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ABSTRACT 

GAP JUNCTION COMMUNICATION  
IN MEMORY RETRIEVAL AND EXTINCTION OF COCAINE SEEKING 

 

by  

 

Michael K. Fitzgerald 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Devin Mueller 

 

Blocking drug-associated memory retrieval or enhancing extinction of drug-seeking behavior are 

two strategies that could limit relapse in drug addicts. The loci of retrieval and extinction 

memory processes include the prelimbic medial prefrontal cortex and the infralimbic medial 

prefrontal cortex, respectively.  The neurochemical and synaptic mechanisms underlying drug-

related behavior have received considerable attention, but extrasynaptic mechanisms are 

relatively unexplored.  One form of cellular communication, gap junction communication, may 

play a role in drug-related learning and memory.  Gap junction communication between 

neurons and astrocytes provide a cytoplasmic continuity between connected cells and both 

neuronal and astrocytic gap junction communication have been demonstrated to be involved 

with development and maintenance of the CNS, and also aversive and appetitive paradigms of 

learning. However, in retrieval or extinction of drug-seeking behavior, the role of gap junction 

communication is unknown.  Here I describe a series of experiments that investigate astrocytic 

and neuronal gap junction communication in the retrieval and extinction of a cocaine 

conditioned place preference using microinfusions and confocal imaging. 
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Introduction 

  Drug-associated cues can trigger craving and relapse in drug addicts. Preventing retrieval 

of cue-associated memories or reducing cue reactivity through extinction has been 

demonstrated to reduce drug-seeking behavior in various drug-seeking models (LaLumiere et 

al., 2010; Groblewski et al., 2012). Retrieval of a cocaine-associated memory is dependent on 

activation of the prelimbic medial prefrontal cortex (PL-mPFC; Otis et al., 2013) whereas 

extinction of cocaine seeking is consolidated in the infralimbic medial prefrontal cortex (IL-

mPFC; Otis et al., 2014). Although the neurochemical and synaptic mechanisms underlying 

drug-related behavior have been investigated intensively, little is known regarding the 

contribution of neural or astrocytic gap junction communication in the PL-mPFC and IL-mPFC.  

 Both neurons and astrocytes express gap junctions, which are specialized membrane 

structures built of connexin channels that allow cytoplasmic continuity between connected cells 

(Connors & Long, 2004; Pannasch & Rouach, 2013). Neuronal or astrocytic gap junction 

communication can alter neuronal activity and plasticity (Palacios-Prado et al., 2014; Pannasch 

et al., 2011). However, how gap junction communication blockade affects memory retrieval and 

extinction of drug-seeking behavior is not known. Here I describe how gap junction 

communication in the brain plays integral roles in neuronal and astrocytic development, 

maintenance, and ongoing plasticity. Next I describe a series of experiments that were 

performed to investigate gap junction communication in the retrieval and extinction of drug-

seeking behavior using the conditioned place preference (CPP) paradigm and confocal 

microscopy.    
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The conditioned place preference procedure 

 The mechanisms of drug-associated memory retrieval can be investigated using the CPP 

paradigm.  This paradigm is an animal model of drug seeking in which rats learn to associate 

environmental stimuli with cocaine.  During training, rats are given experimenter-delivered 

cocaine or saline followed by exposure to one or another of two chambers.  Following training, 

rats are given full access to both the cocaine- and saline-paired chambers, along with a neutral 

center chamber.  Rats spend more time in the previously cocaine-paired chamber during this 

trial, thus expressing a cocaine-induced CPP (Mueller & Stewart, 2000).  When a CPP is 

expressed, investigators can be certain that the rats acquired, consolidated, and retrieved this 

cocaine-associated memory.  Additionally, rats that express a CPP on additional test trials 

demonstrate that they are subsequently able to retrieve the cocaine-associated memory.  

  

The PL-mPFC and drug-associated memory retrieval  

Recall or retrieval of memory refers to the subsequent re-accessing and behavioral 

expression of previously encoded and stored information.  Studies have demonstrated that 

memory expression can be enhanced by pre-test treatment of nicotine (Faiman et al., 1992), 

cocaine (Rodriguez et al., 1993), or amphetamine (Sara & Deweer, 1982).  These drugs are 

nonspecific, but all of them enhance noradrenergic signaling.  Stimulation of the noradrenergic 

system can influence memory task performance. For example, blockade of α2-adrenergic 

autoreceptors, which normally prevent norepinephrine from being released, leads to an 

increase in rat performance in maze navigation after the task had been forgotten (Sara, 1985; 

Sara & Devauges, 1989).  Moreover, stimulation of the locus coeruleus (LC), a major nucleus of 

http://www.human-memory.net/processes_encoding.html
http://www.human-memory.net/processes_storage.html
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noradrenergic cell bodies (Dahlstroem & Fuxe, 1964), also enhances memory expression after 

forgetting.  This enhancement is prevented by the β-adrenergic receptor (β-AR) antagonist 

propranolol (Devauges & Sara, 1991).  Work from our lab has demonstrated that systemic β-AR 

blockade can prevent retrieval of a cocaine CPP (Otis & Mueller, 2011). Additionally, β-AR 

blockade prevents an increase in neuronal excitability in PL-mPFC neurons (Otis et al., 2013).  

Investigation of the loci of retrieval of a cocaine CPP revealed a role for the PL-mPFC. The PL-

mPFC has previously shown to be necessary for expression of memories and decision making 

(Corcoran and Quirk, 2007; Kim et al., 2013; Euston et al., 2012).  Additionally, glutamatergic 

driven neuronal activity within PL-mPFC has been shown to be necessary for expression of 

innate (Freitas et al., 2013) and learned (Davies et al., 2013; Gilmartin et al., 2013) behaviors.  

Infusions of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the 

GluN2B-selective antagonist Ro 25-6981 into PL-mPFC reduced span capacity in rats, a measure 

of working memory.  Furthermore, CNQX or Ro 25-6981 also induced a failure to retrieve the 

correct choice in an appetitive choice task for rats (Davies et al., 2013). Based on these studies 

demonstrating the necessity of PL-mPFC in memory retrieval across tasks, our lab examined the 

effects of microinfusions of non-selective β-AR antagonists into the PL-mPFC in retrieval of a 

cocaine CPP (Otis et al., 2013).  We found that blockade of β-ARs in PL-mPFC impaired retrieval 

of the cocaine CPP.  Thus, the PL-mPFC is necessary for cocaine-associated memory retrieval 

necessary for drug-seeking behavior.   
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The IL-mPFC and extinction of drug seeking  

 Extinction is the reduction in drug seeking across trials when the drug-predictive stimuli 

no longer predict the delivery of a drug reward.  Importantly, extinction is an active learning 

process (Sutton et al., 2003; Knackstedt et al., 2010), is context specific (Bouton et al., 2000, 

2004; Wells et al., 2011) and does not erase the original drug-related memory (Tobena et al, 

1993; Di Ciano & Everitt, 2004).  Rather, extinction learning results in the formation of an 

inhibitory memory that suppresses drug seeking. Extinction of ethanol seeking (Groblewski et 

al., 2012), morphine seeking (He et al., 2011), and cocaine seeking (Otis et al., 2014) is 

consolidated in the IL-mPFC.  Retrieval of the extinction memory is dependent on the IL-mPFC, 

as lesioning of this structure does not disrupt acquisition of extinction within a session, but does 

impair retrieval of the extinction memory when tested in later trials (Quirk et al., 2000).  For 

example, Do-Monte et al. (2015) optogenetically activated or silenced the IL-mPFC during 

extinction training and found that activation reduced the expression of freezing and facilitated 

extinction learning during both the acquisition and retrieval test days. Furthermore, silencing 

the IL-mPFC during extinction training yielded similar results to Quirk et al (2000) where IL-

mPFC silencing did not disrupt acquisition of extinction within the initial session, but did impair 

retrieval of the extinction memory in later trials.  

 So far, I have described how the PL-mPFC and IL-mPFC are involved in the retrieval and 

extinction of drug seeking.  Next, I will describe gap junctions and how they have been 

demonstrated to be involved in drug-seeking behavior.  I will begin with a background of the 

function of gap junctions to show their involvement in development and in different forms of 

plasticity.  



 

 

5 

 

Gap junctions 

Gap junctions were first detected by electron microscopy in the brains of primates and 

rats. For example, the CA1 and CA3 regions of the hippocampus (Kosaka, 1983), the 

sensorimotor cortex (Sloper and Powell, 1978), and the brainstem and cerebellum all contain 

gap junctions (Sotelo and Korn, 1978). Gap junctions allow intercellular electro- and metabolic-

coupling between adjoining cells and are found in organs and tissues that rely on fast 

intercellular signaling, transfer and communication, including the brain, heart, skin, and inner 

ear. Gap junctions have critical roles in brain development and maturation, and contribute to 

neural precursor cell proliferation, as well as cell migration and differentiation (Bruzzone and 

Dermietzel, 2006). 

Gap junctions are intercellular channels with a diameter of 1.2 nm, and form an aqueous 

pore that penetrates the lipid bilayer of two connected cells.  These channels are formed by two 

hemichannels or connexons, with a connexon contributed by each cell. Connexons are 

composed of six protein subunits called connexins (Kumar and Gilula, 1996).  Gap junctions 

permit the bidirectional diffusion of nutrients, ions, metabolites, and second messengers, 

including potassium, calcium, cyclic adenosine monophosphate (cAMP), inositol 1,4,5-

triphosphate (IP3), cyclic monophosphate, glucose, and other small molecules of about 1000 Da 

or less (Dobrowolski and Willecke, 2009; Zoidl and Dermietzel, 2010).  

Connexin genes and their corresponding proteins are named according to the molecular 

weight of different connexin proteins (e.g., Cx43 has a mass of 43 kilodaltons). The molecular 

topography of connexin proteins include four alpha-helical transmembrane domains, 

intracellular N- and C- termini, two extracellular loops, and a cytoplasmic loop.  There are two to 
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three cysteine residues located in the extracellular loops, which are needed for the proper 

alignment of two connexons to form a continuous gap junction channel (Yeager, 1998).  The 

cytoplasmic C-terminus carries several serine, threonine, and tyrosine residues, which serve as 

targets for a number of protein kinases and phosphatases for posttranslational modifications 

(Solan and Lampe, 2005).  

To date more than 20 different connexin genes have been identified and are expressed 

in many different cells and tissues in mammals (McCracken and Roberts, 2006).  I will focus on 

two, Cx36 and Cx43, as these are the two brain connexins expressed in neurons and astrocytes, 

respectively.  

 

Neuronal gap junction communication  

The combination of in situ hybridization and immunocytochemistry for the neuron-

specific DNA-binding protein NeuN demonstrated that, in rat and human cortices, 

approximately 10% of neurons express Cx36 (Belluardo et al., 1999, 2000; Condorelli et al., 

2000).  Co-localizing Cx36 mRNA with parvalbumin, a GABAergic interneuron marker, confirmed 

that GABAergic inhibitory interneurons express Cx36 (Belluardo et al., 2000).  Furthermore, 

simultaneous recordings revealed that cortical GABAergic interneurons, and not pyramidal cells, 

are interconnected via electrical synapses (Galarreta and Hestrin, 1999; Gibson et al., 1999).  

The gap junctions of inhibitory neurons were shown by ultrastructural studies to be located 

between dendrites, or between dendrites and somata (Szabadics et al., 2001; Tamas et al., 

2000). Cx36 has been thoroughly investigated and has been shown to be selectively expressed 

in neurons and to participate in neuronal gap junctions found in the hippocampus, neocortex, 
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basal ganglia, cerebellum, inferior olive, suprachiasmatic nucleus, pedunculopontine nucleus, 

and the thalamic reticular nucleus (Garcia-Rill et al., 2007; Landisman et al., 2002; McCracken 

and Roberts, 2006; Sohl et al., 2005, 2006). 

The generation of mice with disruption of the Cx36 gene (Gueldenagel et al., 2001; De 

Zeeuw et al., 2003) provided insight and confirmation of the inclusion of Cx36 in the formation 

of gap junctions between inhibitory neurons.  In the Cx36-deficient mice, a gap junction-like 

structure was still observed, but the interneuronal space was reduced to 9 nm.  Dye-coupling 

experiments demonstrated a failure of direct electrical coupling in the Cx36 knockout mice (De 

Zeeuw et al., 2003).  

The availability of Cx36 knockout mice has also allowed for the study of the role of gap 

junctions in learning and memory (Frisch et al., 2005). Allen et al (2011) demonstrated that 

Cx36 knockout mice displayed impaired spatial memory in the open field and in zigzag maze 

running.  Additionally, slower hippocampal theta oscillations were observed in the Cx36 

knockout mice.  The authors theorized that Cx36-coupled interneurons play a functional role in 

spatial coding and cognition (Allen et al., 2011).  A possible explanation for the failure of these 

Cx36 knockout mice to learn could be deficiencies in the mechanisms of long-term potentiation 

(LTP).  The induction of LTP, which is considered a cellular model of learning and memory, is 

impaired in Cx36-deficient animals in the visual cortex (Postma et al., 2011) and the 

hippocampus (Wang and Belousov, 2011).  Interestingly, Wang and Belousov performed a 

western blot analysis of NMDA receptor subunits and found a higher GluN2A/GluN2B ratio in 

Cx36 knockout mice and theorized that there is shift in the threshold for LTP induction in 

knockout animals. Postma et al (2011), however, found equal levels of GluN2A and GluN2B 
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mRNAs in Cx36 knockout animals and controls.  One could argue that deletion of Cx36 would 

have an impact on an animal’s healthy development and subsequent normal function.  

Although Cx36 is expressed early in the development of the embryonic brain (Gulisano et al., 

2000), no developmental or morphological abnormalities were observed by Sohl et al (2004) in 

the neocortex of Cx36-deficient mice.  However, it has also been reported that knockdown of 

Cx36 significantly reduces the number of differentiated neurons and increases the number of 

differentiated astrocytes (Hartfield et al., 2011).  Thus, Cx36 may regulate early neurogenesis 

during development.   

In addition to being able to genetically alter Cx36, pharmaceutical treatment can block 

to block Cx36-containing gap junctions (Juszczak & Swiergiel, 2009).  One compound is the 

antimalarial drug mefloquine (Cruikshank et al., 2004).  Mefloquine has been utilized for local 

microinfusions and has shown to be effective at impairing context-dependent fear learning 

when infused into the dorsal hippocampus in rats prior to or following training (Bissiere et al., 

2011).  Furthermore, unilateral infusion of mefloquine into the ventral hippocampus combined 

with a contralateral infusion into the mPFC decreases anxiety-like behavior on the elevated plus 

maze in mice (Schoenfeld et al., 2014).  However, it should be noted that the dose of 

mefloquine used in these experiments (100 mM) can block astrocyte Cx43 junctions as well 

(Cruikshank et al., 2004). 
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Astrocytic gap junction communication 

In the adult brain, Cx43 is the main connexin spanning the astrocytic gap junction 

network (Yamamoto et al., 1992).  The term astrocyte or “star-like cell” was first used by 

Michael von Lenhossek in 1891 (Lenhossek, 1891).  Astrocytes can have a star-like appearance, 

and express glial fibrillary acidic protein (GFAP), a protein used to identify astrocytes (Tong et al., 

2014).  The list of astrocyte functions is extensive, and is generally focused on maintaining CNS 

homeostasis.  For example, astrocytes form and maintain the blood brain barrier (Abbott, 2005), 

and deletion of Cx43 can weaken the integrity of the blood brain barrier (Ezan et al., 2012).  

Astrocytes have also been shown to be involved in neurogenesis, both pre- and post-natally 

(Alvarez-Buylla et al., 2001). Astrocytes also contribute to morphological homeostasis by 

defining the migration of neural cells during development (Nedergaard et al., 2003), and also 

help regulate synaptogenesis and synaptic pruning to shape the microarchitectural framework 

of gray matter (Pfrieger, 2009).  Astrocytes also help regulate molecular homeostasis by 

regulating the concentrations of ions, neurostransmitters, and neurohormones in the CNS 

(Danbolt, 2001; Newman, 1995) and also detect systemic fluctuations of carbon dioxide, pH, 

sodium, and potassium (Gourine and Kasparov, 2011; Gourine et al., 2010; Huckstepp et al., 

2010; Shimizu et al., 2007).  Astrocytes are also involved with metabolic homeostasis by 

accumulating energy substrates and supplying neurons with lactate (Magistretti, 2006).  

Another role of astrocytes is their defensive protection and structural maintenance of neural 

tissue following trauma or the introduction of pathogens (Pekny and Nilsson, 2005).  

From the aforementioned functions of astrocytes, it is easy to see how involved 

astrocytes are in supporting the cellular and molecular components of neural activity. However, 
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the last fifteen years has seen an explosion of research showing how astrocytes are not only 

directly involved with supporting neural network integrity, but also are directly involved in 

cellular and molecular mechanisms through interactions with neurons to build higher cognitive 

functioning in the brain.  An integral part of this ability is gap junction communication of 

calcium between astrocytes. In 1992, Steven Finkbeiner loaded astrocytes with a calcium-

attaching dye and was able to visualize diffusing calcium moving from one cell to the next in a 

curvilinear pattern (Finkbeiner, 1992).  Astrocytes each contain an endoplasmic reticulum (ER), 

an internal complex that stores calcium concentrations as high as 0.2-1 mM, whereas the 

calcium concentration inside the cytoplasm at baseline is set at about 50-100 nM (Alonso et al., 

1999; Mogami et al., 1998; Solovyova and Verkhratsky, 2002).  ERs each contain ryanodine 

receptors (RyRs) and inositol 1,4,5-triphosphate (IP3)-gated receptors. Activation of either RyR 

or IP3 receptors triggers an ER to release its calcium. RyRs can become activated by calcium 

whereas IP3 receptors can be activated by either calcium or by the second messenger IP3 (IP3 is 

produced by activation of metabotropic receptors linked with phospholipase C) (Bezprozvanny, 

2005).  Hence, astrocytes are capable of calcium-induced calcium release (Verkhratsky and 

Kettenmann, 1996). Finkbeiner (1992) demonstrated that this calcium-induced calcium release 

is possible following glutamatergic activation of metabotropic G-protein coupled receptors that 

are linked to phospholipase C and the second messenger IP3.  Roughly 230 gap junctions connect 

a pair of astrocytes and 50-100 neighboring astrocytes can be influenced by a single calcium 

wave (Innocenti et al., 2000).  Probably the most intriguing aspect of calcium sharing between 

astrocytes is the fact that astrocytes, like neurons, use calcium as a catalyst to release 

transmitters into the extracellular space. In 1994, Parpura and colleagues discovered that 
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astrocytes are capable of releasing glutamate into the extracellular space after a calcium wave 

spreads between astrocytes (Parpura et al., 1994). Additionally, astrocytes release transmitters 

in a calcium-dependent manner involving SNARE protein mediated fusion of vesicles with the 

cell’s plasma membrane (Araque et al., 2000; Zhang et al., 2004).  Furthermore, astrocytes have 

vesicles located in close proximity to synapses that contain different neuroactive 

molecules/transmitters like glutamate, d-serine, ATP, adenosine, GABA, tumor necrosis factor α, 

and prostaglandins (Bezzi et al., 2004, Volterra & Bezzi, 2002). 

The body of work by Finkbeiner and others during the 90’s has stimulated investigation 

of the relationship between neurons and astrocytes in structures throughout the brain.  

Pirttimaki and colleagues (2011) showed that neuronal corticothalamic glutamate release can 

trigger astrocytic calcium waves, and astrocytes can subsequently release glutamate primarily 

targeting NMDA receptors on neurons.  Furthermore, Jourdain and colleagues (2007) studied 

communication between astrocytes and neurons in the hippocampus in the dentate molecular 

layer using a combination of patch-clamp electrophysiology and calcium imaging, and 

demonstrated that glutamate release from astrocytes enhances synaptic strength within the 

surrounding neurons.  By measuring the flow of positively charged ions into the postsynaptic 

neuron, they observed that when astrocytes were stimulated to release a calcium wave, there 

was an increase in neuronal electrical activity as compared to the activity of neurons stimulated 

independently of astrocyte stimulation (Jordain et al., 2007).  

Astrocytes have also been implicated in LTP and long-term depression (LTD). 

Henneberger and his colleagues (2010) investigated the role of astrocytes in LTP at Schaffer 

collateral – CA1 pyramidal cell synapses.  Henneberger and colleagues (2010) observed that 
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holding and preventing elevations of internal calcium levels in astrocytes in the CA1 region 

blocked LTP at excitatory synapses.  Furthermore, they determined that performing a calcium 

clamp on the astrocytes prevented astrocytes from releasing D-serine since LTP blockade could 

be reversed by exogenous application of D-serine (Henneberger et al., 2010).  Regarding LTD, 

Chen’s group (2013) demonstrated that LTD is dependent on calcium elevation in astrocytes 

leading to release of ATP that then acts on P2Y receptors on hippocampal neurons.  Blocking 

P2Y receptors or buffering astrocyte calcium at a low level prevented LTD (Chen et al., 2013). 

So far, I have discussed how neuronal and astrocytic gap junction communication is 

capable of altering neural activity and plasticity, and have provided some examples of how gap 

junction communication is involved in non-addictive behavior. Next, I will focus on data that has 

been collected relating gap junction communication to addictive behaviors. 
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Gap junction communication in reward-seeking and addictive behaviors 

A growing body of literature has emerged investigating gap junction communication in 

relation to addictive behaviors.  Here I describe gap junction involvement in drug-seeking 

behavior within different brain regions during different time points of drug-seeking.    

The ventral tegmental area (VTA) is the beginning of the mesolimbic pathway, which is 

also known as the reward pathway (Kauer, 2004).  The VTA projects to areas such as the nucleus 

accumbens, prefrontal cortex, and amygdala, which interpret environmental stimuli and internal 

states that can affect drug-seeking behavior (Cohen et al., 2012; Schultz, 2006).  Gap junction 

communication can alter behavior associated with activity in the mesolimbic pathway.  For 

example, Lassen and colleagues (2007) systemically injected either the non-selective gap 

junction blocker quinidine or the Cx36-specific blocker mefloquine and found that general and 

Cx36 blockade significantly increased the threshold within the VTA for responding to rewarding 

self-stimulation.  They theorized that VTA gap junction communication blockade reduces the 

rewarding impact of self-stimulation.  It is interesting to note that the animals were still able to 

search out pleasure/rewarding stimuli, but required greater stimulation.  Notably, this study 

involved systemic administration, and the assessment of this data should be taken carefully 

because all regions of the brain were accessed by gap junction antagonists.  

A reduction of pleasure-seeking behavior by gap junction communication blockade also 

occurred in an experimental design reminiscent of Olds and Milner (1954) performed by 

Kokarovtseva and colleagues (2009),  Kokarovtseva et al. trained rats to press a lever to receive 

an electrical current in the hypothalamus. The hypothalamus, particularly the lateral region, 

when stimulated causes pleasure and feelings of reward through glutamatergic projections to 
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the VTA.  After training, the authors microinfused the non-selective gap junction blocker 

carbenoxolone (CBX) into the nucleus accumbens to investigate drug-seeking behavior.  Intra-

accumbens CBX reduced lever-pressing activity. Infusions of tetrodotoxin (TTX) also produced a 

similar decrease in lever-pressing behavior.  Kokarovtseva et al. theorized that blocking gap 

junctions reduces the level of neuronal excitability.  Additionally, as a control, CBX or TTX were 

infused into the motor cortex to examine the function of gap junctions in forelimb motor ability.  

No effect was found, indicating that the effects of CBX and TTX were reward-specific. 

The previous experiments demonstrated that blocking gap junction communication 

following training can decrease drug-seeking behavior.  In animals that have gone through a 

prolonged withdrawal from a drug, an opposite effect is observed. Bull and colleagues (2014) 

investigated gap junction communication in the nucleus accumbens of rats following three 

weeks of withdrawal from ethanol.  They demonstrated that after withdrawal, non-selective or 

astrocytic gap junction blockade caused an increase in lever pressing in ethanol-experienced 

rats compared to controls.  Neuronal gap junction blockade had no effect on lever pressing. 

Additionally, they demonstrated that selective Gαq-DREADDs activation of astrocytic 

intracellular calcium in the nucleus accumbens, decreased lever pressing after three weeks of 

abstinence.  Therefore, astrocytic, but not neuronal, gap junction communication is necessary 

for prevention of drug-seeking behavior following withdrawal.  Astrocytic calcium gap junction 

communication may be needed for decreasing drug-seeking behavior during periods of 

withdrawal within the nucleus accumbens to counter dysregulation of glutamate exchange 

between astrocytes and neurons (Kalivas 2009).  During withdrawal, insertion of calcium-

permeable AMPA receptors into the presynaptic membrane of nucleus accumbens neurons 
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occurs (Wolf & Tseng, 2012), as well as the addition of structural proteins such as actin and 

myosin to form new synapses.  These structural changes increase output from the nucleus 

accumbens and strengthen the drive to drug-seek. 
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Dissertation Goal and Aims 

The PL-mPFC and IL-mPFC underlie drug-associated memory retrieval and extinction of 

drug-seeking behavior, respectively.  Above, I have described how blockade of activity within 

these structures prevents the behavioral expression of drug seeking. Additionally, I have 

described how blockade of gap junction communication prevents behavioral expression of both 

addictive and non-addictive behaviors.  Thus, gap junction communication plays an important 

mechanistic role in memory processing.  

Although gap junction blockade disrupts addictive memories, the specific neuronal or 

astrocytic gap junction communication necessary for retrieval and extinction within the PL-

mPFC and IL-mPFC has remained unexplored.  Therefore, the overall goal of this dissertation 

was to investigate general, neuronal, or astrocytic gap junction communication in the retrieval 

and extinction of a cocaine CPP. This was addressed in the following two aims.  

Aim 1: Determine whether gap junction communication is a mechanism for memory retrieval 

and extinction of a cocaine CPP. Here I evaluated the behavioral effect of blocking general, 

neuronal, or astrocytic gap junction communications within PL-mPFC and IL-mPFC on retrieval 

and extinction of a cocaine CPP. We hypothesized that general or astrocyte specific gap junction 

blockade would prevent a net increase in available transmitter shared at the synapse thereby  

 

Aim 2: Evaluate PL-mPFC astrocytic calcium levels following general, neuronal, or astrocytic 

gap junction communication blockade. Next, using confocal microscopy I determined the 

underlying effects of the gap junction blockers used in Aim 1 on calcium levels in PL-mPFC 

astrocytes.  
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Methods 

Subjects 

Adult male Long-Evans rats weighing 275-300 grams were housed individually 

in clear plastic cages with access to standard laboratory rat chow (Harlan Laboratories) 

and water ad libitum unless otherwise noted.  Rats were maintained on a 14 hour 

light/10 hour dark cycle (lights on at 7am), and were weighed and handled daily. All 

experimental protocols were approved by the Institutional Animal Care and Use 

Committee at the University of Wisconsin-Milwaukee in accordance with National 

Institutes of Health guidelines. 

 

Methods: Aim 1 

Aim 1 was completed to determine the behavioral effect of general, neuronal, or astrocytic gap 

junction communication disruption within the PL-mPFC for retrieval (Aim 1a) and IL-mPFC for 

extinction (Aim 1b) of a cocaine CPP.   

 

Aim 1a: Retrieval of cocaine CPP 

Cannula surgery 

PL-mPFC cannula surgeries were performed to allow PL-mPFC gap junction blockade for 

retrieval of a cocaine CPP.  Rats were anesthetized with ketamine/xylazine (90 mg/kg, 10.5 

mg/kg, i.p.).  Following anesthetization, double-barrel guide cannula (26 gauge; Plastics One, 

Roanoke, VA) were implanted within PL-mPFC (AP, +2.9; ML, ±0.6; DV, -2.9 mm relative to 

bregma).  Cannula were fixed into place with 3 stainless steel skull screws and grip cement. 
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Following surgery, rats were treated with an antibiotic (penicillin g procaine, 75,000 units in 0.25 

ml, s.c.) and an analgesic (carprofen, 5.0 mg in 0.1 ml, s.c.).  Rats were given a minimum of 7 

days for recovery following surgeries, during which behavioral experiments were not  

conducted. Stylets remained within the guide cannula following surgery to maintain patency 

until microinfusions were performed. 

 

Drugs and microinfusions 

For conditioning, cocaine HCl (National Institute on Drug Abuse) was dissolved in sterile 

0.9% saline at a concentration of 10 mg/mL, and administered i.p. at a dose of 10 mg/kg.  PL-

mPFC infusions of vehicle (0.9% saline), the non-selective gap junction blocker carbenoxolone 

(CBX; 50 mM, Tocris), the neuron specific gap junction blocker quinine (100 uM, Tocris), or the 

astrocyte specific gap junction blocker IRL-1620 (0.1 uM, Tocris) were administered at 0.3 μl / 

side over a 2 minute time period. All drugs were dissolved into sterile 0.9% saline. Microinfusion 

injectors were then left in place for a minimum of 1 minute following microinfusions.  Doses of 

each gap junction blocker were based on previous studies (Blomstrand et al., 1999; Cruikshank 

et al., 2004; Sun et al., 2012). 

 

Place conditioning 

Place conditioning and testing was conducted in a 3-chamber apparatus that 

contained 2 distinguishable conditioning chambers (13” x 9” x 11.5”) which were separated 

by a smaller center chamber (6” x 7” x 11.5”).  One of the conditioning chambers had 

wire mesh flooring with white walls, whereas the other conditioning chamber had gold- grated 
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flooring with a black wall.  The smaller center chamber had aluminum sheeting as flooring and 

all white walls.  Each of the larger chambers contained two infrared photobeams separated by 

3”. If the beam furthest from the center chamber was broken, then the rat was determined to 

be in the larger chamber.  If only the beam closest to the center chamber was broken, then the 

rat was determined to be in the center chamber.  In addition, the total numbers of photobeam 

breaks were recorded during microinfusion trials to quantify locomotor activity. 

Baseline preferences were assessed by placing the rats into the center chamber with 

free access to the entire CPP apparatus for 15 minutes.  We previously demonstrated that rats 

spend equivalent time within the larger chambers before conditioning (Otis and Mueller, 2011).  

Thus, following baseline testing, rats were conditioned to associate one chamber, but not 

another, with cocaine in a counterbalanced fashion over 8 days. Injections of saline or cocaine 

were administered immediately before each 20 minute conditioning session, during which rats 

were confined to the appropriate chamber.  Following conditioning, microinfusion adaptation 

was performed by lowering injector tips 1.0 mm past the guide cannula for 2 minutes.  The 

following day, the same procedure took place, except that saline was infused (0.3 μl / side / 2 

min). These procedures allowed for the rats to adapt to mechanical stimulation and changes in 

cranial pressure that occured during microinfusions. 

 

Experimental manipulations 

For retrieval testing, rats were separated into one of four groups.  The vehicle group 

contained control animals that received vehicle (0.9% saline).  Group CBX received the non-

selective gap junction blocker carbenoxolone.  Group IRL-1620 received the astrocyte-specific 
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gap junction blocker IRL-1620. Group Quinine received the neuron-specific gap junction blocker 

quinine. Following conditioning and 10 minutes prior to the first CPP test, all groups received 

their respective drug manipulation.  During the CPP test, all animals had full access to all 

chambers for 15 minutes (Otis et al., 2013).  Additional drug-free daily CPP tests followed to 

determine if gap-junction blockade had any persistent effect on memory retrieval.  Animals 

continued to receive daily drug-free CPP tests until they reached extinction criterion of two 

consecutive days of no significant CPP. 

 

Alternative Strategies Implemented: Aim 1 

As described in the Alternative Strategies portion of the original proposal, different 

possibilities were described as to why the experiments proposed in Aim 1a would result in 

trends, but not significant differences in retrieval disruption.  Significant differences were 

observed within the original experiments proposed in Aim 1a, however additional retrieval 

experiments were performed following completion of the original experiments proposed in Aim 

1a.  

Additional Experiment 1: Restoration of GABAergic tone following neuronal gap junction 

blockade via quinine rescues normal CPP behavior  

Cannula surgery, drugs and microinfusions, place conditioning, and behavioral testing were all 

performed as described above with the exception of quinine (100 uM) and the potent 

GABAA receptor agonist muscimol (0.0001 uM, dose determined by Sajdyk et al., 2008 ) being 

co-infused prior to the first test trial.  
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 Additional Experiment 2: Preventing retrieval of CPP via blockade of astrocyte gap junctions 

with IRL-1620 in addition to blockade of astrocyte hemichannels with Gap19 

Gap junctions as described earlier are formed by two hemichannels contributed by each 

adjacent cell.  However, hemichannels do not always form gap junction channels and have been 

reported to be present in noncontacting membranes of astrocytes to allow intracellular-

extracellular communication (Ye et al., 2003).  These functional hemichannels have been shown 

to release ATP and glutamate (Orellana et al., 2011).  To decrease the net transmitter released 

by astrocytes during retrieval in the PL-mPFC we used the same cannula surgery, drugs, 

microinfusions, and place conditioning as described above with the exception of both Gap19 

(142 uM) and IRL-1620 (0.1uM) being co-infused prior to the first test trial. 

Additional Experiment 3: Preventing retrieval of established CPP via blockade of astrocyte gap 

junctions with IRL-1620 and blockade of astrocyte hemichannels with Gap19 

To test if retrieval of a CPP could be disrupted by Gap19 + IRL-1620 after a CPP had already been 

expressed we used the same cannula surgery, drugs, microinfusions, and place conditioning as 

described above with the exception of both Gap19 (142 uM) and IRL-1620 (0.1uM) being co-

infused prior to the second test trial after a CPP had been established in the first drug-free test 

trial. 
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Aim 1b: Extinction of cocaine CPP 

Cannula surgery 

Cannula surgeries were performed as described above, but double-barrel guide cannula 

(26 gauge; Plastics One, Roanoke, VA) were implanted within IL-mPFC (AP, +2.9; ML, ±0.6; DV, -

4.4 mm relative to bregma).  

Drugs and microinfusions 

For conditioning, cocaine HCl (National Institute on Drug Abuse) was dissolved in sterile 

0.9% saline at a concentration of 10 mg/mL, and administered i.p. at a dose of 10 mg/kg.  IL-

mPFC infusions of vehicle (0.9% saline), the non-selective gap junction blocker CBX (50 mM, 

Tocris), the neuron specific gap junction blocker quinine (100 uM, Tocris), or the astrocyte 

specific gap junction blocker IRL-1620 (0.1 uM, Tocris) were administered at 0.3 μl / side over a 

2 minute time period.  All drugs were dissolved in sterile 0.9% saline. Microinfusion injectors 

were left in place for a minimum of 1 minute following microinfusions. 

Place conditioning 

Place conditioning and testing were conducted as described in Aim 1a.  

Experimental manipulations 

For extinction testing, rats was separated into one of four groups.  The vehicle group 

contained control animals that received vehicle (0.9% saline).  Group CBX received the non-

selective gap junction blocker CBX.  Group IRL-1620 received the astrocyte specific gap junction 

blocker IRL-1620.  Group Quinine received the neuron specific gap junction blocker quinine.  

Following conditioning and 10 minutes prior to the first extinction test, all groups received their 

respective drug manipulation. During the CPP test, all animals had full access to all chambers for 
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30 minutes to accelerate extinction learning (Otis et al., 2014).  Additional drug-free daily 

extinction tests followed to determine if gap-junction blockade had any persistent effect on 

extinction learning.  Animals continued to receive daily drug-free CPP tests until they reached 

an extinction criterion of two consecutive days of no significant CPP. 

 

Behavior data analysis 

 Cocaine seeking was analyzed by comparing time spent between the cocaine, saline, and 

center chambers across trials and between groups using one-way ANOVAs for each individual 

day of testing.  If a significant effect of chamber was found, post-hoc Tukey’s Honestly Significant 

Difference (HSD) tests were used to compare the amount of time spent in the cocaine-paired 

versus the saline-paired chambers during the CPP trial. 
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Methods: Aim 2 

 Aim 2 was completed using confocal microscopy to determine the effects of the gap 

junction blockers used in Aim 1 on PL-mPFC astrocyte cytoplasmic calcium levels.  

 

Tissue preparation and removal for astrocyte identification   

 To image astrocyte morphology in vivo, a single intraperitoneal injection of the 

fluorescent dye sulforhodamine 101 (SR101; 100 mg/kg) was dissolved in saline and 

administered to the animal 40 minutes prior to sacrifice.  Astrocytes have been shown to 

selectively take up SR101 in vivo (Nimmerjahn et al., 2004; Appaix et al., 2012; Perez-Alvarez et 

al, 2013).  Although the mechanism of uptake is still unknown, there is evidence showing that 

metabolites such as glucose and sulforhodamine spread efficiently across astroglial networks 

through gap junctions present in the astrocytic membrane (Rouach et al., 2008).  Astrocyte 

staining were visualized 40–60 min after injection.  

For tissue removal rats were anesthetized with isoflurane, and brains were quickly 

removed and put into ice-cold (0-2°C) oxygenated (95% O2 / 5% CO2) artificial cerebral spinal 

fluid (aCSF) composed of the following (in mM): 124 NaCl, 2.8 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 

CaCl2, 26 NaHCO3, and 20 dextrose.  Coronal slices 300 μm thick containing prefrontal cortex 

were taken using a vibratome (Leica VT1200).  Slices were then allowed recover in continuously 

oxygenated warm aCSF (32°C) for approximately 30 minutes, followed by incubation in 

continuously oxygenated room temperature aCSF for 0.5-8 hours when not in use.   

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647290/#B35
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647290/#B3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647290/#B42
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Loading of astrocytes with calcium indicator 

To prepare the tissue for calcium visualization within astrocytes, brain slices labeled with 

SR101 were loaded with the fluorescent calcium indicator Fluo-4-AM. Fluo-4-AM was used in 

conjunction with SR101 for calcium imaging of astrocytes (Appaix et al., 2012; Perez-Alvarez et 

al, 2013).  

50 μg of Fluo-4-AM was added to 4.5 μl of fresh dimethyl sulfoxide (DMSO) and 4.5 μl of 

70000 MW of Dextran (to aid in locating the Fluo-4-AM injection site) and was then vortexed 

thoroughly.  Next we loaded a glass pipette with dye solution and lowered it to the surface of 

the slice above this field using a standard microelectrode holder.  We then slowly lowered the 

pipette to approximately 40 μm below the slice surface using a standard micromanipulator 

(Narishige) and applied back pressure to the pipette to eject 2 nl of Fluo-4-AM per injection into 

the PL-mPFC.  To ensure that a large number of astrocytes take up Fluo-4-AM, we injected a 

second and third Fluo-4-AM bolus short distances away, approximately 80-100 μm away from 

the first injection site, and repeated bolus injections at this site.  We then slowly retracted the 

pipette tip from the slice by raising the pipette back to the surface of the slice, made sure that 

the pipette was not clogged, and removed the pipette.  We then allowed 30 min before imaging 

for the astrocytes to take up the dye and for the background signal to diminish.  

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647290/#B3
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Experimental manipulations 

 Tissue slices loaded with SR101 and Fluo-4-AM were then separated into one of eight 

groups: 

1. Control (no gap junction blockade treatment) 

2. Treatment with 100 μM CBX for 5 min prior to scan 

3. Treatment with 0.1 μM IRL-1620 for 5 min prior to scan 

4. Treatment with 100 μM Quinine for 5 min prior to scan 

5. Treatment with 100 μM Norepinephrine (NE) for 2 min prior to scan 

6. Treatment with 100 μM CBX for 5 min then with 100 μM NE for 2 min prior to scan 

7. Treatment with 0.1 μM IRL-1620 for 5 min then with 100 μM NE for 2 min prior to scan 

8. Treatment with 100 μM Quinine for 5 min then with 100 μM NE for 2 min prior to scan 

NE can evoke calcium-induced calcium sharing between astrocytes (Salm & McCarthy, 1990; 

Duffy & MacVica, 1995).  All drugs were mixed into aCSF.  

 

Confocal microscopy, recording astrocytic calcium activity  

PL-mPFC Fluo-4-AM injection sites were visualized with differential interference contrast 

using a 60X water-immersion lens mounted on an Nikon C2 Scanning Confocal microscope 

(Nikon Instruments).  To set up the confocal microscope for imaging, we set the default values 

for each laser to a high photomultiplier setting, 1x gain and 0.5% laser output power.  We also 

applied a 1.5x zoom for better visualization of astrocytes.  Next we set the field resolution to 

512 x 512 pixels. SR101-fluorescence was detected through a bandpass filter of 503-548 nm for 
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the 488 nm laser. Fluo-4-AM-fluorescence was detected through a bandpass filter of 624-724 

nm for the 559 nm laser (see Figure 6). 

To record astrocyte calcium activity we drew boxes using the image acquisition NIS 

Elements Imaging Software over regions of interest (ROIs) within the cell, in this case over 

astrocyte cell bodies.  We then recorded fluorescence over time from the ROI.  Any increases in 

fluorescence over baseline indicated increases in cytoplasmic calcium concentration (Takahashi 

et al., 1999).  Tissue was scanned 200 times with each scan lasting 4.5 seconds over the course 

of 15 minutes.  Each individual scan measured and averaged the highest and lowest intensity of 

Fluo-4-AM intensity (mean intensity).  We also subtracted away background fluorescence from 

our ROI fluorescent value for each scan. The mean intensity value of each scan was taken for 

analysis.  

Analysis of astrocyte calcium activity 

 Since Fluo-4-AM naturally decays during exposure to the confocal laser, the mean 

intensity of each scan was compared to the initial scan. To normalize the data the initial scan 

mean was assigned the starting value of 100 and each subsequent scans value was calculated 

relative to the initial scan’s value of 100.  For example, if during the initial scan the mean 

intensity was 851.36 and received the starting value of 100, the second scan with a mean 

intensity of 848.85 was receive a value of 99.71.  Use of these calculations allowed all the 

different cells in the same treatment groups to be collectively analyzed and plotted over the 

course of the 200 scans.  Plotting data this way allowed a polynomial curve to be established for 

each tissue slice.  Next, using the Riemann sum formula (B1+B2)/2*(A2-A1) we were able to 

calculate the total area under the curve to provide a measure of the total amount of calcium 
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fluoresced over the entire 200 scans.  Using Riemann sum formula for example, if B1 represents 

scan number 1, B2 is scan number 2, A2 is mean intensity value of scan 2, and A1 is the mean 

intensity value scan 1.  You then continue to reapply this equation and subsequently B1 then 

represents the x-axis value of scan number 2, B2 is the x-axis value of scan number 3, A2 is 

mean intensity value of scan 3, and A1 is the mean intensity value scan 2.  We repeated this 

area under the curve equation for all 200 scans to establish a relative overall intensity value for 

each scan.  Finally, using ANOVA we were able to compare total areas under each curve for 

each treatment group. If a significant effect was found, post-hoc Tukey’s Honestly Significant 

Difference (HSD) tests will be used to identify which individual treatment group significantly 

differed from another.  
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Results 

Aim 1 

Memory retrieval of conditioned place preference 

Following conditioning, rats were given 15 minute CPP trials across days to examine both 

retrieval and retention of a cocaine-associated memory. We hypothesized that general gap 

junction or astrocytic gap junction blockade would prevent retrieval whereas neuronal gap 

junction blockade would not. PL-mPFC infusions (Figure 1) of vehicle, CBX (50 mM), IRL-1620 (.1 

uM), or quinine (100 uM) were administered prior to the first trial. PL-mPFC CBX or IRL-1620 

prevented CPP expression on the first and subsequent infusion-free trials whereas quinine 

prolonged CPP expression trials (Figure 1). Repeated measures ANOVA revealed a significant 

effect of chamber for vehicle (F2,22=30.14, p<0.05), carbenoxolone (F2,20=20.70, p<0.05), IRL-

1620 (F2,18=29.37, p<0.05), and quinine treatment (F2,18=23.06, p<0.05).  Post hoc analyses 

confirmed that vehicle, IRL-1620-treated, and quinine-treated groups expressed a CPP during 

the first trial (p < 0.05), whereas the CBX-treated group did not (p > 0.05).  On subsequent test 

trials 2 and 3, vehicle and quinine-treated groups continued to express a CPP (p < 0.05), 

whereas the CBX-treated group continued to express a CPP deficit (p > 0.05). Moreover, the IRL-

1620-treated group began to demonstrate a CPP deficit across trials (p > 0.05).  Overall, these 

data demonstrate that general and astrocyte-specific gap junction blockade prevents retrieval of 

a CPP, an effect that persists even in the absence of additional treatment.  

On trial 4, the vehicle, CBX-treated, and IRL-1620-treated groups expressed a CPP deficit 

(p > 0.05) whereas the quinine-treated group continued to express a CPP (p < 0.05).  Thus, 
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neuron-specific gap junction blockade in the PL-mPFC prolongs CPP expression. Additionally, 

during test trials 5 and 6, the quinine-treated group continued to express a CPP (p < 0.05), 

whereas the vehicle-treated group did not, thus further demonstrating that neuron-specific gap 

junction blockade in the PL-mPFC prolongs CPP expression.  For the CBX-treated and IRL-1620 

treated groups in test trials 5 and 6, a weak but significant CPP re-emerged (p < 0.05), 

suggesting that the CPP deficit in previous trials was somewhat transient. 
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Figure 1. PL-mPFC blockade of general or astrocyte-specific gap junctions prevent extinction of a 

cocaine-CPP. Left, Coronal drawings showing injector tip placements for vehicle (n = 11), CBX 

(n = 10), IRL-1620 (n = 9), and quinine (n = 10). White circle represents Vehicle, black circles 

represent experimental groups. Right, IL-mPFC infusions (arrows) of CBX or IRL-1620 but not 

quinine before the first CPP trial prevented extinction of the CPP. **p < 0.01, *p < 0.05. Error 

bars indicate SEM. 
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Following the observation that neuron-specific gap junction blockade with quinine in the 

PL-mPFC prolonged CPP expression across days, we hypothesized that a reintroduction of 

GABAergic tone would oppose this effect and promote extinction.  Following conditioning, rats 

were given 15 minute trials to test for CPP expression across days. As predicted, animals that 

received a PL-mPFC infusion of both the neuron-specific gap junction blocker quinine (100 uM) 

and the potent GABAA receptor agonist muscimol (.0001 uM) prior to the first trial showed 

similar drug-seeking and extinction behavior as control animals (Figure 3).  Repeated measures 

ANOVA revealed a significant effect of chamber for vehicle (F2,20=34.71, p<0.05) and quinine + 

muscimol groups (F2,18=29.95.06, p<0.05).  Post hoc analyses confirmed that vehicle and quinine 

+ muscimol-treated groups expressed a CPP during the first, second, and third trial (p < 0.05), 

but not during the fourth, fifth, and sixth trial (p > 0.05).  Thus, restoring GABAergic tone in the 

presence of neuron-specific gap junction blockade in the PL-mPFC restores normal drug-seeking 

behavior and extinction of the CPP. 
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Figure 2. PL-mPFC infusion of both neuron-specific gap junction blocker quinine and 

GABAA receptor agonist muscimol restores normal drug-seeking behavior and extinction of the 

CPP. Left, Coronal drawings showing injector tip placements for vehicle (n = 10) and quinine + 

muscimol (n = 9). White circle represents Vehicle, black circles represent experimental groups. 

Right, PL-mPFC infusions (arrows) of vehicle or quinine + muscimol before the first CPP trial 

resulted in similar retrieval and extinction of the CPP. ***p < 0.001, **p < 0.01, *p < 0.05. Error 

bars indicate SEM. 
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Gap junctions are formed by two hemichannels contributed by each adjacent cell.  

However, hemichannels do not always form gap junction channels and have been reported to 

be present in noncontacting membranes of astrocytes to allow intracellular-extracellular 

communication (Ye et al., 2003).  These functional unopposed hemichannels have been shown 

to release ATP and glutamate (Orellana et al., 2011).  Thus, we investigated if unopposed 

hemichannels affected drug-seeking behavior either independently or in conjunction with 

astrocyte-specific gap junctions.  We hypothesized that animals receiving the unopposed 

hemichannel blocker Gap19 would show similar retrieval blockade as the IRL-1620 animals from 

the second experiment (see Figure 2) and animals receiving both Gap19 and IRL-1620 would 

demonstrate a more persistent retrieval blockade than either group of animals independently 

treated with Gap19 or IRL-1620. 

Following conditioning, rats were given 15 minute trials to test for CPP expression across 

days.  Animals that received a PL-mPFC infusion of the unopposed hemichannel blocker Gap19 

(142 uM) alone prior to the first trial showed weaker but longer-lasting CPP expression across 

days.  Animals that received a PL-mPFC infusion of both Gap19 (142 uM) and IRL-1620 (0.1uM) 

showed a lack of CPP expression across days (Figure 4).  Repeated measures ANOVA revealed a 

significant effect of chamber for the vehicle (F2,20=34.22, p<0.05), Gap19 (F2,22=43.31, p<0.05), 

and Gap19 + IRL-1620 groups (F2,22=43.31, p<0.05).  Post hoc analyses confirmed that both the 

vehicle and Gap19 groups expressed a CPP during the first trial (p < 0.05).  The vehicle group 

then continued to express a CPP during the second and third trial (p < 0.05), but not during the 

fourth, fifth, and sixth trial (p > 0.05).  The Gap19 group continued to show a CPP during trial 

three and trial five (p < 0.05), but during trial two and trial four did not (p > 0.05).  The Gap19 + 
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IRL-1620 group did not express CPP on any trial, and post hoc analyses confirmed no 

significance in time spent between the cocaine-paired and saline-paired chamber (p > 0.05).  

Thus, blockade of either astrocyte-specific gap junctions (Figure 2) or astrocyte unopposed 

hemichannels in the PL-mPFC does not prevent initial retrieval of a CPP, but impairs subsequent 

CPP expression across days. Joint blockade of both astrocyte unopposed hemichannels and 

astrocyte-specific gap junctions in the PL-mPFC persistently blocks CPP expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

36 

 

 

 

 

 
 

Figure 3. PL-mPFC infusion of both unopposed hemichannel blocker Gap19 and astrocyte-

specific gap junction blocker IRL-1620 persistently disrupts retrieval of CPP. Left, Coronal 

drawings showing injector tip placements for vehicle (n = 10), Gap19 (n = 11), and Gap19 + Irl-

1620 treated animals (n = 11). White circle represents Vehicle, black circles represent 

experimental groups. Right, PL-mPFC infusions (arrows) of Gap19 + Irl-1620 before the first CPP 

trial persistently disrupts retrieval of CPP whereas infusions of vehicle or Gap19 does not.  **p < 

0.01, *p < 0.05. Error bars indicate SEM. 
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To test if retrieval of a CPP could be disrupted by Gap19 + IRL-1620 after a CPP had 

already been expressed, we next examined the effect of Gap19 + IRL-1620 on retrieval by 

microinfusion prior to the second trial after a CPP had already been expressed.  Following 

conditioning, all rats expressed a CPP for the previously cocaine-paired chamber during the first 

trial. PL-mPFC microinfusions of Gap19 + IRL-1620 (n=11), but not vehicle (n=9) before the 

second trial impaired expression of the CPP on that trial and all subsequent trials (Figure 5).  

Repeated measures ANOVA revealed an effect of chamber for both groups during the first trial 

(vehicle F2,22=24.07, p<0.05; Gap19 + IRL-1620, F2,18=19.27, p<0.05), and post hoc analyses 

confirmed that both groups spent significantly more time in the cocaine-paired chamber than 

the saline-paired chamber (p<0.05).  Following microinfusion of Gap19 + IRL-1620 or vehicle 

prior to the second trial, only the vehicle-treated rats spent significantly more time in the 

previously cocaine-paired chamber (effect of chamber: F2,22=16.44, p<0.05, post hoc p<0.05), 

whereas Gap19 + IRL-1620-treated rats spent an equivalent amount of time in all chambers 

(F2,18=4.11, p>0.05).  On subsequent infusion-free trials, vehicle-treated rats continued to spend 

significantly more time in the cocaine-paired chamber overall (effect of chamber: 

F2,22=7.61, p<0.05, post hoc p<0.05), whereas Gap19 + IRL-1620-treated rats spent an equivalent 

amount of time in all chambers (F2,18=1.18, p>0.05).  Therefore, Gap19 + IRL-1620 infusions into 

PL-mPFC disrupted the retrieval of a previously expressed CPP. 
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Figure 4. PL-mPFC infusion of both unopposed hemichannel blocker Gap19 and astrocyte-

specific gap junction blocker IRL-1620 disrupts retrieval of an established CPP. Left, Coronal 

drawings showing injector tip placements for vehicle (n = 9), Gap19 + IRL-1620 treated animals 

(n = 11). White circle represents Vehicle, black circles represent experimental groups.  Right, all 

rats expressed a CPP for the previously cocaine-paired chamber over the previously saline-

paired chamber during the first test trial. PL-mPFC infusions (arrows) of Gap19 + IRL-1620 but 

not vehicle before the second CPP trial prevented rats from expressing a CPP during the second 

trial and subsequent trials. ***p < 0.001, **p < 0.01, *p < 0.05. Error bars indicate SEM. 
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Extinction of conditioned place preference  

Following conditioning, rats were given longer 30 minute CPP trials that has been shown 

to promote extinction learning (Otis et al., 2014).  We hypothesized that general gap junction or 

astrocytic gap junction blockade would prevent extinction whereas neuronal gap junction 

blockade would not.  IL-mPFC infusions (Figure 1) of vehicle, CBX (50 mM), IRL-1620 (.1 uM), or 

quinine (100 uM) were administered prior to the first trial. IL-mPFC carbenoxolone or IRL-1620 

impaired extinction across days (Figure 5).  Repeated measures ANOVA revealed a significant 

effect of chamber for the vehicle (F2,22=18.45, p<0.05), carbenoxolone (F2,20=14.635, p<0.05), 

IRL-1620 (F2,20=11.78, p<0.05), and quinine groups (F2,20=17.39, p<0.05).  Post hoc analyses 

confirmed that all groups expressed a CPP during the first trial (p < 0.05). However, only 

carbenoxolone-treated and IRL-1620-treated rats expressed a CPP during subsequent trials (i.e., 

trials 2-4; p < 0.05), whereas vehicle-treated and quinine-treated rats did not (p > 0.05).  Thus, 

IL-mPFC general or astrocyte specific gap junction blockade impaired extinction of the CPP. 
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Figure 5. IL-mPFC blockade of general or astrocyte-specific gap junctions prevent extinction of a 

cocaine-CPP. Left, Coronal drawings showing injector tip placements for vehicle (n = 11), CBX 

(n = 10), IRL-1620 (n = 9), and quinine (n = 10). White circle represents Vehicle, black circles 

represent experimental groups.  Right, IL-mPFC infusions (arrows) of CBX or IRL-1620 but not 

quinine before the first CPP trial prevented extinction of the CPP. **p < 0.01, *p < 0.05. Error 

bars indicate SEM. 
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Aim 2 

 

PL-mPFC astrocytic calcium levels following general, neuronal, or astrocytic gap junction 

communication blockade was next investigated.  Following tissue removal and preparation of 

SR-101 and Fluo-4-AM (Figure 6), PL-mPFC tissue was treated with one of the following 

treatments: 

1. Control (no gap junction blockade treatment) - 6 animals, 7 slices, 26 cells. 

2. Treatment with 100 μM for 5 min prior to scan - 6 animals, 6 slices, 21 cells. 

3. Treatment with 0.1 μM IRL-1620 for 5 min prior to scan - 6 animals, 6 slices, 22 cells. 

4. Treatment with 100 μM Quinine for 5 min prior to scan - 6 animals, 6 slices, 20 cells. 

 

NE has previously been shown to evoke calcium-induced calcium sharing between 

astrocytes (Salm & McCarthy, 1990; Duffy & MacVica, 1995).  So we also tested to see if various 

gap junction blockade treatments would prevent NE evoked calcium-induced calcium rise in 

astrocytes. 

5. Treatment with 100 μM NE for 2 min prior to scan - 6 animals, 6 slices, 25 cells. 

6. Treatment with 100 μM CBX for 5 min then with 100 μM NE for 2 min prior to scan - 6 animals, 

6 slices, 18 cells. 

7. Treatment with 0.1 μM IRL-1620 for 5 min then with 100 μM NE for 2 min prior to scan - 6 

animals, 6 slices, 18 cells. 

8. Treatment with 100 μM Quinine for 5 min then with 100 μM NE for 2 min prior to scan - 6 

animals, 6 slices, 16 cells. 
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Following tissue removal, slices containing the PL-mPFC were prepared as described 

above. We hypothesized neuronal gap junction blockade or NE treatment would increase PL-

mPFC basal astrocyte cytoplasmic calcium levels whereas general gap junction or astrocytic gap 

junction blockade would not. Additionally, we hypothesized that tissue receiving NE treatment 

after neuronal gap junction blockade would increase PL-mPFC astrocyte cytoplasmic calcium 

levels whereas NE treatment after general gap junction blockade or astrocytic gap junction 

blockade would not. We observed that bath application of NE (Figure 7) or quinine (Figure 10) 

increased PL-mPFC basal astrocyte cytoplasmic calcium levels whereas bath application of CBX 

(Figure 8), or IRL-1620 (Figure 9) had no effect on PL-mPFC basal astrocyte cytoplasmic calcium 

levels. Additionally, CBX (Figure 11) or IRL-1620 (Figure 12) treatment prevented NE from 

increasing PL-mPFC astrocyte cytoplasmic calcium levels, whereas quinine (Figure 13) did not. 

ANOVA revealed an overall effect of group (F7,164=3.46, p<0.05) and post hoc analyses confirmed 

that the area under the curve (AUC) for the control group was significantly lower than the NE 

group AUC (ps<0.05), the quinine group AUC (ps<0.05), and the quinine + NE group AUC 

(ps<0.05).  Thus, NE or neuronal gap junction blockade via quinine increases cytoplasmic 

calcium levels in astrocytes. Additionally, the IRL 1620 + NE group AUC was significantly lower 

than the NE group AUC (ps<0.05). Thus, astrocyte-specific gap junction blockade via IRL-1620 

prevented the NE-induced increase of calcium levels. Overall, NE or neuronal gap junction 

blockade increases basal cytoplasmic calcium levels in PL-mPFC astrocytes and blocking 

astrocyte gap junctions can prevent NE-induced calcium level increases. 
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Figure 6. Imaging of PL-mPFC astrocytes using confocal microscopy.                                                              

Top left, At 40x magnification, astrocyte cell bodies were identified in red using SR-101 staining.     

Top right, Fluo-4-AM staining in green identified calcium.                            

Bottom left, Merged images show that Fluo-4-AM staining of calcium is co-localized within 

astrocyte cell bodies. 

Bottom right, Example ROI collection. 
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Discussion 

These studies aimed (1) to determine whether gap junction communication is a 

mechanism for memory retrieval and extinction of a cocaine CPP and (2) to evaluate PL-mPFC 

astrocytic calcium levels following general, neuronal, or astrocytic gap junction communication 

blockade.  

Results revealed that, within the PL-mPFC, general and astrocyte-specific gap junction 

blockade prevent retrieval of a CPP whereas neuronal-specific gap junction blockade prolonged 

drug-seeking behavior.  Additional behavioral experiments within the PL-mPFC revealed that 

restoring GABAergic tone in conjunction with blockade of neuronal-specific gap junctions 

restored normal memory retrieval and extinction of a CPP.  Furthermore, blocking unopposed 

astrocyte hemichannels in conjunction with astrocyte-specific gap junctions prevented initial 

and subsequent memory retrieval of a CPP, whereas blockade of just astrocyte gap junction or 

just unopposed astrocyte hemichannels did not.  Additionally, blocking PL-mPFC unopposed 

astrocyte hemichannels in conjunction with astrocyte-specific gap junctions prevented memory 

retrieval of a CPP after a CPP had been established.  Finally within aim 1, blockade of IL-mPFC 

general and astrocyte-specific, gap junctions prevented extinction of a CPP.   

In Aim 2, I examined the effects of the various gap junction blockers on calcium 

dynamics in PL-mPFC.  Neuronal-specific gap junction blockade increased cytoplasmic calcium 

levels in astrocytes, whereas astrocyte-specific gap junction blockade did not.  Furthermore, NE 

exposure induced an increase in cytoplasmic calcium levels in astrocytes, but pre-application of 

an astrocyte-specific gap junction blocker prevented the NE-induced rise.  In contrast, neuron-

specific gap junction blockade did not prevent the NE-induced rise in calcium levels in 
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astrocytes.  Taken together, astrocyte and neuronal gap junctions play differential roles in 

memory retrieval and extinction of a CPP and have opposing effects on basal and NE-induced 

calcium levels in PL-mPFC astrocytes.   

 

Aim 1 

 Data revealed that blocking PL-mPFC astrocyte specific gap junctions and unopposed 

hemichannels prevented memory retrieval of a CPP both during the initial and subsequent test 

trials.  Furthermore, data revealed that blocking PL-mPFC astrocyte specific gap junctions and 

unopposed hemichannels prevented memory retrieval of a CPP after a CPP had been 

established.  Previous data has shown that astrocyte gap junction communication influences 

neural activity (Parri et al., 2001). Additionally, blocking unopposed hemichannels in astrocytes 

decreases the release of glutamate and ATP (Ye et al., 2003) and decreases CA1 pyramidal 

neurons EPSC amplitudes in mice (Chever et al., 2014).  Our data further revealed that blockade 

of astrocyte gap junctions alone or unopposed astrocyte hemichannels alone did not prevent 

initial memory retrieval, but did prevent subsequent retrieval of a CPP.  Additionally, a return of 

a CPP was observed on test trial 6 for the astrocyte gap junction blockade animals even though 

during test trials 2-5, a CPP was not expressed.  Overall, our data support that astrocytes can 

communicate to other astrocytes and neurons to mediate cocaine-associated memory retrieval 

in PL-MFC. In fact, these data are the first to demonstrate that blocking both PL-mPFC astrocyte 

gap junction communication and unopposed astrocyte hemichannels can persistently prevent 

memory retrieval of a drug-associated memory.  Further investigation is necessary to determine 

the specific transmitters being released by astrocytes to neurons within the PL-mPFC to allow 
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memory retrieval to occur and what short and long term plasticity events can occur to cause a 

return of CPP expression following gap junction blockade.  

 PL-mPFC neuron-specific gap junction blockade prolonged drug-seeking behavior as 

compared to vehicle control.  Restoring PL-mPFC GABAergic tone in conjunction with blocking 

neuron-specific gap junctions restored animals to normal drug-seeking behavior comparable to 

controls.  Previous work has shown that GABAergic inhibitory interneurons selectively express 

Cx36 (Belluardo et al., 2000).  The application of quinine selectively blocks Cx36 (Cruikshank et 

al., 2004) and has been shown to increase spike frequency in CA3 recordings of guinea pig tissue 

slices (Yoshida et al., 1986). The authors proposed that quinine’s mechanism of action on neural 

activity was through blockade of an after-hyperpolarizing potassium channel (Yoshida et al., 

1986).  Overall, our data support the conclusion that blocking Cx36 in inhibitory interneurons 

leads to a decrease of inhibitory signal in local circuitry and a net increase in activity within a 

structural region of the brain.  

 PL-mPFC non-specific gap junction blockade prevented memory retrieval of a CPP on 

test trials 1-4, but caused a return of preference on test trials 5-6.  These data may be 

anomalous, or they may reflect the combined effects of astrocyte and neuron specific gap 

junction blockade.  The initial trials appear similar to those from the IRL-1620 group, whereas 

later trials appear similar to those from the quinine group during which the preference returns 

even after the control animals have extinguished their drug-seeking behavior.  CBX has been 

one of the most widely used non-selective gap junction blockers (Moradi et al., 2013; Chepkova 

et al., 2008; Schoenfeld et al., 2014) and has been shown to reduce neural activity (Tover et al., 

2009) impair LTP (Chepkova et al., 2008), and decrease diffusion of gap junction channel-
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permeable dye between astrocytes (Sun et al., 2012).  No other data are currently available 

showing the long-lasting effect of CBX on neuron or astrocyte activity, but CBX can washout 

during electrophysiological recordings after 30 min (Alvarex-Maubecin et al., 2000).  

Interestingly, it has been observed that CBX blocks unopposed astrocyte hemichannels in 

addition to being a non-selective gap junction blocker (Ye et al., 2003).  Thus, further study of 

CBX’s dynamics will be needed to determine the extent of effects on both neurons and 

astrocytes.  

 Results revealed that general or astrocyte-specific gap junction blockade in IL-mPFC 

prevented extinction learning whereas neuron-specific gap junction blockade accelerated 

extinction learning.  These results are similar to those found in the PL-mPFC behavioral studies, 

where general and astrocyte-specific gap junction blockade prevented the function of the PL-

mPFC whereas neuron specific gap junction blockade accelerated and had the opposite effect 

on the PL-mPFC.  Taken together, drug-associated retrieval and extinction memories can be 

impaired or strengthened by blocking specific gap junction activities, with astrocyte and 

neuronal gap junctions serving opposing roles in regions of the brain involved in memory 

retrieval and extinction of drug-seeking behavior. 

 

Aim 2 

Our data revealed that astrocyte gap junction blockade prevented a NE-induced increase 

in cytoplasmic calcium levels in astrocytes. NE can evoke a calcium increase within astrocytes 

(Salm & McCarthy, 1990).  In the absence of provoking conditions, spontaneous calcium activity 

in individual astrocytes does not spread among astrocytes as an intercellular calcium wave (Nett 

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020096#pbio-0020096-Nett1
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et al.2002).  In baseline conditions, the magnitude of correlated activity in nearby and distant 

astrocytes is quite similar (Hirase et al., 2004). 

Gap junction blockade does not render an astrocyte unable to release transmitter, which 

could explain why PL-mPFC IRL-1620 treated animals in aim 1 showed a significant preference 

on day 1 of testing.  Calcium and cAMP are active in SNARE-dependent merger of vesicles 

(Vardjan & Zorec, 2015) and calcium increases in a single astrocyte can lead to the release of 

transmitters like glutamate and ATP (Parpura et al., 1994).  Thus, for a single astrocyte to release 

its own transmitter, gap junction communication is not always necessary.  However, when gap 

junctions between astrocytes are open, calcium waves between astrocytes can lead to a much 

more unified release of transmitter from an ensemble of astrocytes that can then communicate 

to other nearby astrocytes and neurons.  For example, glutamate can induce astrocytic calcium 

waves (Innocenti et al., 2000) in addition to causing a calcium rise inside a single astrocyte.  

Once calcium waves begin, they can exhibit oscillatory behavior that can persist for periods of 

5–30 min at variable frequencies (10–110 mHz).  A direct correlation between glutamate 

concentration and the frequency of oscillations has also been observed. At low concentrations 

(below 1 μM), intracellular calcium transients are asynchronous and localized.  In contrast, at 

higher concentrations of glutamate (10–100 μM), calcium waves propagate over longer 

distances (Cornell-Bell et al., 1990).  Additionally, rhythmic oscillatory calcium waves can release 

trasnmitters in a unified manner that affect the local field potentials of neurons (Tewari & 

Parpura, 2015).  IRL-1620 decreases calcium wave propogation by roughly 80-90 percent in 

hippocampal and striatal astrocytes (Blomstrand et al., 1999).  Taken together our data suggests 

that blocking astrocyte gap junction communication with IRL-1620 prevents NE-induced 

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020096#pbio-0020096-Nett1
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oscillatory actions of calcium waves (Paukert et al., 2014; Salm & McCarthy, 1990). 

Because the astrocytic release of transmitters is slower than neuron communication, 

some theorize that the astrocytic system regulates homeostatic processes.  Astrocytic 

transmission thus models the endocrine system in that it is slower than the neuronal 

transmission but more widespread.  For example, when astrocytes connected to arterioles elicit 

calcium waves, there is an increase in the release of vasoactive compounds (Bezzi et al. 

1998).  This work supports the idea that astrocytes function to regulate local circulation 

according to the metabolic needs of neurons. 

PL-mPFC tissue exposed to the neuron-specific gap junction blocker quinine significantly 

increased cystolic calcium in astrocytes.  Our data from aim 1 revealed that increasing 

GABAergic tone within the PL-mPFC counteracts quinine’s effect of prolonging drug-seeking 

behavior.  These data offer evidence that a decrease in GABAergic tone on pyramidal neurons 

cause an increase in neuronal transmitter reléase that can trigger astrocytic calcium waves.  

Furthermore, co-localizing Cx36 mRNA with parvalbumin, a GABAergic interneuron marker, 

shows that GABAergic inhibitory interneurons express Cx36 (Belluardo et al., 2000) and quinine 

specifically blocks channel conductance of Cx36 (Cruikshank et al., 2004).  Other data suggest 

that quinine may have another mechanism to increase neuronal excitability.  Quinine increases 

the excitability of CA3 pyramidal neurons, possibly through blockade of an AHP – K+ channel 

(Yoshida et al., 1986).  This proposed mechanism is activated by protein kinase A (PKA; Liu et al. 

1999) and PKA is able to regulate AMPA receptor recruitment to the plasma membrane (Gomes 

et al., 2004) to further increase neuronal excitability.  

PL-mPFC tissue exposed to the general gap junction blocker CBX did not significantly 

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020096#pbio-0020096-Bezzi1
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020096#pbio-0020096-Bezzi1
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decrease cystolic calcium in astrocytes, as compared to tissue treated with NE.  We originally 

hypothesized that CBX would prevent a NE-induced increase in astrocyte cytoplasmic calcium 

similar to the IRL-1620 treated tissue based on previous findings that CBX reduces neural 

activity (Tover et al., 2009) impairs LTP (Chepkova et al., 2008), and decreases diffusion 

of gap junction channel-permeable dye between astrocytes (Sun et al., 2012).  Our data offers a 

possible explanation as to why CBX was unable to significantly decrease the cytoplasmic calcium 

levels in astrocytes. CBX blocks both astrocyte and neuron gap junctions, and our data reveal 

that quinine is able to significantly increase the cytoplasmic calcium levels in astrocytes 

compared to baseline/control readings.  A future experiment of applying both IRL-1620 and 

quinine could clarify if quinine is able to increase the cytoplasmic calcium levels in astrocytes 

while astrocyte gap junctions are closed.  

Another intriguing aspect of our data is that the animals in aim 1 who received CBX 

microinfusions into the PL-mPFC showed a retrieval deficit that was initially very prevalent, but 

turned out to not persist.  Since CBX can block both gap junctions and unopposed hemichannels 

in astrocytes, a possible explanation as to why CBX treated animals showed a strong initial 

retrieval deficit is the CBX treated animals were under similar conditions as the PL-mPFC IRL-

1920 + Gap19 group.  However, since neuron-specific gap junctions are blocked as well with 

CBX, this could explain why the PL-mPFC CBX animals in later trials displayed CPP after controls 

had extinguished, similar to the PL-mPFC quinine-treated animals.  Future experiments 

exploring CBXs long term effects on astrocytes and neurons would help clarify the length of time 

CBX is active and what plasticity triggering events follow. 
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Future Directions 

Gap junctions play a role in learning and memory, emotions and reward-related 

behavior, and even psychiatric and behavioral disorders, but the mechanisms are poorly 

understood. However, investigation of the behavioral impact of gap junctions has revealed that 

pharmacological blockade of gap junctions can impair the acquisition and expression of cued 

fear (Bissiere et al., 2011), bilateral hippocampus blockade of gap junctions with CBX can impair 

rats performance on a water maze (Hosseinzadeh et al., 2005), and post-acquisition infusions of 

the non-selective gap junction blocker 18-alpha-glycyrrhetinic acid can impair retention 

performance in a one-trial discrimination avoidance task in chicks (Verwey and Edwards, 2010). 

I have demonstrated that within the cocaine-associated memory paradigm of a 

conditioned place preference that general or astrocyte gap junction blockade decreases drug-

seeking behavior whereas neuronal gap junction blockade prolongs drug-seeking behavior. Gap 

junction blockade has been theorized to reduce the level of neuronal excitability (Kokarovtseva 

et al., 2013), however whether this is due to astrocytic and neuronal gap junction closure or just 

one specific type remains unclear. Whole cell patch clamp electrophysiology using the either 

IRL-1620 or quinine could determine which specific gap junction type mediates the effects 

observed with a general gap junction blocker such as CBX. Based on my results, I would predict 

that the application of IRL-1620 would decrease neuronal excitability whereas quinine would 

increase neuronal excitability. 

Evidence described here indicates that blocking astrocyte gap junctions prevents an 

increase in calcium levels within astrocytes. Because astrocytes release transmitters in a 

calcium-dependent manner, it would be interesting to see what short and long-term plasticity 
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events can occur within both astrocytes and neurons following prolonged gap junction 

blockade. The blockade of glutamate exchange between astrocytes and neurons increases and 

decreases vesicular glutamate release in pre-synaptic neurons. It also promotes AMPA receptor 

insertion in post-synaptic neurons during withdrawal (Kalivas 2009) but it not known if this is 

dependent on gap junction communication of astrocytes. Electrode recordings of extracellular 

levels of glutamate (Hu et al., 1994) and protein analysis of AMPA receptors (Brown et al., 2002) 

at various time points following IRL-1620 application could determine if astrocyte gap junctions 

influence neuronal plasticity. From the results gathered here, I predict that blocking astrocyte 

gap junctions will decrease extracellular glutamate levels and decrease AMPA receptor levels in 

neurons.  

 

Clinical Relevance 

 Previous work has demonstrated that gap junction dysfunction in the prefrontal cortex 

can induce depressive-like behaviors in rats (Sun et al., 2012). Following chronic unpredictable 

stress, animals exhibited significant decreases in diffusion of gap junction channel-permeable 

dye and expression of Cx43.  However, the cellular and behavioral alterations induced by the 

chronic unpredictable stress were reversed and/or blocked by treatment with the 

antidepressants fluoxetine and duloxetine. Beyond fluoxetine’s SSRI effect on depression, 

fluoxetine also has an anti-depressant effect by increasing expression of the vesicular glutamate 

transporter-1 (VGLUT1) in the PFC (Farley et al., 2012; Chen et al., 2014). However, it is not 

known if VGLUT1 expression is elevated in neurons and/or astrocytes. Therapeutically, targeting 

astrocytes or neurons can create a “chicken or egg” effect concerning which cell influences the 
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other, but further investigation could reveal a greater holistic view of antidepressants on both 

healthy gap junction and synaptic communication. Lastly, previous work from our lab has shown 

that blocking β-adrenergic receptors with specific and non-specific β-adrenergic blockers like 

propranolol or betaxolol can prevent retrieval of a CPP (Otis and Mueller, 2011; Otis et al., 2013, 

2014; Fitzgerald et al., 2016).  It would be interesting to investigate how β-adrenergic blockade 

also influences the communication between astrocyte and neuronal networks because 

astrocytes express a variety of Gq-coupled alpha adrenergic receptors (Cahoy et al., 2008), and 

exogenous norepinephrine triggers a rise in calcium in astrocytes (Salm and McCarthy, 1990) 

that can lead to SNARE-dependent merger of a vesicle membrane with the plasma membrane 

(Vardjan & Zorec, 2015).  

 

Conclusion 

These studies aimed (1) to determine whether gap junction communication is a 

mechanism for memory retrieval and extinction of a cocaine CPP and (2) to evaluate PL-mPFC 

astrocytic calcium levels following general, neuronal, or astrocytic gap junction communication 

blockade. Overall this dissertation provides evidence that both gap junction communication and 

the communication between astrocytes and neurons are both actively involved with memory. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080721/#R3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080721/#R27


 

 

62 

 

References 

Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cellular 

and Molecular Neurobiology 25:5–23. 

Allen K, Fuchs EC, Jaschonek H, Bannerman DM, Monyer H (2011) Gap junctions between 

interneurons are required for normal spatial coding in the hippocampus and short-term 

spatial memory. J Neurosci 31:6542–6552. 

Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, Garcia AG, et al (1999) Ca2+-

induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. 

J Cell Biol 144, 241–254. 

Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage 

of neural stem cells. Nat Rev Neurosci 2:287–293. 

Alvarex-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional 

coupling between neurons and glia. J Neurosci 11:4091-4098. 

Appaix F, Girod S, Boisseau S, Romer J, Vial JC, Albrieux M, et al (2012) Specific in vivo staining of 

astrocytes in the whole brain after intravenous injection of sulforhodamine dyes. PLoS 

ONE 7:e35169. 

Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from 

astrocytes. J Neurosci 20:666–673. 

Belluardo N, Trovato-Salinaro A, Mudò G, Hurd YL, Condorelli DF (1999) Structure, chromosomal 

localization, and brain expression of human Cx36 gene. J Neurosci Res 57: 740–752. 

Belluardo N, Mudò G, Trovato-Salinaro A, Le Gurun S, Charollais A, et al (2000) Expression of 

connexin36 in the adult and developing rat brain. Brain Res 865: 121–138. 

Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of 

behavioral state and state-dependent cognitive processes. Brain Res Rev 20042:33–84. 

 



 

 

63 

 

Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, et al. (1998) Prostaglandins stimulate calcium-

dependent glutamate release in astrocytes. Nature 391: 281–285. 

Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C (2004) Astrocytes contain a vesicular 

compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 

7:613-620. 

Bissiere S, Zelikowsky M, Ponnusamy R, Jacobs NS, Blair HT, Fanselow MS (2011) Electrical 

synapses control hippocampal contributions to fear learning and memory. Science 

331:87–91. 

Blomstrand F, Giaume C, Hansson E, Rönnbäck L (1999) Distinct pharmacological properties of 

ET-1 and ET-3 on astroglial gap junctions and Ca2+ signaling. Am J Physiol 277: C616–

C627. 

Bouton, ME (2000) A learning theory perspective on lapse, relapse, and the maintenance of 

behavior change. Health Psychol 19:57–63. 

Bouton, ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494. 

Brown KM, Wrathall JR, Yasuda RP, Wolfe BB (2002) Quantitative measurement of glutamate 

receptor subunit protein expression in the postnatal rat spinal cord. Brain Res Dev Brain 

res 137:127-133. 

Bruzzone R, Dermietzel R (2006) Structure and function of gap junctions in the developing brain. 

Cell Tissue Res. 326:239–248. 

Bull C, Freitas KC, Zou S, Poland RS, Syed WA, Urban DJ, et al (2014) Rat nucleus accumbens core 

astrocytes modulate reward and the motivation to self-administer ethanol after 

abstinence. Neuropsychopharmacology 39:2835–2845. 

Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al (2008) A 

transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource 

for understanding brain development and function. J Neurosci 28:264–78. 

 



 

 

64 

 

Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W, Wu X, Li Y, Bu B, Wang W, Duan S (2013) 

Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 

61:178-91. 

Chen JX, Yao LH, Xu BB, Qian K, Wang HL, Liu ZC, Wang XP, Wang GH (2014) Glutamate 

transporter 1-mediated antidepressant-like effect in a rat model of chronic 

unpredictable stress. J Huazhong Univ Sci Technolog Med Sci 6:838-44. 

Chepkova A, Sergeeva O, Haas H (2008) Carbenoxolone impairs LTP and blocks NMDA receptors 

in murine hippocampus. Neuropharmacology 55:139-147. 

Chever O, Lee C, Rouach N (2014) Astroglial connexin43 hemichannels tune basal excitatory 

synaptic transmission. J Neurosci 34:11228-11232. 

Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward 

and punishment in the ventral tegmental area. Nature 482:85–88. 

Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudò G (2000) Expression of Cx36 in mammalian 

neurons. Brain Res. Brain Res. Rev 32:72–85. 

Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 

27:393–418. 

Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of 

learned, but not innate, fears. J Neurosci 27:840-844. 

Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in 

cultured astrocytes: long-range glial signaling. Science 247: 470–473.  

Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block 

of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci U S A 

101:12364–9. 

Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in 

the central nervous system. I. Demonstration of monoamines in the cell bodies of brain 

stem neurons. Acta Physiol Scand Suppl 232:231-255. 



 

 

65 

 

Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. 

Davidson JS, Baumgarten IM (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of 

gap-junctional intercellular communication. Structure–activity relationships. J Pharmacol 

Exp Ther 246:1104–7. 

Davies DA, Greba Q, Howland JG (2013) GluN2B-containing NMDA receptors and AMPA 

receptors in medial prefrontal cortex are necessary for odor span in rats. Front Behav 

Neurosci 7:183. 

De Zeeuw CI, Chorev E, Devor A, Manor Y, Van der Giessen RS, de Jeu MT, Hoogenraad CC, 

Bijman J, Ruigrok TJ, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, 

Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y (2003) Deformation of 

network connectivity in the inferior olive of connexin 36-deficient mice is compensated 

by morphological and electrophysiological changes at the single neuron level. J Neurosci 

23:4700–4711. 

Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory 

networks in neocortex requires electrical synapses containing connexin36. Neuron 

31:477–485. 

Devauges V, Sara SJ (2003) Memory retrieval enhancement by locus coeruleus stimulation: 

evidence for mediation by beta-receptors. Behav Brain Res 43:93–97. 

Di Ciano P, Everitt BJ (2004) Direct interactions between the basolateral amygdala and nucleus 

accumbens core underlie cocaine-seeking behavior by rats. J Neurosci 24:7167–7173. 

Dobrowolski R, Willecke K (2009) Connexin-caused genetic diseases and corresponding mouse 

models. Antioxid Redox Signal 11:283–295. 

Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) 

Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 

35:3607-15.  

Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the 

hippocampal slice. J Neurosci 8:5535-50. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Do-Monte%20FH%5BAuthor%5D&cauthor=true&cauthor_uid=25716859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Manzano-Nieves%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25716859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Qui%C3%B1ones-Laracuente%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25716859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ramos-Medina%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25716859
http://www.ncbi.nlm.nih.gov/pubmed/?term=Quirk%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=25716859


 

 

66 

 

Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory 

and decision making. Neuron 76:1057–1070.  

Ezan P, André P, Cisternino S, Saubaméa B, Boulay AC, Doutremer S, Thomas MA, Quenech'du N, 

Giaume C, Cohen-Salmon M (2012) Deletion of astroglial connexins weakens the blood–

brain barrier. J Cereb Blood Flow Metab 32:1457–1467. 

Faiman CP, de Erausquin GA, Baratti CM (1992) Modulation of memory retrieval by pre-testing 

vasopressin: involvement of a central cholinergic nicotinic mechanism. Methods Find 

Exp Clin Pharmacol 14:607-613. 

Farley S, Dumas S, El Mestikawy S, Giros B (2012) Increased expression of the vesicular 

glutamate transporter-1 (VGLUT1) in the prefrontal cortex correlates with differential 

vulnerability to chronic stress in various mouse strains: effects of fluoxetine and MK-

801. Neuropharmacology 62:503–517. 

Fitzgerald MK, Otis JM, Mueller D. (2016) Dissociation of β1- and β2-adrenergic receptor 

subtypes in the retrieval of cocaine-associated memory. Behav Brain Res 296:94-99. 

Freitas RL, Salgado-Rohner CJ, Hallak JE, Crippa JA, Coimbra NC (2013) Involvement of prelimbic 

medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-

induced antinociception elicited by GABAA receptor blockade in the dorsomedial and 

ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor. Int. J. 

Neuropsychopharmacol 16:1781–1798. 

Frisch C, De Souza-Silva MA, Söhl G, Güldenagel M, Willecke K, Huston JP, Dere E. (2005) 

Stimulus complexity dependent memory impairment and changes in motor performance 

after deletion of the neuronal gap junction protein s36 in mice. Behav Brain Res 

157:177–185. 

Galarreta M, Hestrin SA (1999) Network of fast-spiking cells in the neocortex connected by 

electrical synapses. Nature 402:72–75. 

Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A (2007) Electrical coupling: novel 

mechanism for sleep–wake control. Sleep 30:1405–14. 



 

 

67 

 

Gass JT, Chandler LJ (2013). The plasticity of extinction: contribution of the prefrontal cortex in 

treating addiction through inhibitory learning. Front Psychiatry 4:46. 

Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory 

neurons in neocortex. Nature 402:75–79. 

Gilmartin MR, Kwapis JL, Helmstetter FJ (2013) NR2A- and NR2B-containing NMDA receptors in 

the prelimbic medial prefrontal cortex differentially mediate trace, delay, and contextual 

fear conditioning. Learn Mem 20:290–294. 

Gomes AR, Cunha P, Nuriya M, Faro CJ, Huganir RL, Pires EV, Carvalho AL, Duarte CB (2004) 

Metabotropic glutamate and dopamine receptors co-regulate AMPA receptor activity 

through PKA in cultured chick retinal neurones: effect on GluR4 phosphorylation and 

surface expression. J Neurochem 90:673–682. 

Gourine AV, Kasparov S (2011) Astrocytes as brain interoceptors. Exp Physiol 96:411–416. 

Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, et al (2010) Astrocytes control 

breathing through pH-dependent release of ATP. Science 329:571–575. 

Groblewski PA, Ryabinin AE, Cunningham CL (2012) Activation and role of the medial prefrontal 

cortex (mPFC) in extinction of ethanol-induced associative learning in mice. Neurobiol 

Learn Mem 97:37–46. 

Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Sohl G, et al (2001) Visual 

transmission deficits in mice with targeted disruption of the gap junction gene 

connexin36. J Neurosci 21:6036–6044. 

Gulisano M, Parenti R, Spinella F, Cicirata F (2000) Cx36 is dynamically expressed during early 

development of mouse brain and nervous system. NeuroReport 11:3823–3828. 

Hartfield EM, Rinaldi F, Glover CP, Wong LF, Caldwell MA, Uney JB (2011) Connexin 36 

expression regulates neuronal differentiation from neural progenitor cells. PLoS ONE 

6:e14746. 

Haydon PG, Nedergaard M (2014) How do astrocytes participate in neural plasticity? Cold Spring 

Harb Perspect Biol 7:a020438. 



 

 

68 

 

He YY, Xue YX, Wang JS, Fang Q, Liu JF, Xue LF, Lu L (2011) PKMzeta maintains drug reward and 

aversion memory in the basolateral amygdala and extinction memory in the infralimbic 

cortex. Neuropsychopharmacology 36:1972–1981. 

Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long term potentiation depends on 

release of D-serine from astrocytes. Nature 463:232-236. 

Hirase H, Qian L, Barthó P, Buzsáki G (2004) Calcium dynamics of cortical astrocytic networks in 

vivo. PLoS Biol. 2:E96. 

Hu Y, Mitchell KM, Albahadily FN, Michaelis EK, Wilson GS (1994) Direct measurement of 

glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain 

Res 659:117-125. 

Huckstepp RTR, Id Bihi R, Eason R, Spyer KM, Dicke N, Willecke K, et al (2010) Connexin 

hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata 

contributes to central respiratory chemosensitivity. J Physiol 588:3901–3920. 

Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during 

calcium signaling in cultured astrocytes. J Neurosci 20:1800–1808. 

Jourdain P, Bergersen LH, Bhaukaurally, K, Bezzi P, Santello M (2007) Glutamate exocytosis from 

astrocytes controls synaptic strength. Nat Neurosci 10:331-39. 

Juszczak GR, Swiergiel AH (2009) Properties of gap junction blockers and their behavioural, 

cognitive and electrophysiological effects: animal and human studies. Prog 

Neuropsychopharm Biol Psych 33:181–198. 

Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci  

10:561–572. 

Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental 

area as a result of exposure to drugs of abuse. Ann Rev Physiology 66:447–475. 

Kim EJ, Kim N, Kim HT, Choi JS (2013) The prelimbic cortex is critical for context-dependent fear 

expression. Front Behav Neurosci 7:73. 



 

 

69 

 

Knackstedt, LA, Moussawi K, LaLumiere R, Schwendt M, Klugmann M, Kalivas PW (2010) 

Extinction training after cocaine self-administration induces glutamatergic plasticity to 

inhibit cocaine seeking. J Neurosci 30:7984–7992. 

Kokarovtseva L, Jaciw-Zurakiwsky T, Mendizabal Arbocco R, Frantseva MV, Perez Velazquez JL 

(2009) Excitability and gap junction-mediated mechanisms in nucleus accumbens 

regulate self-stimulation reward in rats. Neuroscience 159:1257–1263. 

Kosaka T, Hama K (1985) Gap junctions between non-pyramidal cell dendrites in the rat 

hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study. J 

Comp Neurol 231:150–161. 

Kumar NM, Gilula NB (1996) The gap junction review communication channel. Cell 84:381–388. 

LaLumiere RT, Niehoff KE, Kalivas PW (2010) The infralimbic cortex regulates the consolidation 

of extinction after cocaine self-administration. Learn Mem, 17:168–175. 

Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW. Electrical synapses in the 

thalamic reticular nucleus. J Neurosci. 2002;22:1002–1009. 

Lassen MB, Brown JE, Stobbs SH, Gunderson SH, Maes L, Valenzuela CF, et al (2007) Brain 

stimulation reward is integrated by a network of electrically coupled GABA neurons. 

Brain Res 1156:46–58. 

Liu H, Moczydlowski E, Haddad GG (1999) O2 deprivation inhibits Ca2+-activated K+ channels via 

cytosolic factors in mice neocortical neurons. J Clin Invest 104: 577–588.  

Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–11. 

McCracken CB, Roberts DC (2006) Neuronal GAP junctions: expression, function, and 

implications for behavior. Int Rev Neurobiol 73:125–51. 

Miguel-Hidalgo J, Shoyama Y, Wanzo V (2009) Infusion of gliotoxins or a gap junction blocker in 

the prelimbic cortex increases alcohol preference in Wistar rats. J Psychopharmacol 

23:550–557. 

 



 

 

70 

 

Mogami H, Tepikin AV, Petersen OH (1998) Termination of cytosolic Ca2+ signals: Ca2+ reuptake 

into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. 

Embo Journal 17:435–442. 

Moradi S, Mohammad C, Ghvimi H, Motahari R, Ghaderi M, Hassanzadeh K (2013) Gap junction 

blockers: a potential approach to attenuate morphine withdrawal symptoms. J 

Biomedical Science 20:177-187. 

Mueller D, Stewart J (2000) Cocaine-induced conditioned place preference: reinstatement by 

priming injections of cocaine after extinction. Behav Brain Res 115:39–47. 

Mv, Lenhossek, (1891) Zur Kenntnis der Neuroglia des menschlichen Ruckenmarkes. Verh. Anat 

Ges 5:193-221.  

Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the 

functional architecture of the brain. Trends Neurosci 26:523–530. 

Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium 

oscillations that occur independent of neuronal activity. J Neurophysiol 87: 528–537. 

Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847. 

Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker 

of astroglia in the neocortex in vivo. Nat Methods 1:31–37. 

Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area 

and other regions of rat brain. J Comp Physiol Psychol 47:419–427. 

Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, et al. (2011a)  ATP and glutamate 

released via astroglial connexin 43 hemichannels mediate neuronal death through 

activation of pannexin 1 hemichannels. J Neurochem 118:826–840. 

Otis JM, Dashew KB, Mueller D (2013) Neurobiological dissociation of retrieval and 

reconsolidation of cocaine-associated memory. J Neurosci 33:1271-81. 



 

 

71 

 

Otis JM, Fitzgerald MK, Mueller D (2014) Inhibition of hippocampal beta-adrenergic receptors 

impairs retrieval but not reconsolidation of cocaine-associated memory and prevents 

subsequent reinstatement. Neuropsychopharmacology 39:303–310. 

Otis JM, Mueller D (2011) Inhibition of b-adrenergic receptors induces a persistent deficit in 

retrieval of a cocaine-associated memory providing protection against reinstatement. 

Neuropsychopharmacology 36:1912–1920. 

Palacios-Prado N, Chapuis S, Panjkovich A, Fregeac J, Nagy JI, Bukauskas FF (2014) Molecular 

determinants of magnesium-dependent synaptic plasticity at electrical synapses formed 

by connexin36. Nat Commun 5:4667. 

Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: 

from synapse to behavior. Trends Neurosci 36:405–417. 

Pannasch U, Vargova´ L, Reingruber J, Ezan P, Holcman D, Giaume C, Sykova´ E, Rouach N (2011) 

Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 

108:8467– 8472. 

Parpura V, Barsarsky TA, Liu F, Jeftinija K, Jeftinija S, & Haydon PG (1994) Glutamate-mediated 

astrocyte-neuron signaling. Nature 369: 744-47. 

Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic calcium oscillations in situ drive 

NMDAR-mediated neuronal excitation. Nat Neurosci 8:803-12. 

Pattwell SS, Bath KG, Perez-Castro R, Lee FS, Chao MV, Ninan I (2012) The BDNF Val66Met 

polymorphism impairs synaptic transmission and plasticity in the infralimbic medial 

prefrontal cortex. J Neurosci 32:2410-2421. 

Pedarzani P, Storm JF (1993) PKA mediates the effects of monoamine transmitters on the K+ 

current underlying the slow spike frequency adaptation in hippocampal 

neurons. Neuron. 11:1023–1035. 

Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434. 

Perez-Alvarez A, Araque A, Martin ED (2013) Confocal microscopy for astrocyte in vivo imaging: 

recycle and reuse in microscopy. Front Cell Neurosci 7:5. 



 

 

72 

 

Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for 

inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053. 

Pfrieger FW (2009) Roles of glial cells in synapse development. Cell Mol Life Sci 66:662037–

2047. 

Pirttimaki TM, Hall SD, Parri HR (2011) Sustained neuronal activity generated by glial plasticity. J 

Neurosci 31: 7637-47. 

Postma F, Liu CH, Dietsche C, Khan M, Lee HK, et al (2011) Electrical synapses formed by 

connexin36 regulate inhibition- and experience-dependent plasticity. Proc Natl Acad Sci 

U S A 108: 13770–1377. 

Rodriguez  WA, Phillips MY, Rodriguez SB, Martinez Jr. JL (1993) Cocaine administration prior to 

reactivation facilitates later acquisition of an avoidance response in rats. 

Psychopharmacology (Berl) 112:366–370. 

Sajdyk T, Johnson P, Fitz S, Shekhar A (2008) Chronic inhibition of GABA synthesis in the bed 

nucleus of the stria terminalis elicits anxiety-like behavior. J Psychopharmacol 6:633-41. 

Salm AK, McCarthy KD (1990) Norepinephrine-evoked calcium transients in cultured cerebral 

type 1 astroglia. Glia 6:529-38. 

Sara SJ (1985) Noradrenergic modulation of selective attention: its role in memory retrieval. Ann 

N Y Acad Sci 444:178-193. 

Sara SJ, Devauges V (1989) Idazoxan, an alpha-2 antagonist, facilitates memory retrieval in the 

rat. Behav Neural Biol 5:401-411. 

Sara SJ, Deweer B (1982) Memory retrieval enhanced by amphetamine after a long retention 

interval. Behav Neural Biol 36:146-160. 

Schoenfeld TJ, Kloth AD, Hsueh B, Runkle MB, Kane GA, Wang SS, Gould E (2014) Gap junctions 

in the ventral hippocampal-medial prefrontal pathway are involved in anxiety 

regulation. J Neurosci 34:15679-99. 

 



 

 

73 

 

Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 

57:87–115. 

Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, et al (2007) Glial Nax channels 

control lactate signaling to neurons for brain [Na+] sensing. Neuron 54:59–72. 

Sloper JJ, Powell TP (1978) Gap junctions between dendrites and somata of neurons in the 

primate sensori-motor cortex. Proc R Soc Lond B Biol Sci 203:39–47. 

Sohl G, Odermatt B, Maxeiner S, Degen J, Willecke K (2004) New insights into the expression 

and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res 

Rev 47:245–59. 

Solan JL, Lampe PD (2008) Connexin 43 in LA-25 cells with active v-src is phosphorylated on 

Y247, Y265, S262, S279/282, and S368 via multiple signaling pathways. Cell Commun 

Adhes 15:75–84. 

Solovyova N, Verkhratsky A (2002) Monitoring of free calcium in the neuronal endoplasmic 

reticulum: an overview of modern approaches. J Neurosci Methods 122:1–12. 

Sotelo C, Korn H (1978) Morphological correlates of electrical and other interactions through 

low-resistance pathways between neurons of the vertebrate central nervous system. 

Intern Rev Cytol, 55:67–107. 

Srinivas M, Hopperstad MG, Spray DC (2001) Quinine blocks specific gap junctions channel 

subtypes. Proc Natl Acad Sci 98:10942–10947. 

Sun JD, Liu Y, Yuan YH, Li J, Chen NH (2012) Gap junction dysfunction in the prefrontal cortex 

induces depressive-like behaviors in rats. Neuropsychopharmacology 37:1305–1320. 

Sutton MA, Schmidt EF, Choi KH, Schad CA, Whisler K, Simmons D, et al (2003) Extinction-

induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 

421:70–75. 

Szabadics J, Lorincz A, Tamás G (2001) Beta and gamma frequency synchronization by dendritic 

GABAergic synapses and gap junctions in a network of cortical interneurons. The J 

Neurosci 21:5824–5831. 



 

 

74 

 

Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. 

Physiol Rev 79:1089-1125. 

Tamás G, Buhl EH, Lörincz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap 

junctions synchronize cortical interneurons. Nat Neurosci 3:366–371. 

Tewari SG, Parpura V (2015) Astrocytes modulate local field potential rhythm. Front Inter 

Neurosci 9:69. 

Tobena A, Fernandez-Teruel A, Escorihuela RM, Nunez JF, Zapata A, Ferre P, et al (1993) Limits of 

habituation and extinction: implications for relapse prevention programs in addictions. 

Drug Alcohol Depend 32:209–217. 

Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, et al (2014) Astrocyte Kir4.1 ion channel deficits 

contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 

17:694–703. 

Tover KR, Maher BJ, Westbrook GL (2009) Direct actions of carbenoxolone on synaptic 

transmission and neuronal membrane properties. J Neurophysiol 102:974-978.  

Vardjan N, Zorec R (2015) Excitable astrocytes: calcium and cAMP-regulated exocytosis. 

Neurochem Res 12:2414-24. 

Verkhratsky A, Kettenmann, H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–

352. 

Volterra A, Bezzi P (2002) Chapter 13: Release of transmitters from glial cells. The Tripartite 

Synapse: Glia in Synaptic Transmission, Oxford University Press 164–184. 

Wang Y, Belousov AB (2011) Deletion of neuronal gap junction protein connexin 36 impairs 

hippocampal LTP. Neurosci Lett 502:30–32. 

Wells AM, Lasseter HC, Xie X, Cowhey KE, Reittinger AM, Fuchs, RA (2011) Interaction between 

the basolateral amygdala and dorsal hippocampus is critical for cocaine memory 

reconsolidation and subsequent drug context-induced cocaine-seeking behavior in rats. 

Learn Mem 18:693–702. 



 

 

75 

 

Wolf ME, Tseng KY (2012) Calcium-permeable AMPA receptors in the VTA and nucleus 

accumbens after cocaine exposure: when, how, and why? Front Mol Neurosci 5:72. 

Yamaoto T, Vukelic J, Hertzberg EL, Nagy JI (1992) Differential anatomical and cellular patterns of 

connexin43 expression during postnatal development of rat brain. Brain Res Dev Brain 

Res 66:165–180. 

Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a 

novel mechanism of glutamate release. J Neurosci 23: 3588–3596. 

Yeager M (1998) Structure of cardiac gap junction intercellular channels. J Struct Biol 121:231–

245. 

Yoshida S, Fujimura K, Matsuda Y (1986) Effects of quinidine and quinine on the excitability of 

pyramidal neurons in guinea-pig hippocampal slices. Pflugers Arch 5:544-6. 

Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N (2004) Fusion-related release of glutamate from 

astrocytes. J Biol Chem 279:12724-33. 

Zoidl G., Dermietzel R. (2010) Gap junctions in inherited human disease. Pflugers Arch 460:451–

466. 

 

 

 

 

 

 

 

 

 

 



 

 

76 

 

Michael Kim Fitzgerald 

University of Wisconsin-Milwaukee 
 

 

Education: 
 

Undergraduate:  

Winona State University, BA Psychology 

 

Graduate: 
University of Wisconsin – Milwaukee, MS Psychology  
 

 

Awards: 
Ardis Serafin Young Scholar Award (2011) 
UW – Milwaukee Department of Psychology Summer Research Fellowship (2015) 
 

Publications   

Fitzgerald MK, Otis JM, Mueller D. (2016). Dissociation of β1- and β2-adrenergic receptor 

subtypes in the retrieval of cocaine-associated memory. Behavioural Brain Research. 296:94-9 

Otis JM, Fitzgerald MK, Mueller D. (2014). Infralimbic BDNF/TrkB enhancement of GluN2B 
currents facilitates extinction of a cocaine conditioned place preference. Journal of 
Neuroscience. 34(17):6057-64. 

Otis JM, Fitzgerald MK, Mueller D. Inhibition of Hippocampal β-Adrenergic Receptors Impairs 
Retrieval But Not Reconsolidation of Cocaine-Associated Memory and Prevents Subsequent 
Reinstatement. Neuropsychopharmacology. 2014 Jan;39(2):303-10. 
 

Acknowledgement in JM Otis, Dashew, KB, Mueller, D. (2013) Neurobiological dissociation of 
retrieval and reconsolidation of cocaine-associated memory. Journal of Neuroscience. 
33(3):1271-81 

 

Holden JM, Fitzgerald M, Bussell G, Ehlers V. (2011) Triadimefon supports conditioned cue 
preference. Behavioural Brain Research. 221,1,1,307–310 

 

Posters  

Fitzgerald MK, Otis JM, Drake MA, Burkard JL, Mueller D. (2014) Inhibition of PKA signaling 
in the prelimbic cortex persistently disrupts retrieval of a cocaine-associated memory and 
prevents subsequent reinstatement. Poster session presented at Society for Neuroscience, 
Washington DC. 

Otis JM, Fitzgerald MK, Mueller D. (2013) Hippocampal β-adrenergic receptor blockade impairs 
retrieval but not reconsolidation of a cocaine-associated memory.Poster session presented at 

http://www.ncbi.nlm.nih.gov/pubmed/23907403
http://www.ncbi.nlm.nih.gov/pubmed/23907403
http://www.ncbi.nlm.nih.gov/pubmed/23907403
http://www.ncbi.nlm.nih.gov/pubmed?term=Holden%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=21396967
http://www.ncbi.nlm.nih.gov/pubmed?term=Fitzgerald%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21396967
http://www.ncbi.nlm.nih.gov/pubmed?term=Bussell%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21396967
http://www.ncbi.nlm.nih.gov/pubmed?term=Ehlers%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21396967
http://www.sciencedirect.com/science/journal/01664328
http://www.sciencedirect.com/science/journal/01664328/221/1


 

 

77 

 

Society for Neuroscience, San Diego CA. 

Otis JM, Fitzgerald MK, Mueller D. (2013) Hippocampal β-adrenergic receptor blockade impairs 
retrieval but not reconsolidation of a cocaine-associated memory. Poster session presented at 
Society for Neuroscience, San Diego CA. 
 

Lenz A, Fitzgerald M, and Holden JM (2013) Effects of triadimefon on mouse light-dark 
performance in Swiss Webster mice. Poster session presented at Seven Rivers Conference, La 
Crosse, WI. 
 

Otis JM, Fitzgerald MK, Dashew, KB, Mueller, D. (2012) Infralimbic BDNF and TrkB signaling 
enhances extinction of cocaine seeking. Poster session presented at SfN, New Orleans 

 

Doncheck EM, Fitzgerald MK, Ruder SA, Mueller D. (2012) Acquisition and extinction of 
cocaine-seeking behavior regulate brain expression of basic fibroblast growth factor. Poster 
session presented at SfN, New Orleans  

Holden JM, Fitzgerald M, Bussell G, Ehlers V. (2010) Triadimefon supports conditioned cue 

preference. Poster session presented at Seven Rivers Conference, La Crosse, WI.  

Fitzgerald M, Glavinovich N, Howes N, Kryzyzanowski B. (2010) Drug Survey: Is a Synthetic 
Cannabinoid (JWH018) Creating a New Trend? Poster session presented at Tristate Conference, 
Cedar Rapids, IA 

 

 

Presentations  

M. Fitzgerald (2014) Involvement of β-adrenergic receptor signaling in retrieval of a cocaine-
associated memory. Oral session presented at UW – Milwaukee Neuroseminar Series, 
Milwaukee WI. 

M. Fitzgerald (2013) Dissociation of B1 and B2 Adrenergic Receptor Subtypes in Retrieval and 
Reconsolidation of a Cocaine Conditioned Place Preference Oral session presented at UW – 
Milwaukee Neuroseminar Series, Milwaukee WI. 

M. Fitzgerald (2011) The Engram Found, Is it in the Astrocytes? Oral session presented at 
Midbrains Conference, Northfield, MN. 
 

 

Teaching experience: 
 

Supplemental Instructor for Anatomy & Physiology, Semester II 2008-2009 Supplemental 
Instructor for Anatomy & Physiology, Semester I 2009-2010 

Supplemental Instructor for Brain & Behavior, Semester II 2009-2010 

Supplemental Instructor for Brain & Behavior, Semester I 2010-2011 

Supplemental Instructor for History of Psychology Semester II 2010-2011 

http://www.ncbi.nlm.nih.gov/pubmed?term=Holden%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=21396967
http://www.ncbi.nlm.nih.gov/pubmed?term=Fitzgerald%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21396967
http://www.ncbi.nlm.nih.gov/pubmed?term=Bussell%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21396967
http://www.ncbi.nlm.nih.gov/pubmed?term=Ehlers%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21396967


 

 

78 

 

TA for Introduction Psych 101, Semester I 2011-2012 

TA for Introduction Psych 101, Semester II 2011-2012 

TA for Personality, Semester I 2012-2013 

TA for Personality, Semester II 2012-2013 

TA for Psychopharmacology, Semester I 2013-2014 

TA for Physiological Psychology, Semester II 2013-2014 

Associate Lecturer for Behavioral Neuroscience, Semester II 2014-2015 

Associate Lecturer for Behavioral Neuroscience, Semester I 2015-2016 

Associate Lecturer for Behavioral Neuroscience, Semester II 2015-2016 

Adjunct Professor for General Psychology, Semester II 2015-2016 

 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2016

	Gap Junction Communication in Memory Retrieval and Extinction of Cocaine Seeking
	Michael Fitzgerald
	Recommended Citation


	tmp.1466706968.pdf.ZeVMW

