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ABSTRACT 
USING INFORMATION THEORY AND ELEMENTARY COGNITIVE TASKS TO 

FORMALLY DEFINE EXECUTIVE FUNCTIONS  
 

by 
 

Octavio A. Santos 
 
 

The University of Wisconsin-Milwaukee, 2014 
Under the Supervision of David C. Osmon, Ph.D., ABPP-Cn 

 
 

Executive functions (EF) are an umbrella construct in neuropsychology that have 

received significant attention from both clinicians and researchers in recent years. 

Despite the wide array of definitions of EF and lack of agreement about such 

constructs, there seems to be a commonality underlying their theoretical 

frameworks that has to do with the ability to internally regulate one’s behavior. In 

an attempt to overcome inherent limitations to the construct of EF, the present 

study used elementary cognitive tasks (ECTs), based on information theory (IT) 

and a reaction time (RT) paradigm, to establish preliminary feasibility of ECTs to 

assess behavior regulated by internal rules as a measurement of EF and 

distinguish EF from non-EF cognitive abilities. Therefore, four ECTs, 

two putative non-executive direct response tasks (0- and 1-bit non-EF tasks) and 

two putative executive internal rule tasks (1- and 2-bit EF tasks), were developed 

and administered in college students. These tasks were given to 30 intact 

undergraduate students. It was hypothesized that the non-EF tasks would show a 

linear increase in RT as task complexity increases that follows the Hick’s law. 

Additionally, it was hypothesized that the EF tasks would show an exponential 
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increase in RT as task complexity increases. Results supported the hypothesis 

showing a linear increase in RT on the 0- and 1-bit non-EF tasks, consistent with 

past literature, and a nonlinear slope associated with the 1- and 2-bit EF tasks; the 

dramatic nature of this nonlinear relationship was even better demonstrated when 

increasing EF complexity (1- to 2-bit EF tasks). This nonlinear increase from 

direct response to internal rule response was demonstrated by the increased 

variance explained by the quartic curve fit compared to a simple linear fit. These 

results strongly support the thesis that the EF bit tasks are qualitatively different 

from direct response tasks, and puts EF assessment on a firm measurement basis 

that not only precisely defines the construct, but also measures it at the ratio level 

of quantification. 
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Using Information Theory and Elementary Cognitive Tasks to Formally Define 

Executive Functions  

Executive functions (EF) are an umbrella construct in neuropsychology that have 

received significant attention from both researchers and clinicians in recent years. EF are 

generally related to functioning of the prefrontal cortex (PFC), and these control 

processes have been integrated into various controversial theories and models seeking to 

define EF. However, lacking a single core construct, it has been difficult to develop 

measures of EF that correlate well together, to identify individuals with PFC lesions, and 

to agree upon methods of qualitatively distinguishing between EF and non-EF 

components of cognitive ability.  

Despite the wide array of definitions of EF and lack of agreement about such 

constructs, there seems to be a commonality underlying their theoretical frameworks that 

has to do with the ability to internally regulate one’s behavior. It is possible to measure 

this ability through elementary cognitive tasks (ECTs) based on responses according to 

internal rules. Thus, ECTs may be useful as measures of EF, although they have not yet 

gained widespread acceptance for this purpose. In an attempt to overcome inherent 

limitations to the construct of EF, the present study used ECTs, based on information 

theory (IT) and a reaction time (RT) paradigm, to establish preliminary feasibility of 

ECTs to assess behavior regulated by internal rules as a measurement of EF and 

distinguish EF from other cognitive abilities such as perception.  

The current project compared the performance on four ECTs, two putative non-

executive direct response tasks (0- and 1-bit non-EF tasks) and two putative executive 

internal rule tasks (1- and 2-bit EF tasks), in college students. In contrast to the currently 
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available EF tests, these ECTs exhibit several advantages such as a clear differentiation 

between executive and non-executive functioning abilities, a ratio level of measurement 

based on a RT paradigm, task complexity defined according to bits of information, and a 

flexible platform that can be adapted to both verbal and nonverbal modalities. Each area, 

EF and ECTs, has an extensive literature, thus a selective review of these areas follows. 

Executive functions (EF) 

Theoretical Models.  Luria (1973) had an early conceptualization of EF. Although 

he did not coin the term, the neuropsychological study of EF built on his early reports of 

patients with damage to the PFC (Stuss & Benson, 1984). Baddeley and Hitch (1974) 

first described EF as a “central executive” and Lezak (1995) later defined it as a human 

behavior dimension “necessary for appropriate, socially responsible, and effectively self-

serving adult conduct” (p. 42). EF are also generally described as high-level cognitive 

functions believed to be mediated primarily by the PFC (Stuss et al., 2002). Some 

hierarchical cognitive models, for example Baddeley’s (2002) working memory model 

and Normal and Shallice’s  (1986) SAS model, support the existence of a central 

executive that deals with more complex levels of functioning and that reflect PFC 

activity; an idea that is supported by neurological literature that describes patients with 

PFC injury with disorganized and impulsive behavior. Other models, such as Fuster’s 

perception-action cycle (Fuster, 2002), suggest that the role of the PFC is to expand the 

temporal perspective of the system rather than be an executive interpreter. Moreover, 

others like Zelazo et al. (1997) reject the approach of the uniqueness of the PFC in the 

control of EF.  
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Currently, EF are a multifaceted set of neuropsychological constructs that have 

received myriad definitions and fractionations into subcomponents comprising a wide 

range of cognitive processes and behavioral competencies which include, but are not 

limited to, resistance to interference, working memory, multitasking, sequencing, 

sustained attention, verbal reasoning, utilization of feedback, planning, problem-solving, 

cognitive flexibility, and the ability to deal with novelty (Anderson, Northam, Hendy & 

Wrenall, 2001; Baddeley & Hitch, 1974; Banich, 2004; Borkowsky & Burke, 1996; 

Burgess, Veitch, de Lacy Costello & Shallice, 2000; Coltheart, 1989; Damasio, 1995; 

Elliott, 2003; Grafman & Litvan, 1999; Hobson & Leeds, 2001; Lafleche & Albert, 1995; 

Lezak, 1995; Norman & Shallice, 1986; Piguet et al., 2002; Stuss, 2011; Stuss & Benson, 

1984). Sergeant, Geurts and Oosterlaan (2002) listed 33 different definitions of EF, 

demonstrating the notorious difficulty in precise definition of EF. The wide variety of 

definitions and subcomponents theorized to make up EF reveals a lack of agreement and 

even controversy in relation to the true nature of EF (Jurado & Rosselli, 2007; Suchy, 

2009); therefore, the construct of EF still awaits a formal definition (Jurado & Rosselli, 

2007). Additionally, this confusion of definitions signifies either that the crux of the 

construct has so far been elusive or that there is no rubric that encapsulates the functions 

of the PFC. At the 40th Annual Meeting of the International Neuropsychological Society 

(INS), the president of INS expressed the need to “come to terms with how we define and 

measure this construct in a reasonable way” (Bauer, 2012). More importantly, having a 

clear definition of EF that yields a quantifiable measure of the complexity and 

fractionated components of EF becomes imperative for the field of neuropsychology, not 

only for the accuracy of neuropsychological assessments, but also for the facilitation of 
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communication among clinicians, the predictability of clinical outcomes, and planning 

rehabilitation (Chan, Shum, Toulopoulou, & Chen, 2008).  

Despite the lack of a formal definition, there exists relative agreement in terms of 

the complexity and importance of EF to human adaptive behavior (Jurado & Rosselli, 

2007). EF are deemed to allow us to alter our mindset in order to adapt to situations while 

simultaneously inhibiting inappropriate behaviors; that is, they largely allow the 

organization of thoughts in a goal-directed way in daily living situations (Ardila & 

Surloff, 2004). By reviewing the different models and theories of EF, there seems to be a 

commonality among them that has to do with EF allowing internal regulation of behavior. 

Such an ability could be studied by having the individual follow internal rules to properly 

adjust his behavior to contextual demands. Therefore, the concept of mental set (e.g., 

internal rules) seems to be “the only rubric comprehensive enough” (p. 187; Osmon, 

1999) under which to heuristically encapsulate the regulatory nature of EF and its 

subcomponents. Mental set is a concept that also implies holding an internal mental 

representation, or an internal rule, that connects appropriate actions with concrete 

environmental aspects, thus allowing us to self-regulate our behavior, so the latter is not 

subordinated to the mere perceptual features of the stimuli (Osmon, 1999). The following 

sections provide an explanation to this reasoning. 

Operationalization.  Along with the difficulties reaching an agreement on the 

definition of EF is the challenge of operationalizing and assessing EF. A task-based 

method has been the prevailing approach to the study of EF by identifying impaired 

cognitive abilities in patients with damage to the PFC (Jurado & Rosselli, 2007; Lezak, 

2012; Suchy, 2009). EF tests and batteries such as the Controlled Oral Word Association 
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Test (Benton, Hamsher, & Sivan, 1994), Trail Making Test (TMT; Reitan, 1992), Stroop 

Color and Word Test (Stroop Test; Golden, 1978), Wisconsin Card Sorting Test (WCST; 

Grant, Berg & Heaton, 1993), Behavioral Assessment of the Dysexecutive Syndrome 

(Wilson, Alderman, Burgess, Emslie & Evans, 1996) and Delis–Kaplan Executive 

Function System (Delis, Kaplan & Kramer, 2001) are some of the most commonly used 

assessment instruments that operationalize EF.  

Operationalization of a construct is a critical process in science that defines the 

construct and, therefore, needs to be carried out in a careful, thoughtful manner that fully 

captures the essence of the process. Although the operationalization of EF has faced 

many difficulties, only three main issues relevant to the present study will be discussed as 

follows. First, validating EF tests based entirely on their sensitivity to PFC damage is 

problematic because of the vast territory of the PFC, making up 30% of the cortical 

surface (Miller & Cummings, 2007), and because of the PFC’s extensive connections to 

many brain systems, including perceptual, memory, emotional, and procedural systems. 

As a result, neuroanatomical territories associated with EF have grown well beyond the 

PFC to include most of the brain. Therefore, the specificity of such EF tests to PFC 

damage based on a lesion methodology is questionable since both subcortical and 

posterior lesions can produce PFC test impairments due to the PFC’ extensive 

connections to many brain areas (Royall et al., 2002). Owing to the expanse of PFC 

cortex and its rich connection to many brain systems, it is likely that EF have many 

components, which is probably the reason why individuals with PFC damage have such 

variable profiles across EF test performances. For example, clinical observations 

demonstrating dissociations in performance among EF tasks (e.g., some patients may fail 
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on the TMT, but not on the Stroop or vice versa; Miyake et al., 2000) along with their 

low correlation (r=0.40, or less) make some researchers and clinicians doubtful of these 

tests’ true ability to measure and quantify EF (Jurado & Rosselli, 2007). Additionally, 

classic EF tasks, like the WCST, have been shown to lack sensitivity to PFC damage. For 

example, a study examining the sensitivity and specificity of the WCST as a measure of 

PFC damage found that, although many subjects with PFC damage performed poorly, a 

large number performed within normal limits and many subjects with non-PFC damage 

failed the test, thus suggesting that interpretation of the WCST performances alone as an 

indication of the presence or absence of structural damage in the PFC is not supported 

(Anderson, Damasio, Jones, & Tranel, 1991). These results also suggest that in some 

sense EF are at the apex of the cognitive taxonomy hierarchy, such that good 

performance on an EF task is dependent upon intact cognitive abilities lower in the 

hierarchy. Consequently, impaired perception or memory or any of a host of other 

cognitive functions will manifest as impairment on an EF task. Thus, impairment on a 

single task of EF is insufficient to diagnose EF impairment unless a comparative non-EF 

task that includes all of the cognitive functions lower in the hierarchy is intact. In that 

instance, EF dysfunction can be inferred by the process of elimination (Schoenberg & 

Scott, 2011).   

Second, another issue with defining EF has to do with the level of measurement 

extant in psychometrics. Most neuropsychological instruments are based on an interval 

level of measurement, meaning that direct comparison of performance across cognitive 

constructs is only partially successful (Furr & Bacharach, 2008; Rao & Sinharay, 2007). 

Co-norming measures of different constructs is used to partially eliminate the problem of 
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directly comparing someone’s memory performance with their language or spatial 

performance (e.g., the Neuropsychological Assessment Battery by Stern, White, T., & 

Psychological Assessment Resources, Inc, 2003). Item Response Theory methods have 

also been used to make further progress in directly comparing performance across 

different constructs (e.g., Woodcock-Johnson III by Woodcock, Mather, McGrew, 

Schrank & Johnson et al., 2001). However, these methods are only partially successful 

because it is difficult, if not impossible, to measure each construct’s full range of ability 

and to center measurement of a construct on the theoretic population mean of that ability, 

such that task difficulty can be normalized equivalently from one construct to the next 

(Furr & Bacharach, 2008). Thus, a memory task might be surveying the top end of 

population performance while a spatial task might be surveying the bottom end of 

performance. No amount of standardizing performance will correct for this defect of 

interval level measurement if initial task calibration is skewed, making direct comparison 

of one cognitive ability with another impossible (e.g., memory and spatial ability; Rao & 

Sinharay, 2007).  

Third, the lack of understanding of the latent variable that underlies and unifies 

different instantiations of EF ability on various tasks represents another issue with 

defining EF. Factor analyses of EF have been limited, but those that exist generally find 

latent variables emerging that correlate well with each of the component tasks in the 

analysis (Floyd, Bergeron, Hamilton & Parra, 2010; Miyake, Friedman, Emerson, Witzki, 

Howerter et al, 2000). However, finding a latent variable and grasping the essence of 

what that variable means are two different things. For example, the ongoing controversy 

of the general factor of intelligence (Carroll, 1993) versus the crystallized/fluid 
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conception of intelligence still rages after 100 years of factor analysis (Horn & Cattell, 

1966; Keith, 1997). Additionally, there have been many attempts to understand that 

meaning in the EF literature. For example, Duncan and colleges (Duncan, Emslie, 

Williams, Johnson & Freer, 1996; Duncan & Owen, 2000) argue that PFC mediates fluid 

intelligence, marshaling neuroimaging and psychometric evidence that more than 40 

point differences between crystallized and fluid intelligence scores exist in frontally 

lesioned patients and that fluid intelligence performance is associated with marked PFC 

activation. However, such results do not explain focal PFC activation in various regions 

associated with more elemental cognitive task performances that do not rely upon 

complex fluid reasoning ability. Thus, simple working memory tasks activate dorsolateral 

frontal regions (Smith & Jonides, 1997) while simple resistance-to-interference tasks 

activate medial frontal areas (Peters, David, Marcus & Smith, 2013), and simple 

inhibition tasks provoke activation in orbitofrontal foci (Szatkowska, Szymańska, 

Bojarski & Grabowska, 2007). Given the success of a componential approach to 

understanding the latent variables of EF, it might be argued that EF as a global construct 

does not exist; however, that would ignore the empirical fact that latent variables emerge 

in factor analysis of EF tasks. Therefore, there are no definite answers about the latent 

variables, so the search continues. Finally, until a formal definition of EF and a better 

quantifiable measure is found, the study of EF will be plagued by the above problems 

(Jurado & Rosselli, 2007; Suchy, 2009). 

Elementary Cognitive Tasks (ECTs), Information Theory (IT), and Reaction Time (RT) 

 Construct validity is an ongoing process that accretes from multiple 

methodologies and cannot be completed by even a handful of studies (Cronbach & 
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Meehl, 1955). However, one powerful method for defining a construct is to build a 

mathematical model that predicts the construct with a high degree of accuracy. Prime 

examples of this process were Shepard and Metzler’s (1988) measurement of mental 

visual rotation and Sternberg’s (1969) delineation of memory scanning. Both of these 

models used precise, ratio level measurement in the form of RT and were able to 

mathematically describe a cognitive construct. This approach should be useful to 

delineate the elusive construct of EF and distinguish it from non-EF constructs if 

executive processing is qualitatively different from other cognitive constructs.   

One method of attempting a precise definition of EF is to use IT and the idea of 

measuring cognition in terms of bits. This approach was used to great advantage to 

describe the amount of RT associated with each bit of information needed in ECTs (e.g. 

choice RT tasks) of varying complexity. ECTs represent a range of tasks where 

individuals perform simple cognitive acts, such as selecting letters or judging line 

lengths. ECTs require only a small number of mental processes and easily specified 

correct outcomes, so accuracy is usually very high  (Carroll, 1993). Frequently used 

ECTs measure inspection time (e.g., speed of information intake) or RT (e.g., processing 

speed; Jensen, 1998). ECTs allow measurement of the number of mistaken responses or 

accuracy, mean RT, and the standard deviation of RT (RTSD) or processing efficiency 

over n number of trials (Jensen, 1998, 2006; Colom, 2009).  

ECTs require people to evaluate and react to simple visual stimuli, but 

presumably they index the speed and efficiency with which the nervous system processes 

information (Jensen, 1998, 2006). Jensen (1998; cited by Colom, 2009) argues that 

“periodic oscillation of the action potentials of assemblies of neurons could underlie the 
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variability in speed tasks” (p. 403). Flehmig et al. (2007) have reported that higher values 

for RTSD are systematically detected for patients with focal PFC lesions, traumatic brain 

injury, epilepsy, dementia, mild cognitive impairment, schizophrenia, attention deficit 

hyperactivity disorder (ADHD), and anxiety-related personality traits. ECT performance 

has been found to correlate about .50 with varied factor scores on standardized IQ tests 

(Jensen, 1998, 2006; Sheppard & Vernon, 2008). All ECTs are characterized by demands 

on motor behavior, but also perception since the speed of perceptual processes represents 

the speed of cognitive processes quite well (Jensen, 2006). 

The time it takes for a person to make a decision as a result of the possible 

choices available is called Hick’s law (Hick, 1952) and it is deemed to assess cognitive 

information capacity in choice RT task experiments. Based on IT, a bit represents the 

amount of information required to reduce uncertainty by half (Shannon & Weaver, 1949). 

According to Hick’s Law, the amount of time taken to process a bit is known as the rate 

of gain of information expressed in the following formula: log2 n where n is the number 

of choices presented. Logarithm to base two explains the relationship because 

presumably RT is a function of eliminating half of the stimuli perceptually with each bit 

(Hick, 1952).  

Studies have shown a linear increase in RT that follows Hick's law in choice RT 

tasks that include up to eight stimuli where three bits of information are required (e.g., 

log2 8=3), as in the Jensen box (Jensen & Munro, 1979). The Jensen Box includes eight 

response buttons with a small LED above each and arrayed in a semicircle, a home key in 

the lower center, and a loudspeaker to play alerting sounds. In this task, the subject 

should hold down the home key and, when a response button lights up, he or she has to 
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push it. The time to lift off the home key (decision time) and the time to hit the response 

button (movement time) can be measured separately. Thus, it has been demonstrated that 

RT slows as a logarithm to base two of the number of choices presented; that is, when 

there are one, two, four, and eight response buttons available, the Hick’s formula applies 

respectively as follows: log2 1=0, log2 2=1, log2 4=2, and log2 8=3 (Jensen, 1987).  

Additionally, as an example with eight stimuli arranged four on the right and four 

on the left, the first bit of information can be viewed as eliminating half of the stimuli 

(four) on the side opposite the target stimulus. The second bit would then eliminate two 

of the remaining four stimuli while the final bit chooses between the remaining two 

stimuli. Visual perception accomplishes this process during the decision time aspect of 

the response, whereas the movement time is a trivial portion of the total response time. 

Using Hick’s law, a precise linear fit to RT data for 0-bit (one response button) to 3-bit 

tasks (eight response buttons) showed a positive correlation of .97 (Jensen, 1987). 

Therefore, Hick’s law has a logarithmic form because subjects, using a perceptual 

process, eliminate half of the remaining choices with each bit, thus yielding a linear time 

increase with each successive bit of information required (Jensen, 2006). 

Distinction between Automatic and Controlled Cognitive Processing 

It is more crucial to distinguish EF from qualitatively different cognitive 

functions. In this regard, EF seem to be distinct from perceptual processes, as instantiated 

in the direct-response and perceptual choice RT tasks described above. Perception is an 

obligatory and automatic cognitive process while EF are controlled and volitional 

processes. Such a distinction seems a clear base upon which to differentiate EF from non-

EF cognitive processes.  
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Perceptual cognitive processes are automatic, effortless, reflexive in nature, 

triggered by particular stimulus events in the environment, and may not require 

monitoring or consciousness (Palmeri, 2002). EF are controlled, deliberate, attention-

demanding, serial, and consciously carried out planned and goal-directed behaviors with 

flexible responses to environmental demands. The Stroop test (Stroop, 1935)  

interference condition illustrates the distinction between such processes. In the 

incongruent condition, words interfere with color naming but colors do not interfere with 

word naming because word reading is a more highly automatized process than color 

naming. Word reading happens rapidly and effortlessly, without conscious intention, and 

cannot generally be suppressed; this would be an example of perceptual processing. Even 

when the task is to name the colors, and to ignore the words, word reading happens 

anyways, automatically, and can interfere with color naming. Naming colors requires 

more attention, conscious intention, and effort, which are requirements of EF types of 

processing.  

Thus, one would expect a different relationship to hold between choice RT task 

performance, which traditionally relies on perceptual processes, and ECTs based on EF 

of increasing complexity. Perceptual processes can eliminate half of the information with 

each bit, and the time taken to do so is equal from one bit to the next without regard for 

the number of stimuli processed in each bit (e.g., about 27ms/bit; Jensen, 1987) as 

previously mentioned. It might be expected that EF processes would be slower, showing 

a much different slope from one bit to the next or even have an exponential slope with 

greater “processing times” with each successive bit.   

However, what would distinguish EF from perceptual processing on ECTs? The 
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answer to this question seems to turn on the automatic versus controlled processing 

distinction. One way to adapt ECTs into the automatically driven format is to have choice 

RT based upon natural responses in the case of automatic tasks (e.g., respond to a left or 

right stimulus with a left or right button press, respectively) or an unnatural internally-

mediated rule in the case of controlled, EF tasks (e.g., respond to a left or right stimulus 

with a right or left response, respectively). Such a procedure also maps onto a bit 

measurement process. For example, each internal rule would reduce uncertainty by half. 

In the prior example, an internal rule that controls behavior through the verbal statement 

“respond with the button opposite the stimulus” would require one bit to reduce 

uncertainty. A second bit could be added with the internal rule “alternate from an 

opposite side response to a same side response with each trial.” If executive functioning 

processes are qualitatively distinct from perceptual, automatic processes then different 

slopes should characterize performance on the two types of tasks.   

Advantages of Executive Functions (EF) based on Elementary Cognitive Tasks (ECTs).  

EF measured with ECTs offer several advantages over the currently available EF 

tests. First, they make a clear differentiation between non-executive and executive 

abilities. In this case, a distinction is made between obligatory and automatic cognitive 

processes that rely on perception versus controlled and volitional cognitive processes that 

are supported by EF. For this study, the four ECTs were composed of two non-executive 

direct response tasks (0- and 1-bit non-EF tasks) that require the subject to produce an 

automatic response to a tangible external stimulus similar to traditional choice RT tasks 

(e.g. press a button anytime that a stimulus shows up or lights up). On the other hand, the 

other two tasks are executive internal rule tasks (1- and 2-bit EF tasks) in which subjects’ 
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responses are determined by intangible internal rules that are recursive or self-referential 

in the service of regulating behavior. As an example of their recursive nature, on the 2-bit 

EF task (described further below in the Methods section) a self-repeating pattern is 

defined by the rules, but applying the rules requires keeping track of how the rules are 

being applied. Thus, one presses a button on the same or opposite side as the stimulus 

depending upon an alternating pattern, such that one has to keep track of each trial 

relative to the prior trial. Having automatic/stimulus-driven versus effortful/internal-

controlled tasks provides a clear distinction between non-executive and executive tasks 

that circumvents the difficulties in imprecise definition of the executive nature of a task.  

Second, these ECTs were based on a RT paradigm that has a ratio level of 

measurement because of the true zero point inherent in RT measurements, thereby 

allowing absolute scores and truly direct comparison between and within subjects’ 

performance across tasks. Thus, by assessing performance with ratio level measuring 

instruments like RT, EF scores can be directly compared to non-EF scores (or scores 

among different EF components) and problems of identifying EF impairment are 

ameliorated. Third, task complexity according to bits of information necessary to 

determine a response represents another advantage of these ECTs, since it provides a 

mathematical specification of the executive nature of the ECTs; a powerful and precise 

mathematical method to describe and delineate the elusive construct of EF and 

distinguish it from non-EF constructs if the former is qualitatively different from other 

cognitive constructs. 

Third, a flexible computerized platform is used that can be adapted to both verbal 

and nonverbal modalities. Studies have shown a distinction in performance between 
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verbal fluency and design fluency in patients with PFC lesions compared to controls, 

although results have been controversial about the brain lateralization of such functions. 

In general, studies have found that verbal fluency is most sensitive to left frontal lesions 

(Baldo, Shimamura, Delis, Kramer, & Kaplan, 2001; Janowsky et al., 1989; Perret, 

1974;) although some studies have found that right frontal patients show disturbed verbal 

fluency as well (Baldo & Shimamura, 1998; Miceli, Caltagirone, Gainotti, Masullo, & 

Silveri, 1981; Miller, 1984). Additionally, other studies reported that patients with right 

frontal and right frontocentral lesions were significantly impaired on a design fluency 

task (Jones-Gotman & Milner, 1977; Ruff et al., 1977) whereas other researchers have 

shown that design fluency rely on both right and left frontal cortexes (Baldo et al, 2001; 

Elfgren & Risberg, 1998). Moreover, patients who might have either verbal or spatial 

deficits that compromise their assessment through a specific cognitive modality could 

benefit from having complementary tasks that can be adjusted to their intact cognitive 

abilities (Lezak, 2012). Also, cognitively normal individuals might have an asymmetric 

performance on verbal and non-verbal tasks due to a greater talent in either of these 

domains, which could be assessed independently with complementary tasks assessing 

both modalities. Therefore, having a flexible, computerized platform would be useful to 

make further distinctions and hypotheses on right and left PFC functioning as well as 

allow the assessment of patients under different cognitive modalities, and the 

characterization of cognitively normal individuals’ verbal and design fluency skills.  

The present study  

The present study sought to investigate whether performance on automatically-

driven versus internally-mediated rule ECTs is characterized by qualitatively distinct 
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slopes (e.g., linear versus exponential respectfully). It operationalizes EF as the ability to 

regulate one’s behavior according to internal rules that can be precisely measured by 

using ECTs. ECTs that base responses on internal rules as opposed to traditional choice 

RT tasks driven by automatic response to external stimuli were developed. This study 

used a within subjects design with two automatic, perceptual tasks (0- and 1-bit non-EF 

tasks) and two controlled, EF tasks (1- and 2-bit EF tasks) that required one or two 

internal rules to respond correctly. This was not a concurrent validity study, since no 

correlations between the ECT performance and other currently available EF measures 

was conducted. Instead, determining the pattern of responses to stimuli associated with, 

and thus establishing if there was a difference in performance (e.g., linear versus 

exponential increase in RT) between, non-executive and executive ECTs represented the 

first step toward finding a way to make a clearer fundamental distinction between non-EF 

and EF processes. To this end, the two non-EF tasks and two EF tasks, which can be 

differentiated by using direct responses to stimuli versus an internal rule to respond 

respectively, were administered to college students. The following hypotheses were 

generated:  

1. The non-executive direct response tasks (0- and 1-bit non-EF tasks) would 

show a linear increase in RT as task complexity increases. As previous studies using the 

Jensen Box and up to three bits of information, it was expected that subjects’ 

performance on the 0- and 1-bit non-EF tasks, which relied on a perceptual cognitive 

process, would resemble a linear increase in RT that follows Hick’s law (Jensen, 1987; 

Jensen, 2006).  
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2. The executive internal rule tasks (1- and 2-bit EF tasks) would show an 

exponential increase in RT as task complexity increases. In contrast to the 

aforementioned linear increase, it was expected that subjects’ performance on the 1- and 

2-bit EF tasks would show an exponential increase in RT.  

METHOD  

Participants  

30 college students in psychology classes were recruited as participants (18 

women, 12 men, Mage = 24.2 years, age range: 18–30 years). Participants received an 

informed consent sheet (see Appendix A) to read and sign and were allowed to ask the 

undergraduate research assistants (RAs) questions about the nature of the experiment. 

Participants were treated in accordance with university regulations regarding human 

research subjects. Participants eligible to participate must have been 18 years old or older 

and had no past history of a psychiatric or neurological condition, and no diagnosis of 

learning disabilities or ADHD.  

Materials 

The four ECTs, two non-executive direct response tasks (0- and 1-bit non-EF 

tasks) and two executive internal rule tasks (1- and 2-bit EF tasks),  defined in complexity 

according to the number of bits necessary to determine a response were programmed 

using Direct RT Research Software (Jarvis, 2008). The stimulus presented in each task 

consisted of a black circle randomly appearing either on the right or left side of a box 

centered on the screen on a white background; except for the 2-bit EF task, which had a 

pseudo-random order. Each task also had 20 practice trials and 120 testing trials; except 

for the 0-bit non-EF task, which had only 5 practice trials. Participants indicated their 
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choice by pressing the space bar key for the 0-bit non-EF task or by pressing either the F 

key (left-sided key) or J key (right-sided key). The 0-bit non-EF task was a simple RT 

task where the subject had to press the space bar key when either a left- or right-sided 

circle appeared. The 1-bit non-EF task required a direct response by doing a same side 

response to the circle by pressing a right/left-sided key. The 1-bit EF task required one 

decision according to an internal rule: doing an opposite side response to the circle by 

pressing a right/left-sided key. The 2-bit EF task asked the participant to do a same side 

response followed by an opposite side response and keep alternating these responses 

throughout the task. Thus, the 2-bit task required two decisions according to an internal 

rule: alternating same/opposite side from one trial to the next. Feedback upon incorrect 

responses was given during practice trials and the 2-bit EF task during testing trials for 

the subject to get back on track on the alternating pattern. 

Procedure  

Participants went over the informed consent document and filled out a 

demographics questionnaire with the help of RAs (see appendix B). All participants were 

tested in the Adult Neuropsychology Research Laboratory at the University of 

Wisconsin-Milwaukee. The four ECTs were administered to each participant according 

to the following order: 0-bit non-EF task, 1-bit non-EF task, 1-bit EF task, and 2-bit EF 

task. Participants were run individually. The number of mistaken responses (accuracy), 

mean RT of correct responses (from target onset until participant’s response), and the 

RTSD of correct responses were measured. The ECTs were administered on a Hewlett 

Packard computer, with 18 inch monitor and standard keyboard and computer console, 

positioned in a standardized distance of five inches from the edge of the table.  
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Statistics 

Raw data were stored and analyzed on Microsoft Excel (2010) and JMP Pro 11.0 

(SAS Institute, Inc., 2013). Data were initially entered into a Microsoft Excel (2010) 

database and double-checked by RAs in order to eliminate keying errors then data were 

analyzed in JMP Pro 11.0 (SAS Institute, Inc., 2013). That is, demographic data per 

participant along with their respective RT data collected on Direct RT Research Software 

(Jarvis, 2008) were entered weekly by RAs in the database. Once data collection was 

completed, all the data were double-checked by RAs and descriptive statistics were run in 

order to ensure further accuracy before transferring the data into JMP Pro 11.0. For all 

RT analyses, participants’ data were trimmed as outliers for any RT less than 150ms 

(physiological limit; Jensen, 2006), or greater than two SD of the ipsative mean, since  

the former is considered quicker than physiologically likely and RT distributions tend to 

be typically positively skewed. Therefore, correct responses used for time data analyses 

were those between RT greater than or equal to 150ms and less than two SD above the 

ipsative mean. In the case of error data, participants making more than two SD of group 

mean errors were deleted because they likely did not complete the task faithfully. 

Incorrect responses, such as responses less than 150ms and responses contrary to the 

predetermined instructions, were used for error analysis.  

To determine the pattern of responses to stimuli associated with each ECT, group 

RT averages based on correct responses per task were calculated. For hypothesis 1 and 2, 

which predict a linear versus an exponential increase in RT on the non-EF and EF tasks 

respectively as complexity increases, curves showing the best fit to the group averages 

per task were used. Curve fitting analyses were conducted as an aid for data visualization, 
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a means to test the study hypotheses, and to summarize the subject’s performance on both 

the non-EF and the EF tasks. However, given the fact that there were two non-EF tasks 

producing only two data points each, they would show a linear increase by definition. 

Therefore, a comparison between the ECTs’ group averages and previous results from the 

literature (e.g., 300ms for the 0-bit, 324ms for the 1-bit, 355ms for the 2-bit and 381ms 

for the 3-bit using the Jensen Box in college students; Jensen, 1987) was required. 

Additionally, since there were two EF tasks, the exponential increase was extrapolated 

from the participants’ performance on the non-EF tasks and the literature. To do so, 

results from the 0- and 1-bit non-EF tasks’ group averages as well as the continuation of 

the linear relationship shown in previous literature were considered. One-sample - t-tests 

were conducted to compare the 0- and 1-bit non-EF tasks and results from the literature 

(Jensen, 1987).  

Results 

 Elementary Cognitive Tasks (ECTs) Descriptives. Table 1 shows the basic group-

level descriptive data on the ECTs based on the trimmed data; less than 5% of the data 

were trimmed as described above. Evident in Table 1 is the 25ms/bit difference between 

the two direct response ECTs (0- and 1-bit non EF-tasks), while the difference between 

the more complex direct response and simplest internal rule ECTs (1-bit non-EF and 1-bit 

EF tasks) is much greater at 74ms/bit. Likewise, the difference is even greater between 

the two internal rule ECTs (1- and 2-bit EF tasks) at 591ms/bit. Figure 1 shows a 

comparison between subject’s performance on the four ECTs and previous results from 

the literature (Jensen, 1987). As can be seen in the error data shown in table 1, the ECTs 
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are generally easy when given practice trials with feedback, as done in this study, with 

only 2 or 3 errors in 120 trials on average.  

Table 1 ECT group performance 
Task Mean (SD) RT Mean (SD) Errors 

0-bit non-EF Task 285 (52) 3 (6) 

1-bit non-EF Task 310 (46) 2 (1) 

1-bit EF Task 384 (58) 2 (1) 

2-bit EF Task 975 (301) 3 (2) 

Note: RT means and SDs are based on correct responses and are given in milliseconds 
whereas error means and SD indicate incorrect responses and are given in numeric 
values.  
 

 

Figure 1. Comparison between subject’s performance on the four ECTs and 
previous results from the literature (Jensen, 1987). The X axis shows results in bits using 
the Jensen Box, which correspond with the 0- and 1-bit non-EF tasks followed by the 1- 
and 2-bit EF tasks respectively.  

 
Curve Fitting. A linear fit to the four ECTs’ data was significant and accounted 

for 61% of the variance (RT = 166.82543 + 214.5846*Task, F[1,108] = 145.73, p  < 

.0001). However, adding a quadratic component significantly improved the fit accounting 

for an additional 22% of variance, such that a total of 83% is explained by both linear and 
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Individual Subject-Level Analyses. Individual subject data were analyzed to 

determine the penetrance of the nonlinear results (see Figure 4). Visual analysis of each 

of the 30 participants showed that the nonlinear relationship between the ECTs held 

strongly for every subject. Individual variation in the magnitude of the nonlinear 

relationship was evident with a few subjects showing extreme increases in RT from the 1-

bit EF to the 2-bit EF tasks, while a few others showed much less, yet still nonlinear, 

increases (e.g., Subjects 5, 8, 10, 13).  
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Figure 4. Individual subject-level analysis of performance across the four ECTs. 

Quartile Performance. Given the wide range of variability on the 2-bit EF tasks, 

subjects were divided into quartiles to compare the better performers to the worse 

performers. Figure 5 shows the first three (0-, 1-bit non-EF and 1-bit EF) tasks compared 

to the fourth (2-bit EF) task broken into subjects by quartiles based upon RT. Evident was 

the continuing nonlinear nature of the curve even in the best performers on the 2-bit EF 
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tasks, using a direct response format, would be qualitatively different from ECTs that 

required a response mediated by an internal rule. Past work has shown that simple and 

complex RT tasks that rely on automatic stimulus-response relationships (e.g., see a 

stimulus and respond as quickly as possible or see a lateralized stimulus and make a 

same-side lateralized response) follow a linear algorithm with each added bit of 

information, thus incrementing the response by a specific amount of time in a purely 

additive fashion (Hick, 1952). Specifically, using traditional RT tasks about a 27ms/bit 

increment has been seen in college students (Jensen, 1987) and has strongly predicted 

real-world RT behavior (e.g., .97 correlation reported by Jensen, 1987, 2006). EF, 

however, are generally considered to be qualitatively different from automatic, direct 

response cognitive behavior (Palmeri, 2002). Thus, it was thought that the linear 

increment in response time across tasks of increasing difficulty, as measured precisely by 

the IT construct of bits, may not hold for tasks requiring executive processes.  

The different nature of EF might be manifest in a nonlinear relationship between 

RT and task complexity. That is, as task complexity increases according to the orderly 

operationalization of IT bits, more and more time would be required rather than a set 

amount of time (i.e., about 27ms/bit; Jensen, 1987). As predicted, results suggest that 

performance on the 0- and 1-bit non-EF tasks is similar to the performance on both 

Simple and Choice RT tasks using the Jensen box, following fairly closely the 27ms/bit 

increase found in prior literature using college students (Jensen, 1987). Specifically, the 

non-EF ECTs are no different from the traditional Simple and Choice RT tasks, which 

require a direct response and rely on perceptual processes. It was thought that when tasks 

become executive in nature, with internal rules driving task response, a recursive 
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processing is necessitated in which time to process each successive bit is not additive but 

multiplicative. This was demonstrated in the increasing slopes associated with each 

complexity in the EF bit tasks. Therefore, an increasing slope was evident when 

progressing from the direct response 1-bit non-EF task to the internal rule 1-bit EF task 

(74ms/bit), and then even more so progressing from the simpler to the more complex EF-

bit tasks (591ms/bit). This nonlinear increase from direct response to internal rule 

response was demonstrated by the increased variance explained by the quartic curve fit 

compared to a simple linear fit. The dramatic nature of this nonlinear relationship was 

even better demonstrated when increasing EF complexity (1- to 2-bit EF tasks). These 

results strongly support the thesis that the EF bit tasks, when defined according to an 

internal rule that reduces uncertainty by half as necessitated by IT, are qualitatively 

different from direct response tasks. Furthermore, this thesis puts EF assessment on a 

firm measurement basis that not only precisely defines the construct, but also measures it 

at the ratio level of quantification, which offers several advantages.  

Advantages in the ratio level measurement of EF can be seen in three different 

ways. First, it allows better comparison across tasks because the tasks’ level of difficulty 

can be operationalized precisely according to IT. Second, performance across different 

tasks of EF can be directly compared without fear that differing tasks of EF have 

differing basal and ceiling levels of performance. For example, if a test score on a visual 

perception task needs to be compared to an auditory perception score, then normative 

comparisons can equalize samples on relative level of performance if tests are co-

normed. In contrast, there is no way with interval level measurement to insure that the 

absolute measurement of the two constructs is equilibrated. However, when using ratio 
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level measurement with a true zero point, the basal level of performance is equivalent 

across both tasks, allowing direct comparison of the underlying constructs (Furr & 

Bacharach, 2008). A third advantage of ratio level measurement inherent in RT is the 

precision of the measurement. The millisecond level of precision across a wide range of 

timing is not only more objective but also more finely grained than the scoring of 

accuracy on most all psychometric instruments (e.g., Wechsler intelligence scales; Rao & 

Sinharay, 2007 ).  

Clinical measurement necessitates a robust applicability of a construct. Measuring 

a cognitive construct in a manner that detects only group level differences is not 

sufficient for use in the clinic where individual differences must be detected (Bech, 

2012). Thus, the penetrance of the ECT quantification of EF was assessed at the 

individual subject level of analysis. The nonlinear difference between direct response 

non-EF and internal rule EF tasks was obvious by visual inspection for every subject. 

Increased variability on the difficult 2-bit EF task was examined to insure that the 

nonlinear relationship was not due just to this wide variation in subject performance on 

this complex task. Group performance was divided into quartiles on the 2-bit EF task. 

This strategy showed that even the best performing subjects on this task did not overlap 

with the 1-bit EF task performance. Such a result corroborates the nonlinear nature of the 

EF measurement by ECTs. This result also showed the wide-ranging variability across 

subjects on a complex EF task that bodes well for the task’s ability to differentiate 

subjects’ ability level in EF; an important characteristic when trying to understand 

cognitive strengths and weaknesses in different individuals and different populations 

(Bech, 2012). 



`30 
 

Future directions are suggested by the present results. While such results 

demonstrate a firm basis for making a substantial distinction between non-EF and EF 

tasks, administration order effect and reliability, and concurrent validity remain to be 

established for these ECTs. Also, various studies are important in showing the use of this 

EF definition. For example, populations with known EF difficulty (e.g., ADHD) need to 

be examined. Additionally, different instantiations of the ECT format will be important in 

establishing the applicability of this format to different EF constructs. As an example, 

verbal and nonverbal stimuli may be useful to examine for lateralized frontal dysfunction. 

Finally, further research is needed to demonstrate whether the executive processes in the 

EF ECTs represent a single construct or multiple constructs. Construct validity studies 

might be helpful to determine whether various ECTs represent different EF constructs.  

Limitations 

Limitations of the present study include sample generalization and problems with 

RT measurements of behavior. Since the sample included only college students in a 

relatively narrow age range, the external validity of the present results is limited. Also, 

RT tasks have several limitations for measuring cognitive processes. Specifically, RT 

tasks can measure cognitive power, as demonstrated by the 2-bit EF task in this study; 

however, that measurement is intimately confounded with speed issues that cannot be 

completely disentangled (Colom, 2009). Therefore, RT tasks are not suitable for all 

populations (e.g., hemiparetic patients and populations like multiple sclerosis; Flehmig et 

al, 2007). Additionally, RT tasks typically have positively skewed distributions (Luce, 

1986), although this limitation can often be moderated by using outlier trimming 

procedures (Jensen, 2006). RT tasks also can suffer from reduced test-retest reliability 
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problems (Luce, 1986). Finally, RT tasks necessitate computer administration, which 

limits the practicality of such tasks for clinical use.   
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Summary and Conclusions 

In summary, the purpose of the present study was to evaluate whether typical 

Choice RT tasks, using a direct response format, would be qualitatively different from 

ECTs that required a response mediated by an internal rule. Therefore, four ECTs, 

two putative non-executive direct response tasks (0- and 1-bit non-EF tasks) and two 

putative executive internal rule tasks (1- and 2-bit EF tasks), were developed. In contrast 

to the currently available EF tests, these ECTs exhibit several advantages such as a clear 

differentiation between non-executive and executive functioning abilities, a ratio level of 

measurement based on a RT paradigm, task complexity defined according to bits of 

information, and a flexible platform that can be adapted to both verbal and nonverbal 

modalities. These tasks were given to 30 intact undergraduate students. It was 

hypothesized that the non-EF tasks would show a linear increase in RT as task 

complexity increases that follows the Hick’s law. Additionally, it was hypothesized that 

the EF tasks would show an exponential increase in RT as task complexity increases.  

Results supported the hypothesis showing a linear increase in RT on the 0- and 1-

bit non-EF, consistent with past literature, and increasing slopes associated with each 

complexity in the EF bit tasks; the dramatic nature of this nonlinear relationship was even 

better demonstrated when increasing EF complexity (1- to 2-bit EF tasks). This nonlinear 

increase from direct response to internal rule response was demonstrated by the increased 

variance explained by the quartic curve fit compared to a simple linear fit. These results 

strongly support the thesis that the EF bit tasks, when defined according to an internal 

rule that reduces uncertainty by half as necessitated by IT, are qualitatively different from 

direct response tasks. Furthermore, this thesis puts EF assessment on a firm measurement 
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basis that not only precisely defines the construct, but also measures it at the ratio level of 

quantification. 

Future directions are suggested by the present results such as administration order 

effect, reliability, and construct validity remain to be established for these ECTs. Also, 

various studies with populations with known EF difficulty (e.g., ADHD) need to be 

examined, as well as establishing the ECTs’ relationship to different EF constructs (e.g., 

verbal and nonverbal stimuli to examine for lateralized frontal dysfunction) and 

conducting concurrent validity studies. Limitations include sample generalization, 

problems with RT measurements of behavior, and the need for computer administration.  
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Appendix A 
 

UNIVERSITY OF WISCONSIN – MILWAUKEE 
CONSENT TO PARTICIPATE IN RESEARCH 

 
 
 
General Information                                                                              ID #: __________ 

 
Study title: Using information theory and elementary cognitive tasks to define 
executive functions. 

 
Person in Charge of Study (Principal Investigator): Dave C. Osmon, Ph.D., 
ABPP-CN, Dept. of Psychology, University of Wisconsin – Milwaukee (UWM)  

 
Study Description 

The purpose of this study is to investigate the pattern of responses to 
stimuli associated with direct response versus internal rule type of tasks. 
Individual’s performance will be assessed through their reaction time to stimuli 
on four tasks; two direct response, non-executive tasks and two executive, internal 
rule two executive function tasks. 

 It should take approximately 30 minutes to complete all of the study 
activities. In total, we expect to recruit 120 participants from the University of 
Wisconsin-Milwaukee (UWM) student body.  All the study activities will be 
completed in the rooms located within Garland Hall Suite 338.     

 
Study Procedures 

(1) To be eligible to participate in this study you must be 18 years old or 
older. You are ineligible to participate in the study if you have a past history of a 
psychiatric or neurological condition, learning disabilities or ADHD, and/or 
cannot see the stimuli on the computer.  

If you agree to participate you will be asked to fill out some demographic 
information and complete some stimuli-response tasks on a computer. No 
audio/video/photographic recordings will be taken during the study. Completing 
the study should take approximately 30minutes.  All the study activities will be 
completed in the rooms located within Garland Hall Suite 338.  

 
Risks and Minimizing 

The risk associated with the study is minimal and is not anticipated to be greater 
than the risk associated with performance of routine psychological testing.  
 

Benefits 
The only benefit to participating in this study is that you may receive extra credit 
in your psychology course.  Whether you will receive extra credit is determined 
by your instructor and cannot be guaranteed by the Principal Investigator of the 
study.   
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Study Costs 

You will not be responsible for any of the costs from taking part in this research 
study.   

 
Confidentiality 

All information collected about you during the course of this study will be kept 
confidential to the extent permitted by law. We may decide to present what we 
find to others, or publish our results in scientific journals or at scientific 
conferences.  Information that identifies you personally will not be released 
without your written permission. Only the Principle Investigator and a small 
number of research assistants under his supervision will have access to your 
information.  However, the Institutional Review Board at UW-Milwaukee or 
appropriate federal agencies like the Office for Human Research Protections may 
review your records. Any data collected associated to you will not be identified 
with your name, but with a unique subject identification number. To insure that 
you receive extra credit for your participation, your name will be recorded on a 
spreadsheet that is in no way associated with the study data. All data collect will 
be stored in locked area that can only be accessed by the PI and RAs. Data will 
only be entered into password protected computers. The data will be stored in 
Garland Hall Suite 338 for up to ten years.  

 
Alternatives 

Your course Instructor will provide an alternative extra credit option (other than 
this research study). There are also other research studies in which you could 
participate.  

 
Voluntary Participation and Withdrawal 

Your participation in this study is entirely voluntary. You may choose not to take 
part in this study.  If you decide to take part, you can change your mind later and 
withdraw from the study. You are free to not answer any questions or withdraw at 
any time.  If you choose to withdraw we will destroy all information we collect 
about you. Your decision will not change any present or future relationships with 
the University of Wisconsin-Milwaukee. Not taking part in the study or 
withdrawing will not affect your grade or class standing. 

 
Questions? 

Who do I contact for questions about this study? 
For more information about the study or the study procedures or treatments, or to 
withdraw from the study, contact: 

Dave C. Osmon, Ph.D., ABPP-CN 
Department of Psychology 
PO Box 413 
Milwaukee, WI 53201 
414-229-6751 
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Who do I contact for questions about my rights or complaints towards my 
treatment as a research subject? 
The Institutional Review Board may ask your name, but all complaints are kept in 

 confidence. 
 

Institutional Review Board 
Human Research Protection Program 
Department of University Safety and Assurances 
University of Wisconsin – Milwaukee 
P.O. Box 413 
Milwaukee, WI 53201 
(414) 229-3173 

 
Research Subject’s Consent to Participate in Research: 
To voluntarily agree to take part in this study, you must sign on the line below.  If you 
choose to take part in this study, you may withdraw at any time. You are not giving up 
any of your legal rights by signing this form.  Your signature below indicates that you 
have read or had read to you this entire consent form, including the risks and benefits, 
and have had all of your questions answered, and that you are 18 years of age or older. 
 
_____________________________________________               ID # : __________              
Printed Name of Subject/ Legally Authorized Representative                          
 
_____________________________________________ _____________________ 
Signature of Subject/Legally Authorized Representative Date 
 
Principal Investigator or Designee or RA 
I have given this research subject information on the study that is accurate and sufficient 
for the subject to fully understand the nature, risks and benefits of the study. 
 
_____________________________________________ _____________________ 
Printed Name of Person Obtaining Consent Study Role 
 
_____________________________________________ _____________________ 
Signature of Person Obtaining Consent Date 
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Appendix B 
ID #:  ________ 
 
Demographic Information: 
Age:    _________ 
 
DOB: ____________________ 
 
Sex:                    Male         Female 
 
Handedness:       Right        Left     Ambidextrous 
 
Highest Level of Education or Year in School: ____________________ 
 
Primary Language:               ____________________   
 
How many people are in your nuclear family (including self): _________ 
 Of these, how many are left-handed: _______ 
 
What ethnicity do you associate most strongly with? 
 
African American Caucasian  Hispanic Asian and Pacific Islander    
 
Native American Middle Eastern  Other:________________________   
 
History: 
 
Any history of psychiatric disorders (i.e., depression, anxiety) in you or your immediate 
family?                             Yes             No  
 If YES, what and in whom? 
 
Any history of learning disorders (e.g. dyslexia) in you or your family members?         

       Yes             No 
 If YES, what in whom? 
 
Any history of ADHD in your immediate family?             Yes             No 
 If YES, in whom? 
 
Any history of neurological disorders (i.e., epilepsy, dementia) in you or your immediate 
family?                     Yes             No  
 If YES, what and in whom? 
 
Any current medications prescribed:                                                        Yes            No 
If yes, what are they, dosage, frequency and how long: _______________________ 
 
Vision related problems (w/o glasses or contacts):          Yes            No 
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