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ABSTRACT 

APOAEQUORIN DIFFERENTIALLY MODULATES FEAR CONDITIONING IN ADULT 
AND AGED RATS 

 

by 

 

Vanessa L. Ehlers 

 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor James R. Moyer, Jr. 

 

 Normal aging is associated with a number of changes in behavioral and cellular function, 

and is often linked to increased susceptibility to cognitive impairment. The hippocampus has 

been widely implicated in learning and memory, and many forms of learning that are 

hippocampus-dependent (e.g. trace fear conditioning) are impaired in aged animals. A proposed 

contributor to aging-related cognitive impairment is aging-related calcium (Ca2+) dysregulation. 

This dysregulation is thought to result from changes in specific Ca2+-regulatory mechanisms, 

including abnormal Ca2+ ion channel activity or expression, as well as reduced Ca2+-binding 

protein (CaBP) expression, which is associated with cognitive and synaptic impairment. Previous 

data from our lab indicate that a single hippocampal infusion of the CaBP apoaequorin (AQ) is 

neuroprotective in the event of an ischemic insult, a process characterized by Ca2+-induced 

excitotoxicity. However, the effect of AQ on fear memory in adult and aged animals has yet to 

be examined. The current experiments investigate the effect of AQ infusion on trace fear 

conditioning in adult and aged rats. We firstly demonstrate that a single infusion of AQ 24 h 

before trace fear acquisition fails to rescue an aging-related trace fear memory deficit. Second, 

we found that AQ infusion 1 h prior to trace fear acquisition reduces baseline freezing during a 

cue test in a novel context, suggesting pre-training AQ infusion may mitigate context fear 
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generalization. Furthermore, AQ infusion 1 h prior to trace fear acquisition and 1 h prior to 

testing results in a reversal of aging-related context fear memory impairment. The results of 

these studies suggest a possible role for AQ in modifying cognitive function in adult and aged 

rats. 
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Introduction 

Normal aging versus aging-related neurodegeneration 

While aging is associated with increased risk of developing neurodegenerative diseases, 

including Alzheimer’s (AD), the neurobiological changes that accompany normal aging are 

distinct from neurodegenerative pathology. Despite early work that indicated substantial aging-

related neuron loss in the absence of AD, review of this work uncovered a number of 

methodological confounds that likely contributed to these findings (Coleman & Flood, 1987) and 

the evidence suggesting normal aging is accompanied by a reduction in neuron number is no 

longer accurate (for review, see Morrison & Hof, 1997). Instead, more recent evidence suggests 

neuron loss is present in AD, but not in normal aging. While substantial neuron loss occurs 

within the entorhinal cortex of individuals with mild and severe AD, neuron loss in this region is 

not evident during normal aging (Gomez-Isla et al., 1996). Further, although Morris water maze 

memory deficits are present in aged rats, there is no evidence for a decrease in hippocampal 

neuron number in aged-impaired rats compared to aged-unimpaired rats or young rats (Rapp & 

Gallagher, 1996). This evidence suggests the cognitive decline that manifests in normal aging is 

not accompanied by neuron loss. Instead, there is abundant literature to indicate that normal 

aging is associated with specific changes in neuronal function and calcium (Ca2+)-regulatory 

mechanisms that likely contribute to performance on various cognitive tasks, many of which 

reveal a learning impairment in aged animals.  

Aging-related behavioral impairments  

Aged animals often exhibit a pronounced learning impairment that is revealed by several 

behavioral paradigms. These include spatial navigation tasks, such as the Barnes maze (Barnes, 

1979), Y-maze (Pereira et al., 2014), and water maze (Guidi, Kumar, Rani, & Foster, 2014; 
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Tombaugh, Rowe, & Rose, 2005), as well as object recognition tasks (Burke, Wallace, 

Nematollahi, Uprety, & Barnes, 2010; de Lima et al., 2005). Additionally, aged animals exhibit 

disrupted associative learning, revealed by eyeblink conditioning (Moyer, Power, Thompson, & 

Disterhoft, 2000; Thompson, Moyer, & Disterhoft, 1996), contextual fear conditioning, and trace 

fear conditioning tasks (Houston, Stevenson, McNaughton, & Barnes, 1999; McEchron, Cheng, 

& Gilmartin, 2004; Moyer & Brown, 2006; Villarreal, Dykes, & Barea-Rodriguez, 2004). There 

is additional evidence to suggest an aging-related impairment of cognitive flexibility, 

demonstrated by impaired trace fear extinction in middle-aged and aged rats (Kaczorowski, 

Davis, & Moyer, 2012).   

A common element linking these learning paradigms is the involvement of underlying 

brain structures, which most notably includes the hippocampus. Spatial learning in rodents is 

considered to be dorsal hippocampus-dependent (for review see Moser & Moser, 1998), and 

other evidence suggests lesions of the hippocampus disrupt object recognition (Broadbent, 

Gaskin, Squire, & Clark, 2010), trace eyeblink conditioning (Moyer, Deyo, & Disterhoft, 1990), 

as well as trace and context fear, but not delay fear conditioning (McEchron, Bouwmeester, 

Tseng, Weiss, & Disterhoft, 1998). However, there is some disagreement regarding the specific 

contribution of dorsal versus ventral hippocampus to trace fear learning.  While some studies 

have found successful trace fear learning is dependent on dorsal hippocampus (Pierson, Pullins, 

& Quinn, 2015; Quinn, Oommen, Morrison, & Fanselow, 2002), others suggest a prominent role 

for ventral hippocampus (Cox, Czerniawski, Ree, & Otto, 2013; Czerniawski, Yoon, & Otto, 

2009; Rogers, Hunsaker, & Kesner, 2006). Hippocampal contribution to trace fear learning may 

also depend on the activity of particular subregions within the dorsal and ventral structures.  

While trace fear memory impairment is evident following dentate gyrus (DG) inactivation in 
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dorsal hippocampus (Pierson et al., 2015), another study found that such impairment is instead 

evident following lesions of CA1 in ventral hippocampus (Rogers et al., 2006). While the exact 

contribution of dorsal and ventral hippocampal subregions to trace fear learning remains to be 

further investigated, the hippocampus is clearly involved in several types of learning that are 

impaired in aged animals. Such learning impairments are thought to arise specifically from 

deterioration of synaptic structure and neuronal communication within the hippocampus. 

Aging-related deficits in synaptic structure and neuronal function 

Select aging-related learning deficits are linked to region-specific changes in 

hippocampal synaptic structure. Spatial memory deficits in aged rats are associated with 

decreased axospinous synapses in the DG, while no such reduction is evident in the DG of either 

aged-unimpaired or adult rats (Geinisman, de Toledo-Morrell, & Morrell, 1986). While the 

overall number of Schaffer collateral-CA1 synapses does not change with age (Geinisman et al., 

2004), there is a reduction in perforated synapse postsynaptic density area in learning-impaired 

aged rats (Nicholson, Yoshida, Berry, Gallagher, & Geinisman, 2004). Since perforated synapse 

formation is indicative of enhanced synaptic transmission efficacy (Jones & Harris, 1995), these 

synapses may be important for successful learning in old age, and such a reduction in 

postsynaptic density area may reflect a transition of these synapses to a non-functional or silent 

state, thus contributing to aging-related cognitive decline (Burke & Barnes, 2006). Other studies 

suggest pharmacological treatment can lead to changes in morphology as well as overt behavior. 

Improved Y-maze performance is positively correlated with apical dendritic thin spine density in 

hippocampal CA1 of aged rats following riluzole treatment (Pereira et al., 2014), which inhibits 

glutamate release (Martin, Thompson, & Nadler, 1993) and facilitates astrocytic glutamate 

uptake (Frizzo, Dall'Onder, Dalcin, & Souza, 2004). Together, these studies highlight specific 

3 
 



 

changes in synaptic structure and dendritic morphology that are important factors to consider 

when addressing the mechanisms of aging-related cognitive decline. 

 There is a wealth of evidence linking physiological changes in neuronal function to overt 

behavioral deficits. While neurons from adult animals exhibit learning-related synaptic changes, 

such as enhanced synaptic transmission following spatial learning (Barnes, 1979; Boric, Munoz, 

Gallagher, & Kirkwood, 2008) and enhanced hippocampal long-term potentiation (LTP) that is 

positively correlated with trace fear learning (Song, Detert, Sehgal, & Moyer, 2012), advancing 

age alters the dynamics of basal, as well as learning-related, synaptic transmission. Aging is 

associated with an increased threshold for LTP induction, and a reduced threshold for induction 

of long-term depression (LTD) (see Foster, 1999). Neurons from CA1 of aged rats also exhibit a 

significant reduction of maximal field excitatory post-synaptic potential (fEPSP) amplitude 

(Ouanounou, Zhang, Charlton, & Carlen, 1999). As evidence of a link between memory deficits 

and dampened synaptic plasticity, impaired induction of synaptic potentiation is related to poor 

spatial memory in aged animals (Bach et al., 1999; Deupree, Turner, & Watters, 1991). 

Together, this evidence suggests that advancing age is accompanied by distinct changes in both 

synapse structure and morphology, as well as altered neuronal physiology that likely contributes 

to the aging-related manifestation of behavioral and cognitive decline. One mechanism that is 

proposed to lie at the heart of these aging-related behavioral and physiological deficits is Ca2+ 

dysregulation. 

Aging-related calcium dysregulation 

 Aging-related cognitive decline is posited to arise from Ca2+ dysregulation 

(Khachaturian, 1987), in which several Ca2+-regulatory mechanisms, including Ca2+ ion 

channels, ryanodine receptors (RyRs), and Ca2+-binding proteins (CaBPs), undergo aging-related 
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changes in function or expression that lead to disruption of Ca2+ homeostasis. L-type voltage-

dependent Ca2+ channel (L-VDCC) density and activity increase with age, and channel density is 

negatively correlated with performance on the Morris water maze in aged rats (Thibault & 

Landfield, 1996). When ryanodine is applied to aged hippocampal neurons in culture, it blocks 

caffeine-induced increases of Ca2+, suggesting aging-related elevation of Ca2+
 transients is RyR-

dependent (Clodfelter, Porter, Landfield, & Thibault, 2002). There is additional evidence that 

these mechanisms are coupled, such that L-VDCC activity is modulated by Ca2+-induced Ca2+ 

release (CICR) from RyRs, which is triggered by Ca2+ influx through L-VDCCs (Chavis, Fagni, 

Lansman, & Bockaert, 1996). Although there is evidence for increased endogenous Ca2+-buffer 

capacity in neurons from aged rats, this may only be effective for the first few action potentials 

during a 100 Hz train, as Ca2+ concentrations increase thereafter (Oh, Oliveira, Waters, & 

Disterhoft, 2013), suggesting neuronal regulation of Ca2+ transients becomes more easily 

overwhelmed with age.   

Calcium-binding proteins  CaBPs are also involved in regulating cellular function by 

participating in Ca2+ homeostasis and various Ca2+-signaling pathways. Some of the most 

ubiquitous CaBPs are part of a family of evolutionarily conserved proteins that contain an EF-

hand binding domain. Named after the Ca2+-binding domain of parvalbumin (PV), the EF-hand 

binding domain consists of a helix-loop-helix motif assembled in a spatial arrangement that 

resembles the spread index finger and thumb of the human hand (Kretsinger & Nockolds, 1973). 

Although there is some overlap, these proteins can be roughly grouped according to their 

function. For example, proteins that act as Ca2+ sensors, such as calmodulin (CaM), undergo a 

conformational change and modulate downstream targets following Ca2+ binding, while Ca2+ 
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buffers, including calbindin (CB) and calretinin (CR), regulate the amplitude and duration of 

Ca2+ signals (Barinka & Druga, 2010).   

These CaBPs are commonly expressed in mammalian systems, but some CaBPs are not 

endogenous to these animals. One of these is the photoprotein aequorin, expressed in the jellyfish 

Aequorea victoria, which has traditionally been used as an autofluorescent indicator of 

cytoplasmic Ca2+ (Shimomura, Kishi, & Inouye, 1993). Data from our lab demonstrate that the 

Ca2+-binding component of this protein, apoaequorin (AQ), is neuroprotective when 

administered prior to an ischemic insult (Detert, Adams, Lescher, Lyons, & Moyer, 2013), which 

is characterized by Ca2+-induced excitotoxicity (Choi, 1992). However, the role of AQ as a 

possible neurotherapeutic tool in aging and cognitive decline has yet to be investigated, despite 

the following evidence suggesting CaBP expression is reduced in aged animals. 

With increasing age there is a corresponding decrease in CaBP expression, which is 

evident in several species and in various brain regions. In humans, aging is associated with 

reduced CB and CR expression in the cortex (Bu, Sathyendra, Nagykery, & Geula, 2003). Aged 

rat and rabbit DG exhibit decreased CB expression (de Jong et al., 1996), and rat perirhinal CB 

levels are decreased beginning as early as middle age (Moyer, Furtak, McGann, & Brown, 

2011). Findings from our lab have also demonstrated an aging-related reduction of CB within the 

dorsal hippocampus and the infralimbic region of the medial prefrontal cortex (IL), as well as a 

reduction of CaM in both dorsal and ventral hippocampus, and IL (Detert, 2011). This reduction 

of CaBP expression within brain regions implicated in various learning tasks suggests that aging-

related learning impairments could arise from dysregulation of Ca2+ within these regions. 

 Several studies suggest a link between CaBP reduction and cognitive and neuronal 

dysfunction in animals of various ages. In adult mice, CB-deficiency results in impaired LTP 
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induction (Jouvenceau et al., 2002), and both adult and middle-aged CB-knockout mice 

demonstrate impaired active place avoidance learning relative to wild-type mice (Moreno et al., 

2012). In aged mice, impaired object recognition is linked to reduced hippocampal CB protein 

expression (Soontornniyomkij et al., 2012). In addition to these synaptic and behavioral 

impairments, cerebral blood volume (CBV), an indicator of cellular metabolism, can also be 

affected by CaBP expression. CBV in the DG and CA1 of CB- and PV-knockout mice is 

reduced, and for CB-knockout mice this reduction is age-dependent (i.e. middle-aged mice 

demonstrate a greater reduction compared to young) (Moreno et al., 2012). Interestingly, 

homeostatic mechanisms that could potentially counteract such observed abnormalities in CaBP-

deficient animals are not evident, as CB-deficient mice do not demonstrate a compensatory 

upregulation in the expression of other CaBPs, including CR or PV, relative to wild-type mice 

(Airaksinen et al., 1997). Together, these data emphasize the importance of Ca2+ ion channels, 

intracellular Ca2+ stores, and CaBPs in maintaining intact neuronal and behavioral function 

through the regulation of intracellular Ca2+, and suggest not only that dysfunction of these 

mechanisms leads to cognitive decline, but also that restoring their function will benefit 

cognition and neuronal activity in aged animals.   

Restoring calcium regulation improves cognitive and neuronal function 

 Evidence suggests that restoring Ca2+ regulation can mitigate aging-related physiological 

and cognitive dysfunction. The fEPSP in hippocampal CA1 from aged animals is enhanced by 

the Ca2+ chelators BAPTA-AM and EGTA-AM (Ouanounou et al., 1999). In aged animals, 

blockade of L-VDCCs facilitates trace eyeblink conditioning (Deyo, Straube, & Disterhoft, 

1989) and radial arm water maze learning (Veng, Mesches, & Browning, 2003), while RyR 

antagonism reduces the latency to find the hidden platform on the Morris water maze (Hopp et 
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al., 2014). Additionally, there appears to be a link between physiology and behavioral 

performance in aged animals following enhanced Ca2+ regulation. Fear memory and synaptic 

plasticity are enhanced in aged mice as a result of reducing small-conductance Ca2+-activated 

potassium (K+) channel (SK3) expression (Blank, Nijholt, Kye, Radulovic, & Spiess, 2003). 

Enhanced spatial memory is associated with reduced Ca2+-dependent slow afterhyperpolarization 

(sAHP) in aged rats that overexpress FK506-binding protein 12.6/1b (Gant et al., 2015), which is 

normally involved in regulating sarcoplasmic reticulum Ca2+ release in cardiac muscle (Zalk, 

Lehnart, & Marks, 2007). Thus, added regulation of neuronal Ca2+ in aged animals may be 

necessary for restoring physiological and cognitive function. 
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Proposed Study 

 The current experiments aim to investigate the role of the CaBP AQ in hippocampus-

dependent fear learning in adult and aged rats. Although several studies suggest aged rodents 

exhibit impaired trace fear memory (Blank et al., 2003; McEchron et al., 2004; Moyer & Brown, 

2006; Villarreal et al., 2004), there has been little investigation as to how this impairment might 

be mitigated. Because sufficient literature suggests aging is accompanied by Ca2+ dysregulation, 

and learning impairments in aged animals are linked to dysfunction of select Ca2+-regulatory 

mechanisms (see above discussion), a reasonable prediction is that restoring Ca2+ regulation will 

rescue cognitive function in aged animals. This is supported by the evidence that learning is 

improved in aged animals following L-VDCC blockade (Deyo et al., 1989; Veng et al., 2003), 

blockade of Ca2+ release from intracellular stores (Gant et al., 2015; Hopp et al., 2014), and SK3 

channel reduction (Blank et al., 2003). In addition, a single intrahippocampal infusion of the 

CaBP AQ reduces cell death following an ischemic insult (Detert et al., 2013), suggesting AQ 

mitigates Ca2+-induced excitotoxicity, which is a major part of ischemic cell death (Choi, 1992). 

If aging is also accompanied by Ca2+ toxicity via dysregulation of Ca2+ homeostasis 

(Khachaturian, 1987), then the neuroprotection afforded by AQ in an ischemic model may also 

translate to aging and cognitive decline. 

The effects of dorsal hippocampal AQ infusion were tested in adult and aged rats to 

determine the potential for AQ to modulate aging-related hippocampus-dependent fear memory 

impairment. Additionally, because state-dependent learning is evident for trace fear (Hunt & 

Barnet, 2015; Reich, Mohammadi, & Alger, 2008) as well as context fear (Jovasevic et al., 2015) 

we examined the potential for AQ to modify hippocampus-dependent fear memory state-

dependently. This allowed us to dissociate effects of AQ on hippocampus-dependent fear from 
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those dependent on the drug- or emotion-related brain state that may be induced by AQ infusion. 

Understanding the role of the CaBP AQ in hippocampus-dependent fear memory will reveal its 

potential for neuroprotection of cognitive function, and will aid in the overall understanding of 

aging-related cognitive decline. 

 The role of AQ in modification of hippocampus-dependent fear memory will be 

addressed in two aims: 

Aim 1: Determine the effect of a single dorsal hippocampal AQ infusion 24 h prior to trace fear 

acquisition on trace fear memory in adult and aged rats. 

Aim 2:  Determine whether aging-related fear memory deficits are dependent on order of test 

presentation, and whether AQ induces state-dependent modification of fear memory in adult and 

aged rats.  
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Methods 

Subjects  

Adult (3-6 months, mean age = 4.2 ± .1 months) and aged (22-26 months, mean age = 

23.2 ± .16 months) male F344 rats were maintained on a 14 h light/10 h dark cycle (lights on at 

7am) in an Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) accredited facility. Rats were housed individually with free access to food and 

water, and were handled for at least 1 week prior to behavioral training. All procedures were 

conducted in accordance with the University of Wisconsin-Milwaukee animal care and use 

committee (ACUC). 

Surgery 

Rats were given Carprofen (5 mg/kg/day) prior to surgery, and after surgery for pain 

management. While anesthetized with isoflurane, rats were mounted on a stereotaxic apparatus. 

Under aseptic conditions, the scalp was incised and retracted to the side, and the head leveled 

between bregma and lambda. Bilateral stainless steel guide cannula (26-gauge) were then 

lowered into the dorsal hippocampus using stereotaxic coordinates (3.5 mm posterior, 2.6 mm 

lateral, 3.0 mm ventral) relative to bregma (Detert et al., 2013). Cannula were secured to the 

skull with stainless steel screws and acrylic cement. To prevent cannula occlusion, plastic caps 

were screwed onto the guide cannula. Rats were allowed to recover for at least 7 days prior to 

infusion. 

Drugs and infusions 

A 4% dose of AQ (w/v; CalciGenix) was infused into the dorsal hippocampus in zero 

Ca2+ artificial cerebral spinal fluid (aCSF; in mM: 124.00 NaCl, 2.80 KCl, 2.00 MgSO4, 1.25 

NaH2PO4, 26.00 NaHCO3, 10.00 D-glucose, and 0.40 Na-ascorbate); zero Ca2+ aCSF served as 

a control for AQ. To facilitate neuronal uptake of AQ, 6% DMSO was added to both vehicle and 
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AQ. The 33-gauge infusion cannula extended 0.5 mm beyond the guide cannula. Rats received 

infusions (0.5 µl/side) over 60 sec, and infusers remained in place for an additional 2 min to 

ensure diffusion away from the tip. Infusions were conducted in a room isolated from both the 

colony room and the behavioral training and testing room. Rats were transported to the infusion 

room at least one day before training began, in order for habituation to infusion procedures (e.g. 

the sound of the infusion pump). One day before the first infusion, infusion cannula were 

lowered into the guide cannula and remained in place for 60 sec, as part of a mock infusion 

procedure. 

Conditioning and testing chambers 

Trace fear conditioning was conducted in a Plexiglas and stainless steel chamber (30.5 × 

25.4 × 30.5 cm; Coulbourn Instruments), located in a sound-attenuating box. The chamber used a 

standard grid floor consisting of 26 parallel steel rods (each with a diameter of 5 mm, and 6 mm 

spacing). The floor was connected to a precision adjustable shock generator (Coulbourn 

Instruments) for delivery of a scrambled footshock US. Within the sound-attenuating box, a 

ventilation fan provided a constant background noise of about 58 dB (measured by a sound level 

meter, A scale; model: Digital 2055, RadioShack). The chamber was illuminated by a miniature 

incandescent white lamp (28V, type 1819, illumination 1.1 lux) and was wiped with a 5% 

ammonium hydroxide solution prior to each training session. During training, the room lights 

were left on (illumination 20.9 lux) for the entire session. 

A separate Plexiglas chamber served as a novel context for the test session. This chamber 

was located within a separate sound-attenuating box in the same room as the training chamber. 

The test chamber was physically different from the training chamber in that the floor was a panel 

of black-painted Plexiglas (instead of grid bars) with holes drilled into it, the walls consisted of 6 
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panels of clear Plexiglas arranged in an octagon shape, and infrared lighting was used for 

illumination. In addition, the tray below the test chamber floor contained clean bedding, and the 

test chamber was wiped with 2% acetic acid prior to each test session to provide a different 

olfactory stimulus from that used during training. The room lights were turned off (illumination 

0.2 lux) for the entire testing session. Stimulus delivery during training and testing was 

controlled by FreezeFrame 4.01 (Actimetrics Software, Coulbourn Instruments). The original 

training context served as a test chamber for all context tests. Room lights remained on 

throughout the context test session.  

Experimental design 

We first asked whether a single dorsal hippocampal AQ infusion would mitigate aging-

related trace fear memory deficits. To address this question, we included the following 

experimental groups: 1) Adult-Veh (n = 5); 2) Adult-AQ (n = 5); 3) Aged-Veh (n=7); 4) Aged-

AQ (n = 6). Rats were handled for at least 7 days prior to behavioral training. On day 1 of the 

experiment, rats received bilateral infusions of either AQ or vehicle. On day 2, rats were 

transported in metal cages to the behavioral training and testing room, where they underwent 

trace fear conditioning. This consisted of 10 trials of conditioned stimulus (CS) – unconditioned 

stimulus (US) pairings, with a 5.2 min (±20%) intertrial interval (ITI) (Detert, Kampa, & Moyer, 

2008). The CS was a 15 sec 80 dB white noise, and the US was a 1 sec, 1 mA scrambled 

footshock. The CS and US were separated by a 30 sec silent trace interval. On day 3, rats were 

placed in the novel test chamber, and the CS was presented according to the same schedule as 

training, but without the US. Only the average freezing during the first two trials of the test was 

used to assess fear memory.  
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For our second set of experiments, we asked whether AQ would differentially affect fear 

memory when infused 1 h prior to training or testing, and whether AQ infusion induced state-

dependent modifications of fear memory. We included a context test in the original training 

context in addition to the cue test as part of our assessment of whether AQ affects hippocampus-

dependent fear memory. However, because our hypothesis was that AQ would facilitate fear 

memory, we needed to determine the test order that was least likely to result in ceiling effects in 

order to observe this hypothesized enhancement. Thus, we first explored whether test order 

differentially affected behavioral outcome. We included the following experimental groups: rats 

that were tested in the original training context first (Adult-Training First, n = 7; Aged-Training 

First, n = 6); and rats that underwent cue testing in the novel context first (Adult-Novel First, n = 

4; Aged-Novel First, n = 4). All rats received vehicle infusions 1 h prior to training and 1 h prior 

to testing. 

Handling was conducted for at least 7 days prior to the start of training. On day 1, rats 

were transported to the conditioning and testing room in metal cages, and trained using a trace 

fear conditioning paradigm similar to that of the first experiment. However, due to the 

observation of robust baseline freezing during the cue test in an initial cohort (data not shown), 

we reduced the number of trials from 10 to 6 so as to minimize the likelihood of fear 

generalization during the cue test. On day 2, rats were tested for cued fear in a novel context as 

well as context fear in the original training context in a counterbalanced manner. Additionally, 

rats were transported in different cages that consisted of black painted Plexiglas to minimize fear 

generalization induced by contextual transport cues. The cue test consisted of a 120 sec stimulus-

free period (baseline), followed by two CS presentations (15 sec, 80 dB), separated by a 2.9 min 

ITI. The context test consisted of 10 min of exposure to the original training context, without CS 
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or US presentations. Tests were separated by a 30 min interval, to allow for cleaning of the first 

test chamber and setup of the second test chamber. 

To assess whether AQ induced state-dependent modification of hippocampus-dependent 

fear memory in our last experiment, we included the following groups: vehicle infusion prior to 

training and prior to testing (Veh-Veh; Adult n = 9, Aged n = 9); vehicle infusion prior to 

training, AQ infusion prior to testing (Veh-AQ; Adult n = 5; Aged n = 4); AQ infusion prior to 

training, vehicle infusion prior to testing (AQ-Veh; Adult n = 5; Aged n = 4); AQ infusion prior 

to training and testing (AQ-AQ; Adult n = 5; Aged n = 4). A subset of the Veh-Veh rats were 

previously part of the assessment of whether test order differentially affects behavioral outcome. 

Data from this subset of Veh-Veh rats were included in the current experiment, as their 

behavioral performance was not different from Veh-Veh rats that were part of state-dependent 

effects cohorts. 

On day 1, 1 h following bilateral infusion, rats underwent trace fear conditioning using 

the same 6 trial paradigm used to assess test order effects. On day 2, 1 h following bilateral 

infusion, rats underwent a cue test in a novel context, followed by a context test in the original 

training context 30 min later. Parameters for each test were identical to those used in the 

assessment of test order effects. Following testing, rats were returned to their home cages. 

Analysis of behavioral data 

For behavioral experiments, a remote CCD video camera (model #STC-MB33USB; 

Sensor Technologies America, Inc. Carrollton, TX), mounted to the top of each behavioral 

chamber, was used to record the activity of each rat during training and testing. The video data 

were fed to a PC running FreezeFrame 4.01 (Actimetrics Software, Coulbourn Instruments).  

Data were analyzed using FreezeView 4.01 (Actimetrics Software) where a 1 sec bout of 

15 
 



 

immobility was scored as freezing. The absence of all movement except that required for 

respiration was used to define freezing (Blanchard & Blanchard, 1969).  

Statistical analyses 

Overall treatment effects were examined using Student’s t-test, mixed ANOVA, or two-

way ANOVA where appropriate using SPSS 23.0 (IBM Corp., Armonk, NY). A Greenhouse-

Geisser correction was used if Mauchly’s test of Sphericity indicated the assumption of 

sphericity had been violated.  For significant main effects (α = .05), post hoc analysis was 

performed using Fisher’s LSD. Bonferroni adjustment was used for multiple comparisons. Data 

are expressed as mean ± SEM. 
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Results 

A single dorsal hippocampal infusion of AQ 24 h prior to trace fear conditioning does not 

affect trace fear memory in adult or aged rats 

In our initial experiment, data were collected to investigate the hypothesis that a single 

dorsal hippocampal infusion of AQ 24 h prior to trace fear acquisition would facilitate trace fear 

learning aged rats (see Fig. 1A for experimental design). On day 1 adult and aged rats received 

bilateral dorsal hippocampal infusions of either vehicle (adult: n = 5; aged: n = 7) or AQ (adult: n 

= 5; aged: n = 6) 24 h prior to trace fear conditioning. This time point was chosen because a 

previous study from our lab demonstrates that administering AQ either 24 or 48 h prior to an in 

vitro ischemic insult is neuroprotective (Detert et al., 2013). Trace fear conditioning on day 2 

consisted of 10 pairings of a 15 sec, 80 dB white noise CS, and 1 sec, 1 mA footshock US, 

separated by a 30 sec stimulus-free trace interval. On day 3, rats were placed in a novel context, 

and the CS was presented without the US. Percent freezing during the average trace interval for 

the first two test trials (defined as the first 30 sec after CS offset) was used as a measure of trace 

fear memory.   

During trace fear conditioning, performance was similar between groups (Fig. 1B). A  

mixed ANOVA of percent freezing during blocks of two trace interval trials revealed a 

significant effect of trial block [F(4, 76) = 21.909, p < .001], but no significant interaction 

between age and trial block [F(4, 76) = .668, p = .616], no infusion by trial block interaction 

[F(4, 76) = .233, p = .919], and no age by infusion by trial block interaction [F(4, 76) = 1.233, p 

= .304]. Additionally, there was no main effect of age [F(1, 19) = 1.779, p = .198], no main 

effect of infusion [F(1, 19) = .153, p = .7], and no age by infusion interaction [F(1, 19) = .488, p 

= .493]. 
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A two-factor ANOVA was used to analyze the effect of infusion and age on behavioral 

performance during the cue test. There was no effect of age [F(1, 19) = .239, p = .630] or 

infusion [F(1, 19) = .352, p = .560], nor was there an age by infusion interaction effect [F(1, 19) 

= .000, p = .983] on baseline freezing. Similarly, CS freezing did not differ between age groups 

[F(1, 19) = .915, p = .351] or infusion groups [F(1, 19) = 2.184, p = .156], and there was no 

interaction effect [F(1, 19) = .489, p = .493]. However, analysis of trace interval freezing 

revealed a significant main effect of age [F(1, 19) = 5.033, p < .05], but no main effect of 

infusion [F(1, 19) = .023, p = .880], and no age by infusion interaction [F(1, 19) = .263, p = 

.614]. When baseline freezing was subtracted from trace freezing (Trace-B) to normalize for 

generalized baseline freezing observed in all groups, there was a significant main effect of age 

[F(1, 19) = 9.622, p < .01], but no main effect of infusion [F(1, 19) = .124, p = .728] and no age 

by infusion interaction [F(1, 19) = .347, p = .563] (Fig. 1B). Overall, these data suggest that a 

single dorsal hippocampal infusion of AQ does not alter trace fear learning in adults, and that 

there is a learning impairment in aged rats that is not rescued by a single infusion of AQ.   

Test order differentially affects fear memory 

Before we could address the effects of pre-training or pre-testing AQ infusion on trace 

and context fear memory, we first needed to determine whether test order affected behavioral 

outcome. Because our hypothesis was that AQ would rescue aging-related fear memory deficits, 

our goal was to identify the test order that would result in the most pronounced impairment. This 

would increase the likelihood of observing beneficial effects of AQ, while minimizing the 

possibility of ceiling effects. Thus, adult and aged rats underwent trace fear conditioning, 

followed by an auditory cue test in a novel context, as well as a context fear memory test in the 

original training context. Each age group was subdivided based on test order to yield the 
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following four groups: Adult-Training First (n = 7), Adult-Novel First (n = 4), Aged-Training 

First (n = 6), Aged-Novel First (n = 4). Tests were separated by 30 min, and test order was 

counterbalanced (see Fig. 2 for experimental setup). 

To determine whether test order differentially affected behavioral outcome, behavioral 

performance of aged rats was compared to that of adults within each test order group. That is, 

Aged-Training First was compared with Adult-Training First, and Aged-Novel First was 

compared with Adult-Novel First. For rats tested in the novel context first, there was a 

significant effect of trial on trace interval freezing during trace fear acquisition on day 1. A 

mixed ANOVA revealed a significant effect of trial [F(5, 30) = 7.330, p < .001], and a 

significant age by training trial interaction [F(5, 30) = 3.281, p < .05]. There was no significant 

main effect of age [F(1, 6) = 1.588, p = .254]. For rats tested in the original training context first, 

analysis of trace interval freezing during acquisition on day 1 revealed a significant effect of 

training trial [F(5, 55) = 30.039, p < .001], and a significant age by training trial interaction [F(5, 

55) = 2.461, p < .05]. The overall main effect of age was not significant [F(1, 11) = .108, p = 

.749]. 

For rats that were tested in the novel chamber first on day 2, unpaired t-tests (one-tailed) 

indicated aged rats displayed significantly reduced freezing to the CS [t(6) = 2.006, p < .05], to 

the trace interval when baseline freezing was subtracted (Trace-B) [t(6) = 2.114, p < .05] as well 

as to the original training context [t(6) = 2.409, p < .05]. The effect of age on baseline freezing 

was trending but not significant [t(6) = -1.814, p = .06], while trace freezing was not different 

[t(6) = .353, p = .368].  

In contrast, rats that were tested in the original training context first displayed a different 

pattern of results. For this group, analysis of freezing during the novel context test revealed that 
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aged rats displayed greater freezing during the baseline period [t(11) = -2.458, p < .05], but 

reduced Trace-B freezing [t(11) = 3.631, p < .01]. Interestingly, aged rats tested in the original 

training context first failed to display impaired context fear memory [t(11) = .914, p = .212], 

unlike their counterparts that were tested in the novel chamber first. Additionally, CS freezing 

was not different [t(11) = .374, p = .358], nor was trace freezing [t(11) = 1.3, p = .11] (Fig 3A). 

These observations suggest that when baseline freezing is subtracted from trace freezing, aged 

rats exhibit disrupted trace fear memory regardless of test order, but they only display impaired 

context fear memory when they are tested in the novel context first. 

In order to determine whether test order also affected discrimination ability, average 

freezing during the first two min of the original context test (A) was compared with freezing 

during the first two min of the novel context test (B). A paired t-test of average freezing during 

the first two min of each test was performed for each group. Adult-Training First rats displayed 

significantly reduced freezing during B relative to A [t(12) = -8.326, p < .001], while Aged-

Novel First rats exhibited increased freezing during B relative to A [t(6) = 2.776, p < .05]. No 

differences were evident for the Adult-Novel First group [t(6) = .443, p = .337] or the Aged-

Training First group [t(10) = 1.323, p = .108]. Finally, a discrimination ratio was calculated by 

subtracting the average freezing during the first two min of the novel test (B) from the average 

freezing during the first two min of the original training context test (A), and dividing the 

difference by the sum of A and B (i.e. (A-B)/(A+B)).  Aged rats displayed significantly reduced 

discrimination ratios when tested in the novel context first [t(6) = 2.366, p < .05] and when tested 

in the original training context first [t(11) = 2.863, p < .01] (Fig. 3B).  
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AQ infusion prior to training and testing rescues an aging-related context fear memory deficit 

 The findings from the previous experiment indicate that presentation of the cue test in the 

novel context first reveals an aging-related context fear memory deficit that is otherwise absent. 

Thus, in order to address whether AQ is capable of mitigating either aging-related trace or 

context fear memory deficits, rats in the present experiment underwent cue testing in the novel 

context first, followed by testing for context fear memory in the original training context second. 

We included four infusion groups within each age group to assess the effect of pre-training and 

pre-testing AQ infusion on hippocampus-dependent fear memory, and to address whether any 

effects of AQ were state-dependent: 1) vehicle infusion before training and testing (Veh-Veh; 

adult: n = 9, aged: n = 9); 2) vehicle infusion before training, and AQ infusion before testing 

(Veh-AQ; adult: n = 5; aged: n = 4); 3) AQ infusion before training, and vehicle infusion before 

testing (AQ-Veh; adult: n = 5; aged: n = 4); 4) AQ infusion before training and testing (AQ-AQ; 

adult: n = 5; aged: n = 4) (see Fig. 4 for experimental setup). 

 A mixed ANOVA was used to analyze the effect of trial, age, and infusion on trace 

interval freezing during training on day 1. Overall, there was a significant effect of training trial 

[F(3.533, 130.707) = 41.097, p < .001] and a significant main effect of age [F(1, 37) = 12.092, p 

< .01]. There was no interaction between training trial and age [F(3.533, 130.707) = 2.366, p = 

.064], between training trial and infusion [F(10.598, 130.707) = .804, p = .632], nor between 

trial,  age, and infusion [F(10.598, 130.707) = 1.082, p = .381]. There was also no main effect of 

infusion [F(3, 37) = .179, p = .910], and no age by infusion interaction [F(3, 37) = 1.358, p = 

.271]. 

 Several effects became apparent during the cue test in the novel context and the context 

test in the original training context on day 2. Analysis of baseline freezing revealed a significant 
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main effect of age [F(1, 37) = 7.128, p < .05], and a significant main effect of infusion [F(3, 37) 

= 3.431, p < .05], but no age by infusion interaction [F(3, 37) = .182, p = .908]. Post hoc analysis 

of infusion indicated percent freezing for Veh-Veh was significantly higher than that of AQ-Veh 

(p < .05) and AQ-AQ (p < .01). Freezing to the CS was not different between age groups [F(1, 

37) = 3.177, p = .083] or infusion groups [F(3, 37) = 1.627, p = .200], and there was no 

interaction effect [F(3, 37) = .625, p = .603]. Trace interval freezing was significantly reduced 

among aged rats [F(1, 37) = 6.047, p < .05], but there was no effect of infusion [F(3, 37) = .221, 

p = .881], and there was no age by infusion interaction [F(3, 37) = .367, p = .777]. When 

baseline freezing was subtracted from trace freezing (Trace-B), aged rats displayed reduced 

freezing [F(1, 37) = 33.652, p < .001], and there was a significant main effect of infusion [F(3, 

37) = 2.952, p < .05], but no infusion by age interaction [F(3, 37) = .665, p = .579]. Post hoc 

analysis of Trace-B freezing revealed Veh-Veh rats froze significantly less when compared with 

rats from AQ-Veh (p < .05) and AQ-AQ (p < .01) groups. Additionally, Veh-AQ rats froze 

significantly less when compared to AQ-AQ (p < .05). Finally, analysis of average context 

freezing during the context test revealed a significant main effect of age [F(1, 37) = 25.196, p < 

.001], but there was no effect of infusion [F(3, 37) = .721, p = .546], and no age by infusion 

interaction effect [F(3, 37) = .885, p = .458].  

 Additional pairwise comparisons were conducted to determine the extent of aging-related 

fear memory impairment, and whether such impairment was mitigated by AQ infusion (Fig. 5). 

During the cue test in the novel context, aged rats displayed significantly reduced CS freezing 

relative to adults within the Veh-Veh group only (p < .05). Interestingly, while there was no 

aging-related reduction of trace interval freezing for any infusion group, subtraction of baseline 

freezing from trace freezing (Trace-B) revealed an aging deficit among all groups (all p-values, p 
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< .05). Finally, pairwise analysis of average freezing during the context test revealed an aging-

related impairment for every group except AQ-AQ (AQ-AQ p-value, p = .258; all others p < 

.01). 

Together, these data suggest aged rats exhibit impaired trace and context fear memory, 

and that pre-training AQ infusion reduces baseline freezing during the cue test in a novel context. 

This baseline reduction likely accounts for overall increase in Trace-B freezing observed when 

AQ was infused prior to training. Because pre-training AQ infusion reduced baseline freezing 

regardless of whether a pre-testing infusion of AQ also occurred, this suggests AQ infusion does 

not induce state-dependent modification of this measure. Additionally, pairwise comparisons 

revealed an aging-related impairment of context fear memory within every infusion group except 

AQ-AQ. This suggests AQ may state-dependently mitigate an aging-related context fear memory 

deficit. 
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Discussion 

Trace fear memory is not affected by a single dorsal hippocampal infusion of AQ 24 h prior to 

training 

The purpose of these experiments was to determine whether AQ mitigates aging-related 

fear memory impairment, and whether AQ induces state-dependent modification of fear 

memory. We first asked whether aging-related trace fear memory deficits could be mitigated 

following a single dorsal hippocampal infusion of AQ. Our data suggest that while aged rats 

exhibit impaired trace fear memory relative to adults, a single infusion of AQ does not rescue 

this impairment when it is infused 24 h prior to trace fear acquisition (see Fig. 1). 

While AQ is neuroprotective when infused 24 h or 48 h prior to in vitro ischemia (Detert 

et al., 2013), AQ infusion 24 h prior to trace fear conditioning may not effectively target critical 

aspects of learning, such as acquisition or consolidation, in this behavioral model. Further, 

western blot analysis indicates the AQ protein is present in hippocampal tissue 1 h and 1 d 

following infusion (Detert et al., 2013). This suggests there may be a disconnect between the 

neuroprotection that AQ confers in an ischemic model and the presence of the protein in brain 

tissue, as the temporal contingency between protein presence and neuroprotection is not 

identical. Thus, the neuroprotective effects that AQ may afford in an ischemic model may not 

map directly onto a behavioral model like that used in the current study. The effects of AQ on 

overt cognitive function may instead only be observable if behavioral manipulations occur when 

protein presence is greatest (i.e. 1 h after infusion) (Detert et al., 2013). 

Additionally, the possibility remains that chronic AQ administration may be required to 

effect observable behavioral changes in aged animals. Following 3 weeks of treatment with 

nimodipine, an L-VDCC blocker, aged rats display fewer working memory errors on a water 
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maze task, and exhibit reduced protein expression of Cav1.3, an L-VDCC subunit (Veng et al., 

2003). An additional study found that chronic RyR blockade in aged rats improves water maze 

performance (Hopp et al., 2014). However, pilot data from our lab suggest limited feasibility of 

performing multiple infusions in aged rats, as chronic restraint that is part of our standard 

infusion protocol leads to increased baseline freezing among old rats during a cue test in a novel 

context (data not shown). The possibility that chronic AQ administration may effectively 

mitigate aging-related fear memory deficits remains to be investigated, with additional 

experiments required to optimize compatibility between drug administration protocols and 

behavioral protocols. 

Test order and age differentially affect fear memory and discrimination ability 

Because the aim for our next set of experiments was to determine the effect of AQ 

infusion on trace as well as context fear memory, it was necessary to first determine whether test 

order differentially affected behavioral outcome in adult and aged rats. To address this, a subset 

of adult and aged rats underwent trace fear conditioning, followed 1 d later by a cue test in a 

novel context to assess CS and trace fear memory, as well as a test in the original training 

context to assess context fear memory. Test order was counterbalanced within each age group, so 

that four separate experimental groups were included: Adult-Novel First, Adult-Training First, 

Aged-Novel First, Aged-Training First (see Fig. 2 for experimental setup). Our data suggest aged 

rats display impaired trace fear memory regardless of test order. However, there is an aging-

related context fear memory deficit only among rats that underwent the cue test in the novel 

context first (see Fig. 3A). 

One possible contributing factor to these observed order effects may be an aging-related 

disruption of discrimination ability that is also dependent on test order. To address this in the 
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current study, we compared percentage freezing during the first two min of the cue test in the 

novel context (B) to percentage freezing during the first two min of the context test in the 

original training context (A) for each experimental group. Because the novel context was not 

previously paired with shock, we predicted that initial freezing in this environment would be 

minimal compared to that of the original training context, and that any substantial freezing may 

be indicative of fear generalization. We found that while Adult-Training First rats displayed 

significantly less freezing during B compared to A, Aged-Novel First rats displayed significantly 

more freezing in B compared to A. Further, while Aged-Training First rats exhibit reduced 

freezing during B, this reduction was not significant, as it was for Adult-Training First rats. 

These data suggest that aging is accompanied by an impaired ability to distinguish between a 

context that was previously paired with shock and a completely novel context. Interestingly, 

Adult-Novel First rats failed to exhibit an increase of freezing in A relative to B, which also 

might be indicative of impaired discrimination, since exposure to the original training context 

should theoretically evoke higher levels of freezing than exposure to a novel context (Blanchard 

& Blanchard, 1969; Bolles & Collier, 1976; Fanselow, 2000).  

To better understand discrimination ability, we calculated a discrimination ratio by 

dividing the difference between A and B by the sum of A and B. We observed an aging-related 

reduction of discrimination ratio for both the Novel First and Training First test order groups. 

Like our findings with context fear memory, aged rats exposed to the cue test in the novel 

environment first exhibited the poorest performance, indicated by the observed negative 

discrimination ratio (see Fig. 3B). These data suggest that the combination of old age and 

exposure to a cue test in a novel environment first may reveal an underlying deficit in 

hippocampus-dependent context fear memory that otherwise may not be evident if testing for 
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context fear memory in the original training context occurred first. Additionally, our observation 

that discrimination is disrupted in aged rats, particularly for those that undergo the cue test in the 

novel context first, lends further support to the notion that behavioral performance among aged 

rats is especially susceptible to the effects of test order.  

Other studies that have assessed fear memory using two distinct contexts do not always 

address whether test order affects behavioral outcome. In two separate investigations of the 

effects of E. coli and aging on fear memory, vehicle-treated aged rats display similar context and 

tone fear memory compared to vehicle-treated adults (Barrientos et al., 2009; Barrientos et al., 

2006). In both studies, fear to the original training context was tested before cued fear in a novel 

context. The authors speculate this order of testing extinguishes fear to the training context to 

some degree, minimizing generalized fear that might otherwise be expressed if the first test 

consisted of a cue presentation in a novel context (Barrientos et al., 2009). In contrast, when rats 

undergo a cued fear test in a novel context prior to testing in the original training context, aged 

rats do exhibit impaired context fear memory relative to adults (Kaczorowski et al., 2012; Moyer 

& Brown, 2006). This supports findings from the current experiments that suggest aged rats 

exhibit a context fear memory impairment only when they undergo a cue test in a novel context 

first. 

Other studies that have counterbalanced test order do not necessarily find evidence for 

differential fear memory. These investigations demonstrate that fear memory is unaffected by 

test order following delay fear conditioning (Baldi, Lorenzini, & Bucherelli, 2004), and context 

fear conditioning (Migues et al., 2016). However, tests were conducted 1 d apart, unlike the 30 

min used in the current experiments, and the effect of test order on fear memory in aged rats was 

not addressed. The finding that test order affects behavioral outcome in the current experiments 
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may be specific to shorter intervals between tests, and the inclusion of aged rats in the 

experimental design. 

Previous work investigating discrimination ability following fear learning in adult 

animals suggests specific mechanisms contribute to context discrimination as well as 

discrimination between distinct auditory stimuli. For example, lipopolysaccharide (LPS) –

induced neuroinflammation increased hippocampal expression of proinflammatory cytokines, 

disrupted context discrimination following context fear conditioning, and increased the overlap 

of cell network activity in both CA1 and CA3 subregions of the dorsal hippocampus in adult rats 

(Czerniawski & Guzowski, 2014). In a separate study that utilized discriminative auditory fear 

conditioning, which included a CS paired with shock (CS+) and a CS paired with absence of 

shock (CS-), medial geniculate nucleus (MGN) lesions resulted in impaired discrimination of the 

CS+ and CS- during the test (Antunes & Moita, 2010). Thus, while discrimination of different 

auditory stimuli may require an intact MGN, context discrimination likely depends upon distinct 

hippocampal neuronal ensembles, suggesting the impaired context discrimination observed in the 

current experiments could stem from a similar mechanism. 

Successful context fear discrimination is also dependent on specific temporal parameters. 

The ability to discriminate between two distinct contexts following context fear conditioning was 

intact in adult rats 24 h following conditioning, but was impaired two weeks later, suggesting 

context fear generalization is time-dependent. Successful discrimination at the two week remote 

time point likely requires the presence of synaptic GluA2 AMPARs, as blocking endocytosis of 

these receptors in the dorsal hippocampus reversed context fear generalization (Migues et al., 

2016). A separate study that also employed context fear conditioning found that generalized fear 

to a novel context three weeks following training was reversed by inactivation of the anterior 
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cingulate cortex and ventral hippocampus. Additionally, inactivation of the dorsal hippocampus 

disrupted fear memory to the original training context at this three week remote time point 

(Cullen, Gilman, Winiecki, Riccio, & Jasnow, 2015), lending further support for a role of the 

dorsal hippocampus in maintaining context specificity. Interestingly, while adult rats exhibited 

increased fear responses over time to various stimuli, including the original training context, a 

novel context, and the tone CS, this incubation effect was diminished in aged rats (Houston et al., 

1999). These findings suggest that in adult animals, context generalization manifests at greater 

training-to-test intervals.  

In contrast to adults, fear generalization in aged animals is often evident at more 

immediate time points. Initial freezing following placement in a novel environment (i.e. baseline 

freezing) can be robust for aged animals, and may serve as direct evidence of fear generalization 

that accompanies aging. For example, a study investigating the effect of hippocampal DNA 

methyltransferase overexpression on fear learning found that aged mice displayed robust 

baseline freezing when tested in an altered context 24 h after trace fear conditioning, and 

freezing remained unchanged from baseline following presentation of the CS. Baseline freezing 

was subtracted from CS freezing to normalize for this aging-related increase of fear 

generalization, and only then were aging-related deficits evident (Oliveira, Hemstedt, & Bading, 

2012). In a separate study using delay fear conditioning, both adult and aged mice exhibited 

substantial freezing during the baseline of an extinction session in a novel context (~53% and 

~58% freezing, respectively) 1 d following training. Although extinction learning was intact in 

aged mice, they failed to display renewal of extinguished fear in a third context, unlike adult 

controls (Sanders, 2011). This study suggests that while both age groups display some degree of 

fear generalization upon initial exposure to a new context, the observation that aged mice also 
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fail to exhibit renewed fear to the tone when the context is shifted a third time may indicate 

generalized extinction learning. Thus, not only have aged animals been found to display 

increased fear generalization closely after the time of training, there is also evidence that 

suggests they may generalize their learning of extinction to different contexts.  

In summary, our data suggest that context fear and discrimination ability are particularly 

susceptible to disruption among aged rats when a cue test in a novel environment occurs before a 

context test in the original training context. This is supported by other literature that suggests 

aged animals display increased fear generalization and disrupted discrimination. However, it is 

possible that this effect is specific to shorter intervals between tests. The only interval used in the 

current experiment was 30 min, while other studies have typically separated their tests by one 

day or longer. Because our goal for the following experiment was to address the effect of AQ 

infusion shortly before behavioral manipulation, we needed to use the shortest test-test interval 

that was still practical. Our data suggest that testing in a novel context first leads to poor 

behavioral performance for aged rats. Therefore, this test order was used in the following 

experiment to investigate whether AQ-induced modification of fear memory could be attributed 

to state-dependent effects. 

Aging-related context fear memory impairment is mitigated by pre-training and pre-testing AQ 

infusion 

We next sought to determine the effect of pre-training and pre-testing AQ infusions on 

hippocampus-dependent fear memory, and whether any effects could be attributed to state-

dependent learning. Adult and aged rats were divided into four groups based on infusion 

schedule: vehicle both before training and testing (Veh-Veh); vehicle before training and AQ 
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before testing (Veh-AQ); AQ before training and vehicle before testing (AQ-Veh); AQ both 

before training and testing (AQ-AQ) (see Fig. 4 for experimental setup).  

Aged rats demonstrated impaired performance on a number of measures. Despite overall 

increased trace interval freezing across training trials, aged rats displayed reduced freezing 

during acquisition compared to adults. The following day, aged rats overall exhibited increased 

baseline freezing and reduced trace interval freezing during the cue test in the novel context, as 

well as reduced freezing to the original training context. Additionally, AQ infusion resulted in 

differential behavioral performance overall. When AQ was infused prior to training, baseline 

freezing during the cue test was reduced, while Trace-B freezing was increased. Importantly, 

because both the AQ-Veh and AQ-AQ groups displayed similar performance for these measures, 

these effects are likely due to pre-training AQ infusion, and not to any state-dependent effects of 

AQ (Poling & Cross, 1993). Additional pairwise comparisons within each infusion group were 

used to assess whether AQ infusion mitigated impaired learning among aged rats. While there 

was no aging-related reduction of trace interval freezing for any infusion group, subtraction of 

baseline freezing from trace freezing (Trace-B) revealed a significant aging-related impairment 

within each infusion group that was not rescued by AQ infusion. Despite the evidence for an 

aging-related impairment of context fear memory for the Veh-Veh, Veh-AQ, and AQ-Veh 

groups, the AQ-AQ group failed to display this impairment (see Fig. 5). Thus, pre-training AQ 

infusion resulted in an overall reduction of baseline freezing during the cue test, while pre-

training and pre-testing AQ infusions reversed an aging-related context fear memory deficit. 

The Ca2+ dysregulation and aging literature suggests that restoring some aspect of Ca+ 

regulation is beneficial for cognitive function. Most of these studies utilize substances that 

impede Ca2+ entry into the cytosol, either from the extracellular space via L-VDCCs (Deyo et al., 
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1989; Veng et al., 2003), or from intracellular stores like RyRs (Gant et al., 2015; Hopp et al., 

2014). Regulating Ca2+-dependent physiological mechanisms, such as the Ca2+-dependent sAHP, 

for example, may also effectively restore cognitive function in aged animals (Blank et al., 2003). 

However, few studies have examined whether sequestration of intracellular free Ca2+ effectively 

mitigates aging-related deficits of cognitive function. While the Ca2+ chelators BAPTA-AM and 

EGTA-AM enhanced synaptic plasticity in aged hippocampal CA1 (Ouanounou et al., 1999), it 

remains unclear if overexpression of these or other Ca2+-buffering mechanisms mitigate aging-

related cognitive deficits.  

We found that pre-training AQ infusion reduced overall baseline freezing during the cue 

test in a novel context, which suggests that fear generalization was evident among animals that 

received vehicle infusions prior to training and testing. Minimizing generalized fear during a cue 

test in a novel context is critically important for obtaining an accurate measurement of learned 

fear to conditioned stimuli, and others have attempted to determine specific factors that 

contribute to fear generalization following training. In an assessment of the effects of nicotine on 

fear learning, nicotine-treated mice displayed increased baseline freezing during a test in a 

shifted context 1 d following training. The test chamber was the same as the training chamber, 

except the grid floor used during training was replaced with a plastic floor, and the chamber area 

was decreased by inserting a divider. The authors found that increased fear generalization in 

nicotine-treated mice could be mitigated if the test chamber was located in a different room from 

that of the training chamber, and if training and testing were conducted by different 

experimenters (Gould & Wehner, 1999). Although we attempted to minimize generalization by 

conducting the cue test in a different chamber from that used during training, with different 

olfactory, tactile, and light conditions (see methods), the cue test was conducted in the same 
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room as behavioral training, and the same experimenter conducted both behavioral training and 

testing. The generalization we observed in the current experiments could be due to the fact that 

the cue test was conducted in the same room used during training, the same experimenter 

conducted both training and testing, or some other unknown factor or combination of factors. 

However, because rats displayed robust baseline freezing during the cue test, we were 

able to observe a reduction in generalized fear following pre-training AQ infusion. This suggests 

that perhaps there is a role for Ca2+ or Ca2+-dependent mechanisms in generalized learning. One 

possible contributor may include Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), 

which is normally activated following increases of intracellular Ca2+. CaMKIV knockout mice 

exhibited reduced baseline freezing in an altered context 28 d after auditory fear conditioning, 

suggesting a potential role for Ca2+-induced activation of this enzyme in generalized fear 

expression (Takao et al., 2010). A separate investigation of downstream regulatory element 

antagonistic modulator (DREAM), a Ca2+-dependent transcriptional repressor, revealed that mice 

lacking this protein spent more time exploring a novel object following object recognition 

training, while those expressing this protein showed a generalized preference for a novel and 

familiar object (Fontan-Lozano et al., 2009). Thus, it may be the case that disrupting these Ca2+-

dependent signaling mechanisms facilitates discrimination learning, and sequestration of 

intracellular Ca2+ by AQ may reduce the fear generalization observed in the current experiment 

via similar mechanisms. Given that the links between Ca2+-dependent signaling and generalized 

learning are indirect and few in number, future work will be needed to determine the specific 

role of AQ in modifying generalized fear.      

Additionally, we found that aged rats fail to exhibit a context fear memory deficit when 

AQ is infused prior to training and testing. Context fear memory is dependent upon dorsal 
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hippocampal function (Chowdhury, Quinn, & Fanselow, 2005; McEchron et al., 1998; Misane et 

al., 2005) and others have found that aging is associated with impaired context fear memory 

following trace fear conditioning (Kaczorowski & Disterhoft, 2009; Moyer & Brown, 2006). 

Further, CaBP expression is reduced with advancing age in the DG of the hippocampus (de Jong 

et al., 1996) and within both the dorsal and ventral hippocampal subregions (Detert, 2011). 

Given the evidence suggesting the dorsal hippocampus underlies context fear, and that aging is 

associated with reduced hippocampal CaBP expression, our data suggest that AQ-induced rescue 

of aging-related context fear memory impairment may be due to Ca2+ sequestration in this region 

of the brain. 

Our finding that AQ did not significantly affect trace fear memory may reflect 

differential involvement of underlying neural circuitry that mediates the recall of trace fear 

memory versus context fear memory. While the hippocampus seems to be one of the main 

contributors to context fear, the circuitry underlying trace fear memories appears to be more 

complex. In support, while hippocampal lesions disrupt context and trace fear memory 

(McEchron et al., 1998; Quinn et al., 2002), disrupted entorhinal cortex-hippocampal synaptic 

transmission impairs trace fear memory, but leaves context fear memory intact (Suh, Rivest, 

Nakashiba, Tominaga, & Tonegawa, 2011). However, other evidence suggests both trace fear 

and context fear memory are disrupted when NMDAR transmission is blocked in the medial 

prefrontal cortex, and when this region is inactivated by the GABAA agonist muscimol 

(Gilmartin & Helmstetter, 2010). Additional findings suggest NMDA-induced excitotoxic 

lesions of perirhinal cortex disrupt trace as well as context fear memory (Kholodar-Smith, 

Boguszewski, & Brown, 2008). It remains unclear whether AQ infusion targeted to these or 
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other brain regions that are also known to support trace fear memory would result in a rescue of 

aging-related trace fear memory deficits.  

Another possible contributing factor to the observation that AQ differentially affects 

context versus trace fear memory is the evidence that these two forms of memory may be 

disrupted at different points in the lifespan. For instance, context fear memory is disrupted as 

early as middle-age, while disruption of trace fear memory is not as severe in this age group 

(Kaczorowski & Disterhoft, 2009; Kaczorowski, Sametsky, Shah, Vassar, & Disterhoft, 2011; 

Moyer & Brown, 2006). Although the current experiments did not include middle-aged rats, the 

effect size was much more robust for the overall aging-related context fear deficit compared to 

the overall aging-related trace fear deficit (partial eta squared: .405 vs .14, respectively). Perhaps 

in order for AQ to elicit an observable behavioral effect on trace fear memory, a more robust 

aging-related trace fear memory deficit is required. This could potentially be accomplished by 

including older rats than what was used in the current study, or modifying our behavioral 

protocol so as to reduce the valence of conditioning stimuli, thus increasing the difficulty of the 

behavioral paradigm.  

Finally, our finding that aging-related context fear memory impairment is mitigated 

following pre-training and pre-testing AQ infusion begs the question of whether these effects of 

AQ are state-dependent. Symmetrical state-dependent learning is traditionally thought to occur 

when behavioral performance following a change of state from training to testing is different 

from behavioral performance when the state of the animal remains unchanged from training to 

testing (Overton, 1974; Poling & Cross, 1993). In the current experiments, only the aged rats that 

received pre-training and pre-testing AQ infusion displayed unimpaired context fear memory, 

unlike the other infusion groups that all displayed an aging-related context fear memory 
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impairment. These results suggests symmetrical state-dependent learning is not evident. Instead, 

our findings may reflect a state-dependent facilitation of context fear retrieval that requires the 

presence of AQ, not vehicle, during training and testing. 

Others have also found evidence to support state-dependent modification of fear memory. 

In adolescent rats, ethanol administration prior to training or prior to testing disrupted fear 

memory following trace fear conditioning, but failed to impair fear memory when administered 

prior to both training and testing (Hunt & Barnet, 2016). Context fear memory was also found to 

be state-dependent following administration of gaboxadol, a selective extrasynaptic GABAA 

receptor agonist (Jovasevic et al., 2015). In both of these studies, behavioral performance for 

groups that received drug treatment prior to both training and testing was similar to that of 

controls that received no drug treatment prior to training or testing, suggesting the occurrence of 

symmetrical state-dependent effects. Interestingly, fear memory was enhanced following pre-

training and pre-testing CB1 antagonism relative to pre-training CB1 antagonism only, as well as 

relative to pre-training and pre-testing vehicle administration (Reich et al., 2008). Because the 

group that received drug prior to training and testing performed differently from the group 

receiving vehicle prior to training and testing, this suggests the occurrence of state-dependent 

enhancement of fear memory following CB1 antagonism. Taken together, the current 

experiments suggest that the reversal of aging-related context fear memory impairment may be 

due to state-dependent effects, however, future studies are required to determine the role of other 

factors, such as multiple AQ administrations, in the observed behavioral modification.  
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Limitations and Future Directions 

 In summary, our findings suggest the CaBP AQ reduces fear generalization in a novel 

context when infused 1 h prior to training, and rescues aging-related context fear memory 

impairment when infused 1 h prior to training and 1 h prior to testing. However, there are several 

limitations that need to be addressed in future studies. The 4% concentration of AQ used in the 

current experiments is based on a separate study that found this dose to be sufficient to mitigate 

ischemic cell death (Detert et al., 2013), but it may not be the most effective dose to counteract 

the Ca2+ dysregulation that can accompany aging-related cognitive decline. Our finding that AQ 

infusion mitigates aging-related context fear memory impairment, but not trace fear memory 

impairment, could be due to an ineffective dose. The current experiments also failed to address 

the effect of chronic AQ infusion on behavioral performance. Other studies found that cognitive 

deficits in aged animals could be rescued following chronic blockade of L-VDCCs or RyRs 

(Hopp et al., 2014; Veng et al., 2003). Perhaps chronic AQ infusion is required to effectively 

mitigate aging-related trace fear memory deficits. Future studies are needed to assess the dose-

dependent as well as time-dependent effects of AQ infusion on behavioral outcomes. 

 Future studies that investigate physiological effects of AQ also may provide insights into 

appropriate administration protocols that will effectively alter cognitive function. Increased 

magnitude of the Ca2+-dependent, K+-mediated sAHP has invariably been linked to aging-related 

reductions of neuronal excitability, and is thought to contribute to learning impairment 

(Disterhoft, Thompson, Moyer, & Mogul, 1996; Landfield & Pitler, 1984; Tombaugh et al., 

2005). Blockade of L-VDCCs reduces AHP magnitude (Moyer, Thompson, Black, & Disterhoft, 

1992) and improves eyeblink conditioning in aged rabbits (Deyo et al., 1989), while blockade of 

Ca2+ release from RyRs reduces the sAHP amplitude and facilitates spatial learning in aged rats 
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(Gant et al., 2015). Thus, future experiments should also address the effect of AQ on Ca2+-

dependent physiological mechanisms such as the post-burst AHP.  

Additionally, downstream neuroimmunomodulatory effects of AQ may contribute to 

changes in cognitive function. Previous data from our lab suggest AQ is capable of modulating 

mRNA expression of various cytokines and chemokines (Detert et al., 2013). Cytokines can 

directly modify various Ca2+-regulatory mechanisms, including NMDARs, L-VDCCs, IP3Rs, 

and RyRs (see Sama & Norris, 2013). Further investigation of the link between AQ and the 

neuroimmune response may reveal an indirect path by which AQ is capable of modulating Ca2+-

dependent mechanisms that contribute to learning and memory.  

 Ultimately our goal was to investigate the effect of an acute AQ infusion on 

hippocampus-dependent fear learning to understand its capacity for ameliorating aging-related 

cognitive deficits. We found that AQ infusion 24 h prior to trace fear acquisition failed to 

mitigate trace fear memory deficits in aged rats. However, when AQ was infused 1 h prior to 

trace fear acquisition, generalized freezing during a cue test the following day was mitigated 

independently of age. Pre-training and pre-testing AQ infusion in aged rats also lead to a reversal 

of aging-related reduction of freezing during the context test, suggesting AQ induces state-

dependent enhancement of context fear memory in aged rats. Other factors, such as the number 

of AQ infusions, could also play a role in the observed enhancement of context fear memory in 

aged rats. We conclude that AQ infusion 1 h prior to trace fear conditioning modifies generalized 

fear, and that aging-related context fear memory impairment is mitigated in a state-dependent 

manner. Further studies will be needed to address the underlying mechanisms of AQ-induced 

reduction of generalized fear, and whether the reversal of an aging-related context memory 

deficit is truly due to state-dependent modification. 
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Figure 1. A single AQ infusion 24 h prior to trace fear conditioning does not affect trace fear 
memory in adult or aged rats. A. Experimental setup. On day 1 adult and aged rats received bilateral 
dorsal hippocampal infusions of vehicle or AQ (Adult-Veh (n = 5), Adult-AQ (n = 5), Aged-Veh (n = 7) 
and Aged-AQ (n = 6)). On day 2 rats underwent trace fear conditioning, which consisted of 10 trials of a 
white noise CS (15 s, 80 dB) paired with a scrambled footshock US (1 s, 1 mA) using a 5.2 min ITI (± 
20%). The CS and US were separated by 30 s. On day 3 rats were placed in a novel context where the CS 
was presented alone. Average freezing during the first two trials was used to assess CS and trace fear 
memory. B. There was no effect of age or infusion on acquisition of trace fear conditioning. During the 
test, analysis of trace freezing revealed a significant main effect of age. Baseline freezing during the test 
was subtracted from trace freezing (Trace-B) to normalize for generalized fear. Analysis of Trace-B 
freezing revealed a main effect of age, but no effect of infusion.  There was no effect of age or infusion on 
baseline or CS freezing during the test. *p < .05; **p < .01. 
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Figure 2. Experimental setup: Does test order alter hippocampus-dependent fear memory? A. Table 
of group assignments. Each age group was subdivided based on order of test presentation, which yielded 
four groups: Adult-Training First (n = 7), Adult-Novel First (n = 4), Aged-Training First (n = 6), Aged-
Novel First (n = 4). To assess the effect of test order and age on fear memory, only vehicle-infused rats 
were included. B. On day 1, adult and aged rats received bilateral dorsal hippocampal infusions of vehicle 
1 h before trace fear conditioning. This training paradigm consisted of 6 trials of CS – US pairings, with 
the CS and US separated by a 30 s silent trace interval. The CS was a 15 s, 80 dB white noise, and the US 
was a 1 s, 1 mA scrambled footshock. Trials were separated by a 5.2 min ITI (± 20%). On day 2, rats 
again received vehicle infusions, and 1 h later were tested in two different contexts. Test order was 
counterbalanced. The test in the original training context consisted of a 10 min stimulus-free period, and 
average freezing during the entire session was used to assess fear memory to the training context. The cue 
test in the novel context consisted of two CS-alone presentations, and was used to assess fear memory to 
the CS and trace interval.  
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Figure 3. Aging and test order alter hippocampus-dependent fear memory. A. Each group readily 
acquired trace fear conditioning on day 1. On day 2, rats underwent a cue test in a novel context to assess 
CS and trace fear memory, and a context test in the original training context to assess context fear 
memory. Test order was counterbalanced. Among rats that underwent testing in the novel context first, 
aged rats displayed significantly reduced freezing during the CS as well as to the original training context. 
While there was not an aging-related reduction of trace interval freezing, there was a difference between 
age groups when baseline freezing was subtracted from trace freezing (Trace-B). Among rats that were 
tested in the original training context first, aged rats displayed significantly increased freezing during the 
baseline period of the cue test in the novel context, as well as reduced Trace-B freezing. However, aged 
rats failed to exhibit a context fear memory deficit when they were tested in the original training context 
first. B. To assess fear discrimination, freezing during the first two min of the test in the original training 
context (A) and the first two min of the cue test in the novel context (B) were compared within each 
experimental group. Adults that underwent the context test first exhibited significantly reduced freezing 
during B relative to A, suggesting good discrimination. Aged rats that were tested in the novel context 
first displayed significantly reduced freezing during A relative to B, suggesting poor discrimination. A 
discrimination ratio was calculated by subtracting freezing during B from freezing during A, then 
dividing the difference by the sum of freezing during B and A. For both test order groups, aged rats 
displayed significantly reduced discrimination ratios relative to their respective adult controls. *p < 0.05; 
**p < 0.01; ***p < 0.001. 
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Figure 4. Experimental setup: Does AQ differentially affect fear memory in a state-dependent 
manner in adult and aged rats? A. Table of experimental groups. Adult and aged rats were divided into 
four infusion groups to assess the effects of AQ on fear learning: 1) vehicle pre-training and pre-testing 
(Veh-Veh, Adult: n = 9; Aged n = 9); 2) vehicle pre-training, AQ pre-testing (Veh-AQ, Adult: n = 5; 
Aged: n = 4); 3) AQ pre-training, vehicle pre-testing (AQ-Veh, Adult: n = 5; Aged: n = 4); 4) AQ pre-
training and pre-testing (AQ-AQ, Adult: n = 5, Aged = 4). B. On day 1 rats received bilateral dorsal 
hippocampal infusions of either vehicle or AQ 1 h prior to trace fear conditioning. This paradigm 
consisted of 6 trials of a white noise CS (15 s, 80 dB) paired with a scrambled footshock US (1 s, 1 mA), 
using a 5.2 min ITI (± 20%). The CS and US were separated by a stimulus-free 30 s trace interval. The 
next day, rats were tested for fear memory beginning 1 h following infusions of either vehicle or AQ. Rats 
were tested for CS and trace fear memory in a novel context, followed 30 min later by a test for context 
fear memory in the original training context. 
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Figure 5. AQ infusion prior to training and testing mitigates an aging-related context fear memory 
deficit. Each infusion group was plotted separately: A. Veh-Veh; B. Veh-AQ; C. AQ-Veh; D. AQ-AQ. 
Overall, there was a significant increase of trace interval freezing across training trials on day 1 (p < 
.001), however, aged rats displayed reduced trace interval freezing relative to adults (p < .01). During the 
cue test in the novel context on day 2, there was a significant effect of infusion on baseline freezing. Pre-
training AQ infusion (AQ-Veh and AQ-AQ) resulted in reduced freezing relative to Veh-Veh (Veh-Veh 
vs. AQ-Veh: p < .05; Veh-Veh vs. AQ-AQ: p < .01). Additional comparisons were conducted within each 
infusion group to determine the extent of aging-related deficits. Aged Veh-Veh rats displayed reduced 
freezing to the CS relative to the adult Veh-Veh group (p < .05). While there was no aging-related 
reduction of trace freezing for any infusion group, an aging-related deficit became apparent for all groups 
when baseline freezing was subtracted from trace freezing (all p-values, p < .05). Analysis of average 
freezing during the context test revealed that aged rats that received AQ infusion prior to training and 
prior to testing (AQ-AQ) failed to exhibit a context fear memory deficit (p = .258), suggesting pre-
training and pre-testing AQ infusion mitigates an aging-related context fear memory impairment. *p < 
0.05; **p < 0.01. 
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