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ABSTRACT 

IS CONTEXTUAL CUE LEARNING FLEXIBLE?  

AN EYE-MOVEMENT STUDY OF CONTEXTUAL CUEING TASK 

by 

Youcai Yang 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Professor Anthony J. Greene 

 

Visual searching can be facilitated without awareness when the target is repeatedly 

presented in an invariant context in tasks such as contextual cueing (Chun & Jiang 1998). 

A behavioral cost (increased reaction time) was observed when the target was moved to a 

new location but no such cost was observed when the target returned to the initial 

location. The lack of cost for return suggests two possible explanations: One is that the 

learning can update the initial learning to acquire both target locations, which suggests 

the implicit learning is flexible. The other is that the contextual cue leaning cannot update 

the initial learning but perseverates for the initial target location, which would not 

provide evidence the learning is flexible. To clarify the mechanism by which returns 

impose no behavioral cost, thirty-two participants were recruited for a contextual cueing 

task with both eye-movement and reaction time as dependent variables. All participants 

were required to identify the orientation of target in each array. After nine blocks (phase 

A1), the target in repeated array swapped with a distractor in the diagonal quadrant for 

another nine blocks (phase B), then the target returned to its initial location (phase A2). A 

behavioral cost of reaction time was observed after the initial swap in phase B. No 

significant contextual cueing effect was observed until the last epoch of phase B.  
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However, no evidence of a behavioral cost was observed after the return in phase A2. 

Further analysis showed the behavioral cost in Phase B was found to be due in part to 

proactive interference from learning in Phase A1. The mechanism for immediate recovery 

after return in phase A2 was likewise perseveration of learning from Phase A1, which in 

most instances was sustained throughout all Phase B. The present study shows no 

evidence that participants could learn two targets locations which were subsequently 

presented in the same context in the contextual cueing task within the limited time 

available to them. Therefore, no evidence was found to support the flexibility of implicit 

learning in this task. 
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Introduction 

Memory is often categorized as either explicit or implicit (Graf & Schacter, 1985; 

Schacter, 1987; Shimamura, 1986). Explicit or declarative memory refers to knowledge 

for which we have conscious access. Explicit memory is further divided into episodic 

memory and semantic memory (Tulving, 1985). Episodic memory is referred to as 

autobiographical memory for specific personal experiences from a particular time and 

place, such as a basketball game, or a job interview. Semantic memory on the other hand 

is conscious recollection of factual information and general knowledge about the world, 

and allows us to recall the names, which constitutes knowledge. Additionally, there is no 

requirement that a particular episodic memory is associated with semantic information. 

Implicit memory refers to the memory revealed when previous experience 

facilitates performance on a task without the necessity of conscious awareness of these 

experiences (Cohen, Eichenbaum, Deacedo, & Corkin, 1985; Schacter, 1987). Procedural 

memory, perceptual facilitation, classical conditioning and nonassociative learning are all 

examples of implicit memory. Procedural memory is the learning of a variety of motor 

and cognitive skills, such as how to ride bicycle, how to read and how to type. Accuracy 

and speed are improved by implicit memory when performing, even without awareness. 

Perceptual performance can likewise be improved by experience. Perceptual facilitation, 

or priming refers to a change in the response to, or ability to identify a stimulus as the 

result of prior exposed to that stimulus. For example, one can complete the incomplete 

word ‘MOT__’ with letters “IF” after prior exposure to a complete word ‘MOTIF’, and 

are more likely to do that than to complete the stem with “el” since they have not studied 

the word ‘MOTEL’. The effects of priming can be very salient and long lasting (Tulving, 
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Daniel, Schacter, & Heather, 1982), and work best when the stimuli are in the same 

modality and semantically related words (Friederici, Steinhauer, Frisch, 1999; Zurif, 

Swinney, Prather, Solomon, & Bushell, 1993). For example, visual priming worked best 

with visual cues, semantic priming works between related words such as ‘car’ and ‘fuel’.  

In general, priming is said to occur when prior experience results in perception that is 

more accurate, identification occurs more quickly, or primed targets are more readily 

selected.   

Flexibility in memory allows previous learned information to be recalled and 

applied to novel situations when presented with similar contingencies or a subset of the 

original materials (c.f., generalization; Postman, 1951). This adaptive function of 

memory engages novel information into established mnemonic traces (Hunt & Einstein, 

1981). Implicit learning has historically been thought to be closely tied to the surface 

features of the input stimuli for its inflexibility (Sperling, 1960). Tulving (1990) found 

priming diminishes when there are surface-level discrepancies between the study and test. 

Roediger (1987) also found priming is specific to stimulus features, such as shape or size 

between study and test items; changes in stimulus features results in decreased priming. 

In contrast, explicit learning has historically been considered to be highly flexible 

allowing transfer between various stimulus domains and modalities. Dienes and Berry 

(1997) concluded that implicit knowledge was often relatively inflexible in transfer to 

different domains (see also Cohen & Eichenbaum, 1993; Cohen, Poladrack, & 

Eichenbaum, 1997; Reber, Knowlton, & Squire, 1996; Squire, 1992, 1994; Stadler, 

Warren, and Lesch, 2002), which suggested implicit learning is unable to be updated 

from the existing learning. However, Willingham (1997) argued that the inflexibility of 
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implicit memory and the flexibility of explicit memory have been vastly over-stated, 

ignoring a great deal of evidence for flexible implicit memory and inflexible explicit 

memory. For example, motor skill learning, thought to be largely implicit learning, can 

be high flexibility as evidenced by good transfer under many conditions, including such 

things as the manipulation of effectors, scaling to different timing demands (e.g., 

Schmidt, 1988). Explicit memory shows inflexibility when participants are cued to think 

of one property of a word at encoding and later shown a retrieval cue that emphasizes a 

different property (Barclay, Bransford, Franks, McCarrell, & Nitsch, 1974). Accordingly, 

the extent of flexibility is not determined principally by whether it is implicit or explicit 

memory but more upon the experiment design (e.g., Stadler, 1997). A change between 

encoding and retrieval may cause inflexibility of memory if the change affects some parts 

of the representation that supported perceptual learning. Otherwise, the same transfer 

manipulation does not appear affect task performance (Kolers & Roediger, 1984; Morris, 

Bransford, & Franks, 1977; Tulving & Thomson, 1973).  

Perceptual priming is considered to be implicit learning and implicit sequence 

learning tasks have also been used to examine perceptual flexibility. Willingham, Nissen, 

and Bullemer (1989) found that changing item colors in a perceptual learning condition 

may lead to an elimination of the learned response when participants were required to 

make a particular motor response according to item color; this task is primarily a 

perceptual rather than motor learning process. However, early artificial grammar learning 

studies performed by Reber (1969) suggest implicit learning is not necessarily 

perceptually inflexible. Participants’ classification performance was significantly 

impaired by a change to the grammar, but not by a change to the letter set, in three 
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conditions of altered letters of strings, altered grammar, or both. In a similar experiment, 

participants who received a new letter set every week over a four-week period performed 

as well as control participants who received the same letter set throughout the experiment 

(Mathews, Buss, Stanley, Blanchard, Cho, & Druhan, 1989). Thus, it is problematic to 

assert that perceptual inflexibility is a defining feature of implicit learning.  

It is worth mentioning that there is some debate over the clarity of these findings 

as some of the learning might not be entirely implicit. There are two considerations that 

have been proposed: (1) partial or correlated explicit knowledge might not have been 

measured by efficient awareness tests, and (2) the participants may transmit more 

information in their task performance than in tests of awareness since the performance 

tests are more sensitive to whatever conscious information was encoded (Tomiczek & 

Burke, 2008). Another argument against implicit flexibility is that adaptable manipulation 

of contingencies requires deliberation, especially when the complexity of the relationship 

increases (Clark & Squire, 1998).  

The theory of relational learning provides a new account of flexibility in memory 

that does not propose awareness or deliberation were the critical factors for flexibility. 

Most learning occurs in settings wherein the details provide predictive context. 

Associations are bound such that learned relations are true in some contexts but not in 

others (Eichenbaum, 2007). However, a growing body of evidence suggests that implicit 

memory is able to encode context flexibly (Gross & Greene, 2007; Kristjansson & 

Campana, 2010; Ostreicher, Moses, Rosenbaum, & Ryan, 2010). Accordingly, 

recognition may be high even when explicit memory levels are low during or 

immediately after encoding and both implicit and explicit learning were found depend on 
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similar mnemonic process (Voss, Baym, & Paller, 2008; Voss, Lucas & Paller, 2010; 

Voss & Paller, 2008). Recent experiments suggested implicitly learned information can 

be context dependent and applied to novel situations (Greene, 2007; Greene, Gross, 

Elsinger, & Rao, 2007; Gross & Greene, 2007; Greene, Spellman, Dusek, Eichenbaum, 

& Levy, 2001; Leo & Greene, 2008; Reber, Luechinger, Boesiger & Henke, 2012). For 

instance, Greene et al. (2001) demonstrated that when participants were trained on 

context-dependent pairs (AB, BC, CD, DE), they were able to infer the relationship 

between items from a new, unstudied pair (BD).Thus, contextual relations may be 

elaborately encoded and available to both implicit and explicit processes.  

A notable relational learning task of context-dependent implicit memory was 

developed by Chun and Jiang (1998). Participants were asked to locate rotated target “T” 

among distractor “L”s in each screen. Half of the arrays were repeated and half were 

novel. The configuration of distractors in repeated arrays serves as contextual information 

to cue target location. While participants improved on both trial groups indicating 

improved task skill, the effect of interest was that they quickly showed significantly faster 

reaction time (RT) for repeated than novel trials. Eye movement data also showed fewer 

fixations were required to find the target for repeated trials (Peterson & Kramer, 2001). 

Despite differential performance for novel versus repeated trials, participants showed no 

evidence of conscious recognition for any trials (Chun & Jiang, 1998, 1999; Chun & 

Jiang, 2003; Greene & Gross, 2007; Peterson & Kramer, 2001), even when they were 

informed of repeated arrays prior to experiment (Chun & Jiang, 2003).  

Contextual cue learning may adapt to changes when participants learn multiple 

target locations (Conci, Zellin, & Müller, 2012). However, the contextual cueing effect 
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was not observed in several studies after targets were relocated within invariant context 

(Chun & Jiang, 1998; Chun & Olson, 2004; Conci, Sun, & Müller, 2011; Makovski & 

Jiang, 2010; Manginelli & Pollman 2009; Jiang, Swallow, Rosenbaum, & Herzig, 2013; 

Zellin, von Mühlenen, Müller, & Conci, 2013). A contextual cost is observed when the 

target is swapped to a distractor location (Conci et al., 2011; Makovski & Jiang, 2010; 

Hanson & Greene, 2011) or an empty location (Makovski & Jiang, 2010; Manginelli & 

Pollman, 2009; Zellin, Conci, von Mühlenen, Müller, 2011; Zellin et al., 2013). 

Moreover, the cost is greater when the target is swapped with a distractor (Makovski & 

Jiang, 2010). For clearly understanding the mechanism, the eye movement was measured 

and showed that the swap distance between new and old target locations affected the 

contextual cueing effect differently. A far swap distance caused greater cost than a local 

swap (Makovski & Jiang, 2010). Zellin et al. (2011) offered two possible explanations for 

this phenomenon. One is that contextual cueing is essentially limited to single-target 

learning. Each old configuration can only be associated with one repeated target location 

(and its immediate surrounding; see also Makovski & Jiang, 2010). Other target locations 

are not guided by the same old configuration. The other explanation is that relocated 

targets are not expected to appear at previous empty locations for condition of swapping 

with empty locations (Jiang, Swallow, Rosenbaum, & Herzig, 2013; see Clark, 2013, for 

a theoretical approach to cognitive prediction models). In other words, the relocated 

target locations were not predictable, which could prevent their integration into the old 

configuration. However, two locations may be acquired but only via early exposure.  

Other studies also presented similar views, suggesting participants form an 

implicit prediction about future occurrence of familiar visual events based on their 
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predictability (Beesley & Le Pelley, 2010; Dale, Duran, & Morehead, 2012; Reder, 

Weber, Shang, & Vanyukov, 2003; Turk-Browne, Scholl, Johnson, & Chun, 2010; see 

also Neider & Zelinsky, 2006, for more naturalistic scenes). It is reasonable to ask if 

participants are shown context without association with a target before context associated 

with a target, will the first unpredicted experience interfere with the performance of 

contextual learning? Jungé, Scholl and Chun (2007) manipulated the presentation 

sequence of predictable contexts (signal, target location was predictable) and 

unpredictable contexts (noise, target location was unpredictable) to see the interference of 

the initial prediction. One is the signal first condition, which consists of three predictable 

context epochs followed by one unpredictable context epoch beffore the test epoch. The 

other is the noise first condition, which is one unpredictable context epoch followed by 

three predictable context epochs. The results show only the signal first condition 

produces a subsequent contextual cueing effect. It suggests the initial prediction 

experience is critical for subsequent contextual learning and initial contextual cue 

learning unlikely to be updated. Similarly, in a recent study (Zellin, von Mühlenen, 

Müller, & Conci, 2013), the target locations of two predictable contexts exchanged after 

3 epochs. Significant contextual cueing effect was observed after transiently influence 

right after the swap. The result suggests that initially learned implicit context-target 

associations were not affected by repeated presentations of relocated targets (see Zellin et 

al., 2013, for a comparable finding). In contrast, in a second group, the target locations 

were exchanged between predictable and unpredictable contexts. The contextual cueing 

effect was reversed and did not occur again during the entire exchange phase. It suggests 

that the initial unpredictable experience did interfere with the adaptation to relocated 
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target locations. Thus, the initial prediction experience greatly influences subsequent 

learning and this effect can last for a long period. The initial contextual cue learning 

seems cannot be updated which suggests such learning is not flexible. 

If there are two target locations simultaneously present in the same context, can 

both locations be learned and predicted? Conci, Sun and Müller (2011) reported 

successful contextual learning of two predictable target locations presented within one 

invariant context. During their experiment, two targets were displayed in the same 

context simultaneously (one was oriented left/right, one was oriented upward/downward). 

Participants were asked to search for one type target in the first half of the experiment 

and then search for the other type target in the next half of the experiment. The results 

showed that the response change led to an overall slowing of RTs, but no significant 

reduction of the contextual-cueing effect. This suggests that both target locations are 

predictable when they appear simultaneously in the same repeated context. This also 

suggests multiple target locations can be learned for a single array (Brady & Chun, 2007; 

Chun & Jiang, 1998; Conci & Müller, 2012; Kunar & Wolfe, 2011). However, Zellin and 

Conci (2011) found no contextual cueing effect when invariant contexts were paired with 

three rather than one or two possible target locations. A capacity of the contextual cueing 

with multiple target locations exists.   

Adaptation to global changes was observed by Jiang and Wagner (2004) when 

contextual cueing was sustained after the entire displays were resized suggesting 

contextual cue learning may be flexible. Similarly, relatively small and transient cost was 

observed after large-scale (i.e. global) change in natural scenes (Brockmole & Henderson, 

2006). Together, the findings suggest a change of target-to-context relation may disrupt 
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contextual cueing, while global changes can be dynamically adapted to and compensated 

for (Conci, Sun, & Müller, 2011), which suggest old contextual cue learning can be 

updated. Thus, two distinct views exist. One view is that the initial contextual cue 

learning cannot be updated which suggests this learning is inflexibility. The other view is 

the initial contextual cue learning can be updated which suggests it is flexible. The 

flexibility or adaption of contextual cue learning may be dependent on the experiment 

design, and no consistent conclusion has been made.  

The present investigation: a closer examination of changed contingencies as a test 

of flexibility. Recall that changing the target location in a particular array may (Chun & 

Jiang, 1998; Jiang and Wagner, 2004; Brockmole & Henderson, 2006), or may not result 

in new learning (Conci, Sun, & Müller, 2011; Hanson & Greene, 2011; Makovski & 

Jiang, 2010; Manginelli & Pollman 2009; Zellin, von Mühlenen, Müller, & Conci, 2013). 

The proactive interference of initial experience may make it difficult or impossible to 

adapt to the new association. The capacity to update and revise existing learning is 

perhaps a fundamental test of flexibility (Bo, Jennet, & Seidler, 2011). If it can be 

convincingly demonstrated that learning in the contextual cueing task can be recovered, it 

would be an excellent argument for flexibility in this task.  Moreover, to fully understand 

the influence of proactive interference, a return can establish the persistence of initial 

learning (Zellin, von Mühlenen, Müller & Conci, 2013). If proactive interference 

prevents new learning, no significant contextual cueing effect will be observed when the 

target is relocated and then a return to the initial contingencies should come at little or no 

cost. Two studies reported that no significant contextual cueing effect was observed 

during the entire swapping phase but was observed immediately after target was returned 
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to its original location. This suggests the proactive interference interfered with new 

learning and preserved original target location searching, thus demonstrating no evidence 

of flexibility in the contextual cueing task (Hanson & Greene, 2011; Zellin, von 

Mühlenen, Müller & Conci, 2013). However, the preliminary results of one of these 

studies (Hanson and Greene, 2011) with similar learning and swap phase found 

significant contextual cueing effect during the swap phase, which suggests both target 

locations were learned. However, the one target location learning view also can explain 

this significant contextual cueing effect at the end of swap phase. That is, if one target 

location learning view is true, this significant contextual cueing effect might be caused by 

the arrays whose only new target locations were learned. Therefore, the conclusion of 

flexibility made by the overall RT may not be reliable. The mechanism of lack of 

behavioral cost is not clear.  

The purpose of this study is to explore the flexibility of contextual cueing learning 

by investigating the mechanism underlying the lack of behavioral cost observed upon 

reversal. Accordingly, we examined two possible explanations for this absence of 

behavioral cost. One is that the contextual cue learning can be updated from the initial 

learning to acquire both target locations. Which would suggest implicit learning is 

flexible. The second is the contextual cue learning cannot be updated from the initial 

learning but perseverates on the initial target location, which would suggest implicit 

learning is inflexible. To fully understand these issues, we measured eye movements and 

RT while participants performed a contextual cueing task in which the target location was 

first in one location (learning phase) then it was moved to a diagonal quadrant by 

swapping with a distractor (swap phase) then eventually returned to its initial location 
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(return phase). We chose to use eye movement measurement because of the following 

reasons: First, experience-dependent eye movement can represent implicit memory 

without awareness (Conci, & Mühlenen, 2011; Hannula & Ranganath, 2009; Peterson, & 

Kramer, 2001; Ryan, Althoff, Whitlow, & Cohen, 2000). Second, only eye movement 

data can indicate if eye kept searching the original target location when target was 

relocated. Third, overall RT was not able to represent original and new target location 

learning separately.  

The present study tested two hypotheses. One hypothesis is that participants may 

update their initial learning to acquire both target locations, which supports the flexibility, 

If this hypothesis is true, than it is expected that: 1) RT for relocated repeated 

configurations will decrease over time and a significant contextual cueing effect would be 

observed at the end of swap phase; and participants' search strategy should not prioritize 

the initial target location. The other hypothesis is that participants cannot update the 

initial learning and consequently only learn one of the two target locations can be learned 

which supports the inflexibility. If this hypothesis is true, then it is expected that a 

significant decrease in RT for relocated repeated configurations is unlikely to occur in 

swap phase; and participants' search strategy should always prioritize initial target 

location. 

Method 

Participants  

Thirty-two participants (16 males and 16 females), between the ages of 19 and 31, 

were recruited from the University of Wisconsin-Milwaukee. They participated for extra 

credits or as paid volunteers ($10 per hour for 2 hours). All participants had normal color 
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vision and were able to search targets on display with naked eyes. Fourteen participants 

were unable to complete the task due to a technical problem with eye-tracker calibration. 

Three fell asleep during the task.  All analysis was based on the data of 18 participants. 

Materials and Procedure 

Materials. The visual stimuli were similar to those used by Chun and Jiang (1998). 

One target and 11 distractors appeared on each screen. The target was a 90 or 270 

clockwise rotated “T”, meaning its stem pointed to the left or right (see Figure 1). The 

lengths of two lines making up the “T” were the same, with visual angle of 1.88 tall and 

wide. Distractors were 0 and 180 rotated normal or mirrored-imaged “L”s. The lengths 

of two lines of the “L” were the same tall and wide as the target. The horizontal line of 

the “L” exceeded 20% out of the vertical line, so that “L”s were somewhat similar to the 

“T”, but still could be recognized as an “L” (Duncan & Humphreys, 1989). The colors of 

the targets and distractors were randomly assigned for each trial, including blue, green, 

red and yellow. Each color was equally represented in each array. The backgrounds were 

set as gray (Chun & Jiang, 1998, Chun & Phelps, 1999).  
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Figure 1. Sample of an array used in this study. One target and 11 distractors appeared on 

each screen. The target was a 90 or 270 clockwise rotated “T”, meaning its stem 

pointed to the left or right. Distractors were 0 and 180 rotated normal or mirrored-

imaged “L”s. The colors of the targets and distractors were randomly assigned for each 

array, including blue, green, red and yellow. Each color was equally represented in each 

array. The backgrounds were set as gray. 

The entire array subtended a visual angle of 36.8 × 23.5 degrees when measuring 

from 24 inches from the display. The array was divided into an invisible 8 × 6 grid, 

consisting of four 4 × 3 quadrants. No items would appear in the central four slots around 

the fixation cross and four slots in the corners (Brady & Chun, 2007). One target and 11 

distractors items were distributed into these 40 slots with three items in per quadrant. 

Three target locations were assigned for each quadrant. In order to prevent collinearities 

with other stimuli, all items randomly jittered within slots in steps of 0.2 with a range of 

± 0.8 along the vertical or horizontal axis. Arrays had been generated by the 

Presentation
®
 program, and visually were checked. Any arrays with two stimuli being 

closer than a visual angle of 2.7 were discarded (Peterson and Kramer, 2001). This 

provided at least 0.5 so the eye-tracker can distinguish two close fixations, so the 

fixations to nearby the objects could be differentiated.  
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This experiment used an “ABA” design to manipulate the predictability of the 

target location. A given repeated array had a predictable target location throughout phase  

A1, then the new location for all of phase B, and then the target was returned to its 

original location for that last A2 phase. A total of 27 blocks were divided into the three 

phases, with each phase consisting of three epochs and each epoch consisting of three 

blocks (c.f., Chun & Phelps, 1999). Each block consisted of 12 repeated arrays and 12 

novel arrays, for a total of 648 trials for the whole experiment. The repeated arrays 

maintained the color and location for each distractor and target, but the orientation of the 

target was randomized to prevent participants from simply learning to respond “left” or 

“right” to particular arrays. Each novel trial consisted of an array that appeared only once 

throughout the experiment. The colors and orientations of all stimuli were randomly 

assigned. To rule out the location probability effect (a repeated array could accidentally 

be identical to a novel array), 12 particular locations were used for targets in repeated 

configurations and 12 separate locations were used in novel configurations without 

overlap (c.f., Chun & Phelps, 1999). The target would appear equally in each of 24 

locations throughout the experiment, so the target location likelihood would not affect 

performance. For counterbalancing, the set of locations for repeated configurations would 

be swapped with the set of locations for novel configurations for half of the participants.  

The first three epochs was designated as the phase “A1”. In phase A1, the12 

repeated configurations appeared once per block from Block 1 to Block 9 along with 12 

novel arrays in each block. The presentation sequences of the 12 repeated arrays and the 

12 novel arrays in each block were random throughout the experiment. During the 

following three epochs (Block 10 -18, designated phase “B”), all the repeated arrays were 
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modified by swapping the target with a single distractor in each diagonal quadrant. The 

colors were bound to locations. For example: If the target was a red “T” and swapped 

with a green distractor “L”, then, the new “T” would be green and the “L” will be red. 

The orientation of the distractor was preserved but the orientation of target was still 

randomly assigned. Also, to avoid the possible overlap of target locations, the swapped 

distractor’s location did not overlap with any target location. In phase A2, the targets in 

repeated configurations returned to their original locations.  

Procedure. The distance between the participants’ eyes and display was 24 inches. 

The participants were given a short oral instruction about the visual search task. A color 

photocopy of a sample configuration was shown so that participants saw how targets and 

distractors were. They were not informed about the repetition of some arrays and not 

asked to explicitly memorize arrays. All participants were asked to search for the targets 

only and respond as quickly and accurately as they can. 

Each trial began with a central fixation cross and participants were asked to keep 

their eyes on the cross (see Figure 2). When the participants’ eyes located within 2.5 

around the cross for one second, the experimenter pressed the space bar to start the trial. 

The test array with stimuli appeared on the screen without pause then participants started 

to search the targets among distractors. If the stem of target “T” pointed to left, 

participants should press “1” on keyboard. If it pointed to right, “2” should be pressed. 

The search time was also unlimited. A 1000ms visual feedback was given to participants 

after they made response. A green capital “CORRECT” indicated correct response, and a 

red capital “INCORRECT” indicated an incorrect response. Then a fixation would appear 
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again for next trial without break. A 10s mandatory break was given at the end of each 

complete block. Recalibration was given before each block or when it was necessary. 

 

Figure 2. Schematic of the searching task and experimental procedure used in this study. 

(a) This contextual cueing task consisted of 27 blocks and a recognition test. In each 

block, 12 repeated arrays appeared once per block along with 12 novel arrays. The 

presentation sequences of the 12 repeated arrays and the 12 novel arrays in each block 

were random throughout the experiment. The three groups of 9 blocks were successively 

designated as the phase A1, B and A2. During phase B, each repeated array was modified 

by swapping the target with a single distractor from the quadrant diagonal to the original 

target location. The colors were bound to locations. The orientation of the distractor was 

preserved but the orientation of the target was still randomly assigned. Also, to avoid the 

possible overlap of target locations, the swapped distractor’s location did not overlap 

with any target location. The filled-line circle indicates the target location and dotted-line 

circle indicates the previous target location in the phase B. During phase A2, the targets in 

repeated arrays returned to their initial locations. (b) Each trial began with a central 

fixation cross. When the participants’ fixation fell within 2.5 around the cross for one 

second, the experimenter would press the space bar to begin the trial. The duration of the 

fixation was not limited. After fixation, the test array with stimuli appeared on the screen 

without pause, then participants started to search the targets among distractors. If the 

stem of target “T” pointed to left, participants should press “1” on keyboard. If it pointed 

to right, “2” should be pressed. The search time was also unlimited. A 1000ms visual 

feedback was given to participants after they made response. A green capital “CORRECT” 

indicated correct response, and a red capital “INCORRECT” indicated an incorrect 

response. 
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A computer-based recognition test was given to participants at the end of 

experiment. Before they began the recognition test, they were informed that some 

configurations were repeatedly presented from block to block in the previous task. The 

first question appearing on the screen was “Did you notice any configurations repeated 

from block to block? 1-Yes, 2-No”. If the answer was “No”, the recognition test was 

active. If the answer was “Yes”, the following question was “Did you explicitly try to 

memorize the patterns? 1-Yes, 2-No.” The recognition ensued no matter whether the 

answer was “Yes” or “No”. The recognition test was one block (24 trials) of visual 

recognition consisting of 6 random repeated configurations from phase A, 6 random 

repeated configurations from phase B, and 12 completely novel configurations they had 

never seen before. Participants were instructed to respond “1 - I have never seen it before” 

if they did not recognize this configuration or “2 - I have seen it before” if they thought 

this configuration occurred in the initial task. No feedback was given. 

The fixation was defined as a discrete pause of the eyes on a display. A 

successfully recorded single fixation met the requirement of less than 1° of gaze position 

change combined with a minimum duration of 100ms. If fixation landed within 1.3 from 

a stimulus, it was counted as landing on the stimulus.  

The model of 19-inch LCD monitor was AUSU
®
 VW198, with resolution was set 

as 1280 × 800. Eye movement was recorded by ASL EYE-TRAC
®
6 with a 0.5 spatial 

resolution. Computer was the Intel
®
 Core™ i5 650@320GHz. Operation system was 

Window XP
®
 Service Pack 3. Data was analyzed by SPSS

®
 21. 
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Results 

Data Elimination 

This study eliminated 1.67% of trials due to incorrect responses; 1.00% of trials 

because RTs were longer than 3.0 standard deviations of the mean RT for each block for 

each array; 6.83% trials because the viewing time was shorter than 65% of the 

corresponding RT; and 0.21% of trials due to the four minimal trials requirement for per 

array (repeated and novel) in each block (e.g. If there are 3 repeated trials and 8 novel 

trials left for block 2, because the number of repeated trial is less than four, which may 

make the comparison unreliable, so all trials left in such unqualified blocks were 

completely excluded). Overall 90.29% trials remained after elimination.  

Recognition Test 

The hit rate of repeated array was 45.37%. The false alarm rate of novel arrays 

was 43.06%. There was no significant difference between hit rate (mean = 0.454) and 

false alarm rate (mean = 0.431; p = 0.785, Cohen’s d’ = 0.092). The accuracy for novel 

arrays was higher than repeated arrays (t(34) = 2.378, p = 0.023), but the accuracies for 

both conditions were not significantly different from chance (Novel: p = 0.274; Repeated: 

p = 0.430). Therefore, awareness was not observed (see also Chun & Jiang, 1998; Chun 

& Phelps, 1999; Chun & Jiang, 2003; Greene, Gross, Eichenbaum, & Levy, 2007; 

Peterson & Kramer, 2001; Manginelli & Pollmann, 2009; Zhao, Liu, Jiao, Li & Sun, 

2012).  

Target Detection: Behavioral response 

Figure 3 shows the mean RTs across epochs for each array condition (novel vs. 

repeated) based on the mean RTs for each participant. A behavioral cost of RT for 
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repeated arrays is readily seen right after the target was swapped in epoch 4, but such 

behavioral cost was not observed after the target was returned in epoch 7. Significant 

contextual cueing effect was observed during all three phases. This suggests both the 

original and new target locations might be learned. However, because the one target 

location learning is possible, so the overall RT was not able to represent the original and 

new target location memories separately, accordingly, the significant contextual cuing 

effect of the last epoch of swap phase might be caused by the repeated arrays in which 

only the new target location were learned. No reliable conclusion of flexibility can be 

made.  

A 2 (arrays: repeated vs. novel) × 9 (epoch) repeated measure analysis of variance 

(ANOVA) yielded significant main effects of epoch (F(8, 136) = 9.590, p < 0.001) and array 

(F(1, 17) = 47.330, p < 0.001). No significant interaction between epoch and array (p = 

0.133) was observed. This indicates the swap and return did not significantly affect the 

RT of repeated and novel arrays separately entirely. This result is consistent with a 

previous finding (Zellin, von Mühlenen, Müller, & Conci, 2013). 
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Figure 3. Mean reaction times (RTs; in ms with associated standard errors) of novel and 

repeated arrays across epochs. Epochs 1-3 represents phase A1; epochs 4-6 represents 

phase B and epochs 7-9 represents phase A2. Unfilled circles and filled squares 

respectively represent novel and repeated conditions. Error bars represent the standard 

error of the mean. Asterisk represents significant contextual cueing effect. * p < 0.05; **p 

< 0.01. 

To investigate the behavioral cost, a 2 (array) × 2 (epoch) repeated measure 

ANOVA between epoch 3 (last epoch of learning phase) and epoch 4 (first epoch of swap 

phase) was conducted. This ANOVA yielded an significant interaction between epoch 

and array (F(1, 17) = 17.227, p = 0.001) and a main effect of array (F(1, 34) = 17.486, p = 

0.001). The main effect of epoch was not significant. This suggests the swap influenced 

the RT for repeated and novel arrays differently. The RT for repeated arrays changed 

from  faster than novel arrays in epoch 3 (t(17) = 5.777, p < 0.001, Cohen’s d’ = 1.052) to 
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not significant different in epoch 4. The RT for repeated arrays became slower after the 

swap (t(17) = -2.501, p = 0.023) while the RT for novel arrays became not significantly 

faster.  

To investigate the lack of behavioral cost after return, another 2 (array) × 2 

(Epoch) repeated measure ANOVA between epoch 6 (last epoch of swap phase) and 

epoch 7 (first epoch of return phase) was carried to see if there was a similar behavioral 

cost after return as from epoch 3 to epoch 4. Unlike the finding for the swap, no 

significant interaction between epoch and array and no significant main effect of epoch 

were observed. The main effect of array was also significant (F(1, 34) = 15.538, p = 0.001). 

This suggests the return did not influence the RT for repeated and novel differently. 

Significant contextual cueing effect was observed in both epochs 6 (t(17) = 2.733, p = 

0.014, Cohen’s d’ = 0.426) and 7 (t(17) = 2.994, p = 0.008, Cohen’s d’ = 0.776). The RT 

for repeated arrays did not become slower as happened after swap, but inversely, 

significantly faster than novel arrays in epoch 7. The facilitation of searching for repeated 

arrays kept from epoch 6 to epoch 7. No significant difference between epochs 3 and 7 

was found for repeated arrays, which suggests the searching for repeated arrays was 

preserved after the swap phase. However, as mentioned above, the significant contextual 

cueing effect might be caused by repeated arrays in which only the new targets were 

learned, further investigation with eye movement will be conducted. 

To clarify the exact RT changes right after the swap and after the return, an 

analysis of the mean RT performance for each array across blocks was conducted (see 

Figure 4). Significant RTs differences between novel and repeated conditions were 

observed from block 3. An interaction between block and array (F(1, 17) = 4.912, p = 
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0.041) was observed between block 9 (last block of learning phase) and block 10 (first 

block of swap phase) but not between block 18 (last block of swap phase) and block 19 

(first block of return phase; p = 0.862). This also suggests the RT of repeated and novel 

arrays were affected by the swap but not the return. 

 

Figure 4. Mean reaction times (RTs; in ms with associated standard errors) of novel and 

repeated arrays across blocks. Block 1-9 represents phase A1; blocks 10-18 represents 

phase B and blocks 19-27 represents phase A2. Unfilled circles and filled squares 

respectively represent novel and repeated conditions. Error bars represent the standard 

error of the mean. Asterisk represents significant contextual cueing effect. * p < 0.05; **p 

< 0.01. 

The RTs for repeated arrays were faster than novel arrays in block 9 (the last 

block before swap; t(17) = 2.353, p = 0.031) and block 19 (the first block after return; t(15) 
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= 3.482, p = 0.003), but not in block 10 (the first block after swap) and block 18 (the last 

block after swap). No significant difference of RT was observed for repeated arrays 

between blocks 19 and 9.  

Eye movement 

Division of arrays. As described in the introduction, all the new contextual cues 

might not be learned successfully for the reasons of contextual differences and varied 

context designs. In the last epoch of phase B, for each individual participant, some of the 

new contextual cues might be learned after swap, and these target predictions would lead 

eyes to the new target locations without searching the original target location areas (Did 

not search the original target quadrant (NSO) array). Some of the new contextual cues 

may be unsuccessfully learned after swap, and eyes might keep searching the original 

target location areas after swap (search the original target quadrant (SO) array). The 12 

repeated arrays were categorized for each participant, based on the criterion of whether 

there were any fixations landed on the original target quadrant during the last epoch of 

phase B. That is, if there was no fixation landed on the original target quadrants in epoch 

6 (last epoch of phase B), then this array was categorized as NSO array for this 

participant, otherwise it was SO array. We found an average of only 18.45% of repeated 

arrays were in the NSO array and 81.55% were in the SO array, which meant the new 

contextual cues in very few repeated arrays could be implicitly learned. Therefore, for 

each participant, nearly 2 out of 12 new contextual cues were successfully learned during 

the phase B, and these arrays were categorized as NSO array in each block or epoch for 

comparing with the novel array, as well as SO array. 
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Mean RTs of Novel, SO and NSO array across Epochs. Figure 5 shows the RTs 

changes of novel, SO and NSO arrays across epochs. For major repeated arrays-SO 

arrays, no significant contextual cueing effect was observed during the entire swap phase, 

but during learning and return phase. This suggests only the original target location of the 

SO arrays were learned, which supports the one target location learning hypothesis. For 

the NSO array, significant contextual cueing effect was only observed during the swap 

phase, but not during the learning and return phase. This suggests only the new target 

location for NSO arrays were learned, which also supports the one target location 

learning hypothesis. Therefore, the significant contextual cueing effect observed in the 

last epoch of swap phase for overall RT might due to the NSO arrays.  
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Figure 5. Mean reaction time (RTs; in ms with associated standard errors) across epochs 

(Novel vs. SO vs. NSO array). Epochs 1-3 represents phase A1; epochs 4-6 represents 

phase B and epochs 7-9 represents phase A2. Unfilled circles, filled circle, and unfilled 

triangle respectively represent novel,  SO, and NSO arrays. Error bars represent the 

standard error of the mean. Pairwise comparisons between RTs for SO and novel arrays 

and NSO and novel array were computed for each epoch. Asterisk represents significant 

contextual cueing effect for SO array. The asterisk in brackets represents significance 

significant contextual cueing effect for NSO array. * p < 0.05;  **p < 0.01; *** p < 

0.001. (Bonferroni-corrected significance level: p < 0.0167). 

Since the SO arrays are the major repeated arrays, it’s much reliable to analysis 

the SO arrays to clarify the mechanism of lack of behavioral cost. For the SO arrays, 

significant interactions between array and epoch was yielded for epochs 3 and 4 (F(1, 17) = 

27.372, p < 0.001), and epochs 6 and 7 (F(1, 15) = 15.106, p = 0.001), which suggests the 

RT for SO and novel arrays were influenced by both swap and return differently. 
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Pairwise comparisons showed, from epoch 3 to 4, the RT for SO arrays changed from 

significantly faster (678ms) (p < 0.001) to not significantly slower (36ms) than novel 

array. From epoch 6 to 7, the RT changed from not significantly faster (65ms) to 

significantly faster (455ms) than novel array after target return to the original location (p 

= 0.007). No significant RT differences were found when comparing epoch 3 and epoch 7. 

This confirms the only the original target locations for SO arrays were learned. 

Same conclusion was made by the NSO arrays. Significant interactions between 

array and epoch was also yielded for epochs 3 and 4 ((F(1, 15) = 7.316, p = 0.016), and 

epochs 6 and 7 (F(1, 15) = 10.606, p = 0.005), which suggests the RT for NSO and novel 

arrays were also influenced by both swap and return differently. In contrast to SO array, 

from epoch 3 to 4, the RT for NSO array changed from not significantly faster (372ms) to 

significantly faster (969ms) (p = 0.009) than novel array. From epoch 6 to 7, the RT 

changed from significantly faster (1311ms) (p < 0.001) to not significantly slower (26ms) 

than novel array after return. No significant RT differences were found when comparing 

epoch 3 and epoch 7. This also confirms the only the original target locations for SO 

arrays were learned. 

The following eye movement analysis is based on the major repeated arrays-SO 

arrays.  

Mean number of fixations required to find the target.  Figure 6 shows the mean 

number of fixations required to find the target for novel and SO arrays. Significant 

interactions between array (SO, novel) and epoch (epochs 3, 4; epochs 6, 7) were found 

after both swap and return (F(1, 17) = 26.802, p < 0.001; F(1, 17) = 9.201, p = 0.008). 

Significant main effects of epoch but not array were also found after swap and return (F(1, 
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17) = 10.660, p = 0.005; F(1, 17) = 4.973, p =0.040). With manipulation of swap, paired t-

tests showed the number of fixations for the SO array changed from less (t(17) = -5.124, p 

< 0.001) to more (t(17) = 2.370, p = 0.030) than novel arrays, and keeping this significance 

throughout the rest of phase B (epoch 5:  (t(17) = 2.496, p = 0.023); epoch 6:  (t(17) = 2.891, 

p = 0.010)). After return, this number became significantly less than novel (t(17) = -2.366, 

p =0.030) and not significantly different from epoch 3. 

 

Figure 6. Mean number of fixations required to find targets (SO array). Epochs 1-3 

represents phase A1; epochs 4-6 represents phase B and epochs 7-9 represents phase A2. 
Unfilled circles and filled circle respectively represent novel and SO arrays. Error bars 

represent the standard error of the mean. Paired t-tests between number of fixation for SO 

and Novel array were conducted for each epoch. Asterisk represents significant 

contextual cueing effect. * p < 0.05; **p < 0.01. 
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Proportion of trials searching the diagonal quadrant to the target quadrant. Figure 

7 shows the proportion changes of trials searching the proportion of trials searching the 

diagonal quadrant to the target quadrant across epochs for SO array. A significant 

increased from 63.92% to 73.87% after swap (t(17) = -3.774, p =0.002) for this proportion. 

Then during the phase B, the proportion kept increasing from 63.92% to 83.20%. In 

contrast, after targets returned to the original locations, the proportion significantly 

decreased from 83.20% to 64.99% (t(17) = 2.137, p =0.040). No significant difference was 

found between epoch 3 and epoch 7. It suggests participates still searched the original 

target quadrant after the target swapped and this behavior lasted for the whole swap phase.  

 

 

Figure 7. Proportion of trials searching the diagonal quadrant to the target quadrant for 

SO arrays. Epochs 1-3 represents phase A1; epochs 4-6 represents phase B and epochs 7-
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9 represents phase A2. Filled circle represent SO arrays. Error bars represent the standard 

error of the mean. Paired t-tests between proportions for epoch 3 and 4, and epoch 6 and 

7 were conducted. Asterisk represents significant difference between two epochs. * p < 

0.05; **p < 0.01; *** p < 0.001. 

Proportion of trials in which the target was found by the first saccade. Figure 8 

shows the proportion change of the SO trials in which the target was found by the first 

saccade across epochs for the SO array. The proportion significantly decreased from 

15.07% to 8.21% after the swap (t(17) = 2.488, p =0.024). Then during the phase B, the 

proportion kept decreasing from 8.21% to 4.22%. In contrast, after targets returned to the 

original locations, the proportion significantly increased from 8.21% to 15.12% (t(17) = -

3.641, p =0.002). No significant difference was found between epoch 3 and epoch 7. It 

suggests the swap manipulation did interfere with the accuracy of initial fixation and eyes 

still kept fixating directly at the target locations after the swap phase. 
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Figure 8. Proportion of trials in which target was found by the first saccade in SO arrays. 

Epochs 1-3 represents phase A1; epochs 4-6 represents phase B and epochs 7-9 represents 

phase A2. Filled circle represent SO arrays. Error bars represent the standard error of the 

mean. Paired t-tests between proportions for epoch 3 and 4, and epoch 6 and 7 were 

conducted. Asterisk represents significant difference between two epochs. * p < 0.05; **p 

< 0.01. 

Discussion 

The present study replicates the previous findings wherein a behavioral cost is 

observed after a target swapped with a diagonal distractor, but no such cost is observed 

when the target return to the initial location (Hanson & Greene, 2011; see also Conci et 

al., 2011; Makovski & Jiang, 2010). RT data showed two effects of great interest:  1) No 

significant contextual cueing effect was observed until the last epoch of the swap phase 
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immediately to previously observed levels (end of phase A1). Analysis of RT and eye-

movement data showed the mechanism of both effects is proactive interference. During 

phase B, participants continued to prioritize their search to the original target location for 

most arrays. This accounts for behavioral cost after the swap and immediate facilitation 

after the return. Thus, no evidence was found to support the flexibility of implicit 

learning. 

It is well established that implicit expectation of target location directs one’s gaze 

quickly to the target location with minimal searching in other locations; this leads to such 

things as faster searching time, fewer fixation and higher accuracy of initial fixation (e.g., 

Peterson and Kramer, 2001). Fundamental to this study is the method of dividing the 

repeated context arrays into those where new target locations were not learned (searched 

original target location during the last epoch of swap phase (B); SO) and those where 

new target locations were learned (did not search original target location during the last 

epoch of swap phase (B); NSO) arrays, then see whether in the last epoch of the learning 

phase (A1) the original target location for SO/NSO arrays were learned or not. If the 

original target location was learned in the learning phase (A1) and the new target location 

was not learned in the swap phase (B), this would suggest that proactive interference took 

place. In this study, at the end of the swap phase (B), if a given new target location was 

learned, the eyes should prioritize the location around the new target without searching 

the original target location which was in the diagonal quadrant. That is, the search 

strategy during the last epoch of phase B was used to sort arrays into the SO and NSO 

categories used for analysis of all learning epochs.  
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Proactive interference was observed for most arrays:  in only around 2 out of 12 

repeated arrays, participants found the new target without searching the original target 

quadrants during the last epoch of phase B and were accordingly categorized as NSO 

arrays; the other 10 repeated arrays were categorized as SO arrays. Interestingly, for the 

NSO arrays, the target was successfully learned in phase B, but their original target 

locations in phase A1 were not. Thus proactive interference was not evident in these 

arrays during phase B only because no prior learning in phase A1 had taken place.  

Additionally, for NSO arrays, the target location was not learned in phase A2. Similarly, 

the new target locations in phase B for SO array were not successfully learned but the 

original target locations were successfully learned. The absence of a behavior difference 

between epoch 3 and epoch 7 for both arrays also confirmed this. It appears that for any 

given array, only one target location can be learned, sometimes in phase A1 and 

sometimes in phase B. 

The current findings confirm the hypothesis that contextual cueing is essentially 

limited to one-target learning (Zellin, von Mühlenen, Müller, & Conci, 2013). Once the 

target location is learned, it interferes with subsequent learning for a long period (Jungé, 

Scholl, & Chun, 2007; Zellin, et al., 2013). The existence of proactive interference 

caused by initial learning seems to protect initial learning (A1 and A2) and prevents the 

updating of the new contextual cue learning, this suggests the learning in this task cannot 

flexibly adapt to the new context-target association. Initial learning (phase A1) supports 

an immediate resumption of facilitation in the return phase (phase A2), because no 

adaption to the new context was observed during the entire swap phase (B) for SO array.  
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A more detailed examination of RT and eye-movement data during different 

phases of the task provides support for the hypothesis that only a single target location 

may be learned. As expected, by the third block, a reliable contextual cueing effect was 

observed, which is consistent with previous reports of early contextual cueing effect 

(Conci & von Muhlenen, 2009; Martina, von Mühlenen, Müller, & Conci, 2013).  

Immediately after the swap, an abrupt increase of RT suggests proactive 

interference, and several measures of eye-movement demonstrate a search priority for the 

original target location: 1) in this phase, proportion of trials searching the diagonal 

quadrant to the target quadrant confirmed the eyes continue to search the original target 

location; 2) similarly, the initial saccade was unlikely to locate the target.  

During the swap phase (B) the RT data show that learning proceeds but not to the 

extent observed in phase A1, only reaching significance by the last epoch of the phase.  

However, eye-movement data, particularly the SO-NSO categorization, demonstrate that 

this is driven entirely by the small proportion of arrays wherein no learning occurred 

during the initial learning phase (A1). For the majority of arrays (SO) eye-movement 

demonstrates that initial learning perseverated and prevented learning the new target 

location as evidenced by the proportion of trials searching the original location and the 

location of the initial saccade.  

In the return phase (A2), the priority of the original target search led to an 

immediate facilitation. Moreover, that no difference in RT was detected between epoch 3 

and epoch 7 suggested the initial learning was sustained over the entire swap phase (B). 

Eye-movement further revealed that the proportion of trials spent searching the diagonal 
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quadrant compared to the target quadrant and that detecting the target by initial saccade 

were all sustained during the swap phase (B).  

For the NSO arrays, the contextual cueing effects were only observed in swap 

phase (B) but not initial (A1) or return phases (A2). That is, for NSO arrays, only the new 

target location in the swap phase (B) was learned. After target returned to its initial 

location (A2), the RT performance of NSO array returned to levels observed in the initial 

phase (A1) where performance no learning had occurred (NSO arrays did not differ from 

novel arrays in either phase A1 or phase A2). These findings provide no evidence for 

flexibility in this relational learning task. 

These findings do not contradict but support previous studies that showed the 

multiple target locations learning when targets are simultaneously presented in the same 

contexts (Conci, Sun, & Müller, 2011) or new target locations subsequently presented in 

repeated contexts (Zellin & Conci, 2011). Because both target locations were predicted 

during the learning phase, only transient interruption was observed. Moreover, in these 

studies, the targets were relocated to empty locations while other distractor locations 

were invariable. This manipulation made it easier for participants to relearn the new 

contextual cues than in present study (Makovski & Jiang, 2010). However, some reports 

of quick adaptation to global changes were reported (Chun & Jiang, 1998; Jiang & 

Wagner, 2004; Brockmole & Henderson, 2006). Together, with the present findings, it 

appears that the capacity for flexibility in the contextual cueing task depends largely on 

the particulars of the task demands. 

For further support of this finding, an ABAB task should be conducted. That is, 

after the target returns to the original target location, the target would swap with the same 
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distractor again in an addition phase. If the behavioral changes replicate the phenomena 

after the first return, it will support the view that contextual cue learning is inflexible. 

Another concern is that participants may require more time to update the initial learning, 

so longer swap phase may be applied to further study. 

Conclusion. Initial RT results demonstrated immediate facilitation when target 

returned to initial location. However, the present results demonstrate that the mechanism 

for this is likely because participants prioritize their search to the initial location resulting 

in a failure to learn a new location in the B phase. The analysis of eye movement data for 

this task provided a much clearer picture of performance. The behavioral cost in Phase B 

was found to be caused in large part by proactive interference from learning in Phase A1. 

The mechanism for the immediate recovery after the return was likewise largely 

explainable as perseveration of learning from phase A1, which sustained throughout 

phase B. The present study shows no evidence that participants can learn two targets 

locations that were subsequently presented in the same context within the limited time 

available to them.  It may be that with more learning trials, they could acquire additional 

target locations, but fatigue limits the amount of time participants can spend on this task 

in one sitting. No evidence was found to support the flexibility of contextual cue learning. 

While flexibility has been proposed as a defining feature of both declarative (explicit) 

memory and relational memory, the present study provides converging evidence that 

flexibility may have more to do with task demands than memory type. 
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