
University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

August 2016

Spectral Domain-optical Coherence Tomography
for the Assessment of Cerebrovascular Plasticity
Jacob James Michael Kay
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Neuroscience and Neurobiology Commons, and the Social and Behavioral Sciences
Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Kay, Jacob James Michael, "Spectral Domain-optical Coherence Tomography for the Assessment of Cerebrovascular Plasticity"
(2016). Theses and Dissertations. 1280.
https://dc.uwm.edu/etd/1280

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=dc.uwm.edu%2Fetd%2F1280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=dc.uwm.edu%2Fetd%2F1280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=dc.uwm.edu%2Fetd%2F1280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1280?utm_source=dc.uwm.edu%2Fetd%2F1280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


SPECTRAL DOMAIN-OPTICAL COHERENCE TOMOGRAPHY FOR THE ASSESSMENT 

OF CEREBROVASCULAR PLASTICITY 

 

 

by 

Jacob James Michael Kay 

 

 

 

A Thesis Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

 

Master of Science 

in Psychology 

 

at 

The University of Wisconsin – Milwaukee 

August 2016 

 

 

 

 



	

	 ii	

ABSTRACT 
 

SPECTRAL DOMAIN-OPTICAL COHERENCE TOMOGRAPHY FOR THE ASSESSMENT 
OF CEREBROVASCULAR PLASTICITY 

 
by 
 

Jacob James Michael Kay 
 
 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Dr. Rodney A. Swain  

 
 
 

 Vascular pathologies represent the leading causes of mortality worldwide, accounting for 

31% of all deaths in 2012.  Cerebral hypoxia is a condition that often manifests as a result of 

these medical conditions.  Remarkably, the nervous system has evolved mechanisms to 

compensate for oxygen deprivation.  The dilation of existing vessels and the growth of new 

blood vessels are two prominent physiological responses to hypoxia, both of which play a critical 

role in maintaining cerebral homeostasis.  More recently, exercise has been shown to induce a 

mild state of hypoxia in the brain, leading to several robust morphological changes within the 

cerebrovascular system (e.g., angiogenesis, vasodilation).  Thus, exercise serves as a viable 

model for investigating hypoxia-induced adaptations.  The present study introduces spectral 

domain optical coherence tomography (SD-OCT) as a novel technique for examining these 

micro-level changes in the rat motor cortex. SD-OCT produces high resolution, three-

dimensional angiograms, and allows for moderately invasive imaging within the same animal at 

multiple time points.  The independent effect of exercise training on cerebrovascular structure 

and function has never been explored using SD-OCT.  Thus, the primary goal of this study was 

to determine the relative efficacy of SD-OCT utility.  To validate this novel technology, we 

employed SD-OCT in the examination of exercise-dependent blood vessel growth, as well as 
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real-time capillary dilation in response to a laboratory-induced condition of hypoxia (i.e., 10% 

oxygen).  In addition, histology data was collected to provide comparative measures for 

statistical analyses.  At the start of this investigation, animals were pseudo-randomly assigned to 

one of two groups: 26-week voluntary exercise (VX), or an inactive control (IC).  Upon 

completing the exercise treatment, animals were anesthetized and prepared for imaging.  

Vascular anatomy and blood velocity data was captured during three experimental conditions: 

[1] normal oxygen baseline, [2] hypoxia – 10% oxygen, and [3] normoxia, return to baseline.  A 

two-way analysis of variance revealed a significant difference in total blood vessel density 

between treatment groups, independent of condition.  That is, VX animals had a greater density 

of blood vessels in the scanned region of interest when compared to IC.  These findings were 

confirmed using unbiased stereology techniques to analyze tissue in the scanned region of 

interest.  Furthermore, statistical analyses revealed a significant increase in small arteriole 

diameter in both VX and IC animals.  However, the dilation captured by SD-OCT was 

significantly greater in VX animals when compared to IC.  In sum, exercise induces potent 

adaptations that promote greater flexibility during hypoxia.  Moreover, these micro-level 

changes can be effectively probed using SD-OCT. 
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SPECTRAL DOMAIN-OPTICAL COHERENCE TOMOGRAPHY FOR THE ASSESSMENT 

OF CEREBROVASCULAR PLASTICITY 

Vascular associated pathologies are the leading causes of fatality worldwide, killing 17.5 

million people in 2012 and accounting for 3 in every 10 deaths (World Health Organization, 

2014).  Cerebral hypoxia is a disease state that often manifests as a result of these medical 

conditions, neurologic or otherwise.  Underlying mechanisms are common in the neuronal 

degeneration resulting from acute injury (e.g., stroke, trauma, heart attack) and during 

progressive, adult-onset diseases (e.g., ALS, Alzheimer’s disease, vascular dementia).  

Remarkably, the nervous system has evolved mechanisms to compensate for the lack of oxygen 

and glucose supply following a significant reduction or cessation of local vascular circulation 

(Fawcett et al., 2001; Harten et al., 2010).  Blood vessel growth and vasodilation are two 

prominent physiological responses to hypoxia, both of which play a crucial role in neural 

plasticity (Zajko et al., 2009; Wang et al., 2012).  Researchers suggest that these morphological 

changes may even protect the organism from subsequent ischemic insult (Dunn et al., 2013).  

Several lines of research suggest that the modulation of this neurovascular niche has vast 

implications in the treatment of various pathologies (Pekna et al., 2012; Riddle et al., 2003; Chen 

et al., 2014; Maresanu et al., 2014).  Furthermore, conventional knowledge holds that exercise 

facilitates the blood vessel growth in the brains of both human and non-human animals (Voss et 

al., 2012; Thomas et al., 2012; Perrey et al., 2013).  Vascular growth has largely been attributed 

to early stages of development (Luttun & Carmeliet, 2014).  However, under certain conditions, 

blood vessel growth is known to occur in specific brain regions of adult animals.  For example, 

exercise-induced angiogenesis has been shown to occur in the primary motor cortex of the adult 

rat (Swain et al., 2003).  As a result, research pertaining to the effects of exercise on the brain has 
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been gaining considerable attention.  Furthermore, studies suggest that exercise produces a mild 

state of hypoxia.  Under conditions of reduced oxygen, blood vessels in the brain dilate to allow 

for more oxygen-rich hemoglobin to reach cell tissue (Cipolla, 2009).  The compensatory 

mechanisms triggered by reduced vascular circulation prompt hypoxia inducible factors and the 

formation of new blood vessels (Berggren et al., in preparation). 

Moreover, because hypoxic response mechanisms share similar pathways across varying 

degrees of reduced oxygen, exercise models should be considered another method by which to 

study the neurophysiological mechanisms involved in cerebrovascular associated diseases.  

Traditional methods of analysis (e.g., histology, immunohistochemistry, etc.) have enabled 

researchers to successfully examine changes in cerebrovascular architecture in response to 

exercise.  However, these methods are not without limitations.  For example, traditional 

histology often requires the animal subject to be sacrificed, inhibiting the collection of 

longitudinal data.  Therefore, the amount of data that can be analyzed from each animal is 

limited in scope.  Advanced brain imaging methods (e.g., fMRI) have allowed researchers to 

investigate exercise-induced changes in human brain anatomy and function at multiple time 

points over long periods of time. Although these methods are typically non-invasive and expand 

both the scope and population in which data can be collected, brain imaging is often expensive 

and limited in resolution.  It is important to note that no single method is indisputably superior to 

another, as each has its advantages and disadvantages.  However, spectral domain optical 

coherence tomography (SD-OCT) has shown promise in filling the respective gaps in both 

traditional analyses and established brain imaging techniques.  SD-OCT produces high 

resolution, 3-dimensional angiograms, and allows for moderately invasive imaging within the 

same animal at multiple time points.  This enables researchers to map the temporal sequence of 
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cerebrovascular adaptations in addition to real-time changes in blood vessel dilation.   

Study Purpose 

Taken together, the presented evidence indicates that exercise and the vasoanatomical 

changes that follow produce a potent neuroprotective effect.  Therefore, this research project is 

of particular interest in the investigations of ischemia, brain injury, and neurodegeneration.  

Despite advancements in the field, the independent effect of exercise training on cerebrovascular 

structure and function has not been fully explored.  Thus, using a novel imaging technique, one 

particular goal of this study is to examine cerebrovascular growth in the forelimb region of the 

primary motor cortex of the adult rat in response to voluntary exercise.  An additional goal of 

this study is to capture real-time capillary dilation in response to a laboratory-induced condition 

of hypoxia-hypercapnia (i.e., 10% oxygen, 5% carbon dioxide).  Using SD-OCT to examine 

blood vessel growth and changes in vasodilation will allow us to draw conclusions on exercise-

induced cerebrovascular plasticity.  Moreover, comparing the scientific application of SD-OCT 

with traditional methods of histology will allow us to assess its technical utility.  

A Review of the Literature 

The Primary Motor Cortex of the Adult Rat 

The primary motor cortex is a cerebral structure that functions in the execution and 

control of movement.  Early investigations of the primary rat motor cortex (M1) reveal a 

topographical organization, such that specific functional components of the body are represented 

within specific regions of M1.  The size of the representation in M1 does not correlate with the 

size of the body part.  Rather, the size of the representation is indicative of the number of motor 

neurons innervating muscle fibers in that specific region of the body.  In regions that are capable 
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of more complex movements, such as those of the forelimb, there is a greater density of neurons 

within its representation in M1 (Young, Collins, & Kaas, 2013).  

The topographical organization of the rodent motor cortex has been studied extensively in 

recent decades.  Using microstimulation techniques and cytoarchitectonics, Donoghue and Wise 

(1982) were the first to successfully identify the relationship between the structure and functional 

organization of the rat motor cortex.  Administration of low-intensity, intracortical 

microstimulation in the frontal and parietal regions of the rat brain evoked peripheral movement.  

The location of microelectrodes was correlated with cytoarchitecture, such that Nissl-staining 

revealed corticospinal projections from two distinct fields: the medial agranular field and the 

lateral agranular field.  Stimulation of the lateral agranular field evoked significant motor 

movement.  Fewer movements resulted from stimulation of the medial agranular field.  Thus, it 

was determined that M1 corresponds with the lateral agranular field in the frontal region of the 

adult rat brain.  

To this end, Neafsey and colleagues (1986) aimed to construct a detailed map of the rat 

motor cortex.  To distinguish the subdivisions of the motor map, Neafsey and colleagues utilized 

similar microstimulation and histology methods as Donoghue and Wise (1982).  Numerous 

electrodes were placed at perpendicular and parallel positions relative to the dorsal and lateral 

surfaces of the cortex (as shown in Figure 1).  Electrodes in the proposed forelimb region were 

placed at a depth of 1.7mm.  Electrodes in the proposed hind-limb region were placed at a depth 

of 1.5mm.  These depths were chosen because this was the position where minimum threshold 

values were recorded (i.e., minimum stimulation to elicit movement).  In thirty-two Long-Evans 

hooded rats, electrodes were spaced 250µm-500µm apart, allowing for a total of 300-500 

electrode positions per experiment.  The initial stimulation current was between 25µA and 30µA.  
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The current was gradually increased until a movement was produced.  A 10 second pulse of 

10µA of direct current was used to create marking lesions for histological reconstruction of the 

microelectrode tracts.  Chemical staining techniques were employed to heighten the contrast of 

the electrode tracks relative to the background tissue, allowing the researchers to map the 

cytoarchitectonic coordinates of M1 subdivisions.  

             
  Figure 1. From Neafsey et al. (1986).             Figure 2. From Neafsey et al. (1986).  

      Placement of microelectrodes.                  Forelimb representations.    
 
 
The forelimb was found to have a greater representation in M1 compared to the hind 

limb.  As seen in Figure 2, an analysis of the micro-stimulation and histological data suggested 

that the forelimb is represented in two distinct regions: a large caudal area (~0.5mm posterior to 

bregma to ~3mm anterior to bregma; ~1mm to ~4.5mm lateral to midline) and a smaller rostral 

area located toward the frontal pole (~3-4.5mm anterior to bregma and 1-2mm lateral of 

midline).  

In sum, Neafsey and colleagues (1990) were able to successfully map the motor cortex of 

the adult rat, producing a detailed schematic of the forelimb representation in M1 as well as other 
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regions of the body (e.g., vibrissae, jaw, tongue, lip).  Electrode stimulation and histological 

reconstruction also indicated detailed organization within the forelimb region.  For example, 

microstimulation of distinct areas produced movement in specific movements of the forelimb 

(e.g., extension and flexion of the elbow, wrist, and digits span ~1-2mm anterior to bregma).  

Experiments demonstrating the topographical organization of the rat motor cortex have 

prompted research into its structural and functional plasticity.  A variety of manipulations have 

been shown to result in morphological changes within motor cortex.  For example, Donoghue 

and colleagues (1990) transected motor nerves that innervate the vibrissa.  Immediately 

following the lesion, no movement of the vibrissae was induced upon stimulating its 

representation in M1.  However, stimulating the same area a week post-transection evoked 

movement of the forelimb, providing convincing evidence of motor map reorganization.  In 

another study conducted in 1997, G.W. Huntley observed significant changes in the functional 

representation of vibrissae in M1 by trimming the vibrissa of Sprague Dawley rats.  Both studies 

indicate that peripheral manipulations of the tactile experience can significantly alter functional 

representations in motor cortex.   

 Intracortical manipulations can alter these representations as well.  The pharmaceutical 

administration of a GABA antagonist in motor cortex decreases inhibitory circuits of adjacent 

representations, facilitating excitatory connections and the production of movement upon 

stimulation of neighboring representations (Jacobs & Donoghue, 1991).  To this end, Sanes & 

Donoghue (2000) would later hypothesize that plasticity of the motor map reinforces the 

acquisition of novel motor behaviors.  

Expanding upon this hypothesis, Anderson and colleagues (2002) aimed to examine 

morphological changes in the motor cortex of the adult rat resulting from two contextual 
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manipulations: acrobatic motor learning and simple repetitive exercise.  The previously mapped 

forelimb and hind limb representations were designated as the primary regions of interest and 

cortical thickness of each was examined post-treatment.  The rats that acquired motor skills via 

an obstacle course had significantly greater thickness of the hind-limb region in M1.  The rats 

that ran voluntarily for 26-29 days had significantly greater cortical density in the forelimb 

representation of M1.  Thus, it was concluded that regular physical exercise requires greater use 

of the forelimbs and increases cortical thickness in its representation in primary motor cortex.  In 

contrast, acrobatic training requires greater use of the hind limbs and increases cortical thickness 

within its representation in M1.   

Together, these findings corroborate evidence for experience-induced plasticity in the 

primary motor cortex (Markham & Greenough, 2004).  However, the underlying mechanism by 

which the forelimb region of M1 increased in density remained unknown. One possible 

explanation for the observed change in cortical thickness is the exercise-induced expansion of 

vasculature.  Drawing conclusions from Anderson et al. (2002), because the forelimb appears to 

dominate the physical demand during exercise and results in greater cortical expansion in its 

representation within M1, it should be expected that forelimb regions will show the most 

prominent exercise-induced blood vessel growth with respect to the other subdivisions of M1 

(Kleim, Cooper, & VandenBerg, 2002).  Thus, this study aims to assess the structural and 

functional changes in vascularity in the forelimb region of the rat M1 following chronic 

voluntary exercise.  

Exercise-induced Hypoxia and the Brain 

Recently, exercise has been shown to produce a transient state of mild hypoxia in the 

brain (Berggren et al., in preparation).  Cerebral hypoxia is a condition in which the oxygen 
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available to the brain tissue is markedly reduced (Dugdale, 2012).  Blood vessel growth and 

vasodilation are two prominent physiological adaptations in response to cerebral hypoxia 

(Michiels, 2004).  Decreased tissue oxygenation prompts a cascade of molecular and cellular 

mechanisms to compensate for the lack of adequate oxygen supply.  A host of growth factors 

(e.g., placental growth factor, fibroblast growth factor, vascular endothelial growth factor, etc.) 

are upregulated to facilitate the sprouting of new blood vessels from the preexisting vasculature 

(Cines et al., 1998; Pepper, 1997; Ucuzian et al., 2010).  During conditions of hypoxia, 

enzymatic mechanisms are triggered and dilation of the blood vessel occurs (Cipolla, 2009; Patt 

et. al., 1997).   

Angiogenesis 

Early investigations of exercise-induced angiogenesis utilized histological methods to 

analyze structural changes in cerebellar capillaries.  Black and colleagues (1990) examined the 

effect of physical exercise on blood vessel density in the rat paramedian lobules (i.e., forelimb 

region of cerebellar cortex).  Results from their study indicated that rats forced to exercise on a 

treadmill and rats given free access to a running wheel exhibited significantly greater blood 

vessel density when compared to sedentary controls.  In another study, Kleim and colleagues 

(2002) provided rats with thirty days of free access to a running wheel.  An analysis of the 

microstimulation mapping and histology data revealed that exercised rats displayed a significant 

increase in vascular density within layer V of the forelimb representation in M1.  The beginning 

depth of M1 layer V has been estimated between ±69.3µm and ±90µm with 95% confidence 

(Yazdan-Shahmorad et al., 2011).  Providing further evidence of exercise-induced angiogenesis, 

Swain and colleagues (2003) found that inducing hypercapnia, a condition of elevated carbon 

dioxide that challenges the oxygen concentration, causes an increase in capillary perfusion of the 
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motor cortex.  T-two-star (T2*)-weighted and flow-alternating inversion recovery (FAIR) 

functional magnetic resonance imaging were used to assess the changes in blood volume and 

flow following chronic exercise treatment.  The observed increase in blood flow was 

significantly greater in exercised animals when compared to sedentary controls.  The increase in 

blood volume and significant hemodynamic alterations thirty days post-exercise suggested an 

exercise-induced expansion of blood vessels in motor cortex.  To corroborate this finding, Swain 

and colleagues (2003) examined the expression of the β3 subunit (also known as CD61) of the 

αVβ3 integrin, an adhesion molecule that aids the sprouting of new vessels (Terry et al., 2014).  

The analysis of immunohistochemical data indicated that the expression of CD61 was 

significantly greater in exercised animals, indicative of exercise-induced angiogenesis.  

Taken together, these studies provide convincing evidence for the robust vascular 

changes induced by exercise.  These findings have prompted investigations into the underlying 

mechanisms of exercise-induced plasticity.  Extensive research has examined the role of 

endothelial growth factors and cellular pathways in the production of new blood vessels, and the 

role of enzymatic regulation of blood vessel dilation.  

Research has identified several molecular signals that are expressed in the brain in 

response to exercise-induced hypoxia.  For example, the expression of basic fibroblast growth 

factor (bFGF, FGF-2), a proangiogenic factor that plays an important mitogenic role in 

mediating the growth of new blood vessels, has been shown to increase in the hippocampus of 

the adult rat following thirty days of voluntary wheel running (Gomez-Pinilla, Dao, & So, 1997).  

Other potent angiogenic factors, the angiopoietins (Ang1 & Ang2), play an important role in the 

remodeling (Ang2) and stabilization (Ang1) of the vascular system (Gale & Yancopoulos, 1999).  
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Moreover, the expression of both Ang1 and Ang2 has been shown to increase shortly after the 

commencement of an exercise regimen (Ding et al., 2004).  

Two of the most extensively studied molecules are vascular endothelial growth factor 

(VEGF) and its transcription factor, hypoxia-inducible factor 1 alpha (HIF-1α).  Both of these 

molecules have been shown to be upregulated in response to physical exercise (Hoier & 

Hellsten, 2014; Ameln et al., 2005).  Angiogenesis is primarily regulated by VEGF (Ogunshola 

et al., 2000), and the exercise-induced expression of this growth factor is largely dependent upon 

hypoxia-inducible transcription factors.  

Vascular endothelial growth factor acts primarily through the tyrosine kinase pathway.  

Fetal liver kinase 1 (Flk-1) and Fms-related tyrosine kinase 1 (Flt-1) are VEGF receptors located 

at the membrane of endothelial cells.  When bound by VEGF the interaction signals angiogenesis 

(Shibuya, 2013).  Although VEGF binds both of these receptors, there is evidence that their 

functions are not entirely similar.  The Flk-1 receptor plays a predominant role in vasculogenesis, 

or the embryonic formation of blood vessels, whereas the Flt-1 receptor plays a crucial role in 

the organization and structure of the vasculature system.  Shalaby and colleagues (1995) 

produced Flk-1 deficient mice by suppressing the Flk-1 gene, thereby inhibiting expression of 

the receptor.  These mice failed to develop a vascular system and died during gestation.  In 

contrast, another fundamental study provides evidence that Flt-1 is responsible for early vascular 

organization.  By inhibiting the expression of the Flt-1 receptor, Fong and colleagues (1995) 

produced mice that displayed abnormal vascular structure.  Similar to the mice of the Flk-1 

study, these animals expired during gestation.   Although the expression of these receptors is 

observable in the adult mammalian brain, it appears that the abundance of the Flk-1 receptor is 

significantly reduced into adulthood (Millauer et al., 1993), whereas the expression of Flt-1 
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appears to remain abundantly expressed (Peters et al., 1993).  This further supports the claim that 

Flk-1 receptors primarily function during embryonic development and Flt-1 functions throughout 

the lifespan to maintain the integrity of the vascular system.  Provided the evidence that VEGF is 

upregulated in response to exercise, it’s not entirely surprising that researchers have found that 

the expression of both receptors is significantly increased in response to exercise (Pryor et al., 

2010). 

VEGF is upregulated by a host of promoters.  However, the transcription factor hypoxia-

inducible factor-1 alpha (HIF-1α) is one particular protein that may be unique to exercise-

induced angiogenesis.  Its function is dependent upon the level of oxygen available to the tissue 

(please reference Figure 3 for illustration).  While its purpose under normoxic conditions is not 

entirely understood, it has been suggested that it plays a crucial role in the maintenance of 

oxygen homeostasis (Stroka et al., 2001).  Under conditions of normoxia, HIF-1α is rapidly 

 

 
      Figure 3.  From Maes, Carmeliet, & Schipani. (2012). HIF-1α  
                               transcription under conditions of normoxia / hypoxia.  
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degraded.  Prolyl-4-hydroxylase domain (PHD), a molecule that is sensitive to changes in 

cellular oxygenation, hydroxylates the HIF-1α complex (Salceda & Caro, 1997).  This process is 

mediated by the von Hippel-Lindau (pVHL) tumor suppressor, which binds a chain of ubiquitin 

molecules to the HIF-1α complex (Nytko et al., 2007).  The binding of ubiquitin signals for the 

HIF-1α protein’s degradation (Zheng et al., 2006) via proteasomes.  During conditions of 

hypoxia, PHD senses the reduction of available oxygen and HIF-1α degradation is inhibited.  

HIF-1α binds hypoxia response elements of the VEGF gene and induces the expression of VEGF 

molecules (Kimura et al., 2000), thereby, stimulating angiogenesis.  

When VEGF binds its receptors on the endothelial cells of preexisting vessels, the cells 

become activated.  Signals are sent to the nucleus of the endothelial cell and degradative 

enzymes are produced; these enzymes then create small openings in the membrane of the blood 

vessel (Hoeben et al., 2004).  The endothelial cells then begin to divide and migrate out through 

the openings (Staton et al., 2009).  As previously discussed, adhesive molecules (e.g., αVβ3) 

function like hooks to pull the sprouting endothelial cells outward from their origin.  These cells 

then begin to fold to form a tube in which blood will later occupy (Stratman et al., 2011).  

Finally, supporting cells (e.g., smooth muscle cells, pericytes) form around the newly formed 

tubes to provide structural support and to facilitate the hemodynamic response (e.g., blood flow, 

vasodilation, etc.) to changes in brain oxygen demand (Ribatti & Crivellato, 2012).  

Vasodilation 

The dilation of blood vessels occurs when oxygen demand increases.  Vasodilation 

allows more glucose rich hemoglobin to reach cell tissue and is regulated by numerous molecular 

signals (see Figure 4), including hypoxia-induced nitric oxide signaling (Karar & Maity, 2011).  

Hypoxia-inducible factors accumulate rapidly when oxygen concentration decreases, peaking 
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bimodally at 0 and 4 hours post-exercise (Berggren et al., in preparation).  As previously 

discussed, HIFs bind to hypoxia response elements of the VEGF gene and induce the expression 

of VEGF molecules.  One mechanism following the binding of VEGF to its receptors is the  

 

 
          Figure 4.  From SABiosciences © QIAGEN. (2015). Molecular  
                pathways of blood vessel dilation.  

 

stimulation of the intracellular PI3K/Akt signaling pathway, which induces the expression of 

endothelial nitric oxide synthase (Karar & Maity, 2011).  Another, more complex mechanism 

involves the phospholipase-C signaling pathway (PLC- γ).  When VEGF receptors are bound, 

PLC- γ increases intracellular calcium (Ca2+), activating calmodulin (CaM), which then binds to 

the eNOS molecule (Dudzinski & Michel, 2007).  The end result of both mechanisms is the 

eNOS synthesis of L-arginine to nitric oxide (NO) and L-citrulline – a molecule that can be 

further synthesized into additional L-arginine via argininosuccinate synthase and 

argininosuccinate lyase.  NO then diffuses from the endothelial cell into the smooth muscle cell.   
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 When NO accumulates in the smooth muscle cells, soluble guanylylcyclase 

(sGC) synthesizes cyclic guanosine monophosphate (cGMP) from guanosine triphosphate 

(GTP).  The increasing concentration of intracellular cGMP reduces the intracellular 

concentration of free CA2+ by activating protein kinase-G (PKG).  PKG then stimulates the 

production of myosin light-chain phosphatase.  Dephosphorylation of myosin light-chains 

interferes with the cross bridge between actin and myosin, thereby, resulting in the relaxation of 

the smooth muscle cell (Lucas et al., 2000). 

Extensive evidence shows that angiogenesis and vasodilation are two prominent 

adaptations to reduced oxygen concentration.  It is important to examine the compensatory 

mechanisms by which the brain protects itself to aid advancements in the diagnosis and treatment 

of vascular associated diseases, and because exercise and pathologically induced hypoxia share 

similar molecular and cellular pathways, the behavioral manipulation of exercise presents an 

effective method for studying these mechanisms.  Studies investigating these morphological and 

functional changes raise several important questions about why these adaptations occur. 

 Neuroprotection and Improved Cognitive Performance 

One plausible explanation for the observed plasticity within the cerebrovascular system is 

to protect the brain tissue from ischemic injury.  Blood vessels play a crucial role in supporting 

the neurons and other cells of the central nervous system.  When the adequate supply of nutrient 

rich blood is disrupted, cells begin to die.  Kerr and Swain (2011) showed that neurons in the 

hippocampus, a brain structure critical for learning and memory, began to undergo apoptotic cell 

death shortly after the commencement of an exercise regimen.  Western blot procedures were 

employed to analyze the expression of caspase-3, a protein marker indicative of apoptotic cell 

death, in the hippocampus and cerebellum of the adult rat.  From the data, the researchers were 
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able to determine that caspase-3 peaked roughly 24 hours post-exercise.  Using similar 

procedures to target CD61, the researchers provided evidence suggesting exercise-induced 

angiogenesis peaks roughly 48 to 96 hours following running wheel exposure.  Additional 

evidence from their study suggested that exercise facilitates the growth of new neurons in the 

hippocampus.  Targeting DCX, a microtubule protein associated with only developing neurons, 

enabled the researchers to determine peak neurogenesis occurs 12 to 96 hours post-exercise.  

Thus, it was concluded that apoptosis is an immediate consequence of exercise; however, the 

system immediately responds by stimulating vessel growth, which facilitates hippocampal 

neurogenesis.  Despite the convincing data, it remains unclear which neurons in the hippocampus 

expire.  Perhaps exercise triggers the natural process of apoptotic cell death so that terminal stage 

cells within the established network are removed in order to optimize function.  Or, similar to the 

pruning process in early stages of neurodevelopment, the newly differentiated neurons fail to 

make the appropriate synaptic connections and terminate.  Although both are consistent with the 

theory of programmed cell death (i.e., apoptosis), the former seems most plausible.  Nonetheless, 

the evidence from Kerr & Swain (2011) suggests that exercise-induced cerebrovascular plasticity 

has a potent influence over the proliferation of neurons.   

Furthermore, the chronic exposure to mild conditions of hypoxia may strengthen the 

cerebrovascular system such that it becomes more resistant to ischemic insult.  Dunn and 

colleagues (2013) conditioned rats in a chamber with a 50% reduction in atmospheric pressure 

(i.e., 330mmHg).  This oxygen availability is similar to what would be experienced at 

approximately 18,000 feet above sea level, the elevation of Mount McKinley from base-to-peak.  

Rats were housed in the hypoxic pre-acclimation chambers for three weeks, then allowed 24 

hours at near-standard atmospheric pressure to regain normal respiration and cerebral blood 
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flow.  Lab-induced ischemia was conducted via surgical occlusion of the middle cerebral artery 

in the right cerebral hemisphere (MCA).  The MCA supplies blood to the motor cortex as well as 

other frontal, temporal, and parietal regions of the brain.  The bilateral asymmetry test (BAT) 

was utilized to assess forelimb disability.  A piece of tape is placed on one forelimb of the 

animal, and the time it takes the rat to remove the tape with the other forelimb is recorded.  The 

task was repeated for each limb and was conducted prior to the surgical induction of ischemia, 

and at 24 and 48 hours post-surgery.  The duration of MCA occlusion lasted one hour before the 

clip and ligature were released.  Magnetic resonance imaging (MRI) allowed researchers to 

examine the volume of affected tissue.  Animals were then sacrificed and prepared for 

immunostaining that targeted markers for angiogenesis and inflammatory damage.  Data 

analyses indicated that hypoxic pre-acclimation resulted in significant blood vessel growth.  

Additional analyses of the immunostaining data indicated a 27-45% reduction in inflammatory 

markers in hypoxic pre-conditioned animals.  Moreover, an analysis of the MRI data provided 

evidence for a significant reduction in infarct volume (55%) in acclimated animals.  Finally, 

analysis of the BAT data indicated significant behavioral improvement in acclimated animals 48 

hours post-ischemia.  Additionally, researchers suggest that the growth of new blood vessels 

facilitates the reconstruction of the damaged area.  Blood vessels aid the migration of neural 

progenitor cells to the damaged region, and in addition, evidence suggests that endothelial cells 

secrete growth factors (e.g., chemokines) that aid in NPC survival (Font et al., 2010).  Together, 

these findings suggest that the expansion of the cerebrovascular system primarily functions in the 

maintenance of oxygen homeostasis and the survival of neurons, and by doing so, may serve to 

protect the brain from future ischemic insult.  
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 Similarly, the neuroprotective effect of blood vessel dilation has been a focus of 

investigation for many researchers in recent decades.  Vasodilation primarily functions to 

maintain glucose homeostasis during conditions of reduced oxygen in the brain (Hamer et al., 

1978).  During conditions of reduced oxygen, NO may increase by 20x its baseline level for up 

to 30 minutes (Malinski et al., 1993; Sugimura et al., 1998).  The presence of NO has been 

shown to have numerous protective benefits.  Studies have shown that NO synthesized via eNOS 

plays a key role in vascular remodeling and the growth of new blood vessels (Papapetropoulos et 

al., 1997; Rudic et al., 1998; Murohara et al., 1998).  For example, it has been shown that eNOS-

deficient mice have significantly impaired neovascularization post-ischemia (Cui et al., 2009).  

Additionally, NO serves as an important inflammatory mediator, reducing the potential damage 

of pro-inflammatory cytokines by regulating anti-inflammatory action (Granger & Kubes, 1996).  

Thus, there is convincing evidence within the literature that vasodilation functions to compensate 

for the challenged oxygen and glucose availability during hypoxia, thereby, protecting the central 

nervous system from ischemic cell death.  In addition, molecules recruited during conditions of 

low oxygen availability (e.g., NO) may be required for the post-hypoxic morphological changes 

to occur.  

Neuroprotection is not the only advantage to these exercise-induced vascular 

modifications.  Several lines of research suggest that exercise correlates with significant 

improvements in cognitive performance in both humans and non-human animals.  Evidence 

suggests that this is true despite the age of the animal (Chae & Kim, 2009; Erickson et al., 2011; 

Hillman et al., 2006; Hogan, Mata, & Carstensen, 2013; Kim et al., 2010), and during healthy 

(Hillman, Erickson, & Kramer, 2009; Winter et al., 2007) and neuropathological conditions 

(Griesbach, Hovda, & Gomez-Pinilla, 2009; Kim et al., 2014).  Although not directly measured 
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in many of these studies, there is additional evidence that vasodilation and angiogenesis largely 

contribute to the improvements in cognition. 

Rhyu and colleagues (2010) showed that regular physical activity improves cognitive 

performance, and in the case of aged monkeys, improved cognition may be the result of the 

exercise-dependent increase in vascularity.  Researchers trained monkeys to run on treadmills for 

an hour per day, five days a week, for five months.  The Wisconsin General Testing Apparatus 

(WGTA), consisting of the spatial delayed response task and the object discrimination reversal 

task, was used to assess cognitive performance.  The monkeys were transcardially perfused and 

the brains removed for immunohistochemical analysis.  Human antibodies were used to target 

CD31, a cell adhesion molecule that is expressed on endothelial cells during blood vessel 

growth.  Results indicated that, independent of age, exercised monkeys performed significantly 

better on the spatial delayed response task when compared to sedentary controls.  Furthermore, 

mature monkeys (15-17 years of age) that were trained to exercise showed significantly greater 

blood vessel density in the motor cortex when compared to age-matched, sedentary controls.  

In a study conducted with rats, Kerr and colleagues (2010) produced similar findings in 

support of angiogenic-dependent improvements in cognitive performance.  Rats were injected 

with zidothymidine (AZT), a tolemerase inhibitor, to prevent exercise-induced neurogenesis in 

the hippocampus.  An Flk-1 antagonist (SU5416) was used to inhibit exercise-induced 

angiogenesis.  Animals received their respective injections each day during a week of voluntary 

wheel running.  Following treatment, animals were trained on the Morris water maze (MWM), a 

spatial navigation task.  Rats were sacrificed and immunohistochemical techniques were 

employed to determine the effective inhibition of neurogenesis and angiogenesis.  Results 

indicated that animals treated with AZT performed significantly better during the acquisition 
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phase of the MWM task, suggesting that the growth of new blood vessels is more important for 

exercise-dependent learning acquisition rather than increased neuron density.  

These studies indicate that the exercise-induced increase in cerebral vascularity is 

responsible for the improved cognition observed post-exercise.  Thus, there is substantial 

evidence to support the claim that hypoxia-induced modifications to the cerebrovascular system 

not only protect the brain from ischemic threat, but also boost learning processes and improve 

cognitive performance.  The continued examination of these adaptive mechanisms will enable us 

to expand upon the established theories and to better understand the normal and pathological 

processes associated with the cerebrovascular system, and how we can use this knowledge to 

improve cognitive function.  

Examination of Cerebrovascular Plasticity 

The incidence of vascular diseases has been increasing rapidly in recent decades.  In 

addition, it is widely acknowledged that physical exercise leads to morphological changes in the 

cerebrovascular system.  As a result of these phenomena, there have been numerous 

advancements in the techniques used to examine cerebrovascular function.   

Several methods of histology have been used for decades to quantify blood vessel density 

in the brains of non-human animals (Berggren at al., 2014).  Various stains, such as cresyl violet 

or toluidine blue, can be used to heighten the contrast of blood vessels in the cerebral tissue, 

allowing researchers to quantify vessel growth.  Furthermore, immunohistochemical stains with 

antibodies can be used to target specific vascular proteins, enabling researchers to identify 

regions of the brain undergoing vascular expansion.  Histological techniques are effective 

methods in which to examine angiogenesis, however, these methods are not without limitations.  

For example, these techniques often require the animal to be sacrificed and tissue is examined in 
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vitro, inhibiting the collection of longitudinal data.  Thus, the amount of data that can be 

analyzed from each animal is limited in scope. 

Advanced brain imaging techniques, such as magnetic resonance imaging (MRI) and 

computed tomography (CT), have enabled researchers to examine hemodynamics in conjunction 

with changes in vascular morphology (Raoult et al., 2014; Willems et al., 2012).  Both of these 

imaging techniques are commonly used to produce angiograms in clinical settings to diagnose 

cerebrovascular abnormalities.  In addition, these techniques have been implemented to 

investigate exercise-dependent changes in cerebrovascular function (Bullitt et al., 2009; Zeiher et 

al, 1995).  Although these methods have proven successful in expanding both the scope and 

population in which data can be collected, the images produced by MRI and CT are extremely 

limited in temporal and spatial resolution. 

It is important to note that no single method is indisputably superior to another, as each 

has its advantages and disadvantages.  However, spectral domain optical coherence tomography 

has shown promise in filling the respective gaps presented by traditional histology and 

established brain imaging techniques.  SD-OCT produces 3-dimensional angiograms equivalent 

in resolution to a low-power microscope (Fujimoto, 2003).  

Spectral Domain Optical Coherence Tomography 

 Since its introduction in the early 1990’s, optical coherence tomography (OCT) has 

quickly become one of the most widely respected techniques for imaging internal biological 

structures in situ.  OCT is commonly described as “optical ultrasound.”  However, in contrast to 

ultrasound, OCT produces incredibly high-resolution images by projecting low-coherence light 

waves and recording the backscattered reflection of photons.  Coherent waves of light maintain a 

constant phase difference and the same frequency.  Generally, for application of OCT projects in 
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brain imaging the optimal spectrum is a bandwidth of 1200nm-1400nm (Kuo et al., 2013).  In 

OCT imaging, axial (depth) resolution and the bandwidth of the light source are inversely 

related, such that, a larger bandwidth results in better axial resolution.  Several researchers have 

experimented with the wavelength of the light source (Chen, 2005; Yaqoob et al., 2005; Lee et 

al., 2010; Ma, 2012).  Generally, the longer the wavelength of the light source, the greater the 

reduction of scattering or deflection.  Thus, light with a longer wavelength is able to form focal 

point deeper in tissue.  Currently, OCT is limited to a depth of approximately 1mm - 2mm. 

 The Michelson interferometer (Michelson & Morley, 1887) is the pivotal component of 

the SD-OCT device.  SD-OCT strikes a balance between speed and signal to noise ratio (SNR).  

Compared with the other OCT methods it has higher phase stability since it does not involve any 

mechanical movement in the reference arm, as opposed in time dependent-OCT (TD-OCT), or 

the light source in swept source-OCT (SS-OCT).  Phase stability is particularly important in 

OCT velocimetry and angiography.  Therefore, SD-OCT is ideal for the examination of real-time 

hemodynamics and OCT angiography.   

 

 

 

 

 

 

 

 

 
  Figure 5.  From Atry (2014). Schematic of SD-OCT imaging device. 	
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 The variable coupler of the interferometer (also composed of the light source, reference 

arm, and sample arm as seen in Figure 5) divides the light beam into two paths, the reference and 

the sample.  Light waves from the reference beam project toward a reference mirror, reflect, and 

travel back to the relay lens.  Light waves from the sample beam are projected into tissue.  When 

these light waves come into contact with moving particles within tissue, such as red blood cells, 

they are scattered in all directions (Zohdi & Kuypers, 2006).  Some of these photons are reflected 

back within the lens’ field of view.  The backscattered wave forms of the sample beam and the 

waveforms reflecting back from the reference mirror are superimposed at the variable coupler.   

 The recombination of these waves produces interference patterns, and this interference is 

captured by the detector (e.g., line charge-couple device camera).  In front of this camera there is 

an optical grater that disperses different wavelengths of light at different angles.  Each pixel 

within the line CCD records the interference signal of the corresponding wavelength and 

presents the recording as a spectrum of frequencies, ranging in intensity.  Applying Fast Fourier 

Transform (Cooley & Tukey, 1965) to the spectral data translates the frequency intensities into a 

signal, namely a depth profile.  Each pixel in this signal represents a depth in the sample, and its 

intensity is correlated to the amount of backscattered light from that depth.  Simply stated, by 

using the interferometer, SD-OCT measures the optical length of backscattered photons in the 

tissue with respect to the reference surface.  This is commonly known as the A-scan.  By 

repeating this process at different transverse positions of the sample, a cross-sectional image 

(i.e., B-scan), or projection profile can be created.  To construct the 3-dimensional image, the 

cross-sectional B-scans are then stacked in sequence (see Figure 6 for illustration).  By 

monitoring the change in the B-scans over time it is possible to capture structural and functional 

changes to the blood vessels in real time (see Figure 7 for representation). 
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    Figure 6.  From Boppart et al. (2015).                  Figure 7.  From Atry et al. (2014).  
                     Diagram of transverse scan to       Vasodilation during hypoxia -  

     produce the angiogram.                                        change in 10% O2            
 

An additional advantage of SD-OCT is its capacity to record changes in blood velocity.  

OCT velocimetry measures the shift in the wavelength of the backscattered light due to the axial 

velocity at each depth.  This change is commonly referred to as the Doppler effect (Leitgeb et al., 

2014).  This has been used to measure the percent change in blood velocity (Atry et al., 2014).  

 Although traditional methods of analysis will continue to be incredibly valuable, the 

technological advancements of OCT have the potential to enhance our understanding of the 

underlying mechanisms of hypoxia-induced changes to the cerebrovascular system.  Several 

features of OCT present academic and clinical advantages.  For example, OCT can provide 

resolution approaching that of traditional histopathology in a moderately invasive manner.  Its 

spatial and temporal resolution make it superior to the standard in vivo imaging technologies in 

use today.  Albeit, Two Photon Laser Scanning Microscopy (TPLSM) provides better spatial 

resolution, its temporal resolution is not nearly as robust and the local injection of fluorescent 

dye is invasive.  Furthermore, its cost-effective application makes OCT attractive in both 

academic and clinical settings (Libov, 2008).  To date, the most significant clinical application is 

in ophthalmology.  However, the in situ, real-time imaging features of OCT offer the potential 



	

	 24	

for better preoperative surgical planning and advanced intraoperative surgical guidance, thus, 

vastly expanding its clinical application. 

Summary    

Numerous studies provide evidence for exercise-induced cerebrovascular plasticity.  The 

acute state of mild cerebral hypoxia during exercise induces a cascade of neuroprotective 

mechanisms.  It is important to examine the compensatory mechanisms by which the brain 

protects itself, and because exercise and pathologically induced hypoxia share similar molecular 

and cellular pathways, the behavioral manipulation of exercise presents an effective method for 

studying these phenomena.  Blood vessel growth and vasodilation are two prominent 

morphological adaptations following a reduction in available oxygen.  These phenomena can be 

examined in the forelimb region of the adult rat M1 using SD-OCT.  The representation of the 

forelimb in M1 is greater compared to the hind limb representation, and its plasticity is largely 

dependent upon wheel running activity.  Therefore, it was determined that the forelimb region 

would show the most prominent increase in vascular growth with respect to the other 

subdivisions of M1.  Research has shown an increase in vessel density in Layer V of M1 

following exercise treatment.  The depth of layer V (±69.3µm-±90µm) in the rat brain is well 

within the SD-OCT imaging window.  Therefore, the forelimb region of the primary motor 

cortex is the optimal target for SD-OCT.  The proposed study is the first of its kind.  To date, 

SD-OCT has not been utilized to assess exercise-induced cerebrovascular plasticity.  

Hypotheses 

 This study presents an alternative method for which to examine and understand cerebral 

hypoxia.  A primary aim of this study was to employ SD-OCT for the assessment of long-term 

cerebrovascular changes in the forelimb region of the primary motor cortex of the adult rat in 
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response to voluntary exercise.  We hypothesized that blood vessel density would be 

significantly greater in exercised animals when compared to sedentary controls.  An additional 

aim of this study was to use SD-OCT to capture real-time vasodilation in response to a lab-

induced condition of hypoxia-hypercapnia (i.e., 10% oxygen).  We hypothesized that animals 

that were provided free access to a running wheel would exhibit greater vascular flexibility in 

response to a hypoxic-hypercapnic condition.  Furthermore, an overarching goal of this study 

was to determine the relative efficacy of SD-OCT.  Therefore, we hypothesized that certain 

aspects of SD-OCT will provide greater utility when compared to histological techniques. 

Method 

 The following procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Wisconsin—Milwaukee where this experiment took place. 

Subjects 

Fourteen male Long Evans—Hooded Blue Spruce rats (175-199g; approximately 3 

months old) were pseudo-randomly assigned to either an inactive control (IC; n = 7) or 

voluntarily exercise group (VX; n = 7).  Rats were ordered from Harlan Laboratories of 

Indianapolis, Indiana.  Upon arrival, all animals were placed singly in standard shoebox cages 

without enrichment.  Social housing and exposure to environmental stimuli (i.e., enriched 

environments) are known to influence brain plasticity (Markham & Greenough, 2004), and these 

events could potentially confuse the interpretation of the results.  Therefore, to avoid 

confounding conditions and to be certain the observed morphological changes in the brain were 

the result of the experimental manipulation, animals were housed individually with no 

environmental stimuli.  Furthermore, each rat was acclimated to handling through 5-minute daily 

interactions during the week prior to the onset of the exercise regimen. Animals were housed in a 
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temperature-controlled room, provided with food and water ad libitum, and were exposed to a 

twelve-hour light/dark schedule.  

Treatment Conditions 

Animals assigned to the voluntary exercise (VX) condition were provided voluntary 

access to a running wheel (14in. diameter) for an average of 26 weeks.  During exercise 

treatment, animals were checked and weighed each day to ensure that they were tolerating the 

treatment well.  No animals were removed from the study for health concerns.  Wheel 

revolutions were recorded daily for quantification and statistical analysis.  Following exercise 

treatment, animals were anesthetized and prepared for imaging.  Animals assigned to the inactive 

control (IC) condition remained sedentary for an average 26 weeks.  Following an average 26 

weeks of no activity, each control animal was anesthetized and prepared for imaging.  

In Vivo Analysis 

 Three-dimensional angiograms and blood velocity profiles were obtained by using a 

custom-made spectral domain optical coherence tomography system. This system uses a light 

source at the central wavelength of 1,300 nm and spectral bandwidth of >170nm to produce a 

depth resolution of ~5µm within a maximum 2x2x1.6mm3 (xyz) volumetric scanning field.  A 

10x objective was used to provide a lateral resolution of ~4µm. 

 Animal preparation 

In preparation for SD-OCT analysis, animals were anesthetized using 4% induction v/v 

isoflurane in a gas mixture of 80% air and 20% oxygen.  Heart rate and blood oxygen saturation 

was monitored with a pulse oximeter (PulsesenseTM VET 2014, Nonin Medical, Inc., Plymouth, 

Minnesota, United States) throughout the duration of surgical and experimental procedures.  The 

head of each rat was then fixed in a stereotaxic apparatus.  The scalp was retracted and a Dremel 
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tool with a dental burr was used to thin a ~3 x 3mm2 skull region over the right forelimb 

representation (left hemisphere) in primary motor cortex to translucency.  The thinned skull 

section and underlying Dura mater were then removed with a tissue forceps.  The objective lens 

of the SD-OCT scanner was then situated and secured over the identified region of interest.  One 

experimental animal expired during the initial administration of anesthesia.  Due to excessive 

bleeding, two additional animals (one control, one experimental) expired during surgical 

procedures.  In one experimental animal, it was necessary to expose motor cortex of the right 

hemisphere due to incessant bleeding in the left region of interest.   

SD-OCT angiography & SD-OCT Doppler 

Administration of isoflurane persisted throughout the duration of each scanning session.  

Sedation was maintained with 1.5 – 2.5% v/v isoflurane in normal air (~20% oxygen) for the 

baseline and normoxia conditions, and in a mixture of nitrogen (85%), oxygen (10%), and 

carbon dioxide (5%) gases during the hypoxia condition.  The animal’s core temperature was 

maintained at 37°C using a heating blanket.  Each rat was subjected to a total of three scanning 

conditions, each producing 2-4 angiograms and one Doppler flowmetry image.  The initial 

baseline set of scans occurred during normal oxygen conditions.  For the second set of scans, 

oxygen levels were manipulated from normoxia (~21% oxygen) to a hypoxic-hypercapnic 

condition of 10% available oxygen and 5% carbon dioxide.  For the final scanning condition, gas 

levels were returned to normoxia.  The duration of each scanning condition (baseline, hypoxic-

hypercapnic, normoxic) lasted approximately 30-45 minutes.  Two experimental animals died 

following the last scan of the hypoxia condition.  An attempt to recover the animals by returning 

normal oxygen was unsuccessful.  Thus, collection of data during normoxia for these two 

animals was impractical.  SD-OCT data was successfully collected during baseline and hypoxia 
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in 11 (5 experimental, 6 control) of the 14 animals, and through the final condition of normoxia 

in 9 (3 experimental, 6 control) of the 14 animals.  

During scanning, the SD-OCT device did not touch the tissue; rather, it scanned a field of 

view with about 3mW of near-infrared light with a wavelength of approximately 1300nm.  This 

range is an acceptable level and has been used before in published manuscripts (Atry et al., 

2014).  During each scanning condition, SD-OCT allowed us to capture real-time Doppler 

images and locate vessels and capillaries in each of the corresponding cross sections (B-scans) 

by adjusting the field of view of the scanner.  For angiographic imaging, cross sections within a 

2mm x 2mm scanning field were imaged 10 times before moving to the next cross-sectional 

position (B-scans).  Each B-scan consisted of 650 A-scans.  This procedure was repeated for 650 

cross sections resulting in 6500 B-scans over the 2mmx2mm field of view.  During the scanning, 

data gathered from the backscattered photons produce depth profiles of the tissue in real-time.  

These depth profiles were displayed on a monitor adjacent to the scanning device (see Figure 8).  

 

 

 

 

 

 

 

 

 

 
Figure 8. SD-OCT scanning device (right) and adjacent monitor (left) 
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This allowed us to estimate imaging depth and observe any possible obstructions (e.g., remaining 

meningeal layers dorsal to the subarachnoid space).  For velocity (Doppler) measurements, the 

total of 500 cross sections were scanned at repetition of 1 B-scan per cross section.  Each B-scan 

consisted of 3000 A-scans. 

SD-OCT image processing & analysis 

Using MATLAB software, Fast Fourier transform (Cooley & Tukey, 1965) was applied 

to the interference patterns recorded at each lateral position to obtain a depth profile of the tissue.  

Concatenating depth profiles of each B-scan provided a cross-sectional image.  To produce a 

cross-sectional angiogram at each position, a local motion compensation algorithm followed by a 

phase-sensitive angiography technique was applied to the 10 B-scans that were recorded from 

each cross section.  During the local motion compensation algorithm the first B-scan is being 

used as a reference and each of the other B-scans are divided into clusters of five A-scans.  

Within each cluster, the corresponding position in the reference B-scan that produced the 

maximum cross-correlation was found.  After motion compensation, the average difference 

between all 10 B-scans is calculated.  The total number of 650 cross sectional images were 

calculated over an area of 2mm x 2mm; each cross section consisted of 650 lateral positions.  

After stacking all cross-sectional scans to form the volumetric angiogram, a 3D blurring kernel 

was applied to reduce the noise and then the two-dimensional maximum intensity projection of 

the angiograms was obtained. Adaptive histogram equalization (MATLAB and Image processing 

toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States) was applied 

to improve the contrast of maximum intensity projection images.  This process was repeated 

following each subsequent scanning session.  It was determined that the resulting angiograms 

from one control animal were not suitable for further analyses due to inadequate resolution.  It is 
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suspected that an unidentified obstruction prevented the SD-OCT from adequately recording 

data.  Although not apparent on the SD-OCT monitor prior to scanning, it is possible a thin layer 

of dura mater remained and blocked the recording of backscattered light.   

 For blood velocity measurement, the tissue was scanned at 3,000 A-scans per 

cross section, totaling 500 tissue cross-sections at a rate of 40,000 A-scans per second. At each 

cross sectional position, the Doppler shift introduced by the moving particles was estimated by 

calculating the average power spectrum density of the signal, which consisted of seven 

consecutive OCT signals at each scanned position.  However, during processing of the Doppler 

data, it was determined that image resolution was low quality and too inconsistent to warrant 

statistical analysis.  We speculate that the time point in which the data was collected (e.g., the 

last scan during each condition) was problematic.  During each scanning condition, blood 

accumulated over the scanning region of interest.  In addition, inflammation progressed and 

likely shifted the focal plane of the lens, compromising the collection of usable Doppler data.  

Angiogram data from each animal was then coded in order to keep evaluators blind to the 

treatment conditions during vessel quantification.  For each angiogram, density measures were 

collected using methods similar to image analysis conducted during unbiased stereology 

(Mouton, 2002).  Images were formatted in ImageJ (Rasband, 1997-2016) and a point grid was 

superimposed on the image (see Figure 9, pg. 32).  Vessel size categories (small, medium, large) 

were subjectively determined prior to evaluation.  Points that fell on a vessel were counted, noted 

for size, and divided by total number of points within the region of interest.  The area fraction 

provided a measure of blood vessel density, and the resulting measures for each image were 

averaged by condition.  This allowed us to statistically analyze the mean percent area occupied 

by blood vessels in each of the experimental conditions within treatment and control groups.  
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Vessel diameter was measured in a 600-point subsample equally representing each size category 

to determine change in dilation across oxygen status conditions.  

Traditional Histology 

 Tissue preparation 

 Following the completion of scanning procedures, each animal was anesthetized via 

immersion in an isoflurane chamber and monitored for respiratory arrest.  Once breathing had 

ceased, the chest cavity was opened to expose the heart.  The animal was then transcardially 

perfused with a ventricular catheter.  A 0.1M phosphate buffer solution was administered with 

the force of gravity through the ventricular catheter until adequate perfusion was achieved.  

Following the buffer solution, 200ml of warmed (37°C) standard India ink solution was 

delivered through the ventricular catheter using a single-syringe infusion pump.   

 The brain of each rat was then extracted and post-fixed in a 4% paraformaldehyde 

solution for twenty-four hours.  Each brain was then immersed in a 30% sucrose solution for 

approximately 24 hours or until adequate cryoprotection was achieved.  The region of motor 

cortex previously scanned using SD-OCT was dissected and prepared for slicing.  Using a Leica 

CM 3050 S cryostat (Wetzlar, Germany), each brain was sectioned at 40µm thick slices.  Tissue 

slices were randomly selected, mounted to microscope slides, coverslipped, and prepared for 

vessel quantification. 

 Tissue analysis: Unbiased stereology 

 Unbiased stereology (Mouton, 2002) was utilized to quantify blood vessel density in each 

slice from the selected region of interest.  A variation of the Dissector technique of point 

counting was employed (Berggren et al., 2014).  Briefly, tissue slices were imaged at 400X 

magnification with an Olympus BX41 microscope fixed with a SPOT insight digital camera 
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(Version 4.5.7).  Tissue samples from each animal were coded to ensure that evaluators were 

blind to experimental conditions.  Images were captured in non-overlapping fashion to avoid 

sampling bias.  Using a random number generator, a subset of images was selected for analysis.  

The coded images were then formatted in ImageJ (Rasband, 1997-2016) and a point grid was 

superimposed on each image (see Figure 10).  Points that fell on a vessel were recorded.  The 

total number of vessels in each category were counted and divided by total number of points 

within the region of interest.  This area fraction provided a measure of categorized blood vessel 

density, allowing us to analyze statistical differences in the mean percent area occupied by 

capillaries and other sized blood vessels between the treatment and control conditions.  During 

this analysis it became clear that only the capillaries (~3-10µm in diameter) had retained the 

India ink stain.  We speculate that the smaller diameter of the capillaries prevented the India ink 

from “washing out” during Pur-Mount and coverslip application.  Despite a lack of endothelium 

staining, larger vessels were clearly visible at 400X magnification.  Thus, vessels were again 

categorized by size (e.g., capillary, small vessel, medium, and large).  

 

 

 

 

 

 

 

 

Figure 9. SD-OCT angiogram with    
    point grid superimposed.        
    Scale bar is 200µm. 

Figure 10. Histology image with capillaries (blue) 
       and small vessels labeled (yellow).  
       Scale bar is 100µm. 
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Statistical Analyses 

For analyses, a repeated measures posttest design with non-equivalent control was 

employed.  Treatment manipulation (exercise or control) and oxygen availability (hypoxia or 

normoxia) served as the independent variables.  The change in vessel density was dependent 

upon the randomly assigned treatment condition.  The change in vessel diameter was dependent 

upon oxygen availability and the assigned treatment condition.  A two-way repeated measure 

ANOVA was conducted for each size category and all sizes combined to determine significant 

differences in the mean percent area occupied by vessels in the processed SD-OCT angiograms.  

A separate two-way repeated measure ANOVA was conducted to examine differences in the 

mean percent change in blood vessel dilation captured by SD-OCT.  For comparison, 

independent- and paired-samples t-tests were conducted in order to determine significant 

differences in the mean percent area occupied by vessels in the collected tissue samples.   

RESULTS 

 Two experimental animals and one control animal were lost during animal preparation 

procedures (VX4 – V3H1M, VX6 – G0K2A, and IC1 – G1O6M).  Two additional experimental 

animals (VX1 – U0Z7J and VX3 – N5L5X) expired following the last scan of the hypoxia 

condition, leaving a total of nine animals (three experimental and six controls) that completed all 

phases of the study.  SD-OCT angiograms from one animal (IC4 – I0F5T) were not used in the 

analysis due to the poor quality of the processed images.  Baseline and hypoxia angiograms from 

ten of the fourteen animals were included in the analyses.  Due to a low number of experimental 

animals completing all phases of the study, group means supplemented missing data for the 

blood vessel density ANOVA.  The analysis for average change in vessel diameter from hypoxia 

back to baseline was not conducted. This data comprised a subset of vessels from the larger 
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sample and due to the low number of experimental animals to complete all three oxygen 

conditions, only a few VX animals produced viable data during the final normoxia phase of the 

study.  Due to low resolution, the Doppler images were not analyzed.  

Running Behavior 

 Animals averaged approximately 1380 revolutions each night over the first seven days 

they had access to the running wheel.  Weekly revolutions increased rapidly (y = 580.65x + 

1543.7, R2 = 0.76866) over the first several weeks until reaching a peak average of 5343 

revolutions per night during the seventh week (see Figure 11).  The circumference of the wheel 

was calculated at 43.982 inches (3.665 feet).  During their peak running week, animals averaged 

3.71 miles per night.  Weekly revolutions then decreased gradually (y = -142.94x + 4226.4, R² = 

0.74509) until reaching near baseline levels at the conclusion of exercise treatment.  On some 

days, the digital revolution counter became disconnected.  Data from the previous day and the 

day after were averaged to estimate missing values.  

 
   Figure 11.  Running behavior over the average 26-week exercise treatment.  
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SD-OCT: Blood Vessel Density 

 Total blood vessel density (i.e., capillaries, arterioles/venules combined) was found to be 

greater in exercised animals when compared to inactive controls (see Figure 12).  The two-way 

repeated measures ANOVA did not reveal any significant group x condition (baseline, hypoxia, 

normoxia) interactions when different sized vessels were analyzed independently or when size 

categories were combined into total blood vessel density (F(2,7) = 2.176, p = 0.184).  In addition, 

there was no main effect for condition in any size category independently or when combined into 

total blood vessel density (F(2,7) = 1.561, p = 0.275).  This suggests that blood vessel density, 

regardless of size, was not associated with a change in oxygen status.  However, the analysis 

indicated a significant main effect for group (F(1,8) = 5.311, p = 0.050) when all vessel size 

categories were combined, suggesting that total blood vessel density was dependent upon which 

group the animal was assigned.  That is, VX animals had significantly greater blood vessel 

density (M = .518, SD = .057) when compared to IC (M = .469, SD = .079).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

         Figure 12.  Blood vessel density with all size categories included. The group main  
                            effect for total blood vessel density was statistically significant (* p = 0.05)  
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SD-OCT: Vessel Dilation  

 A subset of vessels (n =10) of each size (small, medium, large) was sampled from each 

animal.  Diameter was measured in baseline images and at the same position in hypoxia images; 

the change (Avg. diameterhypoxia – Avg. diameterbaseline) was recorded.  The small vessels of both 

exercised and inactive control animals were significantly dilated during hypoxia; however, the 

percent change was significantly greater in VX animals.  Results from a two-way repeated 

measures ANOVA revealed a significant group x condition interaction (F(1,8) = 7.643, p < 0.05) 

for small vessels, suggesting that small vessel dilation is dependent upon the interplay of these 

two factors.  A significant main effect for group (F(1,8) = 22.338, p < 0.001) and a significant 

main effect for condition (F(1,8) = 49.599, p < 0.001) were observed.  As seen in Figure 13, the 

results indicate that the average percent change in small vessels diameter of VX animals (M = 

.1164, SD = .04) is significantly greater than the change observed in IC (M = .0657, SD = .04). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 13.  Small vessels for both group dilated significantly during hypoxia; however, small 
                       vessel dilation significantly greater in VX animals (* p < 0.05, ** p < 0.005)          
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 There were no statistical differences in the average change of vessel diameter within or 

between groups for the other size vessels (i.e., medium or large vessels).  In addition, the 

normoxia condition was excluded from this analysis.  Given that this data was obtained from a 

much larger sample, supplementing means for the low number of experimental animals that 

completed the final normoxia phase of the study was unfitting.  

Histology: Blood Vessel Density 

 The histology data was collected using a variation of the Dissector technique from 

methods of unbiased stereology (Mouton, 2002).  Analyses revealed significantly greater blood 

vessel densities in VX animals when compared to IC. Results from an independent-samples t-test 

indicate a significantly greater (t(12) = 3.936, p = .002; Figure 14) total blood vessel density in 

VX (M = .319 , SD = .087) when compared to IC (M = .186, SD = .018).   

 

 

 

 

 

 

 

 

 

 
 
 

Figure 14.  Histology data analyses revealed VX animals had greater blood vessel  
                densities when compared to IC (* p < .05; ** p < .005)   
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 Additionally, results from an independent-samples t-test indicate a significantly greater 

(t(12) = 2.433, p = .032; see Figure 14) arteriole/venule density in VX animals (M = .152, SD = 

.104) when compared to IC (M = .054, SD = .02).  Similarly, results from an independent-

samples t-test revealed a significantly greater (t(12) = 3.977, p = .002; see Figure 14) capillary 

density in VX animals (M = .167, SD = .021) when compared to IC (M = .132, SD = .01).  

Histology: Vessel Counts by Size 

 Due to the unique staining characteristics of the tissue, and the variation in arteriole / 

venule diameter noted in the previous analysis (>10µm), a size analysis was conducted in order 

to further examine patterns of angiogenesis.  From the images collected, a 20% subsample was 

employed for this analysis.  Within the selected images, each vessel that was counted in the 

original point grid analysis was traced and its diameter was recorded, producing a total 439 

points of interest.  From the collected data, the range of diameters was divided into tertiles, 

producing total vessel counts for each size category. 

 Paired-samples t-tests indicated a significantly greater number of small vessels (M = 

44.143, SD = 29.958) than medium (M = 4.286, SD = 4.855) sized vessels within the VX group 

from the histology images subsampled; t(6) = 3.982, p = .007; see Figure 15.  Also, there were 

significantly more small vessels than large (M = 0.517, SD = 0.787) sized vessels within VX 

group from the histology images subsampled; t(6) = 3.836, p = .009.  Similarly, paired-samples t-

tests indicated a significantly greater number of small vessels (M = 13.429, SD = 8.304) than 

medium (M = 0.488, SD = 0.184) sized vessels within the IC group from the subsampled 

histology images; t(6) = 3.982, p = .007.  Likewise, there were significantly more small vessels 

than large (M = 0.000, SD = 0.000) sized vessels within IC group from the subsampled histology 

images; t(6) = 3.836, p = .009.  Furthermore, independent-sample t-tests revealed a greater 
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number of small vessels in VX animals (M = 44.143, SD = 29.958) when compared to the small 

vessel counts of IC (M = 13.429, SD = 8.304) animals; t(12) = 2.614, p = 023.  Between medium 

and large sized vessels, there were no statistical differences within-groups, nor where there any 

statistical between-group differences in these size categories.  

 

        Figure 15.  Within the arteriole / venule category of vessels, the smallest in size appear  
                  to be driving the observed differences (* p < 0.05)  

 

Histology: Small Vessel Size Analysis 

 To further examine this pattern, the diameter range for the small vessels was again 

divided into tertile categories.  The purpose of this analysis is to demonstrate that it is the 

smallest of the arterioles / venules driving the observed changes, and that the differences 

between exercise and inactive control groups are significant.  In each of the categories, VX 

animals had a significantly greater number of vessels when compared to inactive controls.  For 
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both VX and IC groups, the smallest vessels, defined by a diameter range of 16.15µm – 

31.82µm, significantly outnumbered vessels in the middle and largest categories (see Figure 16).  

 Results from a paired-samples t-test indicated a significantly greater number of the 

smallest vessels (M = 27.86, SD = 15.99) than mid-sized small vessels categorized by a diameter 

of 31.82µm—47.5µm (M = 12.14, SD = 10.78) within the VX group; t(6) = 6.582, p = 0.001; see 

Figure 16.  Also, on average there were significantly more of the smallest vessels than the largest 

(M = 4.14, SD = 3.98) small vessels observed in the subsample of images from the VX group; 

t(6) = 4.931, p = 0.003.  In addition, results indicated a significantly greater number of mid-sized 

small vessels (M = 12.14, SD = 10.78) when compared to the largest of the small vessels 

categorized by a diameter of 47.5µm—63.18µm (M = 4.14, SD = 3.98) observed in the 

subsample of VX histology images t(6) = 2.64, p = 0.038.  

 Similarly, results from the paired-sample t-tests indicated a significantly greater number 

of the smallest vessels (M = 10.43, SD = 7.18) than mid-sized small vessels (M = 2.57, SD = 

1.27) within the IC group; t(6) = 3.15, p = 0.020; see Figure 16.  In addition, on average there 

were significantly more of the smallest vessels than the largest (M = 0.429, SD = 0.535) small 

vessels observed in the subsample of images from the IC group; t(6) = 3.846 , p = 0.009 .  Results 

also indicated a significantly greater number of mid-sized small vessels (M = 2.57, SD = 1.27) 

when compared to the largest of the small vessels (M = 0.429, SD = 0.535) observed in the 

subsample of IC histology images t(6) = 6.301, p = 0.001. 

 Lastly, results from an independent-samples t-test indicate a greater number of the 

smallest vessels in VX animals (M = 27.86, SD = 15.99) when compared to IC (M = 10.43, SD = 

7.18) animals; t(12) = 2.630, p = 0.022, see Figure 16.  Results also indicated a greater number of 

the mid-size small vessels in VX animals (M = 12.14, SD = 10.78) when compared to IC (M = 
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2.57, SD = 1.27) animals; t(12) = 2.334, p = 0.038, and a greater number of the largest of the 

small vessels in VX (M = 4.14, SD = 3.98) when compared to IC (M = 0.429, SD = 0.535) 

animals; t(12) = 2.449, p = 0.031, see Figure 16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.  Smallest vessels are greater in number than any other size category. The 
      differences in blood vessel count between VX and IC are significant (* p < 
     .05, ** p < .005) 

DISCUSSION 

Study Aims 

 The purpose of this study was to investigate the utility of Spectral Domain-Optical 

Coherence Tomography in the examination of cerebrovascular plasticity, as assessed by 

exercise-induced changes in blood vessel density and hypoxia-induced vasodilation.  To validate 

this novel technique, we sought to compare data captured by SD-OCT with data collected via 

traditional methods of histology.  In the first phase of the experiment, animals were provided 
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voluntary access to a running wheel for average 26-weeks.  In the second phase of the 

experiment, animals were anesthetized and then exposed to a laboratory-induced condition of 

hypoxia-hypercapnia while under the lens of the SD-OCT scanner.  After scanning was 

completed animals were sacrificed for histology.  Using both techniques, we found that exercised 

animals had significantly greater total blood vessel densities when compared to inactive controls, 

suggesting that exercise facilitated the growth of new blood vessels; a finding consistent with 

numerous other studies (Black et al., 1990, Issacs et al., 1992; Kleim et al., 2002; Swain et al., 

2003).  Furthermore, the histological analysis of vessels by size indicated a significantly greater 

number of small vessels in exercised animals when compared to inactive controls.  This finding 

suggests that venulo-arteriogenesis also may have been induced by exercise, and may have 

contributed to the observed changes within the small vessel category.  Moreover, the application 

of SD-OCT expanded our understanding of exercise-induced cerebrovascular plasticity.  Not 

only did we find a greater average small vessel diameter within exercised animals, which 

supports our claim for exercise-induced venulo-arteriogenesis, but when oxygen and carbon 

dioxide gases were manipulated to create a hypoxic-hypercapnic condition, these vessels 

expanded nearly double the degree to which small vessels in inactive controls did.  This suggests 

that exercise training facilitates cerebrovascular reactivity, or a more adaptive response when 

oxygen is deprived.   

 The terminology used within this discussion is important to note.  Given that our methods 

did not allow us to distinguish between arterioles (i.e., small vessels carrying blood from the 

heart) and venules (i.e., small vessels carrying blood back to the heart), we use the term small 

vessels to more generally describe this size category.  Furthermore, the SD-OCT diameter 

analysis revealed a small percentage (2.67%) of the small vessels sampled measured 3-10µm in 
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diameter.  Thus, within the segment of this discussion including the diameter analysis, it should 

be noted that capillaries are also described using the term small vessels.  In addition, the current 

literature describes continued growth of small vessels more broadly as arteriogenesis.  However, 

despite the lack of empirical evidence, it is equally likely that the same endothelial adaptations 

that are improving arteriole function are also improving venous circulation.  Thus, we use the 

term venulo-arteriogenesis to more accurately describe our observations.  

Interpreting the Results 

 Blood Vessel Density 

 Our findings from the SD-OCT data provide strong evidence for exercise-induced 

changes in blood vessel density.  We demonstrated that animals that were provided voluntary 

access to a running wheel had significantly greater total blood vessel density when compared to 

inactive controls.  Findings from our histological data analyses confirmed this observation.  

 Angiogenesis (i.e., the growth of new vessels from preexisting capillaries) occurs in 

several regions of the brain in response to exercise.  For example, our findings corroborate one of 

the earliest investigations conducted by Black and colleagues (1990) who found a significant 

increase in capillary density of the cerebellar paramedian lobules (i.e., forelimb region of 

cerebellar cortex) of exercised rats.  Another key study investigating the relationship between 

exercise and cerebellar vasculature was that of Isaacs and colleagues (1992), who found 

significant reductions in quantified diffusion distances (mean distance to nearest capillary from 

random point in tissue) in the cerebellar paramedian lobules.  Most relevant to our study, other 

investigations provide compelling evidence to support exercise-induced capillary expansion in 

the motor cortex.  For example, Kleim and colleagues (2002) provided rats with thirty days of 

free access to a running wheel.  Following analyses of the microstimulation map and histology 
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data, exercised rats were found to have significantly greater capillary density within layer V in 

the forelimb representation of motor cortex when compared to inactive controls.  Similarly, 

Swain and colleagues (2003) found that voluntary exercise induces concomitant increases in 

capillary density and cerebral blood volume in the rat motor cortex.  Together, these findings 

support the interpretation of our results.  

 Our findings for blood vessel density using SD-OCT were unexpected.  Only when 

vessels size categories were combined to total blood vessel density did we see a statistically 

significant main effect for group.  There are a number of possible explanations for this.  For one, 

SD-OCT is limited to a spatial resolution of ~5µm.  From the total number of vessels included in 

the SD-OCT analyses, the smallest diameter recorded was 6.708µm.  For comparison, the 

smallest vessel sampled via traditional methods of histology was 2.963µm.  Studies indicate that 

cerebral capillaries typically range ~3-10µm (Cortés-Sol et al., 2013; Farrell et al., 1987), but 

generally measure approximately ~5µm in diameter (Duelli & Kuschinsky, 1993; Villringer et 

al., 1994) under normal oxygen conditions.  Thus, it is unlikely SD-OCT was able to capture the 

same population of capillaries that were successfully sampled via traditional methods of 

histology.  For example, during the vessel diameter analysis, only 2.67% of the vessels sampled 

fell within the capillary category.  In contrast, our histological analyses revealed the greatest 

density in any size category of vessels were capillaries ranging ~3-10µm in diameter (refer to 

Figure 14).  This finding is consistent with what has been established in the literature.  That is, 

capillary density is greatest, particularly in brain regions with the highest synaptic density and 

metabolic demand (Klein et al., 1986; Macdonald et al., 2009).  As previous studies have 

demonstrated, it is possible to observe exercise-induced angiogenesis with traditional histology. 

A similar observation using SD-OCT is feasible, yet more challenging.   
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 Another plausible explanation of our SD-OCT findings relates yet again to the technical 

capacity of the device.  When projected light from the scanning device contacts moving blood 

particles in the tissue, it is then deflected.  Some of this light is reflected back to the lens of the 

SD-OCT device and is recorded.  However, the reflection of light upon contact with moving 

particles inhibits observations beyond this point of contact.  In other words, it is not possible to 

collect data beyond a vessel that has been imaged.  Even shifting the focal point of the lens will 

not resolve this problem, as any vessel with moving blood particles would cast a shadow on the 

tissue beneath it.  Thus, imaging large vessels in external cortical layers inhibits the observation 

of smaller vessels in deeper layers of cortex.  Given what we know about the robust exercise-

induced growth of capillaries in layer V of M1 (Kleim et al., 2002), this is problematic, and 

likely why we did not see statistical differences between groups with the SD-OCT data when 

vessel size categories were analyzed independently.  

 Our findings from the histological size analyses were also interesting.  Results not only 

indicated a statistically greater number of small vessels than any other size category, but a 

significantly greater number of small vessels (i.e., arterioles) in exercised rats when compared to 

inactive controls.  When parsed out further, a pattern emerged.  In each analysis, the smallest 

vessels consistently outnumber larger size categories.  Additionally, exercised rats displayed 

greater small vessel counts when compared to inactive controls.  This pattern in combination 

with data collected from the exercise group’s running behavior indicates that venulo-

arteriogenesis may be an underlying factor for these observed differences.  

 Unlike the sprouting of a new vessel during angiogenesis, venulo-arteriogenesis is the 

continued growth of an existing vessel, such that the vessel’s diameter expands to allow for a 

greater volume of blood to reach tissue.  Research indicates that venulo-arteriogenesis is induced 
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by increased flow demands and altered shear stress on the vascular wall (i.e., the variable force 

exerted by the changing intravascular blood flow rate).  In the laboratory, venulo-arteriogenesis 

is often surgically stimulated by manipulating flow demands within major arteries of the rat 

brain.  The vascular systems of the body, including those within the brain, contain protective 

collateral systems that are able to compensate for disruptions in blood supply by restoring flow 

in vessels that remain unobstructed.  Within the brain, the circle of Willis is the central collateral 

system that connects four primary supplying arteries: both pairs of carotid and vertebral arteries.  

Typically, a combination of ligatures and arteriovenous shunts are used to alter blood flow in 

non-occluded arteries.  For example, in a study conducted by Busch and colleagues (2003), a 

three-vessel occlusion (unilateral common carotid artery occlusion in combination with bilateral 

vertebral artery occlusion) was employed to induce venulo-arteriogenesis within the circle of 

Willis in adult rats. The other free-flowing arteries of the brain were burdened with restoring 

hemodynamic homeostasis.  As a result, arteriole diameter within the posterior cerebral artery 

ipsilateral to the carotid occlusion increased significantly within one week, and the posterior 

cerebral artery contralateral to the occluded carotid artery significantly increased its diameter 

within three weeks.  To build upon this finding, Schierling and colleagues (2009) utilized 

comparable combinations of ligatures and shunts to increase cerebral collateral circulation and 

fluid shear stress.  Similarly, increases in blood flow correlated with increases in diameter and 

length of the nonligated arterioles.  

 Increased blood flow is directly related to the force exerted on the endothelial wall of the 

vessel, and these physiological stimuli trigger many of the same mechanisms that prompt 

angiogenesis (Schaper, 2009).  Adhesion molecules, such as intracellular adhesion molecule 

(CD54), and a host of growth factors, such as fibroblast growth factors (FGFs) and vascular 
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endothelial growth factor (VEGF) facilitate endothelial and smooth muscle cell proliferation 

(Heil & Schaper, 2004; Schaper, 2009).  Furthermore, as we have briefly discussed, exercise 

induces an increase in cerebral blood flow in several regions of the brain (Delp et al., 2001; 

Thomas et al., 2012), including motor cortex (Swain et al., 2003).  Although there are other 

factors that influence hemodynamic shear stress (e.g., vessel geometry, fluid viscosity), increased 

intravascular blood flow is a potent stimulus for adaptive modifications of the vessel wall 

(Schaper, 2009).  Taken together, this evidence supports our claim that an exercise-induced state 

of hypoxia can stimulate venulo-arteriogenesis, as it does angiogenesis.  

 Several investigations have explored the relationship between exercise and angiogenesis. 

In such studies, animals are often provided with access to a running wheel for approximately 

thirty days (Black et al., 1990, Issacs et al., 1992; Kleim et al., 2002; Swain et al., 2003), and 

results consistently indicate significantly greater capillary density when compared to inactive 

controls.  It is likely that these significant differences are induced by the animal’s rapid increase 

in running behavior over this 4-week time period (refer to Figure 11).  While we did not collect 

data at that time point, it is very likely we would have seen similar results.  However, the fact 

that the animals in this study were provided access to a running wheel for much longer than 

thirty days allows us to speculate the influence of chronic exercise on the cerebrovascular 

system.  Given that exercise causes a state of mild hypoxia in the brain (Berggren et al., in 

preparation) and increases cerebral blood flow (Swain et al., 2003), it is highly likely that the 

animal’s chronic exposure to exercise in this study induced a state of hemodynamic shear stress.  

Over time, the cerebrovascular system adapted to allow for greater volumes of oxygen rich blood 

to reach brain tissue in the primary motor cortex. 
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 An additional aim of this study was to capture Doppler flowmetry data in order to further 

address this concept.  We had expected to see greater blood perfusion in exercised animals when 

compared to inactive controls.  Unfortunately, the data collected via SD-OCT Doppler was not 

suitable for analysis.  In brief, inflammation within the scanned region of interest likely inhibited 

the collection of usable data.  A more detailed explanation can be found in the subsequent 

Limitations section of this discussion.  

 Despite the lack of Doppler data to support this finding, a diameter analysis of the SD-

OCT imaged vessels indicates that smaller vessels have the capacity to adapt to phasic increases 

in cerebral blood flow induced by exercise.  Our finding that small vessel diameter of exercised 

rats was significantly larger in both baseline and hypoxic conditions when compared to inactive 

controls suggests that many of the same mechanisms that induce the growth of new capillaries, 

may also facilitate the growth of existing arterioles.  This finding is supported by a previous 

study conducted by Patt and colleagues (1997), who found significantly larger average blood 

vessel size in animals exposed to 30 days of incremental reductions in oxygen availability when 

compared to normoxia exposed controls.  The temporal pattern of vascular growth (i.e., the 

formation of new vessels, and continued growth of existing vessels) is still largely unknown.  

 Blood Vessel Dilation 

 Our findings from the SD-OCT data provide strong evidence for exercise-induced 

changes in cerebrovascular reactivity.  When compared to inactive controls, we demonstrated 

that animals that were provided voluntary access to a running wheel exhibited a significantly 

greater degree of small vessel dilation when oxygen and carbon dioxide levels were manipulated.  

This finding suggests that the cerebrovascular system within motor cortex of exercised rats was 

better able to adapt to the condition of hypoxic-hypercapnic stress.   
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 Cerebrovascular reactivity (CVR) is the change in intravascular flow rate following some 

vasoactive stimuli and reflects the capacity to which vessels dilate (Thrippleton, 2015; 

Yezhuvath et al., 2009).  For example, when oxygen demand increases during exercise, a host of 

molecular signals (e.g., eNOS, HIFs, etc.) induce a cascade of mechanisms (e.g., PI3K/Akt 

signaling, PLC- γ signaling) that regulate the dilation of blood vessels via several molecular 

pathways (Karar & Maity, 2011; Dudzinski & Michel, 2007).  Vasodilation in response to 

hypoxia allows more glucose rich hemoglobin to reach cell tissue; thereby, restoring 

hemodynamic homeostasis.  

 Our finding that small vessels of exercised animals dilate to a significantly greater degree 

(~two-fold on average) when compared to inactive control animals is interesting.  This finding 

suggests that exercise training likely promotes the endothelial adaptation of what we have 

termed, vasoflexibility.  That is, exercise training conditioned the vessels of the forelimb 

representation in motor cortex to enable a greater capacity to dilate, which theoretically 

facilitated greater volumes of oxygen rich blood to reach tissue under the laboratory-induced 

conditions of oxygen deprivation.  Ideally, we would have confirmed this finding using SD-OCT 

Doppler.  Unfortunately, as is described in greater detail within the Limitations section of this 

discussion, we were unable to collect Doppler data suitable for analysis.  Despite the lack of 

Doppler data to support this finding, the diameter analysis of the SD-OCT imaged vessels 

indicates that smaller vessels have the capacity to adapt to the phasic increases in cerebral blood 

flow and vascular shear stress associated with hypoxia.   

 Although the mechanisms underlying the vasoprotective effects of exercise are largely 

unknown, there is compelling evidence that many of the same factors driving angiogenesis and 

venulo-arteriogenesis are involved in the endothelial adaptations that lead to greater 
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vasoflexibility.  As previously discussed, exercise-induced endothelial adaptations are largely 

driven by the repeated episodes of increased intravascular flow and shear stress on the 

endothelial wall (Green, 2009; Jasperse & Laughlin, 2006).  It is also likely that the circulating 

factors, such as eNOS and VEGF, described previously in the discussion of vasodilation 

signaling pathways play an important role in vascular remodeling (Papapetropoulos et al., 1997; 

Rudic et al., 1998; Murohara et al., 1998; Heil & Schaper, 2004; Schaper, 2009) and 

vasoprotection (Endres et al., 2003; Gertz et al., 2006; Mayhan et al., 2010).  Furthermore, the 

repeated exposure to mild conditions of hypoxia may strengthen the cerebrovascular system such 

that it becomes more resistant to hypoxic threat.  In a study conducted by Dunn and colleagues 

(2013), hypoxic pre-conditioned rats were found to have a significant reduction in inflammatory 

markers and infarct volume 48 hours post-MCA occlusion.  

 In sum, the studies presented herein provide evidence that exercise induces a number of 

vasoprotective adaptations.  The interplay of factors underlying vascular remodeling and 

vasoprotection is largely unknown, but the increase in cerebral blood flow during phases of 

exercise should be considered a key component and continue to be investigated.  Various 

techniques can be employed to do so.  In this study, we have successfully demonstrated that SD-

OCT can be utilized to assess cerebrovascular plasticity.  Using SD-OCT to capture real-time 

angioarchitecture, we were successfully able to demonstrate that exercise induces angiogenesis.  

Although, in comparison, the histology data revealed similar results, yet to a greater degree of 

sensitivity (i.e., capillaries were accounted for).  However, SD-OCT exceeded the utility of 

histological methods in the investigation of blood vessel dilation.  In this study, using SD-OCT, 

we were able to successfully demonstrate that similar factors driving angiogenesis and venulo-
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arteriogenesis may also be involved in the endothelial adaptations that lead to greater 

vasoflexibility.  

Limitations 

 There were important limitations with this study to note.  The craniotomy and durotomy 

procedures were necessary to produce the highest quality angiograms; however, the removal of 

the skull and underlying dura mater raised significant issues.  The resulting inflammation was 

unpreventable.  Throughout the duration of the scanning procedures, variable swelling within the 

scanned region of interest likely changed the focal plane of the lens.  In addition, it is possible 

the inflammation slightly shifted the geometry of underlying vessels.  Doppler is particularly 

sensitive to changes in the angle of a vessel and any shift in the angle of a vessel compromises 

the validity of collected data.  Doppler spatial resolution is limited to ~20µm.  Furthermore, 

Doppler measures axial velocity and is thereby limited to collecting hemodynamic data from 

vessels with some angle relative to the perpendicular plane of the scanning lens and projected 

waves of light.  The craniotomy-durotomy procedure and the resulting accumulation of blood 

created another problem for Doppler, and similarly for OCT angiography.  Two animals expired 

during surgery due to incessant bleeding around the scanned region of interest.  Furthermore, for 

optimal recording, the lens is fixed approximately 2mm above the tissue intended for scanning.  

The close proximity of the lens to tissue did not allow us to remove accumulating blood without 

adjusting the position of the scanning lens.  Once moved, we were challenged with returning the 

lens to the exact position before initiating subsequent scans.  During the analysis of vessel 

diameter, we controlled for this issue by storing measurements in the ‘ROI Manager’ of the 

ImageJ software.  By doing so, we were able to ensure that the same segment of each vessel 

measured in the baseline angiogram, was also measured in the hypoxia angiogram.  
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 An additional limitation to this study was the gas mixture chosen to induce hypoxia-

hypercapnia.  In total, three animals expired during the hypoxia scanning session.  Therefore, we 

suggest that the 10% oxygen and 5% carbon dioxide mixture was likely too strenuous for some 

animals while under anesthesia.  It should be noted that the three animals that expired during 

hypoxia were also under anesthesia for a slightly longer duration than others.  This was due to 

excessive bleeding around the scanned region of interest.  A combination of Gelfoam sponge, 

Actel hemostatic gauze, and dental wax was necessary for bleeding to subside.  However, these 

additional steps were time consuming and the lengthy duration in which these animals were 

under anesthesia may have heightened their sensitivity to hypoxic-hypercapnic threat.   

General Conclusions & Future Directions 

 In conclusion, this thesis demonstrates that Spectral Domain-Optical Coherence 

Tomography can be utilized to successfully examine cerebrovascular plasticity.  We have shown 

that SD-OCT can detect general changes in blood vessel density, and have confirmed this finding 

by comparing data with that of traditional histological methods.  In addition, SD-OCT expanded 

our understanding of vasoprotective adaptations by probing beyond what is possible using 

traditional methods of histology.  Using SD-OCT, we not only demonstrated the capacity to 

visualize angioarchitecture, but the functional capacity to capture real-time cerebrovascular 

reactivity and vasoflexibility.  Furthermore, this thesis makes a significant contribution to the 

field by expanding what is known about angiogenic and vasoprotective adaptations.  Exercise-

induced endothelial adaptations (e.g., structural and dilatory) ensure optimal use of the 

cerebrovascular system.  In other words, exercise training conditions the cerebrovascular system 

such that it is less susceptible to hypoxic stress.  
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 The current research has practical applications in both research and clinical settings.  

Given that exercise has been shown to improve cognitive performance in animal and human 

populations (Erickson et al., 2011; Hillman et al., 2006; Hillman, Erickson, & Kramer, 2009; 

Hogan, Mata, & Carstensen, 2013), one interesting study design using SD-OCT would be to map 

the temporal progression of cerebrovascular adaptations (e.g., angiogenesis, venulo-

arteriogenesis, vasoflexibility) while concomitantly testing improvements in cognitive function.  

This could be made possible by implanting a cerebral window over the scanned region of interest 

to enable scanning at any time point before, during, or following exercise intervention.  In 

addition, animals could be subjected to various learning and memory paradigms (e.g., Morris 

Water Maze) throughout the duration of exercise engagement. 	

 Additionally, there is considerable interest in the adaptive cerebrovascular mechanisms 

triggered by exercise, particularly as they relate to brain injury and recovery (Arai et al., 2009; 

Cobianchi et al., 2016; Ding et al., 2004; Larpthaveesarp et al., 2015; Zhang et al., 2013).  Our 

findings contribute to this interest by identifying a number of endothelial-mediated adaptations 

induced by exercise.  With this knowledge, future investigations could utilize SD-OCT with 

other technologies (e.g., MRI, two-photon microscopy) to explore how these exercise-induced 

adaptations protect the brain from ischemic insult and aid recovery post-injury.  A particularly 

interesting study would be to address the question: can exercise facilitate recovery following 

ischemic insult?  In such a study, SD-OCT could be utilized to explore the effects of exercise 

training on stroke recovery by mapping the rate of re-vascularization of the infarct area in 

exercised animals and non-exercised controls.  In addition, it would be interesting to explore the 

effects of exercise on the cerebrovascular system within the penumbra.  
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 Although our SD-OCT findings shed light on the cerebrovascular adaptations induced by 

exercise, a number of questions remain.  One important question of considerable debate within 

the literature: do brain capillaries (3-10µm) increase in diameter as oxygen demand increases?  It 

should be noted that capillaries are comprised of a single layer of endothelial cells connected at 

tight junctions, and unlike larger vessels (e.g., arterioles), capillaries are not wrapped with 

smooth muscle cells (Ballabh, Braun, & Nedergaard, 2004).  Thus, their capacity to expand is 

limited.  In addition, the basal lamina (i.e., layer of extracellular matrix that forms the surface for 

which endothelial cells are situated) is densely composed of collagens (e.g., type IV) relative to 

elastin (Shamloo et al., 2015; Wang-Fischer & Koetzner, 2009), which produces a more rigid 

structure important in the regulation of the blood-brain-barrier.  However, the evidence 

supporting the important role of pericytes in cerebral capillary activity (Bergers & Song, 2005; 

Hall et al., 2014) may indicate some room for flexibility.  Pericytes are small vascular cells that 

regulate contractility of the microvasculature, endothelial cell activity, and macrophage function 

(Rucker, Wynder, & Thomas, 2000).  Similar to the smooth muscle function in larger vessels, 

pericytes can stimulate vasoconstriction and vasodilation within the capillary beds (i.e., network 

of capillaries) to produce changes in vessel diameter and capillary blood flow (Rucker, Wynder, 

& Thomas, 2000).  While it is common knowledge that capillaries do not mechanically dilate in 

the same manner arterioles do, the binding of vasoactive signals to endothelial cells and 

subjacent pericytes may allow for some limited expansion during the neurovascular exchange of 

glucose, oxygen, and other important factors.  In one particular study, Villringer and colleagues 

(1994) found that capillary diameter increased significantly (.33 microns on average) in response 

to hypercapnic stimulation.  This finding indicates that the regulation of capillary blood flow is, 

at least in part, mediated by changes in capillary diameter.  Taken together, the presented 
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evidence indicates that capillaries have limited capacity to expand, but may do so in response to 

increased neuronal activity and metabolic demand (Hamilton, Attwell, & Hall, 2010; Stefanovic 

et al., 2007), most likely to facilitate the rapid transport of oxygen rich red blood cells to tissue 

(Hutchinson et al., 2006; Itoh & Suzuki, 2012).  

 Another important question to consider addresses the rate in which the previously 

described endothelial-mediated adaptations occur.  That is, what is the timeline for angiogenesis, 

venulo-arteriogenesis, and vasoflexibility?  To date, no single study has explored the temporal 

sequence for each adaptation as they relate to one another.  However, the evidence supporting 

the driving factors and molecular signals that regulate these phenomena may shed some light on 

the matter.  There are similarities and differences.  For example, molecular signals that prompt 

the rapid dilation of vessels (e.g., eNOS signaling via HIF-1α) also stimulate the growth of new 

ones (e.g., VEGF via HIF-1α).  The transcription factor HIF-1α has been found to increase 

immediately in response to a single bout of exercise (Berggren et al., in preparation).  Thus, the 

driving factor for angiogenesis is hypoxia.  In contrast, venulo-arteriogenesis is stimulated by 

chronic vascular shear stress as a result of increased blood flow, as is likely the case for 

vasoflexibility.  The increased tension on the vascular wall signals a cascade of mechanisms that 

recruit circulating monocytes via monocyte chemoattractant protein-1 (MCP-1) and induce 

endothelial proliferation via growth factors, like granulocyte macrophage colony-stimulating 

factor (GM-CSF).  Although both angiogenesis and venulo-arteriogenesis serve to restore 

disruptions in vascular circulation, the current evidence indicates that angiogenesis (i.e., new 

vascular growth) can occur within days (Baluk et al., 2004; Hathout et al., 2009; Kerr & Swain, 

2011; Van der Borght et al., 2009; Zhu et al., 2015), whereas arteriogenesis (i.e., vascular 

remodeling) occurs within several days to weeks (Busch et al., 2003; Helisch et al., 2005; Hoefer 
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et al., 2001; Leong-Poi et al., 2005).  Furthermore, vasoflexibility likely mirrors changes in 

arteriole remodeling.  As endothelial cells proliferate, smooth muscle cells synthesize new elastin 

(Scholz et al., 2000); thus, creating a more flexible vascular unit.  Given what has been 

established within the literature, we speculate that angiogenesis occurs rather rapidly, and is 

followed by arteriogenesis, which corresponds with the improved flexibility of the 

cerebrovascular system.  However, further investigation is necessary to fully understand the 

temporal pattern in which these events occur.  
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