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ABSTRACT

SMALL-AREA POPULATION ESTIMATION: AN 

INTEGRATION OF DEMOGRAPHIC AND 

GEOGRAPHIC TECHNIQUES

by

Chengbin Deng

The University of Wisconsin-Milwaukee, 2013

Under the Supervision of Professor Changshan Wu

Abstract 

Knowledge of detailed and accurate population information is essential to 

analyze and address a wide variety of socio-economic, political, and environmental 

issues and to support necessary planning practices for both public agencies and the 

private sector. However, such important data are generally only available once every 

decade through the National Census. Moreover, populations in some 

rapidly-developing areas may increase quickly, such that this ten-year frequency does 

not meet the needs of these areas. Therefore, a cost-effective method for population 

estimation is necessary. To address this issue, this research integrated geographic, 
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sociological, and demographic theories and exploited remotely sensed imagery and 

geographic information system (GIS) datasets to derive better population estimates at 

the census block level, the finest level of the national census.

Specifically, three new approaches have been proposed in this dissertation to 

assist in the improvement of small-area population estimation accuracy. First, existing 

remotely sensed and GIS data have been adopted to estimate two major components of 

a demographic framework, including the redistribution of newly built dwelling units 

from the aggregated geographic level to the census block level and the estimation of 

persons per household (PPH) at such a fine scale. Second, in addition to the use of 

existing data, new urban environmental indicators were also extracted and employed to 

improve population estimation. In particular, to implement the automatic enumeration 

for individual housing units, a new spectral index, biophysical composition index 

(BCI), has been proposed to derive impervious surface information, a desirable urban 

environmental parameter. Third, using the extracted high-resolution urban

environmental information and GIS data, a new bottom-up method was developed for 

small-area population estimation at the census block level by incorporating these 

high-resolution data into the demographic framework.

Analyses of the results suggest three major conclusions. First, existing GIS 

spatial factors, together with demographic information, can assist in improving the 

accuracy of small-area population estimation. Second, the BCI has a closer relationship 

with impervious surface area than do other popular indices. Moreover, it was shown to 
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be the most effective index of the four evaluated for separating impervious surfaces and 

bare soil, which consequently might assist in more accurately deriving fractional land 

cover values. Third, the use of the new environmental indicators extracted from remote 

sensing imagery and GIS data and the integration of demographic and geographic 

approaches has significantly improved the estimation accuracy of housing unit (HU) 

numbers, PPH, and population counts at the census block level.

Therefore, this research contributes to both the remote sensing and applied 

demography fields. The contribution to the remote sensing field lies in the development 

of a novel spectral index to characterize urban land for monitoring and analyzing urban 

environments. This index provided more significant separability between impervious 

surfaces and bare soil than did other existing indices. Moreover, three major 

contributions have been made in the field of applied demography: 1) the generation of 

accurate HU estimates using high-resolution remote sensing and GIS datasets, 2) the 

development of a model to derive an accurate PPH estimate, and 3) the improvement of 

small-area population estimation accuracy through the integration of geographic and

demographic approaches.
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CHAPTER 1 INTRODUCTION

1.1 Background

More than half of the world’s population currently resides in urbanized areas, 

and urbanization is projected to continue in both developed and developing regions 

throughout the world in the coming decades (United Nations, 2010). This rapid 

population increase contributes to a series of environmental problems and natural 

resource issues. For example, along with urban development, population growth has 

been regarded as one of the major reasons for air pollution, including the excessive 

release of related organic gases, nitrogen oxides, etc. (Cramer, 1998), potentially due 

to congestion, excessive industrialization, and immoderate energy consumption, etc.

(Mayer, 1999). Second, the rapid population increase leads to increased water 

contamination and growth in freshwater demand (Vörösmarty et al., 2008). Third, 

urban population size is found to be positively correlated with the intensity of the 

urban heat island phenomenon (Cayan and Douglas, 1984; Jauregui et al., 1992; Kukla 

et al., 1986; Oke, 1973; Nasrallah et al., 1990). Further, a growing population 

necessitates more food production and living space, therefore resulting in 

deforestation and habitat destruction as more natural lands have to be transformed to 

arable and residential lands to meet these demands (Cropper and Griffiths, 1994). 

Moreover, consistent population growth may have also severe impacts on threatened 

species, which may result in increasingly greater biodiversity losses (Kirkland and 
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Ostfeld, 1999; Thompson and Jones, 1999; McKee et al., 2003). In addition, poor 

sanitary conditions prompt public health concerns that crowded urban environments 

and the corresponding polluted and degraded environments (e.g., water pollution, 

atmospheric pollution, food contamination, etc.) might also trigger outbreaks of 

infectious diseases, such as measles and influenza. (Pimentel et al., 2007). To avoid 

and/or mitigate these urban environmental problems that that affect our daily lives, it is 

necessary to sensibly and effectively allocate limited public resources to encourage 

sustainable development. 

An awareness of population totals and distributions is essential for sustainable 

public planning, environmental management, and commercial applications (Rees et al.,

2004). On the one hand, in public planning, small-area population estimates are a 

critical component in deriving several diagnostic indicators, such as the mortality rate, 

morbidity rate and unemployment rate, etc. Moreover, small-area population 

information can be employed as an important input for social, urban and regional 

studies, including assessments of employment equality, policy impact analysis, land 

use models, transportation interaction models, infrastructure planning, etc. For 

example, the location and size of a population are important inputs when forecasting 

travel demands and planning facility locations (Plane and Rogerson, 1994). On the 

other hand, in commercial applications, small-area population data can be used to 

calculate per capita sales volumes, assess markets and identify potential customer 

groups based on their economic/ethnic status or living preferences, etc.
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Currently, population information can be obtained from three major sources:

population registers, decennial censuses, and estimates from remote sensing imagery 

(Rhind, 1991). First, population registers continuously record up-to-date 

socio-economic information on the resident population, which is more commonly used 

in the Nordic countries (e.g., Denmark, Finland, Norway and Sweden) where advanced 

technology and complete social systems are present. Second, decennial censuses 

provide the most widely used and accurate population data in the United States and the 

United Kingdom. However, decennial census data are only available every ten years

following the national census. Conducting a national census is labor-intensive, 

time-consuming and costly. Estimates of the cost of surveying an individual rose from 

$4.76 in 1980 to $10.02 in 1990 and to $15.99 in 2000 (Gauthier, 2002). Moreover, in 

the areas experiencing rapid population growth, the ten-year frequency does not meet 

the needs of public facility planning. In addition to these two traditional methods, 

researchers have considered remote sensing techniques for population estimates, 

particularly in less-developed areas and countries without historical census data or 

registers. Its major advantage is its low cost and efficiency compared to population 

registers and national censuses (Lo, 1995). Its accuracy, however, is highly dependent 

on the estimation methods and may vary substantially. Therefore, to address this 

mismatch between the substantial demand in a variety of practical applications and 

limited availability of population information, it is necessary to develop a cost-effective 

population estimation methodology.
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In recognition of the importance of population estimation, researchers have 

proposed various models based on either demographic theory or remote 

sensing/geographic information system (GIS)-based techniques. Specifically, 

demographers have developed the Component Method II (CM-II) method, the 

Administrative Records (AR) method, the Ratio Correlation (RC) method, and the 

Housing Unit (HU) population estimation methods (Ghosh and Rao, 1994). In 

particular, the HU method has played a crucial role in population estimation. This 

method assumes that homes are a basic human necessity that represents significant 

identifiers and evidence of the influence of human activity on land cover. Therefore, the 

population totals in a small area are closely related to the number of housing units in 

that area. As a result, the U.S. Census Bureau has employed this approach as its 

method for generating population totals at the sub-county level since the 1990s (U.S. 

Census Bureau, 1998; Smith and Cody, 2004; U.S. Census Bureau, 2005), including 

incorporated places (e.g., cities, boroughs, and villages) and minor civil divisions 

(e.g., towns and townships). In addition, remote sensing/GIS researchers have 

exploited remote sensing imagery to manually count residential units as the first step of 

the HU method (Hsu, 1971; Lo, 1986a, 1986b) or estimate population density using 

spectral reflectance methods or their mathematical transformations (i.e., logarithmic or 

square root transformations) using regression models (Hsu, 1973; Iisaka and Hegedus, 

1982; Lo, 1995; Harvey, 2002, Li and Weng, 2005; Lu et al., 2006; Wu and Murray, 

2007).
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Although the HU method has been widely employed in the fields of applied 

demography and remote sensing/GIS to derive small-area population estimates, several 

issues remain unresolved. The first pertains to the different spatial scales considered 

in these two fields. In demography, housing unit counts are obtained by disaggregating 

building permit data or electronic utility data at an aggregated level, such as the county, 

town, or occasionally, the administrative district, the boundaries of which differ from 

those of the census unit, instead of at a finer level (such as the census block group and 

census block levels). In other words, the aggregated data source itself limits the 

accuracy of small-area population estimates using demographic methods. However, 

remote sensing researchers are more familiar with image pixels and prefer to use 

pixel-based population estimation. However, coarse- and medium-resolution remote 

sensing imagery only characterizes the spectral response of the overall landscape 

within a pixel, rather than the direct relationship with additional details of a house due 

to its relatively low spatial resolution. However, such a spatial unit is inconsistent with 

census boundary frequently used by demographers. The mismatch of spatial scales 

between the two fields results in independent developments with minimal 

collaboration. In contrast, high-resolution remote sensing imagery, such as digital 

aerial photographs, IKONOS, worldview imagery, etc., might remove such limitations. 

However, most of the current methods using orthophotographs (Hsu, 1971; Watkins, 

1984; Watkins and Morrow-Jones, 1985; Lo, 1986a, 1986b) require researchers to be 

skilled at image interpretation and sufficiently familiar with the study area to manually 

count the residential units, which is extremely time-consuming and labor-intensive and 
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not applicable to a large geographic areas. The use of high-resolution, remotely sensed 

imagery data may allow improved estimates of the number of housing units if an 

automated acquisition method can be developed, which will accordingly improve 

small-area population estimates.

The second problem relates to the assumption of constant person per 

household (PPH) figures in the HU method. In both fields, PPH is consistently 

assumed to remain identical to PPH figures obtained from the latest decennial census 

(Starsinic and Zitter, 1968; Smith and Lewis, 1983; U.S. Census Bureau, 2005). 

Essentially, rather than being a static demographic indicator, PPH changes over time. 

Several studies have noted that the PPH in the U.S. has exhibited a steep downward 

trend over the past two centuries, falling from 5.8 in 1790 to 4.8 in 1900 and to 2.6 in 

2000 (Kobrin, 1976; U.S. Census Bureau, 2001; Bongaarts, 2001). According to the 

life-cycle model, there are several reasons for this PPH decline related to the spatial 

requirements of individuals at needs different ages, including declining fertility and 

mortality rates and the trend of young people living separately from their parents

(Kobrin, 1976; Smith et al., 2002; Sabagh et al., 1969; Speare et al., 1975). As a 

result, the use of unchanged PPH values results in overestimates of population counts 

(Starsinic and Zitter, 1968; Smith and Lewis, 1980). While some studies have 

attempted to obtain better PPH estimates at the county-level (Smith, 1986; Smith et al.,

2002), few have explored the estimation of inter-census PPH at a high spatial scale

(such as the census block), primarily due to the unavailability of the necessary datasets.
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Thus, inter-census, small-area population estimates may be improved if PPH can be 

estimated with the aid of advanced remote sensing and GIS techniques.

1.2 Population estimation methods: a review 

1.2.1 Demographic methods

Among demographic approaches, four methods are widely applied to estimate 

population totals, including the Ratio-Correlation (RC) method, the Component 

Method II (CM-II) method, the Administrative Records (AR) method, and the Housing 

Unit (HU) method (Smith and Mandell, 1984; Ghosh and Rao, 1994).

The RC method assumes that the symptomatic variables (R1, R2,…, Rn,

representing school enrollment, auto registration, the ratio of resident births/death, etc)

are correlated with the population totals (Martin and Serow, 1978). The essence of the 

RC method is regression analysis, although the symptomatic variables are expressed in 

ratio form. Specifically, they are represented in the form of “ratios of ratios” (Plane and 

Rogerson, 1994). The RC method can be expressed as a regression model as follows:

௜ܭ = ܽ଴ + ܽଵܴ௜ଵ + ܽଶܴ௜ଶ + ڮ + ܽ௡ܴ௜௡ + ௜ߝ (2.1)

௜ܭ = ௣೔೟ ௣ೌ೗೗೟൘
௣೔బ ௣ೌ೗೗బ൘ (2.2)
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ܴ௜௝ = ௌ೔ೕ೟ ௌೌ೗೗೟൘
ௌ೔ೕబ ௌೌ೗೗బ൘ (2.3)

where Ki is change in the share of the total population residing in subregion i; ௜௧݌
and ݌௜଴ are the population totals in the ith subregion in the most recent census year t

and a previous census base year o, respectively; ݌௔௟௟௧ and ݌௔௟௟଴ are the total population 

counts for the whole region at time t and time o, respectively; Rij represents the 

percentage change in of a symptomatic variable of type j in subregion i; ௜ܵ௝௧ and ௜ܵ௝଴
are the actual values of a symptomatic variable of type j in the ith subregion at time t

and time o, respectively; ܵ௔௟௟௧ and  ܵ௔௟௟଴ are the total values of the symptomatic 

variable of type j for the entire region at time t and time o, respectively; a0, a1,… an are 

the regression coefficients. 

Using the coefficients obtained from the regression analysis, Ki can be 

estimated based on different types of symptomatic variables in subregion i in the 

estimate year e. Accordingly, by rearranging equation (2.2), the population in 

subregion i can be calculated as follows:

௜௘݌ = ௣೔೟௣ೌ೗೗೟ ௔௟௟௘݌  ௜ܭ  (2.4)

where ݌௜௘is the population of the ith subregion in estimate year e, while ݌௔௟௟௘ is the 

total population of the entire region at time e, which can be obtained from other 

sources (Schmitt and Crosetti, 1954; Goldberg et al., 1964; Smith and Mandell, 1984).

There are several criticisms of the RC method (Namboodiri, 1972; Plane and 
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Rogerson, 1994). First, there is a doubt that it is unnecessary for the sum of the 

coefficients of the RC regression model to be close to one. Second, some question 

whether it is appropriate to leave the ratio between the population variable Ki and the 

symptomatic variables Ri unchanged in at an inter-census year o from that of the 

previous two censuses. 

The CM-II method is another important demographic estimation method 

proposed by the U.S. Census Bureau. This approach considers some major 

demographic changes between the estimation year and the most recent census year. 

Under the CM-II method, population totals can be calculated as follows:

௧݌ = ଴݌ + ܾ െ ݀ + ݉ (2.5)

where pt is the population total in year t, po is the population in the last census year o;

b and d are the estimated numbers of births and deaths, respectively, both of which 

can be estimated under the assumption that they are uniformly distributed throughout 

the year, m is the net migration at all ages, calculated by multiplying the net migration 

rate by the estimated surviving population between times t and o (Smith and Mandell, 

1984).

Similar to the CM-II method, the AR method also accounts for demographic 

change. However, there is a significant difference between the two: the CM-II method 

estimates the entire net change, while the AR method estimates two categorical 

changes. More specifically, the AR method estimates the net migration of the 

population under 65 years of age using federal income tax forms and employs federal 
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Medicare enrollment data to estimate the net migration of people 65 and above, while 

the CM-II method only relates school enrollment data to overall population changes.

Unlike the RC, CM-II, and AR methods that are only available for population 

estimates at an aggregate level (such as the state- and county-levels), the HU method 

has been the only method used by the U.S. Census Bureau to generate small-area 

population estimation for almost two decades. This method is considered the most 

commonly used, and among the most accurate and cost-effective methods for 

estimating small-area populations (Smith and Mandell, 1984; U.S. Census Bureau, 

1998; Smith and Cody, 2004; U.S. Census Bureau, 2005). Specifically, the numbers of 

occupied housing units, persons per household and group quarter population are three 

major components of the HU method. The formula for the HU method can be written as 

follows:

(2.6)

where Et is the estimated population of a small area in a non-census year t; HUt is the 

population estimate at time t; rt is the occupancy rate at time t; Pt is the number of 

persons per household at time t; and Gt is the group quarters population (e.g., persons 

residing in college dormitories, military barracks, nursing homes, prisons, etc.) at time 

t.

1.2.2 Remote sensing and GIS techniques 

1.2.2.1 Overview of remote sensing /GIS-based population estimation methods

t t t t tE HU r P G
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According to the aforementioned reviews, an apparent limitation of

demographic models is the substantial difficulty of updating most of the demographic 

variables and obtaining the latest socioeconomic data. Therefore, it is impractical to 

generate timely population estimates. In contrast, as up-to-date remotely sensed and 

GIS datasets are much easier to acquire, remote sensing and GIS techniques may have 

the potential to be integrated into demographic methods and thus improve existing 

small-area population estimation methods.

Lo (1986b) noted that remote sensing/GIS-based population estimation 

methods can be grouped into four categories: 1) measured land-area-based estimation; 

2) land-use-based estimation; 3) dwelling-unit-based estimation; and 4) 

spectral-radiance-based estimation. In addition to these four categories, the latest 

developments in remote sensing techniques have produced a fifth category, new 

indicators-based estimation, which is reviewed in below. 

In the first category, remotely sensed data were employed to measure the 

built-up urban area, and subsequently the empirical relationship between built-up area 

and population totals were established according to the allometric growth model (Lo 

and Welch, 1977). The law of allometric growth was originally demonstrated by 

Huxley (1932) and applied to urban growth and population settlement (Norbeck, 1965; 

Tobler, 1969). The equation for the first category of estimation techniques can be 

written as follows:

ܲ = ܽܵ௕ (2.7)
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Further, this formula can also be expressed as:

݃݋݈ ܲ = ݃݋݈ ܽ + ܵ ݃݋݈ ܾ (2.8)

where P is the estimated population; S is the size of the built-up area obtained from 

the remotely sensed imagery; and a and b are the model coefficients.

In the second category, remote sensing imagery was used to classify land use, 

and in particular, to further classify the residential areas into detailed categories, such as 

single-family residential land use, multi-family residential land use, etc. The population 

totals were then estimated as the sum of the geographical areas allocated of different 

land use types multiplied by their population densities (Kraus et al. 1974). The equation 

for the second category can be represented as follows:

ܲ = σ ( ௜ܵܦ௜)௡௜ୀଵ (2.9)

where P is the estimated population; Si is the area of the sub-residential land use type 

obtained from the remotely sensed imagery; and Di is the corresponding density of the 

sub-residential land use type.

In essence, the principle of the first category resembles to that of the second 

because remotely sensed images were similarly used to classify land use types and to 

calculate their areas. Their major difference lies in the classification: the first category 

classifies land use into built-up and non-built-up types, while the second category 

classifies types of residential land use in greater detail (Wu et al., 2005). 
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In the third category, the dwelling-unit-count approach employs large-scale 

aerial photographs to identify the various dwelling units and manually count their 

number belonging to each dwelling type (Watkins 1984, Watkins and Morrow-Jones, 

1985, Lo 1986a). Somewhat similar to the second category, the population totals were 

estimated by multiplying the number of dwellings by the population density of the 

respective dwelling unit type as follows. 

ܲ = σ ௡௜ୀଵ(௜ܦ௜ܪ) (2.10)

where P is the estimated population; Hi is the number of dwelling units of type i

counted in the remote sensing images; and Di is the corresponding density of dwelling 

type i.

Hsu (1971) was the first to estimate population totals by multiplying the number 

of manually counted dwelling units by the average number of persons per household, 

under assumptions that a household can be represented by an occupied dwelling unit 

and that there was no considerable change in the average number of persons per 

household between the estimate year and the census year. Following Hsu’s work, Lo 

and Chan (1980) successfully identified five types of rural dwelling units by visual 

interpreting the spatial pattern of these housing units in aerial photographs and 

subsequently estimated the rural population in the New Territories, Hong Kong. 

However, some unsolved problems were present in their research, such as the 

overestimation resulting from vacant units and the underestimation due to the 

occupancy of multiple families/households in multi-storied buildings. Although 
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relatively high accuracy can be achieved, this approach might be considered extremely 

time-consuming and labor-intensive due to the need to manually count the number of 

dwelling units and hence impractical for large-scale applications. To facilitate dwelling 

unit counts, several automatic approaches have been developed. The results, however,

were not as accurate as those obtained from manual counts. Converting aerial 

photographic data into a raster format, Lo (1989) estimated the number of dwelling 

units for each grid cell by multiplying the true percentage by the theoretical maximum 

number of dwelling units and demonstrated the relationship between the actual number 

of housing units and the number of buildings observed in aerial photographs using a 

double logarithmic regression model. Similarly, Webster (1996) estimated dwelling 

unit figures using linear regression models with variables directly obtained from remote 

sensing images, including mean reflectance values, texture and context measures. 

Further, Lo (2003) derived the number of housing units using a regression model by 

considering the relationship between the geographic extent of residential land use and 

the number of housing units.

In the fourth category, spectral radiance and reflectance values obtained from 

remote sensing images were directly applied to establish empirical relationships for 

population estimates. Lo (1995) employed regression analysis to estimate both 

population density per pixel and dwelling units per pixel using three factors from 

remote sensing imagery, including mean radiance values of three bands of Système 

Pour l'Observation de la Terre (SPOT) images, the proportion of high-density 

residential lands, and the absolute number of high-density residential lands. Chen 
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(2002) correlated areal census dwelling data with residential densities derived from 

Landsat TM images at the macro, medium and micro levels. Harvey (2002a, 2002b) 

established a series of regression models to explore the statistical relationships between 

the population density of a census collection district (CD) and various spectral 

indicators, such as the mean CD reflectance, the ratio of different bands, the ratio of 

difference and sum, etc. Li and Weng (2005) utilized stepwise regression analysis to 

develop population density models for the city of Indianapolis, Indiana and found that

the estimation accuracy was substantially improved by a series of remotely sensed data, 

such as textural indicators, land surface temperature, sub-pixel fraction information, 

principal spectral radiance, vegetation indices, etc.

Due to recent and rapid developments in remote sensing technology, more 

terrain information can be extracted from remote sensing imagery. Therefore, in 

addition to the four categories described above, new spectral indicators have also been 

used in population estimation, which are regarded as the fifth category in this chapter. 

For example, spatial metrics represent measures of landscape characteristics, including

percentage of landscape, the standard deviation of an area, mean size of patches, patch 

density, etc. The spatial metrics extracted from high-resolution remotely sensed 

imagery (such as IKONOS images), were found to be closely correlated with 

population density. Furthermore, a logarithmic linear regression was developed to 

model the relationship between logarithmic population density and different indices of 

spatial metrics (Liu et al. 2006). 
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In addition to spatial metrics, image texture statistics were also employed to 

model the relationship between population densities of land used for 

single-family/multi-family purposes and semi-variances using different lag lengths. 

The result indicated that the population model based on semi-variogram texture 

statistics performed better than the traditional land use-based dasymetric method and 

exhibited better accuracy statistics (Wu et al. 2006).

In addition to spatial metrics and texture information, the impervious surface 

fraction has also recently been used in population estimation. Lu and his colleagues (Lu 

et al. 2006) developed regression models for square root population density based on 

the percentage of residential area, the average impervious surface value, and the 

average residential impervious surface value. They found that including the impervious 

surface fraction and residential land use type can effectively improve the accuracy of 

the estimation of block group-level population density. Moreover, Wu and Murray 

(2007) classified population estimation methods into two groups, zonal-based and the 

pixel-based regression models, and considered environmental indicators including the 

residential impervious surface fraction, spectral radiance, and land-use classification. 

The results showed that the impervious surface fraction exhibited competitive 

performance and consistently outperforms land-use classification. Moreover, 

traditional zonal approaches had slightly better estimation accuracy than pixel-based 

models. Finally, in addition to remotely sensed information, existing GIS datasets, 

such as newly developed transportation network and land use/land cover data, were 

also used to derive population estimates (Qiu et al. 2003).
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1.2.2.2 A new population estimation indicator: the impervious surface fraction 

1.2.2.2.1 The importance of impervious surfaces

The impervious surface fraction is an important indicator in both physical 

geography and socio-economics. First, it effectively reflects the trend toward 

urbanization. Clear evidence of the continuing trend toward urbanization is that, in the 

25 years prior to 2007, over 17 million hectares of rural lands had been transformed into 

developed lands in the United States (U.S. Department of Agriculture 2009). As a 

result, the change in land cover from undeveloped land to impervious surfaces has 

accompanied the rapid process of urbanization (Arnold and Gibbons 1996). Due to the 

different physical characteristics of natural vegetation and man-made materials, these 

environmental changes could have significant effects on residents and the environment. 

As they are impenetrable and thus preclude water storage and retention, impervious 

surfaces change the water balance by altering the direction, routing and flow rates of 

streams (Bowles 2002). Consequently, close correlations between impervious surfaces 

and water resource issues, such as stormwater runoff, water quality, stream health and 

aquatic ecosystem quality have been demonstrated (Brabec et al., 2002, Environmental 

Protection Agency 1994, Harbor 1994, Lee 2009, Schueler 1991, 1994, Xian et al.

2007). Moreover, impervious surfaces absorb solar energy when exposed to the sun and 

then increase the temperature of the surrounding air (Akbari 2005). Thus, impervious 

surfaces are associated with the urban heat island (UHI) effect and air pollution 

problems (Lo and Quattrochi 2003, Rosenfeld et al. 1996, Sailor 1995, 2002, Walcek 
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and Yuan 1995, Yuan and Bauer 2007), which lead to respiratory difficulties, heat 

cramps, heat exhaustion, heat stroke, and heat rash among sensitive populations 

(Centers for Disease Control and Prevention 2006). 

In addition to its use in physical geography, impervious surface information 

may also be useful in socio-economic and socio-cultural modeling, including 

applications such as home values, population segregation, and population estimates. Yu

and Wu (2006) modeled home values in Milwaukee using both ordinary least squares 

regressions and regression tree techniques, with explanatory variables including 

different structural characteristics of houses and soil-impervious surface fractions 

extracted from remote sensing imagery. Population segregation, represented by the 

local segregation index (Duncan and Duncan 1955), was analyzed using both a global 

regression model and geographically weighted regression model, with explanatory 

variables including the soil fraction, impervious surface fraction and texture statistics 

(Yu and Wu 2004). As it is closely associated with anthropogenic impacts such as 

buildings and transportation infrastructure (Ji and Jensen 1999, Wu and Murray 2007), 

it is appropriate to estimate population using impervious surface data (Wu and Murray 

2007, Lu et al. 2006). Therefore, in addition to its importance in hydrological and 

ecological modeling in planning and resource management, accurate impervious 

surface information will also be applied to assist in population estimation in this 

research.

1.2.2.2.2 Development of impervious surface fraction estimation
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Ridd (1995) was the first to propose a conceptual urban land composition 

model, the vegetation-impervious surface-soil (V-I-S) model (figure 1), to characterize 

urban morphology and ecosystems. The primary motivation for this urban landscape 

model is that, due to the mixed pixel problem in medium- and coarse-resolution remote 

sensing imagery, the traditional classification method that uses only one land use/land 

cover type for each pixel might not be appropriate to characterize urban composition in 

detail. 

Fig. 1. Vegetation-Impervious Surface-Soil Model (after Ridd 1995)

Since Ridd (1995), several researchers have developed different methods to 

acquire impervious surface information from remote sensing imagery. Flanagan and 
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Civco (2001) obtained the subpixel impervious surface fraction using both artificial 

neural networks and a subpixel classification method for watersheds in Connecticut. 

Wu and Murray (2003) employed constrained linear spectral mixture analysis (LSMA) 

to extract the fractions of vegetation, low albedo, high albedo, and soil and then 

estimated the impervious surface fraction by combining low-albedo and high-albedo 

endmembers under the assumption that urban impervious surfaces consist of low- and 

high-albedo materials. Further, Wu (2004) proposed a normalized spectral mixture 

analysis (NSMA) model to reduce significant brightness differences in each 

endmember but maintain their original spectral shapes, thereby improving impervious 

surface estimation accuracy. In addition to Ridd’s V-I-S model, Lu and Weng also 

developed a conceptual model with the assumption that all land cover can be regarded 

as a linear combination of green vegetation, shade and soil/impervious surfaces (Lu and 

Weng 2004).

1.2.3 Integration of demographic models and remote sensing/GIS techniques for 

small-area population estimation

1.2.3.1 Estimation of the number of housing units 

Represented by the result of multiplying the occupancy rate by the number of 

housing units, the number of households is one of the most important components in the 

HU population estimation method. The occupancy rate is always taken from the most 

recent census; thus the number of households is highly dependent on the number of 

housing units (Smith 1986). Currently, there are three major sources for the number of 
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housing units in population estimation, i.e., building permits, electric utility customer 

records and remote sensing imagery.

Building permit data are often combined with demolition data in the estimation 

process. The change in the number of housing units is calculated as the number of 

newly constructed housing units less the reported number of demolitions obtained from 

building permit data (Starsinic and Zitter1968; Smith and Lewis 1980, 1983; Smith 

1986). In addition to total change in the number of housing units, Smith (1986) also 

disaggregated the calculation based on various housing types (i.e., single-family, 

multi-family and mobile homes). Errors may occur if a single time lag is selected 

arbitrarily, due to the considerable lag between the date the building permit is issued 

and the completion date (i.e. 3 to 5 months for single-family units, 10 to 20 months for 

multi-family units, and no lags for mobile homes) (Smith 1986, Smith and Lewis 

1980). 

Demographers have also used customer data from electrical companies to 

derive the number of housing units. Two popular methods, the absolute change method 

and the ratio method, have been used. The absolute change in the number of housing 

units was calculated as the difference between residential electricity customer records 

in the estimation year and the most recent census year (Starsinic and Zitter 1968, Smith 

1986). Similarly, in the ratio method the researcher calculates the ratio of the total 

number of households in the most recent census to the total number of customers 

reported by the electric utility, and then multiplies the current number of customer 
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records by this ratio, under the assumption that the ratio has remained unchanged 

(Smith and Lewis 1980, 1983; Smith 1986). However, methods that employ customer 

data from electrical utilities have been considered to perform better than those using 

building permit data due to greater data source quality and availability (Starsinic and 

Zitter1968; Smith and Lewis 1980, 1983; Smith 1986).

As noted above, the number of housing units has also been derived from remote 

sensing imagery. For medium-resolution images, such as TM/ETM+ images, the 

number of housing units has been estimated through regression analysis of the 

relationship between residential land use area and the number of housing units (Lo 

2003). When considering high-resolution imagery, such as aerial photographs, manual 

counting is a useful but less effective method to obtain the number of housing units, as 

it requires a relatively high degree of familiarity with the research area (Hsu 1971, Lo 

and Chan 1980, Watkins 1984, Watkins and Morrow-Jones 1985).

1.2.3.2 Person per household (PPH) estimation

Currently, PPH estimation methods can be divided into three categories. First, 

PPH can be directly derived from the most recent census by simply assuming the value 

has remained unchanged since the previous calculation (Starsinic and Zitter 1968). 

Obviously, this method is only suitable for locations where the PPH trend is stable and 

when the estimation date is close to the most recent census (Smith 1986). 

Second, PPH can be obtained through simple mathematical extrapolation. 

Linear extrapolation has been employed to estimate inter-census PPH, assuming that 
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the change from the most recent census year to the estimation year is identical to that 

between last two censuses (Starsinic and Zitter1968). PPH has also been extrapolated 

under the assumption of a proportional change, which was estimated by combining the 

data from the most recent census and annual population surveys (Smith 1980, 1986). 

However, these methods tend to overestimate PPH when it declines sharply (Smith 

1980). 

The third category is regression analysis. Smith and his colleagues (Smith et al.

2002) were the first to estimate household size at the county-level using four ordinary 

least squares (OLS) regression models using demographic variables related to births, 

school enrollees, and Medicare enrollees as the independent variables. At present, 

there are few in-depth studies on PPH estimation, likely because small sample size 

could cause significant estimation errors (Ghosh and Rao 1994). 

Given the rapid developments in remote sensing and GIS technologies, it is of 

substantial importance to investigate whether small-area population estimation can 

benefit from these new technologies. Detailed GIS datasets and remote sensing 

information extracted from high-resolution imagery might be employed to assist in 

estimating housing number counts and inter-census PPH at the census block-level to 

improve small-area population estimates. Therefore, this research focuses on three 

aspects. 

First, this research focuses on the use of existing GIS and remotely sensed 

datasets for estimating population at the census block level. Specifically, Chapter 2 of 
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this dissertation explores the applicability of incorporating GIS, remotely sensed and 

demographic datasets in a demographic model, the housing unit method, to generate 

small-area population estimates in Grafton, WI. Specifically, the two primary 

components of the demographic framework, HU counts and PPH, were obtained by 

modeling their relationships with demographic and geographic variables using a 

sequence of ordinary least-squares (OLS) regression models.

Second, a new spectral index, the biophysical composition index (BCI), was 

proposed in Chapter 3 to facilitate the derivation of urban land cover information in 

practical applications following Ridd's conceptual urban landscape model, the 

vegetation – impervious surface – soil triangle model (1995), by reexamining the 

Tasseled Cap (TC) transformation. Moreover, this research examined the applicability 

of BCI to remote sensing images at three different spatial resolutions. This index was 

further employed to assist in the derivation of urban impervious surface information, 

which can provide detailed urban environmental information for the automated 

enumeration of housing units in a demographic framework.

Finally, Chapter 4 attempted to improve small-area population estimation by 

combining demographic theory and high-resolution remotely sensed and GIS datasets. 

Using newly generated environmental indicators, a bottom-up method for population 

estimation at the finest scale available in national census data was developed by 

incorporating high-resolution remote sensing imagery/GIS datasets into a demographic 

housing unit model. HU counts and PPH, two primary factors in the housing unit 

method, were separately estimated using detailed urban environmental information 
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extracted from high-resolution remote sensing imagery and GIS data. Accordingly, 

population counts for each census block were obtained by adopting the HU model. In

addition, sensitivity analyses were conducted to evaluate the sources of errors in 

population estimates obtained via the HU method.
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CHAPTER 2 SMALL-AREA POPULATION ESTIMATION USING 

REMOTE SENSING AND GIS TECHNIQUES
*

2.1. Introduction

Accurate estimates of small-area population are essential for supporting a wide 

variety of planning processes. The size and distribution of the population are often key 

determinants for resource allocation for state and local governments (Smith et al., 

2002). Population estimates are critical in decisions about when and where to build 

public facilities such as schools, libraries, sewage treatment plants, hospitals, and 

transportation infrastructure. Also, population estimates are often used by private 

sectors for customer profile analysis, market area delineation, and site location 

identification (Martin and Williams, 1992; Plane and Rogerson, 1994). In addition, 

population information is an important input in many urban and regional models, such 

as land use and transportation interaction models, urban sprawl analysis, environment 

equity studies, and policy impact analysis (Rees et al., 2004). Clearly, accurate and 

timely population estimates are of great importance (Smith et al., 2002). Accurate 

population data, however, is only available for every decade through the national 

census survey. It is obvious that this frequency does not meet the needs for rapid growth 

* Portions of this chapter have been published in International Journal of Remote Sensing,

coauthored with Drs. Changshan Wu and Le Wang.
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areas where noteworthy local intercensal population changes occur. Thus, appropriate 

estimation methods for such geographical areas are extremely necessary.

Numerous methods have been proposed for population estimates in 

demography, such as Component Method II (CM-II), Administrative Records (AR), 

Ratio Correlation (RC), and Housing Unit (HU) method (Ghosh and Rao, 1994). The 

CM-II method updates population estimates by accounting for the major components 

of local demographic change. The population is calculated by starting with the recent 

census population, adding the estimated number of births, subtracting the number of 

deaths, then adding net migration and the changes in group quarter population. The 

AR method, similar to the CM-II method, additionally uses administrative records for 

estimating net migration for population under age 65. These records include federal 

income tax returns, Immigration and Naturalization Service records, and military 

movement records. The RC method relates population changes to the changes in 

several symptomatic indicators, such as school enrolment, car registration, work force 

information, and occupied housing units. A regression model is utilized to construct 

the relationship between population changes and the changes of symptomatic 

indicators between two census years. In the HU method, population estimates for a 

small area are calculated as the product of the number of occupied housing units and 

household size plus the population in group quarters. Among all these methods, the 

HU method is the most commonly used, and considered one of the most accurate and 

cost-effective methods for small-area population estimation (U.S. Census Bureau, 

1998; Smith and Cody, 2004). In fact, the HU method has been used by U.S. Census 
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Bureau as the single method for estimating population of subcounty areas (e.g. 

incorporated places and minor civil divisions) since 1996 (U.S. Census Bureau, 1998; 

Smith and Cody, 2004; U.S. Census Bureau, 2005).

Besides these demographic models, remote sensing and GIS techniques 

provide an alternative for small-area population estimation. One early application of 

remote sensing technique is the house counting approach. In particular, dwelling units 

are manually counted from high resolution aerial photographs, and then these counts 

are multiplied by the surveyed household size to derive population estimates (Lo, 

1986a, 1986b). This approach, although relatively accurate, requires tremendous 

amount of time and labor, and is rarely employed by state and local agencies. To 

address this issue, automatic approaches have been proposed for housing unit and 

population estimation. With these approaches, either spectral radiance/reflectance or 

urban physical parameters are extracted from remote sensing imagery to represent 

housing information. With these parameters, regression models are typically applied 

to derive population estimates (Lo, 1995; Webster, 1996; Chen, 2002; Harvey, 2002a, 

2002b; Li and Weng, 2005; Wu and Murray, 2007). Similarly, existing GIS datasets, 

such as transportation network and land use land cover data, were also applied to 

derive population estimates (Qiu et al., 2003; Wu et al., 2005). 

These demographic models and remote sensing/GIS-based approaches for 

population estimation have been developed almost parallelly. Each of them, however, 

has its own issues. The HU method, a popularly applied demographic approach, can 
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only produce population estimates at an aggregated geographical level (e.g. town, city, 

or county), instead of a finer local level (e.g. census block level). This is mostly due to 

the problems of data acquisition. Currently, commonly utilized data sources of 

housing unit information are building permits and electric customer information, most 

of which can only be obtained at an aggregated geographical level. Although some 

methods have been developed to derive population and HU estimates at the block 

group level using simple interpolation and step-down techniques (Perry and Voss, 

1996), such estimates, however, are unreliable. These techniques assume that

population count in a census block is a linear function of its geographic area, thereby 

distributing population from an aggregated unit to a block accordingly. Such 

assumption, however, is problematic due to the heterogeneous population distribution 

within a geographic area. On the other side, remote sensing/GIS based automatic 

techniques can reveal detailed spatial information (either radiance/reflectance or 

physical parameters). This information, however, is not directly associated with 

housing units, and may produce large errors when applied as the solo data source to 

estimate housing units or population (Harvey, 2002a, 2002b; Li and Weng, 2005; Wu 

and Murray, 2007). Therefore, state and local agencies seldom utilized remote 

sensing/GIS based automatic approaches for producing small-area population 

estimates.

The other problem of both approaches is that the relationship between 

population and housing units (or indicative parameters extracted from remote sensing 

imagery) is always assumed to be unchanged from the most recent decennial census 
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(U.S. Census Bureau, 2005). Several researches have pointed out that the persons per 

household (PPH) in the U.S. has a tremendously downward trend during the past two 

centuries, falling from 5.8 in 1790 to 4.8 in 1900, then to 2.6 in 2000 (Kobrin, 1976; 

U.S. Census Bureau, 2001; Bongaarts, 2001). This drop is most likely due to 

declining birth rates and the tendency for adults to head separate households. 

Acknowledging the problems of using historical PPH values, Starsinic and Zitter 

(1968) developed PPH estimation methods through extrapolating historical trends. 

Smith (1986) adjusted the estimated PPH in small areas by examining changes in 

larger areas (e.g., states) where current PPH estimates are available from other sources. 

These simple approaches may generate biased results when PPH trends are not stable 

(Smith et al., 2002). Smith et al. (2002) estimated the county-level PPH by 

introducing population age structure variables, births, school enrolment, and Medicare 

enrolment (for age 65 and older). Currently, studies on the PPH estimation are rare, 

and it is of great necessity to estimate the PPH at the detailed level (e.g. census 

block).

To address the above issues associated with the HU method and remote 

sensing/GIS based automatic approaches, we propose to integrate GIS and remote 

sensing techniques into the HU method for deriving better small-area population 

estimates. In particular, the first objective of this paper is to redistribute new housing 

units at an aggregated geographic level (e.g. village or town) to census blocks with the 

help of remote sensing and GIS information. The second objective is to develop a 

model for better PPH estimation at the census block level through incorporating 
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remote sensing, GIS, and demographic data. The remaining of this paper is organized 

as follows. Next section introduces the study area and data. The third section details 

model development and accuracy assessment techniques. Analysis of results and 

accuracy assessment are discussed in section 4, and finally conclusions and future 

research are given in section 5.

2.2 Study Area and Data 

Village and Town of Grafton, Wisconsin, USA (see figure 2.1) is selected as 

the study area for this research. Located in the north of Milwaukee City, Grafton has a 

geographic area of 66.1 km2, including a variety of land use types, such as residential, 

commercial, transportation, forestry, agricultural, as well as other rural lands. Since 

1990, Grafton has been experiencing rapid population growth, with a significant 

amount of residential and commercial developments. Its population is 13,330 in 1990, 

and rises to 14,444 in 2000, with an increment of 7.7%.  In addition, the housing unit 

number rises from 4,827 in 1990 to 5,773 in 2000, with 946 new housing units 

constructed, or an increment of 16.4%.  Due to the noteworthy population growth in 

this area, detailed population estimates are essential for supporting urban and rural 

planning.  
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Figure 2.1 Study area as the Town and Village of Grafton, WI, USA

For the study area, population data at the census block level in 1990 and 2000 

were acquired from the U.S. Census Bureau. In Grafton, there are 266 blocks in 1990, 

and 313 blocks in 2000. In fact, a number of census blocks in 1990 have been 

sub-divided into several small blocks in 2000. Moreover, the boundaries of several 

census blocks have been modified. To address this data inconsistency problem, an 

area-weighted spatial interpolation (Goodchild and Lam, 1980) was applied to the 1990 

block data, and associated information was transferred to the 2000 block boundary. 

Besides census data, detailed land use data for 1990 and 2000 (see figure 2.2) were 

obtained from the Southeast Wisconsin Regional Planning Commission. A Landsat 

Thematic Mapper (TM) image acquired on August 01, 1989 and a Landsat Enhanced 

Thematic Mapper Plus (ETM+) image acquired on September 08, 2000 were 

downloaded from the WisconsinView project website 

(http://www.wisconsinview.org/). Both images were re-projected to the UTM 

projection (zone 16, datum WGS84), and a further georeference was conducted to 
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reduce geometry misregistration. The residual mean square (RMS) of the 

georeferenced image is within 0.2 pixel. Moreover, atmospheric correction was 

performed using the algorithm developed by Richter (1996a, 1996b, and 2005). In 

particular, this method involves two steps, including 1) calculating the reflectance of 

every pixel based on standard atmospheres, aerosol types, and visibility, and 2) 

correcting the adjacency effect using weighting functions.  More details about this 

algorithm can be found in Richter (1996a, 2005).These Landsat images will be utilized 

to extract urban biophysical information for better estimation of housing units and

persons per household. In this research, demographic and spatial data in 1990 are 

employed for model development, and data in 2000 are applied for model calibration 

and accuracy assessment.

Figure 2.2 Detailed land use data of 1990 (Left) and 2000 (Right) obtained from the 
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Southeast Wisconsin Regional Planning Commission (Residential land uses are 

shown in color)

2.3 Methodology

2.3.1 Housing Unit Estimation

With traditional demographic methods, the number of new housing units is 

typically estimated from building permit and electrical customer information. This 

information, however, can only be obtained at an aggregated geographical level, and 

there is a need to assign these new housing units to individual blocks. In this paper, two 

interpolation methods were employed to derive housing unit estimates at the census 

block level. This first method is the simple step-down interpolation technique (Perry 

and Voss, 1996), with which new housing units at the aggregated level are assigned to 

each census block according to the geographical area of that block. The second method 

is the dasymetric mapping method developed in this paper. Dasymetric mapping was 

created for visualizing population data consistent to land use types to avoid the problem 

of ecological fallacy. Dasymetric mapping has been popularly utilized for population 

density estimation and areal interpolation (Mennis, 2003; Wu and Murray, 2005; 

Mennis and Hultgren, 2006), but not particularly applied for housing unit estimation. In 

this paper, a dasymetric mapping method was developed to re-distribute newly 

developed housing units to individual census blocks with the help of ancillary remote 

sensing and GIS data. In particular, three variables derived from remote sensing and 

GIS dataset are utilized. These variables include 1) single-family land use area change, 
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2) multi-family land use area change, and 3) the change of Normalized Difference 

Vegetation Index (NDVI), representing vegetation cover change. It is assumed that the 

number of newly developed housing units is positively associated with land use area 

changes (e.g. single-family and multi-family) and negative related to vegetation cover 

change. In order to quantify the weight for each variable, an ordinary least squares 

(OLS) regression analysis model (Equation 2.1) was developed as follows.

NDVIRRHU MS 3210 (2.1)

Where is the number of newly developed housing units in a block from 

time t1 to time t2, S is the areal change of single-family land use in the block, M is 

the areal change of multi-family land use in the block, and is the changes of 

NDVI values in that block, and 1, 2, and 3 are their coefficients respectively. After 

obtaining the relationship among newly developed housing units and the variables 

derived from remote sensing and GIS datasets, the total housing units for the 

aggregated area (e.g. town and village of Grafton) can be re-distributed to each census 

block. 

2.3.2 PPH Estimation

Compared with the housing unit numbers, an accurate PPH estimate is more 

essential since a minor error of PPH may result a significant error in the estimated 

population. In this paper, the current method, in which the PPH is assumed to be 

unchanged from the previous census, and three regression models that utilize 

demographic and remote sensing and GIS variables were developed. Demographic and 
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economic variables include population age structures (e.g. parentage of people with 65 

and over), household income, and housing values. Variables derived from remote 

sensing and GIS data include distances to particular land uses (e.g. commercial center, 

schools, and recreational areas), vegetation cover changes, and textural information 

generated from Landsat TM/ETM+ imagery. With these demographic and GIS/remote 

sensing related variables, the three regression models are described as follows.

The first model (Model A) assumes that the relationship between PPH and 

demographic and spatial variables is unchanged over time. Therefore, it is possible to 

estimate the PPH of time t2 based on the parameters obtained from the data of time t1.

Thus, this model is an “inherit model”, in which the PPH for time t2 is estimated 

according to the relations obtained from the data of time t1. The regression model is 

illustrated as follows (see Equation 2.2). 

Model A:
n

j
tjj

m

i
tiit DSPPH

1
,

1
,0 (2.2)

where   PPHt is the PPH value at time t, Si,t indicates a spatial variable derived from 

remote sensing and GIS data at time t, Dj,t represents a demographic variable at time t,

m and n are the total number of spatial and demographic variables respectively, and ,

, and are regression coefficients.

Model A assumes that the relationship between PPH and relevant variables does 

not change over time. This assumption, however, may be problematic. To have a better 

estimation of PPH, a special survey is needed to obtain the knowledge of PPH and 
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demographic variables for time t2. Therefore, the second model (Model B) attempts to 

estimate the PPH at time t2 with the PPH value at time t1, and spatial and demographic 

variables at time t2 as independent variables. This model is named as an “empirical 

model” as the PPH at time t1 is employed as an independent variable.

Model B:
n

j
tjj

m

i
tiitt DSPPHPPH

1
,

1
,10 2212

(2.3)

where PPHt1 and PPHt2 are the PPH at time t1 and time t2 respectively, and Si,t2 and Dj,t2

are the spatial and demographic variables at time t2 respectively. 

In addition to Model B, the third model (Model C) explores the relationship 

between the change of PPH and the changes of spatial and demographic variables 

from time t1 to time t2. Since this model represents the relationships between the 

changes of variables, it is named as a “change model”. The formulation of this model 

is as follows (see Equation 2.4).

Model C: 
n

j
jj

m

i
ii DSPPH

11
0 (2.4)

where is the change of PPH for a census block from time t1 to time t2, i and 

j are the changes of spatial and demographic variables respectively. 

2.3.3 Small-area population estimation 

With the HU and PPH estimates for each census block, it is feasible to derive 

the population estimates via the housing unit method, which can be expressed as 

follows (see Equation 2.5).
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ttttt GQPPHOHUP (2.5)

where Pt is the estimated population for a small area at a non-census time t; HUt is the 

number of housing units at time t; Ot is the occupancy rate at time t; PPHt is the 

average size of household or persons per household at time t; and GQt is the group 

quarters population (e.g. persons residing in college dormitories, military barracks, 

nursing homes, and prisons) at time t.

With the estimated values of HU and PPH derived from sections 2.1 and 2.2, it 

is feasible to estimate the population for each census block with information of 

occupancy rate (Ot) and group quarter population (GQt). In this research, the occupancy 

rate at time t2 is assumed to be unchanged from time t1, and this information may also 

be estimated from data acquired from a special survey, if available. For an area without 

large group quarters facilities, the GQ population for a non-census year can be assumed 

to be unchanged or change proportionally to the household population (Smith and 

Lewis, 1980). In this research, group quarters population in Grafton at time t2 is 

regarded the same as the value at time t1. Therefore, with the estimated values of HU,

PPH, O, and GQ at time t2, the population estimate for a census block at time t2 can be 

derived.

2.3.4. Accuracy assessment

To assess the estimation accuracy of housing units, PPH, and population, a 

spatially random sampling method was utilized to divide all census blocks into two

groups: 50% of data was utilized as training dataset for modeling, and the other 50% of 
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data serves as testing dataset to assess estimation accuracy. Several error 

measurements, including the mean absolute error (MAE) (see Equation 2.6), mean 

absolute percentage error (MAPE) (see Equation 2.7), and mean algebraic percentage 

error (MALPE) (see Equation 3.8), were employed in this paper.

n

i
ii AA

n
MAE

1

|ˆ|
1

(2.6)
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where Âi is the estimated value for a variable, and Ai is the actual value for that variable, 

and n is the total number of samples (e.g. census blocks). For these three measurements, 

MAE is popularly utilized in remote sensing and GIS studies, while MAPE and MALPE

are widely employed in demographic research. Both MAE and MAPE are measures of 

precision, reflecting how close the estimated values to the actual values, while MALPE

is a measure of bias, focusing on whether the total estimate shows an  upward or 

downward tendency (Smith et al., 2002; Cai, 2007). 

2.4. Results and Discussion 

2.4.1 House Unit Estimation

Following the methodology described in section 2.1, the simple step-down 

interpolation technique and the regression-based approach were implemented in the 

 

 



40 

study area. For the step-down interpolation, the geographical area of each census block 

is utilized as the weight for new housing unit assignment; that is, the number of new 

housing units received by a block is a linear function of its geographical area. The MAE

of the housing unit estimation with this approach is 8.70, and a comparison with the 

actual new housing unit distribution (see Figure 2.3a) illustrates that the housing units 

in a majority of census blocks are overestimated, in particular the blocks with larger 

geographical areas (e.g. blocks in the Village of Grafton). Comparatively, the housing 

units in a few blocks at the edge of Grafton Town are under-estimated. This is because 

recent developments of housing units were along the edge of Grafton Town, while the 

step-down technique simply assumes that the number of new housing units is linearly 

correlated to block size, which does not reflect the actual development pattern of new 

housing units.
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Figure 2.3 Comparison of housing unit estimates among a) estimates using simple 

step-down interpolation method, b) estimates using regression model, and c) actual 

housing unit numbers.

In addition to the simple step-down interpolation technique, the regression 

model with remote sensing and GIS information was also implemented. Results of this 
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model (see Table 2.1) indicate that the spatial pattern of new housing units can be 

reasonably explained by the GIS and remote sensing variables, with the adjusted 

R-square equal to 0.526. Among the three variables, the change of single family and 

multi-family areas are statistically significant at the 95% confidence level, while the 

change of NDVI, although negatively correlated with new housing development, does 

not have significant contributions. Therefore, for the housing unit interpolation, only 

single family and multi-family residential area changes were utilized.

Table 2.1 Housing unit regression model results

Coefficient B t p-value

Intercept 1.411 2.027 0.047**

-6.744 -1.400 0.163

M 18.804 9.818 0.000**

S 1.378 6.405 0.000**

( M is the change of multi-family land use areas, S is the change of single-family 

land use areas, ** indicates statistically significant at the 95% confidence level. 

Adjusted R-square is 0.526)

Results show that the MAE with this regression model is 3.37, which is much 

lower than that obtained from the simple step-down interpolation method (8.70). 

Moreover, when compared with the actual housing unit map (see Figure 3.3b and 3.3c), 

it is apparent that the spatial pattern of housing unit estimates from regression analysis 

can accurately reflects the actual distribution of new housing development. In 

particular, the housing unit development in the Town of Grafton has been almost 
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saturated, and most of the new developments are in the fringe of the Town of Grafton,

with a few new developments in the Village of Grafton.

2.4.2 Persons per household (PPH) Estimation

Four methods for estimating PPH, including the current method (PPH is 

assumed to be unchanged from previous census) and three regression models (Model 

A, B, and C) were applied for the study area, and results of these three regression 

models are reported in Table 2.2. Table 2.2 indicates that the value of PPH can be 

modeled reasonably well by demographic and spatial variables. In fact, the adjusted 

R-squares for all these three models are over 0.60, indicating that over 60% of the 

variations in PPH can be explained. Four demographic variables, percentage of people 

with ages under 17, 18-39, 40-64, and 65 and over, were utilized for PPH estimates. 

Results indicate that PPH has a significant and positive relationship with the percentage 

of young population (people with age under 17), and a significant but negative 

relationship with the percentage of elder population (people with age of 65 and over). 

These results are not unexpected, and consistent with the findings of Smith et al. 

(2002). Beside demographic variables, several spatial variables, including distance to 

commercial centers, distance to schools, and distance to recreational areas, were 

calculated using GIS land use data. Results indicate that PPH is positively correlated 

with the distance to commercial centers, but negatively correlated with the distance to 

recreational areas. These results imply that households with a larger size tend to choose 

residential locations far away from commercial centers, and close to recreational areas. 
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Spatial variables derived from Landsat data, including NDVI and textural parameters, 

however, were insignificant in any model. Therefore, these variables were dropped 

from these regression models.

Table 2.2 Coefficient summary of PPH regression models 

Coefficients Model A Model B Model C

Intercept 1.646 1.012 -0.215

PPH_90 / 0.208 /

Age 0_17 4.334 3.391 3.681

Age 18_39 / / /

Age 40_64 / / /

Age 65above / / -0.855

Dist_Commercial 0.349 0.361 /

Dist_School / / /

Dist_Recreation -0.96 / -0.346

R square 0.627 0.718 0.698

(“/” indicates the variable does not have significant contribution (at the 95% 

confidence level) to the regression model)

The results of PPH estimates are illustrated in Figure 2.4, with a, b, c, and d

showing the estimation results of Model A, B, C, and the current method respectively, 

and 4e displaying the actual spatial distribution of PPH in 2000 for comparison 

purposes. It can be discerned that the PPH estimates from the Models A, B, and C have 

similar spatial patterns when compared to the actual PPH values in 2000. 

Comparatively, the estimates of Models A and B seem to be consistent with the spatial 
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patterns of the actual PPH distribution, and Model C clearly overestimates the PPH in 

many census blocks. For the current method, though, the spatial trend is inconsistent 

with the actual PPH distribution, and the PPH values in a large number of blocks are 

visibly overestimated, particularly in the blocks in Grafton Village. The reason of this 

overestimation may be that the PPH in the study area has a downward trend in the past 

decades as the declining birth rates and the tendency for adults to lead separate 

households. 

Figure 2.4 Comparison of persons per household (PPH) estimates among a) Model A, 

b) Model B, c) Model C, d) Current method, and e) actual PPH values.
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In order to quantitatively evaluate the accuracy of the PPH estimates, the three 

accuracy measurements, MAPE, MALPE, and MAE, were calculated and reported in 

Table 2.3. Results indicate that the current method has the lowest precision, with the 

highest MAPE (24.19%) and MAE (0.62). Moreover, it has the largest bias, and 

overestimates the PPH by approximate 13%. This proves that it is inappropriate to 

assume that the PPH is constant over time. Comparatively, all three regression models 

perform better than the current method. Models A and C have slightly better precisions, 

but much lower bias than the current method. For example, the MALPEs of Models A 

and C are 4.21% and 7.77%, much lower than that of the current method (13.13%). 

Model B has the best overall performance. In particular, it has the highest precision, 

with the lowest MAPE (9.98%) and MAE (0.27), and the smallest bias (MALPE equal 

to 0.21). The lack of precision improvements with Models A and C may be associated 

with the assumptions of these two models. In particular, Model A, as an “inherit 

model”, assumes that the relationship between PPH and relevant variables does not 

change overtime. Model C, as a “change model”, considers that the change of PPH can 

be effectively explained by the changes of spatial and demographic variables, irrelevant 

to the previous PPH values. These assumptions, however, are problematic, as the PPH 

in a census block is dependent on both the previous PPH values and the changes of 

spatial and demographic variables. Therefore, Model B, taking both factors into 

account, has proven to be the most accurate model for PPH estimation.
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Table 2.3 Accuracy comparison of estimation models of HU, PPH, and population at 

the census-block level 

Model MAPE% MALPE% MAE

HU

Step-down method 41.08 19.26 8.70

HU Regression 35.34 6.82 3.37

PPH

Current method 24.19 13.13 0.62

Model A 22.22 4.21 0.59

Model B 9.98 0.21 0.27

Model C 19.19 7.77 0.50

Population

Simple demographic method 58.27 32.68 30.02

Regression model 25.56 5.52 11.68

2.4.3 Small-area Population Estimation

With the HU and PPH estimates for a non-census year, it is necessary to 

generate the population estimates using the housing unit method described in Section 

2.3. In this paper, two approaches were developed for comparison. The first one is the 

simple demographic approach, which utilizes the step-down interpolation method for 

HU estimation, and assumes that PPH is as same as that obtained from the previous 

census. The second approach involves a sequence of regression analyses with 

demographic and spatial data. In particular, the HU estimates were achieved from the 
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regression model using detailed land use datasets (as described in Section 3.1) and the 

PPH estimates were generated using the Model B, in which demographic and spatial 

variables were utilized (as detailed in Section 2.2). 

Results of population estimates with these two approaches, together with the 

actual population count from 2000 Census, are displayed in Figure 2.5. In particular, 

Figure 2.5a shows the results obtained from the simple demographic approach, and 5b

illustrates the estimates from the regression models. In addition, detailed accuracy 

assessments of these population estimates are reported in Table 2.3. Analysis of results 

indicates that the estimates from the simple demographic method are not acceptable. In 

general, it overestimates the population for the whole study area by over 30%, largely 

due to the overestimates of the PPH values. Moreover, the relative errors are also very 

large, as the MAPE is approximate 58% and MAE is about 30. On the contrary, the 

regression-based approach only slightly overestimates the overall population (5.5%), 

and is much more precise that the simple demographic approach. In fact, the MAPE 

(25.56%) and MAE (11.68) indicate that the regression models with demographic and 

spatial variables can derive small-area population estimates reasonably well. 

Besides an overall accuracy assessment, analysis of relative errors for the HU, 

PPH, and population estimates (see figure 2.6) illustrates the patterns of error 

propagation. Figure 2.6a shows that the HU values in seven blocks (out of 313) have 

been highly overestimated (with relative errors higher than 15%). Within these seven 

blocks, six have highly overestimated population counts (see figure 2.6c). In addition, 
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the HU values in nineteen blocks are highly underestimated (with relative errors lower 

than 15%), and with them, fifteen have highly underestimated population counts. These 

results indicate that the errors of HU estimates have significant influences on those of 

population estimates. When compared to the HU, the errors of PPH do not have such 

strong influences on the errors of population estimates. In particular, within the twelve 

blocks with highly overestimated PPH values, the population counts within nine of 

them are highly overestimated. Moreover, within the ten blocks with highly 

underestimated PPH values, only four of them have highly underestimated population 

counts. 
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Figure 2.5 Comparison of block-level population estimates derived from a) Simple 

demographic method, b) Regression analyses with demographic and remote 

sensing/GIS data, and c) actual population count from 2000 Census
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Figure 2.6 Comparison of relative errors at the block level for a) Estimated housing 

units by the Regression method, b) Person per household by the Regression Model B, 

and c) Population by the Equation 2.5 with the estimated housing units from a) and 

Person per household from b)

c
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2.5 Conclusions 

In this paper, we propose to integrate GIS and remote sensing techniques into 

the housing unit method for generating better small-area population estimates. In 

particular, housing units (HU) and persons per household (PPH) at the census block 

level were derived using regression models with demographic and spatial variables. 

Then these estimates were inputted to the housing unit method for deriving 

block-level population estimates. The accuracy of small-area estimation with this 

regression-based method was compared to the current method. 

Analysis of results suggests two major conclusions. First, the accuracy of 

small-area population estimates can be significantly improved through integrating 

remote sensing/GIS information. Detailed land use information has proven to be the 

most important GIS dataset for small-area population estimation. In particular, it can 

be utilized to redistribute aggregated building permit information for better HU 

generation, and employed to calculate spatial variables for better PPH estimation. 

Second, this research proves that persons per household can be effectively modeled 

by demographic and spatial variables. In fact, several demographic variables, 

including the percentage of population with age under 17, and population with age 65 

and over, and several spatial variables, such as the distance to commercial centers, 

schools, and recreational areas can explain over 60% of PPH variations. 

Although this study showed that the integration of GIS and remote sensing 
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information into the housing unit method can greatly improve the small-area 

population estimates, there are many issues for future research. One direction is for 

better housing unit estimation. Detailed and more accurate housing unit estimation 

can be achieved using high spatial resolution remote sensing imagery (such as 

IKONOS and QuickBird data) and Light Detection and Ranging (LiDAR) datasets. 

Moreover, the footprint and volume information generated from these data can help 

the estimation of PPH. Another direction is to explore whether demographic variables 

can be derived through GIS and remote sensing information. Currently, a special 

census, or sampling, is needed for creating demographic variables. This work, 

however, is always time consuming and labor intensive. 
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CHAPTER 3 DEVELOPMENT OF A SPECTRAL INDEX FOR 

REMOTE SENSING OF URBAN ENVIRONMENTS
*

3.1 Introduction

Over the past decades, urbanization has taken place at an unprecedented rate 

around the world. In 1950, as an example, only 29% of the world population resided in 

urban areas, and this number rose to 49% by 2005. Moreover, this trend is projected to 

continue in the future decades (United Nations, 2006). In the process of urbanization, 

natural landscapes have been rapidly transformed to anthropogenic urban land uses, 

and biophysical compositions and characteristics of natural environments have been 

dramatically modified. While urbanization brings social and economic benefits (e.g. 

improved quality of life and economic prosperity), it also leads to a number of 

environmental problems (e.g. water quality degradation, air pollution, loss of 

biodiversity, and urban heat island effect) and social issues (e.g. excess commuting, 

economic and social inequality, congestion, etc.) (Xian and Crane, 2006). Due to these 

significant impacts, understanding urban environments and their spatio-temporal 

changes is essential for regional and local planning and environmental management.

Remote sensing techniques provide an important means for understanding urban 

environments. With a synoptic view and repetitive coverage of a large geographic area, 

* Portions of this chapter have been published in Remote Sensing of Environment, coauthored 

with Dr. Changshan Wu.

 

 

                                                             



55 

remotely sensed data have been applied extensively to analyze urban environments. 

Traditionally, remote sensing imagery has been employed to derive multi-temporal 

land use land cover (LULC) maps with numerous spectral, spatial, and con-textural 

analytical algorithms (Yuan and Bauer, 2007). In particular, the United States 

Geological Survey (USGS) has developed multi-temporal national land use land cover 

(NLCD) datasets with the help of Landsat Thematic Mapper (TM)/Enhanced 

Thematic Mapper Plus (ETM+) imagery (Yang et al., 2001). In addition to traditional 

land use land cover classification approaches, sub-pixel analysis has been developed 

following the vegetation – impervious surface – soil (V–I–S) model proposed by Ridd 

(1995). According to this conceptual framework, all land cover types (other than 

water) in an urban environment can be regarded as a combination of three basic 

biophysical components, namely vegetation, impervious surfaces, and soil. On this 

basis, two major categories of methods were developed to quantify biophysical 

compositions in an urban area. The first category is machine learning methods, 

including artificial neural network (ANN) (Flanagan and Civco, 2001; Mohapatra and 

Wu, 2007; Pu et al., 2008; Hu and Weng, 2009), regression/decision tree method 

(Yang et al., 2003a; Yang et al., 2003b; Xian and Crane, 2005; Yuan et al., 2008; Lu

and Weng, 2009; Mohapatra and Wu, 2010), and regression modeling (Yang and Liu, 

2005; Yang, 2006; Wu and Yuan, 2007; Mohapatra and Wu, 2010). With these 

machine learning methods, biophysical composition information is derived by 

establishing an empirical relationship with various spectral and spatial characteristics 

extracted from remote sensing imagery. The second category is spectral unmixing 
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techniques (Roberts et al., 1998; Small, 2001, 2005; Phinn et al., 2002; Rashed et al., 

2003; Wu and Murray, 2003; Wu, 2004; Lu and Weng, 2004; Powell et al., 2007; 

Powell et al., 2008; Wu, 2009; Weng, 2012). Under the assumption that the spectrum 

of a pixel is a combination of the spectra of several typical homogeneous ground 

components, named endmembers (Adams et al., 1995; Roberts et al., 1998), the areal 

fractional coverage of each ground component can be derived from the spectral 

mixture analysis (SMA) approach. 

Although both per-pixel and sub-pixel analyses have been employed for 

analyzing urban environments with different degrees of success, these methods are 

always considered as complicated, computationally intensive, and sometime 

subjective, especially when applied to a large geographic area (Plaza et al., 2004; 

Somers et al., 2011). Taking the sub-pixel analysis as an example, the success of 

machine learning algorithms relies heavily on the quality of training and testing data, 

and the selection of which might be relatively subjective during the process of model 

building and validation (Yang et al., 2003a). Further, although the SMA algorithms are 

physically based approaches and able to acquire sub-pixel endmember fractions 

effectively (Powell et al., 2007; Franke et al., 2009; Roberts et al., 2012), it is extremely 

difficult for practical users because of its complicated implementation process. Such 

difficulties lie mainly in technical problems including endmember selection and 

intra-class variability quantification, etc (Wu, 2009; Somers et al. 2011). One exception 

is the multiple endmember spectral mixture analysis (MESMA) method developed by 

Roberts and his colleagues (Powell et al., 2007; Franke et al., 2009; Roberts et al., 
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2012), although it is also considered to be computationally intensive. When compared 

with per-pixel and sub-pixel image analyses, spectral indices have apparent advantages 

due to their easy implementation and convenience in practical applications. A number 

of indices, including normalized difference vegetation index (NDVI; Rouse et al., 

1974), soil adjusted vegetation index (SAVI; Huete, 1988), normalized difference 

built-up index (NDBI; Zha et al., 2003), and normalized difference impervious surface 

index (NDISI; Xu, 2010), have been developed to quantify biophysical characteristics 

of the earth’s surfaces (Jackson and Huete, 1991). Although these indices have shown 

effectiveness to some degree, when applied to urban environments, several problems 

still exist. The first problem is that most spectral indices are designed to highlight only 

one land cover type (e.g. vegetation and built-up area, etc.), and confusions among 

other land cover types, in particular impervious surfaces and bare soil, have not been 

successfully addressed. For instance, NDVI is designed for the signal enhancement of 

vegetation abundance, with which, however, impervious surfaces are always confused 

with bare soil. Moreover, although NDBI is intended to highlight built-up area, it 

cannot effectively differentiate built-up materials from barren soil (He et al., 2010). The 

second problem of spectral indices is associated with the limited applicability in remote 

sensing imagery at different spatial and spectral resolutions. Other than vegetation 

indices (i.e. NDVI and SAVI), all the aforementioned indices are unavailable for most 

high spatial resolution remote sensing imagery due to their dependence on shortwave 

infrared (SWIR) bands, which are not always included in high spatial resolution 

remotely sensed data (one exception is WorldView-2 imagery). Therefore, the 
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objectives of this paper consist of (1) proposing a biophysical composition index (BCI) 

for simple and convenient derivation of urban biophysical compositions for practical 

applications by enhancing contrast and separability among different biophysical 

compositions, and (2) exploring the potential of the applicability of BCI in various 

remotely sensed imagery at different spatial resolutions.

The remainder of this article is organized as follows. Section 3.2 introduces the 

study areas and data. Section 3.3 presents the methodology of the BCI development, 

including a reexamination of Tasseled Cap components and their representations in 

urban environment, the formulation of BCI index, and the assessment of BCI’s ability 

of representing urban biophysical compositions. Results of applying the BCI with 

Landsat ETM+, IKONOS, and MODIS imagery are reported in Section 3.4, and 

comparative studies with other three indices, namely NDVI, NDBI, and NDISI, are

detailed in Section 3.5. Further, discussions are provided in Section 3.6, and finally, this 

paper concludes in Section 3.7.

3.2 Study area and data

In this research, we selected two study areas, the town and village of Grafton, 

Wisconsin and the state of Wisconsin, USA, to analyze urban environments at different 

spatial resolutions. As an important constituent of the Midwest region in the United 

States, Wisconsin covers an area of 169,639 square km and has a population about 5.7 

million. Dominant land use types of Wisconsin include agricultural, forest, grassland, 
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wetland, and urban land uses (Reese et al., 2002). Major cities in Wisconsin include 

Eau Claire and Superior in the northwest, Appleton, Green Bay and Oshkosh in the 

northeast, La Crosse and Madison in the southwest, and Milwaukee, Kenosha, Racine 

and Waukesha in the southeast. Among all regions, Southeast Wisconsin is the most 

populous region and important economic center of the state, where total employment, 

civilian labor force, population, number of households have increased around 10% to 

20% per decade since 1980s (SEWRPC, 2004b; U.S. Census Bureau, 2010). It is also 

anticipated that this trend will continue in future decades (SEWRPC, 2004a, 2004b). 

Located at the northern suburb of the Milwaukee metropolitan area in Southeast 

Wisconsin, Grafton is an exurbia city and composed of the town and village of Grafton. 

According to the detailed land use data of Grafton in 2000, Grafton Town is mainly 

occupied by high- and medium-density residential, commercial, civic (government 

services, hospital and educational institutes) and industrial lands, while low-density 

residential, agricultural, and open lands dominate Grafton Village.
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Figure 3.1 Study areas, Town and Village of Grafton and the state of Wisconsin, USA, 

illustrated in a false-color Landsat ETM+ image on Oct 16, 2002 and a true MODIS 

image, respectively.

In this research, we employed three categories of remote sensing imagery with 

different spatial and spectral resolutions, including a Landsat Enhanced Thematic 

Mapper Plus (ETM+) image with a spatial resolution of 30 meters, an IKONOS image 

with a resolution of 4 meters and a Moderate Resolution Imaging Spectroradiometer 

(MODIS) Nadir Bidirectional-reflectance-distribution-function (BRDF) Adjusted 
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surface Reflectance (NBAR) image with a resolution of 1 kilometer. The Landsat 

ETM+ image was taken on Oct 16, 2002, and the IKONOS image was acquired on Sept 

3, 2002.  No atmospheric correction was carried out for either image due to its small 

geographical extent and the cloud-free atmospheric condition. The digital numbers 

(DNs) of both images were converted to at-satellite reflectance according to sensor’s 

characteristics respectively (Markham and Barker, 1986; Irish, 2000; Taylor, 2009). In 

addition, a MODIS NBAR image taken on August 21, 2001 was utilized (Schaaf et al., 

2002; Zhang et al., 2002; Zhang et al., 2003; Lobser and Cohen, 2007). For examining 

the performance of the developed indices with the Landsat ETM+ and IKONOS 

images, we obtained a Digital Orthophoto Quarter Quadrangle (DOQQ) image for the 

Grafton area. This DOQQ was acquired in November, 2002 and has a spatial resolution 

of 0.61 meter. Further, to assess the index performance applied to the MODIS imagery, 

we obtained the 2001 National Land Cover Dataset (NLCD) land cover and 

imperviousness percentage data. NLCD dataset has a spatial resolution of 30 meters, as 

they were derived from Landsat TM/ETM+ images. Details of the 2001 NLCD data can 

be referred to the works of Yang et al. (2003a), Yang et al. (2001) and Homer et al. 

(2004). A Universal Transverse Mercator (UTM) projection with zone 16 and WGS84 

datum was applied to all the remotely sensed data. 

3.3 Methodology

3.3.1 Biophysical Composition Index (BCI): principle and development
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In order to effectively represent major biophysical compositions in an urban 

environment, the BCI was designed to follow the mechanism of Ridd’s conceptual 

V-I-S triangle model (see Figure 3.2). With the BCI, impervious surfaces are expected 

to have positive and relatively high values; vegetation is expected to be differentiated 

from other land covers through its negative and low values; and bare soil is expected to 

have a value of near zero, and can be separable from impervious surfaces. To reach this 

objective, we first conducted a reexamination of Tasseled Cap (TC) transformation and 

evaluated whether the BCI can be derived using TC components.

Figure 3.2 The scheme of BCI following Ridd’s conceptual V-I-S triangle model. 
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Originally, TC transformation was developed by Kauth and Thomas (1976) to 

identify agricultural crop developments. Crist and Cicone (1984a; 1984b) pointed out 

that TC transformation was able to (1) quantify the inter-band relationships for 

interested land covers, (2) compress spectral information from multiple bands into 

fewer feature space scenes resembling principal component analysis, and (3) highlight 

spectral characteristics of different land cover types. Since then, TC transformation has 

been widely accepted and applied for forest management (Cohen et al., 1995; Helmer et 

al., 2000) and forest disturbance and recovery detection (Healey et al., 2005; Masek et 

al., 2008), etc. In urban remote sensing, TC components have been utilized as 

independent variables in various machine learning methods (e.g. regression model, 

regression tree, and ANN, etc.) for automatic imperviousness estimation (Bauer et al., 

2004; Yang and Liu, 2005; Yang, 2006; Mohapatra and Wu, 2010). However, the TC 

transformation has rarely been applied for analyzing spectral signatures of biophysical 

compositions in an urban environment since its development. Therefore, in this paper, 

we attempted to examine the relationship between TC components and land cover types 

in an urban environment. More specifically, taking the most popular Landsat ETM+ 

imagery as an example, we performed a reexamination of spectral features of various 

typical urban biophysical compositions (e.g. water, vegetation, dark and bright 

impervious surfaces, and soil). For an objective comparison, all three TC components 

were normalized to the range of 0 to 1. Then, feature space scatterplots were generated 

using the first three TC components. In addition, samples of each typical biophysical 
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composition were selected and plotted in three feature space images, respectively (see 

Figure 3.3). 

Figure 3.3 Feature space scatterplots of the first three normalized Tasseled Cap 

components with typical urban biophysical compositions.

In the feature space of TC1 and TC2 (Figure 3.3A), vegetation, bright 

imperviousness, and water and dark imperviousness occupies three vertices of the 

spectral feature triangle respectively, while soil is clustered between bright and dark 

imperviousness and is somewhat mixed with dark impervious surfaces. As shown in the 

feature space scatterplot of TC1 and TC3 (Figure 3.3B), there exists an elongated strip 

A
B

C
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in which one end is occupied by bright imperviousness, the other by water and dark 

imperviousness, and vegetation and soil are located in the middle of the strip. In the 

feature space scatterplot of TC2 and TC3 (Figure 3.3C), the vertices of the spectral 

feature triangle are held respectively by vegetation, bright imperviousness, and water 

and dark imperviousness. Two noteworthy observations can be identified from these 

feature space scatterplots. First, TC1 and TC3 display a strong negative linear 

relationship by the elongated strip. To validate this observation, we also conducted a 

correlation analysis and found that a statistically significant and negative relationship 

exists between these two components, with a Pearson’s R of -0.908. Second, a higher 

value of TC3 (generally termed “wetness”) does not always correspond to higher water 

concentration as illustrated in Figure 3.3B. In rural areas, TC3 may be responsive to 

moist soil, vegetation or open water because there are very few manmade materials in 

natural environments. In contrast, in heterogeneous urban environments, high values in 

TC3 are also associated with low albedo impervious surfaces (e.g. asphalt in parking 

lots, roads, and roofs) and shadows. This confusion lies mainly in the spectral similarity 

between water and low-albedo materials (Small, 2001; Wu and Murray, 2003; Lu and 

Weng, 2004, 2006). Therefore, we suggest alternative terms to more appropriately 

capture the physical characteristics of TC components in an urban environment: TC1 as 

“high albedo”, TC2 as “vegetation”, and TC3 as “low albedo”. Through this spectral 

analysis, TC1 and TC3 were proven closely related to impervious surfaces in an urban 

environment, and thus can be employed to assist in developing a biophysical 

composition index for delineating various urban biophysical compositions.
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Two steps were performed in the pre-processing step of the BCI calculation. 

First, water pixels were identified and masked out using an unsupervised ISODATA 

classification. Second, after carrying out the TC transformation, each derived TC 

component was linearly normalized within the range of 0 and 1. For demonstration 

purpose, the Landsat ETM+ image for Grafton area was employed to derive normalized 

TC components of typical urban biophysical compositions as illustrated in Figure 3.4. 

With these normalized TC components, it is observed that bright impervious surfaces 

have a relatively high value in TC1; dark impervious surfaces are with a high value of 

TC3; and vegetation is associated with a high value of TC2. Moreover, when we 

observe the shape of the TC components 1-3, it appears that, for vegetation, the value of 

TC2 is much higher than the average value of TC1 and TC3, and forms a “peak”. On 

the contrary, for both dark and bright impervious surfaces, the value of TC2 is much 

lower than the average value of TC1 and TC3, and therefore forms a “valley”. In terms 

of soil, there is neither an evident “peak” nor “valley” as its value of TC2 is nearly equal 

to the average value of TC1 and TC3. Therefore, following the principles of designing 

the BCI, we developed the BCI using Eq. (3.1).

BCI =  (ୌା୐)/ଶି୚ (ୌା୐)/ଶା୚ (3.1)

where H is “high albedo”, the normalized TC1; L is “low albedo”, the normalized 

TC3; and V is “vegetation”, the normalized TC2. These three factors can be given by 

following formula: 

ܪ = ்஼ଵି்஼ଵ೘೔೙்஼ଵ೘ೌೣି்஼ଵ೘೔೙ (3.2)
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ܸ = ்஼ଶି்஼ଶ೘೔೙்஼ଶ೘ೌೣି்஼ଶ೘೔೙ (3.3)

ܮ = ்஼ଷି்஼ଷ೘೔೙்஼ଷ೘ೌೣି்஼ଷ೘೔೙ (3.4)

where TCi (i=1, 2, and 3) are the first three TC components; TCimin and TCimax are the 

minimum and maximum values of the ith TC component, respectively.

Although originally developed for Landsat 5 MSS imagery (Kauth and Thomas, 

1976), different forms of TC transformation have been proposed for a series of remote 

sensing sensors with various spatial and spectral resolutions, such as Landsat 7 ETM+, 

IKONOS and MODIS, etc. With respect to Landsat ETM+ images, TC components can 

be derived according to the coefficients suggested in the research of Huang et al. (2002) 

on the basis of principal component analysis (PCA). Similarly, based on the principle of 

linear affine transformation, specific coefficients for TC components for IKONOS and 

MODIS NBAR imagery were provided in the work of Horne (2003) and the studies of 

Zhang et al. (2002) and Zhang et al. (2003), respectively. Because TC transformation is 

available for remote sensing imagery at different spatial resolutions, BCI is therefore 

anticipated to be applied to imagery from various remote sensors with multiple 

resolutions. 
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Figure 3.4 Normalized Tasseled Cap reflectance spectra of different urban biophysical 

compositions.

3.3.2. Examining the performance of BCI at different spatial resolutions

To assess the performance of BCI in representing various urban land covers in 

remote sensing imagery at different resolutions, correlation analyses were conducted to 

quantify the association between the proposed index and ground truth information (e.g. 

abundances of impervious surface and vegetation) with random sampling sets (see 

Table 3.1). 

 

 



69 

Table 3.1. Availability of indices for assessing impervious surface and vegetation 

available, “×”: unavailable or not applicable) 

Impervious surface fraction (%) Vegetation fraction (%)

Landsat 

ETM+
IKONOS MODIS

Landsat 

ETM+
IKONOS MODIS

BCI

NDVI

NDBI × × × ×

NDISI × × × ×

3.3.2.1. Correlation analysis with impervious surfaces abundance

With remote sensing imagery at each spatial resolution, correlation analyses 

were first performed to examine the relationship between BCI and impervious surface 

abundance for sample pixels. For the Landsat ETM+ and IKONOS images, the DOQQ 

image was applied for deriving ground references. In order to guarantee enough 

samples containing impervious surfaces, a stratified random sampling method was 

applied to derive samples for urban and non-urban areas (Cochran, 1977; Stehman, 

1996). Ground truth information of every sample was then obtained through visual 

interpretation and manual digitization from the DOQQ image. For the MODIS 

imagery, the stratified random sampling method was adopted as well. Due to its 

relatively large pixel size, it is extremely time consuming and labor intensive for 
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interpreting and digitizing land covers from the DOQQ image. Instead, the 2001 NLCD 

impervious surfaces product was employed as the ground reference.  

3.3.2.2. Correlation analysis with vegetation abundance

Similarly, for each spatial scale, a correlation analysis was performed to explore 

the relationship between the BCI and vegetation abundance for sampling pixels. Note 

that the sampling method for actual impervious surface fraction cannot be utilized 

directly for vegetation due to apparent land cover changes in the one-month time lag 

between the Landsat ETM+ and IKONOS images and the DOQQ image. Careful visual 

examinations reveal that, during this time difference, major land cover changes in our 

study areas include changes from vegetation (e.g. various species of crops) to bare soil 

in cultivated land due to harvest, and also from bare soil to soil mixed with sparse 

vegetation in pasture land. Comparatively, land covers in urban area and other natural 

areas appear much more stable. Therefore, without including agricultural lands in the 

study areas, we generated all samples in non-agricultural lands to reduce the 

anthropogenic impacts on land cover changes. For the Landsat ETM+ and IKONOS 

images, subpixel ground-truth vegetation abundance was derived by manually 

digitizing the DOQQ image. In terms of the MODIS image, at first all land covers in the 

2001 NLCD data were reclassified into three general categories, i.e. water, vegetated 

and non-vegetated lands, then the vegetation fraction in a MODIS pixel was calculated 

as the number of vegetated NLCD pixels divided by the total number of NLCD pixels 

falling within that MODIS sample pixel.
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3.3.2.3. Separability between bare soil and impervious surfaces 

Due to seasonal land cover changes and its inherent mixture with vegetation, 

bare soil cannot be accurately quantified from an aerial photograph (Wu, 2004). Thus, 

in this research we did not test the correlation between BCI value and bare soil 

abundance at the sub-pixel level. Alternatively, we investigated the separability 

between pure pixels of bare soil and impervious surfaces by visually examining their 

histograms and quantifying their separability using three measurements, the spectral 

discrimination index (SDI; Kaufman and Remer, 1994; Pereira, 1999), the 

Jeffries-Matusita distance (J-M distance; Swain and Davis, 1978) and the transformed 

divergence (TD; Swain and Davis, 1978; Mausel et al., 1990). SDI measures the degree 

of separation between the histograms of two land covers, especially emphasizing on the 

relative locations and spreads of two histograms. More specifically, the degree of 

separability between two classes depends on two factors, between-group variance and 

within-group variance. SDI can be calculated using Eq. (3.5).

ூே஽ா௑ܫܦܵ = |ఓ೔ିఓೞ|ఙ೔ାఙೞ (3.5)

where SDIINDEX is the SDI value for a certain index,  ߤ௜ and ߤ௦ are average index 

values of two classes (e.g. impervious surfaces and soil), ߪ௜ and ߪ௦ are standard 

deviations of a certain index for the two classes. For a particular index, SDI with a 

value greater than one indicates good separability between the two classes, while 

values less than one denote poor separability due to large overlaps. In addition to the 

SDI, the J-M Distance and TD are metrics measuring the ability of discriminating two 
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groups as well (Swain, 1978; Scott, 1997; Thomas et al., 1987). Specifically, the J-M

distance indicates the separability between two classes, with a value less than 1.00 

indicating that the two classes are poorly separable. Further, if the J-M distance is 

larger than 1.38, it indicates a high degree of separability, and if its value is between 

1.00 and 1.38, it means the two classes are moderately separable (PCI, 1997; Thomas 

et al., 1987). Similarly, a TD value greater than 1,900 indicates a high degree of 

separation between two classes. With a TD value lying between 1,700 and 1,900, a 

moderate separation is present. When it is less than 1,700, the two classes are 

overlapped with each other and it indicates a poor separation (Jensen, 2005).

3.3.2.4 Comparative analysis with other indices

To evaluate the performance of BCI for delineating major biophysical 

compositions in an urban environment, three other spectral indices, NDVI, NDBI and 

NDISI, were employed for comparisons. Note that unlike BCI and NDVI, NDBI is only 

available for remote sensing images with SWIR bands, and NDISI requires both SWIR 

and thermal infrared (TIR) bands. These spectral indices were calculated according to 

Eqs. (3.6), (3.7) and (3.8), respectively.ܰܫܸܦ =  ேூோିோா஽ேூோାோா஽ ܫܤܦܰ (3.6) = ௌௐூோିேூோௌௐூோାேூோ ܫܵܫܦܰ (3.7) = ்ூோି(ெே஽ௐூାேூோାௌௐூோ)/ଷ்ூோା(ெே஽ௐூାேூோାௌௐூோ)/ଷ (3.8)

with = ܫܹܦܰܯ   ீோாாேିௌௐூோீோாாேାௌௐூோ (3.9)
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where GREEN, RED, NIR, SWIR and TIR are the reflectance of green, red, 

near-infrared, shortwave infrared and thermal infrared spectral bands, respectively; 

and MNDWI is the modified normalized water index proposed by Xu (2006).

3.4 Results

With the Landsat ETM+ and IKONOS images for Grafton WI and the MODIS 

image for the State of Wisconsin, the resultant BCI images (see Figures 3.5, 3.6, and 

3.7) were derived using Eq. (3.1). With these images, the relationships between BCI 

and impervious surfaces and vegetation abundances were examined using correlation 

analysis. In addition to the correlation coefficient (R), histograms and separability 

measurements were also employed to quantify the degree of separation between bare 

soil and impervious surfaces for Landsat ETM+ and IKONOS images. For the MODIS 

image, separation analysis was not performed due to the difficulty of identifying pure 

impervious surface pixels at the 1 km resolution.

3.4.1. Landsat ETM+BCI

With the Landsat ETM+ image, a Tasseled Cap transformation was conducted 

following the method of Huang et al. (2002), and then the BCI image was derived 

through applying Eq. (3.1). As illustrated in Fig. 3.5A, the resultant Landsat ETM+ 

BCI image indicates that bright impervious surfaces, including concrete roads and 

bright roofs (e.g. glass, metal, and plastic), have the highest and positive values, and are 

characterized as a white tone. Dark impervious surfaces, including asphalt roads, 
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parking lots, and dark roofs, have the second highest and positive values, and are 

indicated as a light grey tone. Further, soils and mixed land covers (including mixtures 

among vegetation and soil, vegetation and imperviousness, and all three major 

components) have a BCI value near to zero, and are shown with a tone of medium grey. 

Dark and bright vegetation, e.g. trees, senescent grasses and developing green grasses, 

etc., has the lowest and negative values (less than around -0.1), and is displayed as dark 

grey and black. To examine the overall trends of BCI quantitatively, a correlation 

analysis was performed, and a strong positive correlation between BCI values and 

impervious surface fractions was found (R = 0.757, p 0.01) (see Table 3.2). 

Moreover, a significant and negative correlation (R = -0.842, p

and vegetation fraction was also discerned. These results of correlation tests indicate 

that, with Landsat ETM+ imagery, the BCI can effectively extract both impervious 

surfaces and vegetation abundance information. Further, through visually examining 

the histograms of impervious surfaces and soil (Fig. 3.8A), we found that, with the BCI, 

the histogram of soil has a peak approximately -0.07, while the histogram of 

impervious surfaces has three small peaks for dark, medium, and bright impervious 

surfaces with BCI values of approximately 0.06, 0.11 and 0.19 respectively. Finally, all 

the three separation measures indicate that, among these four indices, impervious 

surfaces and bare soil can be moderately separated with BCI, as supported by high 

values of SDI (1.226, greater than 1), J-M Distance (1.090 out of 1.414), and TD (1,889 

out of 2,000) (see Table 3.3). 
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Figure 3.5 Comparisons of Landsat ETM+ indices: A) BCI, B) NDVI, C) NDBI, and 

D) NDISI.
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Figure 3.6 Comparisons of IKONOS indices: A) BCI, B) NDVI, and C) true-color 

IKONOS image. Red circles indicate a few impervious surfaces visually confused 

with soils when NDVI is applied.
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C

 

 



77 

Figure 3.7 Comparisons of MODIS indices: A) BCI, B) NDVI, C) NDBI, D) NDISI, 

and E) the aggregated 2001 NLCD impervious surface image, F) true-color MODIS 

image.
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Table 3.2. Correlation coefficients between different indices and impervious surfaces 

and vegetation abundance with remote sensing imagery at different spatial resolutions

Landsat ETM+ IKONOS MODIS

Imp (%) Veg (%) Imp (%) Veg (%) Imp (%) Veg (%)

BCI 0.757** -0.842** 0.848** -0.889** 0.845** -0.861**

NDVI -0.682** 0.863** -0.695** 0.816** -0.853** 0.884**

NDBI 0.024 NA NA NA 0.745** NA

NDISI -0.419** NA NA NA 0.451** NA

** Correlation is significant at the 0.01 level

Table 3.3. Separability measures between impervious surfaces and soil with different 

indices

Landsat ETM+ IKONOS

SDI
J-M

Distance

Transformed 

Divergence
SDI

J-M

Distance

Transformed 

Divergence

BCI 1.226* 1.090* 1889* 1.266* 1.051* 1140

NDVI 0.880 0.809 661 0.066 0.172 30

NDBI 0.500 0.573 397 NA NA NA

NDISI 0.721 0.883 1399 NA NA NA 

*: moderate separability

3.4.2. IKONOS BCI
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With the IKONOS image, a TC transformation was achieved following the 

method of Horne (2003), and the resultant BCI image was obtained (see Fig 3.6A). 

Similar to the results from the Landsat ETM+ image, bright and dark impervious 

surfaces are displayed as white tones, soil as light grey, mixed land covers as dark grey, 

and vegetation as black. Statistically significant correlations were found between BCI 

and impervious surface fraction (R = 0.848, p

fraction (R = -0.889, p -class 

variation appears in the high resolution IKONOS image, BCI is very effective in 

identifying the physical characteristics of impervious surfaces and vegetation. Further, 

to examine the degree of separation, histograms of both bare soil and impervious 

surfaces were derived and separability measurements were calculated. As shown in Fig. 

8B, the histograms of impervious surfaces and soil are separable, as indicated by small 

overlaps between their histograms. Moreover, high SDI value (1.266) and J-M

Distance (1.051) indicate that impervious surfaces and bare soil are moderately 

separable. The TD measure (1,140), however, indicates these two land covers cannot be 

separated completely. 

3.4.3. MODIS BCI

For the MODIS image, at first a TC transformation was carried out based on the 

methods of Zhang et al. (2002) and Zhang et al. (2003). In contrast to the Landsat 

ETM+ and IKONOS images, the 1 km by 1km pixel size of the MODIS image can 

hardly contain any pure pixels of impervious surfaces. The large amount of mixed land 
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covers in MODIS pixels makes it more difficult to represent and differentiate 

biophysical compositions than in any other higher resolution images. Therefore, only 

correlation analysis was performed for the MODIS image. The resultant MODIS BCI 

(see Figure 3.7A) indicates that major urban areas of Wisconsin are effectively 

highlighted in bright tones; bare soil and mixed land covers are represented by light and 

dark grey tones; and vegetation is displayed as dark tones. Further analysis indicates a 

statistically significant positive correlation between BCI and impervious surface 

fraction (R = 0.845, p

BCI and vegetation fraction (R = -0.861, p

of identifying pure impervious surface and bare soil pixels, we did not conduct a 

confusion analysis between these two compositions with the MODIS image. 

3.5 Comparative analyses with other indices

With the purpose of examining the performance of the BCI index, comparative 

analyses with three other indices, including NDVI, NDBI, and NDISI indices, were 

performed at the three spatial resolutions (see Tables 3.1 and Figures 3.5, 3.6, and 3.7). 

Note that NDBI and NDISI cannot be calculated for the IKONOS image due to the 

absence of SWIR and TIR bands. Therefore, only NDVI was applied to the IKONOS 

image for comparison. Correlation analyses between index values and the 

ground-truthing fractional covers of two major biophysical compositions (i.e. 

impervious surface and vegetation) were performed and reported in Tables 3.2. 
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Besides, to evaluate the ability of different indices in separating impervious surfaces 

with bare soil, the histograms of these indices for both soil and impervious surfaces 

were plotted (see Figure 3.8). In addition, three separability measurements, i.e. SDI, the 

J-M Distance and TD, were employed to quantify the levels of separability between 

bare soil and impervious surfaces, and the results are reported in Table 3.3.

3.5.1. Comparisons with NDVI

NDVI images derived from the Landsat ETM+, IKONOS, and MODIS images 

are displayed in figures 3.5B, 3.6B, and 3.7B respectively. Note that due to the 

numerical range differences between NDVI and other three indices, a reverse color 

ramp was adopted for the NDVI maps in order to conduct consistent visual 

examinations and comparisons with other index maps. Analyses of the NDVI images 

indicate that there is a close relationship between NDVI and impervious surface 

fractions. With the derived NDVI images (Figures 3.5B, 3.6B, and 3.7B), impervious 

surfaces are displayed as bright tones (e.g. low values); bare soil and mixed land covers 

are illustrated as grey tones; and vegetation is shown as dark tones (e.g. high values). 

Moreover, correlation analyses indicate NDVI values are significantly and negatively 

correlated with impervious surface fractions, supported by a correlation coefficient of 

-0.682 for Landsat ETM+ image, -0.695 for IKONOS image, and -0.853 for MODIS 

image. This relation, however, is not as strong as the correlation between BCI and 

fractional impervious surface, in particular when applied to Landsat ETM+ and 

 

 



82 

IKONOS images. Similar correlation coefficients were found with the MODIS images, 

though. 

A detailed analysis of the correlation between NDVI and impervious surface 

distribution indicates that the poorer performance is mostly due to the confusion 

between impervious surfaces and bare soil, especially for the Landsat ETM+ and 

IKONOS images. For example, with the IKONOS NDVI image (see Figure 3.6B), 

obvious spectral confusions between bare soil and impervious surfaces can be 

discerned when compared to the true-color IKONOS image. For example, tones of 

several soil patches are displayed much brighter than those of bright impervious 

surfaces, indicating that they possess lower NDVI values than imperviousness, and thus 

may be easily mis-classified as impervious surfaces. Moreover, a few impervious 

surfaces highlighted with the circles in Fig. 3.6B, e.g. some bright building roofs and 

concrete roads, are characterized at the gray tone and therefore visually confused with 

soil. On the contrary, these confusions cannot be discerned in the IKONOS BCI map 

(see Fig. 3.6A). As a further analysis, the NDVI histograms of impervious surfaces and 

bare soil (See Fig 3.8C and 3.8D) indicate that, unlike the BCI index, significant 

confusion exists between these two land cover types. Especially, the NDVI values for 

impervious surfaces and bare soil are similar, and their histograms have a wider range 

when compared to the BCI. This observation is supported by lower values of SDI 

(0.880 for Landsat ETM+ and 0.066 for IKONOS), J-M Distance (0.809 for Landsat 

ETM+ and 0.172 for IKONOS), and TD (661 for Landsat ETM+ and 30 for IKONOS). 

As a summary, NDVI image cannot effectively separate impervious surfaces and bare 
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soil with both the Landsat ETM+ and IKONOS images, and a much worse performance 

was observed when applied to the IKONOS image. This is probably due to small 

between-group variances for both classes and relatively large within-group variances 

with the IKONOS image. With the MODIS NDVI image, the confusions between bare 

soil and impervious surfaces are displayed in the central Wisconsin (with a great 

number of bare soil patches) and the north Wisconsin (bare soil mixed with wetlands) 

(see Figure 3.8B). Some of these confusion problems, however, are reduced due to the 

large pixel sizes of the MODIS image.

For vegetation, for all the three images, significant and negative correlations 

were found in BCI (see Table 3.2). In particular, for the Landsat ETM+ and MODIS 

images, the performances of BCI are slightly poorer than those of NDVI in identifying 

vegetation information. For the IKONOS image, though, the correlation coefficient 

between NDVI and vegetation abundance (R = 0.816, p

that (with absolute value) between BCI and vegetation fraction (R = -0.889, p

As a summary, the performances of NDVI and BCI in identifying vegetation 

information are comparable at all three spatial scales.

3.5.2. Comparisons with NDBI

The NDBI images at two different spatial resolutions (e.g. Landsat ETM+ and 

MODIS) are illustrated in figures 3.5C and 3.5D respectively. With the Landsat ETM+ 

NDBI image, it is observed that there exists severe confusions between bare soil and 

impervious surfaces, as both of these two land covers are highlighted with bright tones. 
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Moreover, when the correlation analysis was conducted between NDBI and impervious 

surface fraction, it is found that NDBI has the lowest and statistically insignificant 

correlation coefficient (R = 0.024, p = 0.76), indicating NDBI cannot be employed to 

represent impervious surface information in the study area. This may be due to the 

severe spectral confusion between imperviousness and soil in the NDBI map. This 

assumption was supported by the histogram analyses of impervious surfaces and bare 

soil (see Figure 3.8E) and separability measures (see Table 3.3). Especially, visual 

comparisons of the NDBI histograms between impervious surfaces and soil reveal 

apparent overlaps (see Figure 3.8E).  This observation is also confirmed by very low 

scores of SDI (0.500), J-M Distances (0.573), and TDs (397), falling far behind the 

values of BCI and NDVI. 

With the MODIS NDBI image, we found that, although urban impervious

surfaces can be identified with white tones, severe confusions between bare soil and 

imperviousness exist: light grey tone appeared in many parts of the state and bright 

tones shown in the central Wisconsin, where few urbanized areas can be found. 

Nevertheless, a significant and positive correlation between MODIS NDBI image and 

impervious surface fraction was found with a relatively lower correlation coefficient (R

= 0.745) when compared to those of the BCI and NDVI.

3.5.3. Comparisons with NDISI

NDISI images at two different spatial resolutions (e.g. Landsat ETM+ and 

MODIS) are illustrated in figure 3.5D and 3.7D respectively. Similar to NDBI, the 
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Landsat ETM+ NDISI map does not reflect the proportion and distribution of 

impervious surfaces appropriately in the study area, and unexpectedly displays a 

negative correlation with impervious surfaces as shown in Table 3.2 (R = -0.419, p =

0.76). The major reason might be that NDISI is highly dependent on the temperature 

information derived from the TIR band, and there is no evident urban heat island (UHI) 

effect in such a lakefront area with small geographical extent. Moreover, breeze and 

vapors from Lake Michigan and the relatively dense vegetation coverage in Grafton 

area might also mitigate the impacts of temperature, thus offsetting the temperature 

impacts in the study area. Further, the severe confusion between bare soil and 

impervious surfaces is proven by the histogram analysis (see Figure 3.8F) and the 

separability measures (see Table 3.3). In particular, the NDISI has low SDI (0.721), 

J-M Distance (0.883), and TD (1399) values, indicating the confusion between bare soil 

and impervious surfaces. Such findings are not surprising, as it is consistent with the 

results reported by He et al. (2010).

Further, the performance of NDISI is unsatisfactorily when applied to the 

MODIS image. The confusion between bare soil and urban impervious surfaces is still 

a severe problem, as large soil patches in the Northern and Central Wisconsin have 

relatively high values of NDISI. As illustrated in Table 3.2, correlation analysis also 

supports these observations, as the correlation coefficient between NDISI and 

impervious surface fraction (R = 0.451) is much less than those of BCI and NDVI at the 

0.01 significance level (BCI_R = 0.845 and NDVI_R = -0.853), indicating that NDISI 
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performs worse in identifying impervious surface information when compared to the 

BCI and NDVI.

3.6 Discussion

The major objective of developing the BCI index is to derive a simple and 

convenient spectral enhancement approach that can enhance the contrasts among three 

major urban biophysical compositions, namely vegetation, impervious surfaces, and 

soil, following Ridd’s conceptual V–I–S model (Ridd, 1995). Analysis of results 

suggests that BCI has a significant and positive correlation with urban imperviousness, 

and a significant but negative association with vegetation fraction at various 

resolutions. More importantly, BCI showed promise in discriminating bare soil from 

impervious surfaces, which has proven to be a difficult problem (Powell et al., 2007; 

Roberts et al., 2012).  Another advantage of BCI is that it can be applied to various 

remote sensing images at different spectral and spatial resolutions, as the derivation of 

BCI does not depend heavily on any specific waveband as other spectral indices (e.g. 

NDVI, and NDISI, etc). 

On the other hand, although the separability metrics suggest that BCI can 

moderately separate soil from impervious surfaces, we admittedly notice the lack of a 

rigorous validation of soil abundance due to the difficulty of deriving “ground truth” 

soil fractions in the study area. Further research on examining the power of BCI on 

differentiating soil from impervious surfaces is necessary. Moreover, although BCI 

performs slightly better when compared to a number of similar indices (e.g. NDVI, 
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NDBI, and NDISI), its correlation with “ground truth” imperviousness is likely to be 

lower when compared to the results reported in other SMA studies (Powell et al., 2007; 

Weng and Hu, 2008; Weng et al., 2008; Hu and Weng, 2009; Roberts et al., 2012). In 

particular, Powell et al. (2007) reported much higher r2 values for imperviousness 

(0.849) and vegetation fraction (0.850), although with a larger sample size. Roberts et 

al. (2012) also reported higher r2 values for imperviousness (0.718) and vegetation 

fraction (0.808) at 60-meter resolution, and for imperviousness (0.53) and vegetation 

fraction (0.82) at 15-meter resolution with the MESMA method, respectively. The 

relatively poorer performance of BCI is not unexpected when compared with 

physically SMA methods, as it is a spectral enhancement approach without a priori

knowledge of the study area. Moreover, unlike the comparisons between reference and 

estimated abundances of imperviousness reported in other studies, BCI does not have a 

one-to-one correspondence to the impervious surface fraction, as the value of BCI 

ranges from -1 to +1, which is different from the abundances of dark and bright 

impervious surfaces derived from MESMA (with range between 0 and 1). Therefore, 

BCI may serve as a convenient spectral enhancement method, rather than an approach 

to the estimation of fractional imperviousness or vegetation.

The development of BCI is mainly dependent on spectral signatures of the 

normalized TC spectra, the idea of which is similar to another forestry index, the 

normalized difference fraction index (NDFI), for the enhancement of deforestation 

detection (Souza et al., 2005). With respect to NDFI, three fractional ground 

components obtained from MESMA, i.e. shade-normalized green vegetation (GV), 
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nonphotosynthetic vegetation (NPV) and soil (although with different direction and 

weights when compared with BCI), were taken into consideration. Both indices have 

proven to characterize land covers effectively: detection of deforestation levels with 

NDFI, and urban land cover compositions with BCI. Specifically, higher values of 

NDFI indicate higher level of vegetation preservation, whereas lower ones highlight 

degraded forests. Comparatively, BCI values from low to high represent vegetation 

(negative values), bare soil (near zero), and impervious surfaces (positive values) 

respectively, with transitional/mixed land covers in between. 

3.7 Conclusions 

Biophysical composition information is critical to delineate urban ecological 

morphology for sustainable public planning and environmental management and 

modeling. However, traditional methods to acquire biophysical composition 

information, such as land use land cover classification approach and spectral unmixing 

technique, were either dependent on subjective training and testing datasets, or too 

complicated to carry out (Plaza et al., 2004). Therefore, this study proposes a new BCI 

index for simple and convenient derivation of urban biophysical compositions 

following Ridd’s conceptual V-I-S triangle model. 

As the first step of BCI development, we performed a reexamination of TC 

transformation to explore the change of spectral feature space due to the composition 

change in an urban environment. Through spectral analysis, it is found that, in a 

heterogeneous urban environment, high values of TC3 are associated not only with 
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water content and soil moisture but also with low-albedo impervious surfaces and 

shades, probably due to their inherent spectral similarity. This observation is also 

confirmed by a statistically significant negative linear relationship between TC1 and 

TC3, where TC1 is generally utilized to characterize the “brightness” of land covers. 

Accordingly, alternative terms are suggested to capture the physical characteristics of 

urban land covers with TC components more appropriately: the original “brightness”, 

“greeness” and “wetness” replaced by “high albedo”, “vegetation”, and “low albedo” 

respectively. Thus, TC1 and TC3 are believed to contain abundant imperviousness 

information in an urban environment, and can be utilized for developing the BCI index. 

With the observed spectral relationships and features from the reexaminations, we 

developed a new spectral index named BCI to identify different urban biophysical 

compositions and improve the separation between impervious surface and bare soil. 

Analyses of the BCI images at three different spatial resolutions (e.g. Landsat 

ETM+, IKONOS, and MODIS) suggest three major conclusions. First, results of 

correlation analysis indicate that, when compared to other widely used indices (e.g. 

NDVI, NDBI, and NDISI), BCI has the closest relationship with impervious surface 

abundance, with statistically significant and highest correlation coefficients at all three 

spatial resolutions. Specifically, NDVI has slightly lower correlation coefficients, and 

NDBI and NDISI have the poorest performances in identifying urban impervious 

surfaces. Further, the performances of BCI in quantifying vegetation abundance are 

comparable with NDVI at all three spatial scales. Finally, with much higher values of 
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separability metrics than any other index, BCI was shown to be the most effective index 

of the four evaluated for separating impervious surfaces and bare soil.

 

 



91 

CHAPTER 4 IMPROVING SMALL-AREA POPULATION 

ESTIMATION: AN INTEGRATED GEOGRAPHIC AND 

DEMOGRAPHIC APPROACH
*

4.1. Introduction

Knowledge of detailed and accurate population information is important to 

understand many socio-economic, political, and environmental problems, and to 

support necessary planning practices for both public agencies and private sectors 

(Rees, Norman and Brown, 2004). As an example, accurate population estimates are 

critical for deriving diagnostic indicators, such as mortality rate, morbidity rate, 

unemployment rate, etc, which play essential roles in the decision making process for 

state and local governments (Smith et al., 2002). Moreover, population information 

has served as an important input in socio-economic studies and planning practices 

(Plane and Rogerson, 1994), including location and allocation analyses of critical 

facilities (Sathe and Miller-Hooks, 2005; Horner and Downs, 2010; Widener and 

Horner, 2011; Maliszewski et al., 2012), health-care planning and analysis (Martin 

and William 1992; Bikker and de Vos, 1992; Birkin et al., 1996), natural resource 

management and assessment (Keeley et al., 1999; Underwood et al., 2008; Kwak et 

al., 2011), risk assessment in public health (Kwan-Gett et al., 2009; Reid et al. 2009; 

* Portions of this chapter have been published in Annals of the American Association of 

Geographers, coauthored with Dr. Changshan Wu.
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Wilhelmi and Hayden, 2010), environment inequality analysis (Mennis, 2002; 

Fielding, 2007; Maantay and Maroko, 2009; Mennis, 2011), disaster response and 

relief management (Bouwer et al., 2007; Stone et al., 2007), urban expansion 

modeling (Wu and Martin, 2002; Yeh and Li, 2002), election analysis (Norman et al., 

2007), and public transit service planning (Murray et al., 1998; Horner and Murray, 

2004; Wu and Murray, 2005). For private sectors, detailed and timely updated 

population information is vital for delineating the external environment of a 

marketplace, determining trade area, evaluating retail trading performances (such as 

trade area analysis, market loss assessment, site evaluation, etc.), selecting potential 

store locations, predicting retail sales per capita, assessing market shares, and 

forecasting potential customer groups, etc. (Epstein, 1984; Mercurio, 1984; Simmons, 

1984; Wilson, 1984; Ghosh and McLafferty, 1987; England, 2000; Church and 

Murray, 2009). Therefore, it is essential to derive accurate and timely population 

information to satisfy the apparent needs from public agencies and private sectors.

Although detailed population information is important in a number of planning 

applications, such data are generally available only (in the U.S.) once for every 

decade through the National Census. Obsolete population data, however, cannot 

satisfy the needs of urban and regional planning and business analyses, especially for 

rapidly growing areas. For planning practices, the utilization of inaccurate census data 

could result in an imbalanced distribution of public resources. Similarly, for private 

sectors, investment loss may be partly due to the usage of obsolete population 

information for market delineation, prediction, assessment, and decision making.  
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Recognizing the importance of timely population information, researchers have 

proposed many techniques to derive population estimates for non-census years, and 

these techniques can be divided into two major groups: demographic and geographic 

techniques. 

Major demographic techniques include Component II (CM-II), Administrative 

Records (AR), Ratio Correlation (RC), and Housing Unit (HU) methods (Ghosh and 

Rao, 1994). The CM-II method estimates the change of population count based on 

major demographic changes. The population count for a particular year is calculated 

by adding the total births and net migration at all ages, and subtracting the estimated 

number of deaths to the population totals at the base year (Smith and Mandell, 1984). 

Similarly to CM-II method, the AR method estimates the net migration of population 

under 65 years old using the federal income tax form, and the population aged 65 and 

above using the federal Medicare enrollment information (Plane and Rogerson, 1994). 

The RC method builds the relationship between a change share and different types of 

symptomatic variables (i.e. representing school enrollment, auto registration, and ratio 

of resident births/death, etc), and utilizes this relationship to adjust the population 

estimates (Martin and Serow, 1978). Instead of detecting population change by 

various demographic variable changes, the HU method estimates the population for a 

spatial unit by multiplying the number of housing units, estimated from electric or 

water bills or building permits, by the persons per household (PPH), estimated from 

census data or by demographic modeling, then adding up their product with the group 

quarters population (e.g. persons residing in college dormitories, military barracks, 
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nursing homes, and prisons). Unlike CM-II, AR and RC methods, the HU method has 

been accepted by the U.S. Census Bureau for last two decades as its only method to 

yield small-area population estimation. Moreover, it is considered to be the most 

commonly used, and one of the most accurate and cost-effective methods, for 

small-area population estimation (Smith and Mandell, 1984; U.S. Census Bureau, 

1998, 2005, 2010; Smith and Cody, 2004). 

Besides demographic approaches, geographic techniques have also been 

applied since the 1950s for deriving population estimates. In particular, not only by 

demographers, the HU method was also adopted by remote sensing specialists to 

estimate population information with housing unit counts produced manually from 

aerial photographs (Hsu, 1971, 1973; Lo and Chan, 1980; Watkins, 1984; Watkins 

and Morrow-Jones, 1985; Lo, 1986a, 1986b). Then the total population in an area is 

derived as the product of housing unit counts and the average PPH obtained through a 

special survey. While this method is relatively accurate, such an approach is time 

consuming and labor intensive, therefore rarely used for large urban areas. To address 

the problems associated with manual enumeration of individual housing units, 

automatic approaches with the help of remote sensing and geographic information 

system (GIS) techniques have been developed (Hsu, 1971; Lo, 1995, 2003). Remote 

sensing information employed for generating housing unit and population estimates 

includes spectral radiance/reflectance, land use/cover classification, urban impervious 

surface and vegetation distribution, light radiance, etc. (Collins and El-Beik, 1971; 

Dueker and Horton, 1971; Kraus et al., 1974; Lo, 1995; Chen, 2002; Harvey, 2002a; 
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Lo 2003; Wu and Murray, 2007; Deng et al., 2010; Sutton et al. 1997). In addition, 

geographic information, such as transportation network density (Qiu et al., 2003), 

point-based postal data (Mesev, 2005, 2007), etc., has been applied to represent built 

environment and population distribution. With remote sensing and geographic 

information, regression-based techniques have been typically applied to estimate 

population information (Harvey, 2002b; Lo, 2003; Wu and Murray, 2007). 

Although both demographic and geographic approaches have been developed 

for small-area population estimation, the resultant estimates of both methods were still 

unable to satisfy the demand for detailed and accurate population estimation. With the 

demographic approaches, only population at aggregated scales, such as county, city, 

etc., can be obtained due to data constraints and privacy concerns. Although several 

simple interpolation and step-down techniques have been employed to derive 

population estimates at the census block or block group levels, the resultant estimates, 

however, are unreliable and imprecise (Deng et al., 2010). With remote sensing based 

approaches, parameters extracted from images only have an indirect linkage to the 

built environment, and the spatial resolutions of remote sensing images are often too 

coarse to reveal information of individual housing units. As a result, the estimated 

population counts for small areas are always inaccurate, and cannot be utilized to 

estimate inter-census population information. 

Although both demographic and geographical approaches have their 

respective limitations in estimating small-area population, a synthesis of these two 
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methods may provide a viable solution. A potential solution may resort to the HU 

method, which provides a linkage between demographic and geographic methods.  

In particular, the recent rapid development of GIS and remote sensing technologies, 

such as detailed land use and parcel dataset, and very high resolution remote sensing 

imagery with a meter-level resolution, provides an opportunity to improve the 

estimation accuracy of the number of housing units, one of the major components of 

the HU method. Estimation of the other primary component of the HU method, 

persons per household (PPH), may be benefited by remote sensing/GIS techniques as 

well. Currently, PPH was only estimated through simplified methods, such as the 

usage of PPH from the most recent census, the simple mathematic extrapolation (i.e. 

linear and exponential extrapolation and proportional change rate) (Starsinic and 

Zitter, 1968; Smith and Lewis, 1980; Smith 1986; Swanson and Hough, 2012), or 

regression analysis (Smith et al. 2002; Kimpel and Lowe 2007; Deng, Wu and Wang 

2010). The difficulty of obtaining an accurate PPH estimation may be associated with 

the small sample sizes (Ghosh and Rao, 1994). Moreover, as a demographic 

parameter and an “invisible” factor on images, it is difficult to attract the attention and 

interest of remote sensing specialists and geographers, whose major focus is on 

“visible” dwelling unit counts from remotely sensed imagery. PPH estimation has 

rarely been conducted by any geography-related means because there is a lack of an 

effective connection between PPH and geographic measurements. Factors affecting 

PPH include age structure (Smith et al., 2002), living arrangements (Kobrin, 1976), 

housing stock characteristics (Myers and Doyle, 1990), and marital status (Gober, 
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1990). Among these factors, from a geographical perspective, distance to certain 

activities may indirectly reflect behavioral preferences and demographic 

specialization of different households’ marital and income status. For example, 

singles and married couples without children may emphasize entertainment and 

cultural activities, while married couples with children may prefer family-centered 

activities, etc. Therefore, it is very necessary to improve the PPH estimation with a 

combination of remote sensing/GIS techniques and demographic approaches.

To implement small-area population estimation with the HU method, we 

developed an automated technique for counting dwelling units through combining 

high resolution impervious surface information, parcel data, and land use data. 

Further, the persons per household (PPH) was estimated through modeling the 

relationship between PPH and housing structural information and household 

socio-economic status. With the estimated HU numbers, PPH and population, we 

examined the estimation accuracy with three measurementsindices: mean absolute 

error (MAE), mean absolute percentage error (MAPE), and mean algebraic 

percentage error (MALPE), and compared this integrated approach with other widely 

applied methods. Further, we also performed sensitivity analyses to evaluate the 

respective contributions of HU and PPH estimation errors to the small-area population 

estimation errors. 

The remainder of this article is organized as follows. The study area and data 

are introduced in Section 4.2. Section 4.3 describes the proposed methods for 
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estimating dwelling units and PPH respectively. Section 4.4 presents the results of 

estimation and estimation accuracy. Section 4.5 details the comparisons between 

different techniques for HU, PPH, and population estimation. Sensitivity analyses are 

reported in the sixth section, and finally the last section concludes this article.

4.2 Study Area and Data 

The Town and Village of Grafton, Wisconsin, USA were chosen as the study 

area for this research (see Figure 4.1). Located about 30 kilometers north to the 

Milwaukee City, Wisconsin, Grafton is an exurban area in the Milwaukee metropolitan 

area. The Town of Grafton is located at the western side of the study area, and its land 

use types are dominated by residential, commercial, civic (hospital, government 

services and educational institutes), and industrial lands. Grafton Village occupies the 

rest of Grafton area, and its land uses are dominated by agricultural, residential and 

other natural lands. According to the US Census Bureau, population and housing unit 

(HU) numbers in Grafton have increased steadily, with the total population growing 

from 13,330 in 1990 to 14,444 in 2000, and the number of housing units rising from 

4,827 in 1990 to 5,773 in 2000. This is likely due to the emigration from the Milwaukee 

County during the past decades. Such a growth trend has been projected to continue in 

the coming decades (Southeast Wisconsin Regional Planning Commission 2004). 

Therefore, an accurate estimation of small-area population is of great importance for 

planning practices in both the Ozaukee County and Southeast Wisconsin. 
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Figure 4.1 Town and Village of Grafton, Wisconsin, USA.

For model calibration and validation, population data in 2000 at the census 

block level were extracted from the American FactFinder provided by the U.S. Census 

Bureau. For each census block, housing unit counts, population and demographic 

information (e.g. age structure, racial composition, median income, gender, etc.) were 

provided. In addition to population data, parcel data (with 6,378 individual parcels) in 

1998 was obtained from the Ozaukee County Land Information Office (see Figure 

4.2A). Further, detailed land use data in 2000 (see Figure 4.2B) were acquired from the 
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Southeast Wisconsin Regional Planning Commission. In particular, detailed land use 

information was classified based on the Anderson classification system (Anderson et 

al., 1976). Besides GIS datasets, an IKONOS image taken on 3 September 2002 was 

requested from the American geographical society library (AGSL) at the University of 

Wisconsin-Milwaukee. Digital number of each pixel in IKONOS image was converted 

to per pixel reflectance according to the IKONOS technical document (Taylor, 2009). 

For accuracy assessment of impervious surface estimation, a Digital Orthophoto

Quarter Quadrangle (DOQQ) image acquired in November 2002 was obtained from the 

AGSL as well. All these images were re-projected to the Universal Transverse 

Mercator projection with zone 16 and WGS84 datum. In order to mitigate the impacts 

of time differences between land use data and remotely sensed image, the newly-built 

housing units after 2000 were not taken into account, therefore impervious surfaces 

located outside the residential land use of the 2000 SEWRPC data were ignored.

4.3. Methodology

4.3.1 Housing unit estimation

We developed an automatic approach to estimate the number of housing units 

through integrating detailed remotely sensed and geographic information. In this 

integrated HU method, three major steps were carried out. First, detailed remote 

sensing information and GIS datasets were processed based on the raw datasets. 

Secondly, residential land use parcels, including single-, two-, and multi-family 
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residential types, were derived through integrating the parcel data, land use data, and 

high-resolution remotely sensed imagery. Finally, the numbers of single- and 

two-family housing units were enumerated automatically, and the number of 

multi-family housing units was estimated using a dasymetric mapping approach. The 

total number of housing units in a census block was then calculated as the summation of 

single-, two-, and multi-family housing units. 

4.3.1.1 Data process of detailed remotely sensed and GIS datasets

One important parameter derived from the high-resolution remotely sensed 

imagery is the impervious surface distribution. Impervious surfaces refer to any 

materials that water cannot penetrate. In urban areas, most impervious surfaces are 

associated with urban infrastructure, such as rooftops, driveways, parking lots, road 

networks, and bridges, etc. (Schueler, 1994; Bauer et al., 2004). Urban impervious 

surface information, therefore, may help in identifying housing units in a land parcel. In 

this research, we extracted urban impervious surface information from IKONOS 

imagery using a constrained spectral mixture analysis (SMA) method developed by Wu 

(2009). SMA has been widely used for impervious surface estimation (Phinn et al., 

2002; Rashed et al., 2001; Small, 2001; Wu and Murray 2003; Wu, 2004). As a 

physically based method, SMA assumes that reflectance of each pixel is a linear 

combination of several homogeneous land cover types (also called endmembers), 

which can be described as follows.

(4.1)
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where σ ௜݂ = 1 ܽ݊݀ ௜݂ ൒ 0௡௜ୀଵ ; n is the number of endmembers; Rb is the reflectance 

for each band b of the remotely sensed image; N is the total number of endmembers; fi is 

the fraction of endmember i; Ri,b is the reflectance of endmember i in band b; and eb is 

residual of model.

In this study, impervious surface fraction for each pixel was derived with the 

following steps. First, spectral normalization was applied to the IKONOS image to 

reduce the shadow effect and spectral variations. Second, three endmembers, including 

vegetation, soil, and impervious surfaces, were selected according to the scatterplots of 

the minimum noise fraction (MNF) components. Finally, a fully constrained SMA was 

applied to obtain the fraction of each endmember. The result of impervious surface 

fraction for the study area is shown in Figure 2C. Accuracy assessments were carried 

out by digitizing the DOQ image as the reference. The accuracy of impervious surface 

estimation for the entire study area is relatively high, with a small systematic error 

(2.66%) and mean absolute error (9.2%). For more details of this method, readers can 

refer to the work of Wu (2009).
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Figure 4.2 Detailed remote sensing and GIS datasets in study area: A) parcel map; B) 

residential land use map; and C) impervious surface fraction map. “CenBlk_00” 

stands for census block in 2000.

In addition to the high resolution impervious surface fraction data, detailed 

residential land use data was derived from the land use data in 2000 provided by 

SEWRPC. Three residential land use types, single-family, two-family, and 

multi-family residential, were identified and extracted for further analysis (see Figure 

4.2B). For parcel data, the perimeter and area of each parcel were calculated, and 

employed as the inputs to the housing unit estimation models. 

4.3.1.2 Generation of residential parcel data 

For deriving the number of housing units, at first we overlaid the parcel layer 

with the land use map to generate residential parcels. These residential parcels, 

however, have two problems. The first problem is associated with the land use data. In 

A B C 
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a few cases, although a parcel is designated as the residential land use type, it is

essentially occupied by vacant lands and the actual construction project may start up to 

several years later. One example is displayed in Figure 4.3. The other problem is 

associated with spatial data overlay method. Many very small polygons (e.g. slivers)

were present along shared boundary lines of the parcel and land use maps. This problem 

is likely due to digitizing and data interpretation errors. To address these problems, we 

developed a classification tree approach to remove these mis-classified parcels using 

MATLABTM (The MathWorks, Inc.). The classification tree model constructs the 

relationships between a categorical dependent variable (e.g. whether a parcel is 

classified as the residential land use type) and a number of independent variables (e.g. 

impervious surface fraction, parcel perimeter, parcel area). It grows a categorical tree 

by splitting the data repeatedly according to the interactions between the dependent 

variable and independent variables (Breiman et al., 1984). For each time of splitting, 

the data is categorized into more homogeneous groups through uncovering the structure 

of the underlying problems. As a non-parametric approach, classification tree does not 

require the assumptions of normality and independence. 
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Figure 4.3 Overlay of residential parcels with impervious surface fraction map 

(parcels within green boxes are those with low impervious surface coverage, and 

should be re-classified as non-residential).
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In this study, around 20 percent of the parcels were employed as training 

samples for the classification tree approach. Independent variables include the derived 

impervious surface fraction within each parcel, and parcel areas and perimeters. It is 

assumed that a parcel with a higher percentage of impervious surfaces is likely to be 

considered as residential land uses. Parcels with a relatively low impervious surface 

fraction may not have been fully developed, and should be removed from the 

residential class. Moreover, parcels with abnormal perimeters or geographical areas 

may be created during the process of data overlay, and should also be excluded. To 

derive an accurate residential parcel map, we implemented the classification tree model 

with urban impervious surface fraction, parcel perimeter, and parcel area as inputs.

4.1.2.3 Housing units estimation 

With the derived residential parcels, we can effectively estimate the number of 

housing units for single-, two-, and multi-family parcels. In particular, for single-family 

residential parcels, we simply assumed that there is only one housing unit in each 

parcel. Therefore, the number of single-family housing units was regarded as same as 

single-family residential parcel numbers. Similarly, for two-family residential parcels, 

the number of housing units was calculated as two times the numbers of parcels. 

Multi-family residential parcels generally contain buildings with a large 

number of housing units (e.g. three- or four-family HU, condominiums, apartment 

complex, etc.), ranging from three to hundreds. To address this problem, a 

dasymetric-mapping method was employed to model the relationship between number 
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of HU and the areal extent of multi-family land use in each census block. An ordinary 

least square (OLS) regression analysis was utilized to calibrate the weight of 

geographical area of these residential parcels. Thus, the number of HUs for 

multi-family can be estimated as follows (see Equations 4.2 and 4.3).

௠,௜ܷܪ = ߙ + ௠,௜ܣߚ + ௠,௜ߝ (4.2)

, , ,
1

n

m i m i j
j

A A (4.3)

where HUm,i and Am,i are the numbers of HU for multi-family and the aggregated 

geographical area of the multi-family residential parcels in block i, respectively; Am,i, j

is the geographical area of the jth multi-family residential parcel in census block I;

and are regression coefficients; and ߝ௠,௜ is an error term.

After finishing the calculations of single-, two- and multi-family housing units 

respectively, the total number of housing units in a census block can be calculated as 

the summation of all these three types of housing units. The formula can be expressed 

as follows (see Equation 4.4).

, , ,i s i t i m iHU HU HU HU
(4.4)

where HUi is the total number of housing units in census block i, HUs,i is refers the 

number of single-family housing units, HUt,i is the number of two-family housing 

units, and HUm,i is the number of multi-family housing units. 

4.3.2 Persons per household (PPH) estimation 
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In addition to the housing unit estimation, we also proposed a regression-based 

PPH estimation method with the help of geographic, demographic, and housing 

characteristic information. Geographic variables include the distances to different land 

uses, such as recreation centers, schools, and commercial centers, etc, reflecting 

behavioral preferences and demographic characteristics of different households.

Demographic variables take into account age structure, such as percentages of youth, 

people at middle age, and people with age 65 and over, etc. Housing characteristic 

variables include house value, the number of bedrooms, and house age, etc. An 

ordinary least squared (OLS) regression model for PPH estimation was proposed as 

follows.

௧ܪܲܲ = ଴ߙ + σ ௜ߚ ௜ܵ,௧௠௜ୀଵ + σ ௝,௧௡௝ୀଵܦ௝ߛ + σ ௞,௧௥௞ୀଵܧ௞ߜ + ௧ߝ (4.5)

where PPHt is the PPH value at time t; Si,t indicates spatial variables derived from 

remote sensing and GIS data at time t, Dj,t represents demographic variables at time t; 

Ek,t stands for housing characteristic variables at time t; m, n and r are the total 

numbers of spatial, demographic and housing characteristic variables respectively; ߙ଴,ߚ௜, ௝ߛ and ௞ߜ are regression coefficients; and ߝ௧ is an error term. 

After estimating HUs and PPH respectively, the formula of this integrated HU 

method could be expressed as follows.

௧ܲ = ܪ  ௧ܷ  × ௧ݎ  × ௧ܪܲܲ  +  ௧ (4.6)ܩ
where Pt is the estimated population for a small area at a non-census time t; HUt is the 
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enumerated HU number at time t, estimated by Equation (4.4); rt is the occupancy rate 

at time t; PPHt is the estimated persons per household at time t, estimated by Equation 

(4.5); and Gt is the group quarters population at time t. Occupancy rate rt and group 

quarters population Gt were both regarded the same as the most recent census (Smith 

and Lewis 1980). In order to evaluate accuracy of the proposed estimation model, we 

carried out small-area population estimation in 2000 and compared the results to the 

2000 Census data. The employment of the 2000 Census data is due to the 

unavailability of inter-censal population data in the study area for model validation. 

For validating inter-censal HU, PPH, and population estimates, updated demographic 

information obtained from the American community survey (ACS) could be a viable 

solution (Swanson and Hough, 2012). 

4.3.3 Accuracy assessment and comparison

The accuracies of the developed models, including Equations (4.4), (4.5) and 

(4.6), were all assessed at the census block level, with half of the blocks of 2000 Census 

data served as training samples for model calibration and the other half serving as 

testing samples for model validation, each containing 121 blocks. Three indices were 

employed to measure population estimation accuracy: mean absolute error (MAE), 

mean absolute percentage error (MAPE), and mean algebraic percentage error 

(MALPE). MAE measures the numeric variation between the predicted value and the 

‘true’ value, and has been widely utilized by remote sensing and GIS specialists. On the 

other hand, MAPE and MALPE are commonly adopted by demographers. As a measure 

of precision, MAPE measures the percentage of the absolute error to each actual value. 
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In contrast, being a measure of bias, MALPE cancels out negative and positive errors 

and reflects an overall upward or downward estimation tendency (Smith et al., 2002; 

Cai, 2007). The formulas are illustrated as follows.

1
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i i
i
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n
i i

i i

y y
MALPE

n y (4.9)

Where ŷ i is the estimated population count in block i; yi is the actual population 

count in block i; and n is the total number of census blocks. 

4.3. Results

4.3.1 Housing Unit Estimation

With the derived high-resolution remotely sensed and GIS datasets, especially 

the impervious surface information, parcel data, and residential land use datasets, a 

classification tree algorithm was developed to generate residential parcel data. The 

rules of the classification tree algorithm are illustrated in Table 4.1, and its

classification accuracy is reported as a confusion matrix in Table 4.2. Results indicate 

that, for residential parcels, the user’s and producer’s accuracy measures are over 90 

percent, suggesting that the classification tree method can effectively identify wrongly 
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labeled residential parcels. Especially, parcels with low impervious surface coverage 

(i.e. less than approximate 8 percent of the parcel area) were identified and 

subsequently removed from the residential parcel dataset (see Figure 4.3). Moreover, 

the slivers produced in the process of map overlay were also identified and eliminated. 

For example, parcels with abnormal perimeters (e.g. larger than 6,695 meter) or 

irregular shapes (e.g. elongated polygons) were eliminated according to the 

classification tree rules. 
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Table 4.1 Rules derived from Classification Tree

 

Impervious Surface 

Fraction (percent) Perimeter Area Type

<1.11 Non-residential parcel

>=1.11 >=6694.87 Non-residential parcel

>=1.11 and <7.88 <6694.87 <795.86 Non-residential parcel

>=1.11 and <7.88 <6694.87 >=795.86 Residential parcel

>7.88 >1676.63 Residential parcel

>7.88 <=1676.63 >=651.36 Residential parcel

>7.88 <151.77 <651.36 Residential parcel

>7.88 >151.77 <651.36 Non-residential parcel
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Table 4.2 Confusion matrix of residential parcel classification

Classified data
Producer’s 

Accuracy

Categories
Residentia

l

Non-residentia

l
(percent)

Reference 

data

Residential 280 14 95.24

Non-residential 6 20 76.92

User’s Accuracy (%) 97.90 58.82 93.75

Kappa index equals to 0.6329.

With the derived residential parcels, the number of housing units in a census 

block was calculated as the number of single-family residential parcels, plus two times 

the number of two-family residential parcels, plus an estimated housing unit count for 

multi-family residential parcels derived using the regression model detailed in 

Equations (4.2) and (4.3). Results of the regression modeling (see Table 4.3) indicated 

that the number of multi-family housing units has a statistically significant (p<0.05) 

and positive relationship with the geographical area of multi-family residential parcels. 

The model can explain about 40.6 percent of the variation between census blocks in the 

number of HUs in multi-family residential parcels. 

 

 



114 

Table 4.3 Results of regression model for estimating the number of housing units in 

multi-family residential parcels within a census block. 

 

Coefficient B t-Stat p-value

Intercept 1.305 1.659 0.110

Area_Multi_LU 0.002 4.331 0.000**

Notes: Area_Multi_LU is the area of multi-family land use in a census block, ** indicates 

statistically significant at the 95 percent confidence level. Adjusted R-square is 0.406.

With the housing unit counts for single-, two-, and multi-family residential 

parcels, the total number of housing unit for a census block was calculated as a 

summation of different categories of housing units. To compare with the ‘true’ values 

of housing units, a scatterplot was drawn to visually examine the accuracy of the 

estimates (see Figure 4.4). It could be observed that most points clustered around the 

45-degree reference line, especially those with lower values. It reflects that the 

estimated HU numbers in the census blocks with a small number of HUs, especially 

those only containing single-family HUs, are very close to the actual HU numbers.

Most of the outliers contain multi-family HUs, which is a major reason of inaccurate 

estimations. A comparison of the estimates by the proposed method and the actual HU 

number is demonstrated in Figure 4.5A and 4.5B. Through a visual examination, an 
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overall good agreement can be found between these two maps. Moreover, an accuracy 

assessment was performed, and results indicated that the errors associated with this 

method is relatively small (MAE = 3.27 HUs; MALPE = 2.78 percent).

Figure 4.4 Scatterplot of the HU numbers estimated using the proposed method versus 

the “true” HU numbers at the census block level.
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Figure 4.5 Comparisons of the block-level housing unit (HU) numbers derived from 

(A) 2000 Census, (B) the proposed integrated method, (C) the step-down interpolation 

method, and (D) the newly-built HU disaggregation method.

4.3.2 PPH Estimation

The other important component, PPH for each census block, was estimated using 

the stepwise regression model (Equation (4.5)) with various geographic, demographic, 

and housing structural variables as inputs. In particular, the employed variables include 

distances to different activities (schools, recreation centers, commercial centers, etc.), 

the percentage of vegetation coverage (represented by the normalized difference 
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vegetation index (NDVI)), percentages of the population age under 17, 18 to 39, 40 to 

64, and 65 and above, etc. Results indicate that percentages of the youth with age under 

17, distance to commercial land use, and PPH from the most recent census (see Table 

4.4) are the only significant variables, and about 71.8 percent of the variations of the 

PPH can be explained by these variables. A scatterplot was constructed to visually 

examine the relationship between the estimated and actual PPH numbers (see Figure 

4.6), and it shows that the PPH estimates matched the ‘true’ PPH values well, especially 

for the blocks with lower values of PPH (e.g. less than 4.0). On the other hand, large 

estimation errors occur in the blocks with only one single-family household or with an 

extremely large household size. Comparisons of the PPH estimates and the actual PPH 

number (see Figures 4.7A and 4.7B) indicate that the spatial patterns of the 

regression-based estimates match that of the actual PPH values reasonably well. There 

were hardly any apparent differences between the estimates and the observed numbers,

as supported by relatively small errors (see Table 4.5).
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Table 4.4 Results of stepwise regression model for PPH

 

Independent Variables Coefficients

Intercept 1.012

PPH_90 0.208

Percent Age Under 17 3.391

Percent Age 18 to 39 /

Percent Age 40 to 64 /

Percent Age 65and above /

NDVI /

DIS_Commerical 0.361

DIS_School /

DIS_Recreation /

Adjusted R2 0.718
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Table 4.5 Accuracy comparisons of total housing unit and PPH estimates among 

different methods

 

Model MAE 

MAPE 

(percent)

MALPE 

(percent)

Proposed Integrated 

Method 3.27 HUs 18.49 2.78

Housing Unit Step-down Method 8.7 HUs 41.08 19.26

Newly-built HU 

Regression Method 3.37 HUs 22.91 6.82

PPH

PPH Regression 

Model 0.27 persons 9.98 0.21

PPH_90 Method 0.62 persons 24.19 13.13
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Figure 4.6 Scatterplot of the PPHs estimated by the regression model versus the “true” 

PPH values at the census block level.

Figure 4.7 Comparisons of block-level PPH values derived from (A) 2000 Census, (B) 

PPH regression-based model, and (C) PPH_90 method.
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4.3.3 Small-area Population Estimation 

With the estimated HU and PPH, population numbers were then estimated using 

Equation (4.6), and compared with the observed population counts in Census 2000 

data. A scatterplot of the estimated and actual population counts (see Figure 4.8) shows 

that most points are along the 45-reference line, indicating a good overall match. 

Further, through a visual examination of the distribution map (see Figure 4.9), it is 

observed that most overestimations appear in the blocks with more multi-family HUs, 

while most underestimations take place in the fast-developing blocks with more 

newly-built HUs. The underestimation of some blocks is probably due to the usage of 

the parcel data in 1998 to estimate population in 2000. Some new parcels for residential 

land uses may be created during these two year lags, thus the usage of the parcel data in 

1998 may cause less residential parcel numbers/HUs to be estimated in some blocks 

when compared to the actual data in 2000. The HU estimation errors originating from 

such mismatch of acquisition time would propagate to population estimation, leading to 

underestimation in these blocks. The overall satisfactory performance of the proposed 

integrated method is also verified by the accuracy assessment results (see Table 4.6).
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Figure 4.8 Scatterplot of the population estimated by the integrated method versus the 

“true” population count at the census block level.
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Figure 4.9 Comparisons of block-level population counts derived from (A) 2000 

Census, (B) estimation Model 1, (C) estimation Model 2, and (D) estimation Model 3.

4.4. Comparative analysis

In order to evaluate the performance of the proposed integrated method, we 

compared the resultant HU, PPH, and population estimates with those estimated from 

other corresponding approaches. For estimating the HU numbers, the proposed method 

was compared to another two representative “top-down” approaches, i.e. the step-down 
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method and the newly-built HU regression method developed. These two top-down 

approaches redistribute the total number of housing units into each block instead of 

actually enumerating individual housing units within them. The step-down 

interpolation method, developed by Perry and Voss (1994), assumes that the 

newly-built HU numbers in each block since the last census are linearly correlated with 

the geographic area of that census block (Perry and Voss, 1994). Alternatively, the 

newly-built HU regression method developed by Deng, Wu and Wang (2010) 

redistributes aggregated newly-built HUs according to the changes of residential land 

use areas in each block. 

For PPH estimation, the proposed regression-based method was compared to the 

traditional approach which employs PPH values from the most recent census. Finally, 

the population estimates with the proposed HU and PPH estimation methods 

(“bottom-up” approach) were compared with the other two top-down approaches. 

Results of these comparative analyses were reported as follows.

4.4.1 Comparisons of HU models

Comparisons of the HU estimation maps indicate that the step-down 

interpolation method (see Figure 4.5C) performs poorly with clear over-estimations in 

large blocks. This is likely due to the assumption that a block with larger geographical 

area contains more newly-built HUs. In fact, blocks with lager geographical areas may 

not contain more new HUs, because such blocks may have less vacant lands for new 

development, or been planned for other types of land uses rather than residential. 
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Comparatively, the spatial distributions of HU estimates from the proposed integrated 

method (see Figure 4.5B) and the newly-built HU regression method (see Figure 4.5D) 

match the actual HU distribution reasonably well (see Figure 4.5A). 

In addition to the visual comparisons, quantitative accuracy assessments were 

also performed and reported in Table 4.5. It shows that the step-down method has the 

lowest accuracy among these three methods, with the largest errors (approximate 9 

HUs for MAE, 41 percent for MAPE and 19 percent for MALPE). This is probably 

because the newly-built dwelling units are distributed according to the geographical 

area of a block, while ignoring any detailed land use changes inside a block. On the 

contrary, both the newly-built HU redistribution regression method and the proposed 

integrated method have considerably better accuracy. Specifically, compared to the 

newly-built HU regression method, the proposed method provides slightly better 

accuracy with lower values of MAE and MAPE, and smaller upward bias. 

4.4.2 Comparisons of PPH models

The proposed regression-based PPH estimation method was compared to the 

traditional approach, in which the PPH values from the most recent census were 

utilized. With this approach, it is assumed that the PPH remains unchanged since the 

latest censual year. For this research, the PPH values from 1990 Census were employed 

directly and interpolated to the 2000 Census block boundaries, and this method is 

named “PPH_90 method”. 
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Results (see Figure 4.7C) indicate that the spatial patterns of PPH estimates 

derived from the PPH_90 method differ greatly when compared to that of the actual

PPH values. At the census block level, PPH values change significantly from 1990 to 

2000. They increase rapidly in the blocks with new residential developments, and 

decline in many other blocks because of the separation of young adults from their 

parents. In contrast, the regression-based PPH estimates (see Figure 4.7B) closely 

resembled the actual PPH values. The reason may be that the regression model 

considers not only the constitution of different age groups, but also the spatial distances 

to different land uses, which reflects behavior preferences of people with diverse 

marital and economic status. The accuracy comparisons for PPH estimates were also 

quantified in the bottom panel of Table 4.5. All three assessment measures show that 

the regression-based model is much more accurate than the PPH_90 method, as 

indicated by considerably lower values of MAE, MAPE, and MALPE. 

4.4.3 Comparisons of population estimation by different techniques

With the respective methods for HU and PPH estimation, we compared the 

developed population estimation method (Model 1) to two top-down approaches to 

examine their performances of small-area population estimation. The first top-down 

method (Model 2) utilized the simple step-down interpolation method for HU 

estimation and the PPH_90 method for PPH estimation. The second top-down method 

(Model 3) utilized the newly-built HU regression method for HU estimation and a 

regression-based model for PPH estimation (see Table 4.6). 
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Table 4.6 Accuracy comparisons among three different small-area population 

estimation models

 

Model 

Type

HU

Submodel 

PPH 

Submodel

MAE 

(persons) 

MAPE 

(percent) 

MALPE 

(percent) 

Model 1 Bottom-up Proposed 

Integrated  

Method

PPH 

Regression  

Model 

11.07 26.62 7.10

Model 2 Top-down Step-Down 

Method

PPH_90 

Method

30.02 58.27 32.68

Model 3 Top-down Newly-built  

HU

Regression 

Method

PPH 

Regression  

Model 

12.29 27.28 9.17

Results of the model comparisons (see Figure 4.9 and Table 4.6) indicate that 

Model 2, the classic approach for small-area population estimation, has the worst 

estimation accuracy. In fact, the spatial distributions of population estimates by this 

approach (see Figure 4.9C) are remarkably different from those of the actual population 

information. Moreover, the population estimates derived from this method have the 

largest errors, as measured by the MAE (30.02 persons), MAPE (58.27 percent), and 

MALPE (32.68 percent). This result is likely due to the poor assumptions in both HU 

and PPH estimations. On the contrary, the spatial patterns of population estimates from 

Models 1 (see Figure 4.9B) and 3 (see Figure 4.9D) are very close to those of the actual 

population information (see Figure 4.9A). A detailed accuracy assessment shows that 

the performance of Model 1 is slightly better than Model 3, and much better than Model 
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2. The better performance of Model 1 is likely due to the usage of high resolution 

remotely sensed imagery, parcel data, and detailed land use data. Moreover, an 

advantage of this method is that it is unnecessary to perform a regional estimate of total 

numbers of housing unit. Instead, they can be enumerated automatically from each 

residential parcel to each census block. These results are consistent with the findings in 

Smith and Cody’s research (1994, 2004, 2011), although the unit of analysis in this 

research (census block) is much finer than theirs (county and subcounty level). 

4.5. Sensitivity analysis

In addition to the comparative analyses, we also performed sensitivity analyses to 

evaluate which component, the HU or PPH, is more important to the small-area 

population estimates. The basic idea of sensitivity analyses is: under the assumption 

that one major component of the HU method is estimated perfectly, all the errors of 

population estimates can be attribute to estimation error of the other component, and 

thus the impacts of this component can be measured accordingly. To compare and 

evaluate the impacts of HU and PPH estimates at the census block level, five scenarios 

for small-area population estimation were investigated: three utilizing “true” 2000 

Census data for PPH, and two utilizing “true” 2000 SEWRPC data for HU (see Table 

4.7). For a fair comparison, these scenarios were divided into two categories: classic 

demographic models (without the help of GIS/remotely sensed data) and integrated 

demographic and geographic models. For each scenario, accuracy measurements, 
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MAE, MAPE, and MALPE were calculated and compared.

Table 4.7 Sensitivity analyses of the HU method at the census block level

 

Model Type
HU

Submodel 

PPH 

Submodel

MAE 

(persons) 

MAPE 

(percent)

MALPE 

(percent)

Classic 

demographic 

models

Step-Down 

Method

“True” 

PPH data
22.39 41.83 18.90

“True” HU 

data

PPH_90 

method
12.83 25.97 12.87

Integrated 

demographic and 

geographic 

models

Newly-built 

HU

Regression 

“True” PPH 

data
9.07 24.17 6.80

Integrated 

Method

“True” PPH 

data
9.04 21.86 2.54

“True” HU 

data

Regression 

method
6.45 14.08 0.37

 

 

Results of the sensitivity analyses (see Table 4.7) indicate that for both classic 

demographic models and integrated demographic and geographic models, the HU 

estimation errors have higher contributions to the population estimation error than 

those of the PPH estimation. Especially, with the classic demographic models, when 

the PPH values are assumed to be estimated perfectly, the error of small-area 

population estimates is much higher when compared to the scenario in which the “true” 

(or perfectly estimated) HU data is employed. Similarly, with the integrated 

demographic and geographic models, the accuracy of population estimates is more 
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sensitive to the HU estimates. As a summary, the results of this error propagation 

analyses indicate that the error from the estimation of HUs contributes more to the 

small-area population estimation error, and the PPH estimates only play a minor role. 

This finding is consistent with the results from Smith and Cody’s studies (1994, 2004, 

2011), although their results are based on a larger geographical scale (i.e. 

county/subcounty).

4.6. Conclusion

Small-area population estimation is a challenging task due to data unavailability 

and privacy concerns. Traditionally, demographic methods and geographic techniques 

have been applied respectively for estimating detailed population information. The 

resultant population estimates, however, are unsatisfactory due to the limitations of 

each field. The recent advance of geographic techniques, in particular high-resolution 

remotely sensed and GIS information, provides a great opportunity for a better 

estimation of detailed population information. Therefore, through integrating the 

demographic and geographic methods, we developed a bottom-up approach to estimate 

the HU, PPH, and population information at the census block level, and the 

comparisons with other methods have been conducted. 

Analysis of results suggests two major conclusions. First, the integration of 

demographic and geographic approaches has significantly improved the estimation 

accuracy of HU, PPH, and population counts at the census block level. In particular, the 
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proposed HU method performs the best with the lowest values of MAE (3.27 HUs), 

MAPE (18.49 percent), and MALPE (2.78 percent). Similarly, when compared to the 

real PPH values, PPH estimates have the smaller errors (e.g. MAE: 0.27 persons, 

MAPE: 9.98 percent, and MALPE: 0.21 percent). Also, the results of small-area 

population estimation are the best when compared to other widely applied methods. 

Secondly, results of sensitivity analyses show that, with the classic demographic 

approaches and the integrated methods, the error of HU number estimates contributes 

more to the population estimation errors than that of PPH. This result is consistent with 

the findings of Smith and Cody (1994, 2004, 2011), and proves that necessary of 

integrating high-resolution geographic information for better HU estimation.
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CHAPTER 5 CONCLUSIONS

5.1 Summary

Timely, detailed and accurate population information is essential to analyze 

and address a wide variety of socio-economic, political, and environmental issues and 

to support the planning practices required by both public agencies and the private 

sector. However, these important data are generally only available once every decade 

in the form of the national census. Moreover, populations in certain 

rapidly-developing areas may increase quickly, such that this ten-year frequency does 

not meet the needs of these areas. Therefore, a cost-effective population estimation 

method is necessary. To address this issue, this research integrated geographic, 

sociological and demographic theories and exploited remote sensing imagery and 

geographic information system (GIS) datasets to derive improved population 

estimates at the census block level, the finest level in the national census. Specifically, 

three new approaches have been proposed to improve small-area population 

estimation accuracy, a longstanding technical issue in the acquisition of population 

data. In particular, on the one hand, remotely sensed and GIS data have been 

effectively employed to estimate two major components of a demographic model: 

redistributing newly built dwelling units from a more aggregated geographic level to 

the census block level and improved PPH estimation at such a fine scale. On the other 

hand, detailed urban environmental information was extracted from high-resolution 

 

 



133 

remote sensing images and GIS data and employed to automatically enumerate 

individual housing units. In particular, to derive impervious surface information, a 

desirable environmental parameter that is difficult to directly derive from remote 

sensing imagery, a new spectral index has been proposed to assist in the automated 

identification of dwelling units in the demographic model.  

5.2 Contributions

Small-area population estimates in non-census years are essential for 

supporting a wide variety of socio-economic analyses. Currently, a number of 

demographic or geographic information based models have been developed to 

generate small-area population estimates. Few studies, however, have attempted to 

integrate these two types of models to obtain improved estimates. Therefore, the first 

contribution of this research is our exploration of the feasibility of incorporating GIS, 

remote sensing (RS), and demographic data into the housing unit method, a popular 

demographic model, to estimate the small-area population of Grafton, WI. In 

particular, two major components of the housing unit method, housing unit (HU) 

counts and PPH, were obtained by modeling their relationships with demographic and 

geographic factors using a sequence of ordinary least squares (OLS) regression 

models. The analysis of results indicates that spatial factors derived from remote 

sensing and GIS datasets, together with demographic information, can significantly 

improve the accuracy of small-area population estimates. Moreover, the use of spatial 
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and demographic variables derived from remotely sensed, GIS and socio-economic 

data was also found to significantly improve PPH estimates.

Second, remotely sensed data have been extensively applied to facilitate the 

monitoring and analysis urban environments in support of various planning practices

because of their synoptic view and repetitive coverage of a large geographic area. 

Compared to traditional per-pixel and sub-pixel image analyses, spectral indices have 

clear advantages due to their easy implementation in practical applications. However, 

most spectral indices are designed to only highlight only one type of land cover, and 

the misidentification of land cover types, in particular confusing impervious surfaces 

and bare soil, has not been successfully addressed. Therefore, the second contribution 

of this study is that we proposed a biophysical composition index (BCI) for the simple 

and convenient identification of urban biophysical compositions in practical 

applications following Ridd’s conceptual Vegetation – Impervious surface – Soil 

triangle model by a reexamining the TC transformation. Further, this research 

explores the applicability of BCI to various remotely sensed images at different 

spatial resolutions. The results indicate that BCI is more correlated with impervious 

surface abundance than the normalized difference vegetation index (NDVI), 

normalized difference built-up index (NDBI) and normalized difference impervious 

surface index (NDISI), with correlation coefficients of approximately 0.8 at various 

resolutions. Moreover, BCI’s performance in quantifying vegetation abundance is 

comparable with that of NDVI at all three spatial scales. Additionally, as it exhibits 

much higher values of separability metrics than any other index, this study confirms 

 

 



135 

that BCI is the most effective index in distinguishing between impervious surfaces 

and bare soil.

Finally, in addition to the presented top-down method, the third contribution of 

this research is that it proposed a new bottom-up method for population estimation at 

the census block level by combining high-resolution remotely sensed 

imagery/geographic information system (GIS) data and a demographic housing unit 

(HU) model. The number of housing units and persons per household (PPH), two 

primary factors in the HU method, were estimated using detailed urban environmental 

information extracted from high-resolution remotely sensed imagery and GIS data. 

Further, population counts for each census block were generated by applying the HU 

model. The analysis of the results suggests that the proposed integrated method 

performs reasonably well, as indicated by relatively small estimation errors. To obtain 

an improved assessment, the estimation accuracies of the HU, PPH, and population 

counts were compared with other widely applied techniques, and the results indicated 

that this method significantly improved estimation accuracy. Finally, sensitivity 

analyses were conducted to evaluate the sources of errors in the population estimates. 

The results indicate that, when compared to PPH estimates, the error associated with 

HU count estimates is a major source of small-area population estimation errors.

5.3 Future research

Future research attempting to introduce remotely sensed and GIS data into 
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demographic theory to obtain population estimates, should focus on two aspects. First, 

attention could be directed to estimating multi-family HU numbers at the census block 

level. Although remote sensing techniques have provided additional building 

information for HU identification, such information is only helpful in improving 

single-family HU identification and not the identification of multi-family HUs. 

Recently developed Light Detection and Ranging (LiDAR) technology provides 

three-dimensional information that is more detailed than traditional methods 

(Silván-Cárdenas et al. 2010; Lu et al. 2011). It may be possible to combine such 

high-resolution, remotely sensed information and demographic theory to improve 

multi-family HU identification. Second, more multi-source datasets can be considered 

and integrated to improve the “invisible” PPH estimation at the census block level. 

Datasets from different sources, such as more detailed socio-economic data and 

information from remotely sensed images, could be explored and linked to existing 

geographic, sociological and demographic theories for the estimating PPH at a finer 

level.
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