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ABSTRACT 

NEURAL PLASTICITY OF EXTINCTION LEARNING: RELATIONS WITH ANXIETY 
AND EXTINCTION RETENTION 

 
by 

 
Emily L. Belleau 

 
The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Associate Professor Christine Larson 
 
 
 

Anxiety is a significant public health problem characterized by substantial 

psychological, physical, and economic burden. A key feature of anxiety is the 

inability to regulate fear. Aberrant extinction of conditioned fear is one prominent 

model of the etiology of anxiety disorders. Previous studies have shown that the 

neural circuitry underlying anxiety pathology overlaps with that mediating fear 

extinction learning. Recently, more precise pathways supporting the expression 

(CMA-aMCC) and inhibition (BLA-vmPFC) of conditioned fear have been identified, 

and dysfunction in these pathways has been linked with anxiety. However, this work 

has focused on examining these pathways at one point in time, outside of the context 

of learning, and no one has examined plastic changes in functional activity before and 

after extinction learning. In addition, no one has applied this inquiry to individual 

differences in anxiety and extinction retention. This gap in knowledge is a problem 

because deficits in extinction-induced neural plasticity may be a substantial 

contributing factor to sustained fear responses in anxiety. The aim of this project was 

to examine changes in the strength of CMA-aMCC and BLA-vmPFC pathways from 

before to after extinction learning and how this is related to anxiety and retention of 
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extinction. In a more exploratory fashion, I investigated the degree to which 

extinction-related plasticity varies as a function of white matter integrity within these 

pathways. Our results indicated that extinction learning is associated with enhanced 

plasticity in fear inhibition circuits (BLA-vmPFC and CMA-vmPFC). Plasticity in 

these circuits appears to be intact in high anxious individuals. However, trait anxiety 

was positively associated with strengthened connectivity in a fear expression pathway 

(BLA-aMCC). Enhanced plasticity within a fear expression circuit likely contributes 

to fear inhibition problems, a core feature of anxiety problems. 
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The Public Health Impact of Anxiety Disorders 

 Anxiety disorders are the most common class of mental health disorders, with a lifetime 

prevalence of 28.8% (Kessler et al., 2005). According to the World Health Organization, by 

2020 anxiety and depressive disorders combined will represent the second greatest illness burden 

universally (WHO, 2001). The high prevalence of anxiety disorders comes with a large societal 

burden, costing the United States an estimated $42.3 billion (Greenberg, et al., 1999), as well as 

a substantial burden on sufferers and their families. (e.g., Mendlowicz & Stein, 2000). The 

Research Domain Criteria (RDoC) project developed by the NIMH emphasizes a focus on 

underlying mechanisms (e.g., core brain dysfunction) that may cut across different disorder 

categories and normal/abnormal psychological functioning. Trait anxiety, which involves a 

general tendency to respond to mild threat with exaggerated negative reactivity, has been shown 

to be a core vulnerability marker underlying all anxiety disorders (e.g., Brown, Chorpita, & 

Barlow 1998; Gershuny & Sher, 1998), and accounting for up to 50% of the genetic contribution 

to anxiety pathology (Hettema, Neale, Myers, Prescott, & Kendler, 2006). Therefore, 

characterizing the neural mechanisms implicated in trait anxiety will be important for gaining a 

better understanding of the etiology of anxiety disorders.  

Extinction Learning is a Central Model of Impaired Fear Inhibition in Anxiety Pathology  

 A prominent model for assessing underlying fear regulation problems, a core feature of 

anxiety pathology (Barrett & Armony, 2009; Blechert, Michael, Vriends, Margraf, & Wilhem, 

2007; Hermann, Ziegler, Birbaumer, & Flor, 2002; Michael, Blechert, Vriends, Margraf, & 

Wilhem, 2007), is fear extinction learning, a process by which an organism learns that an object 

that was previously associated with threat no longer predicts a threatening outcome. Deficits in 

extinction retention in particular (Berry, Rosenfield, & Smits 2009; Anderson & Insel, 2006; 
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Milad et al., 2009) likely contribute to anxiety pathology (e.g., Larson, Nitschke, & Davidson, 

2007). Furthermore, when examined with neuroimaging, initial extinction learning and 

extinction retention have been shown to share neural circuitry also implicated in anxiety (e.g., 

Barret & Armony, 2009; Milad et al., 2009). Given that extinction learning maps onto core 

behavioral symptoms and closely aligns with the dysfunctional neural circuitry seen in anxiety, 

several researchers have advocated conceptualizing anxiety disorders as disorders of abnormal 

fear extinction (Anderson & Insel, 2006; Insel et al., 2010). 

Neural Mechanisms Supporting Expression and Extinction of Fear Responses 

One of the most important brain structures mediating extinction learning is the amygdala 

(LeDoux, 2000). A substantial animal literature has demonstrated that the amygdala is a 

heterogeneous structure made of many nuclei (e.g., Pitkanen, 2000; Sah, Faber, Lopez De 

Armentina, & Power, 2003). Recently, researchers working at the human level have also begun 

to parse the amygdala into three core subregions including the basolateral amygdala, the 

centromedial amygdala, and the superficial amygdala (e.g., Baur, Hangii, Langer, & Jancke, 

2013; Bzdok, Laird, Zilles, Fox, & Eickhoff, 2013; Etkin et al, 2009; Roy et al., 2009, 2013 ).  A 

wealth of laboratory animal research and some human research has suggested that the basolateral 

amygdala and the centromedial amygdala have a prominent role in fear extinction learning (see 

Milad & Quirk, 2012 for a review). The basolateral amygdala has been shown to play a pivotal 

role in the inhibition of fear (Barad, Gean, & Lutz, 2006; Milad & Quirk et al, 2012). Animal 

research has also demonstrated that the basolateral amygdala is important for the development of 

extinction induced neural plasticity and the formation of a stable fear extinction memory 

(Amano, Unal, & Pare, 2010; Laurent, Marchand, & Westbrook, 2008; Sierra-Mercado, Padilla-

Coreano, & Quirk, 2011). On the other hand, the centromedial amygdala has been shown to be 
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involved in the expression of fear (LeDoux, 2003).  

In addition to the amygdala subregions, the anterior midcingulate cortex (aMCC) and the 

ventromedial prefrontal cortex (vmPFC) also play a critical role in the expression and inhibition 

of fear responses (e.g., Linnman et al, 2012; Milad, Quirk, Pittman, Orr, Fischl, & Rauch, 2007a; 

Milad, Wright, Orr, Pittman, Quirk, & Rauch, 2007b; Phelps, Delgado, Nearing, & LeDoux, 

2004). The aMCC, considered to be the human homologue of the rat prelimbic cortex, has been 

linked to the expression of fear (Burgos-Robles, Vidal-Gonzalez, Santini, & Quirk, 2009; 

Linnman et al, 2012; Milad, Quirk, Pittman, Orr, Fischl, & Rauch, 2007a). Greater activation of 

the aMCC has been shown to be correlated with greater skin conductance responses to the CS+ 

(conditioned stimulus paired with a shock) during fear acquisition (Milad et al., 2007a). 

Additionally, increased aMCC resting state metabolism has been linked to poorer extinction 

retention (Linnman et al, 2012). In contrast to the role of the aMCC in fear extinction learning, 

the vmPFC, the human homologue of the rat infralimbic cortex, has been shown to play a role in 

the inhibition of fear (Quirk, Russo, Barron, Lebron 2000, Milad & Quirk, 2002; Milad et al., 

2007b; Phelps et al., 2004). Enhanced vmPFC activity to the CS+ during late fear extinction 

learning has been demonstrated in healthy humans (Milad et al, 2007b). Enhanced vmPFC 

recruitment has also been linked to greater extinction recall (Milad et al., 2007b; Phelps et al, 

2004).  

Along with their separable roles, these regions also form critical neural pathways that 

support the expression and inhibition of fear. Following extensive animal research, recent studies 

at the human level have begun to examine different functional connections between the 

amygdala subregions and the rest of the brain (Blackford, Clauss, Avery, Cowan, Benningfield, 

& VanDerKlok, 2014; Etkin, Prater, Schatzberg, Menon, & Greicius, 2009; Roy et al, 2009, 
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2013; Qin et al, 2013). These studies demonstrated that the basolateral amygdala shows stronger 

resting state functional connectivity with the vmPFC compared to the centromedial amygdala 

whereas the centromedial amygdala shows stronger resting state connectivity with the aMCC 

compared to the basolateral amygdala (Roy et al, 2009; 2013).  Together, this evidence suggests 

that the centromedial amygdala forms stronger connections with the aMCC to facilitate the 

expression of fear, whereas the basolateral amygdala forms stronger connections with the 

vmPFC to facilitate the inhibition of fear.  

Neural Mechanisms Supporting Fear Extinction Learning are Altered in Anxiety 

 The same neural mechanisms that support the expression and inhibition of fear have also 

been shown to be altered in anxiety. In studies of participants performing fear acquisition and 

extinction learning in the scanner, both individuals with subclinical levels of trait anxiety as well 

as those diagnosed with anxiety disorders show greater amygdala activity during presentation of 

the CS+ during fear extinction (Barrett & Armony et al., 2009; Milad et al., 2009). Of the few 

studies examining individuals with subclinical levels of trait anxiety, one study showed that 

higher levels of trait anxiety is associated with less activation in the aMCC to the CS+ compared 

to the CS- (conditioned stimulus never paired with a shock) during fear extinction (Sehlmeyer et 

al., 2011). Another study investigating trait anxiety relationships with activation in the vmPFC 

during fear conditioning and extinction failed to find any significant relationships (Barrett & 

Armony, 2009). This stands in contrast to studies that assessed neural mechanisms underlying 

fear conditioning and extinction learning in individuals with posttraumatic stress disorder 

(PTSD), a disorder characterized by excessive anxiety in the aftermath of a traumatic event. 

These studies find that PTSD is associated with less vmPFC activation to the CS+ compared to 

the CS- during initial extinction learning and extinction recall and greater activation in the aMCC 
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during extinction recall (Milad et al., 2009). 

 Along with studies examining relationships between trait anxiety and brain activity 

during fear conditioning and extinction paradigms, researchers have also begun to investigate 

trait anxiety and altered resting state connectivity in regions supporting fear extinction learning 

(Bjsterbosch Smith, Forster, John, & Bishop, 2014; Kim, Gee, Loucks, Davis, & Whalen, 2011; 

Vytal, Overstreet, Charney, Robinson, & Grillon, 2014). One study has shown that high levels of 

trait anxiety are associated with less resting state functional connectivity between the whole 

amygdala and the vmPFC (Kim et al., 2011). Additionally, individuals with high levels of trait 

anxiety failed to show decreased connectivity between the whole amygdala and the dorsomedial 

prefrontal cortex (dmPFC; including the aMCC), which was a pattern demonstrated by the low 

trait anxiety group (Kim et al., 2011). Other more recent studies have shown that higher levels of 

trait anxiety are associated with increased amygdala-aMCC/dmPFC functional connectivity both 

at rest (Bijsterbosch et al., 2014) and under the threat of shock (Vytal et al., 2014) and a trend 

toward decreased connectivity between the amygdala and vmPFC (Bijsterbosch et al., 2014). 

 In addition to examining relationships between anxiety and whole amygdala functional 

connectivity with other brain regions, researchers have also recently begun to examine more 

precise relationships with amygdala subregions (Brown et al, 2014; Baur et al., 2013; Blackford 

et al., 2014, Etkin et al., 2009, Roy et al., 2013, Qin et al., 2014). Only one of these studies 

specifically examined relationships between trait anxiety and amygdala subregion connectivity 

with other brain structures (Baur et al, 2013). However, this particular study only reported 

amygdala subregion-insula connectivity, and they only found significant associations for state 

anxiety and not trait anxiety (Baur et al, 2013). The remaining studies examined other related 

dimensions of anxiety or clinical anxiety disorder populations (Blackford et al., 2014; Etkin et 
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al., 2009, Roy et al., 2013, Qin et al., 2014). Of the studies examining trait anxiety-related 

constructs, one study found that greater social inhibition was associated with reduced 

connectivity between the CMA and the aMCC (Blackford et al., 2014). Additionally, children 

with greater levels of anxious temperament showed greater connectivity between the basolateral 

amygdala and vmPFC (Qin et al., 2014). Within anxiety disorder populations, one study found 

that individuals with PTSD show greater BLA-aMCC resting state connectivity compared to 

trauma-exposed controls (Brown et al, 2014). Decreased CMA-vmPFC resting state connectivity 

has been observed amongst adolescents with generalized anxiety disorder (Roy et al., 2013). 

Another study of generalized anxiety disorder found a less differentiated pattern of CMA and 

BLA whole-brain resting state connectivity (Etkin et al, 2009; Roy et al, 2013). Together, these 

studies provide a mixture of evidence for relationships between anxiety and altered resting state 

connectivity between the amygdala subregions and the rest of the brain. The mixed results are 

likely due to differences in using clinical or subclinical populations, the dimensional measure of 

anxiety that is used, as well as developmental differences between the populations that have been 

studied. It is still unknown how trait anxiety may be associated with alterations in resting state 

connectivity between the CMA and BLA with other regions important to the expression and 

inhibition of fear (aMCC, vmPFC).  

The Importance of Examining Extinction-Related Resting State Connectivity Changes 

 In order to study dynamic processes likely needed to support and retain different forms of 

learning, such as fear extinction, researchers have begun to incorporate a pre-learning resting 

state scan and a post-learning resting state scan to study learning-related neural changes 

(Daselaar, Huijbers, de Jonge, Goltstein, & Pennartz, 2010; Schultz, Balderston, & Helmstetter, 

2012; Feng, Feng, & Chen, 2013; Feng, Feng, Chen, & Lei, 2014). To date this pre-post learning 
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resting state paradigm has not been used to study neural changes supporting fear extinction 

learning. However, a few studies have begun to examine resting state neural changes before and 

after fear acquisition learning (Schultz, Balderston, & Helmstetter, 2012; Feng, Feng, & Chen, 

2013; Feng, Feng, Chen, & Lei, 2014). These researchers found altered connectivity in structures 

also important to the extinction of fear, including increased amydgala-aMCC/dmPFC 

connectivity, a pathway known to support the expression of fear (Schultz et al., 2012; Feng, 

Feng, Chen, & Lei, 2014). Additionally, Feng and colleagues (2014) found that higher subjective 

ratings of fear to the CS+ during fear acquisition were associated with decreased pre- to post- 

fear acquisition resting state connectivity changes between the amygdala and vmPFC. Given that 

impairments in fear extinction learning, particularly extinction retention, are a core feature of 

anxiety problems, it is important to extend this work to this type of learning. Examining pre- to 

post extinction related neural changes may allow for a better understanding of aberrant dynamic 

neural processes that underlie poor extinction and extinction retention in anxious individuals.  

Aberrant White Matter Integrity may underlie Extinction-Related Neural Dysfunction 

seen in Anxiety Problems  

 In addition to extinction-related neural dysfunction seen in those with high levels of trait 

anxiety and anxiety disorders, altered integrity in the white matter connecting these regions has 

been seen in those with anxiety problems (Kim & Whalen, 2009; Eden et al., 2015). These 

studies have shown that higher levels of trait anxiety are associated with decreased white matter 

integrity within the uncinate fasciculus, a direct pathway that connects the amygdala to the 

vmPFC (Kim & Whalen, 2009; Eden et al., 2015). However, Eden and colleagues (2015) also 

examined indirect connections between the amygdala and dmPFC/aMCC and failed to find any 

associations with trait anxiety within this pathway. Given the large extent of the dmPFC, 
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examining tracks that specifically reach voxels within the aMCC, may potentially be fruitful in 

observing anxiety-related differences in the integrity of these dorsal pathways. Researchers have 

also begun to parcellate subregions of the amygdala utilizing diffusion imaging methods (Saygin, 

Osher, Augustinack, Fischl, & Gabrieli, 2011; Solano-Castiella et al., 2010; Balderston, Schultz, 

Hopkins, & Helmstetter, in press), however it is still unknown how unique white matter 

pathways between amygdala subregions and different parts of the brain are influenced by 

varying levels of trait anxiety. Additionally, it is unknown how aberrant white matter integrity 

may influence aberrant functioning in fear extinction-related neural pathways seen in those with 

anxiety problems.  

The Current Study 

The purpose of the current study was to examine the dynamic processes supporting 

extinction learning in more precise amygdala subregion pathways by incorporating a resting state 

scan both before and after a fear extinction learning paradigm. Given that fear extinction is a 

core process that is impaired in anxiety, it is important to better understand the neural processes 

that may contribute to poor extinction retention and greater severity of anxiety symptomology. 

At this point, we have some understanding of anxiety-related neural dysfunction during 

extinction learning and within a single resting state scan, but plastic processes likely needed to 

support the retention of fear extinction learning have not yet been explored. Thus, I explored 

changes in resting state connectivity resulting from extinction learning and their relationships 

with trait anxiety.  

Additionally, with diffusion imaging methods, I examined how white matter integrity in 

amygdala subregion pathways may be associated with individual differences in extinction-related 

neural changes and trait anxiety. Following the assessment of extinction-related neural changes 
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and white matter integrity, participants completed an extinction retention task outside of the 

scanner one week later. This extinction retention task was correlated with measures of BOLD 

activation during extinction learning, extinction-related neural plasticity, white matter integrity, 

and individual difference in a measure of trait anxiety.  

Given what is known about the functioning of amygdala subregion pathways within the 

context of extinction learning, following extinction learning I expected to find a strengthening in 

resting state connectivity within the BLA-vmPFC pathway, known to be involved in the 

inhibition of fear responses, and a dampening in connectivity within the CMA-aMCC pathway, 

known to be involved in the expression of fear. Additionally, I predicted that having increased 

white matter integrity in the BLA-vmPFC network would be associated with stronger BLA-

vmPFC resting state connectivity following extinction learning. I also predicted that decreased 

white matter integrity within the CMA-aMCC network would be associated with diminished 

CMA-aMCC resting state connectivity following extinction learning. With regards to how 

individual differences in trait anxiety may influence neural changes within these pathways, I 

predicted that trait anxiety would be associated with less strengthening in the BLA-vmPFC fear 

inhibition pathway and less dampening of the CMA-aMCC fear expression pathway from pre- to 

post-fear extinction. I also expected that trait anxiety would be associated with less white matter 

integrity within the BLA-vmPFC pathway and greater white matter integrity within the CMA-

aMCC pathway.  

Regarding extinction retention, I expected that poorer retention would be predicted by 

greater activation in the amygdala and aMCC and less vmPFC activation to the CS+ versus the 

CS- during extinction learning. With respect to relationships between extinction retention and 

extinction-related neural plasticity, I expected that poorer extinction retention would be 
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associated with less strengthening of the BLA-vmPFC pathway and less dampening of the CMA-

aMCC pathway following extinction learning. In turn, inefficient extinction learning was also 

expected to be associated with decreased white matter integrity within the BLA-vmPFC pathway 

and increased white matter integrity in the CMA-aMCC pathway. Given the hypothesized 

relationships between trait anxiety, extinction-related resting state connectivity changes, and 

white matter integrity, I predicted that altered brain activity during extinction learning, 

extinction-related plasticity, and white matter integrity may mediate the relationship between 

trait anxiety and poor extinction retention abilities.  

The knowledge gained from this project will help provide a more precise understanding 

of altered neural pathways supporting impaired maintenance of fear extinction learning in 

anxious individuals. Additionally, understanding these impaired extinction processes in anxiety 

have a number of long-term implications. First, impaired extinction-induced neural plasticity and 

subsequent recall of extinction learning may serve as a biomarker that can lead to early detection 

of anxiety problems. Investigators have already begun to show that extinction learning has 

promise in this area (Guthrie et al., 2006). In addition, such understanding may help to further 

elucidate potential mechanisms of change in exposure therapy, a prominent therapy for anxiety 

rooted in fear extinction principles (Goosens, Sunaert, Peeters, Griez, & Schruers, 2007; Hauner, 

Mineka, Voss, & Paller, 2012; Straube, Glauer, Dilger, Mentzel, & Miltner, 2006), and inform 

attempts to maximize the efficacy of this intervention. Recently, it has been shown that 

successful exposure therapy results in the normalization of neural processes supporting 

extinction learning (Goosens, Sunaert,Peeters, Griez, & Schruers, 2007; Hauner, Mineka, Voss, 

& Paller, 2012; Straube, Glauer, Dilger, Mentzel, & Miltner, 2006). Thus, knowledge gained 

from the present project may ultimately help those at risk for or suffering from anxiety by aiding 
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in early detection and informing and optimizing extinction-based treatments for anxiety 

disorders.  

Method 

Participants 

One hundred and ten undergraduates from the University of Wisconsin-Milwaukee 

volunteered to participate in the study. From this sample, participants were excluded from the 

final analyses due to the presence of manic episodes (n= 1), technical issues with the scanner (n 

= 2), excessive motion during scanning (n = 12), technical issues with electrical stimulation (n = 

2) and a failure to show signs of implicit or explicit learning (n = 2) during fear conditioning. 

This resulted in a final sample of 91 participants (53 females, mean age: 22.05, SD = 3.94). All 

participants were right-handed and had no contraindications for an MR scan including metal in 

the body, pregnancy, or claustrophobia. Additionally participants reported no history of head 

trauma, neurological disorders, psychosis, or mania.  

General Procedures 

Participants completed two sessions, one week apart. The first session took place at the 

Medical College of Wisconsin and included a fear conditioning and extinction paradigm in the 

MRI scanner. A week later, participants were tested on retention of extinction learning. This 

second session took place in a laboratory in the Department of Psychology at the University of 

Wisconsin-Milwaukee. At the end of the first session, subjects completed the State-Trait Anxiety 

Inventory-Trait (STAI-Trait; Spielberger et al., 1983). The STAI-Trait is a 20-item measure of 

dispositional anxiety (e.g. I worry too much over something that doesn’t really matter, I try to 

avoid facing crisis or difficulty, I take disappointments so keenly that I can’t put them out of my 
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mind). The STAI-Trait has been shown to exhibit high internal consistency (r = .89) and test-

retest reliability (r = .88; Barnes, Harp, & Jung, 2002).  

Session One: Fear Conditioning and Extinction Paradigm 

While in the scanner, participants completed a differential delay fear conditioning and 

extinction paradigm similar to those used in previous studies (Armony & Dolan, 2002; Knight, 

Smith, Cheng, Stein, & Helmstetter, 2004). The conditioned stimuli (CS) consisted of two 

different fractals. The unconditioned stimulus (UCS) was a 500 ms shock tailored to each 

individual’s tolerance level. Before completing this task, participants underwent a procedure to 

determine what level of electrical stimulation was aversive but tolerable for them on a 0 to 10 

scale (0=no sensation, 10=painful, but tolerable). The level of electrical stimulation was 

increased until the participant indicated that the level was painful, but tolerable or had reached a 

maximal current level of 7.5 mA (Schultz et al., 2012). Participants then underwent a 

conditioned fear acquisition protocol (5 min). Participants were presented with five visual 

presentations of the CS+ (CS associated with an aversive shock) and five presentations of the 

CS- (CS not associated with a shock). For 100% of the five CS+ trials, the UCS coterminated 

with the CS+. Following acquisition, participants completed a five-minute resting state scan 

during which they were instructed to close their eyes but remain alert (Schultz et al., 2012). Then 

participants completed a fear extinction protocol (5 min), in which they received five 

presentations each of the CS+ and CS-, with no presentation of the UCS. After extinction 

learning, another five minute resting state scan was performed (See Figure 1 on next page). The 

CSs were presented for 8 s followed by a 16-24 s intertrial interval (mean= 20 s). The CS+ and 

CS- were displayed in a quasi-random order, with no more than two presentations of the same 

condition in a row. Two pseudorandomized trial order sequences were used and counterbalanced 
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across subjects in order to control for order effects. Skin conductance responses (SCR) and 

expectancy ratings were collected throughout the task.  Additionally, a subset of participants (n = 

65) completed a diffusion weighted imaging scan after the fear conditioning and extinction task.  

 

Session Two: Extinction Retention Paradigm.  

Participants completed an extinction retention paradigm outside of the scanner 

environment. The paradigm included five presentations each of the CS+ and CS-, with no 

presentation of the UCS. Throughout the task, skin conductance and expectancy ratings were 

assessed. Additionally participants underwent a clinical interview, the Mini International 

Neuropsychiatric Interview Version 6.0.0 for DSM-IV (M.I.N.I.; Sheehan et al., 2010) to 

exclude participants with lifetime episodes of mania or psychosis. At the end of the task, the 

participants were compensated for their completion of both sessions. 

Apparatus and Data Collection 

Electrical stimulus. The 500 ms electrical stimulus was delivered by an AC (60 HZ) 

Figure 1. Diagram of experiment phases. 

Structural 

~ 10 min 

Fear 

Acquisition 

5 min 

Pre-

Extinction 

Resting State 

Scan 

5 min 

Fear 

Extinction 

5 min 

Post-

Extinction 

Resting State 

Scan 

5 min 



 

 

 

14

source (Contact Precision Instruments, Model SHK1, Boston, MA) through two surface cup 

electrodes (silver/silver chloride, 8 mm diameter, Biopac model EL258-RT, Goleta, CA). The 

electrodes were filled with electrolyte gel and positioned on the participant’s right tibial nerve 

above the right medial malleolus (ankle). 

Visual stimulus. The fear conditioning and extinction protocol was programed with 

Presentation software (Albany, CA) and presented to participants in the scanner using a back 

projection system with prism glasses mounted on the head coil. Stimuli were presented on a 

desktop PC during session two. 

Skin conductance. SCRs were collected with a SC5 24-bit digital amplifier (Contact 

Precision Instruments, Boston, MA), sampled at 80Hz. Electrodes (Biopac, Goleta, CA; Model 

EL258-RT) were filled with electrolytic gel and placed 2 cm apart on the sole of the left foot 

(Knight et al., 2004). 

Expectancy ratings. Throughout fear acquisition and extinction learning, participants 

were given a button box in order to respond to a rating scale at the bottom of the screen. 

Participants practiced using the button box prior to beginning the experiment. Participants were 

instructed that if they felt that they were absolutely not going to receive the UCS, they would 

press the left button to move their cursor toward 0%. If the participants were absolutely certain 

they would receive the UCS, they were told to press the right button to move their cursor toward 

100%. If they were unsure, they were directed to move the cursor toward the middle near 50%.  

MRI. Whole brain imaging was conducted using a 3T short bore GE Signa Excite MRI 

system. Functional images were acquired using a T2* weighted gradient-echo, echoplanar pulse 

sequence. We collected 41 interleaved sagittal slices (TR=2 s; TE=25 ms; FOV=24 cm; flip 
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angle=77º; slice thickness = 3.5 mm). High resolution spoiled gradient recalled (SPGR) images 

were acquired in a sagittal orientation (TR=8.2 ms; TE=3.2 ms; FOV=24 cm; flip angle=12º; 

voxel size=0.9375 x 0.9375 x 1 mm) and served as an anatomical map for the functional images. 

Diffusion weighted images were collected using echoplanar imaging with 70 contiguous 2 mm 

thick axial slices and 38 non-collinear diffusion gradients (TR=10 s; TE= 77.9 ms; b value=800 

s/mm2; FOV=25.6 cm; flip angle=90º; voxel size=2 x 2 x 2 mm). 

Data Reduction 

Skin Conductance Preprocessing. To calculate SCR amplitude for each trial, the 

average SCR (in microSiemens) two seconds prior to the onset of the CS was subtracted from the 

highest SCR level during the eight-second duration of the CS (Milad et al., 2009; Schultz et al., 

2012). 

Expectancy Ratings Preprocessing. The UCS expectancy measure was operationalized 

as the mean self-reported ratings of the % chance of getting a shock during the last four seconds 

of the CS period for each trial for each participant (Schultz et al., 2012). 

MRI Preprocessing. AFNI (Cox, 1996) was used to conduct image reconstruction and 

the following preprocessing steps for both the task data and the resting state data: 1) slice time 

correction, 2) remove first 3 images from each functional run to account for scanner 

equilibration, 3) rigid-body motion correction done in three translational and three rotational 

directions with all volumes registered to the first volume of each functional run (motion 

correction), 4) non-linear registration to MNI space using FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fnirt), 5) motion censoring above 0.3 mm and censoring 

based on outliers, and 6) apply motion derivatives. For the task-based data, the BOLD response 
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was modeled 0-14 seconds after the onset of the CS stimulus using 8 tent functions (0, 14, 8). 

For the resting state analyses, additional preprocessing steps were conducted including: 1) 

despiking to remove extreme time series outliers and 2) bandpass filtering to diminish 

frequencies above 0.1 Hz and below 0.01 Hz. Participants who exhibited excessive head motion 

(greater than an average value of 2.5 translational and/or 2.5 ○ rotation) were excluded from 

further analysis. Diffusion weighted images were motion and eddy current corrected using FSL’s 

eddy_current. The diffusion images were registered to the averaged B0 image. Probablistic 

tractography based on a ball-and-stick model (Behrens, Berg, Jababdi, Rushworth, & 

Woolworth, 2007) was implemented in FSL’s probtrackx and fractional anisotropy (FA) maps 

were computed and FA values lower than 0.2 were thresholded out using FSL’s DTIFIT.  

 Identification of amygdala subregions via resting state fMRI. Regions of interest 

(ROIs) for the amygdala subregions including the BLA and the CMA (according to definitions 

described in Ball et al., 2007), were determined using stereotaxic, probabilistic maps of 

cytoarchitectonic boundaries (Amunts et al., 2005) implemented in AFNI (Cox, 1996). Only 

voxels with at least a 50% probability of belonging to one of the subregions was included. In 

situations in which there was overlap, these voxels were assigned to the subregion that had the 

highest probability of inclusion. Each voxel was only assigned to one subregion. Each voxel’s 

time series was weighted according to the probability of being included in a given subregion to 

ensure that the most reliable voxels in each subregion made the greatest contribution to the signal 

(Roy et al., 2009). For each subject, the mean time series was extracted by averaging across all 

voxels’ probability weighted time series within each subregion.  

Generation of amygdala-based connectivity maps. Correlational maps between the 

amygdala subregions and the time series from every other voxel in the brain were derived for the 
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pre-extinction resting state scan and the post-extinction resting state scan. The individual r 

statistics were normalized using a Fisher’s z transformation and were resampled to 1 mm3 

voxels. Group level statistics were based on the normalized data. 

Delineation of a priori connectivity regions and correction for multiple comparisons. 

The primary focus of the group analyses was on relations between the amygdala subregions and 

our a priori structures of interest, the aMCC and vmPFC.  For all results found within the a 

priori neural pathways (BLA-vmPFC and CMA–aMCC) a small volume correction for multiple 

comparisons was applied to both a vmPFC (Mackey & Petrides, 2014) and an aMCC (Grupe et 

al., 2013) anatomical mask via cluster thresholding using Monte Carlo simulations. Using a 

voxel-based threshold of p < 0.005 and nearest-neighbor selection criteria, accounting for spatial 

correlation, clusters greater than 158 voxel for the vmPFC and 68 voxels for the aMCC achieved 

a corrected p-value of <0.05. A more stringent whole-brain correction through cluster 

thresholding (via Monte Carlo simulations) was applied to neural pathways that were not a 

priori. For post-hoc neural pathways, using a voxel-based threshold of p<0.005, clusters greater 

than 543 voxels achieved a corrected p <0.05.  

DTI probablistic tractography. Tracking was performed from the CMA subregion (the 

seed mask) to the aMCC (way point and termination mask) and from the BLA subregion (seed 

mask) to the vmPFC (way point and termination mask). For the tracking of each pathway, an 

exclusion mask was created so that the other amygdala subregion would not be included in the 

pathway. Additional probabilistic tractography was performed based on resting state results 

involving the BLA, CMA, aMCC, and vmPFC that were not a priori. The same anatomical 

masks of the amygdala subregions that were generated for the resting state connectivity analyses 

were also used for the probabilistic tractography. Additionally, anatomical masks of the vmPFC 
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(Mackey & Petrides, 2014) and the aMCC (Grupe et al., 2013) that contained the voxels that 

showed significant resting state connectivity changes with amygdala subregions were used. 

Employing anatomical masks better ensured that the ROIs would be large enough to intersect 

with white matter. The final tracts were used as subject-specific masks for the extraction of 

fractional anisotropy (FA) values from individual maps (Baur et al., 2013). FA is interpreted as a 

measure of white matter strength or integrity, as it is thought to be influenced by axonal 

membrane thickness/diameter, amount of axon myelination, and parallel organization of axons 

(Basser & Pierpaoli, 1996; Beulieu, 2000).  

Skin conductance response and expectancy ratings as indices of extinction retention. 

Given the different contexts in which GSR was collected during session 1 and session 2 (session 

1 in the scanner and session 2 outside of the scanner), Milad’s (2007) extinction retention index, 

which calculates each participants mean SCR to the first two CS+ trials and divides it by the 

maximum SCR to the CS+ during fear acquisition, was not used. Instead, an average of the 

participant’s response to the first two trials during extinction retention was calculated. Only 

earlier extinction retention trials were used to avoid “new extinction learning” (Garfinkel et al, 

2014). The same process was conducted on each participants mean expectancy ratings to the CS- 

for each trial.  

Data Analysis: Conditioning Task Analyses 
 
 

 My primary hypotheses centered on the relationship between trait anxiety, changes in 

resting state functional connectivity as a result of fear extinction, retention of extinction learning, 

and the white matter pathways supporting these processes. Prior to addressing those hypotheses I 

first conducted basic analyses of the behavioral and imaging data from the conditioning tasks and 

examined relations between anxiety and acquisition and extinction of conditioned fear. 
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 Acquisition and Extinction Behavioral Analyses. I conducted two CS Type X Trial 

repeated measure ANOVAs on the skin conductance response and expectancy ratings measures 

that were collected during fear acquisition. Additionally, I conducted two CS Type X Trial 

repeated measures ANOVAs on the skin conductance response and expectancy ratings measures 

during extinction. Then I generated a difference score for CS skin conductance responses during 

fear acquisition by subtracting the mean skin conductance to the CS- across trials minus the 

mean skin conductance response to the CS+ across trials. Similarly, I calculated a difference 

score for CS expectancy ratings during fear acquisition by subtracting the mean UCS expectancy 

rating to the CS- across trials minus the mean UCS expectancy rating across CS+ trials.  For 

extinction learning, I repeated this same process and calculated difference scores for CS skin 

conductance responses and UCS expectancy ratings. I correlated each of these difference scores 

with self-reported trait anxiety.  

 Acquisition and Extinction Imaging Analyses. I conducted two whole-brain paired 

sample t-tests comparing CS+  versus CS- BOLD activation during fear acquisition and 

extinction learning, respectively.  

To address my hypothesis that greater levels of trait anxiety would be associated with 

greater amygdala and anterior midcingulate (aMCC) BOLD activation as well as less 

ventromedial prefrontal cortex (vmPFC) BOLD activation to the CS+ compared to the CS- 

during fear extinction learning whole brain BOLD activation to the CS+ was subtracted from 

whole brain activation to the CS- during fear extinction learning. This difference score was then 

correlated with trait anxiety. For completeness, I also generated a whole brain CS+ minus CS- 

difference score during fear acquisition and correlated it with trait anxiety. I correlated trait 
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anxiety with activation associated with the CS+ and the CS- separately during fear acquisition 

and extinction.  

Data Analysis: Extinction Retention 

I examined whether the BOLD activation contrast between the CS+ and CS- during 

extinction predicted subsequent retention of extinction learning a week later. To test my 

hypothesis that poorer extinction retention would be associated with smaller differenced in 

vmPFC and greater differences in aMCC activation to the CS+ compared to the CS-, extinction 

retention indices were correlated with vmPFC and aMCC BOLD activation CS+ minus CS- 

difference scores. 

Additionally,  if there were significant relationships between a) trait anxiety and  CS+ 

versus CS- difference scores, b) trait anxiety and extinction retention, as well as c) extinction 

retention and CS+ versus CS- difference scores, mediational analyses were conducted. The 

Multilevel Mediation and Moderation Toolkit (http://wagerlab.colorado.edu/tools/Mediation_ 

help_11_6_08.pdf, Wager & Lindquist) was used to conduct single-level mediational analyses 

with a standard three-variable path model implemented with Baron and Kenny’s (1986) four step 

method of establishing mediation through a series of linear regression analyses. Step 1: examine 

whether trait anxiety predicts extinction retention. Step 2: examine whether trait anxiety predicts 

the CS difference score in vmPFC BOLD activation during extinction learning. Step 3: examine 

whether the extinction related CS difference score in vmPFC BOLD activation predicts 

extinction retention. Step 4: enter both trait anxiety and the CS difference score in vmPFC 

activation during extinction learning as predictors and extinction retention as outcome. A 

reduction in the relationship between trait anxiety and extinction retention when the extinction-

related CS difference score in vmPFC activation is entered in the model indicates that this 
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activation difference score mediates the relationship. In order to determine whether the 

association between trait anxiety and extinction retention is significantly different between step 1 

and 3, a Sobel test was conducted (Sobel, 1982). These same steps were used with the CS 

difference in aMCC activation during extinction learning mediating the relationship between trait 

anxiety and extinction retention.  

Data Analysis: Resting State and Structural Connectivity  

Aim 1: Examine plasticity underlying extinction learning in CMA-aMCC and BLA-vmPFC 

pathways and associations with the integrity of white matter connections within each 

pathway. 

Resting state connectivity changes. To address my hypothesis that successful extinction 

learning would be characterized by weaker CMA-aMCC and stronger BLA-vmPFC pathways, 

the r values between each of the amygdala subregions and the whole brain were calculated for 

the pre-extinction run and the post-extinction run separately. Then, a paired sample t-test 

comparing the CMA-whole brain correlational map during the pre-extinction run with the CMA-

whole brain correlational map during the post-extinction run was conducted. Similarly, another 

paired sample t-test was conducted in order to compare the BLA-whole brain correlational map 

before extinction learning with the BLA-whole brain correlational map after extinction.  

Resting state connectivity changes and white matter integrity. To test my prediction 

that less extinction-induced CMA-aMCC plasticity would be associated with less white matter 

integrity connecting these two regions, I computed a connectivity change score reflecting 

extinction learning plasticity by subtracting the pre- extinction CMA-whole brain correlational 

map from the post-extinction correlational map. Correspondingly, to test my hypothesis that 

greater extinction-induced BLA-vmPFC plasticity would be associated with greater white matter 
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integrity within this pathway, the pre-extinction BLA-whole brain correlational map was 

subtracted from the post-extinction correlational map. In addition, mean FA values for the CMA-

aMCC pathway and the BLA-vmPFC pathways were calculated. The post-pre CMA-aMCC 

extinction learning difference value was correlated with the mean CMA-aMCC FA value. The 

BLA-vmPFC difference score was correlated with the mean BLA-vmPFC FA value. 

Aim 2: Assess the influence of trait anxiety on extinction-related neural plasticity and white 

matter integrity of BLA-vmPFC and CMA-aMCC pathways. 

 I predicted that trait anxiety would be associated with a) a blunted increase in BLA-

vmPFC connectivity, and b) less attenuation of CMA-aMCC connectivity from before to after 

extinction learning, as well as c) greater white matter integrity of the CMA-aMCC pathway, and 

d) reduced white matter integrity between the BLA and vmPFC. To test this, trait anxiety (STAI-

Trait) was correlated with the post-pre CMA-whole brain difference score (described above) and 

with the post-pre BLA-whole brain difference score. To examine the relationship between trait 

anxiety and white matter fiber integrity, trait anxiety was correlated with the mean CMA-aMCC 

FA value and the mean BLA-vmPFC FA value. 

Aim 3: Examine whether extinction-related plasticity and the white matter integrity of 

BLA-vmPFC and CMA-aMCC pathways predict individual differences in retention of 

extinction learning a week later. In conjunction with this objective, if there were significant 

relationships between trait anxiety, extinction retention, white matter integrity, and 

extinction-related neural changes, I assessed whether extinction-related plasticity and the 

white matter integrity of these neural pathways mediate the relationship between anxiety 

and extinction retention abilities.  

I predicted that poorer extinction retention would be predicted by a) less strengthening of 
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BLA-vmPFC connectivity following extinction learning, b) less dampening of CMA-aMCC 

connectivity following extinction learning, c) less BLA-vmPFC white matter integrity, and d) 

greater CMA-aMCC white matter integrity. To test these hypotheses extinction retention indices 

(described earlier) were correlated with significant post-pre CMA-aMCC and the post-pre 

extinction BLA-vmPFC pathways. Likewise, extinction retention indices were also correlated 

with mean CMA-aMCC FA values as well as mean BLA-vmPFC FA values. 

 If there were significant relationships between a) trait anxiety and extinction-related 

neural changes or white matter integrity, b) trait anxiety and extinction retention, as well as c) 

extinction retention and plasticity or white matter integrity measures within a priori pathways, 

mediational analyses were conducted.  

Additional Tests of Interest 

The same tests conducted in Aims 1-3 described above were also conducted on post-hoc 

pathways that emerged, the BLA-aMCC and CMA-aMCC pathways. 

Results 

Participants 

For our sample, trait anxiety scores ranged from 21 to 66, with a mean score of 40.21 and 

a standard deviation of 11.13. 

Fear Acquisition: Behavioral Results 

Two separate CS Type X Trial repeated measure ANOVAs were conducted on the skin 

conductance data and expectancy ratings during fear acquisition, respectively. Five participants 

did not have skin conductance data due to technical issues. During fear acquisition, there was a 

significant main effect of CS Type, F(1, 85) = 14.67, p < . 001, with participants showing a 

greater skin conductance response to the CS+ compared to the CS-. There was also a significant 



 

 

 

24

main effect of Trial, F(4, 82) = 12.26, p < .001. This main effect was qualified by a CS Type X 

Trial interaction, F(4, 82) = 4.01, p = .005. Simple effects tests revealed that the skin 

conductance response between CS+ and CS- did not differ during the first two trials (p = .110), 

but by the third, fourth and fifth trials, the skin conductance response was greater to the CS+ 

compared to the CS-, p < .002 (See Figure 2 on next page). 

For expectancy ratings, there was a significant main effect of CS Type, F(1, 90) = 

481.18, p < .001, with participants rating the CS+ higher compared to the CS- for expecting the 

UCS. There was also a significant CS Type X Trial Interaction, F(4, 87) = 115.71, p < .001, with 

participants initially rating higher UCS expectancy levels during the presentation of the CS- 

compared to the CS+, p < .005. However, by the second, third, fourth, and fifth trials, 

participants were rating higher UCS expectancy levels during the presentation of the CS+ versus 

the CS-, p < .001 (See Figure 2 on next page).  Both the skin conductance and expectancy ratings 

results indicate that participants learned to associate the CS+ with a shock.  Participants did not 

show a differential skin conductance to the CS+ compared to the CS- during early trials, but as 

the fear acquisition paradigm progressed, participants showed a greater skin conductance 

response to the CS+ compared to the CS-. This suggests that participants implicitly learned that 

the CS+ was specifically associated with a shock (Schultz & Helmstetter, 2010). Additionally, 

the UCS expectancy ratings also suggest that participants also explicitly learned the CS+-shock 

association early on during acquisition (Schultz & Helmstetter, 2010).  
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Fear Acquisition: Associations between Behavior and Trait Anxiety 

There was no significant correlation between trait anxiety and mean CS+ minus mean 

CS- skin conductance response (over all trials) during fear acquisition, r = -.117, p = .284. 

Additionally, there were no significant correlations between trait anxiety and the mean CS+ skin 

conductance response and the mean CS- skin conductance response separately, during fear 

acquisition, all p > .30. There were also no significant associations between trait anxiety and 

mean CS+ minus mean CS- expectancy ratings (over all trials), r = -.114, p = .284. Also, when 

examining relationships between trait anxiety and mean expectancy ratings for CS+ and CS- 

* 
* 

Acquisition 

Extinction 

Skin 

Conductance 

Expectancy Ratings 

* 

* 

Figure 2. Skin conductance and Unconditioned Stimulus (UCS) expectancy ratings during fear 

acquisition and extinction learning.  The top two graphs are the fear acquisition results and 

the bottom two graphs are the fear extinction results. The graphs on the left are graphs 

plotting the skin conductance results and the graphs on the right are plots of the expectancy 

ratings results.  During fear acquisition, participants showed a greater skin conductance 

response to the CS+ compared to the CS- during the third, fourth, and fifth CS trials, p < .002. 

Additionally, by the second trial, participants rated that they expected the CS+ to be followed 

by the UCS more than the CS-, p < .001. During fear extinction, participants’ skin conductance 
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separately, there were no significant associations, all p > .100.  These results suggest that trait 

anxiety was not associated with difficulties in the ability to acquire a fear response.  

Fear Extinction: Behavioral Results  

Two separate CS Type X Trial repeated measure ANOVAs were conducted on skin 

conductance response and expectancy ratings during fear extinction. For skin conductance, there 

was a significant main effect of Trial, F(4, 82) = 7.06, p < .001. There was no significant main 

effect of CS Type, F(4, 82) = .58, p = .449, or CS Type X Trial interaction, F(4, 82) = 0.64, p = 

.635 (See Figure 2 above).   

For expectancy ratings, there was a significant main effect of CS Type, F(1, 90) = 34.92, p 

< .001, with participants rating higher UCS expectancy levels during the CS+ compared to the 

CS-. There was also a significant main effect of Trial, F(4, 87) = 89.35, p < .001. Additionally, 

there was a significant CS Type X Trial interaction, F(4, 87) = 14.78, p = .001. During the first 

four trials, participants rated higher UCS expectancy levels to the CS+ versus the CS-, p < 0.03. 

However, by the final trial, participants were no longer significantly rating higher UCS 

expectancy levels to the CS+ compared to the CS-, p = .200 (See Figure 2 above). Together, 

these results suggest that the participants learned that the CS+ was no longer paired with a shock 

during extinction learning. The skin conductance results indicate that early on during extinction 

participants implicitly learned that the CS+ was no longer paired with a shock. The UCS 

expectancy rating results suggest that during later stages of extinction learning, participants 

began to explicitly learn that the CS+ was no longer being paired with a shock.  

Fear Extinction: Associations between Behavior and Trait Anxiety 

There was no significant correlation between trait anxiety and mean CS+ minus mean 

CS- skin conductance response (over all trials) during fear extinction, r = -.001, p= .994. 
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Additionally, there were no significant correlations between trait anxiety and mean CS+ skin 

conductance responses and mean CS- skin conductance responses, respectively, during fear 

extinction learning, all p > .50.  There were also no significant associations between trait anxiety 

and mean CS+ minus CS- expectancy ratings (over all trials), r = .067, p = .532. Also, when 

examining relationships between trait anxiety and mean expectancy ratings for CS+ and CS- 

separately, there were no significant associations, all p > .600. These results suggest that both the 

skin conductance and UCS expectancy measures failed to capture meaningful trait anxiety 

related differences in the ability to learn that the CS+ was no longer paired with a shock during 

extinction.  

Fear Acquisition: Imaging Results 

A whole brain paired sample t-test revealed greater BOLD activation to the CS+ 

compared to the CS- in a priori regions, including the bilateral amygdala (left, 1394 voxels, 17, 

3.5, -13; right, 1733 voxels, -27, 4.5, -16) and the aMCC (left, 5009 voxels, 8, -18, 29; right, 

5916 voxels, -8, -9.5, 29) (See Figure 3). There was no significant CS+ versus CS- BOLD 

activation difference within the vmPFC during fear acquisition. These results are consistent with 

many prior fear conditioning studies that have shown greater activation to the CS+ within 

regions known to be involved in the expression of fear (amygdala, aMCC) (e.g., LeDoux, 2000). 
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Greater Activation in Fear Expression Regions to CS+ versus CS- during 

Fear Acquisition 

Figure 3.  Participants showed greater BOLD activation in the bilateral amygdala and 

aMCC to the CS+ compared to the CS- during fear acquisition.  
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Fear Acquisition: Associations between BOLD Activation and Trait Anxiety  

There were no significant associations between trait anxiety and a whole brain CS+ 

minus CS- difference score during fear acquisition. When taking amygdala and aMCC ROIs 

from the CS+ versus CS- minus contrast during fear acquisition, there were no significant 

correlations with trait anxiety, all p > .70. Additionally, when examining BOLD activation to the 

CS+ and the CS- separately, there were no significant associations with trait anxiety in our 

regions of interest (amygdala, aMCC, vmPFC). Consistent with the skin conductance and UCS 

expectancy rating results, these findings also suggest that higher trait anxiety levels may not be 

associated with deficits in the ability to acquire a fear response.  

Fear Extinction: Imaging Results 

A whole brain paired sample t-test revealed greater BOLD activation to the CS+ 

compared to the CS- in a priori regions including the bilateral amygdala (left, 202 voxels, 22, 8, 

-16; right, 267 voxels, -31, 6, -13), bilateral aMCC (Left: 395 voxels, 3, -21.5, 26, Right: 658 

voxels, -10, -21.5, 29), and left vmPFC (456 voxels, -3, -46.5, -13) (See Figure 4).   These results 

are consistent with prior studies that have implicated the amydala, aMCC, and vmPFC as 

important structures involved in a fear extinction network (Gottfried & Dolan 2004; Phelps et al., 

2004). 
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Fear Extinction: Associations between BOLD Activation and Trait Anxiety 

There were no significant associations between trait anxiety and a whole brain CS+ 

minus CS- difference score. Additionally, when using amygdala, aMCC, and vmPFC ROIs from 

the CS+ versus CS- minus contrast during fear extinction, there were no significant correlations 

with trait anxiety, all p > .30. 

When looking at the CS+ and CS- separately, there were significant associations between 

trait anxiety and BOLD activation. Trait anxiety was significantly positively correlated with 

greater BOLD activation to the CS+ in a priori regions including the left vmPFC (1398 voxels, 

11, -56.5, -20, r = .34, p = .001), right vmPFC (893 voxels, -13, -46.5, -16, r = .32, p = .002), and 

Greater BOLD Activation in vmPFC, aMCC, and Amygdala to CS+ versus CS- 

during Fear Extinction  

Figure 4. Participants showed greater BOLD activation in the left amygdala, bilateral 

aMCC (left shown) and bilateral amygdala (left shown) to the CS+ compared to the CS-. 
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right dorsal ACC/aMCC (1157 voxels, -10, -39.5, -6.0, r = .39, p < .001) (See Figure 5). For the 

correlation between trait anxiety and activity within the vmPFC to the CS+ a significant outlier 

was found (3SDs above mean BOLD activation). Therefore, these results were examined again 

without this outlier. The results remained significant even without the outlier participant (left 

vmPFC, r = .32, p = .002; right vmPFC r = .28, p = .007.   

 

 

 

 

 

 

 

Figure 5. Higher levels of trait anxiety were associated with greater BOLD activation in the left vmPFC (r 

= .32, p = .002), right vmPFC (r = .28, p = .007), and right aMCC (r = .39, p = <.001). The vmPFC graphs 

have the outlier participant removed. 

Higher trait anxiety levels were also significantly correlated with greater BOLD 

activation to the CS- in a priori regions including the right vmPFC (591 voxels, -3, -46.5, -13, r 

= .34) and left aMCC (984 voxels, 22, -39.5, 22, r = .33) (See Figure 6). Together, these results 

indicate that higher levels of trait anxiety are associated with amplified responding to both the 

CS+ and CS- in both fear expression (amygdala, aMCC) and fear inhibition (vmPFC) regions.   

 

Higher Trait Anxiety is Associated with Greater vmPFC and aMCC 

BOLD Activation to CS+ 
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Figure 6. Higher levels of trait anxiety whereas associated with greater BOLD activation in the vmPFC (r = 

.34, p = .001) and aMCC (r = .33, p = .001) to the CS- during fear extinction learning. 

Pre- to Post-Extinction Changes in Resting State Connectivity 

Four separate paired t-tests were conducted to compare left BLA, right BLA, left CMA, 

and right CMA resting state connectivity changes with the whole brain from before to after 

extinction learning. As I expected, the left BLA showed a strengthening in its connection with 

the right vmPFC (184 voxels, BA32, -3.0, -36, -9 and 183 voxels, BA 11, -6, -29, -16) after 

extinction learning compared to before extinction learning (See Figure 7). There was no 

significant post- versus pre- fear extinction learning resting state connectivity changes within 

right BLA-vmPFC or right BLA-aMCC pathways.  The findings suggest that extinction learning 

strengthens functional connections within a pathway that is known to be involved in the 

inhibition of fear.  

 

Higher Trait Anxiety is Associated with Greater vmPFC and aMCC 

BOLD Activation to CS- 
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Additionally, the left CMA showed a strengthening in connectivity with the bilateral 

vmPFC (2235 voxels, BA 11, 25 and 32, 3, -32, -6) and the right CMA also showed greater 

connectivity with the right vmPFC (1236 voxels, BA 10 and 32, -16, -50, -23). Unexpectedly, 

fear extinction learning was associated with greater pre- to post- extinction-related connectivity 

within a fear expression pathway. The left CMA showed strengthened connections with the right 

aMCC (196 voxels, BA32, -11, -31, 15) and the right CMA also showed stronger connections 

with the right aMCC (455 voxels, BA32 and BA24, -10, -32, 12) following extinction learning 

(See Figure 8). 

 

 

Strengthening in BLA-vmPFC Resting State Connectivity Following Fear 

Extinction 

Figure 7. Participants showed a strengthening in resting state connectivity within the BLA-vmPFC 

pathway from pre- to post- fear extinction learning.  
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Pre- to Post-Extinction Changes in Resting State Connectivity: Relationships with White 

Matter Integrity 

Given the difficulties with examining contralateral-hemisphere structural connectivity 

relationships with standard diffusion methods (Wedeen et al., 2008), I only examined 

correlations between significant ipsilateral hemisphere extinction-related resting state 

Strengthening in CMA-vmPFC and CMA-aMCC Resting State 

Connectivity Following Fear Extinction 

Figure 8. Participants showed a strengthening in connectivity within CMA-vmPFC 

and CMA-aMCC from pre- to post- fear extinction learning.  
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connectivity changes (left CMA-vmPFC, right CMA-vmPFC, and right CMA-aMCC pathways) 

with FA values within the same ipsilateral hemisphere. There were no significant associations 

between FA values and extinction related resting state connectivity changes within the left 

CMA-vmPFC pathway (r = -.037, p = .795, n = 13 participants missing this pathway) and the 

right CMA-vmPFC pathway (r = .101, p = .463, n = 10 participants missing this pathway).  

Contrary to my predictions, there were also no significant correlations between post- minus pre-

extinction resting state connectivity changes and FA values within the right CMA-aMCC 

pathway (r = .052, p = .705, n = 9 participants missing this pathway). The results suggest that 

individual differences within the FA measure of white matter integrity were not related to neural 

changes associated with extinction learning.  

Pre- to Post-Extinction Changes in Resting State Connectivity: Associations with Trait 

Anxiety  

Trait anxiety was correlated with left BLA-whole brain, right BLA-whole brain, left 

CMA-whole brain, and right CMA-whole brain post- minus pre-extinction difference scores. 

Trait anxiety was associated with greater left BLA- bilateral aMCC resting state connectivity 

post-extinction learning versus pre-extinction r = .35, p = .001 (2067 voxels, -24, -39, 29; 274 

voxels 14, -36, 19) (See Figure  9).  Contrary to my predictions, there were no significant 

associations with trait anxiety and right BLA-vmPFC or right BLA-aMCC changes in resting 

state connectivity. There were also no significant correlations between trait anxiety and resting 

state connectivity changes between left CMA and right CMA with any a priori brain regions or 

other regions throughout the brain. These significant differences with trait anxiety did not 

emerge when conducting the correlations for the pre- and post-extinction resting state scans 

separately. These results suggest that trait anxiety is associated with aberrant extinction-related 
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neural changes via an alternative BLA-aMCC pathway. 

 

 

 

 

 

Associations between Trait Anxiety and White Matter Integrity 

 

 

 

Inconsistent with my predictions, trait anxiety scores were not significantly correlated 

with FA values within the left BLA-vmPFC (r = .031, p = .805) or right BLA-vmPFC pathways 

(r = -.123, p = .333, n = 1 participant missing this pathway).  There were also no significant 

correlations between trait anxiety scores and FA values with the left CMA-aMCC (r = .209, p = 

.129, n = 11 participants missing this pathway) or right CMA-aMCC (r = -.125, p = .36). 

Additionally, there were no significant correlations with trait anxiety scores and FA values 

within post-hoc pathways (BLA-aMCC and CMA-vmPFC pathways), all p > .10. These results 

indicate that individual differences in trait anxiety was not associated with the white matter 

integrity in pathways thought to be involved in the expression and inhibition of fear. 

Extinction Retention and Associations with Trait Anxiety and BOLD Activation during 

Extinction 

Figure 9. Higher trait anxiety levels were associated with a strengthening in the BLA-

aMCC pathway following extinction learning (r = .35, p = .001).  

Gggg 

Higher Trait Anxiety is Associated with Stronger BLA-aMCC Resting 

State Connectivity Following Fear Extinction 
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In contrast to my predictions, extinction retention indices (skin conductance, expectancy 

ratings) were not significantly correlated with CS+ minus CS- BOLD activation difference 

scores in the amygdala, aMCC, or vmPFC during fear extinction learning, all p > .055. 

Additionally, extinction retention indices were not significantly correlated with trait anxiety, all p 

>.15. Given the lack of a relationship between extinction retention scores and BOLD activation, 

BOLD activation and trait anxiety, as well as extinction retention and trait anxiety, follow-up 

mediational analyses were not conducted. These results indicate that higher trait anxiety levels 

were not associated with difficulties in an extinction retention assessment conducted one week 

after the initial extinction session.  

Extinction Retention and Associations with Pre- to Post-Extinction Resting State 

Connectivity Changes, White Matter Integrity, and Trait Anxiety 

Unexpectedly, there were no significant correlations between extinction retention indices 

(skin conductance, UCS expectancy ratings) and pre- to post-extinction resting state connectivity 

changes within the BLA-vmPFC, CMA-vmPFC, or CMA-aMCC pathways, all p > .102. 

Extinction retention indices were also not significantly associated with the BLA-aMCC 

extinction-related resting state connectivity changes that were positively associated with trait 

anxiety levels.  

With regard to white matter integrity, there was a negative correlation between the CS+ 

minus CS- UCS expectancy ratings difference score and FA values within the left CMA-aMCC 

pathway (r = -.277, p = .043, uncorrected).  However, this result would not survive a multiple 

comparison correction using the Bonferroni-Holm method (for 6 tests, corrected = .008). There 

were no other significant results between extinction retention measures and FA values within any 

of the other a priori pathways.  Additionally, trait anxiety was not significantly associated with 
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extinction retention indices (skin conductance: r = .123, p = .270; expectancy: r = .010, p = 

.928). Given the lack of relationships between trait anxiety, extinction retention measures, pre-

post extinction resting state connectivity changes, and white matter integrity, follow-up 

mediational analyses were not conducted. The findings suggest that the integrity of the white 

matter connecting pathways important to the expression and inhibition of fear were not 

associated with extinction-related resting state connectivity changes.  

Discussion 

 The aim of the current study was to examine changes in the strength of pathways thought 

to be involved in fear expression (CMA-aMCC) and inhibition (BLA-vmPFC) from pre- to post- 

extinction learning, and how these neural changes may be related to individual differences in 

trait anxiety and subsequent retention of extinction. I also investigated how extinction-related 

neural changes, trait anxiety, and the retention of extinction vary as a function of the integrity of 

the white matter connecting the structures within these pathways.  

 To lay the foundation for exploring these aims, I first demonstrated that participants 

exhibited normal learning patterns during fear acquisition and extinction, as indexed by the skin 

conductance and UCS expectancy measures. Additionally, as expected, during fear acquisition, 

participants showed greater activation to the CS+ in the amygdala and aMCC, areas known to 

play a crucial role in the expression of fear (e.g. Burgos-Robles et al, 2009; LeDoux, 2000; 

Linnman et al, 2012; Milad, et al., 2007). During fear extinction, participants also showed greater 

activation in the amygdala, aMCC, and vmPFC, all regions known to mediate this learning 

process (LeDoux, 2000, Burgos-Robles et al, 2009, Phelps et al, 2004).  

When examining associations between trait anxiety and responses to the CS+ versus CS- 

during fear acquisition, consistent with previous studies of trait anxiety and anxiety disorder 
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patients, I did not find that trait anxiety was associated with enhanced differential responding to 

the CS+ versus CS- with either the skin conductance or UCS expectancy measure (e.g., Duits et 

al., 2015; Gazendam, Kamphuis, & Kindt, 2013; Joos, Vansteenwegen, & Hermans 2012; 

Torrents-Rodas et al., 2013). Also in keeping with previous studies (Barrett et al., 2009; 

Sehlmeyer et al, 2011), I failed to find associations between high levels of trait and anxiety and 

elevated activation of the amygdala and aMCC to the CS+ compared to the CS- during 

acquisition. This suggests that clinical and subclinical levels of anxiety are not associated with an 

enhanced ability to acquire a fear response.  

Similar to the acquisition findings, I also did not find significant relationships between 

trait anxiety and differential skin conductance responses or UCS expectancy ratings to the CS+ 

versus CS- during extinction. I also found no significant relationships between trait anxiety and a 

CS+ minus CS- difference score within the amygdala, aMCC, or vmPFC during extinction. The 

skin conductance and UCS expectancy ratings findings are consistent with previous studies of 

trait anxiety (e.g., Gazendam, Kamphuis, & Kindt, 2013; Joos, Vansteenwegen, & Hermans 

2012; Torrents-Rodas et al., 2013). However, previous studies that have used this difference 

score have found that higher trait anxiety is associated with sustained activation in the amygdala 

to the CS+ compared to the CS- during extinction, suggesting heightened threat reactivity when 

threat is no longer present in the environment (Barrett et al., 2009; Sehlmeyer et al., 2011). 

Additionally, one study found that trait anxiety was associated with reduced aMCC activation to 

the CS+ versus CS- during extinction (Sehlmeyer et al., 2011). Given that the aMCC also plays a 

role in cognitive control processes (Bush et al., 2000), the authors posited that trait anxious 

individuals fail to recruit mechanisms needed to inhibit fear responses (Sehlmeyer et al., 2011). 

Barrett & Armony (2009) found no significant relationships between trait anxiety and differential 
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activation to the CS+ compared to the CS- within the vmPFC during extinction (Barrett & 

Armony, 2009). When comparing our results to studies of anxiety disorder patients, our findings 

are largely inconsistent, with anxiety disorder patients showing an enhanced responding to the 

CS+, as indexed by a variety of psychophysiological and self-report measures (Duits et al., 

2015). Studies of anxiety disorder patients have also shown that patients display greater 

amygdala and less vmPFC activation to the CS+ compared to the CS- during extinction learning 

(Milad et al., 2009). These studies suggest that anxiety disorders are associated with greater 

reactivity to threat (amygdala activity) and have inefficient regulatory mechanisms (vmPFC 

activity) to aid in inhibiting fear responses. While these previous studies used a similar paradigm 

as our study, they did not incorporate a 100% reinforcement rate of the CS+, which might 

contribute to the differing results. A 100% reinforcement rate is a strong manipulation that may 

have dampened the ability to find individual variability in responding to the CS+ versus CS- 

during extinction learning. 

In contrast to the lack of trait anxiety relations with the CS+ versus CS- difference score, 

when I examined activation to the CS+ and CS- separately, I found that higher trait anxiety 

levels were associated with greater activation within the vmPFC and aMCC to both the CS+ and 

the CS-. Previous research has shown that clinical and subclinical levels of anxiety are associated 

with aberrant responding the CS- or the safety cue (Duits et al, 2015; Gazendam et al., 2013); 

therefore just examining difference scores may obscure significant relationships with trait 

anxiety. A number of possible explanations have been posited to explain aberrant responding to 

the safety cue or both the threat and safety cue in individuals with high levels of anxiety. One 

possible mechanism is that individuals with high anxiety levels may be unaware that the CS+ 

that was once paired with a shock during acquisition is no longer being paired with a shock 
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during extinction and that the CS- was never paired with a shock (Grillon, 2002). This 

mechanism does not seem to explain the current study results given that participants 

demonstrated normal learning irrespective of individual differences in trait anxiety. Additionally, 

other non-associative learning processes have been suggested such as a lack of physiological 

habituation (i.e. failure to dampen responses to repetitive stimuli; Clemens & Selesnick, 1967) 

and greater sensitization (i.e., enhanced responding to stimuli in an aversive environment; 

Ohman & Mineka, 2001). However, when looking at the fear acquisition results in the current 

study, irrespective of trait anxiety level differences, participants showed a general reduction in 

the skin conductance response as the acquisition learning progressed, despite the CS+ continuing 

to be paired with an aversive stimulus. This suggests that the association between trait anxiety 

and amplified responding to the CS+ and CS- is likely not due to a lack of physiological 

habituation or enhanced sensitization.  

Another mechanism that may best explain the findings of the current study is fear 

generalization (i.e., perceptual deficits in distinguishing between threat and safety cues (Haddad, 

Pritchett, Lissek, & Lau, 2012; Lissek et al., 2008). Studies examining fear generalization have 

demonstrated that successful discrimination between threat and safety cues is associated with 

declines in aMCC and amygdala activity and increases in vmPFC activity as the generalized 

stimulus becomes less perceptually similar to the CS+ (Lissek et al., 2008). The neural correlates 

of this process have been shown to be altered in those with anxiety problems (Greenberg, 

Carlson, Cha, Hajcak, & Mujica-Parodi, 2012; Cha et al., 2014). Although I did not directly 

examine fear generalization, greater activation within the aMCC and vmPFC to the CS+ and CS- 

in those with higher levels of anxiety may potentially reflect a deficient discriminatory learning 

process.  
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After exploring anxiety-related differences during fear extinction learning, I examined 

dynamic interactions between the BLA, CMA, aMCC, and vmPFC, by incorporating a resting 

state scan before and after fear extinction learning. As expected, I found a strengthening in 

resting state functional connectivity between the BLA-vmPFC from before to after fear 

extinction learning. Connectivity between the CMA and vmPFC also increased following 

extinction learning. In addition to inhibitory relationships between the BLA and vmPFC, animal 

research has established that the vmPFC also contains projections to the lateral division of the 

CMA which aid to inhibit CMA output (McDonald, 1998; Vertes, 2004). This strengthening in 

BLA-vmPFC and CMA-vmPFC connectivity was unrelated to varying levels of trait anxiety. 

These findings indicate that fear extinction learning serves to strengthen pathways that are 

known to be involved in fear inhibition and that this pathway appears to be intact in those with 

high levels of trait anxiety. In contrast to what I expected, resting state connectivity between the 

CMA and aMCC, a pathway thought to be involved in the expression of fear did not dampen 

following extinction learning. This was not related to trait anxiety. This may be the result of the 

short length of our fear extinction protocol, which may have prevented a complete dampening of 

the fear response. Additionally, given that extinction learning is not a process in which the fear 

memory is erased (see Herry et al., 2010; Furini, Myskiw, & Izquierdo, 2014), the CMA-aMCC 

may be a representation of the still existing fear memory.  

While trait anxiety was not associated with changes in BLA-vmPFC, CMA-vmPFC, or 

CMA-aMCC pathways, it was positively associated with strengthening in a BLA-aMCC 

pathway following fear extinction learning. This is consistent with a study that showed stronger 

resting state connectivity between the BLA and aMCC in individuals with PTSD compared to 

trauma-exposed controls (Brown et al., 2014). Based on animal research, it has been established 
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that the aMCC contains excitatory projections to the BLA, which serve to promote the 

expression of fear and impede fear extinction (McDonald, 1998; Vertes, 2004; Likhtik, Pelletere, 

Paz & Pare, 2005; Senn et al., 2014). In sum, our findings suggest that trait anxious individuals 

show strengthened connectivity in a fear expression circuit, but seem to have intact plasticity 

within a fear inhibition circuit. A number of studies of trait anxious samples have shown greater 

dysfunction in regions involved in the expression of fear (amygdala, aMCC) (e.g.; Barrett & 

Armony; Sehlmeyer et al, 2011). However, in studies of clinical populations such as PTSD, 

particularly within the context of fear extinction learning, additional vmPFC dysfunction is more 

often demonstrated (Milad et al, 2009). A causal model of PTSD suggests that dysfunction in the 

amygdala and aMCC may be predisposing factors to the development of PTSD whereas vmPFC 

deficits are acquired after the full development of the disorder (Admon, Milad, & Hendler., 

2013). Given the nature of our sample, it is possible that we are examining predisposing factors 

or early markers of an anxiety disorder that are thought to involve dysfunction in fear expression 

circuits.  

While I found significant relationships between trait anxiety and extinction-related 

resting state connectivity changes, I did not find significant associations between trait anxiety 

and white matter integrity as indexed by FA values. Previous studies that have found significant 

associations between anxiety problems (both clinical and subclinical) and white matter integrity 

within amygdala based pathways have used the whole amygdala and have not explored more 

precise amygdala subregion pathways (Eden et al., 2015; Kim et al., 2009; Tromp et al, 2012). 

This may contribute to differing results between our study and previous studies.  

Additionally, I also did not find significant associations between resting-state functional 

connectivity changes and white matter integrity. A number of potential methodological issues 
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may have contributed to the lack of structure-function relationships. Our diffusion weighted 

images were collected with echoplanar imaging, which suffers from susceptibility artifacts (Koch 

et al, 2002). These susceptibility artifacts were found in the ventromedial/orbital frontal cortex, a 

primary target of the amygdala subregion pathways of interest. It is likely that these artifacts 

degrade the validity and sensitivity of the tractography and subsequent calculation of FA values. 

Additionally, tracking longer range connections, such as the one characterizing the largely 

indirect pathways connecting the amygdala subregions to the aMCC, are known to susceptible to 

bias due to challenges with tracking the complex local association fibres that underlie the cortex 

(Reveley, 2015). Also, structural connections represent anatomical connections and likely direct 

neuronal communication across structures whereas functional connections represent correlational 

patterns that don’t always onto the direct neuronal communication. Therefore, it is plausible that 

functional connections don’t always map onto structural properties of the pathway. Additionally, 

given that I only examined one index of the white matter properties within these amygdala based 

pathways, it may be possible that other diffusivity measures (e.g., axial diffusivity, radial 

diffusivity) may have been more sensitive to structure-function relationships. Studies have only 

recently begun to explore relationships between resting state connectivity and diffusion measures 

(e.g., Kehoe, Farrell, & Metzler-Baddley, 2015; Khalsa et al., 2014). Additionally, to our 

knowledge no one has explored relationships between resting state connectivity changes 

associated with a learning event and diffusion measures. Given the paucity of research, it will be 

important to further examine possible relationships between diffusion measures and extinction- 

related neural processes using more advanced techniques (e.g., diffusion spectrum imaging) that 

may more accurately portray specific amygdala subregion connections. 
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Given that poor extinction retention is thought to lie at the core of anxiety problems, I 

also sought to examine how individual differences in neural activity during initial extinction 

learning, extinction-related resting connectivity changes, white matter integrity, and varying 

levels of trait anxiety are related to extinction assessed one week later. In contrast to what I 

expected, I failed to find significant associations between both extinction retention indices (skin 

conductance, UCS expectancy rating) and CS+ minus CS- activation within the amygdala, 

aMCC, and vmPFC during initial extinction learning. Additionally, I did not find significant 

associations between both extinction retention measures and extinction-related changes within 

BLA-vmPFC or CMA-aMCC pathways or our post-hoc BLA-aMCC and CMA-vmPFC 

pathways.  I also did not find significant relationships between trait anxiety and extinction 

retention indices.  

The lack of relationships between extinction retention, brain activation, resting state 

functional connectivity changes, white matter integrity, and trait anxiety, may be due to a 

number of reasons. The extinction retention session was done in a different context (outside of 

the scanner in a different room) than the initial extinction learning session. Additionally, the 

extinction retention session occurred one week after the initial extinction session. In most 

studies, a typical extinction retention session occurs 24 hours after and within the same context 

as the initial extinction session (e.g. Milad et al., 2009; Milad et al., 2007b; Linnman et al., 

2012). Given that extinction retention is context dependent and sensitive to the passage of time 

(Bouton et al., 2004), the differences in context and the greater length of time in between initial 

extinction learning and retention may have dampened the ability to detect individual variability. 

Additionally, skin conductance and UCS expectancy measures often fail to capture 

extinction learning deficits in those with high but not clinical levels of trait anxiety (Gazendam et 
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al., 2013). Gazendam and colleagues (2013) found that using measures more within the affective 

domain such as distress level ratings and startle response measures (which captures valence and 

arousal) were better at capturing safety learning impairments in subclinical trait anxiety 

populations than skin conductance and UCS expectancy measures. Future work should 

incorporate more sensitive affective measures such as the startle response or distress ratings to 

assess how changes within these fear inhibition and fear expression networks may be associated 

with extinction retention impairments in anxiety. Also, our paradigm was a simple differential 

delayed conditioning paradigm in which the CS+ was 100% reinforced with a shock during fear 

acquisition. Given that difficulties with uncertainty and ambiguity are important features of 

anxiety problems, this type of 100% reinforcement paradigm may not be optimal for the 

assessment of individual differences (Arnaudova et al., 2013). 

Additionally, it would be helpful to include an additional baseline scan before fear 

acquisition to clarify which neural changes are purely associated with extinction learning and 

which neural changes might have been influenced by the fear acquisition session. It would also 

be useful to incorporate a control task to more accurately test which neural changes are resulting 

from extinction learning and not other potential learning processes. 

Despite some of these potential limitations, my study has some clear strengths: I used a 

novel paradigm to study plastic processes linked to fear extinction learning in a relatively large 

sample stratified on trait anxiety. In sum, my study showed that fear extinction learning is 

associated with a strengthening of connections involved in fear inhibition (BLA-vmPFC, CMA-

vmPFC). However, higher levels of trait anxiety are associated with less dampening of a fear 

expression network (BLA-aMCC). For individuals with higher levels of trait anxiety, enhanced 

plasticity in fear expression circuits likely contributes to fear inhibition problems and undermines 
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the work of the intact fear inhibition plasticity. Given the current findings on neural dysfunction 

on trait anxious versus clinically anxious populations, deficits in fear expression plasticity may 

appear early on and additional deficient plasticity within fear inhibition circuits may evolve later 

on if the individual develops an anxiety disorder. Further understanding of extinction –related 

plasticity may help to guide our understanding of predisposing factors that may help to identify 

at risk individuals. Additionally, this work may ultimately aid in understanding and optimizing 

exposure based treatments for anxiety problems.  
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