnosed with conduct disorder 

(Teichner, Donohue, Crum, Azrin & Golden, 2000). Despite the impairments listed 

above, functional neuroimaging studies suggest adolescent MJ use may cause heightened 

activation of PFC regions while completing spatial working memory (Schweinsburg et 

al., 2010), executive attention (Abdullaev et al., 2010), and inhibitory processing (Tapert 

et al., 2007) tasks. 

 In general, chronic MJ use appears to negatively impact behavioral (Fergusson et 

al., 2003; Iversen, 2005) and cognitive functioning (see Schweinsburg, Brown & Tapert, 

2008, see Lisdahl et al., 2012); though, neuropsychological impairments may be 

dependent upon initiation age of first usage (Ehrenreich et al., 1999; Huestegge et al., 

2002; Pope et al., 2003; Fontes et al., 2011; Solowij et al., 2012; Meier et al., 2012), and 

gender (Pope, Jacobs, Mialet, Yurgelun-Todd & Gruber, 1997; Lisdahl & Price, 2012). 
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Indeed, preliminary evidence suggests some deficits may be reversible following a 

discontinuation of use (Fried, Watkinson & Gray, 2005; Hanson et al., 2010; Tait, 

Mackinnon & Christensen, 2011).  

MARIJUANA STRUCTURAL CONSEQUENCES IN ADOLESCENCE 

 As the neocortex continues to mature throughout adolescence and emerging 

adulthood (Gogtay & Thompson, 2010; Gogtay et al., 2004), research highlighting the 

effects of MJ use on neural architecture has indicated abnormalities in regional gray 

matter volumes subserving memory and executive functioning, such as bilateral 

hippocampus, right amygdala, cerebellum and PFC regions (Cousijn et al., 2012; 

McQueeny et al., 2011; Medina, Nagel & Tapert, 2010; Medina et al., 2009). In light of 

the scope of this paper, structural consequences will focus on PFC and underlying PFC 

WM disparities between controls and MJ using emerging adults.   

PREFRONTAL CORTEX – STRUCTURAL FINDINGS 

 Animal models offer evidence for heightened PFC vulnerability to MJ exposure in 

adolescents (Ellgren et al., 2008). In humans, structural imaging studies also suggest that 

MJ use may impact typical neurodevelopment, particularly in later developing regions. 

For example, MJ users did not differ from controls in total PFC volume, although a 

marginal gender by group interaction was observed. Female MJ users demonstrated 

larger posterior PFC volumes, including the orbitofrontal cortex, than same-gendered 

controls and smaller PFC volume was associated with better performance (Medina et al., 

2009). In a group of heavy MJ-using adolescents reduced cortical thickness was found 

within frontal regions (Lopez-Larson et al., 2011), with age of onset negatively correlated 

with the right superior frontal gyrus. Additionally, another study found reduced medial 
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orbital frontal volume (mOFC) (Churchwell, Lopez-Larson, Yurgelun-Todd, 2010) in 

adolescent MJ-users. Our lab has also confirmed reductions in the mOFC as well as 

inferior parietal lobe in young adult MJ-users (Price et al., under review). Extensive 

exclusion criteria were implemented for these studies, suggesting that chronic MJ use in 

otherwise healthy youth can impact the structure and maturation processes of gray matter. 

Additional PFC characteristics aside from volume or cortical thickness, such as 

gyrification indices, may serve to elucidate the impact of MJ use on cortical changes.  

PREFRONTAL CORTEX- WHITE MATTER FINDINGS 

 Containing both myelin and oligodendrocytes, WM is responsible for efficient 

communication between different cortical regions and demonstrates a functional role in 

orchestrating brain networks (see Fields, 2008; see Fields & Stevens-Graham, 2002). Of 

note, CB1-rs are typically located on axons (see Mackie, 2005) although oligodendrocytes 

have also been found to contain CB1 receptors in the rat brain (Molina-Holgado et al., 

2002; Moldrich & Wenger, 2000), suggesting that cannabinoids may impact myelination. 

Further, adult animal studies examining repeated exposure to cannabinoid agonists found 

enhanced remyelination regulated through CB1 activation and agonist treatment may 

reduce oligodendrocyte progenitor apoptosis (i.e. programmed cellular death; Sun et al., 

2013; Molina-Holgado et al., 2002). Nonetheless, CB1 agonist exposure during 

adolescence may not parallel adult findings.   

Given continued PFC development (see Toga, Thompson & Sowell, 2006), with 

increased CB1 receptor density localized within the PFC (Terry et al., 2009), MJ-induced 

changes in WM may be heightened during this sensitive period. With once exception 

(DeLisi et al., 2006, see below), converging lines of evidence suggest that chronic MJ use 
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during adolescence results in reduced WM integrity in the corpus collosum (CC) (Arnone 

et al., 2008; Abou-Saleh, 2010; Zalesky et al., 2012), front-temporal tracts (Ashtari, 

Cervellione, Cottone, Ardekani & Kumra, 2009), and other PFC regions (Bava et al., 

2009; Yücel et al., 2010; Clark, Chung, Thatcher, Pajtek & Long, 2012). These WM 

differences have been linked with negative cognitive performance or behavioral 

outcomes in adolescent users (Bava, Jacobus, Mahmood, Yang & Tapert, 2010; Medina, 

Nagel, Park, McQueeny & Tapert, 2007). While current less infrequent use (i.e. not 

current regular users but used either 2-3 times to daily > 1 year during adolescence) in 

young adults aged 17-30 has been associated with increased FA/integrity compared to 

non-users (DeLisi et al., 2006), there are concerns regarding methodological limitations 

(e.g. comorbid drug/alcohol use, neurological insult history, handedness etc.), thus 

confounding variables may have driven the results. In summary, there is evidence of 

dynamic alterations in PFC microstructure are being reflected in MJ using adolescents 

and emerging adults, suggestive of heightened infrastructural vulnerabilities in early 

commencing users. Taking into consideration the later myelination of the PFC  (Bava et 

al., 2010) and discovery of CB1 receptors on myelinating glial cells (Molina-Holgado et 

al., 2002; Moldrich & Wenger, 2000), WM may prove to be more interactive with ones’ 

environment and reflect dynamic structural changes concomitant with our behavior 

(Ullén, 2009).  

CORTICAL GEOMETRY  

 Cortical folding (gyrification) patterns may be quantified and serve as another 

method to examine surface-based dimensions that reflect underlying organization (Schaer 

et al., 2008; 2012). Whether gyrification results from tensions propagated by amount of 
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connectivity and tension of WM (Van Essen, 1997) or differential cortical expansion 

(Richman et al., 1975; Ronan et al., 2013), cortical surface complexity increases between 

ages 6-16 in typically developing youth, most especially within the PFC (Blanton et al., 

2001). Evidence suggests increased gyrification may be associated with enhanced 

vocabulary in typically developing youth (Wallace et al., 2013).  To our knowledge, no 

studies to date have examined local gyrfication in adolescent MJ users.  

 Mata and colleagues (2010) examined cortical curvature, a similar measure to 

gyrification, in young adults (mean age of 25.7). MJ users demonstrated significant 

decreases in sulcal concavity compared to controls in regions of the frontal lobe, with 

significant reductions found in sulci thickness of the right frontal lobe in users (Mata et 

al., 2010). Given that global cortical comparisons were not found to be distinct between 

groups, the authors suggested sulcal curvature may be dependent upon WM tensions 

(Mata et al., 2010; Van Essen, 1997). As such, there is a need to examine PFC WM 

integrity among MJ-using adolescents and emerging adults.  

FAAH & MJ USE 

 Initial evidence suggests FAAH genotype may indeed moderate the effects of MJ 

use in youth. In young adult daily MJ users (ages 18-25), those with C/C genotype 

reported significantly increased craving (Haughey, Marshall, Schacht, Louis & 

Hutchison, 2008), and increased withdrawal symptoms and happiness following use 

(Schatch, Selling & Hutchinson, 2009). Adults with FAAH A/A genotype have 

demonstrated significantly reduced risk for developing MJ dependence compared to C/C 

or C/A carriers (Tyndale, Payne, Gerber & Sipe, 2007) and failed to demonstrate an 
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association with methamphetamine dependence (Morita et al., 2005), alcoholism (Iwasaki 

et al., 2007), or heroin (Proudnikov et al., 2010).  

Neuroimaging research has focused on adults and is mixed with regard to 

genotype and limbic reactivity. FAAH C/C genotype has been linked to increased reward 

sensitivity (Filbey et al., 2010), while other studies have found non-substance using adult 

A carriers to have heightened startle activation (Conzelmann et al., 2012) and increases in 

reward activation coupled with decreased threat-related reactivity (Hariri et al., 2009) Of 

note, Hariri and colleagues (2009) did not exclude for current substance use, which may 

impact functional activation patterns (Gruber & Yurgelun-Todd, 2005; Yurgelun-Todd et 

al. 1998) and Conzelmann and colleagues (2012) did not confirm abstinence with 

objective measures and relied on self-report. Thus far, preliminary research suggests a 

functional relationship with FAAH polymorphism and behavioral phenotypes, which 

necessitates the need to examine PFC structural differences between genotypes.  

AIMS & HYPOTHESES  

 The current study examined whether the FAAH gene or MJ use independently or 

interactively predict PFC cortical gyrification (Schaer et al., 2012) and underlying WM 

integrity (via FreeSurfer; Desikan et al., 2006; Yendiki et al., 2011) (see Figure 1). 

Further, the study will examine whether relationships exist between executive 

functioning (EF) and gray matter gyrification or WM regions that significantly differ 

between MJ users and controls (see Figure 2) in 18 to 25-year old healthy young adults 

without comorbid psychiatric or neurologic disorders.  
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---------------------------------- 

Insert Figures 1 & 2 Here 

---------------------------------- 

 Primary Aim 1: To examine the independent and interactive effects of MJ group 

status and FAAH genotype on dimensions of PFC gyrification.  

 Hypothesis 1. MJ users (based on previous findings; Mata et al., 2010) will have 

reduced gyrification compared to controls. Due to potential risk in MJ-using youth 

(Haughey et al., 2008; Schatch et al., 2009), individuals homozygous for C/C FAAH 

allele will have significantly less gyrification compared to A carriers. Further, MJ users 

that are C/C carriers of FAAH will demonstrate the least curvature in the PFC compared 

to MJ-using A allele carriers.  

Primary Aim 2: To examine the independent and interactive effects of MJ group 

status and FAAH genotype on WM integrity in the PFC. 

 Hypothesis 2. MJ users will have significantly poorer WM integrity (increased 

MD or decreased FA values) in the PFC compared to controls. Individuals with the C/C 

FAAH allele will have significantly poorer WM integrity in the PFC compared to A allele 

carriers. MJ users with the C/C FAAH allele will have significantly poorer WM integrity 

compared to the other genotype subgroups.  

Primary Aim 3: Examine ROI’s that significantly differ between MJ users and 

controls to determine the association between PFC gyrification and WM integrity 

and EF performance.  

 Hypothesis 3. Regions that significantly differ will be positively associated with 

performance and gyrification, such that better performance will be associated with 
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increased gyrification. In WM, a negative association with MD and performance will be 

observed, whereas a positive association with FA values and performance will be 

observed.   

II. METHODS AND MATERIALS 

PARTICIPANTS  

 Participants included 74 healthy emerging adults between the ages of 18-25 (41 

male, 33 female; 28 homozygous CC & 13 A carrying males, 19 homozygous CC & 14 A 

carrying females) from a larger parent study examining genetic moderations of drugs in 

youth (PI: Lisdahl, NIH R03 DA027457). All participants were required to be fluent in 

English and right-handed. Exclusion criteria included MRI contraindications (pregnancy, 

claustrophobia, weight over 250 lbs., ferromagnetic implants of any kind, pacemakers or 

other devices in body); history of chronic medical or neurologic illness or injury 

(meningitis, HIV, epilepsy, brain tumor, traumatic brain injury, injury resulting in >2 

minutes of unconsciousness and concussion symptoms, stroke, cerebral palsy, 

Parkinson’s disease, Huntington’s disease, high blood pressure, diabetes, consistent 

migraines); history of a learning disability; substantial complications during birth or 

premature birth; known prenatal exposure to alcohol (>4 drinks/day or >7 drinks/week) 

or illicit drugs (>10); current use of psychoactive medication; preexisting DSM-IV Axis I 

disorders independent of substance use (including major depressive disorder, bipolar 

disorder, attention deficit hyperactivity disorder, conduct disorder, social phobia, 

agoraphobia, panic disorder, generalized anxiety disorder, obsessive compulsive disorder, 

anorexia, and bulimia); and refusal to remain abstinent from all drugs and alcohol for at 

least seven days.  
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 Eligible participants were chosen if they fit into of two groups: MJ users (> 10 uses 

in past year and > 50 lifetime uses) or non-using controls (<1 past year and < 5 lifetime 

uses) and had usable MRI data. In order to minimize the impacts of comorbid alcohol use 

across both groups, heavy binge drinkers were excluded; this was assessed using past 

year Cahalan criteria and “very heavy” drinkers were excluded. Participants were also 

matched as closely as possible on age, education, ethnicity, gender, and verbal IQ. For 

the current analysis, 37 controls and 37 MJ users met proposed inclusion and exclusion 

criteria.  

PROCEDURES 

 The Institutional Review Board at the University of Cincinnati approved all 

aspects of this study and the same institution has approved ongoing analysis. Participants 

were recruited through advertisements in a local free newspaper and fliers distributed 

throughout the community and local universities. Interested participants were then 

screened by phone. After individuals provided oral informed consent, trained research 

assistants screened prospective participants over the phone for inclusion/exclusion 

criteria (mentioned above), including questions regarding past year drug use in order to 

assess matching into a particular drug use group. In addition, screeners utilized a semi-

structured interview based on DSM-IV-TR criteria for Axis I psychotic, anxiety, and 

mood disorders. Those who had positive responses to the screening questions were 

discussed in committee; if clear decisions could not be reached then they were re-

contacted and administered additional diagnostic questions based on the SCID I/P 

(determined by Dr. Lisdahl; First, Spitzer, Gibbon, & Williams, 2001). 
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 Following the phone screen, eligible participants completed either one or two 

sessions. Those with considerable drug or alcohol use completed a first session three to 

four days prior to the second session, during which they were informed of the purpose of 

the study, procedures, potential risks and benefits, and confidentiality before providing 

written informed consent. They then provided a urine sample for a drug toxicology screen 

and completed questionnaires for background and demographic information and trait-

specific psychological measures. During the second session (lasting approximately 5 to 6 

hours), abstinence was once again verified through a urine drug screen and breathalyzer 

test, psychological measures were completed, a drug use interview and 

neuropsychological battery were administered, and participants underwent a high-

resolution MRI scan. Control participants who endorsed less frequent drug use completed 

all tasks during one session (approximately 4-5 hours). Participants were paid $160 for 

two sessions or $110 for one session, reimbursed for parking, and received local drug and 

alcohol treatment resources and images of their brain. 

SCREENING INVENTORIES AND QUESTIONNAIRES 

 Biological Samples. Participants were administered a urine toxicology screen using 

the One Step Drug Screen Test, a breathalyzer test, and a pregnancy test. Those who 

tested positive for drugs and/or alcohol except MJ and nicotine were excluded, and 

pregnant women were excluded as effects of MRI scans on fetuses are unknown. 

Additionally, urine samples were sent for further analysis to provide THC-COOH (THC 

metabolite) levels to assess abstinence-related decreases from session one.  

 Demographic Information.  Participants completed a Background Questionnaire 

outlining demographic variables including age; gender; ethnicity (coded for Caucasian 
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vs. minority status); self and parents’ educations, incomes, and employments; marital 

status; number of biological and/or step/half siblings; history of medical or neurologic 

illness, psychological disorders or use of psychiatric medication, and learning disability; 

involvement in extracurricular activities or hobbies, gambling frequency, and smoker 

status.  Height and weight were also collected to calculate body mass index [BMI; 

(weight in kilograms/(height in meters)2]. 

 Drug Use. Drug use frequency was recorded to exclude for very heavy users as 

well as to control for possible variance in cognition based on amount used.  A modified 

version of the Time-Line Follow-Back (Sobell, Maisto, Sobell, & Cooper, 1979) 

interview was conducted, using memory cues such as holidays and personal events 

recorded on a calendar to measure past year drug use. Drug categories assessed were as 

follows: nicotine cigarettes, chewing tobacco/snuff/pipe, cigars/hookah, alcohol, MJ, and 

‘other’ drug use, which was a total including all of the following categories: ecstasy, 

sedatives (barbiturates, valium, Xanax, Ativan, ketamine, GHB), stimulants (cocaine, 

crack cocaine, amphetamine, and methamphetamine), hallucinogens (PCP, LSD, DMT, 

peoyote, acid, mushrooms), opioids (heroin, opium, pain pills), inhalants (paint, glue, 

household cleaners, nitrous oxide, gas), and other (anything else not mentioned). The 

participants’ drug use was measured by the number of standard units (cigarettes, hits, 

cigars for nicotine; standard drinks for alcohol; joints for MJ; tablets for ecstasy; grams 

for stimulants; number of hits or pills for inhalants, hallucinogens, and opioids; and pills 

or hits for sedatives). Participants were administered the Customary Drinking and Drug 

Use Record (CDDR), measuring lifetime and past 3-month substance use, withdrawal 



 

 
 

17 

symptoms, DSM-IV abuse and dependence criteria, and substance-related difficulties 

(Brown et al., 1998; Stewart & Brown, 1995). 

 Psychological Tests.  Participants were administered the Beck Depression 

Inventory-II (Beck, Steer, & Brown, 1996), which assess current depressive 

symptomology.  

NEUROPSYCHOLOGICAL ASSESSMENTS 

 Premorbid Intelligence. The Wechsler Abbreviated Scale of Intelligence 

(WASI) Vocabulary subtest (Wechsler, 1999) and the Wide Range Achievement Test-4th 

edition (WRAT-4) Reading subtest (Wilkinson, 2006) measured estimates of verbal 

intelligence and quality of education for group comparison purposes (see Manly, Jacobs, 

& Touradji, 2002). 

Complex Attention.  Complex attention was assessed using the total correct 

responses in the Wechsler Adult Intelligence Scale – Third Edition (WAIS-III) Letter 

Number Sequencing (LNS) and the Paced Auditory Serial Attention Test (PASAT). The 

LNS is a subscale of the WAIS-III Working Memory Index, which measures a person’s 

ability to retain numbers and letters (ranging from two to eight bits of information over 7 

separate trials) and perform a manipulation to organize the information according to a 

rule in order to provide a response (Wechsler, 1997). The PASAT is a working memory 

task in which requires participants to retain two consecutive numbers that are presented 

in a serial manner and perform a summation roughly every 2 seconds for a total of 60 

numbers (Gronwall, 1977).  Total scores on the LNS and PASAT were used for the 

current study.  
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Cognitive Inhibition. The D-KEFS Color Word Interference Test Inhibition total 

completion time assessed inhibitory ability (Delis & Kaplan, 2000).  For this task, 

participants were presented with stimuli cards containing words (red, blue or green), 

colors (blocks made of red, blue, or green), and words printed in a different color (e.g. the 

word “blue” printed in green ink).  During each of the three stimuli presentations, 

participants were asked to first read the words on the word card, name the colors on the 

color card and name the color on the mixed word/color ink card.  

GENOTYPING 

 FAAH. The FAAH variant were genotyped using the TaqMan (fluorogenic 5’ 

nuclease) assay (for example see Egan et al., 2003). The primers and the probes were 

obtained from Applied Biosystems. PCR was conducted with both primers and probes 

added in an ABI 9700 thermocycler and the endpoint results were scored using the ABI 

7900HT Sequence Detection System. 

MRI DATA ACQUISITION 

 Parameters. High-resolution anatomical images were optimized on a 4T Varian 

Unity INOVA MRI scanner at the Center for Imaging Research (CIR). T1-weighted, 3-D 

SPGR anatomical brain scan was obtained (about 30 minutes of scan time) using a 

modified driven equilibrium Fourier transform (MDEFT) sequence (FOV=25.6 cm, 

256x256x192 matrix, slice thickness=1 mm, in- plane resolution=1x1 mm, TR=13 ms, 

TE=5.3 ms, flip angle=22 ̊). Diffusion Tensor Imaging (DTI) was obtained using 12 

diffusion directions with b ≈ 600s/mm2 (FOV= 25.6 cm, 64x64x30 matrix, 

resolution=4x4x4 mm3, TR = 8,000 ms, TE = 88.8 ms, flip angle 90 ̊. Geometric and 

ghost distortion corrections were implemented using multi-echo reference scans. A 
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neuroradiologist at CIR reviewed anatomical scans and reported neurologic 

abnormalities. No participants with abnormalities were included in this sample.  

MRI PROCESSING 

 PFC Local Gyrification Analysis. Images were preprocessed using FreeSurfer’s  

3D reconstruction pipeline (http://surfer.nmr.mgh.harvard.edu; Dale, Fischl, & Sereno, 

1999). First, segmentation discerned type of tissue, resulting in segmented WM volume 

indicating location of gray-white boundary. After automatic correction for topology 

errors, a second surface was created reflecting the pial-gray boundary. Next, pial 

smoothing was applied via: [(l/r)h.pial-outer-smoothed]; which was followed by 

specifying regions of interest on the smoothed inflated surface and corresponding pial 

surface. PFC local gyrification indices (LGI) were also created using FreeSurfer software 

version 5.3 with a radius set to 20mm (Schaer et al., 2008; 2012), which quantified a ratio 

of the smoothed surface to the pial surface for each vertex and selected ROI (see Figure 

3). ROI’s were determined using an individual cortical surface-based anatomical atlas 

(Destrieux, Fischl, Dale, & Halgren, 2010). Similar to cortical thickness, each subject’s 

LGI was entered for the following ROIs: [including the PFC; dorsal lateral PFC 

(DLPFC); medial PFC (mPFC); orbital frontal PFC (OFC), which was further broken 

down into: ventral medial PFC (vmPFC) and ventral lateral PFC (vlPFC); and frontal 

pole for both right (RH) and left (LH) hemispheres]. 

 PFC Underlying WM Integrity. WM pathways were reconstructed via diffusion 

tensor imaging (DTI) using voxel based 3x3 symmetric tensor matrices differentiating 

both direction and magnitude, assuming direction was uniformly linear within each 

voxel. Fractional anistoropy (FA) was obtained through eigenvalue variance for a given 
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voxel, which determines isotropic versus anisotropic movement represented by a scalar 

value between 0 and 1. ROI-based comparison was computed through FreeSurfer version 

5.3 tractography software TRACULA (Yendiki et al., 2011), which reconstructed WM 

pathways (trac-all -path). For ROI-based analysis, participant’s DTI was registered to 

their individual T1 weighted image obtained through FreeSurfer cortical parcellation and 

subcortical segmentation (recon-all –path). 

DATA ANALYSIS 

Preliminary Analysis. All analyses were conducted using SPSS version 22.0.0. 

ANOVAs and Chi-square tests were run to examine potential demographic differences as 

well as differences in past year drug use histories between MJ users and controls by 

genotype. Variables that either differed between groups or may impact neural architecture 

were entered as covariates, such as mood symptoms (Medina et al., 2007), alcohol use 

(Medina et al., 2008) or nicotine use (Paul et al., 2008). Covariates included WRAT-4 

Reading scaled score, age, gender, ethnicity (coded for Caucasian vs. minority status), 

past year alcohol use, recent nicotine use (cotinine levels), depressive symptoms, and 

FAAH genotype (when examining MJ group status). 

Primary Analysis. AIM 1. General linear modeling (GLM) in SPSS was used to 

examine whether MJ group status, FAAH genotype, or an interaction between MJ group 

status*FAAH genotype were significantly associated with each PFC gyrification indices 

for each ROI [PFC, DLPFC, mPFC, OFC (which was further broken down into: vmPFC 

and vlPFC), and frontal pole for both RH and LH. Standard least squares multiple 

regression was used; block one included covariates (see preliminary analysis), block two 

included MJ group status, and block three included the interaction between MJ group 
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status and FAAH genotype. If the interaction (MJ*FAAH genotype) was not significant, 

only block two was interpreted. Significance was determined if p<.05.  

Primary Analysis. AIM 2.  Average FA and MD were extracted from the 

underlying WM tracts [corpus callosum forceps minor (fMinor), anterior thalamic 

radiation (ATR), and uncinate fasciculus (UNC)] in the PFC utilizing FreeSurfer ‘s 

TRACULA (Yendiki et al., 2011). Standard least squares multiple regression was used; 

block one included covariates (see preliminary analysis), block two included MJ group 

status, and block three included the interaction between MJ group status and FAAH 

genotype. If the interaction (MJ*FAAH genotype) was not significant, only block two 

was interpreted. Significance was determined if p<.05.  

Primary Analysis. AIM 3: Pearson correlations were run between cognitive 

performance (complex attention and cognitive inhibition; see Price et al., under review) 

in MJ users and both gyrification and WM variables that significantly differed between 

MJ users and controls. Significance was determined if p<.05.  

III. RESULTS 

DEMOGRAPHIC & MOOD INFORMATION 

 ANOVAs and chi-squares tested whether MJ users and non-using controls 

differed in demographic variables (see Table 1). Significant differences were found 

between MJ users and controls in BDI-II depressive symptoms with MJ users reporting 

more than controls [F(1,72)=4.10, p=.05]. MJ users and controls did not differ in 

ethnicity [64.9% Caucasian for MJ users and controls, x2(4)3.43, p=.49], gender 

[x2(1)2.68, p=.10], past year Cahalan criteria [x2(5)4.62, p=.46], age [F(1,72)=.41, 
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p=.52], WRAT-4 Reading standard score [F(1,72)=.36, p=.55], education [F(1,72)=1.43, 

p=.24], annual income [F(1,72)=.09, p=.76], or body mass index [F(1,71)=.08, p=.77].   

 ANOVAs and chi-squares tested whether FAAH genotype differences between 

C/C carriers and A carriers (see Table 1). Significant differences were found between 

C/C and A carriers in ethnicity (76.6% of C/C carriers were Caucasian and 44.4% of A 

carriers were Caucasian) [x2(4)12.56, p=.01], age [F(1,72)=5.85, p=.02], WRAT-4 

Reading standard score [F(1,72)=6.6, p=.01], and BDI-II depressive symptoms 

[F(1,72)=6.23, p=.02]. No differences were found between genotypes in gender [x2(1).91, 

p=.34], education [F(1,72)=.09, p=.77], income [F(1,72)=2.2, p=.14], or body mass index 

[F(1,71)=.08, p=.78].  

------------------------- 

Insert Table 1 Here 

------------------------- 

ALLELE FREQUENCIES 

 FAAH allele frequencies for 74 subjects were: 47 C/C carriers status and 27 A 

carriers status (see Table 1). A marginal difference was found between MJ users and 

controls in FAAH genotype [63% of MJ users were A carriers and 37.4% of controls were 

A carriers, [x2(1)2.86, p=.09].  

DRUG USE INFORMATION 

 As expected, MJ users differed from controls in lifetime nicotine use [x2(6)22.75, 

p=.001], lifetime alcohol use x2(5)13.89, p=.02], lifetime MJ use x2(5)63.41, p=.001], 

lifetime other drug use (although this was limited) [x2(4)34.97, p=.001], cotinine level 

[F(1,71)=20.98, p=.001], past year nicotine use [F(1,72)=8.03, p=.006], past year alcohol 
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use [F(1,72)=6.37, p=.014], and past year MJ use [F(1,72)=15.94, p=.001] (see Table 1). 

No difference between past year other drug use existed between MJ users and controls 

[F(1,72)=3.49, p=.07].  

C/C carriers and A carriers did not differ in past year Cahalan criteria [x2(5)8.94, 

p=.11], lifetime nicotine use [x2(6)4.56, p=.60], lifetime alcohol [use x2(5)5.72, p=.34], 

lifetime MJ use [x2(5)3.06, p=.69], lifetime other drug use [x2(4)2.59, p=.63], cotinine 

level, [F(1,71)=2.58, p=.11], past year nicotine use [F(1,72)=.95, p=.33], past year 

alcohol use [F(1,72)=.003, p=.96], past year MJ use [F(1,72)=.42, p=.52], or past year 

other drug use [F(1,72)=1.32, p=.26] (see Table 1). 

MULTIVARIATE RELATIONSHIPS  

Aim 1 Regression Analysis: Gyrification: MJ Group Status. After controlling for 

WRAT-4 Reading scaled score, age, gender, ethnicity, past year alcohol use, cotinine 

levels, depressive symptoms, and FAAH genotype, MJ users demonstrated significantly 

increased gyrification in the LH DLPFC [t (63) = 3.0, beta=.40, p=.004] in comparison to 

controls (see Table 2). In contrast, MJ users demonstrated reduced gyrification in 

bilateral OFC (RH: [t (63) =-2.3, beta=-.32, p=.02] and LH: [t (62) = -1.97, beta=-.28, 

p=.05]),  specifically, bilateral vmPFC (RH: [t (63) = -4.1, beta=-.54, p<.001] and LH: [t 

(63) = -4.1, beta=-.55, p<.001]); bilateral mPFC (RH: [t (63) = -3.6, beta=-.48, p=.001] 

and LH: [t (63) = -3.8, beta=-.51, p<.001]); and bilateral frontal poles (RH: [t (63) = -2.3, 

beta=-.31, p=.02]; LH: [t (63) = -2.998, beta=-.43, p=.004]). FAAH Genotype. FAAH 

genotype significantly predicted local gyrification index in the LH DLPFC [t (63) =  

-1.998, beta=-.25, p=.05], with C/C genotypes demonstrating increased gyrification 

compared to A carriers. MJ*FAAH Interaction. FAAH genotype interacted with MJ 
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group status to significantly predict gyrification in the LH OFC [t (62) = -2.1, beta=-.24, 

p=.04] in that the MJ users with CC genotype had increased gyrification while A carriers 

had decreased, the controls demonstrated no significant difference in gyrification 

between genotypes (see Figure 4). Covariates. Increased depressive symptoms predicted 

decreased gyrification in the LH DLPFC [t (63) = -3.1, beta=-.37, p=.003]. Gender 

predicted gyrification in bilateral PFC RH: [t (63) = -2.9, beta=-.37, p=.005] and LH: [t 

(63) = -3.6, beta=-.43, p=.001]; bilateral OFC RH: [t (63) = -2.7, beta=-.33, p=.009] and 

LH: [t (63) = -3.1, beta=-.39, p=.003], specifically bilateral vlPFC RH: [t (63) = -2.2, 

beta=-.28, p=.03] and LH: [t (63) = -2.3, beta=-.29, p=.03]; bilateral mPFC RH: [t (63) = 

-3.3, beta=-.38, p=.002] and LH: [t (63) = -2.4, beta=-.28, p=.02]; bilateral vmPFC RH: 

[t (63) = -3.5, beta=-.41, p=.001] and LH: [t (63) = -2.3, beta=-.28, p=.02]; and bilateral 

frontal pole RH: [t (63) = -2.95, beta=-.35, p=.004] and LH: [t (63) = -2.1, beta=-.27, 

p=.04], such that women demonstrated reduced gyrification in each area mentioned. 

Ethnicity minority status predicted gyrification in the LH PFC [t (63) = -2.0, beta=-.25, 

p=.05], such that reduced gyrification was found for ethnic minorities compared to 

Caucasians.  Age predicted gyrification in OFC (LH) [t (62) = -3.0, beta=-.37, p=.004], 

such that older age was associated with decreased gyrfication in this region. 

------------------------- 

Insert Table 2 Here 

------------------------- 

Aim 2 Regression Analysis: White Matter Integrity: MJ Group Status. After 

controlling for WRAT-4 Reading scaled score, age, gender, ethnicity (coded for 

Caucasian vs. minority status), past year alcohol use, cotinine levels, depressive 
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symptoms, and FAAH genotype, MJ users demonstrated increased MD in fminor [t (62) = 

1.96, beta=.27, p=.05], bilateral UNC (RH: [t (62) = 2.3, beta=.32, p=.03] and LH: [t 

(62) = 2.2, beta=.31, p=.03]) (see Table 3). FAAH Genotype. FAAH genotype did not 

demonstrate any significant contributions. MJ*FAAH Interaction. FAAH genotype 

interacted with MJ Group status to significantly predict FA in fMinor [t (61) = 2.1, 

beta=.26, p=.04] and LH ATR [t (61) = 3.1, beta=.36, p=.003]. In the fMinor MJ users 

with C/C genotype demonstrated reduced integrity (FA), whereas the A carrier controls 

demonstrated reduced integrity (FA) (see Figure 5). In LH ATR, MJ users with C/C  

genotype demonstrated reduced integrity (FA) (see Figure 6).  

------------------------------------ 

Insert Figures 5 & 6 Here 

------------------------------------ 

Covariates. WRAT-4 Reading Standard Score predicted MD in the RH ATR [t (62) 

= -2.1, beta=-.28, p=.04], MD in the LH ATR [t (62) = -2.9, beta=-.37, p=.005], such 

that higher scores were associated with decreased MD. Ethnicity predicted MD in the RH 

ATR [t (62) = -2.3, beta=-.28, p=.02], such that ethnic minorities demonstrated reduced 

MD compared to Caucasians. Cotinine levels predicted decreased FA in the RH ATR [t 

(62) = -1.97, beta=-.24, p=.05], such that higher cotinine levels were associated with a 

decrease in FA. Increased depressive symptoms predicted increased MD in the LH ATR 

[t (62) = 2.8, beta=.34, p=.006]. See Table 3 for mean DTI values by group. 

------------------------- 

Insert Table 3 Here 

------------------------- 
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Aim 3 Correlation Analysis: Brain-Behavior Relationships:  

 MJ Group. Pearson r correlation revealed a positive correlation with gyrification 

and LNS performance in the RH mPFC [r=.51, n=37, p=.001], RH vmPFC [r=.41, n=37, 

p=.01], and RH frontal pole [r=.45, n=37, p=.005], with high degree of gyrification 

associated with better performance. Additionally, there was a negative correlation with 

gyrification and color-word inhibition completion time in the LH vmPFC [r=-.32, n=37, 

p=.05], with increased gyrification associated with faster response times.  

 Within the WM, a positive correlation was observed in MD and PASAT total 

correct in the RH UNC [r=.38, n=37, p=.02], with higher MD associated with better  

performance time. Overall, both increased gyrification and increased MD were associated 

with improved working memory and faster response time on an inhibitory task.  

 Controls. Positive correlations were found with gyrification and complex attention 

in bilateral OFC: RH /PASAT: [r=.35, n=36, p=.04], RH /LNS: [r=.34, n=37, p=.04], and 

LH/PASAT: [r=.36, n=36, p=.03], with increased gyrification associated with better 

performance. A positive correlation was found between gyrification and PASAT correct 

in the RH frontal pole [r=.35, n=36, p=.04], with greater gyrification associated with 

better performance. No significant relationships were demonstrated for controls in WM 

tracts examined (fMinor and bilateral UNC). See Table 4 for mean neuropsychological 

performances by group and genotype. 

------------------------- 

Insert Table 4 Here 

------------------------- 
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DISCUSSION  

 This study examined the relationship between the FAAH genotype, MJ group status, 

and brain structure (gyrification and WM integrity) in a sample of 18-25 year old 

emerging adults with and without chronic MJ use. Follow-up analyses assessed the brain-

behavior relationships between significant structural findings and executive abilities, 

including complex attention and inhibition. Consistent with the predicted hypotheses, MJ 

users had reduced gyrification and poorer WM integrity in several PFC regions in 

comparison to matched controls. We also found that FAAH genotype mediated the impact 

of MJ use on structural characteristics. The primary results revealed significantly reduced 

gyrification in MJ users in comparison to controls in several PFC regions (bilateral OFC, 

bilateral mPFC and bilateral frontal poles), while one region showed an opposite 

relationship, with increased gyrification for MJ users (LH DLPFC). WM findings 

indicate an increase in MD for MJ users in the corpus callosum fMinor and bilateral 

UNC, suggesting poorer microstructural integrity in MJ using young adults. FAAH 

genotype findings indicate that A carriers, including both control and MJ users, had 

reduced gyrification in the LH DLPFC. MJ users with A genotype demonstrated reduced 

gyrification in the LH OFC; however, MJ users that were C/C carriers had reduced WM 

integrity in the fMinor and LH ATR. In controls, A carriers demonstrated reduced WM 

integrity in the fMinor. Therefore, the current study found abnormal gray matter and WM 

structure in emerging adult MJ users, and reduced gyrification was associated with poorer 

executive functioning, specifically complex attention and inhibition.  

 We found decreased gyrification in the MJ users in several PFC regions. This is 

consistent with prior research demonstrating aberrant PFC characteristics in MJ using 
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youth (Churchwell et al., 2010; Gruber et al., 2011; Lopez-Larson et al., 2011; Medina et 

al., 2009; Price et al., under review; Wilson et al., 2000). Findings were also consistent 

with Mata and colleagues (2010), who found reduced sulcal concavity in frontal lobes of 

young adult MJ users in comparison to non-users. We found greater gyrification in the 

DLPFC LH of MJ users. This particular PFC region is the last to develop (Gogtay et al., 

2004), and the mean age of this sample was 21.4. Thus, MJ users may have not 

undergone maturation in this region and evidence suggests asymmetries in maturation 

rates (see Toga & Thompson, 2003).  Though the mechanisms driving gyrification are 

unclear, whether predominant influence is attributed to amount of connectivity and 

tension (Van Essen, 1997) or differential expansion of cortical layers (Richman et al., 

1975; Ronan et al., 2013), both perspectives may be influenced by interruptions in 

myelination refinement, which may be related to poorer WM integrity in our sample (see 

WM section). Twin studies reveal that environmental stimuli or non-genetic influences 

greatly influence gyrification patterns (Bartley, Jones, & Weinberger, 1997), particularly 

within the PFC (Hasan et al., 2011). As PFC changes in sulcal and gyral complexity 

continue to extend into late adolescents (Blanton et al., 2001), environmental influences, 

including regular MJ use, during this developmental period may be detrimental to brain 

development and functioning (Becker et al., 2010; Gruber, Dahlgren, Sagar, Gönenc & 

Killgore 2012; Jager et al., 2010; see Lisdahl et al., 2013; Meier et al., 2012). During 

adolescence, neurotrophins involved in neuronal growth and pruning, play a key role in 

nervous system maturation (see Reichardt, 2006) and may be reduced in adult MJ users 

(Angelucci et al., 2008; D’Souza, Pittman, Perry, & Simen 2009). The impact of MJ use 

on in-vivo adolescent neurotrophin levels is unknown; however, divergent inter-cortical 
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growth rates and changes in connectivity are thought to impact gyrification patterns (Van 

Essen, 1997; Richman et al., 1975; White & Hilgetag, 2008; Ronan et al., 2013), which 

may be interrupted with adolescent MJ use increasing risk factors. For example, 

neurotrophic transcription may be altered as a result of physical activity (see Gomez-

Pinilla, 2008; Trejo, Llorens-Martin, & Torres-Alemain, 2008) and adolescent MJ use 

has demonstrated an inverse relationship with physical activity (Winnail & Valois, 1995).   

 Among gray matter regions where MJ users differed from controls in gyrification 

indices [LH DLPFC, bilateral OFC, bilateral vmPFC, bilateral mPFC, and bilateral 

frontal poles], increased gyrification in right hemisphere: mPFC, vmPFC and frontal pole 

was associated with better performance on LNS total scores in MJ users. In controls, 

increased OFC gyrification and RH frontal pole was associated with better complex 

attention scores. The OFC has an important role in inhibiting reward-driven behavior and 

may be compromised in addicted individuals (Lubman, Yucel, & Pantelis, 2004). 

Ultimately, for both groups, increased gyrification was associated with better 

performance scores suggesting that functional benefit is gained with greater gyrification. 

Phylogeny of gyrification exposes an increase in surface area with minimal increases in 

cortical thickness (Welker, 1990), which serves to reduce volume expansion and 

maximize computational potential (see White et al., 2010).  

 In WM, we found increases in MD for MJ users in the fMinor and bilateral UNC, 

suggesting poorer microstructural integrity in MJ using young adults compared to non-

users. This is consistent with previous research indicating WM degradation in young MJ 

users (Arnone et al., 2008; Bava et al., 2009; Abou-Saleh, 2010; Yücel et al., 2010; Clark 

et al., 2012; Zalesky et al., 2012) and in a group with comorbid alcohol use (Ashtari et 
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al., 2009). Additionally, the UNC may play an integral role in emotion regulation, as it 

serves to connect the amygdala with the PFC (see Stuss, 2002). Previous research reflects 

that greater FA in the UNC predicted lessened amygdala activation in adolescents, while 

increased amygdala activation to sad faces was associated with greater internalization of 

symptoms (Swartz, Carrasco, Wiggins, Thomason, & Monk, 2014), suggesting potential 

difficulties with emotional regulation. Thus, reduced WM integrity in fronto-limbic 

regions of MJ users, as seen with this study, may indicate disruption of WM refinement 

impacting executive control and affective regulation.  Further, here we found evidence 

that supports a relationship between surface geometry and underlying WM integrity. MJ 

users demonstrated specific reductions in medial and ventral aspects of the PFC in 

addition to decreased WM integrity tracts that project directly to these cortical regions, 

offering additional support for the potential role of WM connectivity on gyrification (Van 

Essen, 1997). 

 There has been conflicting evidence relating FAAH genotype to behavioral 

outcomes (Tyndale et al., 2007; Filbey et a., 2010; Haughey et al., 2008; Schatch et a., 

2009; Conzelmann et al., 2012; Hariri et al., 2009), however our study suggests that 

genotype may impact gray matter and WM differently. We found reduced gyrification for 

FAAH A carriers compared to C/C carriers in the left hemisphere DLPFC.  We also found 

a significant MJ by FAAH interaction such that reduced gyrification was found in A 

carrying MJ users for the left hemisphere OFC. Genotype did not affect gyrification in 

this region for controls. Within WM, a significant interaction between FAAH genotype 

and MJ group status exposed relationships with FA measures of WM cohesion in fMinor 

and left hemisphere ATR. Reduced fMinor integrity in MJ users was observed in C/C 
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carriers; however, we found an opposite relationship in controls where A carriers had 

reduced WM integrity in this tract. We also found C/C carrying MJ users demonstrated 

reduced WM integrity in the left hemisphere of the ATR. Genotype did not impact the 

impact of WM integrity in the LH ATR for controls.      

 In youth, C/C genotype may increase risk associated with MJ use (Haughey et al., 

2008; Schatch et a., 2009). Chronic MJ use may cause functional PFC changes in ECS 

(Hirvonen et al., 2012); for example, adolescent MJ users demonstrate reduced GLU 

levels within the PFC (Prescot, Locatelli, Renshaw, & Yurgelun-Todd, 2011). Reduced 

GLU may weaken neurons’ ability to retain synaptic connections, as evidenced in 

animals (Won Chan, Hill, Zito, 2013). Further, animal models suggest that THC exposure 

during adolescence may increase abnormalities in several proteins related to cellular 

structure and oxidative state compared to adulthood (Quinn et al., 2008) and changes in 

CB1/G-protein coupling and CB1 receptor densities extending into adulthood (Rubino et 

al., 2008), which may underlie performance deficits and behavioral changes depending 

on the developmental stage of exposure (Schneider & Koch, 2003; Schneider & Koch, 

2005; O’Shea, Singh, McGregor & Mallet, 2004). Therefore, in MJ users, the C/C 

genotype, associated with lower AEA (Sipe et al., 2010), may confer additional risk for 

neurocognitive consequences. However, the current results are mixed (MJ-using A 

carriers demonstrated reduced gyrification in DLPFC and OFC while C/C genotype was 

associated with poorer fMinor and ATR WM integrity). Therefore, additional research is 

needed to help clarify the relationship between FAAH genotype, MJ exposure and brain 

structure in youth.  
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 In non-MJ using youth, A carrier status, which is associated with increased AEA 

levels (Sipe et al., 2010) may be detrimental to underlying structural complexity. CB1 

receptors undergo somatodendritic recycling and trafficking targeting axons (Leterrier et 

al., 2006), and agonist-induced desensitization may lower CB1 receptor mobility 

(Mikasova, Groc, Choquet, & Manzoni, 2008). Therefore, chronic MJ use during youth 

may interrupt this process. ECS may also play a key role in myelination, which may be 

regulated via communication between oligodendrocytes and neurons (gray matter) 

(Simons & Trajkovic, 2006). We found A carrying controls had reduced WM integrity, 

the opposite of MJ-users. Increased cannabinoid signaling may enhance myelination in 

populations suffering myelination loss, as evidenced by animal models (Webb, Luo, Ying 

Ma, & Tham, 2008); however, in young adult controls enhanced ECS may be associated 

with poorer WM cohesiveness. In sum, aberrant ECS during emerging adulthood either 

through MJ use or genotype, may be associated with poorer brain characteristics and 

FAAH genotype may moderate the impact of adolescent MJ use on brain development 

and be tissue specific.   

------------------------- 

Insert Figure 7 Here 

------------------------- 

 Among WM regions that differed between MJ users and controls [fMinor and 

bilateral UNC], there was one significant relationship that found reduced integrity in the 

right hemisphere UNC to be associated with increased performance on a working 

memory task. Though typical performance data suggests that increases in WM integrity 

are associated with improved performance (Tamnes et al., 2011), we found this untrue for 
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one tract in MJ users only. This finding may be related to reduced affective interference 

during a demanding and stress-provoking task. Additionally, in controls, WM integrity 

was not associated with better or worse performance.  

 Chronic MJ use during adolescence and emerging adulthood appears to have 

negative influence on brain structure. Young adult users reflect demonstrate aberrant 

brain characteristics that are consistent with neuropsychological (Lisdahl & Price, 2012). 

Extensive cortical remodeling is occurring during adolescence (see Crews, He, & Hodge, 

2007), and the current study found that MJ use during this time was associated with 

reduced PFC gyrification and poorer underlying WM integrity. ECS appears to be 

important for brain maturation and reliance on CB1 binding may increase in adulthood 

(Verdurand et al., 2011). Consequently, chronic emerging adult MJ use may interfere 

with brain maturation. 

 Limitations. Alcohol and MJ remain highly comorbid (Johnston et al., 2011b). 

Although the current study statistically controlled for alcohol and excluded “very heavy” 

drinkers (according to Calahan criteria), it is possible that some of the findings are 

associated with combined or simultaneous MJ and alcohol use. For example, WM 

integrity differences have been found in samples combining MJ and alcohol use may 

impact WM tracts in adolescents and young adults (Jacobus, Squeglia, Infante, Bava, & 

Tapert, 2013; Bava, Jacobus, Thayer, & Tapert, 2013; Jacobus, Squeglia, Bava, & Tapert, 

2013; Bava, et al., 2010; Bava et al., 2009), though combined MJ and alcohol use may be 

less detrimental on WM integrity than binge-drinking alone (Jacobus et al., 2009). Future 

studies may want to investigate differences in simultaneous MJ and alcohol use versus 

separate occasion uses of each substance.  
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Another potential limitation of the current study is that it is difficult to determine 

what results are due to premorbid differences that may have been present prior to MJ 

exposure. For example, one longitudinal study suggests that smaller OFC predicts MJ use 

during adolescence, although this sample included current or past psychiatric diagnoses 

(Cheetham et al., 2012). Conversely, prospective longitudinal findings have demonstrated 

a decline in intellectual and neuropsychological functioning among adolescent-onset 

(before age 18) even after cessation of 1 or more years (Meier et al., 2012), indicating 

that early MJ use may affect the developing brain such that individuals never achieve 

their estimated intellectual performance even with sustained abstinence. This aligns with 

marked neuronal changes in animal models when exposure occurs during adolescence 

(Schneider & Koch, 2003; O’Shea et al., 2004; Cha, White, Kuhn, Wilson, & 

Swartzwelder, 2006; Quinn et al., 2008; Rubino, & Parolaro, 2008). In general, some 

recovery in functioning may be experienced with discontinued use (Schwartz et al., 1989; 

Fried et al., 2005; Hanson et al., 2010; Tait et al., 2011); however, full IQ potential may 

not be reached with adult abstinence (Meier et al., 2012).  

Conclusions. Overall, this study demonstrates that regular MJ use impacts brain 

structure in adolescents and young adults. Specifically, we found general decreases in 

gray matter gyrification and decreased WM integrity in adolescent MJ users, which was 

moderated in some regions by FAAH genotype. Therefore, it is an important public health 

priority to delay the onset of regular MJ use until neuronal maturation has been reached 

(see Lisdahl et al., 2013).  
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Figure 1: Study Design (Aims 1 & 2) –Impact of MJ, FAAH Genotype, and MJ x FAAH 
on Gyrification and WM Integrity).  
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Figure 2: Study Design (Aim 3) –Correlation of Significantly Divergent Regions 
Between MJ Users and Controls and Executive Functioning Performance.  
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Figure 3: Gyrification Analysis Pipeline.  
 

 
 
Image obtained from Schaer and colleagues (2012). NOTE: For this study, LGI was 
obtained and analyzed using SPSS and did not use FreeSurfer’s statistical program. 
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Figure 4: Mean Gyrification for OFC (LH) varies by FAAH genotype in MJ users.  
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Figure 5: Mean FA for fMinor varies by group and FAAH genotype.  
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Figure 6: Mean FA for ATR (LH) varies by FAAH genotype in MJ users.  
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Figure 7. Theoretical Influence of ECS on Brain Complexity. 
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Table 1. Demographic & Substance Use Information According to Group & Genotype. 
 

 
Notes:* p<.05; ** p<.01. 
 
 
 
 

 MJ Users 
(n = 37) 

Controls 
(n = 37) 

FAAH  
Carrier of A 

 (n = 27) 

FAAH 
C/C  

(n = 47) 
Age 21.4  

(2.42) 
[18 – 25] 

21.1  
(2.3) 

[18 – 25] 

22.07  
(2.25)* 

[18 – 25] 

20.74 
(2.29)* 

[18 – 25] 

% Female 35.1% 54.1% 51.9% 40.4% 
% Caucasian 64.9% 64.9% 44.4%** 76.6% ** 
FAAH genotype C/C% 42.6% 57.4%   
WRAT-4 Reading  
Standard Score 
 

102.92  
(15.66) 

[73 – 134] 

101.08  
(9.97)  

[81 – 120] 

97.04 
(10.05)** 
[80 – 120] 

104.85 
(13.83)** 
[73 – 134] 

Education 13.32 (1.97) 
[9–19] 

13.84 (1.71) 
[11 – 18] 

13.67 (2.08) 
[9 – 19] 

13.53 (1.73) 
[11 – 18] 

Beck Depression  
Inventory Total-2 

5.11 
(3.75)* 
[0 – 17] 

 3.43  
(3.35)* 
[0 – 14] 

 2.93  
(2.46)* 
[0 – 8] 

 5.04 
(3.98)* 
[0 – 17] 

Past year nicotine use 1696.92 
(2459.63)** 
[0 – 7350] 

 448.35 
(1065.31)** 
[0 – 3680] 

 775.37 
(1182.83) 
[0 – 3680] 

 1243.40 
(2318.90)  
[0 – 7350] 

Cotinine levels 3.83  
(2.4)** 
[0 – 6] 

1.41 
(2.11)** 
[0 – 6] 

 3.22  
(2.53) 
[0 – 6] 

 2.24  
(2.53) 
[0 – 6] 

Past year alcohol  
use 

277.73  
(363.56)** 
[0 – 1724] 

 

 111.43 
(168.67)** 
[0 – 878] 

 192.26 
(331.80) 

[2 – 1724] 

 195.91 
(273.13) 

[0 – 1238] 

Past year  
marijuana use 

 490.62  
(746.17)** 
[4 – 3895] 

.84 
(2.23)** 
[0 – 10] 

303.19 
(445.17) 

[0 – 1662] 

212.72  
(645.87) 

[0 – 3895] 

Past year other  
drug use 

8.92 
(28.70)  

[0 – 171] 

.12 
(.52)  

[0 – 3] 

.89  
(2.4) 

[0 – 12] 

6.6  
(25.7) 

[0 – 171] 
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Table 2. Descriptive Statistics of Local Gyrification Indices According to Group.  
 

 Marijuana Users 
(n = 37) 

Controls 
(n = 37) 

LGI M (SD) Range M (SD) Range 

Prefrontal Cortex (RH) 

 

2.94 (0.23) 2.63-3.94 3.03 (0.50) 2.48-5.24 

Prefrontal Cortex (LH) 2.89 (0.18) 2.56-3.36 2.89 (0.17) 2.47-3.22 

DLPFC (RH)  3.58 (0.32) 2.61-4.80 3.44 (0.65) 2.46-6.06 

DLPFC (LH) 3.58 (0.30)** 2.69-4.23 3.32 (0.41)** 2.62-4.05 

OFC (RH) 2.64 (0.26)* 2.02-3.54 2.80 (0.43)* 2.39-4.80 

OFC (LH) 2.58 (0.18)* 2.17-2.93 2.66 (0.21)* 2.39-3.47 

mPFC (RH) 2.19 (0.21)** 1.93-2.91 2.55 (0.61)** 1.85-4.58 

mPFC (LH) 2.09 (0.19)** 1.82-2.84 2.37 (0.43)** 1.79-3.33 

vmPFC (RH) 2.11 (0.23)** 1.72-2.98 2.45 (0.54)** 1.80-4.20 

vmPFC(LH) 1.99 (0.17)** 1.76-2.67 2.31 (0.47)** 1.83-3.85 

vlPFC (RH) 2.79 (0.28) 2.11-3.65 2.91 (0.46) 2.47-4.93 

vlPFC (LH) 2.79 (0.22) 2.34-3.20 2.79 (0.19) 2.41-3.32 

Frontal Pole (RH) 2.23 (0.18)* 1.92-2.87 2.42 (0.44)* 1.89-3.81 

Frontal Pole (LH) 2.07 (0.16)** 1.74-2.47 2.23 (0.29)** 1.88-2.91 
 
Notes: * p<.05; ** p<.01. 
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Table 3. Descriptive Statistics of Diffusion Tensor Imaging Values According by Group.  
 

 Marijuana Users 
(n = 37) 

Controls 
(n = 37) 

DTI M  
(SD) Range M  

(SD) Range 

ATR- MD (RH) 0.0008  
(0.00007) 0.0007-0.001 0.0008  

(0.0001) 0.0003-0.0009 

ATR- FA (RH) 0.41 (0.06) 

 
( 

0.26-0.50 0.44 (0.05) 0.28-0.55 

ATR- MD (LH) 0.0008  
(0.00007) 0.0007-0.001 0.0008  

(0.0001) 0.0004-0.001 

ATR- FA (LH) 0.41 (0.07) 0.27-0.53 0.44 (0.049) 0.29-0.57 

UNC- MD (RH) 0.0009  
(0.00008)* 0.0007-0.001 0.0008  

(0.0001)* 0.0003-0.001 

UNC- FA (RH) 0.38 (0.07) 0.20-0.51 0.40 (0.06) 0.23-0.52 

UNC- MD (LH) 0.0009  
(0.0001)* 0.0008-0.001 0.0008  

(0.0001)* 0.0004-0.001 

UNC- FA (LH) 0.36 (0.07) 0.19-0.48 0.40 (0.06) 0.24-0.50 

fMinor- MD 0.0009  
(0.0001)* 0.0007-0.001 0.0008  

(0.0001)* 0.0004-0.001 

fMinor- FA 0.48 (0.09) 0.27-0.62 0.51 (0.08) 0.28-0.66 
 
Notes: ATR-Anterior Thalamic Radiation; UNC- Uncinate Fasciculus; fMinor- Corpus Callosum Forceps 
Minor; * p<.05; ** p<.01 
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Table 4. Descriptive Statistics of Neuropsychological Performance by Group & Genotype.  
 
 Neuropsychological Performance 
Group LNS total 

M (SD) 
[range] 

 

PASAT total 
M (SD) 
[range] 

 

D-KEFS Color-Word time 
M (SD) 
[range] 

 

Marijuana Users 11.68 (2.82) 

[6-16] 
(n=37) 

36.7 (10.1) 

[15-57] 
(n=37) 

45.8 (9.77) 

[27-70] 
(n=37) 

Controls 11.7 (2.72) 
8-18 

(n=37) 

35.6 (12.9) 
11-59 

(n=36) 

47.5 (9.6) 
27-73 

(n=37) 
 
 Neuropsychological Performance 
FAAH genotype LNS total 

M (SD) 
[range] 

 

PASAT total 
M (SD) 
[range] 

 

D-KEFS Color-Word time 
M (SD) 
[range] 

 

A carriers  11 (2.11)  
[7-15] 

(n=27) 

34.4 (12.5) 
[11-57] 

(n=26) 

50.3 (10.4) 
[34-70] 

(n=27) 

C/C carriers 12.1 (3.00) 
[6-18] 

(n=47) 

37.1 (10.9) 
[15-59] 

(n=47) 

44.6 (8.7) 
[27-43] 

(n=47) 
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