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ABSTRACT 

CANNABIS USE AND AFFECTIVE PROCESSING: A BRAIN STRUCTURE ANALYSIS 
 

by 

Kristin E. Maple 
 

The University of Wisconsin—Milwaukee, 2016 
Under the Supervision of Professor Krista Lisdahl 

 

Cannabis is the most commonly used illicit drug amongst adolescents and young adults 

in the United States. Previously, cannabis and its components have been associated 

with differences in affective processing and neural functioning. Participants (ages 16-25) 

were cannabis users and non-users excluded for psychiatric disorders, major medical 

conditions, and excessive other drug use. A series of multiple regressions examined 

whether past year cannabis use and cannabis x gender predicted measures of 

emotional face processing (using the PennCNP affective battery) as well as volumes in 

bilateral prefrontal, temporal, limbic, and cerebellar regions, as well as frontolimbic white 

matter tracts. Subsequently, Pearson correlations were conducted within the cannabis 

group to assess whether brain regions significantly associated with cannabis use 

predicted mood and affective processing. Increased cannabis use was associated with 

higher Acuity Neutral scores, smaller left rostral anterior cingulate (rACC) volumes, 

larger superior temporal volumes, and reduced right uncinate fasciculus mean 

diffusivity. Significant cannabis x gender interactions were observed for left rACC and 

forceps minor fractional anisotropy (FA). Greater cannabis use was associated with 

smaller left rACC volumes only within females, as well as greater forceps minor FA in 

females and reduced FA in males. Within the cannabis-using group, smaller rACC 



	  

	   iii 

volumes were correlated with lower Emotion Discrimination Correct scores. These 

findings suggest that cannabis use exerts dose dependent effects on frontolimbic 

circuitry, which are in turn associated with deficits in affective processing. This may be 

one potential mechanism underlying high comorbidity rates between chronic cannabis 

use and psychiatric disorders.  
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Cannabis Use and Affective Processing: A Brain Structure Analysis 
 
     Cannabis is the most commonly used illicit drug in the United States, with 35.1% of 

12th graders and 31.6% of 19-28 year-olds using in the past year (Johnston et al., 

2015a; Johnston et al., 2015b). Furthermore, the perceived risk of using cannabis has 

dropped substantially amongst this population since 2005 (Johnston et al., 2015a; 

Johnston et al., 2015b). This decrease in perceived risk has occurred in parallel with 

many states proposing, and some passing, legislation to legalize medicinal and 

recreational cannabis use. Currently, recreational use is legal in Colorado, Washington, 

Oregon, Alaska, and Washington, D.C. Experts have predicted that with legalization, the 

price of cannabis is likely to drop, and consumption is likely to increase (Caulkins et al., 

2012). Given that cannabis use is widespread and may increase further, research on its 

potential neurocognitive effects in young people is critical.  

     Adolescents and emerging adults may be especially vulnerable to the negative 

effects of cannabis use due to the substantial neurodevelopment occurring during this 

period (Lisdahl et al., 2013; Lisdahl et al., 2014; Jacobus & Tapert, 2014). Although at 

age six the brain is approximately 90% of its adult weight, neurodevelopment continues 

into the late 20’s (Casey, Jones, & Hare, 2008). White matter volume and integrity 

increase, enhancing neural efficiency (Giedd et al., 1999; Lebel et al., 2008; Lebel & 

Beaulieu, 2011). The adolescent brain also undergoes significant synaptic pruning in 

regions associated with higher-order and executive function, such as the prefrontal 

cortex (PFC) (Casey et al., 2008). The PFC is one of the last areas to mature, lagging 

behind subcortical limbic regions involved in affect, such as the amygdala (Casey et al., 

2008). According to Casey and colleagues’ (2008) model, when adolescents are 
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presented with an emotionally-charged situation, limbic regions will override the 

prefrontal executive system, leading to increased risk taking, impulsivity, and emotional 

reactivity. Thus, adolescents may be more likely to engage in risky behavior such as 

substance use, and are at greater risk of developing a substance use disorder 

compared to those initiating use as adults (Chambers et al., 2003; Casey et al., 2008; 

Bava & Tapert, 2010). Given the increased likelihood to abuse substances, including 

cannabis, during a time when the brain is particularly vulnerable to their neurotoxic 

effects, adolescence and emerging adulthood is the ideal period to research and target 

substance use interventions (Squeglia, et al., 2009; Lisdahl et al., 2013). 

The Endogenous Cannabinoid System: Neurodevelopment & Affective 

Processing 

     The main psychoactive component of cannabis, Δ-9-tetrahydrocannabinol (THC), 

exerts its effects by binding brain cannabinoid receptor-1 (CB1) in the endocannabinoid 

(eCB) system (Howlett, 1995). Cannabidiol (CBD) is another cannabinoid found in 

herbal cannabis, but typically in low doses. In cannabis, THC content is typically much 

higher compared to CBD, with published mean THC levels at 8.8% and CBD at 0.4% in 

the U.S. in 2008 (Mehmedic et al., 2010). A more recent report of cannabis seized in 

Australia noted 14.88% THC (Swift et al., 2013). Recent research has suggested that 

CBD may antagonize some negative effects of THC, such as anxiety (Niesink & van 

Laar, 2013).   

     CB1 receptors are located on pre-synaptic terminals of both excitatory and inhibitory 

neurons, as well as on glial cells, including astrocytes, microglia, and oligodendrocytes 

(e.g., Domenici et al., 2006; Pazos et al., 2005).  The eCB system includes the primary 
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ligands anandamide (AEA) and 2-AG, which also bind CB1 (Mechoulam & Parker, 

2013). After AEA interacts with CB1 at the pre-synaptic terminal, it is degraded by the 

enzyme fatty acid amide hydrolase (FAAH) (Ho & Hillard, 2005). Thus, higher levels of 

FAAH are typically associated with lower levels of eCBs (Giang & Cravatt, 1997). 

     From prenatal stages through adulthood, the eCB system influences 

neurodevelopment (e.g., Aguado et al., 2006; Berghuis et al., 2007; Mulder et al., 2008; 

Schneider et al., 2008; Chadwick et al., 2013). Activation of CB1 receptors can initiate a 

signal transduction pathway that affects developmental processes, such as synaptic 

plasticity, cell migration, axon guidance, and neuronal growth (Pazos et al., 2005; 

Mechoulam & Parker, 2013; Melis et al., 2014; Zhou et al., 2014). The eCB system is 

dispersed throughout the brain and undergoes dynamic changes throughout 

neurodevelopment (Chadwick et al., 2013). CB1 receptors are highly expressed in the 

PFC, cingulate cortex, hippocampus, amygdala, basal ganglia, and cerebellum, with 

relatively low levels in the brainstem (Herkenham et al., 1990; Glass et al., 1997; 

Mackie et al., 2005; Svizenska et al., 2008). While distribution of CB1 receptors stays 

relatively constant across development, density is altered over time (Glass et al., 1997); 

expression of CB1 mRNA and CB1 density and binding are highest during puberty 

onset and adolescence, decreasing by adulthood (Ellgren et al., 2008; Schneider, 2008; 

Heng et al., 2011; Chadwick et al., 2013; Higuera-Matas et al., 2015). This pattern is 

particularly evident in the medial PFC, cingulate cortex, and insula, which demonstrate 

the most dramatic and progressive decrease in CB1 expression across adolescence 

(Heng et al., 2011). This decline in CB1 levels occurs in tandem with an increase in 

AEA and decrease in 2-AG within the PFC (Ellgren et al., 2008). These differences in 
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eCB activity across adolescence, particularly in maturing prefrontal regions, indicate a 

role for this system in the neurodevelopmental processes occurring during this period. 

Therefore, age-related changes in eCB functioning indicate that adolescents and 

emerging adults may be at greatest risk to incur the negative consequences of cannabis 

exposure (Higuera-Matas et al., 2015). 

     The eCB system, among other functions (e.g., sleep, pain, memory, feeding, and 

inflammation), modulates mood and stress response. Indeed, genetic variants in the 

eCB system, including multiple FAAH and CNR1 (gene coding for CB1) single 

nucleotide polymorphisms, are associated with both subclinical depressive symptoms 

and mood disorders in humans (Maple et al., in press; Barrero et al., 2005; Monteleone 

et al., 2010; Mitjans et al., 2013). Moreover, several rodent studies have revealed that 

increases in eCB activity elicit antidepressant and anxiolytic responses, while decreases 

in activity lead to depression (Martin et al., 2002; Hill et al., 2005; Hill & Gorzalka, 2005; 

Gobbi et al., 2005; Bortolato et al., 2007; Naidu et al., 2007; Serra & Fratta, 2007; 

Adamczyk et al., 2008; McLaughlin & Gobbi, 2012). Steady eCB tone in the mPFC 

prevents unnecessary limbic and HPA activation, promoting positive emotionality and 

healthy coping responses to stress (McLaughlin, Hill, & Gorzalka, 2014). However, 

under chronic, unpredictable stress, eCB tone in the mPFC can decrease, leading to 

HPA hyperactivation. Indeed, this heightened HPA activity increases vulnerability to 

anxiety and mood disorders (McLaughlin et al., 2014). This suggests a crucial role for 

the eCB system in modulating frontolimbic activity in response to stress.  

     More specifically, evidence suggests that the eCB system is associated with facial 

emotion processing. Studies have demonstrated that both FAAH (Hariri et al., 2008) 
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and CNR1 (Chakrabarti et al., 2006) genotypes modulate brain activation to emotional 

faces. Recognizing and interpreting facial expressions is a critical aspect of functioning 

in human social networks. Facial expressions provide information about an individual’s 

emotional state, and interpretation of these expressions by others can elicit an 

emotional state in response (Phillips et al., 2003; Bourke et al., 2010). Therefore, it is 

possible that any inaccuracy in identifying facial emotions may negatively influence 

one’s affective state and emotional well-being (Phillips et al., 2003). In addition, mood 

may bias one’s appraisals regarding facial emotions, therefore perpetuating a cycle of 

appraisals impacting emotional responses, which in turn influence further appraisals 

(e.g., Mogg et al., 2000; Joormann & D’Avanzato, 2010; Duque & Vazquez, 2015). In 

fact, abnormal facial emotion processing is common in those with psychiatric disorders, 

including major depressive disorder (MDD), bipolar disorder, social anxiety disorder, 

and schizophrenia (e.g., Marwick & Hall, 2008; Morris et al., 2009; Bourke et al., 2010; 

Stuhrmann et al., 2011; Staugaard, 2010; Samame, 2013).  

Cannabis & Affective Processing 

     Considering the critical role the eCB system plays in modulating mood, and its 

apparent role in processing facial emotions, it is unsurprising that both acute and 

chronic exposure to exogenous cannabinoids, including THC and CBD, can alter 

affective functioning. Multiple studies have found that acute THC administration 

significantly impairs participants’ emotion identification abilities (Ballard et al., 2012; 

Bossong et al., 2013; Hindocha et al., 2015), while CBD enhances accuracy (Hindocha 

et al., 2015). Acute THC administration affects neural activation to emotional faces in 

limbic (Phan et al., 2008; Bhattacharyya et al., 2010; Bossong et al., 2013), temporal 
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(Fusar-Poli et al., 2009), frontal, parietal, and occipital (Fusar-Poli et al., 2009; Bossong 

et al., 2013) areas. In response to emotional faces, CBD impacts activity in the left 

amygdala, anterior and posterior cingulate cortices, anterior parahippocampal gyrus, left 

middle occipital gyrus, and the cerebellum (Fusar-Poli et al., 2009; Bhattacharyya et al., 

2010). While some have found acute THC (Gorka et al., 2015) and CBD (Fusar-Poli et 

al., 2010) to impact frontolimbic connectivity, others have found no effect (Fusar-Poli et 

al., 2010). Cannabis smoking, which typically has substantially higher levels of THC 

compared to CBD (Mehmedic et al., 2010), leads to poorer acute emotion recognition 

(Clopton et al., 1979). Therefore, the current literature suggests that acute THC and 

CBD impact many frontolimbic and associated areas with high eCB activity during facial 

emotion processing. 

     Chronic cannabis exposure is associated with long-term affective and mood 

problems. Cannabis users score higher on measures of anxiety and depression 

compared to non-using controls (Troisi et al., 1998; Dorard et al., 2008; Medina & 

Shear, 2007; Medina et al., 2007; Wright et al., under review). In fact, cannabis use has 

a high rate of comorbidity with anxiety and mood disorders in both adolescents (e.g., 

McGee et al., 2000; Wittchen et al., 2007; Dorard et al., 2008) and adults (e.g., Troisi et 

al., 1998; McGee et al., 2000; Agrawal et al., 2011; Lev-Ran et al., 2013). A substantial 

number of studies suggest that cannabis use increases one’s risk for subsequently 

developing affective disorders, especially if use begins in early adolescence (e.g., 

Bovasso, 2001; Patton et al., 2002; Rey & Tennant, 2002; Hayatbakhsh et al., 2007; 

van Laar et al., 2007; de Graaf et al., 2010; Fairman & Anthony, 2012; Rasic et al., 

2013). Yet, other studies report anxiety and/or depression predicting later cannabis use 
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(e.g., Wittchen et al., 2007). Thus, the relationship between cannabis and affect is 

complicated and likely nuanced, especially given that many people reportedly use 

cannabis to ameliorate internalizing symptoms, such as depression and anxiety (Boys 

et al., 2001; Walsh et al., 2013). One mechanism underlying mood symptoms in 

cannabis users may be damage to the affective neural network, resulting in deficits in 

basic affective processing such as facial emotion processing. 

     A limited number of studies have investigated the relationship between chronic 

cannabis use and facial emotion processing. The available evidence suggests that 

cannabis users are significantly slower (Platt et al., 2010) and less accurate (Hindocha 

et al., 2014; Bayrakci et al., 2015) in identifying emotions compared to controls. Further, 

the ability of cannabis users to discriminate whether two faces show the same emotion 

is reduced (Bayrakci et al., 2015). Findings from another group suggest that lower levels 

of cannabis use might not be related to facial emotion processing, while more frequent 

and recent cannabis use is associated with affective processing deficits (Huijbregts et 

al., 2014). Chronic cannabis use has been associated with blunted ACC (Gruber et al., 

2009) and amygdala (Gruber et al., 2009; Cornelius et al., 2010) activation to negative 

facial emotions, while in younger (14 years of age) cannabis users, amygdala activation 

is increased (Spechler et al., 2015).  

Cannabis Use and Brain Structure Associated with Affective Processing 

     Morphometry Studies. Facial emotion processing is a complex process, recruiting 

many visual, limbic, temporoparietal, and prefrontal areas, as well as the cerebellum 

and putamen (Ishai et al., 2005; Fusar-Poli et al., 2009; Said et al., 2011). Further, 

many regions involved in facial emotion processing are high in CB1 receptor density, 
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including the PFC, cingulate cortex, amygdala, hippocampus, and cerebellum. Chronic 

cannabinoid exposure is associated with CB1 receptor downregulation in areas 

associated with affect, including cortical regions (McKinney et al., 2008; Hirvonen et al., 

2012), the hippocampus, and cerebellum (Villares, 2007; McKinney et al., 2008). This 

downregulation of CB1 receptors is likely one mechanism by which long-term cannabis 

use can impact affective processing differentially from acute exposure.  

     Although some studies have examined functional brain relationships underlying 

facial emotion processing in cannabis users, no known studies have investigated 

structural relationships associated with these differences. Yet, several researchers have 

examined basic brain structural differences related to cannabis use. Indeed, many of 

these structural differences have been found in regions classically associated with 

emotional face processing. Cannabis users have exhibited volumetric differences in the 

mOFC (Churchwell et al., 2010; Cheetham et al., 2012; Batistella et al., 2014; Price et 

al., 2015), total PFC (Medina et al., 2009), and fusiform gyrus (Jarvis et al., 2008). Only 

one known study has investigated superior temporal gyrus volume in cannabis users 

compared to non-users, yielding no difference between groups in either the right or left 

superior temporal gyrus (DeLisi et al., 2006). Cannabis use has also been associated 

with volume differences in subcortical affective regions such as the amygdala (Yucel et 

al., 2008; McQueeny et al., 2011; Schacht et al., 2012; Cousijn et al., 2012; Gilman et 

al., 2014; Pagliaccio et al., 2015), hippocampus (Matochik et al., 2005; Medina et al., 

2007a; Yucel et al., 2008; Ashtari et al., 2011; Demirakca et al., 2011; Schacht et al., 

2012; Cousijn et al., 2012; Solowij et al., 2013), and cerebellum (Jarvis et al., 2008; 

Medina et al., 2010; Solowij et al., 2011; Cousijn et al., 2012; Batistella et al., 2014; 
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Nurmedov et al., 2015). Most studies in emerging adult samples have demonstrated 

decreased volumes across brain regions in association with cannabis use (eg, Matochik 

et al., 2005; Yucel et al., 2008; Churchwell et al., 2010; Ashtari et al., 2011; Demirakca 

et al., 2011; Schacht et al., 2012; Cousijn et al., 2012; Solowij et al., 2013; Batistella et 

al., 2014; Price et al., 2015; Pagliaccio et al., 2015).  

     Some studies have reported increased volumes in association with cannabis use 

(e.g., Medina et al., 2009; Medina et al., 2010; McQueeny et al., 2011). However, these 

samples were comprised exclusively of younger adolescents (eg, 16-18 years). In these 

studies, increased volumes were associated with functional deficits such as poorer 

executive functioning and increased internalizing symptoms. The authors of these 

studies hypothesize that cannabis may interfere with significant synaptic pruning 

occurring during adolescence (Medina et al., 2009; Medina et al., 2010; McQueeny et 

al., 2011; Lisdahl et al., 2014). Further, gender may moderate these findings; 

adolescent females appear to be particularly vulnerable to the impact of cannabis on 

PFC and amygdala volumes (Medina et al., 2009; McQueeny et al., 2011). Despite this 

substantial literature, some studies have reported null findings for each of these brain 

regions (eg, Tzilos et al., 2005; Medina et al., 2007b; Ashtari et al., 2011; Cousijn et al., 

2012; Mashhoon et al., 2015; Pagliaccio et al., 2015; Smith et al., 2015; Lorenzetti et 

al., 2015; Price et al., 2015; Weiland et al., 2015). Thus, more research is needed to 

clarify how gender might moderate the relationship between cannabis use and PFC, 

limbic, and cerebellar volumes. 

     White Matter Integrity. As CB1 receptors are present on axons and 

oligodendrocytes (Domenici et al., 2006; Pazos et al., 2005), which comprise white 
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matter, exogenous cannabinoids may alter white matter functioning. Several diffusion 

tensor imaging (DTI) studies have found associations with cannabis use and white 

matter integrity in regions throughout the brain (e.g., Gruber & Yurgelun-Todd, 2005; 

DeLisi et al., 2006; Arnone et al., 2008; Ashtari et al., 2009; Bava et al., 2009; Allin et 

al., 2009; Bava et al., 2010; Gruber et al., 2011; Zalesky et al., 2012; Bava et al., 2013; 

Jacobus et al., 2013a; Jacobus et al., 2013b). Of particular note, Shollenbarger and 

colleagues (2015) found an association between cannabis use and decreased white 

matter integrity in the corpus callosum forceps minor, uncinate fasciculus, and anterior 

thalamic radiations (ATR). As the CC forceps minor, uncinate fasciculus, and ATR 

connect frontolimbic regions (Catani & Thiebaut de Schotten, 2012), reduced integrity in 

these tracts may be of particular relevance to affective processing. Reduced uncinate 

integrity has been associated with major depression (Bracht et al., 2015; Taylor et al., 

2007; Cullen et al., 2010; Dalby et al., 2010; Carballedo et al., 2012; Zhang et al., 2012) 

and poorer facial emotion recognition (Fuije et al., 2008). Similarly, several studies have 

associated integrity in the ATR (Henderson et al., 2013; Bessette et al., 2014; Lai & Wu, 

2014, Bracht et al., 2015) and CC forceps minor (e.g., Alves et al., 2014; Serafini et al., 

2014) with mood disorders. Thus, considering the association that the uncinate, ATR, 

and forceps minor have with affective disorders, it is possible they are involved in 

affective processing in cannabis users. Consistent with this, Shollenbarger and 

colleagues (2015) found that increased subclinical depressive symptoms in cannabis 

users were associated with decreased integrity in bilateral ATR and right uncinate 

fasciculus. However, more research is needed to determine if these tracts are 
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associated with specific aspects of affective processing, such as identifying facial 

emotions.  

Gender Differences 

     Evidence indicates that male and female brains may process affective information 

differently. Women have twice the rate of affective disorders as men (e.g., Gater et al., 

1998), and research findings suggest that healthy females are generally more accurate 

at identifying facial emotions compared to males (Kret & De Gelder, 2012). Further, 

males and females appear to recruit different networks while processing emotional 

faces (Killgore & Yurgelun-Todd, 2001; Killgore et al., 2001; Killgore & Yurgelun-Todd, 

2004; Whittle et al., 2011). Although the literature is not wholly consistent, females tend 

to exhibit increased temporal, ACC, and limbic activation while males demonstrate 

increased frontal and parietal activation to emotional faces (Hall et al., 2004; Kempton 

et al., 2009; Whittle et al., 2011). In addition, female affective circuitry may be more 

susceptible to the negative effects of cannabis use. For instance, compared to males, 

adolescent female rats exposed to THC are more vulnerable to its anxiety and 

depression producing properties (Rubino et al., 2008). In humans, female cannabis 

users have exhibited disadvantages in PFC and amygdala volumes compared to their 

male counterparts (Medina et al., 2009; McQueeny et al., 2011). Additionally within 

females compared to males, increased CB1 desensitization to THC is observed within 

frontolimbic regions, including the PFC, amygdala, and hippocampus (Crane et al., 

2013). Thus, cannabis-using females may process facial emotions differently from male 

users, and this may be related to underlying brain structure in frontolimbic regions.   

Aims and Hypotheses 
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     Despite evidence that chronic cannabis use may impact facial emotion processing in 

adolescents and emerging adults, few studies have examined affective processing in 

regular cannabis users and whether these relate to structural abnormalities in the 

affective processing network. Thus, the current study seeks to elucidate these 

relationships.  

     Primary Aims. (1) Cannabis Use and Affective Processing. We will investigate 

whether increased cannabis use or cannabis x gender predict affective processing and 

mood symptoms in adolescents and emerging adults. Specifically, we will examine 

whether these variables predict (a) facial emotion processing and (b) depressive 

symptoms. Based on the aforementioned literature, we hypothesize that cannabis users 

will have impaired emotional processing and increased depressive symptoms compared 

to non-users. It is predicted that females will be more susceptible to the potential effects 

of cannabis on (a) affective processing and (b) depressive symptoms compared to 

males.  

     (2) Cannabis Use and Brain Structure. We will assess whether cannabis use and 

cannabis x gender are associated with abnormal brain structure in regions underlying 

affective processing. (a) We will investigate whether cannabis use and cannabis x 

gender predict volumes of regions implicated in affective processing, including the 

bilateral medial orbital frontal cortex (mOFC), lateral orbital frontal cortex (lOFC), rostral 

ACC (rACC), caudal ACC (cACC), Pars triangularis, superior temporal gyrus, fusiform 

gyrus, amygdala, hippocampus, and cerebellum. Based on other studies with a similar 

mean age, we hypothesize that increased cannabis use will be associated with 

decreased gray matter volumes in prefrontal regions, superior temporal gyrus, fusiform 
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gyrus, amygdala, and hippocampus, as well as increased cerebellar volumes. 

Additionally, it is predicted that greater cannabis use in females will be associated with 

the most marked volumetric relationships. (b) We will also explore whether cannabis 

use and cannabis x gender predict white matter integrity in major frontolimbic tracts 

involved in affective processing: R/L uncinate fasciculus, R/L anterior thalamic 

radiations, and corpus callosum forceps minor. We hypothesize that higher levels of 

cannabis use will be associated with decreased white matter integrity in these regions. It 

is additionally predicted that females with more cannabis use will have the greatest 

reduction in white matter integrity. 

     Secondary Aim. Once we determine regions that are associated with either 

cannabis or cannabis x gender, we will determine if those areas predict (a) emotional 

processing and (b) depressive symptoms within the cannabis user group. We 

hypothesize that brain structure will predict affective processing and depressive 

symptoms within cannabis users. 

Method 

 
Participants 

     Participants included 77 (two of these did not complete the MRI scan due 

claustrophobia) cannabis using and non-using adolescents and emerging adults ages 

16-25 years, recruited from a larger parent study (R01 DA030354).  

     Recruitment. Individuals were recruited from the community. Flyers were posted 

around universities, cafes, bars, headshops, recreation centers and festivals. Best 

attempts were made to recruit an ethnically representative sample balanced for gender.          



	  

	   14 

     Inclusion/Exclusion Criteria. Inclusion criteria. Inclusion criteria for cannabis use. 

Used cannabis at least 10 times in past three months or at least 50 times in life. 

Inclusion criteria for non-using controls. Used cannabis fewer than 50 times in life and 

fewer than five times in the past year. Exclusion criteria (both groups). Non-English 

speaker, left-handed, has non-removable metal (or any other MRI contraindication), 

younger than 16 years of age, older than 25 years of age, prenatal alcohol (>6 drinks 

per week or >4 per day) or nicotine exposure, birth complications, premature birth (<33 

weeks gestation), no neurological disorders (ie, seizures, migraines, tumors, 

chemotherapy, multiple sclerosis, movement disorders), head trauma with >2 minute 

loss of consciousness, learning disability, intellectual disability, vision or hearing 

impairments, major health problems, independent DSM-IV psychological disorder 

diagnosis (aside from substance use disorder), current use of psychoactive medication, 

using more than 10 cigarettes per day, heavy other drug use (>25 lifetime uses of non-

cannabis drugs), possible pregnancy, failure to remain abstinent from substances 

throughout the study (as indicated by positive urine toxicology and/or continuous sweat 

patch testing).  

     In order to assess inclusion and exclusion criteria, screening included both an initial 

and a detailed phone screen, each with both the youth participant and a parent/guardian 

(required for ages 16-17; highly preferable for ages 18-25).  

     Screening. Initial Screening. When a potential participant called in response to an 

advertisement, study staff obtained verbal consent/assent to conduct a 5-10 minute 

phone screen (if youth was younger than 18, study staff gained permission from a 

parent/guardian) with each the parent and youth separately to determine basic eligibility 
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with non-sensitive questions (eg, age, ethnicity, MRI contraindications, vision and 

hearing problems, yes/no questions about psychiatric history and yes/no questions 

about substance use).  

     Detailed Screening. Before conducting the 45-minute detailed phone screen, study 

staff obtained written consent/assent from participants and parents. Comprehensive 

substance use history (lifetime) was obtained from youth with the Customary Drinking 

and Drug Use Record (CDDR) (Brown et al., 1998; Stewart and Brown, 1995). 

Information regarding youth psychiatric history was gathered by administering the Mini 

International Psychiatric Interview (MINI) (Sheehan et al., 1998) to youth and parents. 

Youth and parents were informed if ineligible and each paid $20 upon completion of the 

detailed screen. To maintain study integrity, specific reasons for ineligibility were not 

disclosed to participants.  

Procedure 

     Eligible participants attended five study sessions over the course of four weeks. 

Sessions 1-3 were weekly sessions consisting of drug testing and brief 

neuropsychological testing. One week after Session 3, Sessions 4 and 5 were 

conducted within 24-48 hours of each other. Session 4 included a 3-hour 

neuropsychological battery, while Session 5 consisted of MRI scanning.  

     Verifying abstinence. Biological measures. Participants were expected to remain 

abstinent from alcohol and drugs throughout the course of the study in order to prevent 

acute intoxication. Thus, all participants were monitored for substance abstinence 

during each of five study sessions. At each session, participant abstinence was 

evaluated using urine toxicology, specifically the ACCUTEST SplitCup 10 Panel drug 
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test, which measured whether someone was positive or negative for amphetamines, 

barbiturates, benzodiazepines, cocaine, ecstasy, methadone, methamphetamines, 

opiates, PCP, and THC. Urine samples were also used to measure cotinine (metabolite 

of nicotine) levels with NicAlert. In addition to the urine toxicology, continuous sweat 

toxicology was conducted with the PharmChek Drugs of Abuse Patch, which tested for 

cocaine, benzoylecgonine, heroin, 6MAM, morphine, codeine, amphetamines, 

methamphetamine, THC, and phencyclidine. Furthermore, at each session, participants 

underwent breathalyzer testing for recent alcohol use. Participants who tested positive 

for any drugs, or who had a blood alcohol concentration of >.000 directly prior to 

Session 4 (extended neuropsychological battery) and Session 5 (MRI scanning) were 

removed from the study.  

Measures 

     Demographic Information. Participants completed a background questionnaire 

outlining demographic variables including age, gender, ethnicity, self and biological 

parents’ educations, incomes, and employments, marital status, history of medical or 

neurological illness, psychological disorders or use of psychiatric medication, and 

learning disability. 

     Substance use. During each session, participants were asked to report the last time 

they used alcohol, marijuana, cigarettes, or other drugs. In addition, at Session 3, 

participants were asked to complete the Timeline Follow Back (TLFB; Sobell & Sobell, 

1992). This is a highly reliable and valid measure of past year substance use, using 

holidays and other memory cues. As part of completing the TLFB, participants were 

asked to report the quantity of specific substances (e.g., alcohol, cannabis, nicotine, 
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etc.) used on each day during the past year. Substance use was measured in standard 

units (e.g., joints for cannabis). Lifetime and past 3-month substance use was measured 

using the Customary Drinking and Drug Use Record (CDDR), which also assesses 

withdrawal symptoms, DSM-IV abuse and dependence criteria, and substance-related 

difficulties (Brown et al., 1998; Stewart and Brown, 1995).  

     Self-reported Mood. Participants completed the Beck Depression Inventory-II (BDI-

II; Beck et al., 1996) at Session 4. This measure contains 21 items measuring past two-

week depressive symptoms on a 0-3 point scale. Total scores indicate either “minimal” 

depression (0-13), “mild” depression (14-19), “moderate” depression (20-28), and 

“severe” depression (29-63). Independent depressive disorders were excluded as part 

of the larger imaging study.  

     Affective Processing. During Session 4, participants completed an affective battery 

(PennCNP) containing three facial emotion processing tasks of interest to the current 

analysis: Emotion Recognition, Emotion Discrimination, and Emotional Acuity tasks. In 

Emotion Recognition, participants were presented with a series of faces (shown 

individually) and instructed to identify which emotion each face was expressing. 

Possible answer choices included happy, sad, anger, fear, and no emotion. The facial 

stimuli are described in Gur et al. (2002) and Pinkham et al. (2008). In the Emotion 

Discrimination task, participants were presented with pairs of faces, one pair for each 

trial. Each pair of faces contained two pictures of the same individual, with or without a 

subtle (computer-generated) change in facial expression, which may or may not have 

indicated a difference in intensity between the two facial emotions. During each trial, the 

participant had to decide which picture expressed the specified emotion (happy or sad) 
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more intensely, or whether they were equal. In the Emotional Acuity task, participants 

were presented with one face per trial. Faces were randomly presented and participants 

were instructed to rate the facial expression’s emotional valence on a 7-point scale: very 

sad, moderately sad, somewhat sad, neutral, somewhat happy, moderately happy, or 

very happy. Facial stimuli for the Emotion Discrimination and Emotional Acuity tasks are 

described in Erwin et al. (1992). As normative scores are not available for this battery, 

all analyses were conducted with raw scores.     

     MRI Data Acquisition. Participants were scanned on a 3T GE scanner at Medical 

College of Wisconsin (MCW) during Session 5, which was completed within 24-48 

hours of Session 4 (when affective measures were obtained). Structural Image 

Acquisition. This took approximately 15 minutes. A T1-weighted, 3-D anatomical brain 

scan was obtained with a modified driven equilibrium Fourier transform (MDEFT) 

sequence (TMD=1.1 s, TR=13 ms, FOV=25.6 x 19.2 x 19.2 cm., matrix 256 x 192 x 96 

pixels, flip angle=20 degrees). Diffusion Tensor (DTI) Image Acquisition.  DTI was 

obtained using 48 diffusion directions with b ≈ 700s/mm2 (FOV= 25.6 cm, 128 x 128 

matrix, resolution=4x4x4 mm, TR = 9,300 ms, TE = 81.4 ms (minimum), flip angle 90 ̊. 

     MRI Processing. Image Preprocessing. Structural images were initially 

preprocessed using the Analysis of Functional Neuroimages (AFNI) software package. 

This sequence included converting 2D slice data into a 3D dataset (BRIK and HEAD 

files). This file was then converted into a file readable by FreeSurfer (.mgz). Using 

FreeSurfer software, all T1-weighted 3D anatomical datasets underwent motion 

correction, non-parametric non-uniform intensity normalization, MNI transformation, 

removal of non-brain materials, and skull-stripping. This was followed by whole-brain 
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segmentation of white and gray matter and registration of anatomical brain regions. 

Automatic subcortical segmentation took place in six steps, including registration to a 

template, canonical normalization, canonical registration, neck removal, registration 

w/skull, and subcortical labeling. Bilateral cortical ROIs (mOFC, rACC, cACC, Pars 

triangularis, Pars orbitalis, OFC, superior temporal gyrus, fusiform gyrus) were 

parcellated using the Desikan-Killiany atlas (Desikan et al., 2006) in FreeSurfer. This is 

a gyral-based atlas; regions include a gyrus plus adjacent sulci. Using these ROIs, 

regional cortex volumes (in cubic millimeters) were obtained. In the current analysis, 

Pars orbitalis and OFC were combined to create the lateral OFC (lOFC) region. All 

automated FreeSurfer steps were inspected for processing errors, and manual edits 

were made as needed. For each case, automatic segmentation and parcellation masks 

were manually edited for accurate segmentation, using multiple views for visual 

inspection. 

     DTI Processing. Following whole-brain segmentation, the software program, Tracts 

Constrained by Underlying Anatomy (TRACULA) (within FreeSurfer) was used to 

analyze tractography data. TRACULA is a global probabilistic tractography program 

allowing reconstruction of white matter pathways from diffusion tensor images. This 

yields measures of white matter integrity, including fractional anisotropy (FA) and mean 

diffusivity (MD)  (Yendiki et al., 2011). Each image underwent the following 

preprocessing steps: (1) Image Corrections (e.g., for B0 inhomogeneities, eddy 

currents, and simple head motion), (2) Further head motion correction, (3) Intra-subject 

and Inter-subject registration (4) Mask creation (White matter is extracted from 

FreeSurfer’s segmentation and parcellation and combined into a mask), (5) Tensor fit, 
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(6) Estimation of pathway priors (the atlas data was combined with the individual’s own 

masks). Following this preprocessing, a ball-and-stick model of diffusion was fitted to 

the images. After diffusion measures in each voxel were determined by Markov Chain 

Monte Carlo sampling, likelihood of the locations of uncinate fasciculus, ATR, and 

corpus callosum forceps minor pathways within each individual were established. From 

these estimated pathways, statistics on diffusion measures (average weighted FA and 

MD) within each individual were extracted. We performed group analyses along the 

entire corpus callosum forceps minor, bilateral uncinate fasciculus, and bilateral anterior 

thalamic radiations tracts. For nine of these participants, forceps minor could not be 

adequately reconstructed in TRACULA. Thus, they were excluded from the regressions 

investigating forceps minor FA and MD. 

Data Analysis 
 
     Preliminary Analysis. All analyses were conducted in the statistical program SPSS. 

For each primary aim, demographic and other drug use was examined using ANOVA 

(or Mann-Whitney for any variables not normally distributed) and Chi-Square analyses 

to detect differences between cannabis users and non-users. Variables that either 

differed between groups or have known relationships with affective processing or brain 

structure were entered as covariates. For Aim 1, these included gender, past year 

alcohol use, and past year nicotine use. Aim 2 included these covariates as well as 

intracranial volume for volumetric analyses.  

     Principal Components Analysis (PCA) for Emotional Processing Tasks. We 

conducted three principal components analyses (PCA) to extract components from each 

of the Emotion Recognition, Emotion Acuity, and Emotion Discrimination tasks. 
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Accuracy and response time variables were selected for each task and entered into 

PCA (see Tables 2, 3, 4). 

     Primary Analysis. Aim 1. Multiple regressions (including appropriate covariates) 

were used to examine whether past year cannabis use and cannabis x gender predicted 

(a) emotional processing (as defined by components extracted from PCA) and (b) BDI-II 

scores. Aim 2. To determine the relationship between past year cannabis use, cannabis 

x gender, and brain structure: (a) Multiple regressions (including appropriate covariates) 

were used to predict bilateral mOFC, lOFC, Pars triangularis, superior temporal gyrus, 

fusiform gyrus, rACC, cACC, amygdala, hippocampus, and cerebellum volumes from 

past year cannabis use and cannabis x gender. (b) Multiple regressions (including 

appropriate covariates) were used to predict fractional anisotropy (FA) and mean 

diffusivity (MD) of the corpus callosum forceps minor, bilateral uncinate fasciculus, and 

bilateral anterior thalamic radiations from past year cannabis use and cannabis x 

gender. Main effects and covariates were entered into the first block; interaction 

variables were included in the second block. In order to assess if any participants 

disproportionately influenced the regression models, DFBETA analyses for past year 

cannabis use and cannabis x gender were conducted. One outlier for past year 

cannabis use was observed in predicting depressive symptoms; thus it was removed 

from the model. Results are reported with outliers removed. False Discovery Rate 

(FDR) correction (Benjamini & Hochberg, 1995 method) was conducted in Aims 1, 2a, 

and 2b. In aim 2a, FDR corrections were run separately for subcortical volume and 

cortical volume variables within each brain hemisphere (R/L) and white matter integrity 

variables. Additionally, f2 was used to assess effect sizes for multiple regression 
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analyses (small= 0.02-0.14, medium= 0.15-0.34, and large= >0.35) (Cohen et al., 

2003). 

     Secondary Analysis: Brain-Behavior Relationships. We conducted brain-

behavior analyses on brain regions that were significantly associated with past year 

cannabis use or cannabis x gender. For those regions that differed, we ran Pearson 

correlations within the cannabis group to determine whether brain abnormalities were 

related to (a) emotional processing and (b) BDI-II scores. For all analyses, significance 

was determined if p <0.05. 

 

Results 

Preliminary Results 

     Aim 1 Subgroup: Demographic Information (see Table 1). ANOVAs and chi-

square tests revealed no significant difference between cannabis users and non-users 

in age (F(1,75)= 1.17, p= .28), race (χ2(5)= 5.30, p=.38), ethnicity (χ2(2)= .92, p=.63), 

gender (χ2(1)= 2.50, p=0.11), and reading ability (F(1,75)= 1.81, p= .18).  

     Aim 1 Subgroup: Drug Use Information. Cannabis users and non-users 

significantly differed on measures of past year cannabis use (F(1,75)= 24.54, p<.01), 

past year alcohol use (F(1,75)= 15.18, p<.01) and past year nicotine use (F(1,75)= 7.61, 

p<.01). Past year alcohol and nicotine use were included as covariates in the 

regressions. 

     Aim 2 Subgroup: Demographic Information (see Table 1). ANOVAs and chi-

square tests revealed no significant difference between cannabis users and non-users 
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in age (F(1,73)= 0.98, p= .32), race (χ2(5)= 5.68, p=.34), ethnicity (χ2(2)= .92, p=.63), 

gender (χ2(1)= 1.88, p=0.24), and reading ability (F(1,73)= 1.54, p= .22).  

     Aim 2 Subgroup: Drug Use Information. Cannabis users and non-users 

significantly differed on measures of past year cannabis use (F(1,73)= 22.89, p<.01), 

past year alcohol use (F(1,73)= 14.58, p<.01), and past year nicotine use (F(1,73)= 

7.69, p<.01). Past year alcohol and nicotine use were included as covariates in the 

regressions. 

     Principal Components Analysis. Three principal components analyses (PCA) were 

conducted to reduce variables from the each of the tasks (Emotion Recognition, Acuity, 

and Discrimination) in the PennCNP affective battery. Variables with loadings > 0.6 

were considered to define a component. Emotion Recognition. For the Emotion 

Recognition task, nine variables were subjected to PCA with varimax rotation. This 

yielded four components meeting Kaiser’s criterion (eigenvalues >1). The following 

components were obtained (see Table 2): Recognition Time (29.54% of variance), 

Anger/Fear Correct (14.15% of variance), Sad Correct (13.91% of variance), and Happy 

Correct (12.57% of variance). These components accounted for 70.17% of the total 

variance observed in the Emotion Recognition variables. Emotional Acuity. Twelve 

variables were subjected to PCA for the Emotional Acuity task, yielding three 

components meeting Kaiser’s criterion (eigenvalues >1). Components included Acuity 

Time (34.32% of variance), Acuity Neutral (28.15% of variance), and Acuity Intensity 

(13.08% of variance) (see Table 3). Together, these components explained 75.55% of 

the variance observed. Emotion Discrimination. For the Emotion Discrimination task, 

eight variables underwent PCA with varimax rotation. Two components meeting 
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Kaiser’s criterion (eigenvalues >1) were obtained (see Table 4): Discrimination Time 

(46.72% of variance) and Discrimination Correct (33.86% of variance). These 

components accounted for 80.58% of the total variance. 

 

Primary Results (see Table 5 for significant findings) 

     All regions of interest demonstrating a significant relationship with either cannabis 

use or cannabis x gender are represented in Figure 1. Covariates included gender, past 

year alcohol use, and past year nicotine use. Intracranial volume (ICV) was included as 

an additional covariate in sMRI regressions. 

     Behavioral Outcomes. Cannabis. Past year cannabis use did not significantly 

predict Acuity Time [t (67) = .07, beta=.01, p=.95], Acuity Intensity [t (67) = 1.12, beta= 

.14, p=.30], Recognition Time [t (71) = -.34, beta= -.04, p=.73], Anger/Fear Correct [t 

(72) = 1.17, beta= .14, p=.25], Happy Correct [t (72) = .40, beta= .05, p=.69], Sad 

Correct [t (72) = .13, beta=.02, p=.90], Discrimination Time [t (72) = -.55, beta=-.07, 

p=.58], Discrimination Correct [t (72) = -.64, beta=-.08, p=.53], or depressive symptoms 

[t (71) = .84, beta=.11, p=.40]. Increased cannabis use was significantly associated with 

increased Acuity Neutral scores [t (67) = 2.02, beta= .25, p<.05, f2=.06, FDR-corrected: 

p=.47] (see Figure 2). Cannabis*Gender. Cannabis use and gender did not interact to 

predict Acuity Time [t (66) = .51, beta=.06, p=.62], Acuity Intensity [t (66) = -.54, beta= -

.07, p=.59], Acuity Neutral [t (66) = -.26, beta= -.03, p=.80], Recognition Time [t (71) = -

.17, beta=-.02, p=.87], Anger/Fear Correct [t (71) = .70, beta= .09, p=.49], Happy 

Correct [t (71) = -1.50, beta= -.18, p=.14], Sad Correct [t (71) = .62, beta=.08, p=.54], 

Discrimination Time [t (71) = 1.15, beta=.14, p=.25], and depressive symptoms [t (70) = 
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-.19, beta=-.03, p=.85]. Cannabis and gender marginally interacted to predict 

Discrimination Correct such that in females, greater cannabis use was associated with 

lower Discrimination Correct scores; males exhibited the opposite pattern [t (71) = -1.93, 

beta=-.23, p<.06]. Covariates. Gender significantly predicted Happy Correct, such that 

females had higher scores on this component compared to males [t (72) = 2.17, beta= 

.26, p= .03].  

     sMRI Outcomes. Cannabis. Past year cannabis use did not significantly predict left 

hippocampus [t (69) = 1.08, beta=.10, p=.29], right hippocampus [t (69) = -.31, beta=-

.03, p=.76], left amygdala [t (69) = 1.28, beta=.13, p=.21], right amygdala [t (69) = -.34, 

beta=-.04, p=.76], left cerebellum [t (69) = 1.24, beta=.11, p=.22], right cerebellum [t 

(69) = 1.57, beta=.14, p=.12], right cACC [t (69) = -.84, beta=-.09, p=.40], left cACC [t 

(69) = -1.19, beta=-.14, p=.24], right rACC [t (69) = .41, beta=.05, p=.68], right mOFC [t 

(69) = -.08, beta=-.01, p=.94], left mOFC [t (69) = -.51, beta=-.05, p=.61], left lOFC [t 

(69) = .29, beta=.03, p= .77], right pars triangularis [t (69) = -.85, beta=-.10, p=.40], left 

pars triangularis [t (69) = -1.00, beta=-.12, p=.32], right fusiform gyrus [t (69) = .45, 

beta=.04, p=.65], left fusiform gyrus [t (69) = -.28, beta=-.03, p=.78], and left superior 

temporal [t (69) = 1.35, beta=.12, p= .18] volumes. Increased past year cannabis use 

marginally predicted smaller right lOFC volumes [t (69) = -1.93, beta=-.18, p<.06]. 

Greater past year cannabis use significantly predicted smaller left rACC volumes [t (68) 

= -3.26, beta=-.29, p<.01, f2= .11; FDR corrected: p= 0.01] and larger right superior 

temporal volumes [t (69) = 2.27, beta=.19, p= .03, f2= .06; FDR corrected: p= 0.19] (see 

Figure 3). Cannabis*Gender. Cannabis use and gender did not interact to predict left 

hippocampus [t (68) = -1.04, beta=-.10, p=.30], right hippocampus [t (68) = .11, 



	  

	   26 

beta=.01, p=.91], left amygdala [t (68) = -.22, beta=-.02, p=.83], right amygdala [t (68) = 

-.24, beta=-.03, p=.81], left cerebellum [t (68) = 1.06, beta=.10, p=.29], [t (68) = .17, 

beta=.02, p=.86], right cerebellum [t (68) = .17, beta=.02, p=.86], right cACC [t (68) = 

.30, beta=.03, p=.76], left cACC [t (68) = .69, beta=.08, p=.50], right rACC [t (68) = -

1.54, beta=-.17, p=.13], right mOFC [t (68) = .53, beta=.05, p=.60], left mOFC [t (68) = 

.84, beta=.08, p=.40], right lOFC [t (68) = .64, beta=.06, p=.53], left lOFC [t (68) = 1.12, 

beta=.67, p=.27], right pars triangularis [t (68) = .23, beta=.03, p=.82], left pars 

triangularis [t (68) = .18, beta=.02, p=.86], right fusiform gyrus [t (68) = -.24, beta=-.02, 

p=.81], left fusiform gyrus [t (68) = .47, beta=.04, p=.64], right superior temporal [t (68) = 

.98, beta=.08, p=.33], or left superior temporal [t (68) = -2.70, beta=-.26, p<.01] volume. 

Cannabis use and gender significantly interacted to predict left rACC volumes, such that 

only females demonstrated reduced volumes with increased cannabis use [t (68) = -

2.14, beta=-.19, p=.04, f2= .07; FDR corrected: p=.25] (See Figure 4). Covariates. 

Gender was significantly associated with left amygdala [t (69) = -2.13, beta=-.28, p=.04], 

left cerebellum [t (69) = -2.78, beta=-.34, p<.01], and right cerebellum [t (69) = -3.12, 

beta=-.37, p<.01] volumes, such that females exhibited smaller volumes compared to 

males.  

     DTI Outcomes. Cannabis. Past year cannabis use did not significantly predict right 

uncinate fasciculus FA [t (70) = .10, beta=.01, p= .92], right ATR FA [t (70) = -.08, beta= 

-.01, p= .94], right ATR MD [t (70) = -.95, beta= -.11, p= .35], left uncinate fasciculus FA 

[t (70) = -.01, beta=-.00, p= .99], left ATR FA [t (70) = .67, beta= .08, p= .50], left ATR 

MD [t (70) = -1.06, beta= -.13, p= .29], forceps minor FA [t (61) = -.05, beta=-.01, p= 

.96], or forceps minor MD [t (61) = -.84, beta=-.11, p= .40]. Cannabis use marginally 
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predicted left uncinate MD [t (70) = -1.85, beta=-.22, p= .07]. Greater cannabis use was 

significantly associated with reduced MD in the right uncinate fasciculus [t (70) = -2.00, 

beta=-.24, p= .05, f2= .06; FDR corrected: p= .34] (see Figure 5).  Cannabis*Gender. 

Cannabis*Gender did not significantly predict right uncinate fasciculus FA [t (69) = 1.19, 

beta=.15, p=.24], right uncinate fasciculus MD [t (69) = -.70, beta= -.08, p=.49], right 

ATR FA [t (69) = .54, beta=.06, p=.59], right ATR MD [t (69) = -.57, beta=-.07, p=.57], 

left uncinate fasciculus FA [t (69) = 1.22, beta=.15, p=.23], left uncinate fasciculus MD [t 

(69) = -.45, beta=-.05, p=.65], left ATR FA [t (69) = .21, beta=.02, p=.83], left ATR MD [t 

(69) = -.84, beta=-.10, p=.40], or forceps minor MD [t (60) = -.69, beta=-.09, p=.50]. 

Cannabis*Gender significantly predicted forceps minor FA, such that females 

demonstrated increased FA with more use while the opposite pattern was observed in 

males [t (60) = 2.06, beta=.26, p=.04, f2= .07; FDR corrected: p=.44] (see Figure 6). 

Covariates. Increased past year nicotine use was significantly associated with reduced 

right ATR FA [t (70) = -2.07, beta= -.24, p= .04]. Gender significantly predicted right [t 

(70) = 2.27, beta= .27, p= .03] and left [t (70) = 2.42, beta=.28, p=.02] ATR MD, such 

that females had higher values compared to males. Gender also significantly predicted 

left uncinate MD [t (70) = 2.14, beta=.25, p= .04] and left ATR FA [t (70) = -2.70, beta= -

.31, p<.01], such that males had higher values relative to females.  

 

Secondary Results (Brain-Behavior Relationships in Cannabis users) 

     Within cannabis users, smaller left rACC volumes were significantly associated with 

lower Discrimination Correct scores [r= .37, p= .04] (see Figure 7). Since 

cannabis*gender predicted left rACC volumes, the relationship between gender and left 
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rACC was explored. Within female cannabis users, smaller left rACC volumes 

significantly predicted lower Discrimination Correct scores [r= .68, p= .01]. Within male 

cannabis users, no significant relationship was observed between left rACC volume and 

Discrimination Correct scores [r= .31, p= .18]. No other affective measures were 

significantly associated with left rACC, right superior temporal volumes, or right uncinate 

fasciculus MD. 

Discussion 

     To our knowledge, this is the first study to assess the dose-dependent relationships 

between cannabis use, affective processing, and brain structure. Our first primary aim 

was to examine the association between cannabis use, depressive symptoms, and 

performance on an affective processing battery. Contrary to our predictions, we found 

that greater past year cannabis use predicted higher Acuity Neutral component scores. 

In the second primary aim, we investigated relationships between cannabis use and 

brain structures previously shown to be associated with affective processing. Most 

notably, increased past year cannabis use significantly predicted smaller left rACC 

volumes. Gender moderated this relationship such that only females exhibited 

significantly smaller left rACC volumes with increased cannabis use. Secondary 

analyses revealed that within the cannabis-using group, decreased left rACC volumes 

were significantly correlated with lower Discrimination Correct scores. This suggests 

that cannabis-related differences in the left rACC are associated with functional deficits. 

Past year cannabis use predicted larger right superior temporal volumes and lower MD 

in the right uncinate fasciculus. Finally, a significant cannabis x gender interaction was 

observed in the forceps minor, with females exhibiting increased FA with more use, 
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while the opposite pattern occurred in males. The only relationship that survived 

correction for multiple comparisons was the main effect of increased cannabis use 

predicting smaller left rACC volumes.  

     Our finding that greater cannabis use predicted higher scores on one component, 

Acuity Neutral, is, to our knowledge, the first report of chronic cannabis use being 

related to improved performance on an emotional faces task. This was in contrast to our 

hypothesis that chronic cannabis use would be associated with poorer affective 

processing due to downregulation of CB1 receptors in brain regions regulating affect 

(Hirvonen et al., 2012). In previous studies, cannabis users have exhibited deficits in 

facial emotion processing, although literature in this area is sparse (Platt et al., 2010; 

Hindocha et al., 2014; Huijbregts et al., 2014; Bayrakci et al., 2015). Hindocha et al. 

(2014) found that cannabis users were more impaired than controls in recognizing static 

facial emotions of moderate and higher intensity; this difference was not observed in 

processing more subtle emotions (20% emotional). Further, using a dynamic facial 

morphing task, Platt and colleagues (2010) found that cannabis users required a greater 

intensity of emotion for correct identification. Our findings deviate from both of these 

studies, in that cannabis use was not associated with more or less accurate intense 

emotion identification (Acuity Intensity component), but was associated with improved 

accuracy for subtle emotions (Acuity Neutral component). This may be due to 

differences in task construction (e.g., static versus dynamic stimuli, providing wider 

range of response options) across studies. 

     Another possible explanation is differences in cannabis exposure; mean use 

amongst cannabis users was higher (25-27 uses per month) in both the studies by 
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Hindocha et al. (2014) and Platt et al. (2010) compared to the current study (20 uses 

per month). Thus, it is possible that emotional face processing deficits are only 

observable in heavier (closer to daily) cannabis users. Some research suggests that 

adolescents who engage in a low to moderate level of cannabis use (no more than 

monthly) have improved interpersonal relations compared to those who abstain and 

heavier users (Shedler & Block, 1990). This may provide insight into the higher Acuity 

Neutral scores in the current study; 39.4% of the cannabis users in the current study 

used monthly or less frequently in the past year. Further, cannabis samples can vary 

widely in levels of THC and CBD (Swift et al., 2013), which may account for differences 

across studies. As acute CBD has been shown to improve facial affect recognition at 

moderate intensity (Hindocha et al., 2015), perhaps more participants in the current 

study used cannabis higher in CBD compared with participants in studies by Platt et al. 

(2010) and Hindocha et al. (2014). Future work will be needed in order to address this 

possibility. However, as the relationship between cannabis use and Acuity Neutral in the 

current study did not survive correction for multiple comparisons, it should be 

interpreted with caution.  

     Our most robust finding was that greater cannabis use was associated with reduced 

left rACC volumes, driven primarily by females. Null findings reported by other groups 

(Cousijn et al., 2012; Lorenzetti et al., 2015) may be due to the gender distribution. This 

finding is consistent with a recent report in young adult cannabis users with comorbid 

ADHD (Lisdahl et al., in press). Further, earlier age of cannabis use onset has been 

associated with reduced right rACC thickness within a sample of alcohol and cannabis 

using adolescents (Jacobus et al., 2014). Additionally, research amongst psychosis 
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patients has revealed cannabis-dependent relationships with decreased bilateral ACC 

volumes (Szeszko et al., 2007), left ACC volumes (Rapp et al., 2013), and increased 

cortical thinning in the left ACC during the first five years of schizophrenia (Rais et al., 

2010). Thus, the evidence suggests that chronic cannabis use is related to reductions in 

ACC gray matter, particularly in the left hemisphere. This may be because the left 

hemisphere contains a higher CB1 receptor density (Glass et al., 1997). The ACC itself 

is rich in CB1 receptors (Herkenham et al., 1990; Glass et al., 1997) and chronic 

cannabis use leads to downregulation of CB1 receptors in the cingulate cortex 

(Hirvonen et al., 2012). The eCB system modulates synaptic plasticity and, via CB1 

receptors on glial cells, neuronal support (Pazos et al., 2005; Melis et al., 2014). Thus, 

CB1 downregulation may lead to reduced dendritic branching or neuronal atrophy, 

resulting in gray matter reductions (Lisdahl et al., 2014). Importantly, females may have 

increased CB1 desensitization to THC in frontolimbic regions compared to males 

(Crane et al., 2013). This may explain why females, but not males, in the current study, 

demonstrated smaller left rACC volumes with increased cannabis exposure. Further, 

reduced left rACC volumes were related to lower Discrimination Correct scores within 

cannabis using females, but not males. This is consistent with other studies showing 

volumetric differences in the PFC and amygdala associated with functional deficits in 

female, but not male, cannabis users (Medina et al., 2009; McQueeny et al., 2011).  

     The link between exogenous cannabinoids, the ACC, and emotion processing has 

been previously documented. Chronic cannabis users, compared to healthy controls, 

have demonstrated altered ACC activation to masked emotional faces (Gruber et al., 

2009) and ACC hypoactivity in response to emotional scenes (Wesley et al., 2016). 
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Acute THC administration enhanced functional connectivity between the rACC/mPFC 

and amygdala during an emotion discrimination task in which participants were 

instructed to decide which of two emotional (angry, fearful, or happy) faces matched a 

third face (Gorka et al., 2015). On the other hand, acute CBD has been shown to 

attenuate ACC activation and decrease connectivity between the ACC and amygdala in 

response to fearful faces (Fusar-Poli et al., 2009; Fusar-Poli et al., 2010). The present 

study supplements the fMRI literature by providing evidence for left rACC structural 

abnormalities with chronic cannabis use in association with abnormal affective 

processing. Notably, cannabis use predicted rostral, but not caudal ACC volumes. 

Substantial past work suggests the rostral portion of the ACC supports emotional 

processing, while the caudal region contributes more to cognitively demanding tasks by 

influencing response selection, error detection, working memory, and monitoring 

competition (Devinsky et al., 1995; Bush et al., 2000). Given the specialization of the 

rACC, it is unsurprising that reduced left rACC volumes were associated with lower 

Emotion Discrimination Correct scores in cannabis using females.  

     It is worth considering why Discrimination Correct was the only affective measure for 

which a relationship was observed with left rACC. Perhaps the rACC serves a crucial 

function in an aspect of the Emotion Discrimination task that is not present in the other 

tasks. For example, it is possible that the rACC is critical in comparing two emotional 

stimuli and making a decision regarding them. Previous research has identified the ACC 

as important in emotion discrimination when one is presented with multiple faces 

(Munro et al., 2007). Additionally, research suggests a role for the rACC in shifting 

attention toward or away from emotional faces (Klumpp et al., 2012), which may be 
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important if attending to multiple faces simultaneously. Another possibility is that the 

Emotion Discrimination task was more difficult compared to the Emotion Recognition 

and Emotional Acuity tasks, and thus the Discrimination task was more sensitive to 

rACC abnormalities. In functional neuroimaging studies of cannabis users, aberrant 

activation patterns often occur without differences in task performance (e.g., Cousijn et 

al., 2014; Wesley et al., 2016), suggesting that cannabis users may be able to 

compensate by adjusting which regions are recruited for a particular task. Thus, 

perhaps female cannabis users in our sample were able to rely more heavily on other 

brain areas besides the rACC while completing the Emotion Recognition and Emotional 

Acuity tasks, but not the Emotion Discrimination task. However, a functional 

neuroimaging study would be necessary in order to address this possibility. 

     Greater past year cannabis use also predicted larger right superior temporal 

volumes, although this was not related to any affective processing measure in the 

current sample. One past investigation revealed no superior temporal volume 

alterations in cannabis users (DeLisi et al., 2006). However, others have reported 

increased cortical thickness in the superior temporal gyrus in cannabis users compared 

to non-users (Lopez-Larson et al., 2011; Epstein & Kumra, 2015). Moreover, adolescent 

cannabis users have reduced cerebral blood flow in the left superior temporal gyrus 

prior to abstinence (Jacobus et al., 2012), which may impact synaptic pruning 

(Takahashi et al., 1999). Thus, structural aberrations in the superior temporal gyrus 

could reflect insufficient synaptic pruning related to cannabis use. Alternatively, 

increased right superior temporal volumes may indicate abnormal connectivity patterns 

(Lisdahl et al., 2014), in which this region compensates for reduced efficiency in other 
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regions more susceptible to exogenous cannabinoids, such as the PFC (Mackie et al., 

2005). Yet, it is not possible to conclude that this association between cannabis use and 

increased superior temporal volumes reflects cortical damage or compensation without 

evidence for behavioral deficits in our sample. Importantly, the association between 

cannabis use and the superior temporal region did not survive correction for multiple 

comparisons, indicating it may be a spurious finding. The superior temporal region is 

involved in facial perception, auditory processing, and multisensory audiovisual 

language processing (Ishai et al., 2005; Gazzaniga et al., 2014). Thus, future studies 

should continue to investigate these functions in cannabis users in relation to superior 

temporal areas. 

     The uncinate fasciculus is a tract connecting the anterior temporal lobe with frontal 

regions, passing through the amygdala (Catani & Thiebaut de Schotten, 2012; Von Der 

Heide et al., 2013). It supports episodic memory, language, and socio-emotional 

processing (Von Der Heide et al., 2013). In contrast to our hypothesis, cannabis use 

was significantly related to increased integrity, indicated by decreased mean diffusivity, 

in the right uncinate fasciculus. Most studies have shown cannabis use to be associated 

with decreased white matter integrity in various tracts, including in the uncinate 

fasciculus (e.g., Jacobus et al., 2013a). Our own group found increased MD and 

decreased FA in the uncinate fasciculus in a different sample of young adult cannabis 

users (Shollenbarger et al., 2015). Importantly, mean past year use cannabis use 

amongst users in that sample (548 joints) was more than double the amount in the 

current study (228 joints). Therefore, it is possible that at lower doses, cannabis use 

may actually improve white matter integrity. In fact, others have also noted increased 
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white matter integrity in association with cannabis use, although in a different tract 

(forceps minor) (Filbey et al., 2014). Cannabis has anti-inflammatory properties and has 

been shown to specifically decrease inflammation in myelin, a major component of 

white matter (for review, Burstein, 2015; Kozela et al., 2015). Reduced inflammation 

leads to decreased tissue water and diffusion, which results in lower MD values 

(Alexander et al., 2007). Additionally, cannabinoids possess neuroprotective and 

antioxidant properties that may benefit white matter (Karl et al., 2012). Another 

possibility is that the right uncinate fasciculus has abnormally strong connectivity in 

order to compensate for observed structural abnormalities in the right temporal region, 

which it connects with the PFC. Perhaps this initial compensation disappears with 

heavier cannabis use. Age of cannabis use onset may also influence white matter 

integrity and lead to differences in findings. Mean age of onset amongst cannabis users 

in the present study as well as in the study by Filbey and colleagues (2014) was 

relatively high at 17 and 18 years, respectively. Further, eCB genetics (i.e., FAAH 

genotype) has been shown to moderate white matter integrity in cannabis users 

(Shollenbarger et al., 2015). However, the relationship between greater cannabis use 

and reduced right uncinate fasciculus MD did not survive correction for multiple 

comparisons and as such, is of limited interpretability. 

     Cannabis use and gender interacted to predict forceps minor FA, such that females 

tended to have increased FA with more use, while the opposite pattern was observed in 

males. Previous studies demonstrated reduced white matter integrity in the forceps 

minor (Jacobus et al., 2013; Shollenbarger et al., 2015) and anterior portions of the 

corpus callosum (Arnone et al., 2008; Gruber et al., 2011; Gruber et al., 2014) in 
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cannabis users compared to controls. Yet, increased forceps minor FA aligns with 

Filbey and colleagues’ (2014) findings, although this was observed as a main effect in 

their entire sample, which was predominantly male. The forceps minor is a fiber bundle 

connecting the frontal lobes, including the rACC (Catani & Thiebaut de Schotten, 2012). 

It is possible that females with greater cannabis use exhibited increased FA in the 

forceps minor in order to compensate for reductions in rACC volume and function, while 

this was not necessary for males, who did not exhibit rACC effects. As the rACC is high 

in CB1 receptor density, perhaps the forceps minor is able to uniquely adjust to 

exogenous cannabinoid influence (Filbey et al., 2014). Another possibility is that males 

were more susceptible than females to the negative effects of cannabis on the forceps 

minor, as frontal white matter takes longer to develop in males compared to females 

(Simmonds et al., 2014). Further, factors such as THC: CBD ratios and genetics may 

have differed between males and females in our sample, driving these differences in 

FA. Additionally, this finding may be spurious as it did not survive correction for multiple 

comparisons. 

     The present study has some important limitations. Firstly, in order to address 

whether through use of PCA, more subtle behavioral relationships were missed, 

supplementary regressions were run for cannabis use predicting individual PennCNP 

variables. The only significant relationships were with Emotional Acuity Total Correct 

and Emotional Acuity Happy Neutral Correct, which both loaded onto the Acuity Neutral 

component, indicating that all variables demonstrating a significant relationship with 

cannabis use were represented in components yielding significance. Second, due to the 

cross-sectional, correlational nature of the study, it is not possible to determine the 
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causal nature of the relationship between cannabis use and outcome variables. Further, 

the cannabis exposure was lower than what is typically reported in previous publications 

(average exposure 228 past year joints, with 39.4% using monthly or less frequently 

and 24.2% using daily or more); therefore, these results may not generalize to young 

adults with heavier use patterns. Similarly, length of cannabis abstinence was much 

longer in our sample compared with most previous research (mean length of abstinence 

57 days, minimum of 19 days). In most studies, users are abstinent for an average of 2-

3 days, and research suggests there may be significant recovery with abstinence 

(Lisdahl et al., 2014; D’Souza et al., 2016). Additionally, only one relationship (cannabis 

predicting left rACC volumes) survived correction for multiple comparisons. As such, the 

other significant associations found may be spurious and must be interpreted with 

caution. We did not meet the sample size recommended (N=133) for 80% power at the 

smallest effect size observed (f2=0.06); therefore, we only had adequate power 

(recommended N= 74) for the effect size observed in the rACC (f2=0.11). Two brain 

region measures, right lOFC volume and left uncinate fasciculus MD, exhibited trend 

level relationships (p= 0.058 and p= 0.06, respectively) with past year cannabis use. It is 

possible that with a larger sample size, significant effects may have been revealed. 

Therefore, these findings should be replicated in a larger sample for increased power. 

Finally, considering the study’s naturalistic design, there may other variables, including 

age, genetics, THC:CBD ratios (for reviews, see Niesink & van Laar, 2013; Lorenzetti et 

al., 2016), sex hormones, and physical fitness levels (Herting et al., 2012), moderating 

the results. Future research should use longitudinal designs with larger sample sizes 

and also measure these potential moderators.  
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     The current study provides evidence for a relationship between past year cannabis 

use and reduced left rACC volumes in females, larger superior temporal volumes, and 

decreased right uncinate fasciculus MD. Gender moderated the relationship between 

cannabis use and forceps minor FA, with females demonstrating increased FA with 

more use and males demonstrating the opposite relationship. Our most clinically 

relevant and robust finding was greater past year cannabis use predicting smaller left 

rACC volumes and within cannabis users, smaller left rACC volumes being associated 

with lower scores on the Discrimination Correct component. Thus, chronic cannabis use 

during adolescence and emerging adulthood, a time of continued neurodevelopment 

(Casey et al., 2008), may negatively impact brain regions important for affective 

processing. These neural abnormalities, in turn, are associated with difficulty 

discriminating emotions, which may negatively influence mood and emotional well-being 

(Phillips et al., 2003). Given the potential negative consequences of cannabis use as 

evidenced by current and prior findings, more research on interventions for cannabis 

use in youth is needed. 
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Tables 

Table 1 
Participant Demographics 

 Aim 1: Affective/Behavioral (N=77) Aim 2: Brain Structure (N=75) 

 
Cannabis Users 

(n=33) 

Non-Users 

(n=44) 
Cannabis Users (n=32) Non-Users (n=43) 

 
% or M + SD 

(range) 

% or M + SD 

(range) 
% or M + SD (range) % or M + SD (range) 

Gender (% female) 36.4% 54.5% 37.5% 53.5% 

Race (% Caucasian) 65.9% 69.7% 68.8% 67.4% 

Ethnicity (% Non-

Hispanic) 
87.9% 88.6% 87.5% 88.4% 

Age (years) 21.6±2.2 (18-26) 21.0±2.7 (16-25) 21.6 ± 2.2 (18-26) 21.0±2.7 (16-25) 

WRAT-4 (raw score) 60.7±5.2 (41-69) 
62.0 ±3.7 (53-

69) 
60.7 ± 5.3 (41-69) 62.0 ±3.8 (53-69) 

Beck Depression 

Inventory-II (BDI-II) 
5.7 ± 4.6 (0-18)* 2.6 ± 3.1 (0-10)* 5.8 ± 4.7 (0-18)* 2.6 ± 3.1 (0-10)* 

Age of weekly 

cannabis use onset 

(years) 

17.5 ± 1.8 (13-21) - 17.5 ± 1.8 (13-21) - 

Lifetime cannabis use 

(uses) 

796.45 ± 1095.9 

(25-6000)* 
3.4 ± 6.8 (0-25)* 

790.1  ± 1112.8 (25-

6000)* 
3.4 ± 6.8 (0-25)* 

Past year cannabis use 

(joints) 

228.6 ± 306.2 (0-

1394)* 
0.4 ± 1.1 (0-5)* 226.8 ± 310.9 (0-1394)* 0.4 ± 1.1 (0-5)* 

Length of cannabis 

abstinence at Session 

4 (days) 

57.2 ± 85.9 (19-

422) 
- 58.1 ± 87.1 (19-422) - 

Past year alcohol use 

(standard drinks) 

313.2 ±272.9 (0-

897)* 

112.4 ± 178.8 

(0-698.5)* 
316.4 ± 276.7 (0-897)* 

114.7 ± 180.2 (0-

698.5)* 

Past year nicotine use 

(cigarettes) 

143.4 ±344.4 (0-

1165)* 
0.5 ±1.9 (0-12)* 147.8 ± 348.9 (0-1165)* 0.5 ±1.9 (0-12)* 

Session 4 cotinine 

levels (0-6) 
2.06 ± 1.7 (0-6)* 1.09 ± .6 (0-3)* 2.10 ± 1.7 (0-6)* 1.09 ± .6 (0-3)* 

Session 5 cotinine 

levels (0-6) 
2.03 ± 1.6 (0-6)* 1.09 ± .7 (0-3)* 2.03 ± 1.6 (0-6)* 1.09 ± .7 (0-3)* 

% Positive THC Urine 

Toxicology Session 1 
54.5%* 0%* 53.1%* 0%* 

% Positive THC Urine 3% 0% 3.1% 0% 
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Note. *Group differences: p< .05.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Toxicology Session 4 

% Positive THC Urine 

Toxicology Session 5 
- - 3.1% 0% 
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Table 2. Emotion Recognition Principal Components Analysis Factor Loadings 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Component Labels 
Variable Recognition 

Time 
Anger/Fear 

Correct 
Sad 

Correct 
Happy 
Correct 

Anger Correct .121 .849 -.152 -.156 
Fear Correct -.262 .627 .328 .323 
Sad Correct -.001 -.021 .935 .003 
Happy Correct .031 -.018 -.001 .950 
Anger Correct Median      
Response Time (ms) 

.660 .107 -.296 -.033 

Fear Correct Median 
Response Time (ms) 

.725 -.362 .014 -.261 

Sad Correct Median 
Response Time (ms) 

.611 -.007 -.099 -.026 

Happy Correct Median 
Response Time (ms) 

.765 .107 .380 -.009 

Neutral Correct Median 
Response Time (ms) 

.809 -.071 .069 .173 
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Table 3. Emotional Acuity Principal Components Analysis Factor Loadings 
 
 
 Component Labels 
Variable Acuity Time Acuity Neutral Acuity Intensity 
Total Correct -.096 .915 .380 
Very Happy Correct -.074 -.093 .758 
Happy Neutral Correct -.003 .879 -.129 
Neutral Correct -.154 .940 -.135 
Sad Neutral Correct -.252 .746 -.025 
Very Sad Correct .163 .076 .747 
Correct Trials Median Response Time 
(ms) 

.947 -.199 .148 

Correct Very Happy Trials Median 
Response Time (ms) 

.806 .112 -.245 

Correct Happy Neutral Trials Median 
Response Time (ms) 

.744 -.388 .173 

Correct Neutral Trials Median 
Response Time (ms) 

.887 -.293 .182 

Correct Sad Neutral Trials Median 
Response Time (ms) 

.860 -.155 .265 

Correct Very Sad Trials Median 
Response Time (ms) 

.603 .015 -.206 
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Table 4.  
 
Emotion Discrimination Principal Components Analysis Factor Loadings 
 

 Component Labels 

Variable Discrimination Time Discrimination Correct 

Total Correct .094 .989 

Happy Trials Correct .114 .896 

Sad Trials Correct .041 .844 

Correct Happy Trials Median Response 
Time (ms) 

.921 -.013 

Incorrect Happy Trials Median 
Response Time (ms) 

.726 .375 

Correct Sad Trials Median Response 
Time (ms) 

.886 -.019 

Incorrect Sad Trials Median Response 
Time (ms) 

.778 .271 

Total Correct Trials Median Response 
Time (ms) 

.974 -.017 
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Table 5.  
 
Significant Relationships Observed With p-values Before and After Correcting for 
Multiple Comparisons 
 

Relationship p-value Effect Size 

(f2) 

FDR-corrected 

p-value 

Cannabis àAcuity Neutral Component 0.047* .06 0.470 

CannabisàLeft rACC volume 0.002* .11 0.014* 

Cannabis*GenderàLeft rACC volume 0.036* .07 0.252 

Cannabisà Right superior temporal volume 0.027* .06 0.189 

Cannabisà Right uncinate MD 0.050* .06 0.340 

Cannabis*Genderàforceps minor FA 0.044* .07 0.440 

Note. *p< .05. 
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Figures 

 
 

Figure 1. All regions of interest that demonstrated a significant relationship with either 

cannabis use or cannabis x gender prior to correction for multiple comparisons are 

presented here on representative participants. A) Increased cannabis use and gender 

significantly interacted to predict smaller left rACC volumes, such that only females 

demonstrated this relationship. The left rACC is shown in red on this sagittal slice. B) 

Greater cannabis use was associated with larger right superior temporal volumes, 

highlighted in blue. C) This axial slice presents a ventral view of the brain. Increased 

cannabis use was related to decreased right uncinate fasciculus (shown in blue) MD; 

gender moderated the relationship between cannabis use and forceps minor (red) FA, 

such that males had decreased FA with more cannabis use and females exhibited the 

opposite pattern.  

A B 

C 
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Figure 2. After controlling for gender, past year alcohol use, and past year nicotine use, 

a dose-dependent relationship was observed between greater past year cannabis use 

and higher scores on the Acuity Neutral component. 
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Figure 3. After controlling for gender, past year alcohol use, and past year nicotine use, 

increased past year cannabis use was associated with larger right superior temporal 

volumes. However, this relationship did not survive correction for multiple comparisons. 
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Figure 4. Greater past year cannabis use significantly predicted smaller left rostral ACC 

volumes. Gender significantly moderated this relationship, such that in females, 

cannabis use was associated with reduced volumes, while in males, no significant 

association between cannabis use and left rACC emerged. Covariates included gender, 

past year alcohol use, and past year nicotine use. The main effect (cannabis use 

predicting left rACC volumes) survived FDR corrections; however, the cannabis*gender 

interaction was no longer significant after correcting for multiple comparisons. 
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Figure 5. Greater past year cannabis use was significantly associated with reduced 

mean diffusivity in the right uncinate fasciculus, indicating increased integrity. 
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Figure 6. Cannabis*Gender significantly predicted fractional anisotropy (FA) in the 

corpus callosum forceps minor, such that males exhibited reduced FA with increased 

use; females had higher FA with increased cannabis use. 
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Figure 7. Within the cannabis-using group, Pearson correlations revealed that smaller 

left rACC volumes were associated with lower scores on the Discrimination Correct 

component.   
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