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ABSTRACT 
 

SURFACE ALTERATION IN THE ÖLKELDUHÁLS, NESJAVELLIR, AND GEYSIR 
HYDROTHERMAL SYSTEMS, ICELAND: IMPLICATIONS FOR MARS 

 

by 

 

Jordan Ludyan 

 

The University of Wisconsin – Milwaukee, 2020 
Under the Supervision of Dr. Lindsay McHenry 

 

 Silica- and sulfate-rich deposits observed by Mars Exploration Rover (MER) Spirit near 
Home Plate, Gusev crater, Mars, indicate alteration of Mars basalt by a diverse array of 
hydrothermal fluids and processes. Constraining the precise fluid conditions present at the time 
of deposition for these deposits on Mars relies on investigations of terrestrial hydrothermal 
systems that produce similar mineral assemblages. Alteration products and fluids collected from 
the Ölkelduháls, Nesjavellir, and Geysir hydrothermal areas in southern Iceland cover a wide 
range of end-member and intermediate fluid and alteration environments, and provide a means to 
compare the secondary minerals produced from different hydrothermal processes. Altered 
sediments, precipitates, and thermal fluids were collected from hot springs with pH ranging from 
2.15 – 8.70 and one active fumarole and analyzed for their geochemical and mineral 
composition. Pyrite was abundant throughout all three field sites indicating highly reducing 
conditions up to very shallow depths. Phyllosilicates were dominated by smectite and kaolinite, 
and smectite was associated with both acidic and alkaline hot springs, demonstrating that its 
formation may not be impeded by acidic conditions. Patterns of enrichment in leached rocks 
indicate that TiO2 and Zr follow a nearly linear trend of residual accumulation in rocks subjected 
to acidic fluids, consistent with their low solubility. This relationship was used to assess the 
behavior of trace elements in altered solids. Vanadium and Cr were found to be most resistant to 
acid leaching, with other elements likely incorporated into secondary minerals that could lead to 
depletion or enrichment depending on the mineral assemblage. In surface waters, Mg, Fe, Al, Ca, 
Mn, Cr, Ni, Ti, V, and Zr were found to be mobile only at very low pH, with a downward 
exponential trend at pH > 3. Chloride, K, Na, Ge, B, As, and Rb displayed the opposite trend and 
were scavenged from rocks at depth and incorporated into neutral to alkaline hot springs at the 
surface. These results support the findings of other studies indicating that the sulfur-rich Paso 
Robles class soils observed by MER Spirit near Home Plate, Gusev crater likely formed through 
fumarolic processes. The extensive diagenetic maturation and advanced alteration observed in 
Iceland in relatively young (~ 10,000 yrs) hydrothermal deposits has implications for the length 
of time hydrothermal processes may have been active near Home Plate, Mars, where evidence of 
diagenetic maturation and long-term accumulation of alteration products is minimal.
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1. Introduction 

 
Hydrothermal systems have been present on the Earth’s surface since the crust stabilized 

and are thought to have existed on the surface of Mars throughout the Noachian (>3.7 Ga) and 

possibly well into the Hesperian (3.0 – 3.7 Ga). On Mars, orbital evidence indicates a heavily 

bombarded and volcanically active early planetary surface that preserves evidence of surface 

and/or subsurface water, suggesting that hydrothermal alteration was once widespread. 

Accordingly, mineral and geochemical evidence of hydrothermal alteration is distributed across 

the surface at both orbital- and rover-scale. Understanding the nature of hydrothermal alteration 

products on Mars has astrobiological implications, as such environments provide zones of 

localized habitability (heat source and microbially exploitable energy gradient) and a means of 

preservation (rapid mineralization and subsequent micro- and macrofossil preservation; e.g. 

Jones and Renaut 2003; Mountain et al. 2003; Tobler et al. 2008; Tobler and Benning 2011; 

Djokic et al. 2017; McMahon et al. 2018) on/in an otherwise potentially inhospitable planetary 

surface/interior. 

 Due to the complexity of hydrothermal processes and the limitations of orbital and rover 

instrumentation, studies of terrestrial hydrothermal systems are useful for testing hypotheses 

regarding the aqueous alteration history of Martian deposits. Terrestrial magmatic hydrothermal 

systems are characterized by a variety of surface environments, ranging from hyper-acid hot 

springs and fumaroles that leach soluble phases from host rocks, to neutral/alkaline hot springs 

actively precipitating silica (as sinter) or carbonate (as travertine). Both end-member 

hydrothermal environments are known to host thermophilic chemolithotrophic life in terrestrial 

systems, although phylogenetic diversity and microbial abundance is significantly more 
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restricted in acidic surface hydrothermal systems (Marteinsson et al. 2001; Tobler and Benning 

2011; Cockell et al. 2019). Conversely, Tobler et al. (2008) note that dilute, sinter-depositing 

alkaline hot springs host robust chemolithotrophic communities, and that the slow but consistent 

rate of silica precipitation in such systems often leads to complete entombment of microbial 

structures in sinters (e.g. bacillus, cocci, filaments). Such observations highlight the significance 

of differentiating these deposits to assess past habitability on the surface of Mars. 

On Earth, surface hydrothermal systems are the expression of deep aquifer fluids that 

have undergone boiling and phase segregation during upflow. As magmatically heated aquifer 

fluids convectively rise and begin to boil, volatile phases including H2S, CO2, and minor H2 are 

partitioned into steam. The residual boiled and gas-depleted thermal fluids are then free to 

ascend along permeable subsurface zones and may eventually emerge as neutral to alkaline hot 

springs that can be variably mixed with meteoric water (Markússon and Stefánsson 2011; Scott 

et al. 2014; Ingebritsen et al. 2016). The volatile-rich steam segregated from the boiling process 

will also ascend towards the surface, where it may mix with oxygenated shallow ground and/or 

meteoric water. The result is oxidation of H2S to H2SO4 which supplies a continuous flux of 

protons to the fluid and drives host rock dissolution, liberating metals into solution. 

Alternatively, the segregated steam fraction may emerge at the surface directly, forming 

fumaroles. In either case, previous investigations of terrestrial hydrothermal environments 

indicate that these two end-member processes yield distinct but overlapping mineralogical and 

geochemical signatures (e.g. Pirajno 2010; Hynek et al. 2013, McCollom et al. 2013; Björke et 

al. 2015; Rodríguez and van Bergen 2015; McHenry et al. 2017 and many others).  

To better understand the processes controlling deposition of minerals in terrestrial and 

inferred Martian hydrothermal systems, the goals of this research are to: (1) quantify elemental 
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compositions and mineral assemblages of hydrothermal alteration products and fluids collected 

in August, 2019 during field work in southern Iceland through detailed geochemical analysis; (2) 

determine the geochemical indicators best suited for assessing aqueous conditions (e.g. fumarolic 

leaching vs. precipitation from near-neutral fluids) at the time of deposition by linking the 

elemental compositions and mineral assemblages of alteration products with associated fluids; 

and (3) use these findings to develop a conceptual model that accounts for the observations and 

builds upon the framework for interpreting alteration histories on the Martian surface based on 

geochemical/mineral composition. The results of this study will refine our understanding of 

aqueously-derived deposits on Mars and aid future terrestrial studies of hydrothermal systems, 

while also offering the first detailed integrated mineral and geochemical investigation of surface 

alteration in the Ölkelduháls hydrothermal system and building upon previous work at 

Nesjavellir and Geysir. 

2. Mars: geologic context & relevant observations 
 

 Interpreting ancient Mars environmental conditions and assessing the past habitability of 

those environments is a key goal of any Mars orbiter or rover mission. Remote sensing data 

provided by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) 

instrument and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 

instrument on board the Mars Express and Mars Reconnaissance Orbiter (MRO), respectively, 

indicate globally dispersed sulfates, Fe/Mg smectites, and Al-phyllosilicates across the 

predominantly basaltic crust, implying aqueous alteration (Schulze-Makuch et al. 2007; Bishop 

et al. 2013; Ehlmann and Edwards 2014). Morphological evidence of surface water is also 

widespread and includes interconnected valley and drainage networks (Craddock and Howard 

2002; Irwin et al. 2002; Hynek et al. 2010), paleolake basins (Fassett and Head 2008; Goudge et 
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al. 2016), and fan deltas (Goudge et al. 2015, 2017; Hynek 2016). Crater dating constraints on 

lava flow and caldera ages indicate that major Martian igneous provinces were largely in place 

by the end of the Noachian period, concurrent with a ‘wet’ Mars (Schulze-Majuch et al., 2007; 

Robbins, 2011). Accordingly, numerous studies have tentatively identified hydrothermally-

derived alteration products at orbital scales (e.g. Schulze-Makuch et al. 2007; Skok et al. 2010; 

Weitz et al. 2014; Singh et al. 2019). However, conclusive identification of relict hydrothermal 

systems using remote sensing is challenging. Hydrothermal alteration products form intimate 

mixtures of minerals that can vary at cm-scales. The highest resolution orbital mineralogical 

datasets provided by CRISM spectra are constrained to ~20 m/pixel, making such mineral 

assemblages difficult or impossible to resolve. 

2.1 Possible Martian hydrothermal activity 

2.1.1 Home Plate, Gusev crater 

 

Considering the limits of orbital datasets, identification and interpretation of relict 

hydrothermal activity on Mars relies primarily on rover instrumentation coupled with terrestrial 

analog and experimental studies. In 2006-2007, Mars Exploration Rover (MER) Spirit explored 

what is now widely believed to be a relict hydrothermal system near Columbia Hills, Gusev 

crater associated with a pyroclastic deposit dubbed ‘Home Plate’ (Figure 1A; Squyres et al. 

2008; Yen et al. 2008; Ruff et al. 2011; Ruff and Farmer 2016). Alpha Particle X-ray 

Spectrometer (APXS) and Mössbauer spectroscopic data from rocks and soils analyzed by Spirit 

indicate marked enrichment of silica (≥ 90 wt. %), Ti, Cr, and Zn relative to typical unaltered 

basaltic soils, near ferric Fe-, Mg-, and possible Ca-sulfates (Figure 1B-D; Yen et al. 2008). 

These geochemical and mineralogical data, along with spectral signatures consistent with opal-
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A, represent robust evidence of hydrothermal alteration (Squyres et al. 2007, 2008; Morris et al. 

2008; Yen et al. 2008; Ruff et al. 2011). The exact nature of the fluids that produced the deposits 

observed by Spirit, however, remains unclear. Squyres et al. (2008) note that enrichment of Si 

and Ti near sulfates is consistent with acidic alteration and residual enrichment of insoluble 

phases under limited water/rock ratios (i.e. fumarolic alteration) while Ruff and Farmer (2015) 

and Ruff et al. (2020) argue that the spongy, nodular appearance and spectral signature of opal-A 

observed by Spirit very closely match silica precipitates (sinter) associated with a near-neutral 

terrestrial hydrothermal system in Chile, indicating high water/rock ratios and less intensive 

alteration. 

 

Figure 1: Home Plate, Gusev crater, Mars, and associated outcrops investigated by MER Spirit in 
2007-2008. (a) Orbital image of Home Plate, a pyroclastic feature adjacent to silica-rich deposits 
interpreted as evidence of hydrothermal alteration; (b) sulfate-rich ‘Paso Robles’ class soils just 
underneath red surface dust, revealed by Spirit’s broken wheel and considered as evidence of 
fumarolic leaching; (c) composite image of silica-rich outcrop ‘Elizabeth Mahon’ containing light 
opal-A nodules; (d) Microscopic Imager (MI) closeup of opal-A digitate nodules exhibiting 
spongy, sinter-like texture, interpreted as evidence of neutral to alkaline hydrothermal fluids. All 
images provided by NASA JPL. 
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Ruff et al. (2020) point out 

that the coexistence of S-rich soils 

linked to solfataric processes and 

sinter deposits associated with 

neutral to alkaline hot spring fluids is 

common in terrestrial hydrothermal 

environments, and suggest that the 

hydrothermal system associated with 

Home Plate on Mars may represent a manifestation of both processes. Observations in other 

recent studies also suggest that both acid leaching and silica precipitating environments may 

have coexisted near Home Plate. Yen et al. (2019) plotted Si/Ti ratios against Si seen in altered 

samples from the area finding that one subset of samples maintained relatively constant Si/Ti 

ratios despite increasing Si concentrations, consistent with residual accumulation of both species 

via acid leaching. Other Si-rich rocks followed a dilution trend more consistent with silica 

precipitates (i.e., sinter) added to a host rock.  

Ruff et al. (2020) also identified another candidate hydrothermal target based on updated 

panoramic camera (Pancam) and miniature thermal emission spectrometer (Mini-TES) dust 

spectra corrections, dubbed Pioneer Mound (Figure 2). This feature is an ~ 2 m high mound <50 

m west of Home Plate which displays spectra consistent with the presence of opal-A variably 

contaminated with basaltic sand. Ruff et al. (2020) propose that this feature’s geomorphology 

along with its opal-A composition imply an extinct hot spring vent. These observations 

Figure 2: Pancam false-color image of Pioneer mound, considered 
a candidate hot spring vent mound ~ 50 m west of Eastern Valley 
adjacent to Home Plate, Gusev crater. Spectral signatures are most 
consistent with the presence of opal-A, although the target was not 
reached before MER Spirit became stuck in the Martian sand. Image 
from Ruff et al. (2019). 
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strengthen the interpretation that the hydrothermal system associated with Home Plate hosted 

diverse aqueous environments.  

2.1.2 Gale crater 
 

Although Gale crater is considered to have been primarily modified through 

sedimentary/diagenetic processes, mounting evidence points to possible high 

temperature/hydrothermal alteration dispersed throughout the area. Curiosity has explored 

variably altered sedimentary deposits through its traverse of Gale crater and Aeolis Mons 

(informally dubbed Mount Sharp), widely thought to represent a post-impact lacustrine/fluvial-

deltaic system (Grotzinger et al. 2015; Rice et al. 2017). Throughout the mission APXS 

measurements indicate variable enrichments of Zn, Ge, and in some cases Cu in diverse host-

rocks such as sandstones, mudstones, and Ca-sulfate veins. On Earth, Zn, Ge, and Cu are mobile 

in high temperature fluids, and are therefore concentrated near the surface via removal from 

primary silicates by hydrothermal processes (Arnórsson 1984; Wood and Samson 2006; Yang et 

al. 2015; George et al. 2016). These observations indicate multiple episodes of aqueous 

alteration: initial enrichment at the source area via hydrothermal fluids and host-rock dissolution, 

followed by dissemination and transport by diagenetic fluids (Berger et al. 2017; Yen et al. 

2017). 

Additional support for hydrothermal processes at Gale crater has been provided by recent 

studies. Morris et al. (2020) note that accumulations of high sanidine (adularia) as observed in 

drill sample ‘Windjana’ near nanophase Fe-oxide/oxyhydroxide (npOx) and phyllosilicate 

deposits in the Gale crater plains closely match mineral assemblages seen near the summit of 

Mauna Kea volcano, HI. The Mauna Kea deposits formed through alteration of basaltic 

precursor rocks through high temperature (250 – 400°C) hydrothermal processes. As with trace 
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metal enrichments at Gale crater, however, such deposits are dispersed heterogeneously and have 

not been linked to a single hydrothermal system.  

2.2 Future Mars missions 
 

Understanding the distribution of elements and minerals in terrestrial hydrothermal 

systems will prove useful on future Mars missions. In particular, the micro-XRF instrument 

PIXL (Planetary Instrument for X-ray Lithochemistry; housed on NASA’s Perseverance rover) 

will allow spatial mapping of elements at < 0.1 wt. % abundance, providing unprecedented high-

resolution trace element data at the Martian surface (Allwood et al. 2015; Heirweigh et al. 2018). 

Additionally, a Raman laser spectrometer system and laser-induced breakdown spectrometer 

(LIBS) will be included on ESA’s ExoMars rover (to be launched in 2021) along with an x-ray 

diffractometer (XRD), allowing high-resolution geochemical and mineral characterization of 

aqueously-derived deposits at the Martian surface (Veneranda et al. 2020). 

3. Geologic setting – Iceland 

 
3.1 Petrologic conceptual model 
 

Iceland’s unique geology is a result of the interaction between the Mid-Atlantic Ridge 

(MAR) and the Icelandic Mantle Plume. Eastward migration of the mantle plume relative to the 

Eurasian/North American Plate boundary has led to a complex volcano-stratigraphic sequence 

along the MAR axis, where crustal thinning drives the plastic asthenosphere towards the surface 

and resultant partial melting leads to magma recharge. The MAR remains relatively narrow until 

it reaches Iceland along the Reykjanes Ridge, where the deformation zone becomes much wider 

and more complex, attributed to the presence of the Icelandic Mantle Plume (Wolfe et al. 1997). 

There are two major generally NE-SW trending active volcanic belts within Iceland, with magma 
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fed into individual volcanic centers via fissure and fault swarms trending perpendicular to the 

lithospheric spreading axis (Beblo and Bjornsson 1980; Arnórsson 1995a; Wolfe et al. 1997). 

Numerous individual volcanic zones have been defined based on the interaction between the 

volcanic belts; all hydrothermal systems sampled herein lie in the Western Volcanic Zone 

(WVZ; Einarsson 2008). 

3.2 Icelandic hydrothermal systems 
 

 

Hydrothermal systems in Iceland are associated with individual volcanic complexes and are 

typically classified as either high-temperature (aquifer fluids > ~150°C) or low-temperature 

(aquifer fluids < ~100°C) (e.g. Arnórsson 1995a, 1995b; Markússon and Stefánsson 2011; 

Figure 3: Distribution of Icelandic thermal areas. Only high temperature areas are 
indicated, all falling directly along the MAR spreading axis. Hengill (Nesjavellir and 
Ölkelduháls) and Geysir areas are starred. Modified from Ármannsson (2016). 
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Stefánsson et al. 2016). As hydrothermal fluids dissolve soluble phases from host rocks the 

system tends to become cooler and less active because the residual alteration products and 

precipitates are generally more impermeable than the unaltered rocks. However, fresh pulses of 

magma in the subsurface can lead to instantaneous changes in permeability, renewing the vigor 

of the system and rapidly changing the expression of thermal features at the surface (Ingebritsen 

et al. 2010). Nevertheless, spreading along the MAR axis concentrates the youngest and highest-

temperature hydrothermal systems on-axis in Pleistocene/Holocene volcanic deposits, with 

increasingly mature and lower-temperature systems occurring further off-axis within fractured 

and highly altered Tertiary lava sequences (Arnórsson 1995b; Zakharova and Spichak 2012). 

The general distribution of Icelandic hydrothermal areas is provided in Figure 3. 

3.3 Hydrothermal fluid chemistry and characteristics 
 

Geothermal aquifer chemistry is considered to be predominantly controlled via 

approximate fluid-mineral equilibrium with respect to most major elements during upflow, 

excluding mobile phases (e.g. chlorine/boron), and this assumption has been shown to be valid in 

numerous studies (e.g. Arnórsson et al. 1995 and references therein). However, rapidly changing 

conditions near the surface disrupt this equilibrium, leading to mineral precipitation and rock 

dissolution. Accordingly, surface geothermal waters are classified with respect to major element 

geochemistry and origin. Common classifications include boiled alkaline waters, steam-heated 

acid waters, and steam-heated neutral waters (Kaasalainen and Stefánsson 2011; Björke et al. 

2015; Stefánsson et al. 2016). Boiled alkaline waters are considered to represent residual, 

degassed aquifer fluids that flow to the surface along zones of high permeability and have 

undergone mixing with low-temperature aquifer fluids during upflow. These waters are 
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characterized mineralogically by deposition of silica sinters and/or travertine and are often 

accompanied by surficial microbial/algal mats.  

Steam-heated acid waters represent the volatile-rich steam fraction (predominantly H2S, 

CO2, H2; Stefánsson, 2017) partitioned from boiled aquifer fluids. Upon ascent and mixing with 

oxygenated meteoric water, the steam fraction oxidizes and deprotonates, leading to low-pH hot 

springs and mud pots that dissolve host rocks (which act as a proton-consuming base) and 

generate zones of intense surface alteration. Alternatively, the steam fraction can discharge 

directly at the surface (forming fumaroles) where vapor condensation can also drive rock 

dissolution (via oxidation of H2S) and sulfur deposition. The mineral assemblages of steam-

heated systems vary depending on the extent of alteration, host rock geochemical composition, 

and whether the system is overprinting previous alteration episodes, but are characterized by 

intensive host-rock leaching (residually enriching immobile elements [e.g., silicon and Ti]) and 

deposition of sulfides (below the oxidation front), npOx, and sulfates (above the oxidation front) 

along with phyllosilicates (e.g. Markússon and Stefánsson 2011; McHenry et al. 2017). 

Steam-heated mixed waters also represent magmatic steam mixed with meteoric fluids, but 

generally with lower proportions of magmatic steam. Geochemically, they are characterized by 

less acidic conditions (pH ~ 4 - 7) and lower temperatures (~50-80°C). Nevertheless, their 

mineralogical output is controlled by acid-leaching and H2S oxidation. Fumarolic, steam-heated 

acid, and steam-heated mixed surface alteration can therefore be considered along a spectrum of 

increasingly intense surface alteration controlled by steam/water ratio, and not necessarily as 

end-member processes. A general conceptual model is shown in Figure 4 that demonstrates the 

formation of different surface hydrothermal features, such as those in Iceland. 
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3.4 Study areas 
 

3.4.1 Geysir hydrothermal system 
 

The Geysir hydrothermal system is in southern Iceland, adjacent to the Laugarfjall 

rhyolite dome (Figure 5). The system is actively altering a lower series of rhyolites overlain by 

more recent basalt, and is thought to be a relatively mature system overprinting previous 

alteration episodes (Ármannsson 2016). The Icelandic word ‘geysir’ translates to ‘gusher’ or 

‘one who rages,’ and is the origin of the English transformation of the term (geyser), to which 

other features worldwide owe their name. The Geysir geyser itself erupts relatively infrequently, 

and the nearby Strokkur geyser is much more consistent, erupting a few times per hour. 

However, the area also hosts numerous hot spring pools with a range of chemical properties, 

from turbid acid sulfate pools and fumaroles to more neutral/alkaline surface features (Jones et 

Figure 4: Conceptual model demonstrating formation of surface hydrothermal features, 
such as those seen in Iceland. The overall expression of the hydrothermal system is 
governed by boiling and phase separation of volatile-rich, heated aquifer water and 
mixing/oxidation of volcanic vapors in the subsurface. Figure from Zakharova and 
Spichak (2012). 
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al. 2007; Ármannsson 2016; Geilert et al. 2016). Most thermal activity is confined to an area of 

~1 km2. The diversity of the Geysir system provides a unique opportunity to compare alteration 

products and fluids produced via distinct alteration styles on a comparable spatial scale to that of 

Home Plate, Gusev crater, Mars (described in section 2), however, the evolved rhyolitic 

composition of some of the substrate and maturity of the Geysir hydrothermal system contrast 

with the likely short-lived nature of hydrothermal alteration near Home Plate on a predominantly 

basaltic Martian surface. 
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Figure 5: Main Geysir geothermal area indicating distribution of thermal features investigated. Blue 
X’s indicate location of sampled hot springs, and yellow X’s indicate sampled solids not associated 
with an active surface fluid source. North is up. Figure adapted from Kaasalainen et al. (2017). 
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3.4.2 Hengill Volcanic System 
(HVS) 
 

The Hengill Volcanic 

System (HVS) sits upon a 

triple junction of obliquely 

twisting crustal blocks 

extending along the Reykjanes 

Ridge, where the MAR splits 

into the two major volcanic 

belts continuing northeast 

through Iceland. Hengill itself 

is the youngest of three 

volcanoes in the HVS and is 

considered presently active. 

Hrómundartindur lies east of Hengill, with lava flows dating most recently to ~115,000 years. 

Grensdalur, the oldest volcano, lies the furthest east off the volcanic belt and was active 

~300,000 years ago (Ármannsson 2016). Presently, the most intense alteration is associated 

directly with Hengill itself, with increasingly mature aquifer fluids and less intense alteration 

eastward towards Hrómundartindur and eventually Grensdalur (Natukunda 2005; Lugaizi 

2011).(Jousset et al. 2011) 

The HVS hosts four main geothermal areas: Nesjavellir, Hellisheidi, and Hverahlíd (all 

associated directly with Hengill), and Ölkelduháls (situated on the flanks of Hrómundartindur). 

All four sites have been thoroughly explored for their production potential, and Nesjavellir and 

Hellisheidi are currently in production. Exploration and production wells are dotted throughout 

Figure 6: Regional map of the Hengill area. He = Hengill, Hr = 
Hrómundartindur, Gr = Grensdalur. Hydrothermal areas abbreviated 
in red; Heh = Hellisheidi, Hvh = Hverahlíd, Nv = Nesjavellir, Ökh = 
Ölkelduháls. Modified from Jousset et al (2011). 
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the HVS and the subsurface geology and aquifer chemistry is considered to be well understood, 

especially at Nesjavellir and Hellisheidi (e.g. Arnason et al. 1969; Marty et al. 1991; Jousset et 

al. 2011; Zakharova and Spichak 2012; Scott et al. 2014; Ármannsson 2016). Hellisheidi and 

Hverahlíd are not considered in this contribution. A regional map of the Hengill area is provided 

in Figure 6.  

3.4.2.1 Nesjavellir hydrothermal system, HVS 
 

The Nesjavellir hydrothermal system is a high-temperature system situated on the 

northern flanks of Hengill and is associated with a NE/SW-trending system of faults and fissures, 

forming a graben structure along the volcanic axis (Figure 6). Geothermal activity is 

predominantly concentrated along the eastern side of the graben, aligned with Hengill itself, and 

extends up the mountainside to the south. Host lavas consist of Pleistocene interglacial basalts 

and subglacial hyaloclastites crosscut by intrusives at variable depth (Arnason et al. 1969; 

Ármannsson 2016). The carbonate-rich aquifer waters at Nesjavellir reach temperatures 

exceeding 380°C at 1-1.5 km depth, and have been considered in numerous studies (e.g. Arnason 

et al. 1969; Zakharova and Spichak 2012; Scott et al. 2014; Ármannsson 2016 and many others). 

Surface hydrothermal features are variable but are predominantly acid-sulfate. There is one 

subalkaline CO3
2-rich hot spring actively precipitating travertine at the south end of the system, 

likely a surface expression of the deep aquifer fluids circulating at Nesjavellir. This spring was 

sampled but is excluded from the present contribution. A map of the areas sampled at Nesjavellir 

is shown in Figure 7. 
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3.4.2.2 Ölkelduháls hydrothermal system, HVS 
 

Ölkelduháls is also dominated by relatively acidic alteration at the surface. The 

geothermal system lies along the axis of Hrómundartindur and is directly adjacent to the eastern 

flank of the Hengill, with faults and fissures striking along the same NE-SW trend as in 

Nesjavellir. The area is considered seismically active, and seismic surveys indicate magma at a 

depth of ~6 km beneath the system (Gebrehiwot 2005). The hydrothermal surface activity at 

Ölkelduháls has been shown to fluctuate drastically with water table depth (seasonally). During 

Figure 7: The Nesjavellir geothermal area. Relative location of 
water samples is indicated. Grey areas represent surface 
hydrothermal areas. North is up. 
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dry periods, hot springs and mud pots revert to fumaroles and steaming ground, returning to hot 

springs during wet periods. Previous studies of the Ölkelduháls system have focused primarily 

on production potential of wells in the area (e.g. Marty et al. 1991; Natukunda 2005; Nono et al. 

2018). Few detailed geochemical studies have been conducted on the surface fluids and 

mineralogy present at Ölkelduháls, and this contribution presents the first investigation of 

surface trace element geochemical composition of the Ölkelduháls hydrothermal system. A map 

of the study area is provided in Figure 8, along with sample locations. 

  

Figure 8: Ölkelduháls geothermal area. As with previous maps, yellow X’s indicate location of solid 
samples not directly associated with a hot spring, blue X’s indicate location of the two hot springs 
sampled; associated sample tags are also indicated. North is up. Figure adapted from Kaasalainen et al. 
(2017). 
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4. Methods 
 
4.1 Sample collection 
 

4.1.1 Fluids 
 

Upon arrival at each field 

area, hot springs were surveyed 

with pH strips and a temperature 

probe to prioritize representative 

thermal features with different 

conditions. Once a hot spring 

was selected, a field-portable 

thermal fluid sampling apparatus 

was deployed along with a 

Hydrolab HL4 sonde, following 

modified methods of Arnórsson et al. (2006) (Figure 9). Using a battery-operated peristaltic 

pump, fluids were directed through a copper cooling coil submerged in cool water, causing the 

temperature to rapidly drop to < ~50°C. Fluids were subsequently filtered in-line through 0.2 µm 

cellulose-acetate filter papers and pumped through the entire system for at least 1 minute to 

sufficiently pre-contaminate the apparatus. Pre-cleaned, sealed serum bottles fitted with rubber 

stoppers and filled with N2 gas were then attached to an outlet tube with a 10 ml luer-lock 

syringe and fluid samples were pumped directly into sample bottles to minimize atmospheric 

contact/degassing. Cation and trace metal sample bottles were pre-acidified with ~ 1 ml of 2 N 

trace metal-grade HNO3. Anion sample bottles were pre-cleaned and filled only with N2 gas to 

Figure 9: Fluid sampling set up; numbers in sequence of fluid flow. (1) 
silicone inlet tubing set under hot spring surface; (2) cooling coil, refilled 
with cold water as needed; (3) peristaltic pump; (4) in-line filter; (5) 
outlet tube fitted to luer-lock syringe and sealed sample bottle or flow-
through chamber for in situ analysis with Hydrolab sonde, as needed. 
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minimize oxidation/reaction following collection. Field blanks were taken with deionized 18.2 

MΩ water prior to sampling each day, when analytical-grade water was available. 

Fluid properties considered unstable for long-term storage, including total carbonate 

carbon (TCC), pH, temperature, Fe2+ concentration, and total sulfide sulfur (ΣS2-) were either 

determined in-situ or preserved until laboratory analysis was possible. For TCC determination, 

field titrations were conducted on all fluid samples. For acidity titrations, 0.2 M NaOH was 

titrated into a water sample immediately following collection until the equivalence point was 

reached. Alkalinity titrations were conducted with the aid of a Hach digital titrator, with either 

0.14 N or 0.0014 N H2SO4 used as the titrant, depending on fluid sample pH. ΣS2- was preserved 

by precipitating aqueous sulfide as ZnS powder. Samples were then stored under refrigeration 

and darkness until dissolution of the solid and subsequent spectrophotometric laboratory analysis 

was possible (following methods of Cline [1969]). Fe2+ was determined on-site with Hach 

ferrous iron reagent ampules and a visual comparator. For in-situ determination of oxidation-

reduction potential (ORP), specific conductivity (SpCon), pH, dissolved oxygen (DO), salinity 

(sal), and total dissolved solids (TDS), a sealed flow-through chamber fitted to the Hydrolab 

HL4 sonde was deployed. 

4.1.2 Solids 
 

Hard rock, altered sediment, and precipitate samples were collected from active surface 

geothermal areas, typically associated with the hot spring waters selected for analysis, except for 

alteration products associated with active fumaroles/steaming ground. Surface precipitates and 

sediments were differentiated based on physical appearance (e.g. color/texture) and were 

collected with increasing distance from the margin of a hot spring where there was visible 

interaction with water and/or steam. If a shallow redox gradient was visible (based on changing 
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color/texture with depth), samples were also collected from shallow depths (up to a few cm). 

Where steam was in direct contact with sediments and colorful surface encrustations were 

visible, representative precipitate samples were collected.  

Both fluid and solid samples were assigned sample tags to reflect their origin. Samples 

labeled ‘IO’ were collected at Ölkelduháls, ‘IN’ from Nesjavellir, and ‘IG’ from Geysir. The 

middle digit refers to the year in which the samples were collected, and the final number refers to 

the order in which the sample was collected. For example, a sample labeled ‘IG-19-5’ would 

refer to the 5th sample collected from the Geysir area in 2019.  

4.2 Site & sample selection 
 

GPS coordinates for all samples are provided in Table S1 (Appendix A). Images 

depicting the layout of each field site and sample relationships/characteristics are provided below 

in Figures 10 – 13 (and are summarized in Table 1). 
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4.2.1 Ölkelduháls 
 

Images of most samples from Ölkelduháls, indicating their context in more detail, are 

provided in Figure 10 (excluding precipitates collected on a nearby ridge not adjacent to the hot 

springs). Two actively steaming hot springs were found on the flanks of a heavily altered hillside 

(IO-19-21, pH = 2.15, T = 75.4°C; and IO-19-22, pH = 3.54, T = 54.8°C), and fluid samples 

were collected from each, along with associated alteration products including subaqueous muds, 

altered wall rocks, and precipitates lining the areas adjacent to the springs. 

Figure 10: Samples collected at Ölkelduháls. Fluid samples are labeled in blue and include pH and 
temperature upon sample collection. Solid samples are indicated in yellow. Marker, field notebook, and 
geologists included for scale. 



23 
 

4.2.2 Nesjavellir 
 

Two thermal areas were sampled at Nesjavellir. The first site, to the south, was 

investigated in detail in Glenister (2018) and Black (2018). Therefore, only a single fluid sample 

(IN-19-1, pH = 5.27, T = 81.5°C) and associated precipitate (IN-19-2) were collected for 

analysis (Figure 11). 

 The second thermal area studied at Nesjavellir (to the north) hosted three hot spring pools 

within ~ 1 m of each other (IN-19-6, IN-19-7, and IN-19-11) adjacent to a heavily altered cliff 

face. Each pool flowed into the next and had pH values ranging from acidic to near-neutral. To 

assess the geochemical differences between them and their associated alteration products, fluids 

and solids from each hot spring were collected (Figure 12). 

 

  

Figure 11: Water sample and one associated sulfate-rich precipitate 
from Nesjavellir. 
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Figure 12: (A) Three hot springs and their associated alteration products at Nesjavellir. 
Inset shows surface precipitates. (B) IN-19-6 with altered muds and precipitates. (C) IN-
19-7 and an altered mud. (D) IN-19-11, an altered mud, and a friable, altered boulder 
adjacent to the hot spring. 
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4.2.3 Geysir 
 

Hot springs in the southwest field of Geysir were first surveyed for pH and temperature 

and two representative near-neutral to subalkaline sites were selected. For those sites, water was 

sampled and analyzed in situ in more detail (IG-19-01 (pH = 8.34, T = 84.1°C; Figure 10A), and 

IG-19-03 (pH = 6.01, T = 92.5°C; Figure 10B)). Both hosted extensive sinter aprons and 

representative sinter pieces were sampled. Water from Blessi hot spring in the main geyser field 

was also collected (IG-19-05; pH = 8.7, T = 95.6°C; Figure 10C), along with associated sinter. A 

piece of sinter from a no longer active hot spring to the northeast (IG-19-15) was also collected. 

A fumarole was identified to the northeast of the main geyser field and was sampled 

systematically over a transect of 120 cm from the steam vent (samples IG-19-7 through IG-19-

12; Figure 13E). A nearby shallow fissure emitting fumarolic vapors and lined with precipitated 

minerals was also sampled (IG-19-13 and IG-19-14; Figure 13D).  
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Figure 13: The thermal features sampled at Geysir. (A) IG-19-1, a subalkaline sinter-
depositing hot spring in the main thermal field. (B) IG-19-13, near-neutral hot spring recessed in 
a ~ 1 m deep hole, depositing red-stained sinter. (C) Blessi hot spring (IG-19-5) and sinter. (D) 
A steaming gully producing colorful surface encrustations. (E) A fumarole mound and 
associated alteration samples. Ruler is 1.5 meters long. 
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4.3 Analytical methods 
 

4.3.1 Fluids 
 

Major cations (Ca2+, Mg2+, Na+, K+) were measured using a ThermoFisher i-CE 3000 

series atomic absorption (AA) spectrometer and major anions (NO3
-, SO4

2-, Cl-, PO4
-) were 

determined with a ThermoFisher ICS-1000 ion chromatography (IC) system. Total sulfide sulfur 

(preserved as ZnS) was determined by re-dissolving preserved ZnS in cold v/v 50% HCl 

followed by immediate spectrophotometric analysis in O2-free water following methods of Cline 

(1969). Values were determined by building a calibration curve using a NIST-certified Na2S 

laboratory standard, and r2 values of calibration curves were all > 0.99. All other elements were 

determined with a ThermoFisher Element 2 inductively coupled plasma mass spectrometer (ICP-

MS). Elements analyzed include B, Rb, Sr, Ba, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Ga, Ge, and As. 

For all major and trace elements and analytical techniques, quantitative results were achieved by 

developing calibration curves with certified laboratory standards. Relative standard deviation in 

all duplicate analyses was < 1%, and is therefore excluded from our results. Analytical limits of 

detection for all instruments is reported in Table S2 (Appendix B). 

4.3.2 Solids 
 

Soft precipitate and sediment samples were air-dried (to preserve any potentially heat-

sensitive mineral phases) and powdered by hand in an agate mortar and pestle to a suitable grit 

size for qualitative XRD analysis. Substrate/hard rock samples were powdered in a tungsten-

carbide shatterbox and then further ground by hand. Powdered samples were then mounted as 

random powder mounts and analyzed using a Bruker D8 Focus XRD equipped with a Cu Kα 

radiation source and scintillation detector, 1s per 0.02° 2θ, 2°-60° range. Mineral phases were 
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identified using Bruker’s EVA software. All XRD methods followed methods of McHenry et al. 

(2020). 

 For bulk geochemical analysis, loss on ignition (LOI) was determined by heating ~ 1 g of 

each sample to 1050°C in a muffle furnace for 15 minutes. Fused beads were then made by 

mixing 1.0000 g of each sample with ~1 g of NH4NO3 as an oxidizer and 10.0000 g of 50:50 

lithium metaborate:lithium tetraborate flux with 1% LiBr as a non-wetting agent. Mixtures were 

fused in a Claisse M4 fluxer. Each bead was then analyzed for major, minor, and some trace 

elements on a Bruker S4 Pioneer wavelength dispersive x-ray fluorescence (WD-XRF) 

spectrometer. Calibration curves were constructed from eleven USGS igneous and sedimentary 

rock standards (analytical LODs reported in Tables S2). All XRF methods followed methods of 

Byers et al. (2016). 

 Additional trace element analyses were provided by University of Houston Department 

of Earth and Atmospheric Sciences. Samples were dual-acid (HF + HNO3) digested using a 

Milestone Ultrawave Microwave Digestion System. Resulting solutions were diluted as needed 

and analyzed on a Varian 810 triple quadrupole ICP-MS for sulfur and titanium, and an Agilent 

725 inductively coupled plasma optical emission spectrometer for trace elements V, Cr, Co, Ni, 

Cu, Zn, Ge, Zr, and Ba. Quantitative results were achieved by running a multi-element internal 

standard and correcting the results with USGS rock standards BHVO-2 and SCO-1. 

4.4 Geochemical calculations 
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4.4.1 PHREEQC 
 

Calculations of mineral saturation state and aqueous speciation was carried out with 

PHREEQC version 3 (Parkhurst and Appelo 1999). PHREEQC assumes equilibrium 

thermodynamics to assess saturation indices (SI; defined in Section 5.4) based on fluid properties 

measured both in situ and in the lab. For hydrothermal systems, this is a reasonable assumption 

as fluid chemistry is widely considered to be controlled by a close approach to equilibrium with 

hydrothermal minerals with the exception of highly mobile elements such as Cl and B, although 

this assumption is challenged at the surface where rapidly changing conditions may lead to 

kinetically controlled reactions and redox and thermodynamic disequilibrium. To address this, 

charge balance was forced with SO4
2- in low pH solutions (< 3), and with CO2 in all other fluids. 

The WATEQ4F.dat database was chosen for the calculations, as the minerals included in the 

database cover a range of hydrothermal minerals found in various environments, although it does 

not include all the sulfates observed. 

5. Results 
 
 Brief sample descriptions are summarized in Table 1. Detailed analytical results are 

reported in Sections 5.1 – 5.4. 

5.1 Mineral assemblages 
 
 XRD results of unaltered volcanic rocks collected from each field site are provided in 

Table 2. XRD results of altered materials from Ölkelduháls, Nesjavellir, and Geysir are reported 

in Table 3, and sulfate minerals identified throughout the study are reported in Table 4. Brief 

descriptions of sample mineral assemblages relevant to their discussion in subsequent sections 

are also provided in this section. 
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5.1.1 Ölkelduháls  
 
 Mineral diversity at Ölkelduháls was somewhat limited. Samples collected within a few 

meters of both hot springs (water samples IO-19-21 and IO-19-22) commonly contained quartz 

with anatase, along with pyrite, smectite, and/or kaolinite. Two dark-colored, subaqueous mud 

samples scooped from just beneath the water surface (IO-19-11 and IO-19-5; Figure 10) 

contained quartz along with pyrite and smectite. 1-2 cm euhedral trigonal quartz crystals (IO-19-

14) were found protruding from altered muds a few meters away from the hot springs sampled. 

One sample collected on a ridge between the two hot springs (IO-19-13) contained elemental 

sulfur and a combination of mixed-valence hydrated Fe-sulfates that included copiapite, 

paracoquimbite, and rhomboclase. 

5.1.2 Nesjavellir 
 
 At Nesjavellir, the alteration products were more diverse, reflecting more variable 

environmental conditions. At the northernmost Nesjavellir site, three dark-colored subaqueous 

muds associated with variably acidic hot spring pools (IN-19-8, IN-19-10, IN-19-12; Figure 12) 

were found to contain pyrite along with either smectite or kaolinite; IN-19-8 also contained 

accessory amorphous silica, and IN-19-12 contained accessory gypsum. Precipitates collected in 

the areas surrounding these hot springs (IN-19-9 and IN-19-15) were occasionally in contact 

with volcanic vapors/fluids and included amorphous silica, anhydrite, and a halotrichite-group 

mineral, possibly pickeringite. Pickeringite and halotrichite form a solid solution between Fe-

rich and Mg-rich end members, respectively, with further substitution of Fe2+ possible for Fe3+ in 

pickeringite (forming mixed-valence bilinite; Geptner et al., 2007; Carson, 2015). Distinguishing 

between these three minerals based on their XRD pattern alone is problematic given the 

extensive solid solution possible between end members and the similarity in their diffraction 
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patterns. Thus, minerals identified as halotrichite or pickeringite are subsequently labeled 

‘halotrichite group’. 

5.1.3 Geysir 
 
 The three sinters sampled associated with active hot springs at Geysir (IG-19-2, IG-19-4, 

IG-19-16 Figure 13) were all predominantly composed of amorphous silica. IG-19-2 also 

contained quartz with accessory calcite, kaolinite, and presumably detrital albite. The sinter piece 

collected from an extinct hot spring (IG-19-15) contained opal-A, tridymite, and quartz (rather 

than amorphous silica), along with minor smectite. 

 The fumarole mound transect at Geysir (IG-19-7 through IG-19-12; Figure 13D) revealed 

largely consistent mineral patterns controlled by rock leaching/argillic alteration: amorphous 

silica ± an Fe-bearing phase (pyrite/npOx; depending on whether the sample was collected above 

or below a shallow redox front) ± anatase ± smectite/kaolinite. Elemental sulfur was detected in 

the vent sample (IG-19-7). The only other sulfur-bearing phase detected along the fumarole 

transect was pyrite. 

Surface precipitates collected from a steaming gully a few meters from the fumarole 

mound (IG-19-13 and IG-19-14; Figure 13E) contained a mixture of Ca- and Mg-sulfates 

including anhydrite, bassinite, and hexahydrite (Table 3). IG-19-13 also contained accessory 

pyrite. 

5.2 Elemental composition of solids 
 

5.2.1 Protolith composition 
 

Major and selected trace element compositions of sampled protoliths are reported in 

Table 5. Substrates recovered from Ölkelduháls and Nesjavellir were basaltic (SiO2 43.35 and 
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47.45 wt. %, respectively). Although no basalt was sampled at Geysir, it has been observed 

throughout the area, and chemical analyses from Jakobsson (1972) are reported for comparison 

along with original data. A fresh surface lava sample from the Laugarfjall rhyolite dome adjacent 

to the Geysir hydrothermal system was confirmed to be a rhyolite, consistent with the presence 

of both basalt and rhyolite at Geysir.  

Kaasalainen & Stefánsson (2012) compiled and reported median geochemical analyses 

including major and trace elements of Icelandic basalts from > 50 previous studies, also reported 

in Table 5. To make the comparison between protolith and altered samples consistent throughout 

our analyses, their results are referenced in subsequent sections where appropriate. 
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5.2.2 Altered sample major element composition 
 

Major element geochemical compositions of altered samples as determined using XRF 

are reported in Table 6, and box and whisker plots indicating the general spread of major oxides 

are shown in Figure 14 (except Na2O, MnO, and P2O5 due to low concentrations). Altered 

samples followed geochemical trends consistent with their association with either acid leaching-

dominant or precipitation-dominant processes, with precipitates further grouped according to 

their association with acid-sulfate or neutral/alkaline thermal fluids/vapors. Since sulfur is 

partially (and inconsistently) lost during preparation by fusion for XRF and during LOI heating, 

samples with abundant sulfur-bearing minerals sometimes yield high (or low) analytical totals 

when LOI is included as part of the total. Sulfur-rich alteration samples (as determined using 

XRD) should therefore be considered semi-quantitatively with respect to the major element 

geochemistry reported. A brief summary of the geochemical compositions of altered samples 

from each field site follows in this section. 
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5.2.2.1 Ölkelduháls 
 
 Alteration samples from Ölkelduháls followed trends of SiO2 and TiO2 accumulation 

consistent with rock leaching in an acidic environment. SiO2 and TiO2 concentrations ranged 

from 37.52 – 72.86 wt. % and 1.52 – 4.88 wt. %, respectively, in altered soils/muds and 

precipitates collected either adjacent to thermal pools (IO-19-6 through IO-19-10 + IO-19-12) or 

from beneath the water surface (IO-19-11, IO-19-5). Leached samples displayed consistently low 

abundances of MnO, MgO, CaO, Na2O, and K2O, while Al2O3 and Fe2O3 displayed more 

variable behavior. Higher iron contents coincided with samples containing npOx and pyrite, and 

clay-rich samples (e.g. IO-19-7 and IO-19-10) also contained elevated Al2O3 concentrations. 

Although slightly elevated relative to Ölkelduháls basalts/hyaloclastites, P2O5 concentrations 

were quite low. 

5.2.2.2 Nesjavellir 
 
 Elemental compositions of altered samples from Nesjavellir followed similar patterns to 

those from Ölkelduháls, but residual enrichment of SiO2 and TiO2 was more subdued, indicating 

less extensive alteration on average. Fe2O3 and Al2O3 were highly variable at Nesjavellir, though 

higher Fe2O3 concentrations are observed in samples inferred to contain npOx. Higher Al2O3 

concentrations again correlated with clay-rich samples. MnO, MgO, CaO, and Na2O were all 

present in low concentrations or undetectable in most samples, except for IN-19-12 and IN-19-14 

(5.14 and 5.84 wt. % MgO, respectively). 
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5.2.2.3 Geysir  
 
 Concordant with XRD results, SiO2 concentrations were high in sinter precipitates (87.38 

– 98.32 wt. %. Other oxide concentrations were all low in the sinters, with low concentrations of 

Al2O3 (1.03 – 3.34 wt. %) and Fe2O3 (0.11 – 3.18 wt. %), presumably related to the presence of 

minor phyllosilicates. 

 SiO2 and TiO2 concentrations in fumarole samples were variable, as were Al2O3 and 

Fe2O3. Other oxide abundances were quite low (generally << 1 wt. %), although the fumarole 

vent sample (IG-19-7) contained 2.11 wt. % MgO, possibly housed in Mg-smectites.  

5.2.3 Trace elements 
 
 In total, thirteen solid samples including substrates were digested and analyzed for select 

trace elements using ICP-OES, including V, Cr, Co, Ni, Cu, Zn, Ge, Zr, and Ba, plus sulfur. The 

samples included silica sinters (IG-19-4, IG-19-15, IG-19-16), SiO2-rich leached rocks with or 

without pyrite, sulfates, and clays (IG-19-8, IG-19-9, IG-19-10, IO-19-7, IO-19-8, IO-19-9, IO-

19-10, and IN-19-15), and sulfate-rich precipitates (IG-19-13, IG-19-14, IO-19-13, and IN-19-2). 

Results are reported in Table 7, along with XRF results for selected trace metals. 
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5.2.3.1 Ölkelduháls 
 
 Five samples were selected from Ölkelduháls for trace metal analysis. The results for 

altered soils/leached materials were variable overall, but V, Cr, Zr, and Ba were generally 

somewhat elevated in leached rocks/altered soils compared to Ölkelduháls hyaloclastite. Co, Ni, 

Cu, Zn, and Ge all generally had quite low concentrations, with the exception of IO-19-7 (Figure 

10; an altered soil associated with IO-19-21, a hot spring with pH 2.15), which had slightly 

elevated Co (82 ppm), Ni (80 ppm), and Cu (106 ppm) values relative to other Ölkelduháls 

alteration samples. IO-19-13, a native sulfur and Fe-sulfate-bearing precipitate, had quite low 

concentrations of all trace elements analyzed (all < 100 ppm). 

5.2.3.2 Nesjavellir 
 
 Only two samples from Nesjavellir were selected for trace metal analysis with ICP-OES, 

and XRF results for selected samples are reported instead, although in some cases the trace 

elements analyzed with XRF were below LOD or not analyzed (e.g. Ba, often bdl for XRF, and 

Ge, not measured using XRF). Nearly all altered soils and precipitates showed elevated levels of 

V and Cr, and somewhat elevated levels of Zr relative to Nesjavellir basalt, consistent with 

trends at Ölkelduháls. Zr was highest in altered soils/muds. 

5.2.3.3 Geysir 
 
 Geysir sinters had low concentrations of the trace elements analyzed, with the exception 

of IG-19-4, a red-stained sinter collected from the margins of hot spring IG-19-3 (pH = 6.01, T = 

92.5°C), which had elevated Zn (219 ppm), Zr (574 ppm), and Ba (738 ppm) relative to other 

sinters (IG-19-15, IG-19-16). Other elements had negligible concentrations. 
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 Consistent with results from Nesjavellir and Ölkelduháls, acid-leached samples from the 

fumarole transect (IG-19-8, IG-19-9, and IG-19-10) had elevated V, Cr, and Zr relative to 

presumed substrate, but also had higher concentrations of Ni and Cu than seen in other leached 

samples. 

5.3 Aqueous geochemistry 
 
 Major ion compositions for water samples are reported in Table 8, nine of which 

(collected in the 2019 field season) include total carbonate carbon and total sulfide (not measured 

in the 2016 and 2017 field seasons), along with trace elements. Most of the waters were found to 

be relatively dilute. The waters sampled across all field sites include acid-sulfate waters, steam-

heated mixed waters, and NaCl waters with pH ranging from 2.15 – 8.7, and temperatures from 

61.3 – 95.6°C. In situ measurements made with the Hydrolab sonde are reported in Table 9. 

 



45 
 

 

 

5.3.1 Ölkelduháls 
 
 The two hot springs sampled at Ölkelduháls (IO-19-21 and IO-19-22; Figure 10) were 

acidic (pH 2.5 and 3.54) and had similar elemental compositions. SO4
2- was the predominant 

anion, and SiO2 and Mg2+ were the predominant species present in both springs. IO-19-21 (the 

more acidic of the two) also contained elevated Fe, Al, and elevated trace element concentrations 

relative to IO-19-22, including Mn, Ti, and V, and was also CO2-rich (2209 ppm, determined via 

acidity titration). Other elements/ion complexes had negligible concentrations.  

5.3.2 Nesjavellir 
 
 The three hot springs at Nesjavellir directly adjacent to one another (IN-19-6, IN-19-7, 

and IN-19-11) showed a trend of increasing pH with increasing apparent water volume (i.e. hot 

spring size; Figure 12). Dissolved species including SiO2, CO2, Fe, Mg, Mn, Ti, V, were all 

slightly elevated in the most acidic of the three springs (IN-19-6; relative to other samples), 

while Na, K, Ca, and Sr followed the opposite trend. IN-19-1 (pH 5.27; Figure 12), a sub-boiling 

steam-heated spring, had dilute concentrations of all major ions, metals, and trace elements. 
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5.3.3 Geysir 
 
 The three sinter-depositing hot springs sampled at Geysir (IG-19-3, IG-19-01, and IG-19-

05) had similar compositions and were characterized by ~ 100 ppm SiO2, Na+, SO4
2-, and Cl-, 

and had elevated B (415 – 684 ppb) and Rb (109 – 213 ppb) concentrations relative to other hot 

springs sampled throughout the study. 

5.4 Saturation Index (SI) 
 
 Saturation indices (SI) calculated with PHREEQC are shown in Table 10. SI is described 

as SI = Q/Ki where Q is the reaction quotient and Ki is the equilibrium constant for element i at a 

specified temperature. SI values of 0 indicate that a fluid has reached saturation with respect to a 

given species. If SI > 0, the fluid is supersaturated, and the dissolved component will tend to 

precipitate. If SI < 0, then the fluid is undersaturated and the compound will tend to dissolve. To 

account for errors in our analyses and the thermodynamic database, SI values of -0.4 < SI < 0.4 

for a given mineral/species are considered to represent saturation. 
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6. Discussion 
 
6.1 Secondary mineralogy 
 
 Alteration products in subaerial hydrothermal environments are produced through three 

pathways: (1) in situ precipitation of minerals from hydrothermal fluids (e.g. as sublimates from 

fumarolic gases, from soil condensates, or from hot spring fluids directly), (2) the removal of 

mobile elements (e.g. Ca, Mg, K, Na) and residual enrichment of immobile elements (e.g. Si, Ti, 

Zr) in host rocks subject to acid attack from volcanically-derived volatiles, and (3) in-situ 

alteration of primary igneous minerals into secondary minerals (e.g. clays) (Stoiber and Rose 

1974; Arnórsson et al. 1987; Jercinovic et al. 1990; Papike et al. 1991; Markússon and 

Stefánsson 2011; Hynek et al. 2013; McCollom et al. 2013a; Carson 2015; McHenry et al. 2017). 

In each case, the alteration mineral assemblage can be controlled through secondary mineral 

equilibria with the solid or vapor phase, through biogeochemical cycling of redox-sensitive 

elements (e.g. sulfur and iron; DesMarais 1996; Jorgensen 1999; Marteinsson et al. 2001; Tobler 

and Benning 2011; Cockell et al. 2019), or through kinetic barriers to mineral precipitation when 

hydrothermal fluids are in disequilibrium (Stefánsson et al. 2005; Kaasalainen and Stefánsson 

2011; Kaasalainen et al. 2017). 

 This section provides an overview of the secondary minerals forming in each field site 

and attempts to explain the assemblage through synthesis of mineral chemistry and field 

observations. Overall conceptual models for surface hydrothermal alteration at each field site are 

discussed in Section 6.5. 
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6.1.1 Ölkelduháls 
 

The mineral assemblages present at Ölkelduháls suggest acid leaching and pyrite/Al-

phyllosilicate authigenesis were the two leading processes controlling alteration in a relatively 

mature hydrothermal system. This was evident in samples collected within a few meters of both 

hot springs (water samples IO-19-21 and IO-19-22) based on the high concentrations of SiO2 and 

TiO2 and the common occurrence of quartz with anatase (suggesting residual accumulation of 

silica + TiO2 e.g., Stoiber and Rose 1974; Papike et al. 1991; Ruff et al. 2011). The co-

occurrence of authigenic minerals (e.g. pyrite) with quartz in subaqueous muds scooped from 

just beneath the water surface (e.g. IO-19-11 and IO-19-5; Table 2) was observed for both hot 

springs. Quartz and pyrite were oversaturated in our PHREEQC results (Table 10), suggesting 

that both species could be actively forming in the modern system. However, the possibility that 

the quartz is detrital sediment entrained in the hot spring fluids and is related to an older (hotter) 

iteration of the Ölkelduháls hydrothermal system cannot be ruled out. In either case, the 

observation of 1-2 cm euhedral trigonal quartz crystals (IO-19-14) protruding from altered muds 

a few meters away from the hot springs suggests long-term alteration and diagenetic maturation 

at Ölkelduháls.  

 Al-phyllosilicates (smectite/kaolinite) are prevalent throughout Ölkelduháls and imply 

advanced argillic alteration. Recent studies indicate that smectite can form from a basaltic 

precursor under moderately acidic hydrothermal conditions (pH ~ 4), while kaolinite forms 

under lower pH conditions (as low as 2; Berger and Velde 1992; Ryu et al. 2010; Peretyazhko et 

al. 2018, 2020). Our observations are mostly consistent with such findings, as kaolinite was 

associated with IO-19-21, which had the lowest pH of all fluids studied (2.15), and smectite was 

associated with IO-19-22 (pH 3.54). However, smectite was observed in two samples < 1 m 
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away from IO-19-21, implying that there may have been ephemeral periods of elevated pH or 

channelized flow of higher pH fluids, or that smectite is forming under lower pH conditions than 

presently accepted. Peretyazhko et al. (2018, 2020) demonstrated through experimental reaction 

of simulated Mars basalt with H2SO4 that aluminous dioctahedral smectite (montmorillonite) can 

be produced in fluids with pH as low as ~ 3, though under higher pH regimes Fe- and Mg-rich 

trioctahedral smectite (saponite) forms instead. Although the XRD techniques used in the present 

study are not suited to distinguishing phyllosilicates beyond identification of kaolinite and 

smectite group minerals, elemental abundances of Al, Fe, and Mg in smectite-rich samples could 

be used as a reasonable proxy to infer clay composition. All of the smectite-rich samples from 

Ölkelduháls are Al-rich (14.10 – 19.31 wt. %), with MgO concentrations in the ~ 1 – 2.5 wt. % 

range. This suggests that while Al-smectite is likely the predominant phyllosilicate phase in these 

samples, minor Mg-smectites may also be forming. Alternatively, some of the Al in these 

samples may be housed in amorphous or semi-crystalline materials undetectable by XRD. 

However, it cannot be ruled out that the smectite in our samples may be associated with long-

term alteration in the Hengill area and may reflect variability in fluid pH through time. 

 Pyrite was the predominant sulfur-bearing mineral present at Ölkelduháls and was found 

floating on the surface of both hot springs as a dark grey foam and in near-surface sediments, 

reflecting mobilization of Fe from host rocks and locally reducing conditions (from high H2S 

supply). The prevalence of pyrite conflicts with the highly oxidizing aqueous conditions noted in 

the Hydrolab analyses for either spring (Table 9). This inconsistency may be related to the 

sluggish oxidation of S2- under acidic conditions. Rather than proceeding along the pathway 

towards sulfate production through intermediate sulfur species (e.g., SO3
2-, S2O3

2-), S2- tends to 

precipitate metal sulfides at high concentrations (Kaasalainen and Stefánsson 2011; Stefánsson et 
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al. 2011). This provides an explanation for the high concentration of aqueous SO4
2- in the fluids 

despite extensive pyrite formation. 

Sulfate minerals were observed in two samples from Ölkelduháls. IO-19-13, a surface 

precipitate in occasional contact with steam emanating from hot springs was collected from a 

ridge ~ 10 m away from either hot spring and contained three soluble Fe-sulfate salts (copiapite, 

paracoquimbite, and rhomboclase). These minerals all imply extremely low water/rock ratios and 

locally acidic conditions in the soil (Robinson 2000; Hurowitz et al. 2005; Farrand et al. 2014; 

Rodríguez and van Bergen 2015). As Fe-sulfates are all absent in the PHREEQC results, these 

minerals likely formed through evaporation of highly acidic soil solutions, through the oxidation 

of pyrite, or through some combination of both processes. The presence of native sulfur in this 

sample also suggests partial oxidation of H2S, which is likely present in soil condensates 

(Kaasalainen and Stefánsson 2011; Hynek et al. 2013; McCollom et al. 2013a; Black 2018). 

Products and pathways of pyrite oxidation are discussed in section 6.1.4. 

6.1.2 Nesjavellir 
 

Samples collected in the vicinity of the three hot springs at Nesjavellir (IN-19-6, IN-19-7, 

IN-19-11; Figure 12) contained amorphous silica, pyrite, smectites, kaolinite, halotrichite group 

minerals, and Ca-sulfates (gypsum/anhydrite) (Tables 3 and 4). One sample also contained 

accessory anatase. Kaolinite and smectite occurred together in two dark-colored subaqueous 

muds associated with hot springs of different pH (IN-19-10, IN-19-12) along with pyrite, again 

reflecting alteration and mobilization of Fe from host basalt and input of magmatic sulfur.  

The presence of gypsum in sediment floating on the surface of a hot spring (IN-19-11) 

and anhydrite as a surface crust adjacent to another hot spring (IN-19-6; Table 3) can be 

attributed to mobilization and precipitation of Ca2+. That gypsum is forming directly as a hot 
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spring precipitate with subaerial anhydrite a few meters away implies that anhydrite formed 

through dehydration of authigenic gypsum (Klimchouk 1996). Interestingly, this contrasts with 

the PHREEQC results (Table 10), which reflect undersaturation with respect to gypsum. Thus, 

the precipitation of gypsum may be kinetically controlled. 

The prevalence of pyrite as opposed to npOx in this area implies high H2S supply and 

reducing conditions, yet Hydrolab results again suggest moderately to highly oxidizing 

conditions (pe = 3.14 – 9.88; Table 9). Such inconsistencies reflect mixed potentials arising from 

disequilibrium between redox couples (e.g. Fe3+/Fe2+, H2S/SO4, O2/H2O; Stefánsson et al. 2005; 

Kaasalainen et al. 2017). Redox measurements made with a standard Pt-electrode thus have 

limited meaning, making it challenging to assess overall fluid redox states without measuring 

individual redox couples. 

6.1.3 Geysir: sinter-depositing hot springs 
 
 Silica sinters associated with active hot springs were predominantly composed of 

amorphous silica and quartz (Table 3).  

The composition of the sinters and active silica precipitation reflect oversaturation of 

silica in the near-neutral to alkaline boiled aquifer fluids throughout the geothermal field, 

although PHREEQC results imply that the hot springs there are either at saturation or slightly 

undersaturated with respect to amorphous silica (Table 10; IG-19-3). This can be explained in 

two ways.  

Firstly, it is worth noting that amorphous silica dissolution is governed by the following 

reaction (Mountain et al. 2003): 

(1)      SiO2(am) + 2H2O ↔ H4SiO4
o 
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Thus, if dilute water is in equilibrium with amorphous silica, then its aqueous concentration 

should be equivalent to its equilibrium constant (Keq), and can be determined by 

(2) Keq = aH4SiO4  

However, silicic acid may not be the only species present in solution, as silicic acid will also tend 

to deprotonate at higher pH, forming H3SiO4
- (Arnórsson 1975; Arnórsson et al. 1985; 

Gunnarsson 2000). Additionally, silica tends to form colloidal particles and polymers that are not 

measured using standard methods. At slightly acid pH monomeric silica is the predominant form 

of silica because polymerization is inhibited (Mountain et al. 2003). At alkaline pH, however, 

this is not the case, and the silica concentrations reported for the alkaline fluids sampled at 

Geysir (IG-19-01 and IG-19-05; Table 8) therefore may be underestimated, along with their SI 

value. The most acidic of the three Geysir hot springs sampled, IG-19-3 (pH 6.01), was found to 

be at saturation with respect to amorphous silica (SI = -0.01), strengthening this interpretation.   

Another pathway for silica precipitation could be purely mechanical splashing/wave 

action. It is notable that the SI values for all siliceous materials (amorphous silica, cristobalite, 

chalcedony, quartz, silica gel) are near saturation with respect to the hot springs studied (Table 

10). Therefore, even though silica is precipitating from boiling fluids directly in hot spring pools 

(as indicated by the extensively silicified inlet tunnels e.g. Figure 13A-C), this process is likely 

quite slow. It is therefore probable that silica precipitation is aided by periods of fluid overflow 

from hot springs onto adjacent mud flats. This would cause rapid cooling of the thermal fluid, 

lowering silica solubility and causing precipitation. Additionally, capillary action through the 

porous muds adjacent to each pool could lead to evaporation and subsequent precipitation of 

silica at the surface. These mechanisms may contribute to the growth of layered sinter aprons 
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that form on the margins of each hot spring (e.g. Figure 13A-C) (Mountain et al. 2003; Tobler et 

al. 2008; Gangidine et al. 2020). 

Silica diagenesis begins with amorphous silica or opal-A, continuing through 

intermediately crystalline phases (opal-CT), and eventually maturing to quartz (Geilert et al. 

2016; Gangidine et al. 2019a). Quartz and tridymite can also form through high-temperature (~ 

900°C) hydrothermal processes, though such temperatures are higher than commonly observed 

from hot spring fluid manifestations at the surface (Morris et al. 2016). It is possible that the 

quartz and tridymite present in Geysir sinters is related to a much older iteration of the Geysir 

hydrothermal system, when average temperatures were higher. Alternatively, the tridymite in our 

samples may be detrital and related to the evolved volcanic activity present in the area. The fact 

that tridymite and opal-A are only observed in the “fossil” sinter at Geysir and not in samples 

from the currently active sinters, and that quartz is only classified as a dominant mineral in the 

fossil sample, suggests diagenetic maturation since initial deposition. 

6.1.4 Geysir: fumaroles 
 
 The fumarole mound transect at Geysir revealed mineral assemblages consistent with 

steam-heated hydrothermal activity including native sulfur, amorphous silica, anatase, pyrite, 

likely npOx, smectite, and kaolinite (Figure 13; Table 3).  

Native sulfur was found precipitating directly from volcanic vapors at the vent, where it 

is deposited through the reaction of SO2 with water. This reaction also forms H2SO4 condensates 

that lower soil pH and drive host rock leaching, supplying free cations to the system that are 

incorporated into secondary minerals (Hynek et al. 2013; McCollom et al. 2013b).  
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A very shallow (~4 cm) redox gradient was noted 20 cm from the fumarole vent, with 

pyrite below and inferred npOx above the gradient. Ferrous iron is highly mobile and readily 

forms pyrite in sulfide-rich systems (as described in Section 6.1.1), while ferric iron is highly 

insoluble and will readily accumulate as sulfate salt, npOx, or hematite, depending on the 

conditions. Whether or not the npOx formed through pyrite oxidation or dissolution and re-

precipitation of other precursor phases (e.g. Fe-sulfates) is unclear. Pyrite oxidation is a multi-

step process whereby iron is preferentially lost relative to sulfide during oxidative dissolution, 

resulting in the formation of thin layers of native sulfur and aqueous sulfuric acid. Pyrite 

oxidation can be described through the following series of reaction steps, as described by 

Strumm and Morgan (1995): 

(3)               FeS2(s) + 2.9O2 + 0.6H2O � Fe2+ + 0.4S0
(s) +1.6SO4

2- +1.2H+ 

(4)                                    Fe2+ + 0.25O2 + H+ � Fe3+ + 0.5H2O  

(5)                   Fe3+ + 3H2O � Fe(OH)3(s) + 3H+ 

(6)              FeS2 + 14Fe3+ + 8H2O � 15Fe2+ + 2SO4
2- + 16H+ 

Note that the mobilization of ferrous iron from pyrite releases some acidity, but under 

atmospheric conditions oxidation should occur rapidly (equations 3 and 4). The ferric iron may 

then precipitate as insoluble ferric hydroxide (equation 5), or pyrite itself can reduce ferric iron, 

resulting in the release of 16 moles of hydrogen per mole of pyrite (equation 6; leading to the 

deposition of sulfates at low water/rock ratios or release of sulfate, ferrous iron, and acidity, at 

high water/rock ratios). According to experimental work by Todd et al. (2003), the resultant iron-

bearing solid that forms is dependent on pH: at pH < 4 ferric hydroxysulfates (e.g. copiapite) are 

the main pyrite oxidation products. At pH > 4, ferric oxyhydroxides (e.g. goethite) begin to form 
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as pH continues to increase. However, because Fe-sulfate salts are generally highly soluble, they 

may easily be dissolved in wet environments and re-precipitated as ferric oxides. Assigning an 

origin to the npOx therefore requires further study. Nevertheless, the lack of Fe-sulfates and 

ubiquitous presence of probable npOx at the surface implies a mildly acidic, not hyper-acid 

fumarole environment. 

 Accumulation of Si- and Ti-oxides (as amorphous silica and anatase), along with Zr as 

seen in the Geysir fumarole are characteristic of the removal of more mobile cations from 

precursor rocks. One sample collected from the fumarole mound contains the highest TiO2 

values observed (IG-19-9, 6.70 wt.% TiO2; Table 6). Previous investigations of anatase in altered 

hydrothermal samples support the conclusion that TiO2 accumulates through the action of acidic 

hydrothermal fluids as colloidal aggregates rather than homogeneously throughout the precursor 

rock (Geptner et al. 2007; Smith et al. 2009; Markússon and Stefánsson 2011). The extremely 

elevated TiO2 concentrations observed in IG-19-9 relative to altered sediments collected nearby, 

which ranged from 1.80 – 2.46 wt. % TiO2, support these interpretations. 

6.2 Controls on local variability in alteration products 

6.2.1 Parent lithology 
 
 Black (2018) and McHenry et al. (2017) note that the bulk composition of the host rock 

in which a hydrothermal system is located correlates with the resultant secondary mineralogy 

present on the surface. It follows that in Iceland Fe-bearing phases should be most prevalent 

(given the elevated iron content of Icelandic basalts relative to most terrestrial basalt), and our 

observations confirm that this is the case as Fe-sulfates and pyrite are among the most common 

alteration products observed. However, heterogeneity in host rock composition is evident 

throughout the region investigated (e.g. this study, Jakobsson 1972; Kaasalainen and Stefánsson 
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2012; Kaasalainen et al. 2015; Black and Hynek 2018). In the case of Geysir, more evolved 

magmas have resulted in the accumulation of rhyolite at the surface and near subsurface 

(Ármannsson 2016). The influence that evolved lavas have on the secondary minerals present at 

Geysir is unclear. McHenry et al. (2017) observed abundant Al-sulfate minerals as secondary 

phases forming in the Lassen hydrothermal system, which is hosted in an arc volcanic complex 

characterized by andesitic to dacitic compositions (which are lower in Fe, Mg, and Ca than 

basalt, although comparable with respect to Al concentrations). The absence of Al-sulfates and 

presence of Ca- and Mg-sulfates in the fumaroles sampled at Geysir suggests that rhyolite may 

not be influencing the mineralogy of the thermal features studied. Nevertheless, the uncertainty 

regarding host lithology makes it difficult to compare alteration products, particularly when 

assessing the extent to which acid leaching has accumulated immobile cations (e.g. Si, Ti). Such 

problems also arise when assessing aqueous alteration histories of Martian sediments, as 

precursor rock compositions are often poorly constrained, as discussed further in section 7.1. 

Ölkelduháls and Nesjavellir are both basalt- or basaltic hyaloclastite-hosted systems, and 

in spite of local variability, the overall bulk geochemical composition of host rocks is confined to 

a restricted range (as confirmed to considerable depth based on extensive drilling; Arnason et al. 

1969; Gebrehiwot 2005; Natukunda 2005; Jousset et al. 2011; Ármannsson 2016; Nono et al. 

2018). This allows for better comparison between alteration products and host rocks with respect 

to major element composition, as the original composition of the host material can be assumed 

within a reasonable margin of error. However, the heterogeneity present in host rocks (and 

subsequent alteration products) is more pronounced for trace elements. Initial concentration of 

the host lithology, the mineralogical carrier of a particular trace element, hydrothermal fluid 

composition, and the accessibility of such rocks to the fluids all influence the susceptibility of a 
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particular trace element to transport and redistribution at the surface. Studies of trace elements in 

surface hydrothermal systems must therefore consider how the accumulation of trace elements is 

affected by elemental availability at the source, in addition to intrinsic factors of mobility, pH, 

etc. 

6.1.2 Effect of previous alteration episodes 
 
 The age of a geothermal system affects the extent to which modern alteration products 

and ‘original’ protoliths can be directly compared. The Hengill volcanic system became active at 

~ 400 ka, placing an upper limit on the age of its geothermal system (Gebrehiwot 2005). The 

volcanic structures associated with Geysir have been dated to ~ 800 ka, also suggesting that 

geothermal activity has occurred in the region for a long time (Ármannsson 2016). Due to the 

age of the volcanic deposits in the sites studied, it is possible that the present hydrothermal 

features are hosted in deposits that have been altered during earlier hydrothermal episodes.  

 The identification of quartz and tridymite in Geysir sinters and euhedral quartz crystals at 

Ölkelduháls supports extensive alteration or post-depositional modification at both sites. The 

degree to which hydrothermal overprinting may have influenced the geochemical composition 

and mineralogical maturity of our samples, however, is uncertain. 

Lynne et al. (2006) note that fumaroles commonly manifest following hot spring systems 

discharging NaCl waters (and sinters), a result of gradual water table decline that favors volcanic 

vapor condensation at the near surface. Due to the thermodynamic instability of opal-A in 

sinters, it has been shown that maturation from opal-A to quartz in silica sinters subjected to 

acidic fumarolic steam can begin in months. Increasing the crystallinity of silica precipitates also 

destroys original textures preserved by rapid silicification of microstructures when sinters are 

deposited. The end result of this process is quartz-rich sinter with etched and pitted dissolution 
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textures, sometimes accompanied by kaolinite (Lynne et al. 2006, 2017; Schinteie et al. 2007). 

Implications of this process for proposed sinters on Mars are explored in Section 7.1.2. 

6.3 Aqueous geochemistry 

6.3.1 Steam-heated acid waters 
 
 Acid supply (i.e., fluid pH) is a major control on the hydrothermal alteration occurring at 

the surface. Protons are supplied to hydrothermal fluids through dissociation of H2SO4 generated 

directly through oxidation of magmatic volatiles following this reaction: 

(4) 4SO2 + 4H2O → 3H2SO4 + H2S and 

(5) H2S + 2O2 → H2SO4 

Alternatively, as described in equation (3) (Section 6.1.4), pyrite oxidation also supplies a source 

of H2SO4, lowering pH while adding ferrous Fe to the fluid that can rapidly oxidze to Fe2O3. 

Regardless of the source of H+, lower pH was well-correlated with greater SO4 concentrations 

(Figure 15). 
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Figure 15: Relationship between SO4 and pH in hot 
springs. Higher concentrations of SO4 are generally 
correlated with lower pH, indicating the influence of 
H2SO4 dissociation on water pH. Symbols represent 
each field site. Black stars are Ölkelduháls hot 
springs, pink diamonds are Nesjavellir hot springs, 
blue circles are Geysir hot springs. 
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 Many studies indicate that hydrothermal alteration of host rocks at high temperature (in 

the deeper parts of the hydrothermal system) and low pH (in zones of high steam/water ratios at 

the surface) is essentially an isochemical process with respect to major rock-forming oxides 

(Arnórsson et al. 1978; Arnórsson 1995a; Scott et al. 2014; Stefánsson et al. 2016). This can be 

inferred by measuring the composition of the most acidic hot spring fluids and fumarolic 

condensates where generally Fe > Al > Ca > Mg. However, fluid compositions are not simply 

controlled by host rock compositions. Rather, the mobility of a particular element in a thermal 

pool is foremost related to the secondary fluid-mineral equilibria, with departures from 

thermodynamic equilibrium explainable through biogeochemical cycling and/or kinetics. 

 The relationships of various metals with respect to pH are plotted in Figure 16. Most 

metals, including Mg, Fe, Al, Ca, Cr, Mn, Ni, Ti, V, and Zr, are most highly concentrated in the 

fluids with lowest pH, consistent with enhanced dissolution of host rocks and elemental mobility 

when H+ activity is high. This generalization breaks down somewhat in the neutral to alkaline 

waters from Geysir (e.g. elevated Al in IG-19-3 and IG-19-5; Table 8). Nevertheless, at pH ≥ ~ 

3, the concentration of the elements listed above declines exponenitally compared to the most 

acidic hot spring waters, indicating signifcantly lower mobility at moderately acidic to near-

neutral pH. 

 As stated previously, elemental mobility is related to the stability of primary minerals 

under various conditions. In basalt-hosted acid waters, hydrolysis of olivine, pyroxenes, and Ca-

plagioclase occurrs spontaneously, releasing ions into solution (Stoiber and Rose 1974; Hynek et 

al. 2013; McCollom et al. 2013b; Black 2018). If pH is low enough (<< 3), these metals remain 

dissolved until supersaturation at very low water/rock ratios (seasonally or when water flows 
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downslope and evaporates). At moderately acidic to near-neutral pH, rock dissolution becomes 

incongruent and secondary mineral authigenesis consumes ions, reducing the mobility of most 

elements in the thermal waters (Markússon and Stefánsson 2011).  

 

 

 

 

 

  

Figure 16: Bivariate plots showing relationship between pH and elemental concentration of Mg, 
Fe, Al, Ca, Mn, Cr, Ni, Ti, V, and Zr in hot spring waters. These elements follow exponential 
trends of decreasing concentration with increasing pH. Slight increases in Al, V, and Zr 
concentrations in alkaline waters suggest slight mobility at higher pH. Cr is below detection (and 
therefore not plotted) at pH ≥ ~5. Symbols represent each field site. Black stars are Ölkelduháls hot 
springs, pink diamonds are Nesjavellir hot springs, blue circles are Geysir hot springs. 
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6.3.2 Geysir boiled alkaline waters 
 
 Sodium, K, Cl, As, B, Cl, Ga, Ge, and Rb display opposite relationships to those 

described in Section 6.3.1.1, whereby alkaline fluids at Geysir maintained the highest 

concentrations. This observation indicates elevated mobility at higher pH and sub-boiling 

temperatures (Table 8, Figure 17). These elements are likely scavanged from host rocks at depth 

(where water temperatures exceed 150°C) and carried to the surface where they emerge at hot 

spring vents. Whether these elements precipitate directly with siliceous sinters/npOx, or become 

incorporated into their own authigenic minerals, is unclear and requires further trace element 

characterization of the solids. Given the low concentrations of As, B, Ga, Ge and Rb, however, it 

is probable that their concentration is primarily controlled through substitution for major ions in 

secondary minerals. For example, Ge has been shown to follow Si in hydrothermal solutions 

(Arnorsson 1984; Evans and Derry 2002; Wood and Samson 2006; Lugolobi et al. 2010; Berger 

et al. 2017), and Ga has been correlated with microbial activity in siliceous sinters from 

Yellowstone, supporting the hypothesis that Ge and Ga become incorporated into siliceous 

sinters (Arnorsson 1984; Evans and Derry 2002; Wood and Samson 2006; Lugolobi et al. 2010; 

Berger et al. 2017; Gangidine et al. 2019). Cl and B are highly mobile and may become 

incorporated into soluble halides or borates at very low water/rock ratios, neither of which were 

observed in the present study (Wood and Samson 2006; Kaasalainen and Stefánsson 2012; 

Kaasalainen et al. 2015, 2017; Pirajno 2020). K and Rb are well-correlated in our water samples 

(Figure 18), suggesting that Rb may be incorporated into K-bearing secondary minerals. Illite (a 

K-bearing phyllosilicate), although not observed in our samples (as determined by bulk sample 

XRD), was found to be oversaturated in four hot spring waters with near-neutral to alkaline pH 

(Table 10), providing a potential sink for both K and Rb.  
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6.3.3 Alkaline earth metals: Ca, Sr, Ba 
 
 Our observations imply that Ca and Sr do not adhere to the general trends described 

above between pH and concentration across any of the sites studied. Previous studies indicate 

that Ca has similar mobility to other major rock-forming elements, and its concentration in 

thermal fluids is controlled by rock leaching (Humphris and Thompson 1978; Arnorsson et al. 

1982; Markússon and Stefánsson 2011; Kaasalainen and Stefánsson 2012; Björke et al. 2015; 

Kaasalainen et al. 2015). The controls on mobility/concentration of Ca in our samples is 

therefore uncertain. Ca concentrations are surprisingly consistent between all hot springs (31.97 

– 50.42 ppm) except the three hot springs sampled at Geysir, where its concentration is low (~1-

Figure 17: Bivariate plots showing relationship between pH and elemental concentration of Cl, K, 
Na, Ge, B, As, and Rb in hot spring waters. These elements were generally correlated with 
alkaline waters, indicating their boiled aquifer water source. Arsenic was below detection in all 
but the most acidic waters, and the waters sampled at Geysir (see Table S2 for LODs). Symbols 
follow same pattern as Figure 16. 
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3 ppm). This observation indeed suggests that Ca is sourced through acidic leaching of host 

rocks, though the reason for its divergence from the trend followed by other metals in steam-

heated springs is unclear. A possible near-surface source of Ca (e.g., a buried gypsum deposit) 

for IN-19-11 may explain why this near-neutral spring has the highest Ca concentrations across 

all samples (Table 8). The observation of gypsum and anhydrite associated with this hot spring 

supports this hypothesis, although the subsurface was not sampled. However, ignoring IN-19-11 

(pink diamond, pH = 6), the rest of the data plotted in Figure 17 shows a strong Ca-pH 

correlation for the rest of the waters. 

 We also note strong correlation between Ca and Sr in altered solids and fluids across all 

field sites (Figure 19), consistent with its probable substitution for Ca in secondary minerals (e.g. 

carbonates, sulfates, aluminosilicates). Sr was slightly oversaturated in one hot spring (IN-19-7, 

as celestine [SrSO4]; Table 10), although the concentration of Sr is quite low, suggesting 

minimal accumulation as a pure mineral phase. Barium can also substitute for Ca in carbonates 

and sulfates or precipitate directly as barite (Kaasalainen and Stefánsson 2012). Barite was either 

supersaturated or near saturation in all 

of our samples indicating its 

precipitation, although barite is not 

observed in any of our samples. This 

may be due to the low availability of 

Ba in the environment, or barite 

precipitation may be kinetically 

impeded. Nevertheless, Ba shows good 
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Figure 18: Rb concentrations plotted against K in thermal 
waters. Symbols are same as in Figure 16. 
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correlation with SO4 (Figure 19), implying that its concentration may be controlled by barite 

saturation. 

 

6.3.4 Silica solubility in acid waters 

Determining the behavior of silica in acid-sulfate hydrothermal fluids is challenging. 

Silica is generally considered insoluble at low pH, and is often used in conjunction with anatase, 

sulfur, etc. as an indicator of acidic hydrothermal conditions (Squyres et al. 2008; Ruff et al. 

2011; McCollom et al. 2013a; McCanta et al. 2014; Rodríguez and van Bergen 2015; McHenry 

et al. 2017a; Flahaut et al. 2019). However, silica concentrations were moderately high across all 

Figure 19: (top) Sr and Ca concentrations in hot spring 
waters, and (bottom) Ba and SO4. Symbols are same as in 
Figure 16. 
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pH ranges (Table 8), consistent with its pH-independent solubility. Although often considered to 

accumulate as residue, it does not correlate well with TiO2 or Zr in our solid samples (discussed 

further in Section 6.4.1). Furthermore, thin crusts overlying soils adjacent to acidic 

springs/fumaroles (e.g. IN-19-9, IG-19-8) contained silica as major or accessory phases (quartz 

or amorphous silica). These surface crusts did not appear to be leached residue associated with 

host rocks, and were easily separated from the altered soils below, suggesting that they were 

precipitated crusts of silica. Observations of silica-rich surface crusts associated with acid hot 

springs and fumaroles, and possibly authigenic quartz forming from acidic waters (e.g. IO-19-

21) challenge interpretations that consider SiO2 as an insoluble oxide at low pH. Experimental 

studies by (Tosca et al. 2004) determined that hydrolysis of olivine at low pH releases aqueous 

silica into solution that quickly reaches saturation with respect to amorphous silica. Their results 

seem consistent with our observations of silica crusts forming on the surface of hot 

springs/fumaroles where acidity is high, and may indicate that silica is redistributed on small 

scales at low pH, rather than being carried from depth, as is the case in boiled alkaline waters. 

Silica phases were often supersaturated in our geochemical calculations (Table 10), supporting 

accumulation of silica by precipitation and as residue.  

It is also worth noting that the mobility of silica at each site may be affected by the 

composition of the host. For example, basaltic volcanic glass (e.g. sideromelane, common in 

hyaloclastite) is highly reactive (Bloise et al. 2017) and would readily alter under hydrothermal 

conditions, presumably releasing dissolved silica (among other metal oxides) to the fluid. This 

stands in contrast to quartz, which is common in evolved lavas, and is considered stable under 

most conditions. Rutledge et al. (2018) studied glacial meltwaters associated with volcanic 

bedrock in the Cascade mountains, finding that waters in contact with mafic substrates had 
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significantly higher dissolved silica than those associated with felsic rocks. Although Rutledge et 

al. (2018) studied low-temperature to ambient fluids, these principles should still hold under 

hydrothermal conditions. 

6.4 Geochemical patterns of acid-sulfate alteration 
 

Acid sulfate alteration of host rocks produced the following mineral assemblages (Tables 3 

and 4): 

Group (1) Mixtures of disseminated leached host rocks and authigenic clays containing a 

silica phase (quartz or amorphous silica) ± anatase + smectite and/or kaolinite and either pyrite 

(below a shallow redox gradient) or likely npOx (above a shallow redox gradient).  

Group (2) Grey to black muds floating on the surface or just beneath the water surface of 

steam-heated hot springs containing pyrite + smectite and/or kaolinite. Accessory phases 

typically included quartz, amorphous silica, and anatase, though these are likely leached 

alteration products entrained in the primarily authigenically-derived hot spring mud. 

Group (3) Surface crusts/precipitates in intermittent to constant contact with volcanic 

vapors, hot spring fluids, or soil solutions, containing mixtures of sulfates (Fe-, Mg-, Ca-) and in 

some cases intermixed with accessory amorphous silica, native sulfur, anatase, and/or npOx. 

 The geochemical trends defining each of these solid sample types are described in 

Sections 6.4.1 – 6.4.2. 

6.4.1 Groups 1 and 2: leached soils and altered muds 
 

Groups 1 and 2 are two groups of alteration products defined by the progressive leaching 

of host rocks and the formation of authigenic minerals. TiO2 and Zr are considered insoluble 

under acidic conditions (Humphris and Thompson 1978; Rubin et al. 1993; Markússon and 
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Stefánsson 2011; McHenry et al. 2017), and the residual accumulation of these elements is 

characteristic of leaching-dominated alteration regimes. However, this assumption is challenged 

by the observation of small amounts of Ti and Zr in acid waters (Table 8), indicating partial 

solubility. Nevertheless, the linear relationship between TiO2 and Zr in solids is demonstrated in 

Figure 20, indicating that these elements accumulate as residue under acidic conditions.  

If it is assumed that Zr is not removed from host rocks subjected to acidic fluids, its 

concentration can be plotted against that of other elements to assess the behavior of those 

elements under acid-sulfate conditions, as seen in Figures 20 and 21. Aluminum shows a loose 

correlation with Zr, suggesting that is is immobile under all but the most acidic conditions (pH < 

2.5, e.g., Markusson & Stefánsson 2011). However, Al can also be sequestered in Al-

phyllosilicates (e.g. kaolinite, a common alteration product) or oxyhydroxides, elevating its 

concentration. Fe2O3 may also be added (as pyrite or npOx) or removed, though it has been 

observed to be more mobile than Al2O3. Other oxides including MnO, MgO, CaO, Na2O, and 

K2O were all leached out of host rocks to varying degrees, consistent with their relatively high 

mobility under acidic conditions. These oxides had generally inverse relationships to Zr 

concentrations, and are not included in Figure 20 or 21. Magnesium oxide, CaO, and MnO may 

be incorporated into smectites, if present, although their accumulation is lesser than that of Al2O3 

or Fe2O3 given the relatively acidic conditions across the study areas impeding smectite 

formation (Berger and Velde 1992). 

Spider plots for disseminated, leached soils and subaqueous muds are shown in Figure 

22. These plots show relative enrichment and depletion patterns of major oxides (and Zr) 

normalized to median Icelandic basalt concentrations (Kaasalainen and Stefánsson 2012). The 

relative enrichments of TiO2 and Zr are again consistent with their accumulation as residue. 
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Al2O3 was either largely unchanged compared to basalt or ‘enriched’ through its incomplete 

removal or addition into authigenic phases. Fe2O3 followed a similar pattern, but given its higher 

mobility was more often depleted in the leached sediments, and was ‘enriched’ in subaqueous 

muds due to its addition (as pyrite). P2O5 is enriched in all altered samples, but the extreme 

enrichment shown in these diagrams can be attributed to the very low P2O5 concentrations in the 

median Icelandic basalt (0.02 wt. %, used as the “unaltered” substrate in these diagrams), 

compared to the much higher P2O5 concentrations measured in the local substrate samples for 

Nesjavellir (0.25 wt%) and Ölkelduháls (0.08 wt %). These more modest enrichments (wt. % up 

to 0.56) can be attributed to the update of P2O5 into secondary minerals, though no P-bearing 

phases were directly observed. 

 

Figure 20: SiO2, TiO2, Fe2O3, and Al2O3 concentrations plotted against Zr in group 
1 (black asterisks) and group 2 (pink diamonds) solids, along with median Icelandic 
basalt values from Kaasalainen & Stefansson (2012) (green triangles).  
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Figure 21: Zirconium concentrations plotted against Ba, Cr, Co, Zn, V, and Ni for 
solid samples. Symbols are same as in Figure 20. 
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The degree of accumulation or depletion of elements in leached sediments for 

Ölkelduháls (IO-19-12, IO-19-7, IO-19-10) and the Geysir fumarole mound (IG-19-9, IG-19-10, 

IG-19-12) was not the same. Ölkelduháls leached soils generally had higher SiO2, TiO2, and Zr 

by weight than those from Geysir, but lower Al2O3 and Fe2O3 (Table 6). This could be related to 

0.001

0.01

0.1

1

10

100

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Zr

Disseminated leached sediments

IO-19-12 IO-19-7 IO-19-10 IG-19-9 IG-19-10 IG-19-12

0.001

0.01

0.1

1

10

100

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Zr

Subaqueous muds

IO-19-11 IO-19-5 IN-19-10 IN-19-12 IN-19-8

Figure 22: Spider plots for subaqueous muds and leached sediments 
normalized to median Icelandic basalt values reported in Kaasalainen & 
Stefánsson (2012) indicating relative enrichment or depletion of major oxides 
+ Zr. Values > 1 indicate higher concentrations relative to basalt, while values 
< 1 indicate lower concentrations. A value of 1 indicates no difference. 
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the differences in water availability between each site. At Ölkelduháls, high availability of acidic 

fluids can effectively remove elements, and can entrain and remove authigenic minerals after 

their formation. In fumarolic settings (such as at Geysir), availability of water is much lower, 

which slows down leaching of soluble phases despite high acid supply and would prevent post-

depositional transport of authigenic minerals. Alternatively, the dominance of clays in the Geysir 

fumarole mound compared to Ölkelduháls, which had more quartz, could help explain these 

compositional differences. The kaolinite and smectite from Ölkelduháls would help concentrate 

Al2O3, while higher silica would be expected in quartz-rich samples.  

As described in Section 6.3.1, the behavior of metals including Ba, Cr, Co, Ni, V, and Zn 

is ultimately controlled by host-rock leaching in acidic settings, explaining their higher 

concentrations in the most acidic waters (Table 8). Their mobilities are all likely greater than that 

of Zr, and they appear to be removed non-stoichiometrically under all but the most acidic 

conditions, based on their somewhat scattered relationships seen in Figure 21. Although it 

appears that the accumulation of many trace elments may be highly source-controlled, some 

general trends were still observed. V seems to be relatively resistant to acid leaching, and was 

correlated with higher Zr concentrations. Nickel, Co, Cr, and particularly, Zn, showed the 

opposite trends, inversely correlated with Zr. Trends with Ba were difficult to discern, and this 

may be related to its moderate mobility and incorporation into secondary minerals. 

The gradual depletion of Ni and Cr is consistent with other studies that have observed 

these species to be only moderately resistant to acid leaching (Humphris and Thompson 1978; 

Ming et al. 2006). This suggests that Ni and Cr become readily incorporated into secondary 

minerals. Ni is commonly known to precipitate with sulfides (Ewers and Keays 1977; 

Kaasalainen et al. 2015; Libbey and Williams-Jones 2016; Fontboté et al. 2017), and Cr forms 



73 
 

oxides, though no Ni- or Cr-bearing minerals were observed. Again, however, the relative 

abundance of trace elements in secondary alteration products appears to be directly tied to the 

composition of the source rock. 

6.4.2 Group 3: surface precipitates 
 
 Due to the difficulties in developing a sulfur calibration using XRF techniques, the 

geochemical data on sulfur-rich minerals are limited in this study. IN-19-2 and IO-19-13 were 

the only two ‘pure’ sulfate mineral mixtures analyzed for sulfur, and selected trace element 

concentrations for these samples are reported in Table 7. Vanadium and Zn were both present in 

small amounts in IN-19-2 (215 and 111 ppm, respectively), which contained halotrichite group 

minerals, indicating their incorporation into sulfates. IO-19-13 (a mixture of Fe-, Mg- and Al-

sulfates) contained negligible amounts of most trace metals. The minor amount of Zr present in 

IO-19-13 (80 ppm) suggests that a small amount of leached material may be mixed in with this 

sample, which was collected from the surface of a clay-rich mound. The incorporation of Zr into 

sulfates cannot be ruled out, however. Other sulfate or native sulfur-containing alteration 

samples were either not analyzed or else were significantly mixed with altered/leached sediments 

(from groups 1 and 2). Determining where the trace elements in these samples reside is therefore 

not possible using this data. More work must be done to characterize how trace metals are 

substituted into sulfate minerals. 

6.5 Overall conceptual models of surface hydrothermal alteration 
 
 The overall controls on hydrothermal alteration, as described above, include elemental 

mobility under variable fluid conditions, host lithology, maturity of the system, extent of mixing 

between end-member water types, and volatile/heat supply (Markússon and Stefánsson 2011; 

Björke et al. 2015). Each area hosted unique expressions of such processes, and a summary of 
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the findings is provided below in Sections 6.5.1 – 6.5.4 along with an overall conceptual model 

that accounts for the primary observations and interpretations from each site. 

6.5.1 Ölkelduháls hydrothermal system 
 
 The mineral assemblages and geochemical patterns observed at Ölkelduháls are governed 

by steam-heating of local CO2-rich groundwater (observed in previous studies; Natukunda 2005), 

the mobility of elements under acid to moderately acid (pH ~ 2 – 3.5) conditions, interaction of 

thermal fluids with both basalt/hyaloclastite and previously altered deposits, and the mixing of 

volcanic vapors and groundwater. These processes manifest in various ways throughout the area. 

Input and oxidation of magmatic volatiles (predominantly SO2/S2-) across the site supply protons 

in both surface hot springs and soils. Although soil solution composition was not determined, 

previous studies of soils in Icelandic hydrothermal areas indicate high acidity and sulfate 

concentrations in near-surface soils (Kaasalainen and Stefánsson 2012). The end result is large 

areas of hydrothermally altered ground dominated by clays (smectite/kaolinite) and pyrite, with 

sulfates accumulating at the surface as seen in our XRD results (Tables 3 and 4). Whether or not 

sulfates have formed through oxidation of pyrite or evaporation of acidic soil solutions is 

unclear, and a combination of both processes is possible (Robinson 2000; Todd et al. 2003; Liu 

et al. 2008; Tabelin et al. 2012).  
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The differences in acidity between the two springs explains the higher concentrations of 

most metals in IO-19-21 (pH ~ 2) compared to IO-19-22 (pH ~ 3.5) (Table 8), and the 

accumulation of TiO2- and Zr-rich residue. Such observations highlight the highly variable flow 

of heat, volatiles, and fluids in the subsurface that leads to vastly different fluid chemistry in two 

adjacent hot springs. A simplified conceptual model of the Ölkelduháls hot springs is shown in 

Figure 23. 

 

6.5.2 Nesjavellir: steam-heated hot springs 
 
 The interaction between the three distinct hot spring pools sampled at Nesjavellir (IN-19-

6, IN-19-7, and IN-19-11) leads to a unique water chemistry gradient across the area. IN-19-6 

Figure 23: Conceptual model demonstrating formation of two hot springs at Ölkelduháls (IO-19-21, left 
and IO-19-22, right). Both represent local groundwater mixed with magmatic volatiles. The lower pH of 
IO-19-21 could be related to the lesser volume of water compared to IO-19-22 (i.e., less dilution of 
sulfuric acid). This controls the overall chemical conditions of each spring, as most metals are mobile in 
IO-19-21 and readily leached from host rocks, while the slightly elevated pH of 3.5 in IO-19-22 precludes 
isochemical rock dissolution. Surface Fe-sulfates (Table 3) on a small mound between the hot springs 
could reflect evaporation of acidic soil solutions, oxidation of pyrite, or both processes. 
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was the most acidic of the three hot springs (pH = 2.7), and appeared to flow into and mix with 

IN-19-7 (pH = 3.35), which in turn appeared to mix with IN-19-11 (pH = 6). Although higher 

sulfate concentrations correlate with lower pH between these three hot springs, temperature does 

not, as the near-neutral IN-19-11 was the hottest of the three implying decoupled flow of heat 

and volatiles in the subsurface.  

The elevated metal concentrations seen in IN-19-6 (Table 8) are consistent with its low 

pH driving rock dissolution, and a TiO2- and Zr-rich crust was associated with this spring again 

demonstrating leaching. All three springs are steam-heated hot springs, and their chemical 

conditions are ultimately driven by dissolution of host rocks resulting from the input of 

magmatic volatiles to meteoric water. The unique chemical composition of each spring does not 

suggest that mixing is a dominant process occurring between each spring. One surprising 

observation was that the apparently largest, near-neutral spring (IN-19-11; pH =6.05) also had 

the highest temperature of the three (at 86.0°C). This indicates dilution of acidity by meteoric 

water input, but also decoupled flow of heat and volatiles in the near subsurface. In this case, 

more heat is partitioned into IN-19-11, but a higher flux of volatiles is partitioned into IN-19-6 

and IN-19-7, resulting in their acidic conditions.  

As is common in all steam-heated hot springs throughout the study areas, pyrite was 

detected in ‘foamy’ mud floating on the surface of each spring despite oxidizing conditions 

observed in our in-situ measurements (Table 9), along with smectite and/or kaolinite. As 

discussed in Section 6.3.3, the exact reason for the elevated Ca concentrations in IN-19-11 

compared to the other two hot springs is uncertain. A possible near-surface soluble Ca source, 

such as a buried gypsum deposit, which are commonly observed as products of surface 

hydrothermal alteration throughout Iceland and elsewhere (Geptner et al. 2007; Hynek et al. 
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2013; Carson 2015; Black 2018), can explain this observation. This can also provide an 

explanation for the presence of gypsum in mud floating on the surface of IN-19-11 (solid sample 

IN-19-12; Tables 3 and 4) despite it being undersaturated in the SI calculations. A simplified 

schematic model demonstrating the manifestation and interaction of all three hot spring is shown 

in Figure 24. 

 

Figure 24: Simplified conceptual model demonstrating relationships between IN-19-6, IN-19-
7, and IN-1911. As at Ölkelduháls, the most acidic spring (IN-19-6) is the spring with the least 
apparent water volume, while the largest hot spring approaches neutral pH (IN-19-11). Each 
spring appears to flow into the next, although the distinct chemical conditions of each water 
implies that mixing may be minimal. All three springs are characterized by floating mud 
containing pyrite and phyllosilicates, and IN-19-11 also has gypsum. Sulfates were observed 
subaerially on a small ledge in between the three springs, and included halotrichite group 
minerals and anhydrite. The high temperature and near-neutral pH of IN-19-11 contrasts with 
the cooler temperature and low pH of IN-19-6, implying decoupled heat/volatile flow in the 
subsurface. 
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6.5.3 Geysir: Boiled alkaline hot springs 
 
 The alkaline hot springs at Geysir (IG-19-1 and IG-19-5) represent the boiled geothermal 

aquifer water that has risen to the surface through zones of high permeability mixed with 

variable amounts of magmatic volatiles. The water is therefore rich in mobile elements 

partitioned into the boiled aquifer liquid (e.g. Na, Cl) and contains moderate amounts of SO4 

(Table 8). These waters are also relatively SiO2-rich, a result of host rock dissolution at depth 

where aquifer temperatures are high (Arnorsson 1975; Arnorsson et al. 1978, 1982). As 

discussed in Section 6.1.3, deposition of silica sinters at the surface occur at near equilibrium 

conditions, gradually entombing the inlet tunnels with silica. Rapid deposition can occur where 

splashing/wave action lowers the temperatures of water droplets, leading to the formation of an 

apron of siliceous sinter surrounding the spring, as seen in Figure 13A,C (Jones and Renaut 

2003; Mountain et al. 2003; Lynne et al. 2017). The sampled silica sinters were found to have 

low concentrations of all oxides/elements (except silica; Table 6). Silica sinter chips 

unassociated with active springs are scattered around the thermal area and suggest previous 

manifestations of alkaline hot spring systems that have migrated through time. One such piece of 

a broken sinter chip (IG-19-15) was determined to contain quartz and opal-A (Table 3), 

indicating elevated diagenetic maturity consistent with its association with an older spring. This 

sample also contained tridymite, however, which forms under high-temperature conditions, 

whether volcanic or hydrothermal (870 – 1470°C; Morris et al. 2016). The temperatures of 

formation for tridymite are considered to be far greater than the near-boiling temperatures of the 

surface hydrothermal conditions at present. However, McHenry et al. (2017) and Wanta (2018) 

note abundant tridymite in amorphous silica-rich samples at Lassen Volcanic National Park, CA 

and suggest that tridymite formation through low-temperature (i.e., boiling to sub-boiling) 



79 
 

hydrothermal fluids may be possible. A conceptual model for the formation of silica sinters in 

alkaline hot springs at Geysir is provided in Figure 25. 

  

The sub-neutral (pH = 6) hot spring sampled at Geysir (IG-19-3) presents an interesting 

case where signatures of both acidic hot spring fluids and boiled alkaline aquifer fluids are 

present. The hot spring was recessed in a ~0.5 m deep cavity in the ground, where it appeared to 

have tunneled through the sediment, depositing layered, red-stained silica sinter. Whether its 

current subsurface position is related to declining water table through time or entrainment and 

removal of near-surface sediment is unclear. However, the sinter itself (IG-19-4) had elevated 

Figure 25: Simplified conceptual model depicting flow of aquifer fluid and formation of 
sinter aprons in alkaline hot springs (e.g. IG-19-1, IG-19-5). Silica is near saturation with 
respect to the water, causing slow accumulation under the water surface. Where water 
splashes along the margins of the spring it cools rapidly and forms layered sinter deposits 
surrounding its extent. 
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concentrations of Ba, Zn, and Zr (all up to a few hundred ppm; Table 7) relative to other sinter 

samples. The accumulation of these elements can be explained by their relative mobility under 

different conditions. It is evident that the IG-19-3 spring represents a boiled aquifer fluid given 

its elevated concentration of the mobile elements Na, Cl, and B and its location near other 

alkaline thermal features at Geysir. Its slightly acidic pH is caused by a relatively higher ratio of 

volcanic steam compared to the alkaline springs in the area. Ba, Zn, and Zr are all observed to be 

somewhat mobile under the hot, alkaline conditions in the deep subsurface (Rubin et al. 1993; 

Kaasalainen et al. 2015). Their accumulation is noted in downhole well samples prior to boiling 

and depressurization in Iceland (Hardardóttir et al. 2009), suggesting their accumulation in 

secondary minerals at depth and transport under alkaline conditions. Since IG-19-3 has 

maintained its alkaline character until reaching the near-surface (where it mixes with volcanic 

vapors), these metals may approach saturation upon addition of acid (H2SO4) and cooling along 

with SiO2, and become incorporated into sinters or secondary minerals. Barite is just 

oversaturated in our geochemical calculations, supporting this hypothesis, at least with respect to 

Ba, although determining the source of trace metals in these sinters would require more detailed 

analysis. A conceptual model demonstrating the formation of the mixed spring at Geysir is 

provided in Figure 26. 
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6.5.4 Geysir: fumarole alteration model 
 

 Geochemical and mineralogical trends associated with leaching and precipitation of 

metals from host rock at low water-rock ratios in the Geysir fumarole are consistent with 

previous studies of fumarolic alteration (Stoiber and Rose 1974; Papike et al. 1991; Hynek et al. 

2013; McCollom et al. 2013a; Carson 2015; McHenry et al. 2017; Black 2018), and reflect 

similar processes to those occurring in steam-heated hot springs settings albeit with restricted 

water availability. However, the ambiguity regarding host lithology introduces some complexity, 

as do the relatively high annual rates of rain/snowfall in Iceland which likely dissolve some of 

the more soluble alteration products rapidly (Papike et al. 1991). Our bulk analyses are further 

complicated by the coexistence of authigenic phases with leached residue, making definitive 

interpretations of elemental gains/losses difficult. Nevertheless, mineral compositions and 

Figure 26: Conceptual model demonstrating hypothesized formation of IG-19-3, a 
near-neutral hot spring considered to be boiled aquifer fluid mixed with magmatic 
volatiles. 
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selected geochemical analyses revealed distinct trends of enrichment of insoluble phases, 

mobilization of metals, and secondary mineral authigenesis. 

 The vent of the fumarole defines a zone of high volatile input and partial oxidation of 

sulfide to native sulfur and sulfuric acid (see Section 6.1.4). The very shallow redox gradient 

observed 20 cm from the vent defined by the transition of pyrite to npOx near the surface also 

implies high volatile supply, which mitigates the influence of atmospheric O2 on the alteration 

assemblage until near the surface. Above this 4 cm deep oxidation front, npOx appears to form 

from oxidation of pyrite, which is another source of H2SO4 that can lead to additional acid 

leaching of host rocks (as described in equations 3 - 6, section 6.1.4; Liu et al. 2008; Tabelin et 

al. 2012). The minor presence of sulfur-bearing pyrite oxidation products (e.g. native 

sulfur/sulfates) indicates that sulfur is being removed from the fumarole mound by runoff 

attributed to rain or snowfall. Nevertheless, the abundance of smectite, kaolinite, and pyrite and 

the relative lack of amorphous silica or quartz, along with lower concentrations of Si, Ti, and Zr 

than in other leached sites sampled, could indicate that conditions at this fumarole, while highly 

reducing except for at the very surface, are less acidic than at others. That npOx, rather than Fe-

sulfates, appear to form directly through pyrite oxidation near the surface implies only mildly 

acidic conditions in this fumarole (≥ ~ 4; Liu et al. 2006), supporting this hypothesis. This stands 

in contrast to the hyper-acid environments typically associated with fumaroles (e.g. Stoiber and 

Rose 1974; Papike et al. 1991; Hynek et al. 2013; McCollom et al. 2013a; Flahaut et al. 2019). 

 The accumulation of kaolinite and smectite in the sediments associated with the fumarole 

did not seem to follow any trend with or relationship to distance from vent or oxidation front. 

Thus, it seems that the fumarole mound overlies previously altered ground, and some of the 

phyllosilicates observed could be associated with previous episodes within the thermal system. 
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This means that the functional “substrate” for the current episode of hydrothermal alteration may 

be clay-rich residue from previous episodes, and that some of these phases may have formed 

under conditions different from those observed at present. A model that accounts for these 

observations and interpretations is provided in Figure 27. 

 

 

 

 

 

 

 

 

Figure 27: Simplified conceptual model explaining trends in geochemical/mineral composition 
of altered solids from the fumarole mound at Geysir. Leaching appears to only be intensive 
nearest the vent, where oxidation of sulfur-rich gases leads to native sulfur deposition and the 
generation of acidity. The surface zone is characterized by the transition from pyrite to npOx, 
with open-system removal of sulfur as runoff. 
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7. Relevance to Mars 
 
 Comparison of Icelandic hydrothermal deposits to those inferred to exist on Mars is 

complicated by several factors. Mars basalt in the area explored by MER Spirit (Gusev crater) 

often approaches or exceeds 20 wt. % Fe2O3 and is lower in Al2O3 and CaO than Icelandic basalt 

(Figure 28). Although hydrothermal alteration products are only partially source-controlled, as 

discussed in Section 6.2.1, host rock composition affects the availability of elements in the 

system and in turn the chemical compositions of hot springs and the secondary minerals forming 

at the surface. However, markers of hydrothermal alteration are still relatively distinct, as 

sulfates, sulfides, phyllosilicates, npOx, silica-rich residue and sinter, and travertines are all 

common mineral deposits observed in hydrothermal systems on Earth despite variability in host 

lithology (Pirajno and van Kranendonk 2005; de Moor et al. 2016; Pirajno 2010, 2020).  

 Availability of water in a potential Martian hydrothermal system must also be considered. 

Iceland receives consistent precipitation and has plentiful meteoric water, hastening diagenetic 

phase transformation of minerals unstable at the surface (e.g. amorphous silica), or dissolving 

and removing them entirely (e.g. soluble sulfates). The relatively few sulfate/native sulfur 

deposits observed in our study area suggest that the dissolution and removal of soluble sulfur 

deposits may be common in Iceland. In contrast, the early Mars climate, though poorly 

constrained, would have most likely had much more limited water availability. This would slow 

or prevent diagenetic maturation and preserve soluble minerals. 

 Finally, differences between the modern Earth and the early Martian atmospheres could 

affect the mineral assemblage, at least at the surface/near-surface. For example, the 4 cm deep 

oxidation front observed in the Geysir fumarole reflecting the transition of pyrite (below the 

oxidation front) to npOx (above the oxidation front) is affected by the availability of atmospheric 
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O2. Additionally, deposition of native 

sulfur at the fumarole vent is controlled by 

partial oxidation of magmatic volatiles, 

and the formation of steam-heated acid 

sulfate springs occurs from the mixing and 

oxidation of magmatic volatiles with 

oxygen-rich meteoric water. Limited O2 in 

the early Martian atmosphere could result 

in more reducing conditions throughout a 

hydrothermal system, in turn preventing 

(or limiting) oxidation of volatiles at the 

near-surface (Niles et al. 2013; Kite and 

Melwani Daswani 2019). These 

climatic/atmospheric factors, though 

poorly constrained, would make the 

expression of hydrothermal processes on 

Mars distinct from those in Iceland.  

7.1 Hydrothermal deposits near Home Plate, Gusev crater 

7.1.1 Paso Robles class soils 
 
 The case for acid-sulfate hydrothermal alteration is evident in multiple locations 

surrounding Home Plate and the nearby Columbia Hills region explored by Spirit. The class of 

sulfate-rich soils known as Paso Robles revealed by Spirit’s broken wheel are highly consistent 

with fumarolic or acid fluid alteration at low water/rock ratios. This is indicated by the presence 
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of an undetermined mineral assemblage consisting of ferric Fe-sulfates at ~25-29% abundance, 

with additional Mg-, Ca-, Na- K-, Al-, Mn-, Ni-, and Zn-sulfates also present in some samples, 

along with minor phosphates and amorphous silica (Ming et al. 2006; Yen et al. 2008). The 

patchy distribution of Paso Robles soils, which does not correspond to any particular 

stratigraphic position near Home Plate, also supports discrete alteration, possibly through 

fumarolic wall rock leaching. Sulfates were relatively uncommon alteration products in our 

samples, only occurring as major phases in seven samples across all field sites (Table 4). Of 

those samples, Fe-, Mg-, Al-, and Ca-sulfates were all most common, and they often occurred in 

areas with apparently limited water availability (e.g. on slopes or rocks several meters away from 

any surface fluid source). Although the mineral composition of Paso Robles soils is relatively 

unconstrained, the geochemical similarity and discrete distribution of sulfates observed in this 

study are a good match to such deposits on the Martian surface, and we favor the interpretation 

that Paso Robles soils formed through similar processes. Near active thermal features, 

amorphous silica, phyllosilicates, likely npOx, and pyrite dominated the alteration assemblage. 

The relative rarity of sulfates in our samples is likely related to the high availability of water in 

Iceland, where rainfall would cause rapid dissolution of the highly soluble sulfate minerals, 

leaving behind residual Fe-oxide crusts or patches of altered, clay- and silica-rich soil. Other 

sites in Iceland (e.g. Namafjall, Carson 2015) have more abundant sulfate minerals, perhaps tied 

to a higher flux of fumarolic gases that can replenish and maintain ephemeral surface sulfate 

precipitates. Additionally, the abundance of pyrite at the surface and near-subsurface of steam-

heated areas indicates that reducing conditions are prevalent at shallow depths throughout the 

areas sampled. This limits the control of atmospheric O2 on the secondary minerals forming and 

may provide another reason for the relative lack of sulfate minerals in our samples.  
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7.1.2 Maturity of the inferred Home Plate hydrothermal system 
 
   Indicators of hydrothermal processes near Home Plate, Gusev crater are widespread, as 

discussed in this study and in numerous publications (e.g. Yen et al. 2008; Morris et al. 2008, 

2010; Schmidt et al. 2008, 2009; Ruff et al. 2011, 2020; Carson 2015; Rodríguez and van Bergen 

2015; Ruff and Farmer 2016; McHenry et al. 2017 and many others). The emerging view put 

forward by Ruff et al. (2020) favors diverse aqueous processes in the area surrounding Home 

Plate: fumarolic alteration at low water/rock ratios that produced sulfates and leached residues, 

near-neutral to alkaline hot spring fluids that precipitated silica sinters, and possible post-

depositional fumarolic modification of silica sinter outcrops leading to the deposition of 

additional sulfur and dissolution and reprecipitation of silica (forming pitted, sponge-like 

textures in some of the proposed sinters as seen in Figure 1D). However, left unconstrained is the 

length of time hydrothermal processes near Home Plate, or elsewhere on the Martian surface, 

may have been active. This investigation studied Icelandic hydrothermal systems with upper 

limits of hydrothermal activity ranging from 400 – 800 k.yrs. (based on the age of volcanic units 

near Hengill and Geysir, respectively; Demissie 2005; Gebrehiwot 2005; Natukunda 2005; Jones 

et al. 2007). At our sites, we observed mixtures of kaolinite/smectite, mixtures of amorphous 

silica and quartz, and aerially extensive swaths of altered ground/cliff faces, all implying long-

term alteration and substantial diagenetic maturation. These ages, then, also provide a maximum 

length of time to produce the degree of diagenetic maturation observed. However, individual 

surface manifestations of hydrothermal activity are somewhat ephemeral, and it is unlikely that 

any modern surface feature has survived several hundred thousand years.  

Although the age of any of the studied surface features is unconstrained, the upper 

succession of siliceous sinter deposits at Geysir has been dated to a maximum of 10 ka (Jones et 
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al. 2007; Geilert et al. 2016), even if the geothermal system itself has been active for ~ 800,000 

years. At Geysir, this resulted in the accumulation of 2 – 2.5 m thick layered sinter 

deposits (Jones et al. 2007), at an approximate rate of 0.025 cm yr-1 for sinter deposition. At 

Ölkelduháls, the oldest mapped surface feature in the area is dated to a maximum of 130 ka, and 

the features we sampled crosscut basaltic hyaloclastites as young as 12,000 years old (Natukunda 

2005). Therefore, our results imply that high-intensity hydrothermal activity can produce 

extensively altered, diagenetically mature hydrothermal deposits (including quartz replacement 

of amorphous silica), whether through acid-sulfate (e.g. Ölkelduháls) or near-neutral/alkaline 

(e.g. Geysir) hydrothermal processes, on relatively short timescales.   

Comparing the secondary minerals observed herein to those observed on the Martian 

surface by MER Spirit suggests that the inferred hydrothermal system near Home Plate was 

short-lived. Spirit observed abundant sulfates (Paso Robles class soils), opaline silica (in the 

Eastern Valley adjacent to Home Plate itself; Figure 1A), and minimal evidence of 

phyllosilicates (Arvidson et al. 2008; Ming et al. 2008; Yen et al. 2008; Ruff et al. 2011). As 

described in Section 7.1.1 and proposed in Yen (2008), the sulfate-rich Paso Robles class soils 

likely formed through precipitation from acidic fumarolic vapors/soil solutions with limited 

water availability. The long-term preservation of such phases also supports minimal post-

depositional interaction with fluids, as sulfates are generally soluble and would quickly re-

dissolve. Ruff et al. (2020) make a convincing case that the nodular silica outcrops observed near 

Home Plate were originally precipitated as silica sinter, and were altered by fumarolic vapors as 

the water table declined some time later. However, experimental studies of the diagenetic phase 

transformations that occur in terrestrial silica sinters subjected to this process imply that the 

transition from amorphous silica to quartz can begin after only weeks of contact with fumarolic 
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vapors (Lynne et al. 2006, 2008, 2017). Although conditions of modern-day Earth and Noachian 

Mars are likely much different (leading to ambiguity when discussing the rate at which 

diagenesis would occur on early Mars), these observations suggest that the inferred Martian 

silica sinters must not have been exposed to fumarolic vapors for any appreciable length of time. 

The apparent lack of diagenetic maturity across all deposits near Home Plate is therefore most 

consistent with highly ephemeral hydrothermal activity, an observation that also has implications 

for the habitability of the inferred hydrothermal system as a whole.  

8. Conclusions 

The primary goal of this work was to better understand the formation of secondary 

minerals in hydrothermal systems in Iceland by integrated investigation of bulk solids and fluids. 

Hydrothermal systems represent high-priority targets in the search for biosignatures on the 

Martian surface, and differentiating surface environments long after the fluids that produced 

them have disappeared relies on investigations of modern-day hydrothermal systems and their 

comparison to available Mars rover data. 

The analyses of hydrothermal alteration products and fluids presented in this research reveal 

distinct trends associated with fluid pH, water/rock ratio, hydrothermal system maturity, host 

lithology, and redox conditions. The findings are summarized below: 

• The mineral phases observed associated with hot springs and fumaroles across the study area 

reflect interaction of hydrothermal fluids/volatiles with substrate that has undergone 

extensive alteration. Abundant pyrite indicated mobilization of iron from host rocks and 

subsequent interaction with magmatic volatiles in highly reducing near-surface 

environments. 
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• Phyllosilicates were pervasive across diverse environments with wide ranges of pH and 

apparent water/rock ratio, and included smectite and kaolinite. The presence of smectite 

associated with low pH hot springs suggests that the presence of smectite does not preclude 

acidic conditions. 

• Sulfate minerals were relatively rare, and were only observed in areas where water 

availability was limited, consistent with their generally high solubility. The sulfates observed 

appeared to form through evaporation of acidic soil solutions where atmospheric O2 oxidized 

magmatic volatiles or soil solutions, generating sulfuric acid that leached metals from the 

near surface and precipitated sulfates upon evaporation. Alternatively, pyrite oxidation may 

have also contributed to the formation of sulfates. 

• Concentrations of Mg, Fe, Al, Ca, Mn, Cr, Ni, Ti, V, and Zr followed downward exponential 

trends with respect to their concentration in waters with pH > ~ 3, consistent with their 

reduced mobility under moderately acidic conditions. Cl, K, Na, Ge, Ga, B, As, and Rb 

concentrations followed the opposite trend and were associated with boiled alkaline 

hydrothermal fluids, indicating their high mobility and deep aquifer fluid source. 

• Patterns of enrichment and depletion in altered rocks indicate that TiO2 and Zr follow a 

nearly linear trend of accumulation when subjected to acidic fluids, consistent with their low 

solubility. This relationship provides a means to compare the relative mobility of other 

elements in altered rocks. 

• The incorporation of trace metals into hydrothermal alteration products appeared 

significantly more source-controlled than major oxides. However, bulk geochemical and 

mineralogical analyses do not provide high enough resolution for detailed interpretation of 
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the behavior of trace elements in solids, especially sulfates. Understanding their behavior 

more completely requires further study. 

• The fumarole investigated at Geysir was clay-dominated (rather than silica or sulfate-rich), 

unlike other, more acidic fumaroles studied previously, except for a zone of leaching directly 

adjacent to the vent. Ubiquitous pyrite in the near-subsurface of the fumarole mound suggests 

reducing conditions throughout. At the surface, pyrite oxidation led to the formation of likely 

npOx. 

• The discrete occurrences of sulfates observed in this study are a good match for the sulfate-

rich Paso Robles class soils observed by MER Spirit near Home Plate, Mars. Our results are 

consistent with previous studies of Paso Robles class soils that indicate that they were formed 

through acid-sulfate alteration at very limited water/rock ratios. 

• At Ölkelduháls we observed extensive surface alteration and quartz authigenesis, and thick 

deposits of sinter were observed at Geysir. Both surface manifestations may be as young as a 

few thousand years. The advanced alteration and diagenetic maturity observed across the 

surface features studied underscores the efficiency with which hydrothermal processes can 

modify host rocks. These observations imply that the hydrothermal systems inferred to have 

existed on the Martian surface, such as those near Home Plate, Gusev crater, may have been 

ephemeral, as they did not develop these features associated with mature hydrothermal 

systems. 
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Appendix A 
GPS coordinates of samples and brief descriptions 
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Appendix B 
Analytical lower limits of detection 
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SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5

142.5 214.7 84.7 167 137.5 104.4 21.2 169.9 14 63.6

Ba Co Cr Ni V Zn Zr

52.7 3.4 20.9 14 21.8 19.1 8.8

Ti S Ba Co Cr Cu Ge Ni V Zn Zr

0.3058 24.8 0.0012 0.0008 0.0161 0.0117 0.0046 0.1656 0.0061 0.0848 0.0003

Al As B Ba Cr Fe Ga Mn Ni Rb Sr

1.174 0.058 0.356 0.049 0.079 0.761 0.053 0.158 0.079 0.061 0.039

V Ge Ti

0.051 unknown unknown

ICP-MS (PPB)

Solids

Table S2: Analytical lower limits of detection (LOD) for instruments used to determine geochemical composition of 
solids and fluids.

Fluids

Major oxides (XRF); PPM

Minor/trace elements (XRF); PPM

Minor/trace elements (ICP-OES/ICP-MS); ng/L
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