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ABSTRACT 
DECADAL CHANGES AND FUTURE PROJECTIONS OF 

PRECIPITATION IN THE METROPOLITAN AREA OF 

MILWAUKEE 
 

by 
 

Anke Petra Maria Keuser 
 
 

The University of Wisconsin-Milwaukee, 2012  
Under the Supervision of Professor Dr. Woonsup Choi 

 

 

 
This research investigated decadal changes and future projections of precipitation in the 
Metro Milwaukee and surrounding area, the largest urban area in Wisconsin. Spatial and 
temporal precipitation patterns derived for the Metro Milwaukee from the high-resolution 
gridded historical climatic dataset for Wisconsin were analyzed for 1950-2006. In 
addition, precipitation scenarios were generated via statistical downscaling of the Third 
Generation Coupled Global Climate Model (CGCM3) outputs. The delta method was 
chosen for the statistical downscaling of the CGCM3 output for the two future time 
periods, 2041-2070 (2050s) and 2071-2100 (2080s). The Mann-Kendall test and the 
Sen’s slope test were applied to investigate trends of annual and extreme precipitation. 
The gridded historical data were interpolated with an inverse distance weighting 
algorithm for spatial analysis. The annual precipitation was projected to increase by 6% 
to 14% by the 2050s and by 8% to 12% by the 2080s. The regional analysis of annual 
precipitation showed that the northern regions receive less precipitation compared to the 
average of the study area, and the southern regions receive more. The 95th percentile of 
each year’s daily total precipitation was projected to increase in the future. The projected 
changes in extreme precipitation were higher than those simulated for the annual 
precipitation changes. Based on the spatial patterns of annual and monthly precipitation, 
and the predominant wind direction, a pattern of higher precipitation amounts down-wind 
from the city could be observed for the historical climate dataset for 1950-2006. 
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Chapter 1: Introduction 

Regional climate projections by the Intergovernmental Panel on Climate Change 

(IPCC) in the Fourth Assessment Report (IPCC 2007b) suggest a general increase in 

precipitation for most of North America during the 21st century. The ensemble mean of 

multi model data sets show an annual increase in precipitation for the Midwestern United 

States. The report on Wisconsin’s changing climate, by the Wisconsin Initiative on 

Climate Change Impacts (2010b), projects future mean annual precipitation to increase. 

A significant increase in the total number of precipitation events is projected during 

winter and spring months (December-April) (Wisconsin Initiative on Climate Change 

Impacts 2011). A seasonal analysis shows a 25 percent increase in winter precipitation 

over most of Wisconsin. The amount of precipitation falling as rain is projected to 

increase significantly as well (Wisconsin Initiative on Climate Change Impacts 2011). 

Modeled summer precipitation outputs do not agree on how precipitation patterns will 

change, but the majority project a decrease of approximately five percent (Wisconsin 

Initiative on Climate Change Impacts 2011). 

 It is suggested that the expected increase in mean precipitation will have the 

greatest impact on urban areas, i.e. in the form of floods and flood related problems such 

as water pollution (Olsson et al. 2009). Most of the existing drainage systems are not 

capable of carrying the increased water quantity, which has large impacts on the urban 

environment (Olsson et al. 2009). The existing literature suggests that urban areas alter 

naturally occurring precipitation patterns, mainly by causing an increase in precipitation 

due to increased convectional precipitation as a result of large Urban Heat Islands (UHIs) 

(Huff and Changnon 1973). It can be speculated that projected increases in precipitation 
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due to climate change will be enhanced by the effects of urban areas. The increase in 

precipitation will have a large impact on urban environments and may lead to hazardous 

conditions affecting urban populations.  

Most studies that addressed future changes in precipitation patterns have focused 

on a global and regional scale, but analyses of changes in precipitation patterns on a local 

and city scale have been neglected. This shows a gap in the literature addressing 

projected changes in future precipitatiton patterns caused by urban areas. It is necessary 

to further investigate how urban areas influence precipitation patterns and how future 

hydrological implications will affect urban environments, and the people living in cities. 

 Research to improve the knowledge on changes in future precipitation patterns 

require climate scenarios focusing on urban areas at a suitable scale. This research uses 

statistical downscaling to derive data with a spatial resolution that is appropriate to study 

urban precipitation changes.  

The main objective of this research is to investigate decadal changes and future 

projections of precipitation in the Metro Milwaukee and the surrounding area. The main 

objective will be addressed through the following two aims: 

1) Spatially and temporally analyze precipitation for the time period 1950-2006 in the 

Metropolitan area of Milwaukee, Wisconsin 

2) Generate precipitation scenarios via statistical downscaling of global climate 

model outputs.  

The central hypothesis is that urban-enhanced precipitation will strengthen under 

global climate change. An increase in the Urban Heat Island effect is expected to further 

intensify changes in precipitation patterns, frequency, and intensity. This research will 
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improve our understanding on how urban areas will influence future changes in 

precipitation patterns, and will help to develop better urban hydroclimatic simulations. In 

addition, it adds further knowledge to the already existing research on precipitation 

changes in Wisconsin, and provides a more detailed analysis of the largest urban area in 

Wisconsin, the metropolitan area of Milwaukee.  
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Chapter 2: Literature Review 

 

2.1     Precipitation Changes in Wisconsin 

Based on state averages given by the Midwestern Regional Climate Center 

(2009), the annual mean precipitation for the state of Wisconsin has increased by 56 mm 

from 1895 to 2006. An increase in precipitation was also observed for the mean spring 

precipitation, the mean summer precipitation, and the mean autumn precipitation 

(Midwest Regional Climate Center 2009). While state-level assessments of precipitation 

are important, climate change does not occur in homogenous spatial patterns throughout 

whole states and very often differ in magnitude and direction over larger areas. 

Therefore, more detailed analyses are necessary.  

Kucharik et al. (2010a) analyzed the patterns of climate change across Wisconsin 

from 1950 to 2006 based on observational data. Kucharik et al. (2010a) found an increase 

in annual average precipitation by approximately 5 to 15% (50-100 mm) with a statewide 

average of 79 mm. The spatial variation of mean annual precipitation shows the highest 

increases in the west-central and the south-central regions. The northwest and north-

central regions experienced decreasing precipitation trends (Kucharik et al. 2010a).  

Seasonal precipitation trends showed an increase in winter precipitation of 10 to 

20 mm across most of Wisconsin. The observed trends were weak and are only at a few 

isolated grid points of significance. The spring-time precipitation also shows increasing 

trends (20 to 60 mm) for the southern and western portions of Wisconsin. Again, the 

majority of the trends were of no significance (Kucharik et al. 2010a). Summer 

precipitation also has increased from 30 to 60 mm for the southern parts of Wisconsin, 

and only a small portion of this area (central corridor from north to south) is significant. 
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A small part of the southeast corner of Wisconsin, just below Milwaukee County, shows 

a significant trend towards less precipitation. Similar trends can also be observed across 

the northern third of the state (Kucharik et al. 2010a). The average fall precipitation 

increases by approximately 48 mm with significant trends in the northwestern corner of 

Wisconsin (Kucharik et al. 2010a).  

The Wisconsin Initiative on Climate Change Impacts present projected 

precipitation for the  mid and late 21st century (2046 – 2065 and 2081 – 2100) based on 

statistical downscaling results of the global climate models that were used for the World 

Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project 

phase 3 (CMIP3) (Kucharik et al. 2010b). Results for the A1B emission scenario suggest 

that the average annual precipitation for Wisconsin will change by -5% to +15% by mid 

21st century and -5% to +25% for late 21st century. A seasonal analysis based on the A1B 

scenario shows that precipitation is projected to increase in winter (0 to 40%), and fall 

(5% to 15%). No agreement could be found for summer but the modeling results suggest 

a change between -20% and +15%. During spring the projected change is of -5% to 

+25% (Kucharik et al. 2010b). The modeled results also suggest that heavy precipitation 

will increase for Wisconsin, especially in the eastern and northern regions.  

 

2.2    Effects of Urban Areas on Precipitation 

In the second half of the 20th century, studies have theorized that the Urban Heat 

Island (UHI) can alter mesoscale convectional circulation which results in changes of 

precipitation patterns (Huff and Changnon 1973; Changnon, Semonin, and Huff 1976; 

Changnon 1981; Changnon and Huff 1986; Huff and Changnon 1986; Changnon, Shealy, 

and Scott 1991; Shepherd, Pierce, and Negri 2002; Dixon and Mote 2003; Shepherd 
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2005). Dixon and Mote (2003) analyzed the effect of Atlanta’s UHI on the temporal and 

spatial patterns of precipitation, i.e. when and where precipitation events occur. The UHI 

in Atlanta has shown to enhance or even initiate thunderstorms resulting in increased 

precipitation on the downwind side of the city (Dixon and Mote 2003). Furthermore, the 

results of the study suggest that the majority of urban induced precipitation events 

occurred within 5-10 km from areas of major urban development.  Low level moisture 

contents in the atmosphere seemed to be more important than the UHI intensity (Dixon 

and Mote 2003).  

Huff and Changnon (1973) analyzed the urban effects on precipitation in eight 

major cities (St. Louis, Chicago, Indianapolis, Cleveland, Washington, Houston, New 

Orleans, and Tulsa) and their surroundings in the central and eastern United States. For 

the time period 1955 to 1970, urban-induced increases in precipitation were found for the 

daily and seasonal precipitation for St. Louis, Chicago, Washington D.C., and Cleveland. 

In Houston and New Orleans urban effects were only detected in increased warm season 

rainfall caused by air masses. Evidence for Tulsa and Indianapolis was weak or non-

existing. The urban effect seemed to be more pronounced on the downwind side of the 

central city (Huff and Changnon 1973).  

The UHI does not necessarily initiate precipitation occurrences, but rather acts as 

an enhancing factor, and most events occur during the night and near high-density urban 

areas (Changnon 1981). Results from the Metropolitan Meteorological Experiment 

(METROMEX) also show that the number of precipitation events did not increase, only 

an increase in the amount of precipitation was observed (Changnon 1981).  

 

 



7 
 

 
 

2.3    Climate Scenarios  

In any project including future climate change a thorough analysis including 

averages, variability, and mean of current climate conditions should be included. Such an 

analysis is required to understand the current climate system and the significance of 

projected future changes (Barrow and Lee 2000). As defined by the World 

Meteorological Organization (WMO), the current climate, also known as the reference or 

baseline climate, generally refers to a 30-year normal period (Mitchell et al. 1966) and is 

derived from historical climate observations (Barrow and Lee 2000; Carter et al. 2007). A 

popular climatological approach to defining the baseline period is to use the non-

overlapping 30-year normal period from 1961-1990 as defined by the WMO (IPCC 

2007a).  

According to Carter et al. (1994) a climate scenario is defined as, “a coherent, 

internally-consistent and plausible description of a possible future state of the world.” A 

scenario is a plausible future based on a quantified description of future climates, which 

are consistent with assumptions of future greenhouse gas emissions and other pollutants 

and with the assumptions on how these changes in concentration of greenhouse gasses 

will affect global climate (Carter et al. 2007). Climate scenarios ideally consist of a set of 

multiple scenarios and encompass a range of likely future developments (Smith and 

Hulme 1998). Three generic types of climate scenarios exist: synthetic scenarios, 

analogue scenarios, and scenarios based on outputs from global climate models. All of 

these scenarios have been used in climate impact studies; the majority of studies are 

based on climate change scenarios from global climate models (Smith and Hulme 1998; 

Carter et al. 2007). Climate scenarios based on global climate model outputs are currently 
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the most credible tool to develop future climate scenarios (Barrow and Lee 2000). Before 

climate change scenarios are generated, it is important to address changes of those 

atmospheric conditions that will cause changes in climate. 

 
2.3.1    Emission Scenarios 

In order to address future changes of atmospheric conditions for the next 100 

years it is necessary to construct greenhouse gas emissions for the 21st century (Carter et 

al. 2007). These scenarios are used in GCMs to simulate changes in climate and are based 

on assumptions on the development of societal activities in the future.  

Before issuing the Third Assessment Report (IPCC 2007b) the IPCC 

commissioned a Special Report on Emission Scenarios (SRES) (Nakicenovic et al. 2000) 

in which the most recent emission scenarios can be found. The scenarios, as described in 

the SRES (Nakicenovic et al. 2000), are based on an extensive assessment of driving 

forces and emissions of greenhouse gasses in the scenario literature. 

Four different narrative storylines (A1, A2, B1, B2) were developed based on 

assumptions on how society will evolve in the 21st century and beyond. Each storyline is 

based on different demographic, social, economic, technological, and environmental 

developments and include a large variety of main demographic, economic, and 

technological driving forces of greenhouse gasses and sulfur emissions. Feedback effects 

of future climate change on emissions from energy and biosphere are not included in the 

scenarios. Based on these storylines four so called ‘families’ have been identified 

(Nakicenovic et al. 2000).  

The associated storylines entail following key assumptions (Nakicenovic et al. 

2000): 
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• The A1 storyline and scenario family describes a future world with a steep 

population growth that peaks in the 1950s and rapidly declines thereafter with rapid 

economic growth, reduction in regional differences in per capita income, and 

development of new and more efficient technologies.  

• The A2 storyline and scenario family looks at a diverse and heterogeneous 

world with a steady population growth (ca.15 billion by 2100) and emphasis on regional 

economic growth. A more fragmented and slower economic growth and technological 

change than in other storylines is predicted. 

• The B1 storyline and scenario family assumes a convergent world with a 

population that peaks in the 2050s and subsequently declines, similar to the A1B scenario, 

reaching ca. 7 billion by 2100. Economic structures are rapidly developing in a service 

and information economy with an emphasis on clean and efficient technologies due to a 

global concern for social and environmental sustainability.  

• The B2 storyline and scenario family is a world where local solutions to 

economic, social and environmental sustainability are emphasized. This world is 

characterized by a steadily growing population, (at a lower rate than the A2 scenario 

family), intermediary economic development, and a more diverse but slower developing 

technological change than in the B1 and A1 storylines.  

The existing scenarios span a wide range of future economic development and 

activity, as well as different trends in population growths. In the IPCC Special Report on 

Emissions Scenarios (Nakicenovic et al. 2000) it is recommended that multiple emission 

scenarios are used in any analysis regarding future climate change. There is no single 

most likely or ‘best-guess’ scenario, and likelihoods are not assigned to SRES scenarios. 
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2.3.2    Global Climate Models 

Global climate models (GCMs) represent the physical processes of the 

atmosphere, ocean, cryosphere, and land surface, and are currently the most credible tool 

for developing climate scenarios (Barrow and Lee 2000; Carter et al. 2007). GCMs are 

numerical models that simulate large-scale physical processes of the earth atmosphere 

and ocean system (Fuentes and Heimann 2000). These models have been derived based 

on well-established physical principles and then approximated through mathematical 

discretization to project past, current, and future climate (IPCC 2007b). GCMs depict 

climate for a three dimensional grid with a horizontal resolution between 250 to 600 km, 

and a vertical resolution of 10 to 20 vertical layers into the atmosphere, and can have as 

many as 30 layers down in the ocean (Smith and Hulme 1998; Carter et al. 2007). The 

most sophisticated GCMs available are the coupled atmosphere-ocean general circulation 

models (AOGCM). These GCMs are comprised of an atmospheric general circulation 

model (AGCM) coupled to an ocean general circulation model (OGCM) (Carter et al. 

2007). The AGCM is a three dimensional representation of the atmospheric layers 

coupled to the land surface and cryosphere layers. The OGCM is a three dimensional 

representation of the oceans and sea-ice (IPCC 2007b). Data from many different GCMs 

developed around the world are provided by the Intergovernmental Panel on Climate 

Change Data Distribution Center (http://www.ipcc-data.org/index.html).  

One major disadvantage of GCMs is that despite the accurate representation of 

global climate, their simulation of regional climate is often inaccurate (Smith and Hulme 

1998). Another disadvantage of GCMs is their coarse geographic and temporal scale, 

which is often not fine enough for impact studies. Within GCMs, represented as gridded 
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datasets, with a spatial resolution of hundreds of kilometers, each grid box represents 

uniform climate changes. Although the temporal resolution of GCMs estimate climate on 

a daily or sub-daily (mostly twice a day) basis, the results are generally archived on a 

monthly time series (Barrow and Lee 2000). Daily GCM data are freely available only 

for very few GCMs, e.g. the third generation coupled global climate model.  

To overcome the gap between the large spatial resolution of GCMs and the much 

finer resolution needed for impact studies, downscaling methods that create finer 

resolution datasets have been developed. Downscaling techniques have emerged to 

interpolate planetary scale atmospheric predictor values to smaller scale meteorological 

series (e.g. regional or local scale) (Wilby and Wigley 1997). The simplest downscaling 

option is to interpolate the GCM outputs to a finer, smaller scale. More complex methods 

can be grouped into dynamical downscaling, and statistical downscaling methods.  

 

2.3.3    Dynamical Downscaling 

Dynamical downscaling, also known as nested downscaling, uses the large-scale 

GCM to extract local-scale information by creating Limited-Area Climate Models 

(LAMs) or Regional Climate Models (RCMs) with a spatial resolution of tens of 

kilometers (most often 20-50 km) (Wilby and Wigley 1997; Xu 1999; Xu, Widen, and 

Halldin 2005). Dynamical downscaling nests a RCM into a GCM to model the physical 

and dynamical processes of the GCM with a smaller resolution for a defined area 

(Maraun et al. 2010). This method uses the GCM to provide the initial and time-

dependent lateral boundaries to simulate large scale atmospheric circulation, and the 
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surface boundary conditions to drive the high resolution RCM and capture smaller scale 

atmospheric variability (Xu, Widen, and Halldin 2005).  

Recently, dynamical downscaling methods have been significantly improved by 

combining multiple nesting and atmospheric RCMs, with lake and hydrology models 

(Xu, Widen, and Halldin 2005). Despite these improvements several limitations to this 

approach still exist. The selection of the underlying GCM is very important, as the RCM 

simulations are strongly influenced by any deficiencies in the GCM. As the RCM uses 

the boundary conditions of the GCM, any biases within the GCM will be transferred to 

the RCM which complicates the evaluation of the RCM itself (Wilby and Wigley 1997). 

Depending on the size of the domain, as well as the spatial and temporal resolution, RCM 

simulations can be computationally demanding and costly. Often times, the spatial 

resolution of 20-50 km is too large for impact studies and downscaling to smaller scales 

or individual sites is necessary (Wilby and Wigley 1997; Xu, Widen, and Halldin 2005).  

 

2.3.4    Statistical Downscaling 

Statistical downscaling (or empirical downscaling) methods are based on finding 

empirical relationships between large-scale climate information (predictors) and local or 

regional meteorological variables (predictands) (Xu 1999; Wilby et al. 2004; Hanssen-

Bauer et al. 2005). Maraun et al. (2010) describes statistical downscaling as a kind of 

mapping between the predictor (X) and the expected value E of the observational data 

(Y) based on a vector of unknown parameters (β) and given in the following equation (1):  𝐸(𝑌/𝑋) =  𝑓(𝑋,𝛽)                                      (1) 
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The majority of downscaling studies have used daily mean temperature or daily 

total precipitation as observational data. However, any high quality, long-term 

observational climate variable can be used as long as it makes sense to use this variable 

for the climate study (Hanssen-Bauer et al. 2005; Maraun et al. 2010). The large-scale 

atmospheric variables are most often obtained from GCMs at a monthly or daily temporal 

resolution.  

The simplest downscaling method is to apply the large-scale GCM projections in 

the form of change factors (CFs) by applying the differences between the control and 

future GCM simulations to the baseline observation. This is achieved by scaling the mean 

and adding the resulting climatic CF to each day. This method is referred to as the 

‘change-factor method’, ‘pertubation-method’ or ‘delta change approach’ (Prudhomme, 

Reynard, and Crooks 2002; Fowler, Blenkinsop, and Tebaldi 2007). This method can be 

easily applied to several GCMs, and is computationally fast and inexpensive, but it 

assumes that the GCMs simulate relative changes more accurately than absolute values, 

and therefore assume a constant bias through time (Fowler, Blenkinsop, and Tebaldi 

2007).  

More sophisticated statistical downscaling techniques are often grouped in three 

main categories based on the underlying technique that is being used (Wilby et al. 2004; 

Fowler, Blenkinsop, and Tebaldi 2007): regression-based models, weather pattern based 

models, and stochastic weather generators.  

Regression-based models are based on quantitative relationships between large-

scale variables and local/regional surface variables.  This method uses statistically based 

models to determine the statistical linear or non-linear relationship between the large 
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scale atmospheric forcing (predictor) and the predictands through a regression function 

(Fowler, Blenkinsop, and Tebaldi 2007). More complex methods model the mean and 

variability by linking the covariance of the GCM with that of the predictands in a bilinear 

way. Other successfully applied methods include multiple regression models, canonical 

correlation analysis (CCA) and artificial neural networks (ANN) (Wilby and Wigley 

1997; Wilby et al. 2004; Maraun et al. 2010). One main assumption is made within these 

transfer function methods; the GCM variables (predictors) fully include the climate 

change signals and are realistically modeled by the GCM. These methods are relatively 

straight forward to apply and are computationally and cost wise less demanding than 

other downscaling methods (Wilby et al. 2004; Maraun et al. 2010).  

Weather pattern based downscaling groups days with regional or local variations 

within the selected variables based on their synoptic similarities into a finite number of 

weather types, or so called states (Wilby et al. 2004). Most commonly, weather types are 

defined by applying subjective circulation classification schemes or by using a cluster 

analysis of atmospheric fields (Wilby et al. 2004). Both approaches group weather 

patterns based on their similarity either by a nearest neighbor approach, or a reference set. 

After groups of weather patterns are established, the small scale variable is assigned to 

the appropriate weather pattern and replicated under future climate conditions through 

regression functions or resampling (Wilby et al. 2004). Weather pattern based 

downscaling methods are dependent on the quality of the weather classification and 

might be insensitive to future climate forcing (Wilby et al. 2004).  

Stochastic weather generators are statistical models that generate random 

sequences of weather data (commonly of multiple variables) that have similar statistical 
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properties as the observed weather data at a daily or sub-daily scale (Wilks and Wilby 

1999; Maraun et al. 2010). The future climate is generated by altering the parameters of 

the weather generator based on the predicted changes in climate from a GCM (Semenov 

and Stratonovitch 2010). The focus of most weather generators is on producing 

precipitation series that are based on occurrence and intensity (Maraun et al. 2010). The 

occurrence of precipitation is expressed in two different states, wet or dry. The 

precipitation amount is focused on non-zero amounts and is often skewed towards lower 

numbers as there are many more occurrences with small precipitation amounts and only a 

few with large amounts of precipitation (Wilks and Wilby 1999). Maximum and 

minimum temperatures as well as solar radiation are very often generated besides 

precipitation indices (Wilks and Wilby 1999). Weather generators produce large 

ensembles for multiple climate variables (Wilks and Wilby 1999).  

While statistical downscaling methods are comparatively cheap, computationally 

efficient, and can provide climatic variables at point-scale that are derived from the 

GCM-scale, long-term and reliable historical observation data series are needed for the 

calibration (Fowler, Blenkinsop, and Tebaldi 2007). The statistically downscaled data is 

derived based on a statistical relationship between the large-scale predictors and the 

local-scale predicands. Therefore, the statistical downscaling process is dependent on the 

choice and quality of the predictors (Fowler, Blenkinsop, and Tebaldi 2007). Predictors 

should be physically meaningful and reproduced well by the GCM, and should be able to 

reflect processes responsible for climatic variability for various timescales. In addition, 

the predictor-predictand relationship is assumed to be the same in the future as it is for 

the current time period. This assumption is questionable in observed records (Fowler and 
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Kilsby 2002) and it is suggested that long records or model validations are used to test 

this for a period with different climate characteristics (Fowler, Blenkinsop, and Tebaldi 

2007). Another concern is that climate system feedbacks are not included, and therefore 

the true extent of changes might not be captured (Fowler, Blenkinsop, and Tebaldi 2007). 
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Chapter 3: Study Area 

 

The study area encompasses Milwaukee County, and a roughly drawn 24 km 

buffer around it. Milwaukee County has been selected to be representative of the urban 

area and will be referred to as Metro Milwaukee. According to the U.S. Census Bureau a 

metropolitan area, also referred to as metro area, is defined as an area that contains a core 

urban area with a population 50,000 or more and can be comprised of one or more 

counties. Often times, where a high degree of social and economic integration of the core 

urban area with adjacent counties exists, these adjacent counties are included in the metro 

area as well (http://www.census.gov/population/metro/).  

The ‘Metropolitan area of Milwaukee’, or ‘Metro Milwaukee’, as identified by 

the U.S. Census Bureau, is comprised of the following 5 counties: Milwaukee, 

Waukesha, Racine, Washington, and Ozaukee. Looking at the land cover for Metro 

Milwaukee, as identified by the U.S. Census Bureau, it becomes evident that this large 

area is not only comprised of urban land-cover.  

For the purpose of this project only Milwaukee County is included in Metro 

Milwaukee; the other four counties (Waukesha, Racine, Washington, and Ozaukee) have 

not been included. This decision was based on the analysis of land-cover data for Metro 

Milwaukee as defined by the U.S. Census Bureau. Within this area not only urban land-

cover but large stretches of vegetation, agricultural fields and wetlands are included as 

well. In order to analyze if the urban area has an impact on precipitation, a metro area 

comprised of urban land-cover has to be identified. Milwaukee County has been selected 

as the metro area (Metro Milwaukee) because this area is mainly comprised of urban-land 

cover.    
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Fig. 1: Location of high-resolution gridded historical climatic dataset for Wisconsin grid points, the grid points from 

the CGCM3, and the created CGCM3 grid point, along with the administrative boundaries of the Milwaukee County 
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Chapter 4: Data 

 

4.1    High-resolution Gridded Historical Climatic Dataset for Wisconsin 

The daily precipitation from the high-resolution gridded historical climatic dataset 

for Wisconsin created by Serbin and Kucharik (2009) is used in this research. The 

gridded dataset is based on daily weather observations of maximum (Tmax) and minimum 

temperatures (Tmin) and total precipitation, from the NOAA cooperative (COOP) observer 

network stations, for 1950 – 2006 and interpolated to an 8 km (0.0833° Lat. x 0.0833° 

Long.) grid (Serbin and Kucharik 2009). Daily precipitation data from a total of 176 

COOP observation stations, and 133 stations for Tmax and Tmin, within Wisconsin and a 70 

km buffer were included in the interpolation process. Only stations with at least 53 years 

of data from 1950-2006 were included in the statistical interpolation (Serbin and 

Kucharik 2009).  

The interpolation is based on the inverse distance weighting (IDW) spatial 

interpolation algorithm. Serbin and Kucharik (2009) explored other more complicated 

interpolation methods, e.g. kriging, thin plate splines, and determined that due to the high 

station density and low topographic complexity the IDW interpolation method resulted in 

comparable high quality results. Furthermore, these more complicated interpolation 

methods were rather restricted due to the smaller variance across data over flatter 

topography (Serbin and Kucharik 2009). Serbin and Kucharik (2009) found that the 

output accuracy of the predicted gridded precipitation is high, due to low mean daily total 

precipitation errors, and a realistic spatial distribution has been achieved. However, it is 
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likely that extreme precipitation events may have been smoothed over due to the nature 

of the interpolation method (Serbin and Kucharik 2009).  

Daily precipitation data from 90 grid points were extracted, encompassing Metro 

Milwaukee and approximately a 24 km buffer around it. The study area is comprised of a 

rectangle of 9 latitudinal and 10 longitudinal grid points reaching from 42.62° - 43.37° 

latitude and 87.6° - 88.26° longitude. Furthermore, to gain a better insight into spatial 

differences within the study area, the 90 grid points were divided into 9 different groups: 

Northwest, North, Northeast, West, Metro, East, Southwest, South, and Southeast (Fig. 

2). The border of each group and number of included grid points is based on the borders 

of Metro Milwaukee, and the land water border. Therefore, the number of grid points in 

each group varies from 6 to 14 points.  
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Fig. 2: Location of the grid points selected for each of the 9 groups from the high-resolution gridded historical climatic 

dataset for Wisconsin 
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4.2    Third Generation Coupled Global Climate Model (CGCM3) 

The Canadian Centre for Climate Modeling and Analysis (CCCma) 

(http://www.ec.gc.ca/ccmac-cccma/) provides daily data for the Third Generation 

Coupled Global Climate Model (CGCM3), the latest developed version as used in the 

most recent IPCC assessment report (AR4). The CGCM3 is based on the ocean 

component that is used in the earlier Second Generation Coupled Global Climate Model, 

and an updated atmospheric component. The CCCma provides daily GCM data for 

several surface and atmospheric variables for the CGCM3 

(http://www.cccma.ec.gc.ca/models/cgcm3.shtml) for two different resolutions:  T63 and 

T47. The T63 has a horizontal resolution of 2.8° latitude by 2.8° longitude and a vertical 

resolution of 31 levels. The T47 is based on a 3.75° longitude/ latitude resolution with a 

vertical resolution of 31 levels.  

Daily precipitation data was obtained for the CGCM3 climate for the 20th century 

(20CM3) experiments (1961-1990) and two future time periods, 2041-2070 (2050s) and 

2071-2100 (2090s), for the IPCC Special Report on Emission Scenarios (SRES) A1B, 

A2, and B1 scenarios.  

The daily precipitation data for four CGCM3 grid points (see table 1) within 

closest proximity to Metro Milwaukee were downloaded. As the closest CGCM3 grid 

point is approximately 66.7 km from the study area a new ‘CGCM3’ point in the center 

of the study area was created (Fig 1). The weighted distance from each of the selected 

CGCM3 grid points to the new created point is used to calculate the daily precipitation 

for the new point (see table 1). The daily precipitation for this new ‘CGCM3’ point is 

http://www.ec.gc.ca/ccmac-cccma/�
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calculated for the 20th century and each of the emission scenarios for the two future time 

periods. 

Table 1: Geographic information of the selected CGCM3 grid points and the distance used to calculate the precipitation 

amount for the new CGCM3 grid point used for the downscaling process  

Grid Point Latitude (° N) Longitude (° W) Distance to new ‘GCM’ point (km) 

1 43.2542 90 170.707 

2 43.2542 87.1875 66.767 

3 40.4636 90 330.114 

4 40.4635 87.1875 288.421 
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Chapter 5: Methods 

 

 The delta method is used as the statistical downscaling algorithm to create high 

resolution precipitation projections for the future. To identify the trend two statistical 

tests are performed. First, the Mann-Kendall rank statistic method is applied to determine 

the significance of the trend, followed by the Sen’s slope method to assess the magnitude 

of the observed change rates. The spatial analysis of the data is based on the inverse 

distance weighting interpolation algorithm.  The inverse distance weighting function, as 

available in ArcGIS 10, is utilized for this study.  

 

5.1    Delta Method 

The standard approach for the delta method, also known as the change factor 

method or the perturbation method (Prudhomme, Reynard, and Crooks 2002), generates 

future prediction series based on General Circulation Model (GCM) outputs by 

quantifying the percentage differences of monthly mean  precipitation between the 

reference period and the future (Olsson et al. 2009). The future downscaled precipitation 

is then calculated by superimposing the relative changes to the historical precipitation 

data (Sunyer, Madsen, and Ang 2012). The standard form of the delta method only 

accounts for differences in the respective mean and therefore, possible changes in range 

and variability of the data are not taken into consideration (Diaz-Nieto and Wilby 2005; 

Olsson et al. 2009).This limitation was addressed by modifying the equation for the delta 

method based on the method suggested by Leander and Buishand (2007). The observed 

historical daily precipitation amount Pobs is transformed to the future amount Pfut by using 

the following equation (2):  
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𝑃𝑓𝑢𝑡 =  𝛼(𝑃𝑜𝑏𝑠)𝛽                                                                                                (2) 

where in the standard delta method, β is unity and α is the ratio of the mean monthly 

future precipitation to the mean monthly control precipitation, both based on GCM 

simulations.  The control precipitation is most often based on the time period 1961-1990 

which will also be used as the reference period in this study. For the modification of the 

method, the parameters α and β are based on the numerical optimization values and 

produce the mean and standard deviation (SD) of Pfut: 

𝑃�𝑓𝑢𝑡 = 𝑃�𝑜𝑏𝑠 ×  
𝑃𝑓���𝑃𝑐�                                                                                                                (3) 𝜎(𝑃𝑓𝑢𝑡) =  𝜎(𝑃𝑜𝑏𝑠)  ×  

𝜎(𝑃𝑓)𝜎(𝑃𝑐)                                                                                              (4) 

where Pc is the daily precipitation series from the control period GCM run and Pf is the 

daily precipitation series from the future GCM run. σ stands for the standard deviation 

and the over-bar denotes the average of the corresponding time period.  

For this research, the MATLAB function (see appendix) based on that used in the 

study by Choi et al. (2009) was utilized. The control precipitation (Pc) for the 1961 – 

1990 period, and the future precipitation (Pf) for 2041-2070 and 2071-2100 are based on 

the CGCM3. The historical observed daily precipitation was obtained from the high-

resolution gridded historical climatic dataset for Wisconsin for the same time as the 

CGCM3 base period 1961-1990. According to Barrow (2000) the baseline period must 

coincide with the time period that was used to construct the climate change scenario. In 

other words, if the climate scenarios have been calculated in respect to the 1961-1990 

time period it would be incorrect to apply these scenarios to a different time period. In 

order to determine the extent of future climate change, the selected time period should 

correspond to the baseline period used to generate the climate scenarios. For most of the 
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currently available climate scenarios 1961-1990 is defined as the baseline period. Based 

on the historical dataset the future downscaled precipitation was obtained with the means 

of the delta method (Fig.3).  

 

 
Fig. 3: Data and approach of the delta method used in this study 

 

5.2    Mann-Kendall Rank Statistic Method 

The Mann-Kendall (Mann 1945; Kendall 1975) test for trend was used to 

investigate the temporal trend for the current time period. The non-parametric rank-based 

test is very often used to test randomness against trend (Mitchell et al. 1966) and does not 

assume any specific data distribution form, which makes it powerful and popular for 

testing trends in hydrometeorological time series (Zhang et al. 2005; Toreti et al. 2009; 

Zhang et al. 2009). For this research the procedure described by Manly (2009) was used 

and calculated in the statistical program MATLAB based on a scripted function following 

the given formula: 
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where for a series xn the test statistic S is the sum of the signs of the differences between 

any two observations, and where sign(z) is 0 when z is zero, 1 when z is positive and -1 

when z is negative.   

If series of values in a random order, the expected value of S is zero and the variance VS 

is given as follows: 

 

VS = n(n −1)(2n + 5) /18                                                                                                    (6)

 

Whether S is significantly different from zero can be tested by using the Z statistic, which 

is given as follows: 
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                                                                                                                          (7)

 

Z follows the standard normal distribution, and a positive Z value indicates a positive 

trend and a negative one indicates a negative trend in a two-sided test for trend. In this 

case the Z values were converted to probabilities of observing larger absolute Z values. In 

order to show the significance of a trend the p value was calculated as follows:  

p = 2*  (-|Z|)                                                                                                                    (8) 

where  is the normal cumulative distribution function. 

If p  0.05 the temporal trend is significant, is p  0.05 the trend is insignificant. 
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5.3  Sen’s slope 

The trend of precipitation variables was calculated based on the Sen’s slope test. 

The Sen’s slope test is a non-parametric test of trend and calculates the slope based on a 

linear model to estimate the trend (Sen 1968).The trend of a time series can be estimated 

based on the slope of the data. The Sen’s slope estimator calculates the slope (S) of the 

data x as follows:  

𝑆 = median(y)                                                                                                                (9) 

 𝑦 =  �𝑥𝑖−𝑥𝑗𝑖−𝑗 �                  i = 1,2,3….N and  i <  j                                                            (10) 

If there are n values of x in the time series we get as many as N = n(n-1)/2. The slope of 

the time series is given in proportional values based on the size of the data values.  

 

5.4    Inverse Distance Weighting (IDW) 

The interpolation of precipitation variables is based on the inverse distance 

weighting (IDW) algorithm available in ArcGIS 10. IDW is based on the assumption that 

points closer to each other are more alike than those further apart. The values surrounding 

the location of interest will be used to calculate the value of the location of interest and 

can be described as a distance reverse function of the prediction location from 

neighboring points (Johnston et al. 2001). Thus, this method is based on the idea that 

each existing point has a local influence that diminishes with distance. The IDW 

algorithm uses a linear-weighted combination of sample points within a defined 

neighborhood (Johnston et al. 2001).   
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The IDW formula is as follows (Johnston et al. 2001):  𝑍𝑥 =  
∑ 𝑍𝑖∗𝑑𝑖𝑥−𝑛𝑁𝑖=1∑ 𝑑𝑖𝑥−𝑛𝑁𝑖=1                                                                            (11) 

where:  

Zo = the estimation value for an unknown point at location x 
Zi = the observed value at the known point i 
dio = the distance from the known point i to the unknown point x 
n = power parameter which controls the significance of the surrounding points 
 
 The main factor affecting the accuracy of the IDW algorithm is the selected 

power parameter (n). The higher the power predictor value, the more emphasis is placed 

on closer locations. A smaller value of the power predictor creates a smoother surface 

and a higher weight is placed on more distant stations (Johnston et al. 2001). According 

to the literature, a power value of 2, known as the inverse square of the distance, is 

commonly used with IDW and is the default setting in ESRI’s ArcGIS 10 (Nalder and 

Wein 1998; Jarvis and Stuart 2001).  

  
5.5    Representative Precipitation 

In order to analyze the average precipitation for the entire study area and 

furthermore to address the variability of precipitation across the study area, a variable 

representing the average precipitation was calculated. A similar approach as that used by 

Schlünzen et al. (2010) has been adopted in this study. Schlünzen et al. (2010) averaged 

the daily precipitation measurements if the daily precipitation was at least 1 mm at a 

minimum of 2 of the 9 selected sites in order to create a measure for the area 

representative precipitation. The difference between the area representative precipitation 

and the precipitation at the selected sites is used to determine the urban induced 

precipitation (Schlünzen et al. 2010).  
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In this research, the variable expressing the representative precipitation is 

calculated as the median of the 90 grid points. All precipitation values are included in the 

calculation of representative precipitation. This was decided because, generally when the 

precipitation was 0 mm at one grid point it was the same for the whole study area. The 

representative precipitation (RP) is used to analyze the differences in precipitation within 

the study area by comparing the RP to the precipitation value of the individual station. 
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Chapter 6: Decadal Changes in Precipitation 

 

6.1    Statistical Overview 

Summary statistics for precipitation indices are presented in Table 2. The mean, 

median, and range in annual representative precipitation for the high-resolution gridded 

historical climatic dataset for Wisconsin  for the period 1950 to 2006, and the CGCM3 

data for 1961-1990 are presented in Table 2.  The annual 95th percentile of daily 

precipitation for both datasets is derived by calculating the 95th percentile of daily 

precipitation of more than 1mm for each calendar year (February 29th excluded).  The 

annual 95th percentile of daily precipitation is referred to as 95th percentile precipitation 

from here on. The representative precipitation of the 95th percentile precipitation is 

represented in table 2. 

The mean representative precipitation results in 831 mm and the median in 848 

mm for the historical climatic dataset. The averaged precipitation for the baseline period 

of the CGCM3 data results in a mean of 927 mm and a median of 906 mm. The averaged 

annual precipitation based on the CGCM3 data is overestimated in comparison to the 

observational data. The minimum and maximum annual precipitation for the historical 

climatic data of 547 mm and 1086 mm, is much lower than that of the CGCM3 data of 

707 mm and 1180 mm.   

The mean and median of the 95th percentile for the observational data with 24mm 

and 23mm respectively is higher than the mean and median for the CGCM3 with 17 mm. 

The maximum 95th percentile precipitation is higher for the observational data with a 

maximum of 31 mm and a minimum of 20 mm. The 95th percentile precipitation for the 

CGCM3 data rages from 11 mm to 23mm. The standard deviation for both the annual as 
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well as the 95th percentile are very close, which leads to the assumption that the 

variability between the two data sets is similar.  

Table 2: Summary statistics for precipitation from the historical climatic WI dataset and the CGCM3 data 

 Annual RP of 

Pobs 1950-2006 

Annual CGCM3 

1961-1990 

95th percentile RP of 

Pobs 1950-2006 

 95th  percentile 

CGCM3 1961-1990 

Mean  831 mm 927 mm 24 mm 17 mm 

Median 848 mm 906 mm 23 mm 17 mm 

SD 126 mm 128 mm 2 mm 3 mm 

Minimum 547 mm 707 mm 20 mm 11 mm 

Maximum 1086 mm 1180 mm 31 mm 23 mm 

 

6.2    Annual Precipitation 

The mean annual total precipitation for 1950 – 2006 shows a large spatial 

variation with a range of 94 mm (Fig. 4). The highest precipitation (889 mm) can be 

found within the southeastern regions of the study area. The northern part of the study 

area is the driest with a low of 795 mm per year (Fig. 4) with a latitudinal decreasing 

pattern.  
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Fig. 4: Mean annual precipitation (mm) 1950 – 2006 
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Figure 5a displays the temporal variation in annual precipitation for the time 

period 1950 to 2006. The median precipitation amount of each year is indicated by the 

red line of each ‘box’. The boxplot shows that the temporal variation of annual 

precipitation is very diverse and does not reveal any obvious trend. Figure 5b shows the 

annual RP subtracted from the total annual precipitation at each station. Averaged over 

the time period from 1950 to 2006, a large spatial variation in annual precipitation across 

the study area is presented. The spatial variation varies from year to year, stronger in 

some years and much less in others. 

 

   
Fig. 5: (top) Annual precipitation 1950-2006; (bottom) Difference of RP and stations based on annual precipitation 

1950 – 2006 
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Figure 6 displays the regional differences within the study area, the difference 

between the median of each group and the RP of the whole study area. The northern 

regions of the study area (groups: Northwest, North, Northeast) receive less annual 

precipitation than the average across the whole study area. The northern region, right 

above Metro Milwaukee, shows the largest deviation in annual precipitation of -20 mm 

compared to the average of the study area, and receives the least amount of precipitation. 

The average precipitation in the southern regions (groups: Southwest, South, Southeast) 

is higher compared to the average precipitation across the whole study area. This 

indicates that the southern regions receive on average more rain. The highest 

precipitation within the southern area occurs in the southeastern region over Lake 

Michigan decreasing towards the west. Metro Milwaukee and the area to the west show a 

slightly lower precipitation (ca. 3 mm) than the average across the study area. The area 

east of Metro Milwaukee receives slightly more precipitation (ca. 6 mm) than the average 

of the whole study area. The regional analysis of precipitation differences within the 

study area indicates the highest precipitation in the southern regions, especially in the 

southeastern areas (Fig 6). A decreasing trend with latitude can be observed with the 

lowest precipitation in the northwestern areas (Fig 6). Metro Milwaukee shows only 

slightly lower average annual precipitation compared to the whole study area, but is 

overall very close to the median of the study area. 
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Fig. 6: Difference of regional precipitation from RP for 1950 - 2006 

 

 

Figure 7 shows the slope and significance of trend for total annual precipitation at 

the 95 percent confidence interval.  The highest increasing trends can be found northwest 

of Metro Milwaukee, the southern parts of Metro Milwaukee and the northern and central 

parts over Lake Michigan (Fig. 7a). The grid-points with the strongest increasing trends 

are of significance. Forty-five grid points show a significant trend and are located in the 

northern and eastern parts of the study area and Metro Milwaukee (Fig. 7b). Only two 

grid points, in the far southwest corner show a negative trend. However, these trends are 

not significant. 
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Fig. 7: Results from the (left) Sen’s slope test for trend of annual precipitation, (right) Mann-Kendall test significance 

of annual precipitation 

 

   

 

6.3    Monthly Precipitation 

The mean monthly precipitation based on the high resolution observational 

dataset from 1950 to 2006 shows a distinguished seasonal pattern (Fig. 8). The driest time 

of the year is during winter (December, January, February), and the summer season 

(June, July, August) experiences the wettest months. The mean monthly precipitation 

shows a large spatial variation across the study area. The highest average monthly 

precipitation is observed in July (96 mm) and the lowest average monthly precipitation 

(32 mm) in February. 
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 Fig. 8: Mean monthly precipitation for 1950 – 2006 

 

The spatial variation of mean monthly observational precipitation averaged over 

the time period from 1950 to 2006 is shown in Figure 9a and 9b. The mean monthly 

precipitation amount from each grid point was interpolated using the IDW algorithm. 

Each month’s results were classified in six groups based on equal intervals. In Figure 9a 

the spatial variation of mean monthly precipitation for the months January through June 

are displayed, the months July though December are shown in Figure 9b. A unique 

spatial pattern for each month can be seen. Focusing on Metro Milwaukee, the winter 

months (December – January) show high precipitation centers over the metropolitan area 

spreading towards the southeast, and the driest areas are found in the northwestern 

regions of the study area. In spring (March – May) the northwestern part of the study area 

is driest, and the southeastern region the wettest. In summer the driest areas are moving 

towards the northeastern parts and the wettest areas are found in the southwest (June) and 

west (July, August). A distinguished center of low precipitation over Metro Milwaukee 

can be observed in May, July (very small), September, October, and November. 

 



39 
 

 
 

 
 

Fig 9a: Spatial variation of mean monthly precipitation (mm) for 1950 - 2006 for January to June 
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Fig 9b: Spatial variation of mean monthly precipitation (mm) for 1950 - 2006 for July to December 
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6.4    Extreme Precipitation 

The spatial variation of the 95th percentile precipitation is homogenous, and also 

varies from year to year but not as drastically as the annual precipitation sum. The spatial 

variation of the 95th percentile precipitation ranges from approximately 12mm to 15 mm 

(Fig. 10). The highest precipitation occurs in the southeastern parts of the study area and 

the lowest to the northeast and east over Lake Michigan. 

 
Fig. 10:  Spatial variation of 95th percentile precipitation for 1950 - 2006 
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  The Sen’s slope analysis and Mann-Kendall test of trend of the 95th percentile 

precipitation is presented in Figure 11. The highest increases in the 95th percentile precipitation 

are observed within the northeastern and western parts of the study area. The southern and eastern 

areas show a negative trend. Overall the 95th percentile of annual precipitation trend shows a 

high variability. Only a few isolated grid points at the northern border of the study area and one 

southeast of Metro Milwaukee show a significant trend. 

   
Fig. 11: Results from the (left) Sen’s slope test for trend of 95th percentile precipitation, (right) Mann-Kendall test 

significance of 95th percentile precipitation 
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Chapter 7: Projected Changes in Precipitation 

 

7.1    Statistical Overview 

The summary statistics for the projected precipitation characteristics from the 

delta method downscaling results are presented in Table 3 and 4.  The representative 

precipitation averages, standard deviation, and range are calculated for the 2050s and 

2080s for all three emission scenarios A1B, A2, and B1. For all three emission scenarios 

the mean annual precipitation is predicted to increase in the future. Considerable 

variations in mean annual precipitation are projected for the 2050s and 2080s. For the 

2050s the highest mean annual precipitation of 945 mm is predicted for the A1B 

scenario. The precipitation for the A2 and B1 scenario is predicted to be much lower with 

902 mm and 878 mm respectively. The annual precipitation varies considerably over the 

study area with a range of 1225 mm for the A1B scenario, 1173 for the A2, and the 

lowest range of 1127 mm for the B1 scenario. The annual precipitation for the 2080s for 

the A2 and B1 scenarios are predicted to be higher than the 2050s with 926 mm and 904 

mm.  For the A1B scenario the mean annual precipitation is predicted to be lower than in 

the 2050s with 927 mm. The range also increases for the A2 and B1 scenario, whereas 

the difference for the A1B scenario is predicted to be slightly less (Table 3).  

 
 Table 3: Summary statistics for annual representative precipitation from the downscaled results 

  2050s A1B 2050s A2  2050s B1  2080s A1B  2080s A2 2080s B1 

Mean 945 mm 902 mm 878 mm 927 mm 926 mm 904 mm 

Median 935 mm 893 mm 872 mm 915 mm 915 mm 897 mm 

Standard 

deviation  

154 mm 146 mm 141 mm 144 mm 152 mm 145 mm 

Minimum 586 mm 562 mm 535 mm 587 mm 571 mm 562mm 

Maximum 1225 mm 1173 mm 1127 mm 1211 mm 1210 mm 1177 mm 
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 The projected averages, standard deviation, and range from the downscaled 

results of the representative 95th percentile precipitation are shown in Table 4. The mean 

and median precipitation for the A1B, A2, and B1 emission scenarios for the 2050s are 

within 1 mm to the 95th percentile precipitation amounts projected for the 2080s. The 

standard deviation of 3 mm is very small and the same for all three emission scenarios in 

both time periods. The spatial variation is very homogenous over the region and very 

similar for the 2050s and 2080s for all three emission scenarios.  

Table 4: Summary statistics for the 95th percentile precipitation from the downscaled results 

 2050s A1B  2050s A2 2050s B1  2080s A1B  2080s A2  2080s B1 

Mean 30 mm 30 mm 30 mm 29 mm 30 mm 30 mm 

Median 29 mm 29 mm 29 mm 29 mm 29 mm 30 mm 

Standard 

deviation 

3 mm 3 mm 3 mm 3 mm 3 mm 3 mm 

Minimum 26 mm 26 mm 26 mm 26 mm 26 mm 26 mm 

maximum 40 mm 40 mm 39 mm 38 mm 41 mm 41 mm 

 

 

 

7.2    Annual Precipitation 

Figure 12 shows the changes in mean annual representative precipitation from the 

observational data for 1950-2006 to the future downscaled scenarios for the 2050s and 

2080s for all three emission scenarios. The precipitation is predicted to increase by 

almost 14% from the current time period to the 2050s and by ~ 12% by the 2080s in the 

A1B emission scenario. The percentage change in mean annual precipitation based on the 

A2 and B1 emission scenarios are predicted to change by ~ 8% and ~ 6% by the 2050s 

and by approximately ~ 12% and 9% by the 2080s. The two-sample t-test, as available in 

MATLAB as the ‘ttest2’ function, was used to analyze the significance of these changes 

in mean annual precipitation. The changes for all but the results of the B1 scenario for the 

2050s were of significance at the 95 percent confidence interval. 
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Fig. 12: Changes in mean annual representative precipitation from 1950-2006 to the 2050s and the 2080s 

 
The spatial variation of annual precipitation for the 2050’s is very heterogeneous 

across the study area. The spatial pattern of annual mean precipitation for the 2050’s is 

very similar for all three future scenarios, with the highest precipitation predicted in the 

southeastern areas and the lowest precipitation in the southwestern region (Fig. 13). For 

the 2050s, the mean annual precipitation amount for the A1B emission scenarios ranges 

from the lowest precipitation of 893 mm to the highest precipitation of ca. 1003 mm (Fig. 

13).  Even though the spatial variation of precipitation is very similar, the mean annual 

precipitation for the A2 and B1 emission scenarios is lower, ranging from 850 mm - 960 

mm and from 827 mm - 935 mm respectively (Fig. 13). The spatial pattern of annual 

precipitation scenarios for the 2080s is very similar to the pattern predicted for the 2050s, 

(Fig. 13) with the highest precipitation in the southeastern corner of the study area and 
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the lowest precipitation in the northwestern part of the study area. The overall 

precipitation amount is higher for the 2080s than for the 2050s (Fig. 13), with the 

exception of the downscaling results based on the A1B emission scenario (Fig. 13). In 

this case, the time period 2041-2070 experiences more precipitation (893-1003 mm) than 

the 2080s (Fig. 13) with the lowest precipitation of ca. 873 mm and the highest 

precipitation of 987 mm. The results based on the A2 and B1 emission scenarios receive 

comparably less precipitation than the A1B emission scenario based results. This 

difference is much stronger for the 2050s than the 2080s. The mean annual precipitation 

for the A2 and B1 emission scenario range from 869 mm - 991 mm and 853 mm - 962 

mm respectively. 
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Fig. 13: Spatial variation of mean annual precipitation (mm) for the A1B, A2, and B1 emission scenario for the 2050s 

and the 2080s   
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In Figure 14 the projected spatial changes in mean annual precipitation for the 

2050s and the 2080s have been mapped. The largest changes in mean annual precipitation 

from the current time period (1950-2006) to the 2050s, of approximately 14%, are 

predicted to occur in the southwestern regions, the far northwestern regions, and a small 

circle in the middle of Metro Milwaukee. The lowest changes occur northwest (ca. 11%) 

and southeast (ca. 12%) of Metro Milwaukee. The spatial changes from the current time 

period to the 2080s (A1B scenario) are very similar to that of the 2050s. The highest 

precipitation of approximately 12 mm is predicted for the southwestern part of the study 

area as well as in the central area of Metro Milwaukee. The lowest annual precipitation 

changes of ca. 8% are predicted to occur southwest of Metro Milwaukee. The predicted 

spatial annual precipitation changes for the 2050s and 2080s for the A2 and B1 emission 

scenarios are very similar to the A1B scenario only with lower percentage changes. 
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Fig. 14: Projected spatial changes in mean annual precipitation (%) for the 2050s and 2080s 
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Figure 15 shows a detailed analysis of mean annual precipitation for the 2050s for 

each of the nine groups.  The Northern regions receive less precipitation than the average 

across the whole study area. The region west of Metro Milwaukee also receives slightly 

less precipitation than the RP of the study area. For Metro Milwaukee the predicted 

results are different based on the emission scenarios. For the A1B the precipitation is 

lower than the average of the whole study area. For the A2 and B1 scenarios, the annual 

precipitation for Metro Milwaukee is predicted to be slightly higher than the RP of the 

whole study area. The southern regions receive more precipitation than the average over 

the whole study area. Overall, the predicted results for the 2050s show a larger 

discrepancy than was observed for the 1950 – 2006 period.   

  
Fig. 15: Projected difference of regional precipitation from RP from 1950-2006 to the 2050s 

 

Figure 16 shows a detailed analysis of mean annual precipitation for the 2080s for 

each of the nine groups. The northern areas are still projected to receive much less 

precipitation than the average across the study area, and for the southern regions much 

more than the average. For the A1B emission scenario the precipitation for each of the 
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groups stays very similar except for Metro Milwaukee. Here, the annual precipitation is 

predicted to be much lower than the average, and the difference is projected to be greater. 

For the A2 scenario, Metro Milwaukee seems to receive slightly more than the average, 

whereas for the B1 scenario the annual precipitation is just below the average of the study 

area. For the A2 and B1 emission scenarios the annual precipitation difference between 

each group and the average across the whole study area seems to deviate even more than 

for the 2050s. 

 

 
Fig. 16: Projected difference of regional precipitation from RP  from 1950-2006 to the 2080s 

 

  

 

7.3    Monthly Precipitation 

 The monthly precipitation for the current time period (1950-2006) and the 2050s 

for all three emission scenarios are presented in Figure 17. The annual variation of 

monthly precipitation for the 2050s is very similar to that of the current time period. For 

the cooler half of the year less precipitation is predicted, and higher monthly precipitation 
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totals are projected for the warmer half of the year. The lowest monthly totals are 

predicted to occur in February for all three scenarios. The lowest precipitation is 

projected in February with 28 mm for the A1B and B1 scenarios and 29 mm for the A2 

scenario. The highest precipitation in September with 128 mm for the A1B scenario, and 

in April with 120 mm and 116 mm for the A2 and B1 scenarios respectively. For the A1B 

scenario the distribution of monthly precipitation for the months from October to March 

is predicted to be very similar to the current time period and does not change much. The 

warmer half of the year is projected to experience increases in mean monthly 

precipitation in some months and decreases in others. High monthly precipitation totals 

are predicted in April, which drop to slightly lower precipitation totals in May and June, 

and are then projected to steadily increase until the highest monthly precipitation is 

reached in September. The annual distribution of monthly precipitation totals is similar 

for the A2 and B1 scenarios. The April precipitation is projected to have the highest 

monthly totals in both scenario projections. The A2 scenario is projected to receive 

higher September precipitation totals than in August. The B1 scenario is projected to 

have higher precipitation amounts in August than in September.  
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Fig. 17: Mean monthly precipitation (mm) for 1950-2006 and the 2050s for the A1B, A2 and B1 emission scenarios 

 

Figure 18 presents the monthly precipitation for the current time and the 2080s. 

The annual variation of monthly precipitation totals throughout the year is very similar to 

the 2050s for all three emission scenarios.  The projected monthly precipitation amount is 

less during winter and more during summer. The summer months for all three emission 

scenarios are projected to further decrease from the 2050s to the 2080s. A large increase 

can be found for April and September and a large decrease in October for all three 

emission scenarios. The August precipitation varies largely between the three emission 

scenarios.  
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Fig. 18: Mean monthly precipitation (mm) for 1950-2006 and the 2080s for the A1B, A2 and B1 emission scenarios 

 

The change of representative monthly precipitation from the current time period 

to the 2050s for all three emission scenarios is shown in figure 19. The precipitation for 

August to April is projected to increase; a decrease is predicted for May to July. The 

projected monthly precipitation changes are very inhomogeneous. Overall, the lowest 

change in precipitation is projected for the B1 emission scenario, and the largest change 

for the A1B emission scenario. The mean monthly precipitation is projected to increase 

for winter (December, January, February), spring (March, April, May) and fall 

(September, October, November). In summer (June, July, August) the monthly 

precipitation is projected to decrease with -3% for the A1B emission scenario, -6% for 

the A2 scenario, and -2% for the B1 scenario. In winter, the precipitation is projected to 

increase by 15% for the A1B and A2 scenarios, and 20% for the B1 scenario. In spring, 

the highest increase is projected for the A1B scenario with 15%, followed by 11% for the 
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A2 scenario, and the lowest increase for the B1 scenario with 5%. The precipitation 

increase in fall ranges from 34% (A1B scenario) to 7% (B1 scenario).  

 
Fig. 19: Changes in representative mean monthly precipitation for the 2050s for the A1B, A2, and B1 scenario 

 

The projected representative monthly precipitation for the 2080s for all three 

emission scenarios is shown in Figure 20. The precipitation in winter, fall, and spring is 

projected to increase, but the summer precipitation is projected to decrease. The projected 

changes are of the same direction, either increasing or decreasing, for all months expect 

August. The precipitation changes for August are projected to increase by 5% for the 

A1B scenario, and to decrease by 10% and 3% for the A2 and B1 scenarios respectively. 

The monthly changes in precipitation amount are very different based on the underlying 

emission scenario. The winter precipitation is projected to increase by 16% for the A1B, 

29% for the A2, and 14% for the B1 emission scenario. In spring, the precipitation is 

projected to increase by 11% to 21%, and the increases in fall precipitation range from 
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19% to 21%. The summer precipitation is projected to decrease by -7% for the A2 

scenario, by -4% for the B1 scenario and by -1% for the A1B scenario.  

 
Fig 20: Changes in representative mean monthly precipitation for the 2080s for the A1B, A2, and B1 scenario 

 

The spatial distribution of mean monthly precipitation for the 2050s based on the 

A1B, A2, and B1 emission scenarios are shown in Figure 21. The projected spatial 

distributions for all three emission scenarios are very similar. From November to April 

the highest precipitation is projected in the southeast corner, reaching into the 

southeastern regions of the study area. The highest precipitation is projected in the 

southern parts of the study area in May, and in the southwestern corner in June, July, and 

August. In September and October the highest precipitation is projected to occur in the 

northwestern corner. A center of low precipitation over Metro Milwaukee is projected in 

June, July, August, September, and October. The projected spatial distribution of 
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averaged monthly precipitation is very similar to the spatial distribution of mean monthly 

precipitation for 1950 to 2006.  

Fig. 21a: Spatial variation of projected mean monthly precipitation (mm) for the A1B emission scenario for the 2050s 
from January to June 
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Fig. 21b: Spatial variation of projected mean monthly precipitation (mm) for the A1B emission scenario for the 2050s 

for July to December 
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Fig. 21c: Spatial variation of projected mean monthly precipitation (mm) for the A2 emission scenario for the 2050s for 

January to June 
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Fig. 21d: Spatial variation of projected mean monthly precipitation (mm) for the A2 emission scenario for the 2050s for 

July to December 



61 
 

 
 

Fig. 21e: Spatial variation of projected mean monthly precipitation (mm) for the B1 emission scenario for the 2050s for 
January to June 
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Fig. 21f: Spatial variation of projected mean monthly precipitation (mm) for the B1 emission scenario for the 2050s for 
July to December 
 
 
 



63 
 

 
 

The spatial distribution of mean monthly precipitation for the 2080s based on the 

A1B, A2, and B1 emission scenarios are shown in Figure 22. The projected spatial 

distributions for all three emission scenarios are very similar. From November to April 

the highest precipitation is projected in the southeast corner reaching into the 

southeastern region of the study area. The highest precipitation is projected in the 

southern parts of the study area in May and in the southwestern corner in June, July, and 

August. In September and October the highest precipitation is projected to fall in the 

northwestern corner. A center of low precipitation over Metro Milwaukee is projected in 

June, July, August, September, and October. The projected spatial distribution of 

averaged monthly precipitation is very similar to the spatial distribution of mean monthly 

precipitation for 1950 to 2006.  
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Fig. 22a: Spatial variation of projected mean monthly precipitation (mm) for the A1B emission scenario for the 2080s 

for January to June 
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Fig. 22b: Spatial variation of projected mean monthly precipitation (mm) for the A1B emission scenario for the 2080s 

for July to December 
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Fig. 22c: Spatial variation of projected mean monthly precipitation (mm) for the A2 emission scenario for the 2080s for 

January to June 
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Fig. 22d: Spatial variation of projected mean monthly precipitation (mm) for the A2 emission scenario for the 2080s for 

July to December 
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Fig. 22e: Spatial variation of projected mean monthly precipitation (mm) for the B1 emission scenario for the 2080s for 

January to June 
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Fig. 22f: Spatial variation of projected mean monthly precipitation (mm) for the B1 emission scenario for the 2080s for 

July to December 
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7.4    Extreme Precipitation 

Changes in the representative 95th percentile precipitation are presented in Figure 

23. The 95th percentile of annual precipitation changes from the current time (1950 to 

2006) to the 2050s by 30% for the A1B and B1 emission scenarios and by 29% for the 

A2 scenario. The changes from the current time period to the 2080s are projected to be 

similar with 29% for the A1B scenario and 30% for the A2 and the B1 emission 

scenarios. The two-sample t-test, as available in MATLAB as the ‘ttest2’ function, was 

used to analyze the significance of these changes in 95th percentile precipitation. The 

changes for all three emission scenarios for the 2050s and 2080s were of significance at 

the 95 percent confidence interval. 

The changes projected for the 95th percentile precipitation for the 2050s and 

2080s are higher than the changes for the annual mean precipitation. The annual mean 

precipitation changes for the 2050s range from 6% to 14% and from 9% to 12% for the 

2080s (for more details see chapter 7.2). The percentage changes for the 95th percentile 

precipitation are much higher with 29% to 30% for the 2050s and the 2080s. In both 

cases the 2080s are projected to increase more than the 2050s with the exception of the 

A1B scenario. In this case, the 2050s show a slightly larger increase than the 2080s. The 

percentage differences between the emission scenarios are stronger for the 2050s than the 

2080s for the projected annual precipitation and almost the same for the 95th percentile 

precipitation.  
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Fig 23: Changes in 95th percentile precipitation from 1950-2006 to the 2050s and 2080s 

 

 The spatial variation of 95th percentile precipitation for the A1B emission scenario 

ranges from 19% to 40% for the 2050s and from 16% to 37% for the 2080s (Fig. 24). For 

the A2 emission scenario the 95th percentile precipitation ranges from 16% to 40% for the 

2050s and from 21% to 46% for the 2080s. The B1 emission scenario is projected to 

range from 20% to 40% for the 2050s and from 19% to 43% for the 2080s. The spatial 

variation varies between the three emission scenarios and does not show a distinctive 

pattern. In all three emission scenarios, the highest percentage changes in 95th percentile 

precipitation are projected in Metro Milwaukee. The extent of the area showing the 

largest increases in extreme precipitation vary among the emission scenarios as well as 

the two time frames.  
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Fig. 24: Changes of 95th percentile of annual precipitation (%) for the A1b, A2, and B1 emission scenario from 1950-

2006 to the 2050s and to the 2080s 
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Chapter 8: Discussion 

 
8.1    Decadal Changes in Precipitation 

The averaged annual precipitation for Metro Milwaukee and the surrounding 

areas of 831 mm is slightly higher than the averaged annual precipitation of the larger 

southeastern corner of Wisconsin as shown by Serbin and Kucharik (2009). This fits with 

the findings by Serbin and Kucharik (2010a) which found that the annual precipitation 

totals for the southern regions are higher than those for the northern areas with a 

latitudinal decrease. As the larger southeastern corner of Wisconsin reaches further north 

than the study area, it is to be expected that the average annual precipitation in this study 

is slightly higher than that of the larger southeastern corner of Wisconsin. A spatial 

analysis of winter and summer precipitation shows that the Milwaukee county area 

receives higher precipitation amounts than the average of the southeastern corner of the 

state.  

The results of the annual precipitation trend should be interpreted with some 

caution due to the restricted time period of 56 years (1950-2006). Some variation in 

magnitude of trends would result if a different time period were analyzed. Kucharik et al. 

(Kucharik et al. 2010a) found a significant increasing trend for the southwestern corner of 

Wisconsin at a 90 percent confidence interval. The results for this study only show a 

significant trend for the northern and western parts, this might be because of a smaller 

confidence interval (95 percent confidence) or due to the smaller study area. The spatial 

variation in increasing precipitation trends found in this study are very similar to those 

presented in the first report of the Wisconsin Initiative on Climate Change Impacts 

(Wisconsin Initiative on Climate Change Impact 2011). 
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8.2    Effects of Metro Milwaukee on Precipitation 

Many studies have found an increase in precipitation of varying degree on the 

downwind side of urban areas. Huff and Changnon (1973) found that for six large U.S. 

cities urban induced precipitation increases of 10-30%, in and downwind of the city, 

occurred for the time period 1955-1970. Dixon and Mote (2003) found similar results for 

Atlanta, Georgia. The UHI has been shown to enhance and possibly initiate 

thunderstorms and thunderstorm related precipitation. Most of these events occurred at 

night and near high-density urban areas. This study is based on daily precipitation data 

and therefore does not focus on the time of the day at which the precipitation events 

occur. Only changes in the precipitation amount are analyzed.  

To analyze if increased precipitation downwind of the city also occurs for 

Milwaukee annual and monthly averages of the predominant wind directions were 

obtained from the Wisconsin State Climatology office 

(http://www.aos.wisc.edu/~sco/climhistory/stations/mke/milwind.html). Table 5 shows 

the average monthly and annual wind direction for wind data at Milwaukee, Wisconsin 

for the time period 1948 to 1990.  

Based on the spatial analysis of averaged annual precipitation amounts, the 

highest precipitation is predicted in the southeastern regions of the study area and the 

lowest in the northwestern and northern regions. The highest average annual precipitation 

is located downwind of Metro Milwaukee. The averaged annual wind is a west-northwest 

wind (Table 5). The high precipitation located to the southeast of the study area could be 

partially due to the urban effects enhancing the precipitation magnitude. Similar patterns 

can also be found for the monthly precipitation. In winter (December - February) high 
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precipitation amounts are shown in the southeastern portion of Metro Milwaukee and in 

the southeastern parts of the study area. The predominant wind direction in winter is 

west-northwest. In March and April the wettest areas are found in the southeastern corner 

of the study area. In May the highest precipitation is occurs in the southern regions. The 

predominant wind pattern for March is west-northwest which could explain the high 

center of precipitation southeast of Metro Milwaukee. In April and May the wind 

predominantly comes from the north-northeast. This might explain the shift from the 

concentrated high precipitation in the southeastern corner towards the more widespread 

precipitation in the southern regions. In June the highest precipitation can be found in the 

southwest and the predominant wind direction is north-northeast. This once again puts 

the highest precipitation amounts at the downwind side of Metro Milwaukee. In July to 

September the wind is predominantly coming from the southwest and south-southwest. 

During these months the highest precipitation can be found in the southwest and western 

regions. In November the predominant wind is again coming from the west-northwest 

and the southeastern regions experience the highest precipitation.  
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Table 5: Predominant wind direction based on annual and monthly averages for the time period 1948 - 1990 

 Average wind direction 

Annual  West-northwest 

January West-northwest 

February West-northwest 

March West-northwest 

April North-northeast 

May North-northeast 

June North-northeast 

July Southwest 

August Southwest 

September South-southwest 

October South-southwest 

November South-southwest 

December West-northwest 

 

 

8.3    Projected Changes in Precipitation 

The mean annual precipitation is projected to increase by 6% to 14% by the 2050s 

and by 9% to 12% by the 2080s. These results fall within the range of percentage changes 

found by the Wisconsin Initiative on Climate Change (2011), which suggest that the 

annually averaged precipitation will change by  -5% and +15%  by the mid 21st century, 

and by -5% and +25% by the end of the century, within the entire state of Wisconsin for 

the A1B emission scenario.  

By the 2050s the monthly precipitation is projected to increase in winter, spring 

and fall for all emission scenarios, whereas the summer precipitation is projected to 

decrease. The seasonal precipitation is projected to increase in winter by 15% to 20%, in 

spring by 5% to 15%, and by 7% to 34% in fall. The summer precipitation is projected to 

decrease by -2% to -6%. The analysis of seasonal precipitation changes by the Wisconsin 

Initiative on Climate Change Impacts (2011) showed a suggested change of 0% to 40% in 
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winter, -5% to 25% in spring, 5% to 15% in fall, and -20 to 15% in summer for the mid 

21st century. The averaged monthly precipitation changes for the A1B emission scenario 

in this study fall within the averages projected for the whole state of Wisconsin. The only 

exception is for the fall precipitation which is projected to be much higher than the 

average across Wisconsin.  

This research focuses on the analysis of precipitation for the current time (1950-

2006) and the mid and late 21st century for Metro Milwaukee and the surrounding area. A 

detailed analysis of changes in precipitation for Metro Milwaukee was not included by 

the Wisconsin Initiative on Climate Change Impacts (2011). The spatial variation across 

Metro Milwaukee and the surrounding areas are particularly interesting and very similar 

to the spatial pattern of the current time period. A detailed analysis suggests that the 

highest precipitation for the current time period occurs on the downwind site of the city. 

The centers of high precipitation on the downwind side for the current time period are 

projected to be larger and more intense in the future. Future research should be conducted 

to determine if the correlation between the highest precipitation amounts and the 

predominant wind directions will continue to occur in the future. 
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Chapter 9: Summary & Conclusions 

 
The primary goals of this research were to spatially and temporally analyze 

precipitation from the high-resolution gridded historical climatic dataset for Wisconsin 

for the time period 1950-2006 in Metro Milwaukee, and to generate precipitation 

scenarios via statistical downscaling of global climate model outputs.  The delta change 

method was chosen for statistical downscaling of the historical climatic dataset for 

Wisconsin for the two future time period 2041-2070 and 2071-2100. The annual, monthly 

and extreme precipitation for the current time period and the future were analyzed. To 

identify the trend of annual precipitation and the 95th percentile precipitation the Mann-

Kendall test of trend and the Sen’s slope test were applied. Spatial variations of 

precipitation characteristics were analyzed by spatially interpolating the data from each 

grid point with the inverse distance weighting interpolation algorithm.  

The major findings are summarized as follows: 

• The spatial variation of annual precipitation from 1950-2006 differs largely across the 

study region ranging from 798 mm to 889 mm. The highest precipitation is in the 

southeastern corner and the lowest precipitation in the northwestern region. A very 

similar spatial pattern of annual precipitation is projected in the future for all three 

emission scenarios, but with higher annual precipitation totals. The annual 

precipitation is projected to increase by 6% to 14% by the 2050s and by 8% to 12% 

by the 2080s. 

• The regional differences in annual precipitation for 1950-2006 show that the northern 

regions receive less precipitation than the average across the whole study area, while 
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the southern regions receive much more and Metro Milwaukee remains close to the 

average. A very similar pattern is projected for the 2050s and 2080s and the regional 

trend is projected to become more prominent in the future.  

• The Sen’s slope results show the highest increasing trends in the northern and eastern 

parts of the study area. The Mann-Kendall test suggests that these regions show a 

significant trend.  

• The study area receives much more precipitation in the summer than in the winter. 

The spatial variation of mean monthly observational data shows a unique spatial 

pattern for each month. In winter, spring and fall, the precipitation is highest in the 

southeast corner spreading into Metro Milwaukee, and the driest areas are found in 

the northwestern regions. In summer the driest areas are moving towards the 

northeastern parts, and the wettest areas are found in the southwest and west. A 

distinguished center of low precipitation over Metro Milwaukee occurs in May, 

September, October, and November.  

• The projected spatial distribution of monthly precipitation for all three emission 

scenarios for the 2050s and 2080s is very similar to that of the current time period 

(1950-2006). The wettest areas in winter, fall, and spring are of slightly larger extent. 

The area with the lowest precipitation class of the study area, occurring over Metro 

Milwaukee, is also projected to be larger.   

• An increase in mean monthly precipitation for the 2050s and 2080s is projected for 

winter, fall and spring. The projected changes in summer precipitation for the 2050s 

and 2080s show a decrease for all three emission scenarios. 
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• The 95th percentile precipitation for 1950-2006 ranges from 12 mm to 15 mm and is 

fairly homogenous throughout the study area. The spatial variation of 95th percentile 

precipitation is projected to increase between 16% to 40% for the 2050s, and between 

16% to 46% for the 2080s depending on the emission scenario.  

• The projected changes in extreme precipitation are higher than those simulated for the 

annual precipitation changes for both time periods and all three emission scenarios. 

The mean annual precipitation is projected to increase by 6% to 14% for the 2050s, 

and by 9% to 12% for the 2080s. The mean 95th percentile precipitation increases 

from 29% to 30% for the 2050s and the 2080s.  

• The standard deviations for annual precipitation from the downscaling results of all 

three emission scenarios are higher than those from the observational data for 1950-

2006 and the CGCM3 data for the base period 1961-1990. The analysis of annual 

precipitation for the base period showed a standard deviation of 126 mm for the 

observational data and 128 mm for the CGCM3 data. The analysis of the projected 

future annual precipitation revealed a range from 141 mm to 154 mm for the 2050s 

and from 144 mm to 152 mm for the 2080s. The standard deviations for the 95th 

percentile precipitation are nearly identical for the base period datasets and the 

downscaled future data. 

• Based on the spatial patterns of annual and monthly precipitation, and the 

predominant wind direction, a pattern of higher precipitation amounts on the down-

wind side of the city can be observed for the observational climate dataset from 1950-

2006.  
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A more detailed analysis of the relationship between increased precipitation and 

wind direction is necessary to draw concrete conclusions if Metro Milwaukee causes an 

increase in precipitation amounts. The Metro Milwaukee does not seem to enhance the 

precipitation magnitude in the downwind side for all months. In some months (e.g. 

October) similar values of high precipitation can be found in the southern and northern 

regions, i.e. the highest occurring precipitation occurs in two places. This could either be 

due to a high variability in wind direction or that in these months the urban area does not 

have an effect on precipitation magnitude. In several months, May, September, October, 

and November an area of low precipitation over the Metro Milwaukee can be observed. 

This phenomenon might be dependent on the wind but could not be determined in this 

study. Therefore, an extensive wind analysis in connection to precipitation should be 

undertaken. This analysis should not only focus on the current time period but the future 

as well.  
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Appendix - MATLAB Function for the Delta Method 

 
This function is based on that used in the study by Choi et al. (2009). 
 
The inputs needed for this function are: 
 Pobs: Matrix of observed precipitation at a station, without 29   
 February 
 Pgcm_c: Matrix of GCM-simulated precipitation for current climate 
 Pgcm_f: Matrix of GCM-simulated precipitation for future climate 
 
 Output is given as: 
 Pf: Matrix of future precipitation 
 
 
function [Pf] = p_scenario(Pobs, Pgcm_c, Pgcm_f) 

d = cumsum([1 31 28 31 30 31 30 31 31 30 31 30 31]); 

Pscenario = zeros(size(Pobs)); 

 for i=1:12 

    Po = Pobs(:,d(i):d(i+1)-1); 

    Po = Po(:); 

    Pc = Pgcm_c(:,d(i):d(i+1)-1); 

    Pc = Pc(:); 

    Pf = Pgcm_f(:,d(i):d(i+1)-1); 

    Pf = Pf(:); 

    EPf = mean(Po) * (mean(Pf)/mean(Pc)); 

    r = length(find(Po==0))/length(Po); 

    TPo = sortrows(Po); TPo(1:floor(r*length(TPo))) = []; 

    TPc = sortrows(Pc); TPc(1:floor(r*length(TPc))) = []; 

    TPf = sortrows(Pf); TPf(1:floor(r*length(TPf))) = [];     

    SPf = std(TPo) * std(TPf)/std(TPc); 

    par0 = [mean(Pf)/mean(Pc) , 1]; 

    par = fminsearch(@(x) obj1(x,Po,EPf,SPf), par0); 

    fprintf(1,'\n Month %2d %6.2f %6.2f %6.3f %6.3f %6.3f 

%6.3f',... 

       i,par(1),par(2),EPf, mean(par(1)*Po.^par(2)),SPf, 

std(par(1)*Po.^par(2))) 

    Pscenario(:,d(i):d(i+1)-1) = par(1)*Pobs(:,d(i):d(i+1)-

1).^par(2); 

end 

[Pf] = Pscenario; 

 

 

function f = obj1(par,P,EPf,SPf) 

Pf = par(1).*P.^par(2); 

f = abs(mean(Pf)-EPf) + abs(std(Pf)-SPf); 
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