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ABSTRACT 

DEVELOPING POPULATION GRID WITH DEMOGRAPHIC TRAIT: A CASE 

STUDY FOR MILWAUKEE COUNTY, WISCONSIN 

 

by 

 

Wei Xu 

 

 

The University of Wisconsin – Milwaukee, 2014 

Under the Supervision of Professor Zengwang Xu 

 

 

Population grids have been widely used in estimating population in environmental justice 

studies and emergency management. The currently available population grids are only for 

total population. There is an increasing need for population grids that have not only total 

population but also populations of different age, gender, race, and ethnicity. This study 

explores the methodology to develop these population grids endowed with the 

demographic characteristics. Areal interpolation methods are used to transfer total 

population at census blocks to the cells of the grid.  Kernel density method is used to 

estimate the relative probability of population of different subgroups at the cells, and to 

disaggregate total population into subgroups.  Population grids of black, white, and other, 

as well as populations of age 20 to 34 and age 65 and over, are derived for Milwaukee 

County, Wisconsin. Applications of the population grids demonstrate their potentials.  
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1. Introduction 

Population data are mainly released in censuses as aggregate data in areas such as states, 

counties, tracts, block groups and blocks. Analyses based on the population aggregate 

data assume that population densities are constant within the areal units and change 

abruptly from one unit to its neighbors. This will introduce errors in spatial analyses in 

which population estimates are needed in zones that are different from the census 

geography. For example, when estimating the people at risk in an air pollution emission 

area or a hurricane evacuation zone from population data at census geographical units 

(e.g., census tracts or blocks), the constant-density-assumption will introduce uncertainty 

in the population estimates, sometimes, in a significant level. Population grids, as an 

alternative, describe the spatial variation of population density at very fine resolution and 

locate people in space more accurately.  As a result, the last two decades have witnessed 

a growing need of population grids as a preferable data to population distribution analysis 

(Bracken, 1991, 1994; Bracken and Martin, 1989, 1995; Honeycutt and Wojcik, 1990; 

Martin and Bracken, 1991; Moon and Farmer, 2001; Deichmann et al., 2001; Mennis, 

2002, 2003; Xie, 2006; Bhaduri et al., 2007; Gallego, 2010).  

Population grids are popularly used in representing population distribution due to 

several reasons. Firstly, they are not only capable of representing the heterogeneity of 

population distribution at the pixel level but can also capture the spatial continuity of 

population densities. This is different from the spatial discontinuity of choropleth maps, 

which are considered an inadequate portrayal of population distribution because (1) the 

generalization of areal units, acting as “low-pass spatial filters”, masks the heterogeneity 

of population distribution within them; (2) those boundaries of areal units have little logic 
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relationship to the spatial continuity of population densities (Goodchild, 1989; Langford 

and Unwin, 1994, p.22). Secondly, many population and housing data are released at 

census block or tract level; however, many analyses have to go down to the sub-block or 

sub-tract level. It is a nice feature if we can locate people at finer level than the census 

blocks. Thirdly, many different zonal systems (e.g., blocks, block groups, census tracts, 

counties and states) are used for population and other social economic data. Integration 

data from different zonal systems presents challenge to many social scientists and very 

much introduces additional errors. This is discussed by many scholars as the 

incompatible zonal system problem (Openshaw, 1983; Flowerdew and Green, 1989, 

1990; Goodchild et al., 1993; Fisher and Langford, 1995). Population grids with high 

spatial resolutions are more flexible in this regard. If it has to be integrated with zonal 

systems, population estimates can be easily obtained by superimposing the zone 

boundaries on the grids (Martin and Bracken, 1991). Fourthly, area-based spatial analyses 

are usually prone to the modifiable areal unit problem (MAUP), which refers to the 

inconsistency in analytical results introduced by “modifiable” zoning and scaling in 

geographical units (Openshaw and Taylor, 1979; Openshaw, 1983; Fotheringham and 

Wong, 1991; Wong, 2004; Wu, 2004; Yang, 2005).  Moreover, geographical units that 

are used in decennial censuses are designated to different scales and those units are often 

subject to changes. As a field-based model, the population grid treats population 

distribution as a continuous surface and enables demographical analysis to be 

independent of the arbitrary areal units, and hence is immune from the MAUP (Bracken, 

1993; Mennis, 2003). Finally, locational and attribute errors can be more readily 

modelled in population (Goodchild, 1989; Martin and Bracken, 1991). Population grids 
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provide a fine-resolution, and easy-to-analyze representation of the spatial distribution of 

population. However, most of the existing population grids only account for total 

population counts and pay little attention to the variations of population distributions of 

different sex, age, race, and ethnicity.  

Developing population grids is essentially an areal interpolation process because 

population data are transferred from source zones (e.g. census enumeration units) to 

target zones (regular sized cells). A number of areal interpolation methods have been 

developed to enable data transferring between different zonal systems, such as area 

weighting interpolation, pycnophylactic interpolation, dasymetric interpolation, and road 

network interpolation, etc. A major issue with these areal interpolation techniques is that 

their algorithms are mainly density based, i.e., they assume the population are uniformly 

distributed in the zones and apportion population according to their density. This is 

feasible for interpolating total population, but insufficient for interpolating population of 

demographic subgroups, as they might account for different proportions of the total 

population at different location. These interpolations perform poorly in estimating the 

sub-populations. In this study, I intend to combine areal interpolation and statistical 

modelling to develop high spatial resolution (30m×30m) population grids for Milwaukee 

County, Wisconsin that are able to represent not only the total population distribution but 

also the populations of different race and age groups. 
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2. Literature review  

2.1. Existing population grids 

 

There are a lot of efforts to develop population quadrilateral grids at both the global and 

local scales. At the global level, those grids include the Gridded Population of the World 

(GPW), LandScan Global Population Database, and the Global Rural Urban Mapping 

Project (GRUMP) (Bhaduri et al., 2007). The Gridded Population of the World (GPW) 

released its first version in 1995, which was the first effort to establish a global-level 

dataset representing nighttime population distribution (Tobler et al., 1995). The dataset 

was created by disaggregating population in national or subnational administrative units, 

depending on the highest spatial resolution available, into grids using a simple area 

weighting interpolation technique (Tobler et al., 1995; Center for International Earth 

Science Information Network [CIESIN] et al., 2004). The GPWv2 emphasized on 

improving the spatial resolution of input administrative boundaries and implemented 

Waldo Tobler’s smooth pycnophylactic interpolation method on GPWv1 to get a smooth 

population grid (Tobler, 1979; Deichmann et al., 2001). The third version not only made 

the effort to keep acquiring higher resolution data for countries but also attempted to 

update the changes of administrative boundaries (Balk and Yetman, 2004). The Global 

Rural Urban Mapping Project (GRUMPv1) is a set of global population grids that are 

built on the GPWv3, with the same spatial resolution of 1km×1km at the equator. By 

incorporating nighttime light data produced by the U.S. National Geophysical Data 

Center (NGDC) in the population allocation process, the grids are able to distinguish 

urban and rural areas (CIESIN, 2004). In 1998, the United States Department of Energy’s 

(USDOE) Oak Ridge National Laboratory (ORNL) released its first global population 
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database named LandScan Global, a population grid with cell size of approximately 

1km×1km at the equator. This dataset uses land cover, roads, slope, and nighttime lights 

as ancillary information to reallocate population counts (usually at provincial level) into 

grid cells (Bhaduri et al., 2002). The ORNL has been updating the database on an annual 

basis and the quality of the datasets is improved by utilizing finer resolution inputs in the 

modeling process. It is worth noticing that, unlike other global population grids, the 

LandScan Global integrated population movements in its model, so that the grids actually 

denote the “ambient or average population distribution over a 24-hour period” rather than 

nighttime or residential population distribution (Dobson et al., 2000; Bhaduri et al., 2002, 

p.35).  

There also are continental level population grids to meet different needs such as 

environment, telecommunication, and public health issues. The GEOSTAT 1A project 

was implemented by EUROSTAT, a directorate branch of the European Commission, 

aiming at generating a 1km×1km
 
resolution grid-based population system for Europe by 

using the 2006 European censuses. Participating countries in this project include 

“Austria, Estonia, Finland, France, the Netherlands, Poland, Portugal and Slovenia” 

(European Forum for GeoStatistics [EFGS], 2012). For Asia, the National Center for 

Geographic Information and Analysis (NCGIA) and University of California, Santa 

Barbara (UCSB) published the Corresponding (E. Asia) Population Density Map and the 

Corresponding (W. Asia) Population Density Map in 1996, with the purpose of providing 

spatially referenced population databases that support applications including agricultural 

research and the analysis of environmental change (Deichmann, et al., 1996a, 1996b). 

These maps are also available in the grid format.  
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A number of population grids have been developed at the national level. To meet 

the need for more accurate population data within the United States, the ORNL expands 

the LandScan Global dataset to create the LandScan USA, a population density grid with 

a very high spatial resolution of 90m×90m cell size. LandScan USA takes into account 

the movement of workers and students in the interpolation approach, and the dataset is 

capable of capturing population distribution over both space (the United States) and time 

(daytime and nighttime) (Bhaduri et al., 2007). The ORNL is also considering including 

the “transient population” such as tourists and business travelers in future releases to 

refine the dataset (Bhaduri et al., 2007, p.116). An intermediate-resolution population 

grid (approximately 450m×450m) for the contiguous United States has been developed 

by the ORNL as well (Bhaduri et al., 2002). The U.S. Census Grids is a set of raster data 

that provide individual, household, and housing unit information for 1990 and 2000 

across the county. The spatial resolution for the United States and Puerto Rico (Puerto 

Rico datasets are only available for 2000) is approximately 1km×1km; while the 

resolution for 50 metropolitan areas is about 250m×250m. In the dataset, the statistics 

regarding individuals include age, race, ethnicity, and so forth, but exclude sex (CIESIN, 

2006). Countries other than the United States are also making efforts to create their own 

national population grids. A population density grid for Spain is developed using the 

dasymetric mapping approach by integrating high-resolution land cover data and census 

data (Goerlich and Cantarino, 2013). Also, disaggregated datasets from European grid 

were produced by the Austrian Institute of Technology (AIT) for European member 

countries (EFGS, 2012).  
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Most of the population grids mentioned above only use census population count 

in administrative units as the input to construct the grids, thus the grids portray nighttime 

or residential population distribution. LandScan Global and LandScan USA are 

exceptions because they incorporate population movements during the daytime. 

However, almost all of these population grids focus on the total number of the population 

rather than population with more demographic description, and the spatial resolutions of 

existing population grids with demographic traits are too coarse to explain the micro-

level population distribution. With new interpolation techniques and new ancillary data 

being developed, it is foreseeable that population density grids with more demographic 

details will be produced.  

 

2.2. Areal interpolation methods 

 

Areal interpolation is referred to as the process of estimating the unknown values in the 

target zones given the known values in the source zones (Goodchild et al., 1980; Hawley 

and Moellering, 2005). There have been a large number of areal interpolation techniques 

developed and refined by demographers, statisticians and geographers in order to bridge 

incompatible zonal systems. For population estimation, those methods can be classified 

into two major categories: methods without ancillary data and methods with ancillary 

data (Hawley and Moellering, 2005; Wu et al., 2005; Xie, 2006). 

Areal interpolation techniques without ancillary data estimate population in the 

target zones according to the change between source and target zones (Hawley and 

Moellering, 2005). The area weighting method (Lam, 1983), the “point-in-polygon” 
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method (Okabe and Sadahiro, 1997), and the pycnophylactic method (Tobler, 1979) are 

the most commonly used areal interpolation methods that do not need ancillary data. 

Other methods use ancillary data to distribute the weights of the values in source zones 

and to develop reliable target zone estimates, such as control zones (Flowerdew and 

Green, 1989; Goodchild et al., 1993), remote sensed imageries (McCleary, 1969; 

Langford et al., 1991; Fisher and Langford, 1995, 1996; Yuan et al., 1997; Langford, 

2006, Deng and Wu, 2013), road network (Xie, 1995; Mrozinski and Cromley, 1999; 

Reibel and Bufalino, 2005), and other relevant demographic statistics such as housing 

units (Xie, 2006; Wu et al., 2008; Deng and Wu, 2013). 

 

2.2.1. Areal interpolation methods without ancillary data 

The simplest areal interpolation technique that does not need any ancillary data is 

the “point-in-polygon” method, which first determines a “representative point” for each 

source zone and assigns the value of the variable of interest in the source zone to the 

point. If the point is located in a target zone, the value of the point is assigned to the 

target zone through a point-location algorithm (Okabe and Sadahiro, 1997; Sadahiro, 

2000). The biggest advantage of the method is the computation efficiency, which is 

essential if the numbers of source and target zones are very large (Okabe and Sadahiro, 

1997). However, one of the problems of this method is that the selection of 

“representative points” can be rather random and the estimation results can be 

significantly different due to the algorithms used in the point selection process. For 

example, the points could be the centroids of source zones, the centers of source zones, 

the weighted centers of a certain variable, or even some arbitrary points (Okabe and 
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Sadahiro, 1997; Hawley and Moellering, 2005). The sizes of both source zones and target 

zones contribute variations in the selection of “representative points” as well (Okabe and 

Sadahiro, 1997). A similar implementation of the “point-in-polygon” method is the 

isopleth mapping technique. The method superimposes a grid on source zones and 

assigns the value of each source zone to a representative point. The values of grid cells 

are then interpolated from the representative points and averaged within source zones to 

obtain the source zone values (Lam, 1982). One of the problems with the method is that 

the populations in the target zones after interpolation might not be equal to those in the 

source zones even though the geographical boundaries are identical (Lam, 1982). This 

method generates fairly poor estimation results in terms of accuracy.  

Another method is the area weighting method, or polygon overlay method 

(Markoff and Shapiro, 1973; White, 1978; Goodchild et al., 1980; Lam, 1983; 

Flowerdew and Green, 1989; Hawley and Moellering, 2005), or areal weighting method 

(Geogory, 2002; Geogory and Ell, 2006), or areal weighted method (Fisher and Langford, 

1996), or simple areal interpolation (Flower and Green, 1993; Eicher and Brewer, 2001; 

Mugglin et al., 2000), as named in some literatures. The names of the methods vary but 

their principles are the same. This method uses the intersections between source zones 

and target zones to allocate the value of the variable of interest to target zones.  The 

values in the overlapping areas are apportioned according to the proportion of the 

overlapping areas in the source zones (Goodchild et al., 1980; Lam, 1983; Fisher and 

Langford, 1995). This method assumes that the value of the variable of interest is evenly 

distributed in the source zones, which is counterfactual in most situations (Goodchild et 

al., 1980; Lam, 1983).  
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By examining the previous areal interpolation methods, Tobler (1979) argues that 

the assumption that the value of the variable of interest is a constant in one single region 

might be plausible, but is very dubious when regions are interconnected because 

populations in neighboring regions do not always have sharp differences. To tackle this 

problem, he proposed the pycnophylactic method which assumes the existence of a 

continuous population density surface in the area of concern. A “smooth density 

function”, which can be considered as a “value restraint” of predicted values, is employed 

to allow for “the effect of adjacent source zones” (Lam, 1983, p.140). This method, 

unlike the area weighting method, acknowledges the heterogeneity of the distribution of 

population within each source and target zone (Lam, 1983; Hawley and Moellering, 

2005). The procedure is rather simple. First, a non-negative-value grid is generated to 

preserve the values of source zones and the value in each cell is determined by dividing 

the total value in the source zones by the number of cells in the zones. Then, the value in 

each cell is resampled with the values of the 4 neighboring cells. This smoothing process 

is reiterated until either the cell values no longer show significant difference compared to 

the cell values in the last iteration process or predicted source zone values do not have a 

significant different to actual source zone values (Hawley and Moellering, 2005). 

Acknowledged by many, one major advantage of this method is that it satisfies the 

pycnophylactic property, which means the magnitude of population in source zones is 

preserved in the interpolation process (Tobler, 1979; Lam, 1983; Reibel and Bufalino, 

2005; Mennis, 2009). Rase (2001) later refined this method by introducing the 

Triangulated Irregular Networks (TIN) instead of the cells in creating the density surface 

because the TIN have the ability to follow the actual boundaries of source zones. These 
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areal interpolation methods are likely to yield poor estimation results because their 

fundamental assumption is that population within each source zone is homogenously 

distributed, although some methods add some refinements to this assumption.  

 

2.2.2. Areal interpolation methods with ancillary data 

Areal interpolation methods that use ancillary data take into account other useful 

information that is associated with the population distribution in the source zones. 

Flowerdew and Green (1989) proposed the “control zone” method to bridge incompatible 

zonal systems. Goodchild et al. (1993) improved this method by redefining control zones 

as a third set of areal units with constant densities. By overlapping source zones with 

control zones, the densities of control zones can be obtained and employed in calculating 

the values in the target zones.  

Remote sensing data can be used as the ancillary data. Langford et al. (1991) 

developed a regression method to correlate different land use types with population 

densities. After a remote sensing imagery is classified into different land-use types 

according to their different spectral characteristics, the number of pixels of each land-use 

type in the source zones can be obtained. Then, a regression is performed based on the 

populations and the pixel numbers of land-use types in the source zones. The parameters 

(coefficients) of land-use types can then be used to estimate the populations in the target 

zones after the pixel number of each land-use type in the target zones is determined. The 

land cover data produced through the USGS’s National Land Cover Dataset (NLCD) 

program can also be used as ancillary data (Cai et al., 2006; Reibel and Agrawal, 2007; 

Zandbergen and Ignizio, 2010). The regression in this method is performed globally, 
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meaning that the coefficients of all independent variables are constant across different 

regions in the study area. Yuan et al. (1997) argued that it was necessary to recognize the 

spatial non-stationarity of the correlation relationship between population densities and 

land cover types, and applied a geographically weighted regression (GWR) technique to 

improve the goodness-of-fit of the model. The estimation yields more accurate results 

than the regression models do.  

An alternative to the regression method is the dasymetric method introduced by 

Wright (1936). In the case study of mapping population distribution in Cape Cod, he used 

topographic sheets to differentiate inhabitable and uninhabited areas, as well as the 

variations of densities in inhabitable areas. The general concept of taking advantage of 

other ancillary information has been widely employed in areal interpolation. When 

redistributing the populations in the source zones, the values are constrained by other 

source of information, such as the land cover data (Yuan et al., 1997; Eicher and Brewer, 

2001; Holt et al., 2004; Langford, 2006; Briggs et al., 2007), street network (Xie, 1995; 

Mrozinski and Cromley, 1999; Reibel and Bufalino, 2005), parcel-based data (Maantay et 

al., 2007; Maantay et al., 2008; Deng and Wu, 2013), and reference maps (Langford, 

2007). The commonly used dasymetric methods include the binary dasymetric method, 

the 3-class dasymetric method and the limiting variable method (Eicher and Brewer, 

2001; Hawley and Moellering, 2005). The binary dasymetric method divides the study 

area into populated and unpopulated areas and allocates the total population to the 

populated areas (One example of the exclusionary regions is water bodies); the 3-class 

dasymetric method refines the classification scheme by dividing the population in the 

source zones into urban, agriculture/woodland, and forested categories with calibrated 
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weights; in the limiting variable method, land use types are assigned with the density 

threshold. If the population density in a polygon of a specific land use type exceeds the 

threshold, the threshold density is assigned to the polygon, and then the remaining 

population is redistributed by the same procedure (Eicher and Brewer, 2001; Hawley and 

Moellering, 2005; Longford, 2006; Tapp, 2010). The dasymetric method is also 

performed locally so that population in each source zone is allocated according to its own 

land use types and weights.  

Another areal interpolation method with ancillary data is the road network method 

developed by Xie (1995). An overlaid network algorithm is used in the method to 

associate the distribution of population with road networks, assuming the existence of a 

positive correlation between the densities of the two. The road networks can be used as 

the weighting factor in three different ways: (1) the network length method uses the 

length of road segments in source zones to determine the population to be allocated in 

target zones; (2) the network hierarchical weighting method assumes that people are more 

likely to reside along neighborhood roads than along primary roads such as interstate 

highways, and it takes into account the various classes of road features, and uses a weight 

matrix of road networks to allocate population in source zones to target zones; (3)  the 

network housing-bearing method takes advantage of the address ranges of the road 

segments to approximate the distribution of population (Xie, 1995; Voss et al., 1999; 

Reibel and Bufalino, 2005; Hawley and Moellering, 2005). A number of comparative 

analyses of areal interpolation techniques have showed that the road network methods 

outperform the areal weighting interpolation, the pycnophylactic method, and the land-
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use regression method (Xie, 1995; Hawley and Moellering, 2005; Reibel and Bufalino, 

2005).  

Other areal interpolation methods are fairly flexible in terms of the ancillary data 

included. In “smart” interpolation methods, any information that is related to population 

distribution can be utilized to predict densities (Deichmann, 1996; Mennis and Hultgren, 

2006). The term “smart” interpolation was first coined by Willmott and Matsuura (1995) 

when they used elevation and exposure information as weighting factors to interpolate 

annually averaged air temperature in the U.S.  The method has also been widely used to 

make population density estimates (Dobson et al., 2000; Turner and Openshaw, 2001; 

Bhaduri et al., 2007). Conceptually, it refers to a multi-dimensional dasymetric model 

that uses finer resolution ancillary data (or indicator variables) as weighting factors to 

reallocate source zone populations to target zones. Mennis and Hultgren (2006) 

alternatively named the approach as “intelligent” dasymetric modelling. Datasets that can 

be used in “smart” interpolation range from rivers, roads, and settlements to elevation 

contours, wetlands, and neural networks. A weighting factor surface is created by the 

ancillary datasets, and populations in source zones are redistributed according to the 

weights associated with specific locations.  

Some methods incorporate statistical analyses in the areal interpolation process. 

Flowerdew (1988) carried out a Poisson regression on a number of binary variables, with 

values of either presence or absence, to estimate target zones densities. Flowerdew and 

Green (1989) and Flowerdew et al. (1991) refined this method by introducing the 

Expectation-Maximization (EM) algorithm, which is an iterative modeling procedure 

originally developed by Dempster et al. (1977). By treating population in target zones as 
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missing data, the Expectation step in the EM algorithm computes the conditional 

expectation of missing values based on the values in source zones and the Maximization 

step constraints the results with maximum likelihood (Flowerdew and Green, 1989). 

Schroeder and Van Riper (2013) incorporated the GWR in the EM process, which allows 

the coefficients of control variables to vary among source zones. The hierarchical 

Bayesian method uses a probabilistic model based on available covariates in target zones 

to infer the population distribution in source zones (Handcock and Stein, 1993; Mugglin 

et al., 1999; Mugglin et al., 2000).  

 

2.3. Demographic models in population estimation 

 

Demographic models have the potentials to estimate population because population 

changes are usually registered or correlated to other demographic variables that are 

recorded.  However, in contrast to the vast body of literature on the areal interpolation 

techniques aforementioned, the demographic models used in the population estimation 

are relatively limited. Major demographic methods include the Census Component 

Method II (CM-II) (U.S. Census Bureau, 1966), the Administrative Records method 

(Starsinic, 1974; Plane and Rogerson, 1994), the Ratio Correlation method (Martin and 

Serow, 1978), and the Housing Unit (HU) method (Smith and Lewis, 1980; Lo, 2003; 

Smith and Cody, 2004; Deng and Wu, 2013).  

The CM-II method estimates the population for a post-censual year by adding the 

natural increase and net migration to the population counts in the base year. Vital 

statistics such as birth and death records over the period are used to generate the natural 

increase, and net migration is approximated from military records and school enrollments 
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data (Ghose and Rao, 1994). The administrative records method is designed to estimate 

the net migration component in the CM-II method. In this method, the net migration 

population under 65 years old is estimated through federal income tax form; while net 

migration of population age 65 and over is estimated using Medicare enrollment 

information (Plane and Rogerson, 1994; Deng and Wu, 2013). The ratio correlation 

method assumes that the population change in a spatial unit is correlated with the changes 

of a set of “coincident indicators” that are representative of the population in the unit 

(Martin and Serow, 1978, p.224). Thus, this relationship between population change and 

symptomatic variables can be used in a regression to adjust population estimates. Those 

“coincident indicators” range from school enrollment, tax return to car registration and 

workplace population (Smith and Mandell, 1984). However, the choice of “coincident 

indicators” is strongly restricted by the availabilities of those data at the geographic levels 

at which population is to be estimated. The housing unit method estimates population by 

multiplying the number of housing units with average persons per household, and adding 

the result with the population of group quarters (Smith and Lewis, 1980). The number of 

housing units within a study area can be estimated from utility records or building 

permits (Smith and Cody, 2004), or extracted from satellite imageries (Lo, 2003; Deng 

and Wu, 2013). The average persons per household can be obtained from sample survey 

or census data or demographic modeling. Moreover, it is possible to categorize the 

housing units and to apply different persons-per-household ratios to different categories 

(Wu et al., 2005). Population living in group quarters such as college residence halls, 

nursing homes, military barracks, and correction facilities are readily available in census 
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datasets, which help include the part of population who do not live in typical household 

arrangements in the estimation results.  

 

2.4. Integrated approaches 

 

With the increasing availability of various ancillary data and the growing capabilities of 

processing those data in the geographic information system (GIS), different methods and 

processes are being integrated to achieve more accurate interpolation results. For 

instance, the most recent advancements of dasymetric methods revolve around the 

inclusion of the Expectation-Maximization (EM) algorithm and exploring nontraditional 

ancillary information (Qiu and Cromley, 2013). Schroeder and Van Riper (2013) 

proposed the geographic weighted expectation-maximization (GWEM) algorithm to 

allow control unit densities to vary over space. Sridharan and Qiu (2013) incorporated the 

EM algorithm with housing unit volume derived from high-resolution remote sensed 

images to replace previous equal-sized control units with varying-size units. Griffith 

(2013) implemented the EM algorithm with a set of Poisson random variables to impute 

population counts as missing values. Bentley et al. (2013) improved the road network 

interpolation method by including cadastral lots as areal control units with the traditional 

road segments as linear control units. Deng and Wu (2013) expanded the housing unit 

method by introducing a geographic approach which extracted the housing unit numbers 

and average persons per household from high-resolution remote sensing imageries. Cai et 

al. (2006) used spatial interpolation methods to estimate age-sex proportion surfaces and 

incorporated these surfaces with total population in a binominal model to estimate age-

sex specific populations in small areas.  
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As recent studies have shown, integration of areal interpolation method with 

demographic or statistical modeling has the potential to significantly improve the 

accuracy of small area population estimation. In my study, areal interpolation method and 

statistical modeling are combined to build the race and age specific population grids. 
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3. Research design 

3.1. Study area 

Milwaukee County, located in Southeast Wisconsin, is chosen as the case study area (see 

Figure 1). According to U.S. Census Bureau, the county has a total area of 3,080.89km
2 

in 2010, of which 625.23 km
2
 (20.29%) is land and 2,455.66km

2
 (79.71%) is waster. In 

this study of population distribution, the water area that is essentially part of Lake 

Michigan is excluded. The county boundary, therefore, follows the outer blocks defined 

in the census, and the study area has 628.22 km
2
 in total. As a part of the Milwaukee–

Waukesha–West Allis metropolitan area and the most populated county in the state of 

Wisconsin, the racial composition of Milwaukee County has been fairly complicated. As 

of the 2010 Census, the county has a total population of 947,735, among which 574,656 

(60.63%) are White alone, 253,764 (26.78%) are Black or African American alone, and 

119,315 (12.59%) of others
1
. Regarding age distribution, 224,295 (23.67%) people are of 

age 20 to 34 and 132,381 (13.96%) people are of age 65 and over. These two age groups 

are selected as representatives of young and elderly populations, respectively. Figure 2-7 

show the choropleth maps of total- and sub-populations at census block level. These 

maps generally depict how populations are distributed.  Blocks in dark red have more 

populations; while blocks in light red have less.   

                                                      
1
 The race scheme used in this study is generalized from the original Census racial categories to three major 

racial categories: White alone, Black or African American alone, and other. The “other” category 
encompasses “American Indian and Alaska Native alone, Asian alone, Native Hawaiian and Other Pacific 

Islander alone, some other race alone, and of two or more races.” According to the 2010 Census data for 

Milwaukee County, among the 119,315 of “other,” 6,808 are American Indian and Alaska Native alone, 

32,422 are Asian alone, 363 are Native Hawaiian and Other Pacific Islander alone, 51,429 are some other 

race alone, and 28,293 are of two or more races. 
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Figure 1. The location of the study area, Milwaukee County, WI. 
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To further examine the spatial distribution of the populations, Anselin’s Local 

Moran’s I is calculated to reveal the spatial clusters and outliers of high and low 

populations. Figure 8-13 is a set of maps that show the significance of local Moran’s I 

statistics for total- and sub-populations, respectively. Census blocks that are shaded grey 

are statistically insignificant, meaning populations in these locations are in a random 

spatial pattern.  Other census blocks shaded with different colors are associated with 

cluster types: Census blocks of HH denote a statistically significant cluster of high 

populations; HL denotes that blocks with high populations are surrounded by blocks with 

low populations; LH denotes that blocks with low populations are surrounded by blocks 

with high populations; and LL denotes a statistically significant cluster of low 

populations (ESRI, 2013). As shown in Figure 8-13, total- and sub-populations have 

rather different cluster patterns. Total population is rather dispersed in general, even 

though there are a number of significant clusters; White population is mostly clustered in 

the south and east side of the county; Black population is clustered in the northwest side 

of downtown; Other population is mostly clustered in the area closer to the south side of 

downtown; population between age 20 and 34 clusters in the same location as Other 

population does and the east side of the county; population of age 65 and over clusters in 

suburb areas. Different from the choropleth maps in Figure 2-7, these maps show not 

only how populations are spatially distributed but also the relationship between 

neighboring blocks.  

  



22 

 

 

 

 

Figure 2. Choropleth map of census blocks representing the distribution of total population. 
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Figure 3. Choropleth map of census blocks representing the distribution of white population. 
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Figure 4. Choropleth map of census blocks representing the distribution of black population. 
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Figure 5. Choropleth map of census blocks representing the distribution of other population. 
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Figure 6. Choropleth map of census blocks representing the distribution of population of age 20 to 

34. 
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Figure 7. Choropleth map of census blocks representing the distribution of population of age 65 and 

over. 
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Figure 8. Cluster and outlier analysis (Anselin Local Moran's I) of total population. 
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Figure 9. Cluster and outlier analysis (Anselin Local Moran's I) of white population. 
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Figure 10. Cluster and outlier analysis (Anselin Local Moran's I) of black population. 
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Figure 11. Cluster and outlier analysis (Anselin Local Moran's I) of other population. 
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Figure 12. Cluster and outlier analysis (Anselin Local Moran's I) of population of age 20 to 34. 
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Figure 13. Cluster and outlier analysis (Anselin Local Moran's I) of population of age 65 and over. 
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3.2. Methodology 

The method in this study consists of two steps. The first step copes with the estimation of 

total population count for each grid cell, while the second one is a process of “splitting” 

the total population counts into demographic groups. As discussed in the literature 

review, areal interpolation techniques are useful for estimating total population. 

Empirical studies have shown that dasymetric interpolation methods generally obtain 

better population estimation results (see Fisher and Langford, 1996; Eicher and Brewer, 

2001; Mennis, 2003, 2009). In this study, “smart” interpolation method is chosen to make 

total population estimates. It is because, compared to traditional dasymetric interpolation 

method that mainly uses land use as ancillary data, “smart” interpolation is a multi-

dimensional dasymetric interpolation method that takes advantage of a variety of 

ancillary data to approximate more realistic population distribution. In addition, this 

method has been previously employed to develop the widely used population grids (e.g. 

LandScan Global, LandScan USA). After the total population grid is interpolated, six 

kernel density surfaces, denoting the occurrence likelihood of total- and sub-populations, 

are generated. The ratios between cell values of sub-population density surfaces and total 

population density surface are used to apportion the total population residing in each grid 

cell into different demographic groups.  

 

3.2.1. Total population estimation 

The choice of the ancillary data (indicator variables) is critical in “smart” interpolation 

because it affects how the weights of grid cells will be assigned. In cases of developing 

generic interpolation models, the choice of variables should be relatively small 
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(Deichmann, 1996), but when interpolation is of a very high spatial resolution, more 

variables are preferred. In the production of LandScan Global (spatial resolution of 

1km×1km), indicator variables include “road proximity, slope, land cover, and nighttime 

light” (Dobson et al., 2000, p.853). LandScan USA, a finer resolution (90m×90m) 

population grid, uses land cover, proximity to road networks, slope, landmarks, parks, 

schools, prisons, airports and water bodies as ancillary data. This study takes the similar 

approach as LandScan USA does with indicator variables being customized for the study 

area.  

The first important variable included in the “smart” interpolation is land cover 

data. As briefly discussed in the literature review section, land cover types are proved to 

have strong correlation with population distribution. High-resolution (30m×30m) land 

cover data of Milwaukee County in 2006 is downloaded as a subset of USGS’s NLCD 

(source: http://www.mrlc.gov/nlcd06_data.php). More updated land cover data can be 

acquired by classifying latest remote sensing imageries of the area. However, since errors 

will be inevitably introduced in the classification process, either by taking a supervised or 

unsupervised classification approach, I choose to use the latest land cover/land use data 

that are already released and verified by USGS for data accuracy and the ease of 

implementation. Fry et al. (2011) gives a detailed report on the completion of the 2006 

NLCD. The original NLCD for Milwaukee County includes 15 land cover categories, 

including 4 urban land cover types (i.e., Developed Open Space, Developed Low 

Intensity, Developed Medium Intensity, and Developed High Intensity). Figure 14 

illustrates the land cover data for Milwaukee County in 2006. Based on the original 

NLCD, the land use of Milwaukee County is reclassified into two types: inhabited and 
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uninhabited. The reason of choosing the binary dasymetric mapping over the 3-class 

dasymetric method and the limiting variable method is that there has been very little 

evidence that the latter two outperform the former (Kim and Yao, 2010; Longford, 2006, 

2007; Qiu et al., 2012). Urban land use categories are assigned as the inhabited, while 

other land use categories are assigned as the uninhabited. No population will be assigned 

to the grid cells that are classified as uninhabited. Figure 15 shows the reclassified binary 

land use data for Milwaukee County.  
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Figure 14. Original land cover data for Milwaukee County obtained from USGS’s NLCD program, 
2006. 
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Figure 15. Reclassified land cover data using a binary classification scheme. 
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As a supplementation of the reclassified NLCD, other ancillary data also serve as 

exclusion zones to approximate the true population distribution. These datasets may 

include parks, water bodies, and census blocks with zero population (see Figure 16). In 

developing population grid by age and sex, Cai et al. (2006) used area landmarks (e.g., 

airports, parks, cemeteries, educational institutions, sports stadium, etc.) as part of the 

exclusion zones. In the production of LandScan USA, polygon landmarks are also 

employed as one of the indicator variables in the cell weighting process. In this study, by 

cross-examining the area landmarks in Milwaukee County and their spatially 

corresponding census blocks, it is found that many landmark polygons are populated. 

Some even have especially high population densities. Considering unpopulated landmark 

polygons are overlapped with zero population census blocks, the whole category of area 

landmarks is excluded in the weighting equation to improve the input data quality. Then, 

the exclusion zones will be spatially overlaid with the reclassified NLCD to obtain the 

refined binary land use data. Those grid cells that are classified as uninhabited land cover 

types are assigned zero weights. Similarly, grid cells that fall inside areas that are parks, 

water bodies and zero population census blocks are assigned zero weights as well; while 

urban land cover cells are assigned positive weights. 
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Figure 16. “Exclusion zones”, including parks, water bodies, and census blocks with zero population. 
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In addition, proximity to road networks is also included in the weighting process. 

It has been proved that residential houses are often located along street segments (Xie, 

1995, 2006). In a number of comparative analyses of areal interpolation methods, road 

network interpolation has generated the relative better interpolation results. One 

noteworthy issue here is that street segments of different hierarchies have different levels 

of correlation to residential densities. To be more specific, people are more likely to live 

along neighbourhood roads rather than highways. In this study, I exclude all U.S., 

interstate, state highways from the road network, and only the proximity to 

neighbourhood roads is considered as an input in weighting grid cells. The distribution of 

selected neighbourhood roads is shown in Figure 17. The proximity to road networks is 

measured by the distance between each grid cell to its nearest road segment. The distance 

can be acquired using the Near Analysis function in ArcGIS 10.1. To reduce the 

computation burden, the calculation is confined within a searching radius of 1000m 

around each grid cell.  
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Figure 17. Neighborhood roads. 
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The LandScan USA model suggests that slope angle is negatively correlated to 

population density. Common sense also suggests that people are more likely to build 

houses on a plain surface instead of a steep one. The elevation data (see Figure 18) for 

Milwaukee County in 2010 is downloaded from USGS’s National Elevation Dataset 

(NED) (source: https://lta.cr.usgs.gov/NED) and transformed into a 30m×30m slope 

surface using the Spatial Analysis extension in ESRI’s ArcGIS 10.1 (see Figure 19). The 

slope values will be included in the total population interpolation model as an important 

indicator variable. An issue appearing here is that 54,102 cells out of all 698,065 grid 

cells have slope value of 0 and that some highly populated blocks consist of only these 

cells. Such small values will result in a zero value of the range of relative weights of grid 

cells, and thus grid cells within these blocks will be allocated zero population. To address 

this problem, I selected all grid cells that have 0 slope value and assigned them with the 

value of 0.1. This approach ensures that the population of census blocks will be allocated 

to the inhabited grid cells with zero slope values. 

https://lta.cr.usgs.gov/NED
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Figure 18. Digital Elevation Model (DEM) of Milwaukee County, 2010. 
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Figure 19. Slope surface generated from DEM. 
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Each ancillary data layer assigns grid cells with relative values, and all relative 

values of each cell are multiplied to obtain the cumulative value.  The weights of grid 

cells that fall inside a census block will be determined by their cumulative values 

proportionally. The calculation of cumulative values is formulated as Equation 1: 

                                                                                                  (1) 

where i is the number of grid cell within each census block; V is the cumulative value for 

the cell; LC is the value for land cover (1: Urban; 0: non-Urban); RD is the proximity to 

road network (the distance between the grid cell to nearest road segment); ZP is the value 

for zero population blocks (1: outside; 0: within); PK is the value for parks (1: outside; 0: 

within); WT is the value for water bodies (1: outside; 0: within); SLi is the slope value at 

the location of grid cell i. 

One of the issues is that the cell weights are not positively correlated with their 

cumulative values; indeed, grid cells with smaller cumulative values should be assigned 

with larger weights because common sense suggests that people are more likely to 

concentrate in places that are less steep and nearer to roads. A reverse normalization is 

necessary to assign cell weights correctly. Within each census block, the cumulative 

weight values of grid cells are normalized, as follows:  

    {                                                                                                                                                                              (2) 

Where, within each census block, Wi is the normalized cumulative value of grid cell i; 

Vi/max is the maximum cumulative value in the census block; Vi is the cumulative value of 

grid cell i; Vi/min is the minimum cumulative value in the census block. Then, the 
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normalized cumulative values for individual grid cells that fall inside each census block 

are aggregated. Population value of each grid cell is calculated by multiplying census 

block population with the ratio of the cell’s normalized cumulative value to the 

aggregated normalized cumulative values in that block, as follows:                                    

Pi = Pcbn × 
  ∑                                                                                                                 (3) 

where Pi is the population value of grid cell i; Pcbn is the population of n
th

 census block; 

Wi is the normalized cumulative value of grid cell i in n
th

 census block; m is the number 

of grid cells in n
th

 census block. 

 

3.2.2. Sub-population estimation 

The total population grid gives a high-resolution illustration of the residential pattern in 

the study area. However, this pattern might be different from the distribution of sub-

population. The total population grid is estimated mainly by a density-based approach.  

This approach does not work for population of different racial and age groups, as some 

high population (total) density area may have low density of sub-populations. Citro 

(1998) emphasized that, with the progress in model developing and the boost of 

computation power, using statistical models would be of great potential in small area 

estimations. This study chooses to employ the point-based kernel density estimation to 

differentiate the distribution of different racial and age groups from the distribution of 

total population. Kernel density estimation is a commonly used non-parametric 

estimation method in statistics and it does not require any presumptive knowledge of the 
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probability density function (pdf) of the original data set (Zucchini et al., 2003). The 

kernel density function is an estimate of the probability of the spatial distribution. 

Silverman (1986, p.76) defines, for a two-dimensional data set X (x1, x2, …xn), the kernel 

function   ( ) as: 

  ( )   {    (      )                                                                                                                                   (4)          

where the subscript of K denotes the number of dimensions of the data set. As a 

condition, this quadratic kernel density function satisfies: 

∫   ( )                                                                                                                     (5)                                   

where R is the “window width” (Silverman, 1986, p.15) (or search radius) which defines 

the neighborhood around input data sets and the extent of smoothing iterations. The 

equation above implies that the probabilities of kernel densities sum up to 1 in the 

defined neighborhood. The output of the point-based kernel density function in ArcGIS 

10.1 is a smoothly tapered surface generated based on the locations and values of original 

point features. In this study, representative point features are census block centroids with 

the attributes of total- and sub-populations. Six kernel density surfaces are created using 

the block centroids, the search radiuses, and the values of population counts as inputs. In 

the kernel density surfaces, for each kernel, cell values are the highest at the locations of 

the point features (block centroids) and decrease as the distances reach the search radius 

according to a distance-decay function (Bracken and Martin, 1989; ESRI, 2012a).  The 

assumption that population distribution follows this distance-decay function may be 

easily subject to critics, but the kernel densities in this study are not directly transformed 
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into population quantities, instead, they are used to calculate the probabilities of sub-

populations residing in each grid cell. Thus, the spatial interpolation of total population 

defines the distribution of population, while kernel density estimates obtain the 

proportions of sub-populations in a cell and define the distribution of sub-populations.  

To calibrate the distance-based kernel density function in the sub-population 

estimation process, one should determine the appropriate width of the search window, 

which is related to the spatial autocorrelation in the population variables. If positive 

spatial autocorrelation exists, it indicates that people of the same demographic trait live 

nearer to each other and that the distance-decay function is conceptually valid. The 

results of Moran’s I (Moran, 1950), one of the standard global spatial autocorrelation 

measurements, are calculated. The distance threshold used in calculating Moran’s Is is 

the default distance that ensures every census block has at least one neighbor. Table 1 

shows the Moran’s I statistics for the total- and sub-populations. The table shows that the 

Moran’s I values of total- and sub-populations and their Z-scores are all positive, and that 

their p-values are all statistically significant. It means that total- and sub-populations all 

have positive spatial autocorrelation. The table also shows that other population is the 

most spatially clustered while the population of age 65 and over has the relatively 

weakest spatial autocorrelation patterns.  
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Table 1. Moran’s I statistics. 

 Moran’s I*
 Z-score

#
 p-value

+
 

Total 0.075 65.955 0.000 

White 0.137 121.326 0.000 

Black 0.319 281.884 0.000 

Other 0.446 392.968 0.000 

Age 20 to 34 0.122 107.833 0.000 

Age 65 and over 0.028 24.618 0.000 

*Moran’s I: +1means perfect correlation; -1means perfect dispersion; 0 means random spatial pattern. 
#
Z-score: using a 95% confidence level, Z-score that is larger than 1.96 or smaller than -1.96 indicates the 

existence of spatial autocorrelation. Positive Z-score means high and/or low values are more spatially 

clustered.  
+
p-value: <0.05, statistically significant. 

 

Once the positive spatial autocorrelation is verified, the kernel density estimation 

can be executed on the populations. The appropriate width (R) of the smoothing window 

is essential in kernel density estimation (Silverman, 1986). Larger R in Equation 5 means 

more smoothing iterations and gets more generalized results, while smaller R means less 

smoothing iterations and gets more detailed estimation results. If the proper R is 

measured by the deviation between the aggregation of transformed population value from 

kernel density and the population value in each block, then the smaller the search radius 

the better. This is because, in kernel density estimation, populations generated by census 

block centroids with smaller “window width” are more likely to be constrained within the 

blocks. However, the problems with very small window width are that population kernel 

densities may be overly high in the areas around census block centroids, and that they 

cannot reflect the influence of neighboring census blocks.  
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The semivariogram, which quantifies the intensity of spatial autocorrelation based 

on values and distances of spatial features, is used to determine the proper R for total-and 

sub-population kernel density estimations (ESRI, 2012b). The semivariogram function is 

formulated as follows. 

 (     )      ( (  )    (  ))                                                                                               (6) 

where Si and Sj are two locations, Z(Si) and Z(Sj) are the values of the two locations,  (Si, 

Sj) is the semivariogram of the two locations, and var is the variance. 

The semivariogram function plots the relationship between the distance (x-axis) 

and the variance of the value differences (y-axis) between all pairs of locations. If this 

relationship is plotted with a curve fitting the empirical data, the curve will rise as 

distance increases but level off at some point. The distance threshold at which a 

semivariogram model levels off is called the “range.” What it means is that the intensity 

of spatial autocorrelation does not have significant difference any more once the distance 

between two locations goes beyond the threshold. The “range” determined by the 

semivariogram model is commonly used to find out the proper “window width” or 

“search radius” in spatial interpolations, such as Kriging and Inverse Distance Weighting 

(IDW) (Gotway et al., 1996; Ver Hoef et al., 2001).  

Using the semivariogram function to decide the proper R in the kernel density 

estimation consists of three steps: (1) creating empirical semivariogram; (2) fitting a 

model to the empirical semivariogram; and (3) finding the threshold of distance beyond 

which the semivariogram values remain unchanged. In this study, there are 13,179 

centroids generated from census blocks.  The pairs of centroids are “binned” into groups 
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according to their distance and direction. The averages of distances and variances of 

centroid pairs in each bin will be treated as one single point in the empirical 

semivariogram plot. How the original centroid pairs are binned will have a great effect on 

the empirical semivariogram and thus the fitting of the semivariogram model. Two 

parameters need to be determined. The first one is the lag size, which determines the 

level at which the spatial autocorrelation will be analyzed. A bigger lag size means more 

centroid pairs grouped in each bin and less points in the semivariogram plot. An overly 

large lag size may filter out the spatial autocorrelation among the centroids that have 

short distances.  When lag size is too small, it may result in the situation that sample 

centroids in the bins are too few to generate representative averages (ESRI, 2012b). The 

second parameter is the number of lags.  As long as the lag size is restricted, the number 

of lags should be determined by spatial extent of original data to which the 

semivariogram is calibrated (Coombes, 2002). The default rule on how the number of 

lags should be selected is that the value of lag size multiplying the number of lags should 

be less than half of the longest distance between point pairs (ESRI, 2012c). Also, one can 

adjust the values and visually examine the fitness of the semivariogram model in many 

software. 

To decide the proper lag size for the semivariogram, the Average Nearest 

Neighbor tool in ArcGIS 10.1 is used to calculate the average distance of closest centroid 

points, and the value (122.59m) is selected as the reasonable lag size. This is the default 

approach to calculate lag size in ArcGIS 10.1, and the method ensures that there are at 

least several points being grouped in each bin. In the original population dataset, there are 

six different population values, total- and five sub-populations, of each point. It is easily 
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conceivable that the spatial autocorrelations of total- and sub-populations should be 

different. For each of the six populations, with the fixed lag size, I experimented with the 

number of lags ranging from 10 to 25, and plotted the Root Mean Square Error (RMSE) 

generated in the cross-validation step. Figure 20 shows the RMSE of total- and sub-

populations as the number of lags rises from 10 to 25. As one can see, six RMSE curves 

have different patterns, but each of them has a lowest point at which the RMSE is the 

smallest. For total and white population, the optimal number of lags is 20; for black 

population, the number of lags is 16; for other population, the number of lags is 13; for 

population of age 20 to 34, the number of lags is 22; and for population of age 65 and 

over, the number of lags is 20. Figure 21 shows the empirical semivariogram models 

with the lag size and the number of lags determined.  
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                                             (a)                                                                                 (b)  

 
                                             (c)                                                                                 (d)  

 
                                             (e)                                                                                 (f)   

Figure 20. Plots of RMSE and the number of lags, with the fixed lag size of 122.59m: (a) Total; (b) 

White; (c) Black; (d) Other; (e) Age 20 to 34; (f) Age 65 and over. 
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                              (a)                                                                                 (b)   

 
                                             (c)                                                                                 (d)   

 
                                            (e)                                                                                 (f)   

Figure 21. Empirical semivariogram models: (a) Total; (b) White; (c) Black; (d) Other; (e) Age 20 to 

34; (f) Age 65 and over. 
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Thus far, the two important parameters in modeling the empirical semivariogram 

are determined. By using total- and sub-populations of census block centroids as source 

inputs and setting the values of lag size and the optimal number of lags accordingly, six 

different semivariogram models are established as shown in Figure 21. The major ranges 

of the four models are 1556.977m, 1389.894m, 1507.336m, 1486.206m, 791.14m and 

1419.794m, for total, white, black, other population, population of age 20 to 34, and 

population of age 65 and over, respectively. These values will be used as the value of the 

“window width” or search radius parameter in the kernel density estimation. Figure 22 

shows the kernel density surfaces created from the total- and sub-population values of 

centroids and their corresponding search radiuses.  These kernel density surfaces are in 

the raster format and have the spatial resolution of 30m×30m. Since the display unit of 

the map in Figure 1 is meters, by default, the unit of kernel density surfaces is persons per 

square kilometers. Therefore, each grid cell in the six kernel density surfaces will have 

the density values of total- and sub-populations. 

Sub-populations of each grid cell will be calculated by multiplying the total 

population in the cell by the ratio of the kernel densities between the sub-population and 

total population. This can be achieved by using the raster calculator tool in ArcGIS 10.1.  
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Figure 22. Kernel density surfaces: (a) Total; (b) White; (c) Black; (d) Other; (e) Age 20 to 34; (f) 

Age 65 and over. 
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3.2.3. Accuracy assessment 

Bhaduri et al. (2007) asserted that it was impractical to validate the LandScan model at 

grid cell level due to the constraints of research resources and privacy issues. In the 

meantime, they admitted that human intervention in the modeling process, for instance, 

the sub-categorizing of each indicator variable and weight assigning to those sub-

categories, heavily influenced the model fidelity, which also imposed challenges to result 

validation. They took following approaches to verify and validate the model. First, to 

ensure the input data quality, they used census data and residential land use data 

classified from remote sensing imageries to investigate possible anomalies of population 

density. Non-typical residential arrangements such as prisons, schools which usually have 

high population densities are visually verified by high spatial resolution 

orthophotographs. Second, population disaggregation in the model is controlled at the 

census block level, which ensures that population grid avoids any irregularities at higher 

spatial resolutions. Third, LandScan USA data was originally produced at the 30m×30m 

resolution and aggregated to the 90m×90m resolution as final output. The process of data 

disaggregation and aggregation may introduce what they called “mensuration errors.”  

The paper used regression analysis between LandScan USA data and block populations 

to test the model’s spatial integrity. Two counties, one urban and the other rural, were 

chosen as representative enumeration units. Regression results indicated that there was a 

high correlation between LandScan USA and census data. Finally, the assessment of 

“location errors” of the LandScan USA model was carried out by geocoding a number of 

house locations and using previous version of LandScan USA data to validate whether 

the pixels were assigned inhabited or uninhabited correctly.  
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In this study, the “mensuration errors” of total- and sub-population grids are 

introduced not only by the disaggregation process but also by the kernel density 

estimation. The errors are evaluated by cross-validation with census block populations. 

The distribution of “mensuration errors” is mapped and census blocks that have highest 

overestimations and underestimations are especially investigated. The assessment of 

“location errors” of total population can take the same approach as LandScan USA does, 

which is randomly sampling pixels and using other data sources such as classified remote 

sensing images to validate whether the pixels are assigned inhabited or uninhabited 

correctly. However, the interpolation of total population in this study already takes 

advantage of land use data. Uninhabited pixels are not allocated with populations, which 

makes the location error assessment of total population estimates unnecessary. The 

location errors of sub-populations, however, are impossible since there is no ground 

information of sub-populations’ locations for validation. 

 

4. Results 

The final products of this study include six population grids, which are for total-, white-, 

black-, other-population, population of age 20 to 34 and population of age 65 and over, 

respectively (see Figure 23-28). These grids are in a 30m×30m raster format and are 

independent from any zonal system used by the Census Bureau or other government 

agencies. As shown in the figure, pixels that are in darker red have more estimated 

population while pixels that are in lighter red have less. Figure 23 shows that total-

population values of grid cells have a range of [0, 114.445] and that total-population 
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values are relatively higher in the areas that are close to downtown Milwaukee while 

decrease towards the North, South, and West sides. Figure 24 shows that white-

population values of grid cells have a range of [0, 90.2018] and that white-population 

values share similar patterns with total-population except that values are low in the area 

that is northwest side of downtown. Figure 25 shows that black-population values of grid 

cells have a range of [0, 60.0791] and that black-population highly concentrates in the 

northwest side of downtown where white-population values are relatively low. Figure 26 

shows that other-population values of grid cells have a range of [0, 22.8377] and that 

other-population concentrates in the geographic center of the county. Figure 27 shows 

that population of age 20 to 34 concentrates in the downtown area, which can be 

explained by the large number of apartment complexes around the University of 

Wisconsin-Milwaukee and Marquette University. Figure 28 shows the population of age 

65 and over is spatially dispersed. An interesting phenomenon is that Milwaukee River 

vividly separates white and black population and that other population mostly 

concentrates in the area encompassed by Menomonee River and Kinnickinnic River. 

These grids give detailed population statistics at a spatial resolution that is much higher 

than the census blocks. 
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Figure 23. Grid of total population. 
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Figure 24. Grid of white population. 
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Figure 25. Grid of black population. 
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Figure 26. Grid of other population. 

  



65 

 

 

 

 

Figure 27. Grid of population of age 20 to 34. 
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Figure 28. Grid of population of age 65 and over. 
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5. Discussion 

5.1. The assessment of population grids 

The accuracy assessment of the population grids cannot be done at the grid cell level as it 

is impossible, or at least time and labor consuming, to get the in-situ population value of 

every grid cell (Bhaduri et al., 2007). One of the alternatives is to aggregate the values of 

population grids into a zonal system, and to compare the aggregated values to the true 

values in the zonal system. In this study, the spatial interpolations of total population are 

constrained to satisfy the condition that the aggregation of total population of grid cells 

within each census block is equal to the total population of the block. Thus, the 

interpolations of total population are absolutely dependent on block boundaries. 

However, in estimating sub-population in grid cells, the parameters of the kernel density 

approach are census block sub-populations, the locations of block centroids and the 

search radiuses. Therefore, after the kernel density to population quantity transformation, 

the aggregations of grid cell sub-populations in census blocks are not controlled to equal 

block sub-populations. In light of this understanding, the assessment of sub-population 

estimation results can still be carried out at the level of census blocks. Using the zonal 

statistics tool in ArcGIS 10.1, one can obtain the sum of grid cell total- and sub-

population values within each census block. Then, these aggregated values will be 

extracted and joined to the blocks in order to assess the estimation accuracy.  
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5.1.1. Population grids of race 

5.1.1.1. Scatterplots and regression statistics 

Figure 29 plots the aggregations of total- and sub-population within each census block 

and the block population, with the linear regression lines plotted through the origins. The 

X-axis in each plot denotes the census block population while the Y-axis denotes the 

aggregation of estimated grid cell values. Each red dot represents a census block.  

 
                                                (a)                                                                               (b) 

 

 
                                                (c)                                                                               (d) 

Figure 29. Scatterplots between aggregated block population from grids and the census block 

population: (a) Total; (b) White; (c) Black; (d) Other. 



69 

 

 

 

One can see from the scatterplots above that the combination of the smart 

interpolation method and the kernel density method generates relatively satisfactory 

population estimates. The R
2
 value, which is the coefficient of determination of a 

regression model, indicates how well the estimated values fit the true values. The total 

population estimates have the highest R
2
 (0.9379) among all, as shown in Figure 29(a). It 

is mainly because, in the smart interpolation process, the total population counts of grid 

cells are allocated within each census block according to their cumulative weights. It is 

expected that the aggregation of total population values of grid cells within each block 

should be controlled to equal the block true values. The white population has the second 

best estimates, which is indicated by the R
2
 (0.9158) in Figure 29(b). The black and other 

populations have the least satisfactory estimation results, with R
2
 values of 0.8593 and 

0.8108 in Figure 29(c)(d), respectively. The difference among the accuracy of the total 

and subpopulation estimates may be explained by the intensities of concentration of those 

populations. The results from the spatial autocorrelation analysis in Table 1indicate that 

the population of other races is the most spatially clustered among populations of 

different race, followed by black and white. The total population distribution is the most 

dispersed. With the very similar search radiuses for the total- and sub-populations of race 

in the kernel density estimation, the most spatially clustered population will end up being 

dissolved to the greatest extent, which will consequently result in larger errors.  

As one can notice in the scatterplots in Figure 29, especially in Figure 29(a), there 

are several outlier census blocks that are far away from the regression line. Those census 

blocks have the true total population value of 0, but the estimated values are larger than 0. 

The highest estimated population of a block with zero true population is 1809. 
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Considering the mean total population of all 13,179 census blocks is 71.9, the estimation 

errors are unacceptable. By examining these “outlier” blocks in the map, it is found that 

most of the “outlier” census blocks are sliver polygons that are usually street corners, 

narrow double-line road segments, and so forth. Figure 30 shows six example sliver 

census blocks. Since the areas of these sliver polygons are so small or the widths of strip 

slivers are smaller than 30m, there are no whole grid cells or the centers of grid cells 

falling inside these sliver polygons. In the implementation of the zonal statistics tool, the 

sliver polygons will not be able to recognize the spatial aligned grid cells and summarize 

their values. By default, the aggregation of a random neighboring census block will be 

assigned to each of these sliver polygons. In cases that the sliver polygons are surrounded 

by blocks with high total- and sub-population values, the absolutely errors will be high.  

These high errors are artifacts of the sliver polygons, which are usually very small blocks. 

It is important to note that these errors appear only when the grid cells are 

aggregated to blocks. It does not necessarily mean that the grid cells with which the sliver 

polygons overlap have unacceptable estimation errors themselves. In the allocation of 

census block population values to grid cells, the sliver-overlapping cells are treated as 

within the neighboring blocks. The principle that a grid cell is considered within a block 

if its center falls inside the block is kept consistent throughout the study. By pair-wise 

comparison between the census population and the aggregated population of blocks, 125 

blocks are found with the “sliver polygon” problem and excluded from the error analyses. 

This sorting process is also accompanied by visual validation of the sliver polygons in the 

map.  
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Figure 30. Example sliver census blocks. These blocks are the “outliers” in the scatterplot and have 

the greatest contribution to the estimation errors. 

 

The exclusion of sliver census blocks will diminish the numeric errors introduced 

by the grid cell aggregation process and help reveal the real estimation accuracy. Figure 

31 shows the scatterplots of total- and sub-populations estimation errors excluding sliver 

blocks. As one can see, compared to the R
2
s in Figure 29, the R

2
s of total- and sub-

populations plots are significantly improved, with the values of 1, 0.9582, 0.9152 and 

0.826 for total, white, black and other populations, respectively. Results from regression 

analyses in Table 2 also indicate a significant correlation between census block 

populations and the aggregated populations from grid cells, with coefficients of 1, 0.935, 

1.068 and 1.025, for total, white, black and other population, respectively. Standardized 

coefficients indicate even better regression results. 
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                                                (a)                                                                               (b) 

 
                                                (c)                                                                               (d) 

Figure 31. Scatterplots between aggregated census block population from grids and “true” census 
block population, after exclusion of sliver blocks: (a) Total; (b) White; (c) Black; (d) Other. 
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Table 2. Regression analysis of total population and sub-populations of race at census block level. 

  Coefficients 
Standardized 

Coefficients 
R

2
 p-value 

Total Constant -0.011 - 1 0.000 

 Model 1 1   

White Constant 2.026 - 0.9582 0.000 

 Model 0.935 0.979   

Black Constant -1.465 - 0.9152 0.000 

 Model 1.068 0.957   

Other Constant -0.373 - 0.826 0.000 

 Model 1.025 0.909   

 

 

5.1.1.2. Overestimation and underestimation 

Figure 32 shows the histograms of the estimation errors of total- and sub- populations. 

The estimation error of white population has the range of [-319, 371], black population 

has the range of [-364, 339], and other population has the range of [-177, 113].  The 

histograms show that the mean absolute estimation error of white population is 0.89 and 

the mean absolute estimation errors of black and other population are 0.14. The errors, 

which are less than 1 person, indicate satisfactory estimation results. The standard 

deviations for white, black and other population are 14.877, 13.835 and 8.442, 

respectively. Considering the ranges of census block population of white, black and other 

races are [0, 2430], [0, 1288] and [0, 335], the mean absolute estimation errors and the 

standard deviations suggest statistically accurate estimation results. In fact, 95% of the 

estimation errors of white, black and other population fall inside the ranges of [-49, 98], 

[-78, -55], [-53, 39], respectively.  
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                             (a)                                                                    (b) 

 
                               (c) 
Figure 32. Histograms of estimation errors of sub-populations: (a) White; (b) Black; (c) Other. 

 

To examine the spatial distribution of estimation errors, three choropleth maps of 

census blocks illustrate the absolute errors (see Figure 33-35). In each error map, blocks 

that are shaded red are with highest overestimations while blocks that are shaded green 

have the highest underestimations. As one can see, the estimation errors of sub-

populations do not display very recognizable spatial patterns. The analysis of error will 

focus on the blocks with highest overestimation and underestimation errors.  
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In Figure 33, the red block (tract 187200, block 2016) that is in the southwest 

corner of the County is where the county correction facility-south is located. The total- 

population is 1809. The number of black population incarcerated (1259) in the facility is 

much higher than white population incarcerated (532). As one can see in Figure 33, 

White population has one of the highest overestimations (269) in this block; while Figure 

34 shows that black population has the highest underestimation (-204) in this block. 

Another conspicuous block (tract 90100, block 1000) is the red one located in the 

northwest of downtown, as shown in Figure 34. It has one of the highest black population 

overestimation (285). The white population underestimation is significant as well (-319). 

This block has several nursing facilities. In Figure 33, the red block (tract 007400, block 

1002) that is north of the Milwaukee downtown area and close to Michigan Lake has 

very high overestimation of white population (176). The error of black population is not 

so significant (-20). This block is the location of a high-level university dormitory which 

has over 2700 residents. The race information of the dormitory residents is not readily 

available, but the population density of this block is surely very high, considering the 

block area is small. Another red block (tract 005100, block 2004) with high white 

population overestimation (118) is the one in northwest of downtown and along Highway 

43 in Figure 33. It shows that this block has a very high black population underestimation 

(-115) as well. In fact, an apartment complex called Fernwood Court Apartment is 

located in this block. The highest overestimations of other population are in the nearby 

area of Miller Park, which is the county center. There are several apartment complexes in 

the block too. By examining these representative blocks with high estimation errors, a 

possible explanation is that the errors are strongly associated with blocks with population 
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density abnormalities, which are usually introduced by non-typical residential 

arrangements such as correctional facilities, nursing homes, high-rise apartment 

complexes and dormitories in educational institutions.  
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Figure 33. Estimation errors of white population. 
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Figure 34. Estimation errors of black population. 
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Figure 35. Estimation errors of other population. 
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5.1.2. Population grids of age groups 

5.1.2.1. Scatterplots and regression statistics 

The population grids of 20 to 34 and 65 and over age groups are shown in Figure 27-28. 

As one can see, population of age 20 to 34 has a more clustered spatial pattern than 

population of age 65 and over. The cluster is mainly located close to downtown area. 

Figure 36(a)(b) are the scatterplots between block populations aggregated from grids and 

“true” census block populations for age 20 to 34 and age 65 and over, respectively, 

before excluding sliver blocks. The R
2
 of population of age 20 to 34 is 0.7619; while the 

R
2
 of population of age 65 and over is 0.6037. Figure 36(c)(d) plot the block populations 

aggregated from age grids and “true” census block populations for age 20 to 34 and age 

65 and over, respectively, after excluding sliver blocks. The R
2
 of population of age 20 to 

34 is 0.8521 while the R
2
 of population of age 65 and over is 0.6338. Results from 

regression analysis in Table 3 show a significant correlation between census block 

populations and aggregations of grid cells, with standardized coefficients of 0.923 and 

0.796, for population of age 20 to 34 and age 65 and over, respectively.  

 

Table 3. Regression analysis of sub-populations of age groups at census block level. 

  Coefficients 
Standardized  

Coefficients 
R

2
 p-value 

Age 20 to 34 Constant -1.359 - 0.8521 0.000 

 Model 1.265 0.923   

Age 65 and 

over 
Constant 4.828 - 0.6338 0.000 

 Model 0.531 0.796   
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                                                (a)                                                                               (b) 

 
                                                (c)                                                                               (d) 

Figure 36. Scatterplots between census block populations aggregated from grids and “true” census 
block populations: (a) Age 20 to 34; (b) Age 65 and over; (c) Age 20 to 34, after exclusion of sliver 

blocks; (d) Age 65 and over, after exclusion of sliver blocks. 

 

5.1.2.2. Overestimation and underestimation 

Figure 37 shows the histograms of estimation errors of age sub-populations.  The 

estimation errors of population of age 20 to 34 have a range of [-136, 758]; while the 

estimatio errors of population of age 65 and over have a range of [-461, 257]. The 
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histograms show that the mean absolute estimation error of population of age 20 to 34 is 

3.195 and the mean absolute estimation error of population of age 65 and over is 0.067. 

The errors, which are less than 1 person, indicate satisfactory estimation results. The 

standard deviations for population of age 20 to 34 and age 65 and over are 19.279 and 

15.015, respectively. Considering the ranges of census block population of age 20 to 34 

and age 65 and over are [0, 981] and [0, 752], the mean absolute estimation errors and 

standard deviations suggest statistically accurate estimation results. In fact, 95% of the 

estimation errors of population of age 20 to 34 and age 65 and over fall inside the ranges 

of [-11, 25] and [-12, 14], respectively. 

 

 
                                       (a)                                                                                 (b) 

Figure 37. Histograms of estimation errors of sub-populations: (a) Age 20 to 34; (b) Age 65 and over. 

 

The spatial distribution of estimation error of population of age 20 to 34 and age 

65 and over is shown in Figure 38-39Error! Reference source not found.. It is obvious 

in the maps that the population of age 65 and over has much higher overestimations and 

underestimations than the population of age 20 to 34. The census block that is close to 
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Veterans Park (tract 186900, block 1002) has one of the highest overestimations (752) for 

population of age 20 to 34; while for population of age 65 and over, the underestimation 

is also very high (-382). This block has a number of high-rise high-end condos and 

apartments for seniors. The block (tract 187200, block 2016), which is the place the 

county correctional facility-south is located, has high overestimations for both population 

of age 20 to 34 (633) and age 65 and over (55). The count of population of age 20 to 34 is 

981; while the count of population of age 65 and over is 4, which is very small compared 

to 981. It is predictable that this block will have high overestimation for elderly 

population since it is surrounded by blocks with high population of age 65 and over. The 

result that this block also has high overestimation for young population has to do with the 

area of the block. The search radius for population of age 20 to 34 in kernel density 

estimation is 791.14m, which is too small to cover the whole block. Therefore, in 

addition to the young population in this block, part of young population in neighboring 

blocks are “transferred” into this block, which results in the high overestimation. The 

block (tract 7400, block 1002) where the University of Wisconsin-Milwaukee residential 

hall is located has the highest overestimation (258) for population of age 65 and over. 

This block does not have population of age 65 and over in census, but there are several 

blocks in surrounding neighborhood that have high population of age 65 and over.  
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Figure 38. Estimation errors of population of age 20 to 34. 
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Figure 39. Estimation errors of population of age 65 and over. 
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5.2. Input data quality 

Developing high-resolution population grids requires quality data input in the model. 

Since block is the finest geography level at which the population data are released in 

censuses, using census block population data as the original dataset to allocate population 

values to grid cells is the first option. Turner and Openshaw (2001), in the discussion of 

the disaggregative spatial interpolation problem (DSIP) in spatial interpolation, asserted 

that estimation accuracy was improved when target zones were relative larger compared 

with source zones. The problem with using census block population data is that absolute 

errors, instead of standardized measurements such as absolute percentage errors and 

RMSE, are used in the estimation result assessment. This is due to the fact that there are 

2,377 blocks with zero total population and that sub-populations could be zero even if the 

total population is not. The situation causes zero as denominator in the percentage error 

equation, which complicates the percentage error assessment.  

Ancillary data that are of finer resolution than census block and that are strongly 

correlated with population distributions are highly preferred. In the accuracy assessment 

of NLCD, Wickham et al. (2013, p.303) concluded that the overall quality was very high 

and that the main confusion came from the “difficulty in distinguishing the context of 

grass.”  The variation within the vegetation category does not affect the data quality when 

the binary dasymetric approach is used in this study. However, NLCD does not have the 

ability to differentiate residential pixels from other urban pixels, which hinders the spatial 

accuracy of total population interpolation results. In addition, the latest NLCD was 

produced in 2006, which is 4 years earlier than the year 2010. Land use and land cover 

changes may happen during this short period of time due to urbanization, land restoration 
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projects, etc. This temporal gap may contribute to the estimation errors associated with 

total-population. By applying novel and reliable land cover classification techniques (e.g. 

use the elevation differences between the high-points and the low-points of buildings to 

identify build-up types: high-rise commercial buildings, apartment complexes…) on 

high-resolution orthophotographs in 2010, it is possible to extract relatively more 

accurate residential areas. However, interpreting remotely sensed photos requires rigid 

image classification skills and local knowledge. Since classification errors are likely to be 

introduced in this process, NLCD that is already validated by USGS may be a better 

choice. Also, to facilitate urban planning practices, more and more state agencies are 

producing and releasing parcel-level land use data, which explicitly code different parcel 

types into residential, commercial, industrial, etc. (Deng and Wu, 2013) These datasets 

provide great value in helping identify residential areas accurately at sub-block level. 

However, parcel-level data also have some limitations. First, even though some parcels 

are assigned as residential type, the actual construction may occur up to several years 

later (Deng and Wu, 2013). Second, population is not strictly distributed within 

residential parcels. Other types, such as retail-related or education-related parcels, may be 

highly populated as well. Therefore, when utilizing parcel data to approximate residential 

population distribution at a very local level, it is not very reliable to simply use residential 

parcel boundaries.  

Traditional road network method in population interpolation uses the length of 

road segments in target zones as a weighting factor to disaggregate source zone 

population. The target zones in this study are 30m×30m grid cells. Considering such 

small areas, grid cells that are highly populated may not have any road segment inside. 
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Thus, the traditional approach does not apply in this case. Proximity to roads, an 

alternative variable related to road network, is employed under the assumption that 

people are more likely to reside along roads instead of far away from them. The same 

approach is applied in the production of LandScan datasets.  

Another issue regarding input data quality is the categorization of races. As a 

socially constructed concept, the identification of race is not as entrenched as other 

demographic variables such as age and sex. Moreover, the interpretation of race has also 

been radically evolving. One of the most recent changes regarding the definition of race 

in census was in the 2000 census. Since the decennial census, people of mixed races are 

not asked to identify themselves as of only one single race; instead, the census 

questionnaires provide the option of “two or more races” (Jones et al., 2001). This change 

in racial category greatly complicates demographic studies. Population of mixed races 

will need in-depth investigation when highly accurate estimation results are expected. In 

this study, in order to establish a generic model, population of mixed races is categorized 

into the “other” population. Future research may need to carefully deal with the issue to 

improve estimation accuracy. 

 

5.3. Error sources 

Estimation errors in this study come from the coaction of several factors such as the 

errors in original census data, abnormalities in block population density, the centroid 

locations and search radiuses in kernel density estimation, and the subjectivity of human 

intervention in the modeling process (e.g. categorization of land use data, grid cell 

weighting).  
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First, census block population data have errors themselves. Williams (2009) 

asserted that, due to atypical living circumstances, language barriers (international 

migrants), legal status issues, or any combinations of these, racial minorities have 

undergone recurrent undercounts in censuses. Some sub-populations may have 

overcounts as well. Even though the U.S. Census Bureau adjusts population statistics 

before each release, the data can still be different from the true populations.  

Second, the kernel density function creates a smooth density surface to fit the 

block population data. The value of each cell in a kernel density surface is the sum of 

spatially overlapping kernel values within the search radius of neighboring block 

centroids. When abnormality of population density appears, such as the HL and LH 

census blocks in Figure 8-13, the effect of neighboring blocks is intensified. Group 

quarter populations usually contribute to the abnormality. The assessment of population 

grids verifies group quarter populations’ influence on estimation errors. It poses a 

question that whether group quarter populations should be treated separately. The issue 

here is that race and age information of populations in many group quarters such as 

senior homes and college dormitories are not readily available to be integrated in this 

study. Prison is an exception because the race and age data are available in Census’s 

Summary File, but the prison populations are still aggregated to census blocks which may 

contain other residential land.  

Third, in kernel density estimation, total- and sub-population density surfaces 

over the study area are generated from representative points (in this case, census block 

centroids). This “point to surface” approach works the best when the original point 

dataset can approximate the true distribution of spatial features or incidents to the most 
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extent. In this study, the spatial locations of individuals in each census blocks are 

unknown, due to the protection of privacy in census data releases. Meanwhile, census 

block is the finest geography level at which detailed population statistics are available. 

Above all, using census block centroids as representative points is adequate in the kernel 

density estimation, if not perfect. A possible improvement of the representative points is 

that they may be restrained to spatially coincide with residential units within each block, 

given the whole or a part of the block is inhabited. It would be even better for the 

representative points to coincide with the largest residential area within census blocks if 

there are several separate residential areas. Moreover, in creating kernel density surfaces, 

the population each census block is interpolated to a circular area defined by the block 

centroid and search radius. The fixed search radius for each population type causes a 

problem because it does not take into accounts the different sizes and shapes of blocks. 

Populations in small blocks may have high underestimation since the block area is too 

small compared to the circular area in kernel density estimation; while a large block may 

have high overestimation because the circular area cannot cover the whole block, and 

populations in neighboring blocks are transferred to this block. In addition, the circular 

area in kernel density estimation assumes that spatial autocorrelation is equally strong in 

all directions. This may not be realistic, especially at the boundaries of areas of different 

populations such as white and black. Semivariogram model is able to differentiate the 

directions of spatial autocorrelation. If this information is integrated with the sizes and 

shapes of census blocks, asymmetric kernel density functions may be constructed to 

better approximate population distribution. 
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Finally, human intervention in the modeling process may also contribute to the 

estimation errors. Subjectivity mainly comes from the selection of weighting factors and 

the assigning of weights to grid cells. The weighting factors selected in this study are 

verified in many empirical studies, but there still might be other geophysical, socio-

economical variables that have strong correlation with population distribution. These 

variables need to be further explored. In the grid cell weighting process, the cumulative 

weights of cells are created by simply multiplying the weights of different variables. This 

approach does not investigate whether some weighting factors have more influence on 

population values than others. This is because there is no way to establish a regression 

between grid cell populations and values of weighting factors since the “true” population 

values of each grid cell are unknown.  
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6. Application 

Population grids have been used in a wide range of environmental and social studies. 

Vörösmarty et al. (2000) used population grids to assess the impact of population growth 

on global water resource. Ewert and Harpel (2004) used LandScan 2001 to estimate 

population at risk of volcanic eruptions. Hafner et al. (2005) used LandScan 2002 to 

investigate the influence of local population on atmospheric polycyclic aromatic 

hydrocarbon (PAH) concentrations. Rowley et al. (2007) used LandScan 2004 to assess 

the potential risks that changing sea levels are imposing to population and land. Elvidge 

et al. (2009) used LandScan 2004 as well as satellite-derived nighttime light data to 

create a global poverty map. Sabesan et al. (2007) developed a set of metrics for 

geospatial dataset evaluation by using LandScan and GRUMPv1 datasets in disaster 

response applications. So far, these applications can only estimate how many people are 

in grid cells. Due to the limit of current population grids on total population, it is still 

impossible to accurately estimate what kinds of population are in grid cells. With the 

grids with demographic traits developed in this study, a case study on the population near 

public recreation facilities is performed to show the potential of these population grids. 

Public recreation facilities are provided and maintained by administrations to 

improve the quality of local residents’ physical living environment. Urban parks, as a 

major aspect of the public recreation system, have been playing a vital role in 

accommodating people’s increasing desire for a higher quality of life (Nicholls, 2001). 

However, empirical researches have shown that the efficiency of certain public services 

is imbalanced among different racial groups, usually minority population are 

underprivileged in the accessibility to those services. This application uses the total- and 
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sub-population grids to evaluate the racial inequity in the walking accessibility to urban 

parks.  

The service areas of urban parks are determined using a linear 400m buffer, which 

is considered as a reasonable walking distance. Figure 40 shows the urban parks and their 

service areas. The service areas include the urban parks themselves. Then, using the zonal 

statistics tool, these service areas are delineated as zone features to aggregate the total- 

and sub-population grids. The sums of grid cell values are the service total- and sub-

populations. To test the population results against those generated using polygon-based 

spatial interpolation methods, the area weighting method is chosen. Intersections between 

census blocks and service areas are created by spatially overlaying the two features. The 

total and sub-populations of the intersections are calculated by splitting blocks total and 

sub-populations according to the area ratios between intersections and census blocks. In 

the end, the total and sub-populations of intersections are dissolved to get the total and 

sub-populations in the service areas.  

Table 4 shows the population statistics. Compared to the county population ratios 

(white: 60.63%, black: 26.78%, other: 12.59%) in the description of study area, the white 

population ratios calculated by using both the area weighting method (62.54%) and 

aggregation of population grids (63.73%) suggest that the service areas have the higher 

than average white population. The black population ratios calculated by using both the 

area weighting method (25.69%) and aggregation of population grids (25.76%), however, 

indicate that the service areas have worse accessibility to urban parks than average black 

population. The statistics of other population show the same disparity as black 

population. Also, the difference between white and black population ratios in the area 
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weighting method (36.85%) is smaller than the difference between white and black 

population ratios in the population grids method (37.97%). The difference between white 

and other population ratios in the area weighting method (50.78%) is also smaller than 

the difference between white and other population ratios in the population grids method 

(51.52%). Compared to the population grids, using the area weighting method to 

investigate the racial difference of accessibility to urban park services between white and 

minority populations can weaken the intensity of racial inequality. 

In terms of populations of age groups, the populations of age 65 and over in the 

service area do not show much difference between the two methods, but the area 

weighting method underestimates the population of age 20 to 34 by 16,749 persons, 

compared to aggregated population from grid. This huge gap may contribute to 

inefficient decision-making when administrators try to improve young population’s 

accessibility to urban parks. 

 

 

Table 4. Comparison of service populations and ratios using area weighting method and aggregation 

of population grids, using a 400m linear buffer of urban parks as service areas. 

 Total White Black Other 
Age 20 to 

34 

Age 65 and 

over 

Area 

weighting 
370714 

231862 

(62.54%) 

95260 

(25.69%) 

43591 

(11.76%) 

93484 

(25.22%) 

54716 

(14.76%) 

       

Population 

grids 
369197 

234180 

(63.73%) 

95114 

(25.76%) 

45084 

(12.21%) 

110233 

(29.86%) 

53216 

(14.41%) 
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Figure 40. Service areas of urban parks in Milwaukee County. 
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Another advantage of population grids is that the difference among population 

distributions in a zone is readily visible at a very high spatial resolution. Figure 41 zooms 

in closer on the total- and sub-population grids to a noise zone defined by a 400m linear 

buffer outward a section of the State Highway 100. One can see that the distribution 

patterns of total- and sub-populations are quite different. Black population tends to be 

more concentrated at the west end and the south side of the noise zone than white 

population. Other population is relatively small and mostly located at the west end. In 

addition, the zone has more population of age 20 to 34 than population of age 65 and 

over. This is especially true in the west half of the noise zone.  

At last, the implementation of the aggregation of population grids is much easier 

than spatial interpolation methods since the zonal statistics tool is readily usable in 

ArcGIS while polygon-based spatial interpolation tools are not. There are some areal 

weighting tools developed by ESRI users, but those tools often need to be customized for 

specific research projects.  
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Figure 41. Total- and sub-population grids in the noise zone along a state highway section. 
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7. Conclusions 

This study generates high spatial resolution, race and age-specific population grids for 

Milwaukee County, Wisconsin. It intends to address the issues in population studies that 

census population aggregate data are not adequate to portray population distribution 

variation at geography levels that are lower than census zonal system, and that most of 

previous population grids only deal with the estimation of total population, neglecting the 

distribution variation among sub-populations. Formerly produced population grids at 

different levels and many spatial interpolation methods are reviewed in this study. The 

creation of high-resolution population grids with demographic trait (race and age 

specifically in this case) consists of two stages: the first one uses selected areal 

interpolation method to create a total-population grid; the second employs a point-based 

kernel density function to create density surfaces for sub-populations from block 

centroid. In kernel density estimation, spatial autocorrelation is investigated to determine 

the optimal values of the “search radius” parameter. The sub-population density surfaces 

are then used as relative weights to calculate sub-populations in each grid cell. To 

validate the estimation accuracy of the total- and sub-population grids, grid values are 

aggregated to census blocks in order to compare the estimated populations to true block 

populations. Scatterplots and regression analyses show that total and sub-population grids 

using the integration of “smart” interpolation and kernel density function generates 

satisfactory population estimates. The overestimation and underestimation of sub-

populations do not show significant spatial patterns but the relationship between 

estimation errors and block population characteristics is briefly discussed. Non-typical 

and highly populated residential arrangements such as prisons, dormitories, nursing 
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homes and high-rise apartments show large contributions to estimation errors in the 

corresponding blocks.  

The importance of the quality of input data in developing population grids is also 

discussed. Census blocks are chosen as source zones to disaggregate population values to 

grid cells because they are the finest geography unit at which census data are reported. 

Compared to other census zonal systems such as block groups and tracts, the relatively 

smaller difference in spatial resolution between blocks and grid cells helps better 

approximate the true population distribution. However, block population data limit the 

possibility of using percentage errors in estimation error assessment, which may present 

different error patterns to absolute errors. The discussion about the quality of ancillary 

data in total population estimation majorly focuses on land use data, road network, and 

categorization of race. To develop better population grid models, more non-traditional 

indicator variables that are correlated with population distribution may be needed.  

To testify the advantage of population grids over population aggregate data in 

census zonal units in population-related spatial analysis, accessibility to urban parks of 

racial and age groups in the study area are calculated using both area weighting 

interpolation and aggregation of population grids. Populations and population ratios in 

urban park service areas of the two approaches are compared. Results indicate that using 

area units with homogenous population distribution in area weighting method distorts the 

intensity of racial and age inequality compared to aggregation of population grids. The 

application is a simple example of how population grids with demographic trait can 

benefit population-related spatial analysis.  
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Population grids have the great potential to portray the spatial heterogeneity of 

population distribution, and to facilitate micro-level population-related studies. In the 

meantime, they are very flexible in terms of the ability to aggregate according to different 

geography levels. Population grids endowed with demographic details, such as race, age 

and sex, expand the dimensions of total population grids and should be of great need in 

planning, emergency management, disaster relief practices of public agencies and private 

sectors. 
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