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ABSTRACT 

UNCERTAINTY ASSESSMENT OF SPECTRAL MIXTURE 

ANALYSIS IN REMOTE SENSING IMAGERY 

by  

Yingbin Deng 

 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Changshan Wu 

 

Spectral mixture analysis (SMA), a scheme of sub-pixel-based classifications, is one of the 

widely used models to map fractional land use and land cover information in remote sensing 

imagery. It assumes that: 1) a mixed pixel is composed by several pure land cover classes 

(endmembers) linearly or nonlinearly, and 2) the spectral signature of each endmember is a 

constant within the entire spatial extent of analysis. SMA has been commonly applied to 

impervious surface area extraction, vegetation fraction estimation, and land use and land cover 

change (LULC) mapping. Limitations of SMA, however, still exist. First, the existence of 

between- and within-class variability prevents the selection of accurate endmembers, which results 

in poor accuracy of fractional land cover estimates. Weighted spectral mixture analysis (WSMA) 

and transformed spectral mixture analysis (TSMA) are alternate means to address the within- and 

between- class variability. These methods, however, have not been analyzed systematically and 

comprehensively. The effectiveness of each WSMA and TSMA scheme is still unknown, in 

particular within different urban areas. Second, multiple endmember SMA (MESMA) is a better 

alternative to address spectral mixture model uncertainties. It, nonetheless, is time consuming and 
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inefficient. Further, incorrect endmember selections may still limit model performance as the best-

fit endmember model might not be the optimal model due to the existence of spectral variability. 

Therefore, this study aims 1) to explore endmember uncertainties by examining WSMA and 

TSMA modeling comprehensively, and 2) to develop an improved MESMA model in order to 

address the uncertainties of spectral mixture models.  

Results of the WSMA examination illustrated that some weighting schemes did reduce 

endmember uncertainties since they could improve the fractional estimates significantly. The 

results also indicated that spectral class variance played a key role in addressing the endmember 

uncertainties, as the better performing weighting schemes were constructed with spectral class 

variance. In addition, the results of TSMA examination demonstrated that some TSMAs, such as 

normalized spectral mixture analysis (NSMA), could effectively solve the endmember 

uncertainties because of their stable performance in different study areas. Results of Class-based 

MEMSA (C-MESMA) indicated that it could address spectral mixture model uncertainties by 

reducing a lot of the calculation burden and effectively improving accuracy. Assessment 

demonstrated that C-MEMSA significantly improving accuracy.   

 Major contributions of this study can be summarized as follow. First, the effectiveness of 

addressing endmember uncertainties have been fully discussed by examining: 1) the effectiveness 

of ten weighted spectral mixture models in urban environments; and 2) the effectiveness of 26 

transformed spectral mixture models in three locations. Constructive guidance regarding handling 

endmember uncertainties using WSMA and TSMA have been provided. Second, the uncertainties 

of spectral mixture model were reduced by developing an improved MESMA model, named C-

MESMA. C-MESMA could restrict the distribution of endmembers and reduce the calculation 

burden of traditional MESMA, increasing SMA accuracy significantly. 
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CHAPTER1 INTRODUCTION 

1.1 Background 

Knowledge of land use and land cover distributions and their dynamics is critical for 

understanding environmental characteristics and processes, including biodiversity, land 

productivity, and biogeochemical and hydrological cycles (Giri, 2012). Moreover, detection and 

monitoring of the distribution and dynamics of the world’s water resources, grasslands, croplands, 

shrub lands, forests, barren lands, and urban lands are basic requirements for studies of daily 

planning and management, as well as global environmental change analysis (Giri, 2012). Land use 

and land cover information is a fundamental element of natural resource management and global 

environmental change monitoring (Loveland and Belward, 1997), and it has been employed in 

numerous studies, including biodiversity (Sala et al., 2000), soil degradation (Trimble and Crosson, 

2000), global climatic change (Pyke and Andelman, 2007), resource management (Tallis and 

Polasky, 2009), and urban planning (Zhang et al., 2011).  

Due to its importance, scientists and professionals have employed numerous means to acquire 

land use and land cover information, which can be grouped into two categories: traditional 

approaches and remote sensing techniques. Traditional approaches, such as field surveys and 

observations, can provide accurate and highly reliable results. These methods, however, are time 

consuming and labor intensive, thereby impractical for applications of large geographic regions. 

With the recent appearance of remote sensing and geographical information systems, the 

abovementioned drawbacks can be addressed because of the possibility of detecting and 

monitoring land use and land cover change at multiple spatial and temporal scales (Hansen and 

DeFries, 2004). Remote sensing provides an ideal tool for environmental monitoring and 

management, target identification, and hazard detection and simulation, etc. Information in all 
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wavelengths can be recorded by a sensor, removing the limitation of using only visual wavelengths 

(0.39um-0.7um) seen by humans. Remote sensing has been widely employed by natural resource 

departments, real estate companies, research institutions, and other environmental organizations, 

attributing to its convenience of acquiring up-to-date land use and land cover information over a 

large geographical area. 

Advantages of remote sensing techniques are significant when compared to the conventional 

approaches. First, remote sensing provides an economical and rapid means of acquiring up-to-date 

LULC information. A scene of remotely sensed imagery can cover a large geographic area, 

whereas it may be time and labor intensive with field surveys. Second, remote sensing data is 

acquired in digital formats, which is convenient to store, analyze, and visualize. Third, as remote 

sensing techniques can collect objects’ information without physical contact, they can be applied 

to acquire information from inaccessible geographic areas. Moreover, with remotely sensed 

imagery, an overview of landscape elements and their interrelations can be conveniently identified 

(De Jong and van der Meer, 2004). Finally, remote sensors can record information in wavelengths 

invisible to humans, enhancing characteristic information of land surfaces. In summary, remotely 

sensed imagery provides a better alternative in acquiring LULC information for large geographic 

areas.  

With the advancement of digital storage and computer techniques, LULC classes can be directly 

classified from remotely sensed imagery, which greatly improves the efficiency of LULC mapping. 

In particular, three classification techniques, pixel-based, subpixel-based, and object-based 

methods, have been developed. Pixel-based approaches assume that each pixel only contains one 

LULC class. Accordingly, every pixel is assigned to the corresponding LULC class based on 

specific mathematical/statistical methods and rules. Traditional pixel-based methods, such as 
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maximum likelihood classification, minimum distance classification, and spectral angle mapper, 

are widely employed in remote sensing applications due to their convenience and simplicity. 

Unlike pixel-based classification, subpixel-based methods assume that more than one class exists 

in each pixel, and thereby attempt to estimate their areal coverage within a pixel. In contrast to 

pixel-based and subpixel-based method, object-based classifications view landscapes as 

aggregations of independent objects corresponding to ground entities and patches of surface cover 

(Arbiol et al., 2006). It has advantages in addressing the high spectral variability of very high 

resolution (VHR) imagery.  

Within medium and coarse spatial resolution remote sensing imagery, subpixel approaches have 

been widely applied. With these approaches, a pixel is not assigned to only one particular land 

cover class, whereas several classes are assumed to co-exist in each pixel, and their areal fractions 

are estimated (Ling et al., 2012). Due to their better representation of LULC information in 

medium and coarse resolution remotely sensed imagery, subpixel approaches have been largely 

employed in the applications of LULC identification, vegetation-impervious surface area-soil 

fraction mapping, vegetation type estimation, etc. For subpixel analyses, three groups of 

techniques have been generally applied to estimate land cover fractions, and they include: soft 

classification, empirical estimation, and spectral mixture analysis (Eastman and Laney, 2002; Ling 

et al., 2012). Soft classification (in contrast to the hard classification) assigns one or more land 

cover classes to each pixel by computing the probabilities (or likelihood) that a class exists in that 

pixel.  Many approaches, such as maximum likelihood classification (Foody et al., 1992), Fuzzy 

c-means (Pathirana and Fisher, 1991), Possibilistic c-Means (Krishnapuram et al., 1993), soft 

neural networks (Tso and Mather, 2001)  have been proposed as soft classification techniques to 

estimate the fraction of each land cover class. In contrast to soft classification methods, empirical 
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approaches estimate the fractions based on the trained or calibrated models (Eastman and Laney, 

2002). Spectral mixture analysis (SMA), another scheme of sub-pixel classifications, is one of the 

widely used models to address the mixed pixel problem (Deng et al., 2012; Wu and Murray, 2003). 

Two essential assumptions of SMA include: 1) a mixed pixel is composed by a few fundamental 

components (most often less than 5 endmembers), each of which is spectrally distinctive from 

others; and 2) the spectral signature for each component is a constant throughout the entire spatial 

extent of the analysis (Song, 2005). SMA has been commonly applied to impervious surface area 

extraction, vegetation fraction estimation, and LULC mapping.  

Although SMA is a popular approach to address the mixed pixel problem, little research focuses 

on its uncertainties. Most studies simply employed SMA models for specific applications, and 

reported their performances for specific applications and study areas with a pre-determined 

remotely sensed imagery. Most efforts, however, focused on the model performance for specific 

applications, and ignored the factors that may influence results. Therefore, it is necessary to 

perform a thorough study of uncertainties of SMA modeling. The objectives of this research, 

therefore, are to examine the fundamental theories of SMA and to analyze the uncertainties of 

SMA, which should result in a better understanding of SMA and provide guideline for future SMA 

applications.  

1.2 Literature Review 

1.2.1 Spectral mixture analysis 

Spectral mixture analysis (SMA) is one of the most popular methods for subpixel analysis. It 

emerged with the development of the first LANDSAT satellite launched in the early 1970s. SMA 

assumes that a pixel is composed by two or more land cover classes mixed linearly or nonlinearly. 

With the linear approach, a pixel is assumed to be large enough and no multiple scattering exists 
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among the components (Singer and McCord, 1979). Obviously, this condition rarely exists in most 

remote sensing images. Nonlinear models, to a certain degree, can better represent the actual multi-

scattering process, but they are difficult to implement and the results are less than satisfactory 

because of complications from multiple scatterings. As a result, linear SMA has been largely 

employed for applications of vegetation information extraction (Alejandro and Omasa, 2007; 

Elmore et al., 2000; Liu and Yang, 2013), land use and land cover change detection (Franke et al., 

2009; Pu et al., 2008), water quality monitoring (Rudorff et al., 2006), and forest degradation 

estimation (Souza et al., 2003) etc. 

SMA can be divided into four steps, including: 1) data preprocessing, 2) endmember selection, 

3) spectral unmixing, and 4) accuracy assessment. Each step is very important and may have a 

critical impact on the SMA results.  

1) Data preprocessing. The original values of raw remotely sensed imagery are called digital 

numbers. These raw data need to be converted to radiance/reflectance before implementing 

SMA. In addition, atmospheric correction and geometric correction are generally necessary 

to mitigate the impacts of atmospheric and geometric errors. In addition to the 

abovementioned basic processes, spectral transformations, such as principle component 

analysis [PCA, (Jia and Richards, 1999; Singh, 1989)], discrete cosine transform(Ahmed 

et al., 1974; Chu and Zhu, 2006), minimum noise fraction [MNF, (Amato et al., 2009; 

Vermillion and Sader, 1999)], and band normalization etc., may be employed to enhance 

spectral characteristics.  

2) Endmember selections. Endmembers, extracted from a pure pixel (only one land cover 

class in a pixel) or measured from a field survey, are the most representative spectra of the 

corresponding land cover classes.  Selecting an appropriate endmember set is a key step 
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for a successful subpixel land cover estimation with SMA (Elmore et al., 2000; Tompkins 

et al., 1997). The accuracy of the estimated fractional land covers is highly dependent on 

the selection of endmember sets. Choosing the best-fit endmember set determines the 

proper number and type of endmembers and their corresponding spectra (Somers et al., 

2011). Too many or too few of endmembers can lead to erroneous results that conflict with 

the reference data (Somers et al., 2011). Many endmember selection methods, e.g., 

manually selection, field measured, pixel purity index [PPI, (Plaza et al., 2006)], virtual 

endmember concept (Tompkins et al., 1997), iterative error analysis [IEA, (Neville et al., 

1999)], convex cone analysis [CCA, (Chu et al., 2007)], automated morphological 

endmember extraction [AMEE, (Plaza et al., 2004)], simulated annealing algorithm [SAA, 

(Ogbu and Smith, 1990)], and N-FINDR (Winter, 1999), have been proposed to select the 

optimal endmember set. All have met with some success.  

3) Spectral unmixing. This procedure involves the selection of a best-fit model, e.g., linear or 

nonlinear, and constrained or non-constrained. As landscapes vary from region to region, 

the selection of the optimal model may be different in different study areas. For example, 

in deserts, a linear model may be more appropriate as multi-scattering effects are 

insignificant due to the simplicity of land covers (e.g. shrubs and sand). In contrast to desert 

regions, forest areas and downtown urban regions may contain many types of land features, 

leading to significant multi-scattering effects, thereby causing obvious spectral variability 

in remotely sensed imagery. The selection of an inappropriate model may lead to inaccurate 

fractional land cover estimates.  

Due to the limitations of the simple SMA model, where only a few endmembers can be 

involved in the unmixing process, many improved models have been proposed to mitigate 
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this drawback of simple SMA. In particular, Roberts et al. (1998) proposed a multiple 

endmember spectral mixture analysis (MESMA), with which endmember sets can be 

varied from pixel to pixel, to increase the accuracy of SMA. Results implied that MESMA 

is an ideal way to deal with endmember’s within-class and between-class variability.  

Generally, linear and nonlinear SMA models can be expressed as equations (1) and (2) 

respectively.  

                

1

n

k k

k

R f R ER


                                                                                                                                     (1) 

               

1 1 1

n n n

k k xy x y

k x y x

nR f R f R R ER
   

                                                                                      (2) 

where k = 1,…, n (n: the number of endmember); kf  is the proportion of endmember k; 

kR , xR , and y
R  are the known spectral reflectance of endmember k within a pixel; and ER

is the estimation error. The fully constrained method should meet the requirements of sum-

to-one (
1

1
n

k

k

f


 ) and non-negativity (1 0kf  ). 

4) Accuracy assessment. This step is to assess the performance of an SMA model. Subpixel-

based accuracy assessment, which assesses the fractions’ accuracy of each land cover class 

in a pixel, is different from the traditional pixel-based classification, which evaluates the 

accuracy on a per-pixel basis. Traditional accuracy assessment methods, such as error 

matrix, kappa index, and overall accuracy, are not applicable to subpixel-based analysis. 

The most commonly used method for assessing the accuracy of an SMA model is the root 

mean square error (RMSE), which compares the fractional values between reference and 

modeling results. The higher the RMSE, the lower the modeling accuracy. Another method, 
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called mean absolute error (MAE), is also commonly applied to assess the accuracy.  

RMSE and MAE can be written as Equations (3) and (4).  

              
2

1

ˆ( )N
i

i

x x
RMSE

N


                                                                                              (3)                               

                 

1

1 ˆ
N

i

i

MAE x x
N 

                                                                                              (4)                                     

where N is the total band number, i means the band i.  ix
 and x̂  are the estimated and           

reference values respectively.   

1.2.2 Weighted spectral mixture analysis 

Weighted spectral mixture analysis (WSMA), a popular means to address spectral endmember 

variability, assumes that each waveband’s contribution to SMA results is unequal. This is because 

of: 1) endmember similarity which adds instability to the unmixing (Barducci and Mecocci, 2005); 

and 2) the relationship between estimated error and the mixing scale of endmembers is positive 

(Somers et al., 2009). In particular, wavebands with highest reflectance/radiance have more impact 

on estimated result while wavebands with lower values play weaker roles in unmxing (Somers et 

al., 2009). Somers et al. (2009) emphasized that significant estimation errors might appear when 

differences in the reflected energy among wavebands is ignored. 

WSMA has been discussed by serval scholars. Chang and Ji (2006) explored three types of 

weighted matrices in the linear unmixing model, expanding the abundance-constrained linear 

spectral mixture analysis (AC-LSMA). They constructed weighting schemes based on three 

aspects: parameter estimation, pattern classification, and orthogonal subspace projection. Results 

demonstrated that the within-class weighting scheme (WAC-LSMA) showed the best performance 

among the weighted and unweighted schemes. Liu et al. (2013) extended the WAC-LSMA to a 
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kernel-based linear spectral mixture analysis (KWAC-LSMA) by employing a kernelized 

weighting matrix. The new proposed weighting scheme was applied on both multispectral and 

hyperspectral images. Experimental results indicated that KWAC-LSMA outperformed the WAC-

LSMA as well as the unweighted scheme when used on high spectral resolution but low spatial 

resolution data set. However, the KWAC-LSMA did not improve the accuracy when compared to 

WAC-LSMA using the HYDICE data (high spectral and spatial resolution) and SPOT data (high 

spatial resolution but only three wavebands are available). Somers et al. (2009) analyzed the 

relationship between the endmember variability and reflected energy and examined their impacts 

on fractional accuracy. They concluded that a waveband with the highest reflected energy 

contributes more to the spectral variability for fractional estimates. With this discovery, they 

proposed a two-step WSMA to address endmember variability in agricultural production systems. 

First, they constructed two schemes, a reflected energy fixed value weighting scheme (REFW) and 

an inverse InStability Index (ISIb). Second, a final weighting (WV) scheme was built using the 

products of REFW and ISIb. Mean absolute error of 0.06 could be reduced with the WV in this 

study. Veraverbeke et al. (2012) applied the WV on multiple endmember spectral mixture analysis 

(MESMA) to map fire severity and achieved promising results. In addition, a band weighting 

method was proposed by Pan et al. (2005) which assigned weighting scores based on how 

remarkable an edge is relative to its corresponding boundary. Results from the abovementioned 

studies demonstrated the better performance of weighted models compared to unweighted 

counterparts.   

1.2.3 Transformed SMA (TSMA) 

Spectral transformation, which changes the original spectra linearly and nonlinearly, is another 

technique used to address spectral endmember variability. Linear transformation keeps the linear 
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relationship between variables, while nonlinear transformation changes the linearity between 

variables. Like spectral weighting, a spectral transformation also aims to emphasize spectral 

characteristics to reduce within-class variability or to enhance between-class variability.  

Spectral transformation has been widely applied by scholars. Wu (2004) developed a normalized 

spectral mixture analysis (NSMA) to derive vegetation, impervious surface areas, and soil 

information. Brightness variations were reduced after the NSMA, increasing the accuracy of 

fractional estimation. Asner and Lobell (2000) subtracted all spectral bands by the tie band (also 

named tie spectra) respectively. This method is named tie spectral transformation. Significant 

variation of canopy architecture, soil moisture, leaf and litter area index, and tissue optics could 

be detected, resulting in more accurate outputs in the unmixing process. Derivative spectral 

unmixing (DSU) is also promising for fractional estimation with hyperspectral data. Studies of 

Zhang et al. (2004), Tsai and Philpot (1998), Laba et al. (2005), and Huguenin and Jones (1986) 

also verified DSU’s outstanding performance. Debba et al. (2006) summarized that higher-order 

derivatives contribute more to remote sensing imagery with higher signal-to-noise ratios. Li (2004) 

compared the performance of discrete wavelet transform (DWT) and principal component analysis 

(PCA), and he revealed that DWT could increase more separability than PCA, bringing significant 

improvement of fractional estimation. Similar conclusions were obtained from the studies of  

Bruce et al. (2002) and Zhang et al. (2006).  Youngentob et al. (2011) examined the performance 

of continuum removal (CR) analysis using the hyperspectral data and results showed 

improvements of the overall accuracy. They believed that CR analysis can contribute to class 

separability through highlighting individual absorption features across a normalized spectrum. 

Principal component analysis (PCA) (Richards and Richards, 1999), minimum noise fraction 

transform (MNF) (Green et al., 1988), Tasseled Cap (TC) (Jensen and Lulla, 1987), and 
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independent component analysis (ICA) (Hyvärinen and Oja, 2000) are commonly applied for the 

land surface feature enhancement before applying SMA. Spectral characteristics of different land 

cover classes are enhanced in different output layers. Many researchers employed these 

transformation techniques to assist the selection of endmembers as well as to reduce the spectral 

within-class variability and enhance between-class variability. Further, different spatial filters, 

such as low pass (LP), high pass (HP), Gaussian high pass (GHP), Gaussian low pass (GLP), are 

commonly employed to enhance the spectral characteristics’ edges or to smooth the surface of 

remote sensing imagery.    

1.2.4 Class-based Multispectral mixture analysis 

 Traditional SMA approaches perform reasonably well in areas with relatively homogenous 

land covers, mostly due to the ease of identifying representative endmembers. It applies a fixed set 

of endmembers in fractional estimation. The capability of traditional SMA models in dealing with 

complex urban and suburban landscapes, however, has been questioned as: 1) inter-class and intra-

class spectral variability widely exist in urban and suburban environments (Kumar et al., 2013; 

Roth et al., 2012; Settle, 2006; Thorp et al., 2013; Youngentob et al., 2011), and 2) the few 

endmembers may not be able to represent their corresponding land cover classes (Radeloff et al., 

1999; Song, 2005; Tang et al., 2007).  

As an improved SMA, multiple endmember spectral mixture analysis (MESMA) developed 

by Roberts et al. (1998), has successfully addressed the issues of spectral variability, and been 

widely applied to numerous fields, including impervious surface area (ISA) extraction (Fan and 

Deng, 2014; Franke et al., 2009), vegetation detection (Fernández-Manso et al., 2012; Fernandez-

Manso et al., 2016; Thorp et al., 2013), and water management (Song et al., 2013; Xie et al., 2016), 

etc. Franke et al. (Franke et al., 2009) developed a hierarchical multiple endmember spectral 
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mixture analysis to divide an image into several land cover types (i.e., several levels). The 

distribution of endmembers could be better determined from the separated images, thereby 

improving classification accuracy. Similarly, Liu and Yang (2013) classified the study area into 

rural and urban subsets with the assistance of road network density. Then they applied MESMA 

to urban subsets with endmembers of vegetation, ISA, and soil, while employing a supervised 

classification model for the rural area. Results illustrated that this method could minimize the 

spectral confusion between some urban land cover classes and agricultural landscapes.  

1.3 Problem statement 

1.3.1 Weighted SMA (WSMA) 

Several scholars have analyzed WSMA, however, it still has not been discussed adequately. The 

best method for WSMA to address endmember variability is still not clear. Existing studies show 

that accuracy improvement can be achieved. These improvements, nonetheless, may be limited to 

specified study areas and data sources. Chang and Ji (2006) and Liu et al. (2013) focused on the 

abundance-constrained linear spectral model. Their study area only included forests and farmlands, 

where endmember variability is relative low when compared to urban regions. Similarly, Somers 

et al. (2009) also highlighted the capability of WSMA in vegetation areas. Study sites with more 

spectral variability, such as the areas containing both impervious surfaces areas (ISAs) and 

vegetation, have yet to be explored. Therefore, it is imperative to examine the performance of 

WSMA in urban areas where spectral variability is large.  

1.3.2 Transformed SMA (TSMA) 

Although many researchers applied spectral transformation techniques in remote sensing 

applications, there is still a lack of comprehensive and systematic studies to examine their 
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effectiveness in addressing endmember variability. In particular, researchers employ different 

transformed schemes based on their own knowledge and expertise. The advantages and limitations 

of each transformed scheme are still unclear, and the necessity of applying transformed schemes 

has not been adequately discussed in the literature. Some researchers state that nonlinear 

transformations may violate the linear composition assumptions of SMA and it may decrease the 

accuracy of abundance estimation (Li, 2002). However, the selection criteria for linear or nonlinear 

transformation schemes is still unclear, and few scholars discuss the effects of linearity in their 

studies. Therefore, it is necessary to analyze the effectiveness of transformed SMA (TSMA) 

systematically.  

1.3.3 Class-based Multispectral mixture analysis 

MESMA chooses the best-fit endmember model by evaluating modeling errors, such as root 

mean square of the residual error [RMSRE, (Roberts et al., 1998; Tan et al., 2014)]. Generally, 

with the same number of endmembers, a model with a smaller RMSRE is chosen. In the case of 

the availability of different endmembers’ numbers, the model with fewer number of endmembers 

is selected when their RMSRE’s difference is trivial (Song, 2005). It is a key step to select an 

appropriate endmember set for successful spectral unmixing (Somers et al., 2011). In particular, 

over-estimated abundance will occur if an endmember is mistakenly included in an SMA model  

(Jia et al., 2010). Moreover, accepting minimized RMSRE as the best criterion may not be 

appropriate in the endmember selection. Some erroneously selected endmembers may have a better 

fit due to the existence of within-class and between-class spectral variability, which constitutes a 

major uncertainty of spectral mixture models. 

A critical limitation of hierarchical MESMA (Franke et al., 2009) is that a pixel at level 1 is 

assigned to ISA or pervious surface class based on their corresponding fraction values results from 
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a linear SMA. In this case, mixed pixel issues are not addressed since the pixel-based classification 

is at level 1. Moreover, results from hierarchical MESMA are promising for application in higher 

spatial resolution images (4 meters). However, hierarchical MESMA still needs to be verified in 

middle and coarse resolution images. Liu and Yang (2013) applied a vegetation cover threshold to 

separate vegetation and non-vegetation. This threshold, however, is pixel-based, which would also 

contain mixed pixels in both vegetation and non-vegetation classes. 

 

  



 

____________ 
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CHAPTER2 EXAMINING THE EFFECTIVENESS OF WEIGHTED 
SPECTRAL MIXTURE ANALYSIS (WSMA) IN URBAN 

ENVIRONMENTS1 

2.1 Introduction 

Spectral mixture analysis (SMA) is widely employed for extracting land cover information from 

remote sensing imagery due to its convenience, high accuracy, and easy implementation (Weng, 

2012; Wu and Murray, 2003). SMA assumes that a mixed pixel is modeled by spectra of several 

pure land cover classes or endmembers (Deng et al., 2012; Deng and Wu, 2016; Wu and Murray, 

2003). Four major characteristics of SMA have earned its broad acceptance in remote sensing 

applications. First, it converts the reflectance or radiance of a land surface feature to physical 

variables instead of probabilities or likelihood (Tompkins et al., 1997). Second, substances can be 

detected and their quantities can be represented in resultant fractional land cover imageries 

(Tompkins et al., 1997). Third, many computer programs, such as ENVI and ERDAS Imagine, 

have embedded SMA models. Results of SMA can be easily acquired and interpreted using these 

programs (Tompkins et al., 1997). Finally, SMA has been employed in a wide variety of research 

fields, such as land use and land cover change detection (Lu et al., 2004; Small, 2001; Wu and 

Murray, 2003), precision agriculture and production monitoring (Liu, 2008; Lobell and Asner, 

2004), urban environmental ecology research (Deng and Wu, 2013a; Yuan and Bauer, 2007), 

terrestrial ecosystem research (Alejandro and Omasa, 2007), forest hazard risk detection and 

management (Wessman et al., 1997), water quality assessment (Mertes et al., 1993), and geological 

mapping (Bedini et al., 2009). Its advantages and limitations have been largely discussed by 

researchers, providing many meaningful resources for further studies. Due to the complexity of 

non-linear SMA, it is difficult to compare the result of different models. Therefore, linear SMA 
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was the only focus in this study. SMA in the rest of this chapter means linear SMA.When applying 

SMA, most scholars assume that each waveband of remotely sensed imagery equally contributes 

to the unmixing result. However, some researchers doubted this assumption since weighted SMA 

(WSMA) results had outperformed the results of simple SMA in their studies (Chang and Ji, 2006; 

Somers et al., 2009). This can be attributed to two major reasons: 1)  existence of within-class 

variability complicates endmember separability (Barducci and Mecocci, 2005); and 2) estimated 

error is positively related to the mixing scale of endmembers (Somers et al., 2009).  With the 

second reason, estimation results are mainly affected by wavebands with the highest 

reflectance/radiance while disregarding wavebands with low values (Somers et al., 2009). Somers 

et al. (2009) highlighted that significant fraction estimation errors might appear when the 

difference in the reflected energy among wavebands is ignored.  

Several researchers have discussed the feasibility of applying WSMAs in their studies. Chang 

and Ji (2006) explored three types of weighted matrices in the unmixing model, expanding the 

abundance-constrained linear spectral mixture analysis. Liu et al. (2013) extended the WSMA 

proposed by Chang and Ji (2006) to a kernel-based linear spectral mixture analysis by employing 

a kernelized weighting matrix. Somers et al. (2009) analyzed the relationship between the 

endmember variability and reflected energy and examined their impacts on fraction estimate 

accuracy. The authors summarized that a waveband with the highest reflected energy contributes 

more to the spectral variability of fraction estimates. With this discovery, they proposed a two-

step WSMA to address the endmember variability in agricultural production systems. A band 

weighting method was proposed by Pan et al. (2005) which assigned weighting scores based on 

how remarkable an edge was relative to its corresponding boundary. Results from the 



 

17 

 

abovementioned studies demonstrated the superior performance of weighted models compared to 

unweighted counterparts.    

However, more attentions should be paid to WSMAs, as they have not been discussed adequately 

and few researchers have employed WSMA in their studies. The reasons for applying a WSMA 

are still not clear. There is no doubt that accuracy improvement can be achieved according to 

previous studies. These improvements, however, may be limited to specified study areas and data 

sources. Chang and Ji (2006) and Liu et al. (2013) focused on applying the weighted matrix on an 

abundance-constrained linear spectral model. The study area they employed included forests and 

farmlands, where endmember variability is relative low compared to urban regions. Somers et al. 

(2009) highlighted the capability of WSMA in vegetated areas. Study sites with more spectral 

variability, such as areas containing both impervious surfaces areas (ISAs) and vegetation, have 

not been explored yet.  To examine the effectiveness of WSMA in urban environments, the 

Vegetation-High albedo-Low albedo (V-H-L) model proposed by Small (2001) was adopted. This 

model assumed that most of the urban regions consist of vegetation (tree and grass), high albedo 

areas (cloud, sand, concrete), and low albedo areas (asphalt, water etc.). Land cover classes of 

commercial areas, parking lots, residential areas, and roads can be categorized as one component 

in the V-H-L model. Further, cities located in humid area are mostly covered by vegetation and 

ISA, with only a few areas of sand and soil. Therefore, when water areas were masked, the V-H-

L model can be simplified as Vegetation-High albedo impervious surface area-Low albedo 

impervious surface area (V-ISAh-ISAl) model in urban environments with a humid climate. This 

study aims to examine the performances of WSMA and unweighted SMA models in urban 

environments. To reach this objective, existing and potential weighting schemes were tested 100 

times using different endmember classes’ spectra. Accuracies of corresponding weighting schemes 
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were evaluated using mean absolute error (MAE). Paired-samples T test was employed to examine 

whether there are significant differences between weighted and unweighted schemes.   

The next section introduces the background of SMA and weighting schemes. Section 3 presents 

two experiments in Janesville, WI and in Asheville, NC, USA respectively. Weighting scores as 

well as WSMA results are also reported in Section 3. Finally, discussion and conclusions are 

provided in Sections 4 and 5 respectively.  

2.2 Background  

2.2.1 Weighted Spectral Mixture Analysis  

Spectral mixture analysis assumes that the spectra of a mixed pixel is a combination of several 

pure land cover classes’ spectra or endmembers (Adams et al., 1995; Roberts et al., 1998). The 

Spectral mixture analysis model can be expressed as Equation (5).   

,

n

k j k j k

j

R f R                                                                                                                  (5) 

where 
kR  is the spectral reflectance of a mixed pixel on band k; 

j
f   is the fraction of endmember 

j within the pixel; 
,k j

R  is the spectral reflectance of endmember j on band k; 
k

  is the error of 

band k; n is the number of endmembers. For a fully constrained SMA, two constraints, summation 

to one ( 1
n

j

j

f  ) and nonnegativity ( 0 1
j

f  ), should be met. Generally, the process of solving 

the least squares error estimation is to find out the smallest 
k (Barducci and Mecocci, 2005). 

Thus, Equation (1) can be interpreted as Equation (6).  
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where z is the number of spectral band. Weighting vector A can be introduced to Equation (2) in 
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order to address the problem of unequal contribution of wavebands (Chang and Ji, 2006; Somers 

et al., 2009). Equation (7) shows the weighing vector-added format.  

2

2

, ,

1 1

( )
z z n
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Mean absolute error (MAE), which compares the estimated fraction to the reference fraction, 

was employed to evaluate the performances of the unmixing results. Calculation of MAE is 

presented in Equation (8).  
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m

e i r i
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                                                                                                  (8) 

where
,e i

f  and
,r i

f  are the estimated and reference fraction of sample i respectively; m is the 

number of samples.  

2.2.2 Weighting Schemes  

Five existing weighting schemes, including Shannon Entropy-weighted method [Entropy, 

(Wang and Bao, 2007)], reflected energy fixed weighting vector [REFWV, (Somers et al., 2009)], 

InStability Index-based weighting method [ISIb, (Somers et al., 2009)], combined weighting 

vector [WV, (Somers et al., 2009)], and within-class variance [VW, (Chang and Ji, 2006)], were 

implemented in this study based on published research papers. We also developed five potential 

weighting schemes as extensions of existing weighting methods, including between-class variance 

[VB, (Chang and Ji, 2006)], total-class variance [VT, (Rogerson, 2014)], inversed Optimum Index 

Factor (IOIF), mean (Mean), and standard deviation (SD). Details of computing the existing 

weighting vectors are shown in Equations (9-14) and the potential weighting schemes are 

displayed in Equations (15-20).  
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2.2.2.1 Weighting schemes selected for investigation 

Shannon entropy is an established variability measurement in information theory (Wang and 

Bao, 2007). It has been widely employed in a number of research fields, such as social sciences, 

physics, remote sensing, etc. In remote sensing, Shannon’s entropy indicates the scale of 

information of each band (Wang and Bao, 2007).  Theoretically, a band containing more energy 

may achieve a higher entropy value. Thus, Shannon entropy is widely employed to be a weighting 

scheme. The detailed calculation of Shannon entropy (E) is shown in Equation (9).  

, 2 ,

1

( ) log ( )
m

k k i k i

i

E P R P R


                                                                                                     (9) 

where Ek is the entropy value of band k, m is the number of selected samples, 
,k i

R  is the sample 

i’s reflectance value in band k, 
,( )

k i
P R  is the probability of obtaining a particular reflectance value 

,k i
R . It can be expressed as , , ,

1

( ) ( ) / ( )
m

k i k i k j

j

P R f R f R


   (Cloude and Pottier, 1997), where  
,( )

k i
f R

is the frequency of  
,k i

R ,  ,

1

( )
m

k j

j

f R

  is the total frequency of all reflectance values.   

Reflected energy fixed weighted vector (REFWV) (Rk in equation 10) is a weighting method 

proposed by (Somers et al., 2009). It utilizes the maximum value of reflectance in each band 

divided by the mean value of the corresponding band to keep the relative relationship between 

endmember classes as well as erasing variability between wavebands (Somers et al., 2009). 

Detailed calculation can be expressed in Equation (10).  

max, ,/
k k mean k

R R R                                                                                                                    (10) 

Rk is the reflected energy fixed weighted value of band k; 
max,kR and 

,mean k
R  are the maximum 

and mean reflectance of band k respectively.  

InStability index-based (ISIb) (Ik in equations 7 and 8) weighting method, Equation (11), was 
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also proposed by (Somers et al., 2009) to address vegetation endmember variability. It takes both 

within-class and between-class variability into account. The ratio between the sum of endmember 

classes’ standard deviations and the average Euclidean distance between endmember classes’ 

means are viewed as the weighting scores of the corresponding bands. Equation (11) is calculated 

based on two land cover classes.  
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                                                                              (11) 

where ,k xR  and  ,k yR  are the mean reflectance of class x and y in band k separately. 
,k x

s and 
,k y

s

are the corresponding standard deviation of class x and y in band k. For a more than 2-endember 

scheme, equation (11) can be represented as Equation (12): 
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where n is the number of endmembers.  

The combined weighting vector (WV, Wk in equation 13) is calculated as reflected energy fixed 

weighted vector multiplies the ISIb (Somers et al., 2009). It is shown in Equation (13).  

*k k kW REFWV ISIb                                                                                                                   (13) 

Within-class variance (VW) describes the variability of each land cover class. Chang and Ji 

(2006) employed the within-class variance as the weighting vector in the weighted abundance 

constrained linear spectral mixture analysis. It can be expressed as Equation (10).  
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Where W( )kV  is the within-class variance weighting vector’s value in band k.  
,k jR  is the mean 

reflectance of land cover class j in band k.  
,k i

R  represents a particular reflectance of sample i of 

corresponding land cover class j in band k. mj is the number of samples in class j.  
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2.2.2.2 Potential weighting schemes 

In addition to the existing weighting schemes, five potential weighting schemes were also 

proposed based on wavebands’ variances and energies/information. Waveband’s variance-based 

potential weighting schemes include between-class variance (VB), total-class variance (VT), and 

standard deviation (SD), while the energy/information-based potential weighting schemes contain 

the inversed optimum index factor (IOIF) and mean (Mean). 

2.2.2.2.1 Variance-based potential weighting schemes.  

Waveband’s variance, such as within-class variance, has been verified for use as a weighting 

scheme for SMA (Chang and Ji, 2006). In addition to within-class variance, between-class 

variance and total-class variance were also used to describe the variance of a data set. However, 

they have not been discussed in most previous studies. Hence, between-class variance (VB) and 

total-class variance (VT) are explored in this study. They are written as Equations (15) and (16) 

respectively.  
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                                                                                                          (15) 

where B( )kV  is the between-class variance weighting vector’s value in band k. 
j

m is the number 

of sample in land cover class j.  
ku  is the mean reflectance of all classes in band k.  

,k jR

represents the mean reflectance of land cover class j in band k.  

T W B( ) ( ) ( )k k kV V V                                                                                                               (16) 

where T( )kV  is the total-class variance weighting vector’s value in band k. 

Further, standard deviation (SD, Sk in equation 17), the square root of the variance, is another 

method to measure the divergence of a data set.  It can be expressed as Equation (17). 
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where 
,k i

R  and  
,k iR  are the reflectance of sample i and mean reflectance in band k respectively. 

m is the number of samples of the corresponding class. 

2.2.2.2.2 Information/Energy-based potential weighting schemes.  

Waveband’s information/energy may be another factor that affect the accuracy of SMA.  A 

number of scholars state that the least square error method adopted in SMA ignores the bands with 

low reflectance/radiance values as determined by wavebands with relatively high 

reflectance/radiance (Somers et al., 2009). Therefore, parameters that measure a waveband’s 

information/energy information can be viewed as potential weighting schemes to minimize the 

unmixing error. Two weighting schemes that evaluate the waveband’s information/energy, IOIF 

and Mean, are employed in this study.  

The purpose of OIF (O in equation 18) is to find a three-band combination which can maximize 

the overall information content (Chavez et al., 1982; Qaid and Basavarajappa, 2008). It is 

calculated based on the ratio between total variance and total correlation of any two bands 

(Equation 18). Bands with high variances and low pair-wise correlation may match the purpose of 

OIF. 
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O                                                                                                                (18) 

where  ( )k  is the standard deviation of kth band;  ( )r j   is the absolute correlation coefficient 

between any two bands; z is the number of bands.  

According to Chavez et al. (1982), the three bands with the highest OIF values should contain 
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the majority of information. The remaining bands, accordingly, contain the smallest amount of 

information. Hence, the calculation of OIF, to a certain degree, can indicate the amount of 

information of selected bands and remaining bands. In this research, an inversed OIF (IOIF) that 

expanded the OIF calculation from 3 bands to z-1 bands (z is the number of bands) is proposed. 

Since the amount of information of all bands is consistent, the more information the z-1 bands 

contain, the less amount of information the remaining band will include. Therefore, the remaining 

band contains more information when the z-1 bands’ OIF value is low. Thus, the reciprocal of z-1 

bands’ OIF value can be used to indicate the amount of information in the remaining band. IOIF 

(Fk) can be expressed as Equation (19).  
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where Ik  is the IOIF value of band k; ( )i is the standard deviation of band i; ( )r j   is the 

correlation coefficient.  

The reflectance/radiance of each band could also affect SMA results, and the bands with a higher 

reflectance/radiance values may play a larger role. Therefore, the mean value of each band is 

employed to examine its possibility to be a weighting scheme. The mean value of each band can 

be calculated as Equation (20).  

Mean k
k

R

m
                                                                                                                     (20)  

where 
kR   is the radiance/reflectance of band k; and m is the total number of samples.   

For a clear illustration, all aforementioned weighting schemes are summarized in  

 

Table 1.  
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Table 1 weighting schemes 

Schemes Expression Reference 
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2.3 Experiments 

2.3.1 Study areas and data sources 

 The cities of Janesville (Wisconsin), and Asheville (North Carolina) in the United States were 

selected as the study areas (Figure 1). Janesville is within the Great Lakes region (humid 

continental climate) with a geographic area of 80.95 km2. It is dominated by land cover classes of 

ISA (e.g. roof, sidewalk, road, and parking lot) and vegetation (e.g. trees and grass). Single-family 

houses are distributed along streets, surrounding by lawns. Industrial areas and freeways can also 

be found in the study area. In addition to Janesville, Asheville was selected to examine whether 

consistent results can be obtained. Asheville is in western North Carolina, and has a similar 

landscape with Janesville. It has a humid subtropical climate with a cooler summer compared to 

eastern cities in the state. The area of Asheville is 117.2 km2 with an estimated population of 

83,393 in 2010. 

 

Figure 1 Study areas of Janesville, WI and Asheville, NC, USA. 
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A scene of Landsat 8 Operational Land Imager (OLI) acquired on June 3rd, 2014 and a scene of 

Landsat 5 Thematic Mapper (TM) acquired on June 2nd, 2009 were downloaded from the U.S. 

Geological Services (USGS) website for the study areas of Janesville and Asheville respectively. 

Image preprocessing, such as Radiance calibration, atmospheric correction, were applied on OLI 

and TM images. Historical Google Earth Pro images of Janesville acquired on June 12th, 2014 and 

of Asheville acquired on May 30th, 2009 were employed as the references to verify the accuracy 

of the unmixing results. Soil was not taken into consideration since the amount of soil is limited. 

Thus, soil was masked before SMA using a support vector machine (SVM) classification.    

2.3.2 Sample selection  

Two types of samples: training samples and testing samples, were selected. Training samples 

were pure pixels selected within the preprocessed images. They were chosen directly from the 

comparison referenced images to avoid erroneous pixels. Generally, training samples were only 

selected within large pure land cover classes. For example, the training samples of vegetation were 

selected from forest areas and large-scale grasslands. Trees or grass within residential areas were 

avoided to prevent the selection of mixed pixels. Similarly, training samples of impervious surface 

areas were selected in large shopping malls or parking lots. The numbers of vegetation samples 

(V), high albedo impervious surface area samples (ISAh), and low albedo impervious surface area 

samples (ISAl), were 40, 40, 40 in Janesville and were 50, 50, 50 in Asheville.    

Testing samples (64 samples for Janesville and 61 samples for Asheville) were randomly 

selected (including pure and mixed pixels) within the study area to verify the accuracy of unmixing 

results. Each sample was designed as 90m ×90m (3pixels×3pixels) to reduce the geometric error 

impact from data acquisition. 

Three spectra libraries were constructed using land cover class training samples respectively. 
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Thus, each spectral library contains 40 spectra in Janesville and 50 spectra in Asheville. 

2.3.3 SMA and accuracy assessment  

In this study, each weighted scheme as well as unweighted scheme were tested 100 times. For 

each test, we randomly selected one spectrum from each spectral library as the endmember for 

SMA. Therefore, 100 spectra combinations were selected under the V-ISAh-ISAl endmember 

model. All weighting schemes as well as the unweighted scheme employed the same endmember 

set in each test to provide a comparable result. Fully constrained linear spectral mixture analysis 

was applied for each test to derive the fractions of vegetation, high albedo impervious surface area, 

low albedo impervious surface area, and soil.  

Mean absolute error (MAE) of ISA was employed to evaluate SMA performance. Estimated 

fractions of ISA were combined by fractions of ISAh and ISAl in the same pixel.  Referenced 

fractions of ISA in google earth images were extracted through digitizing the corresponding areas 

within samples (Figure 2).  

 

Figure 2 Calculation of referenced ISA 
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2.4 Results 

2.4.1 Weighting vectors 

Weighting schemes were constructed through four types of samples: high albedo ISA samples 

(ISAh), low albedo ISA samples (ISAl), vegetation samples (V), and all samples (ALL, including 

ISAh, ISAl, and V samples). The original weighting scores of each scheme are shown in Table 2 

and Table 3. Since weighting schemes of ISIb, WV, VW, VB, VT, involve more than one land cover 

classes, they were only constructed in ALL samples. 

Table 2 weighting scores of Janesville 

Samples Schemes B1 B2 B3 B4 B5 B6 B7 

V Entropy 1.100 0.980 1.380 1.370 3.510 2.130 1.620 
 

REFWV 1.310 1.400 1.290 1.640 1.200 1.270 1.380 
 

SD 0.004 0.004 0.007 0.005 0.033 0.013 0.008 
 

IOIF 163.93 164.06 171.19 167.86 313.30 210.49 183.35 
 

Mean 0.040 0.030 0.060 0.030 0.430 0.170 0.070 

ISAh Entropy 4.775 4.844 4.538 4.853 4.758 4.474 4.709 
 

REFWV 1.713 1.738 1.659 1.689 1.716 1.331 1.547 
 

SD 0.117 0.119 0.123 0.132 0.143 0.083 0.160 
 

IOIF 12.675 12.606 12.564 12.719 13.194 14.849 16.558 
 

Mean 0.394 0.397 0.427 0.445 0.457 0.561 0.496 

ISAl Entropy 2.161 2.196 2.416 2.633 3.158 2.870 2.588 
 

REFWV 1.442 1.482 1.483 1.529 1.678 1.411 1.388 
 

SD 0.011 0.011 0.013 0.015 0.026 0.021 0.017 
 

IOIF 103.97 104.04 102.80 103.84 127.26 125.82 117.81 
 

Mean 0.074 0.065 0.068 0.071 0.090 0.088 0.079 

ALL Entropy 4.020 3.962 3.704 4.247 5.051 4.581 3.875 
 

REFWV 4.328 4.562 4.080 4.478 2.207 2.763 3.731 
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ISIb 2.508 2.544 2.641 2.534 2.173 4.545 2.352 

 
WV 10.86 11.60 10.77 11.35 4.79 12.56 8.78 

 
VW 0.014 0.014 0.015 0.018 0.022 0.008 0.026 

 
VB 3.101 3.288 3.446 4.187 3.169 4.572 4.511 

 
VT 3.115 3.302 3.461 4.205 3.191 4.579 4.537 

 
SD 0.173 0.178 0.183 0.200 0.174 0.203 0.214 

 
IOIF 9.759 9.797 9.796 10.007 11.965 10.854 10.840 

 
Mean 0.156 0.151 0.174 0.168 0.355 0.270 0.206 

 

Table 3 weighting scores of Asheville 

Samples Schemes B1 B2 B3 B4 B5 B6 

V Entropy 0.881 1.240 0.958 3.295 2.579 1.637 
 

REFWV 2.870 1.378 1.419 1.124 1.249 1.480 
 

SD 0.003 0.005 0.002 0.029 0.015 0.007 
 

IOIF 0.007 0.007 0.007 0.013 0.007 0.006 
 

Mean 0.004 0.028 0.015 0.425 0.164 0.060 

ISAh Entropy 4.229 4.821 4.999 4.974 4.261 4.543 
 

REFWV 1.335 1.945 1.819 1.607 1.349 2.302 
 

SD 0.094 0.150 0.150 0.144 0.096 0.161 
 

IOIF 0.001 0.001 0.001 0.001 0.001 0.001 
 

Mean 0.333 0.424 0.432 0.462 0.419 0.362 

ISAl Entropy 3.523 3.723 3.765 3.888 3.736 3.418 
 

REFWV 2.080 2.151 2.027 1.885 1.727 1.831 
 

SD 0.040 0.048 0.051 0.063 0.047 0.034 
 

IOIF 0.003 0.003 0.003 0.004 0.003 0.003 
 

Mean 0.102 0.128 0.135 0.182 0.170 0.144 

ALL Entropy 4.399 4.775 4.754 5.336 4.649 4.731 
 

REFWV 3.044 4.266 4.047 2.083 2.252 4.409 
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ISIb 2.318 1.899 2.034 0.521 0.260 1.554 

 
WV 7.055 8.100 8.230 1.086 0.585 6.850 

 
VW 0.512 1.219 1.226 1.254 0.571 1.327 

 
VB 2.862 4.249 4.595 2.308 2.116 2.414 

 
VT 3.375 5.468 5.821 3.561 2.687 3.742 

 
SD 0.150 0.192 0.198 0.155 0.134 0.158 

 
IOIF 0.012 0.013 0.012 0.027 0.015 0.014 

 
Mean 0.146 0.194 0.194 0.356 0.251 0.189 

 

Weighting patterns are diverse when constructed from different samples. Highlighted and 

suppressed bands are different from different samples. For example, Entropy highlights near 

infrared (NIR, band 5 of OLI) in V, ISAl, and ALL sample, but enhances blue band (band 2 of 

OLI) and red band (band 4 of OLI) in ISAh samples in Janesville. In addition, the scale of 

weighting scores varies from schemes to schemes. The highest scale of weighting score is IOIF in 

V and ISAl samples, the weighting scores in these weighting schemes are larger than 100 in 

Janesville but are small in Asheville. The scores of SD, Mean, and VW are also very small scale. 

Most of them are less than 0.5, and scores in V and ISAl samples can only reach 0.1. Weighting 

scores of Entropy, REFWV, VB, and VT are between 1 to 10.  

To compare differences between different weighting schemes, all weighting scores were 

normalized and classified into five categories: Highly Emphasized (0.8-1), Medium Emphasized 

(0.6-0.8), Slightly Changed (0.4-0.6), Medium Compressed (0.2-0.4), and Highly Compressed (0-

0.2) (Table 4 and Table 5).  

Table 4 Normalized weighting scores classification of Janesville 

Samples Schemes Highly 

Emphasized 

Medium 

Emphasized  

Slightly 

Changed  

Medium 

Compressed 

Highly Compressed 
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V Entropy  B5 
 

 B6  B7  B1 B2 B3 B4 
 

REFWV  B4 
 

 B2 B7  B1 B3  B5 B6 
 

SD  B5 
  

 B6  B1 B2 B3 B4 B7 
 

IOIF  B5 
  

 B6  B1 B2 B3 B4 B7 
 

Mean  B5 
  

 B6  B1 B2 B3 B4 B7 

ISAh Entropy  B2 B4  B1 B5 B7 
  

 B3 B6 
 

REFWV  B1 B2 B3 B4 B5  B7 
 

 B6 
 

SD  B7  B4 B5  B1 B2 B3 
 

 B6 
 

IOIF  B7 
 

 B6 
 

 B1 B2 B3 B4 B5 
 

Mean  B6  B7 
 

 B4 B5  B1 B2 B3 

ISAl Entropy  B5  B6  B4 B7  B3  B1 B2 
 

REFWV  B5 
 

 B4  B2 B3  B1 B6 B7 
 

SD  B5  B6  B7  B4  B1 B2 B3 
 

IOIF  B5 B6  B7 
  

 B1 B2 B3 B4 
 

Mean  B5 B6 
 

 B7  B1 B4  B2 B3 

All Entropy  B5  B6  B4  B1  B2 B3 B7 
 

REFWV  B1 B2 B4  B3 B7 
 

 B6  B5 
 

ISIb  B6 
   

 B1 B2 B3 B4 B5 

B7 
 

WV  B2 B4 B6  B1 B3  B7 
 

 B5 
 

VW  B7  B5  B3 B4  B1 B2  B6 
 

VB  B6 B7  B4 
 

 B3  B1 B2 B5 
 

VT  B6 B7  B4 
 

 B3  B1 B2 B5 
 

SD  B7  B4 B6 
 

 B3  B1 B2 B5 
 

IOIF  B5 
 

 B6 B7 
 

 B1 B2 B3 B4 
 

Mean  B5 
 

 B6  B7  B1 B2 B3 B4 

 

 

Table 5 Normalized weighting scores classification of Asheville 
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Samples Schemes Highly 

Emphasized 

Medium 

Emphasized  

Slightly 

Changed  

Medium 

Compressed 

Highly Compressed 

V Entropy  B4  B5 
 

 B6  B1 B2 B3 
 

REFWV  B1 
  

 B6  B2 B3 B4 B5 
 

SD  B4 
 

 B5 
 

 B1 B2 B3 B6 
 

IOIF  B4 
   

 B1 B2 B3 B5 B6 
 

Mean  B4 
  

 B5  B1 B2 B3 B6 

ISAh Entropy  B3 B4  B2  B6 
 

 B1 B5 
 

REFWV  B6   B2  B3  B4 B1 B5 
 

SD  B2 B3 B6  B4 
  

 B1 B5 
 

IOIF  B6 
  

 B5  B1 B2 B3 B4 
 

Mean  B4  B2 B3 B5 
 

 B6  B1 

ISAl Entropy  B4  B2 B3 B5 
 

 B1  B6 
 

REFWV  B1 B2  B3 
 

 B4 B6  B5 
 

SD  B4 
 

 B2 B3 B5 
 

 B1 B6 
 

IOIF  B4 
  

 B6  B1 B2 B3 B5 
 

Mean  B4 B5 
 

 B3 B6  B2  B1 

All Entropy  B4 
 

 B2  B3 B5 B6  B1 
 

REFWV  B2 B3 B6 
 

 B1 
 

 B4 B5 
 

ISIb  B1 B3  B2 B6 
  

 B4 B5 
 

WV  B1 B2 B3 

B6 
   

 B4 B5 
 

VW  B2 B3 B4 

B6 
   

 B1 B5 
 

VB  B2 B3 
  

 B1  B4 B5 B6 
 

VT  B2 B3 
  

 B1 B4 B6  B5 
 

SD  B2 B3 
  

 B1 B4 B6  B5 
 

IOIF  B4 
  

 B5  B1 B2 B3 B6 
 

Mean  B4 
 

 B5  B2 B3 B6  B1 

Note: B1-B6 in TM5 image are equal to B2-B7 in OLI image. Thus, B1-B6 in Asheville are 

equal to B2-B7 in Janesville.   
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(1) Vegetation samples (V). The weighting patterns are similar between the two study areas in 

V sample. The emphasized band in V samples is almost the same except REFWV. All other 

weighting schemes highlight near infrared red (NIR) while REFWV emphasizes red (Janesville) 

and blue (Asheville) band. In scheme of REFWV, the near infrared band, is compressed, acquiring 

the lowest score among all bands.  

(2) High albedo ISA samples (ISAh). Weighting scores as well as highlighted bands vary from 

schemes to schemes. Entropy highly enhances the red band. At the same time, the short wave 

infrared band 1 (SWIR1, band 5 in TM) is highly compressed. SWIR1 is compressed by schemes 

of SD, REFWV, and Entropy. IOIF’s weighting scores increase with the band number.  

(3) Low albedo ISA samples (ISAl). Almost all the weighting schemes have the same 

highlighted NIR. For other bands, especially the visible bands, their scores are much lower than 

short wave infrared (SWIR). 

(4) All (Vegetation- high albedo ISA-low albedo ISA) samples. Entropy, IOIF, and Mean have 

a similar pattern, assigning a higher score to NIR and compressing blue band. On the contrary, 

REFWV and WV emphasize green and red bands while they both compress NIR band. VW 

emphasizes NIR and SWIR2 (band 6 in TM) and strongly compresses SWIR1.   

2.4.2 MAE 

All weighting schemes as well as the unweighted scheme (all weighting scores are equal to one) 

were applied to fully constrained spectral mixture analysis. Mean absolute error (MAE) between 

the estimated and referenced fractions was utilized to evaluate each model’s accuracy. The 

distribution of MAE of each scheme was described in boxplot (Figure 3 and 4. Paired-samples T 

tests (Table 6 and Table 7) were employed to examine if there were significantly different means 

between each weighted and unweighted scheme’s MAE. In addition, the number of improved tests 
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was counted. The improved test was referred to the test which the weighted scheme has a smaller 

MAE compared to the unweighted scheme. The improved MAEs as well as improved percentages 

were calculated to explore the scale of improvement (Table 6 and Table 7).  

The descriptive MAE statistics for each scheme are shown in Figures 3 and 4. Median MAEs of 

all weighting schemes as well as unweighted scheme are larger than 0.1 in Janesville and many 

median MAEs are larger than 0.15 in Asheville. Only a few weighting schemes improved the 

accuracy when compared to the unweighted SMA.  

The range of MAEs are different in each weighting scheme (Figure 3 and Figure 4). Generally, 

ranges of MAE in Janesville are smaller than the ranges for Asheville. The range of unweighted 

scheme is about 0.1 in Janesville and is about 0.22 in Asheville. Many weighting schemes have 

similar or slightly larger ranges compared to unweighted scheme in both study areas.   

It can be seen from Figure 3 and Figure 4 that, weighting schemes in Janesville have smaller 

maximum MAEs but larger minimum MAEs compared to the schemes in Asheville. Many 

minimum MAEs in Janesville are larger than 0.1 and small than 0.2. On the contrary, minimum 

MAEs in Asheville can be less than 0.1 and the maximum MAE can reach 0.3.  
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Figure 3 Boxplot of MAEs in Janesville. The Entropy- Mean from left side to right side 

belongs to V, ISAh, ISAl, and ALL samples respectively. 

 

 

Figure 4 Boxplot of MAEs in Asheville. The Entropy- Mean from left side to right side 

belongs to V, ISAh, ISAl, and ALL samples respectively. 

 As depicted in Figure 3 and Figure 4, several weighting schemes, including IOIF in V samples 

(in Janesville area), REFWV in V sample, REFWV, ISIb, and WV in All samples, showed that 

their accuracies are better than the unweighted scheme. To statistically prove their performances, 

paired-samples T tests were employed to analyze their differences (Table 6 and Table 7). In Table 

6 and Table 7, the third column (Mean Difference (Unweighting-weighted)) shows the mean MAE 

difference between each weighting scheme and unweighted scheme. Negative values in the third 

column indicates that the mean MAE of weighted scheme was larger than the unweighted scheme. 

The fourth column shows the t values and the sixth column indicates the significances of 

differences.  

Mean MAEs of REFWV and IOIF (only in Janesville) in V samples as well as REFWV, ISIb, 

and WV in All samples are lower than the mean MAE of unweighted scheme. Their p values are 



 

37 

 

much lower than 0.025 values (Sig.(2-tailed) in Table 6 and Table 7), indicating that their means 

are statistically different from the unweighted scheme’s. Thus, these statistics prove that the 

weighting schemes perform better than the unweighted SMA. Weighting schemes of REFWV in 

ISAh samples as well as VB and VT in ALL samples acquire slightly lower mean MAE compared 

to the unweighted scheme. Their p values, however, are larger than 0.05 in Janesville but are 

smaller than 0.05 in Asheville, which implies that their differences are not significant in Janesville 

but are significant in Asheville. All remaining weighting schemes’ mean MAEs are larger than the 

unweighted scheme and their p values are equal to zero, illustrating that they weaken the SMA 

result significantly. 

Moreover, the MAE of each test between weighted and unweighted schemes was compared and 

the number of tests that has a lower MAE than unweighted scheme was counted (Num. of 

improved test in Table 6 and Table 7). Additionally, the average improved MAEs were calculated 

as well as their improved percentages among the outperformed tests.  Results indicate that almost 

all the tests of REFWV and IOIF (only in Janesville) in V samples and REFWV, ISIb, and WV in 

ALL samples perform better than the unweighted scheme. In Janesville, the improvement of 

REFWV in V samples is limited with the averagely improved MAE of 0.0036 (2.7%). In contrast, 

REFWV in V sample in Asheville improved about 20% of the MAE. IOIF in V samples and 

REFWV, ISIb, and WV in ALL samples reduce the MAE by 19.12%, 13.76%, 10.51%, and 

26.97% respectively in Janesville. Although more than 50% of the tests (71% in VB, 69% in VT, 

and 50% in SD) in VB, VT, and SD in ALL samples in Janesville have lower MAEs than the 

unweighted scheme, their improvements are less than 1%, which is negligible. The average 

improvements in Asheville for the REFWV in V sample, REFWV, ISIb, and WV in ALL sample 

are larger than in Janesville. VB, VT, and SD in Asheville improved more by having higher average 
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improved MAEs as well.  

Table 6 Statistical analysis between each weighting scheme and unweighted scheme in 

Janesville 

Samples Schemes Paired Samples Test Num. of 

improved test 

Ave. 

improved 

(%) 
  

Mean Difference 

(Unweighted-Weighted) 

t Sig. (2-

tailed) 

  

V Entropy -0.0329 -15.555 0.000 0 0 
 

REFWV 0.0036 18.044 0.000 99  2.7% 
 

SD -0.0498 -15.020 0.000 0 0 
 

IOIF 0.0238 14.006 0.000 94 19.12% 

  Mean -0.0644 -14.331 0.000 0 0 

ISAh Entropy -0.0001 -4.089 0.000 32 0.15% 
 

REFWV 0.0002 1.283 0.203 45 1.06% 
 

SD -0.0109 -14.551 0.000 0 0 
 

IOIF -0.0058 -10.367 0.000 3 0.88% 

  Mean -0.0055 -10.701 0.000 3 0.09% 

ISAl Entropy -0.0107 -15.068 0.000 1 0.69% 
 

REFWV -0.0027 -16.723 0.000 1 0.45% 
 

SD -0.0279 -14.947 0.000 0 0 
 

IOIF -0.0077 -14.671 0.000 0 0 

  Mean -0.0093 -14.874 0.000 0 0 

ALL Entropy -0.0060 -16.408 0.000 1 0.36% 
 

REFWV 0.0179 15.196 0.000 98 13.76% 
 

ISIb 0.0135 12.249 0.000 97 10.51% 
 

WV 0.0287 9.983 0.000 84 26.97% 
 

VW -0.0220 -14.354 0.000 0 0 
 

VB 0.0003 0.642 0.522 71 1.68% 
 

VT 0.0001 0.190 0.850 69 1.68% 
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SD -0.0011 -4.089 0.000 50 0.59% 

 
IOIF -0.0070 -15.588 0.000 0 0 

  Mean -0.0266 -15.383 0.000 0 0 

 

 

Table 7 Statistical analysis between each weighting scheme and unweighted scheme in 

Asheville 

Samples Schemes Paired Samples Test Num. of 

improved test 

Ave. 

improved (%) 

  
Mean Difference 
(Unweighted-Weighted) 

t  Sig. (2-

tailed) 

  

V Entropy -0.0675 -14.636  0.000 1 0.19% 
 

REFWV 0.0311 18.552  0.000 98 20.10% 
 

SD -0.1055 -14.697  0.000 1 1.02% 
 

IOIF -0.0317 -11.116  0.000 1 2.38% 

  Mean -0.1315 -16.138  0.000 0 0 

ISAh Entropy -0.0035 -11.955  0.000 10 0.59% 
 

REFWV -0.0013 -1.850  0.067 47 2.63% 
 

SD -0.0067 -13.187  0.000 8 1.51% 
 

IOIF -0.0039 -6.094  0.000 27 2.28% 

  Mean -0.0078 -12.995  0.000 4 0.79% 

ISAl Entropy -0.0027 -10.733  0.000 8 0.61% 
 

REFWV 0.0048 15.658  0.000 97 3.13% 
 

SD -0.0147 -11.063  0.000 6 1.51% 
 

IOIF -0.0048 -13.037  0.000 2 1.47% 

  Mean -0.0216 -15.366  0.000 1 1.67% 

ALL Entropy -0.0071 -13.395  0.000 2 1.72% 
 

REFWV 0.0172 9.292  0.000 84 14.00% 
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ISIb 0.0319 10.023  0.000 87 24.92% 

 
WV 0.0206 4.053  0.000 67 30.11% 

 
VW -0.0126 -14.291  0.000 6 1.65% 

 
VB 0.0192 14.548  0.000 96 12.83% 

 
VT 0.0106 11.640  0.000 95 7.23% 

 
SD 0.0055 11.584  0.000 95 3.69% 

 
IOIF -0.0418 -11.907  0.000 1 2.48% 

  Mean -0.0369 -13.033  0.000 1 1.08% 

 

 

2.5 Discussion  

Spectral mixture analysis (SMA) has been widely employed by researchers due to its simplicity 

and adequate accuracy (Wu and Murray, 2003). However, the assumption that each waveband has 

an equal weighting score needs more examination because of: 1) the existence of between- and 

within-class variability and 2) the correlation between unmixing error and scale of mixed signal 

(Barducci and Mecocci, 2005; Somers et al., 2009). These two limitations, especially the second 

one, affect the performance of SMA (Somers et al., 2009). 

2.5.1 Which weighting scheme to select?  

Several scholars have applied weighting scheme in remotely sensed image analysis, such as 

WSMA (Chang and Ji, 2006; Somers et al., 2009), band selection (Pan et al., 2005) and image 

enhancement (Ma et al., 2014). Results from these studies illustrate that weighting scheme is 

constructive and it can improve the performance of proposed models. Generally, a weighting 

scheme can be constructed based on variance or information/energy.  



 

41 

 

2.5.1.1 Variance-based weighting scheme 

Variance, including the within- and between-class variance, as stated by Barducci and Mecocci 

(2005) that it complicates endmember separability. Consequently, it affects the result of SMA.  

However, simple form of variance, such as standard deviation, within-class variance, between-

class variance, and total-class variance, cannot be viewed as weighting scheme directly since 

results demonstrated their poor performance in this study. Within-class variance, though proves 

its outperformance in Chang and Ji (2006)’s research, does not perform well in this study. Major 

reasons may be attributed to 1) spectral variability in different study areas and 2) different training 

samples. Chang and Ji (2006)’s study focused on vegetated landscapes. Their research area is 

located in the intersection between forest and glass land. Instead, we employed urban environments 

that contain one more land cover class: impervious surface area. Variance of ISA, to some degree, 

is larger than vegetation. ISA’s spectral reflectance does not have a unique pattern. Mixing the 

ISA with the vegetation to construct a weighting scheme may lead to huge difference comparing 

to pure vegetation samples. Besides, as Chang and Ji (2006) stated that a good set of training 

samples is key to constructing a meaningful weighting scheme. Since study areas is differ, it is 

impossible to select the same training samples especially in different study regions with different 

landscapes. Therefore, the results of WSMA may be different between this study and Chang and 

Ji (2006)’s study.  

Weighting schemes of WV and ISIb, though, are constructed by variance. They take both the 

between-class and within-class variance into account. Moreover, reflected energy is considered as 

well when the weighting scheme of WV is constructed. Through the analysis of the variance-based 

weighting schemes, it seems that the variance does affect the performance of WSMA. However, 

directly constructed variance-based schemes had limited ability to improve the unmixing accuracy. 
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Variance may need to be incorporated with other indices to construct an effective weighting 

scheme.    

2.5.1.2 Information/energy-based weighting scheme 

 Some endmembers are more sensitive to specific wavebands because highly reflected land 

surface features contribute more to the SMA result (Somers et al., 2009). Based on this assumption, 

weighting schemes can be composed from waveband information/energy. Some scholars 

constructed a weighting vector by evaluating the contribution of a pixel to increase the spatial 

resolution (Ma et al., 2014). Other scholars also admit that spectral characteristics are key factors 

to impact the construction of weighting scheme(Pan et al., 2005). Some bands can be viewed as 

“good” bands since they can separate two land cover classes clearly by providing a remarkable 

edge along their boundaries. Thus, these bands are assigned higher weighting scores (Pan et al., 

2005). However, these weighting schemes except Somers et al. (2009)’s REFWV and WV are not 

utilized for SMA. Further, the information based weighting schemes examined in this study do not 

demonstrate significant improvement. Of course, some of REFWV tests perform better than the 

unweighted scheme. But paired-samples T test results do not indicate any significant difference 

between them. Other information/energy based schemes, such as Mean, does not show an 

impressive improvement either. IOIF weighting schemes constructed by ISAh, ISAl, and ALL 

have similar results with Mean. However, IOIF created by vegetation samples highlight the 

capability of improving the SMA accuracy. That may be due to the smaller variability of vegetation 

compared to other land cover classes. They have a clear pattern of low spectral reflectance in blue 

and red band, and have a small peak in the green band and very high reflectance in near infrared 

and shortwave infrared bands. ISAs’ reflectance varies more than for vegetation. They do not have 

a unique pattern. Further, their within-class variance is much larger than for vegetation.   
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2.5.2 Uncertainties of endmember selection  

Unlike the studies of Chang and Ji (2006) and Somers et al. (2009), this research examined 

current and potential weighting schemes based on 100 tests using different spectra as endmembers. 

Though some studies have compared several weighting schemes with the unweighted scheme 

(Chang and Ji, 2006; Somers et al., 2009), they were only based on one test. The selection of 

endmembers, however, may introduce a lot of uncertainties. Researchers select the potential 

endmembers according to their background. Some of them select spectra from the spectral library, 

other may use in situ measured spectral reflectance, and some others may choose endmembers 

from imagery. Researchers may choose different spectra as endmembers even when they work on 

the same study area with the same data source. Moreover, endmember selection is one of the most 

important steps in SMA. Selecting different spectra as endmembers can affect the unmixing result 

directly. In this case, other researchers cannot repeat the previous studies’ result because they use 

different spectra as endmembers. To avoid the uncertainties of endmember selection, we tested the 

same weighted and unweighted schemes 100 times by using randomly selected spectra in a 

corresponding spectral library. 100 times of repeated testing can cover most of the potential 

endmember selections. Thus, their results can reflect the true performance of each weighting 

scheme. Therefore, the WSMA’s results can be more meaningful and reliable.   

2.6 Conclusions 

This study explored different weighting schemes and their performances. Five existing 

weighting vectors (including Shannon Entropy weighting method (Entropy), reflected energy 

fixed weighting vector (REFWV), InStability Index-based weighting method (ISIb), combined 

weighting vector (WV), within-class variance (VW)) and five potential weighting schemes (e.g., 

between-class variance (VB), total-class variance (VT), inversed Optimum Index Factor (OIF), 
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mean (Mean), and standard deviation (SD)) were examined in Janesville, WI, USA and Asheville, 

NC, USA.  Each weighting scheme was tested 100 times using different spectra with the V-ISAh-

ISAl endmember model. Weighted and unweighted schemes’ performances were evaluated by 

MAE. Then Paired-Samples T test was employed to analyze if there were significant differences 

of MAE between weighted and unweighted schemes.  Analyses of results suggest several 

conclusions.  

 (1) REFWV, ISIb, and WV constructed by ALL samples illustrated significant improvement 

comparing to the unweighted scheme since statistical analysis indicated their significance with the 

p values of 0. These weighting schemes could be applied in analyzing urban environments with a 

three-endmember model (vegetation - high albedo impervious surface area - low albedo 

impervious surface area) to improve the performance of SMA. (2) Weighting scheme of IOIF, SD, 

VB, and VT, showed unstable performances in different study areas as they significantly performed 

better than the unweighted scheme in one study area but weakened the accuracy in another study 

area (p values were less than 0.05). (3) Some potential weighting schemes, such as Entropy, Mean, 

and VW, seemed not to be necessary for SMA in urban/suburban areas. (4) Future weighting 

schemes would be better constructed with consideration of spectral variance since the better 

preforming schemes in this study were built with spectral variance. 

  



 

 

_______________ 
2Portions of this chapter have been submitted to ASPRS Photogrammetric Engineering & Remote Sensing, 

coauthored with Dr. Changshan Wu 
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CHAPTER 3 EXAMINING THE EFFECTIVENESS OF SPECTRALLY 
TRANSFORMED SPECTRAL MIXTURE ANALYSIS IN URBAN 

ENVIRONMENTS2 

3.1 Introduction 

Spectral mixture analysis (SMA) has become more and more attractive in remote sensing 

applications, especially for medium and coarse spatial resolution imagery. SMA assumes that a 

mixed pixel is constructed by several pure land cover types (endmembers). It aims to extract the 

land covers’ fractions within a pixel using spectral mixture models. Results of SMA are physically 

meaningful fractions instead of possibilities. Therefore, it is widely employed in the field of forest 

services (Peddle et al., 2001), urban planning and management (Small and Lu, 2006; Small et al., 

2005), land use and land cover change (Lu and Weng, 2006; Lu et al., 2006), water quality 

management (Tyler et al., 2006), geology (Drake et al., 1999), and others.  

With the differences of physical construction, and atmospheric environment, the spectral 

signature of a specified land surface material may vary from different locations and periods while 

spectral signatures of different materials may be similar. The previous drawback is called within-

class variability, indicating the spectral differences within a class. The second limitation is named 

between-class variability, meaning the spectral similarity in different classes.  Large within-class 

variability and small between-class variability are major reasons for spectral confusion in remotely 

sensed imagery classification.  

Many techniques, including spectral weighting, iterative mixture analysis, spectral feature 

selection, spectral modeling, and spectral transformation,  can be employed to address the spectral 

variability (Somers et al., 2011). Spectral transformation, which changes the original spectra 

linearly and nonlinearly, is one of the widely applied approaches used in SMA to solve spectral
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 variability problems. The major purpose of spectral transformation is to enhance spectral 

characteristics. With enhanced spectra, spectral variability is expected to be reduced within the 

same class and to be increased between different classes.  

Many scholars have employed spectral transformation in their remote sensing applications. Wu 

(2004) proposed a normalized spectral mixture analysis (NSMA) to extract land use and land cover 

information in the city of Columbus, Ohio. Each band reflectance in the NSMA is divided by the 

mean reflectance of all bands. Results indicated that brightness variation were reduced and 

improvement could be acquired from the NSMA. Asner and Lobell (2000) applied a tie spectral 

transformation before estimating the fractions of vegetation and soil. All other band reflectance 

was subtracted by tie band (point). The authors concluded that significant variation of soil moisture, 

canopy architecture, leaf and litter area index, and tissue optics could be compressed by using the 

tied spectra, resulting in more accurate output from the unmixing process. Zhang et al. (2004) 

employed a second order derivative spectral unmixing (DSU) method in rock and lichen fractions 

estimation. They summarized that DSU is promising for fraction estimation using hyperspectral 

data. Similar studies include the research of Tsai and Philpot (1998), Laba et al. (2005), and 

Huguenin and Jones (1986).  Debba et al. (2006) compared the results of first derivative and second 

derivative spectra in laboratory mineral applications. They concluded that higher-order derivatives 

contribute more to remote sensing images with higher signal-to-noise ratios. Li (2004) compared 

the discrete wavelet transform (DWT) with the principal component analysis (PCA). He found  

that DWT could increase more separability than the PCA, leading to improvement of fraction 

estimation. Similar conclusions were achieved from the studies of  Bruce et al. (2002) and Zhang 

et al. (2006).  Youngentob et al. (2011) assumed that continuum removal (CR) analysis can 

contribute to class separability through highlighting individual absorption features across a 



 

 

 

47 

 

normalized spectrum. They examined the performance of CR analysis using hyperspectral data, 

and results showed overall accuracy improvement. Principal component analysis [PCA, (Richards 

and Richards, 1999)], minimum noise fraction transform [MNF, (Green et al., 1988)], Tasseled 

Cap [TC, (Jensen and Lulla, 1987)], and independent component analysis [ICA, (Hyvärinen and 

Oja, 2000)] are commonly employed for land surface feature enhancement before applying SMA. 

Spectral characteristics of different land cover classes are highlighted in different output layers of 

these transformations. Many researchers employed these transformation techniques to assist the 

selection of endmember as well as to reduce the spectral within-class variability and to enhance 

between-class variability. Further, different spatial filters, such as low pass (LP), high pass (HP), 

Gaussian high pass (GHP), Gaussian low pass (GLP), are commonly employed to enhance the 

spectral characteristics’ edges or to smooth the surface of remote sensing imagery.    

Spectral transformation can be divided into two categories: linear and nonlinear. Many scholars 

applied spectral transformations, however, few of them discussed the effect of linearity in their 

studies. Linear transformation will maintain the linear relationship between variables while the 

nonlinear transformation will change the linearity relationship among variables. Some researchers 

state that nonlinear transformation may not be good for linear spectral mixture analysis, as it may 

decrease the accuracy of abundance estimation (Li, 2002). However, he did not imply that applying 

the nonlinear transformation in nonlinear spectral transformation guarantees improvement. The 

selection between using linear or nonlinear transformed schemes is still unclear.   

Although many researchers applied spectral transformations in remote sensing applications, 

there is still not a study that examines all of them systematically. In particular, researchers 

employed different transformed schemes to their application based on their project requirement or 

their own knowledge. The advantages and limitations of all these transformed schemes are still not 
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clear. The necessity of applying a transformed scheme has not been discussed.  Moreover, there is 

still not a standard of how to choose the transformed scheme. Therefore, the objectives of this 

study are: 1) to examine if there is a significant difference of SMA results after applying spectral 

transformation; 2) to find out which spectral transformation is better, and 3) to discuss how to 

select the transformed scheme in a specified landscape. The structure of this chapter is as follows. 

The next section talks about the background of spectral mixture analysis and spectral transformed 

techniques. Section 3 presents the experiments as well as results in three locations with Landsat 

data. Section 4 discusses the results and the strategy to select the transformed scheme. Finally, 

section 5 gives conclusions of this study.  

3.2. Background 

3.2.1 Spectral mixture analysis 

Spectral mixture analysis (SMA) assumes that more than one land cover classes are combined 

in a mixed pixel. The objective of SMA is to estimate the fraction of each endmember within a 

mixed pixel. SMA can be expressed as equation (21). Generally, two constraints, the sum-to-one 

constraint ( 1
n

j

j

f  ) and nonnegative constraint ( 0 1
j

f  ), should be met in the fully constrained 

SMA.  

,

n

k j k j k

j

R f R                                                                                                                                                      (21) 

where 
k

R  is the spectral reflectance of mixed pixel on band k; 
j

f   is the fraction of endmember 

j within the pixel; 
,k j

R  is the spectral reflectance of endmember j on band k; 
k
  is the error of 

band k; n is the number of endmembers. 
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Mean absolute error (MAE) is employed to evaluate the performance of SMA. It calculates the 

absolute difference between the estimated fraction and the reference fraction of corresponding land 

cover class. MAE can be expressed as equation (22).  

, ,

1

( ) /
m

e i r i

i

MAE ABS f f m


                                                                                                                                   (22) 

where
,e i

f  and
,r i

f  are the estimated and reference fraction of sample i respectively; m is the 

number of samples.  

3.2.2 Spectral transformations 

Thirteen linear and thirteen nonlinear transformed schemes as well as an untransformed scheme 

were examined in this study. The major reason to select these schemes was that they are the most 

common schemes in the literature. Many commercial software packages, such as ERDAS and 

ENVI, have been embedded with these models. Researchers can easily implement these 

transformed schemes in their many applications. 

3.2.2.1 Linear spectral transformation 

Seven categories of linear spectral transformation were examined, namely derivative analysis 

[DA, (Tsai and Philpot, 1998)], principal component analysis [PCA, (Richards and Richards, 

1999)], independent components analysis [ICA, (Hyvarinen, 1999; Hyvärinen and Oja, 2000)], 

Minimum Noise Fraction [MNF, (Boardman and Kruse, 1994; Green et al., 1988)], Tasseled Cap 

[TC, (Kauth and Thomas, 1976)], Band normalization (BN), and Discrete wavelet transformation 

[DWT, (Li, 2002; Strang and Nguyen, 1996; Vetterli and Herley, 1992), see Table 8]. Detailed 

descriptions of these methods are as follows. 
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Derivative analysis (DA) is sensitive to curve shape instead of the scale of reflectance. With this 

advantage, DA, especially higher order DA, is good for eliminating background signals and 

illumination effects caused by cloud coverage, sun angle, and topography (Tsai and Philpot, 1998). 

The first derivative analysis can be expressed as equation (23).  

 i j

i

R RdR

d

 

 





                                                                                                                                                              (23) 

where /
i

dR d  represents the first derivative at wavelength 
i
 . 

i j
     is the difference 

between two consecutive wavebands and 
i j
  . 

i
R  and 

j
R are spectral reflectance of wavelength 

i
  and 

j
 . Similarity, second and third derivative can be expressed as equations (24-25).  
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                                                                                                                                       (25) 

where 
i j k l
      . 

Independent components analysis (ICA) serves as a blind source separation tool for electronic 

signal analysis. Unlike PCA, ICA is based on a non-Gaussian assumption of the independent 

sources with higher-order statistics to extract focused characteristics in non-Gaussian datasets 

(Hyvarinen, 1999; Hyvärinen and Oja, 2000). A common ICA contains three steps: 1) the sample 

data are centered and whitened with the mean, eigenvectors, and eigenvalues. PCA is applied for 

data whitening; 2) negentropy maximization is employed as the whitened sample to estimate the 

ICA transform matrix; and 3) the original data is transformed using the ICA transform matrix 

(Hyvarinen, 1999; Hyvärinen and Oja, 2000).  
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Minimum noise fraction (MNF) transform, like PCA, is the method of separating noise and 

reducing data dimension (Boardman and Kruse, 1994; Green et al., 1988). MNF is modified from 

PCA. It includes two steps. The first step is called noise whitening.  It employs the noise covariance 

matrix of PCA to decorrelate and rescale the noise in the data. The second step is to conduct the 

rotation again based on the first step’s outcome. Specific channel information can be maintained 

in MNF since each component’s weighting is contributed by all original bands. Most of the 

variance can be explained in the first three components, while the remaining components are 

contributed mainly by noise (Boardman, 1993).  

Principal components analysis (PCA) is commonly used in remote sensing image analysis to 

produce uncorrelated output bands. It can be employed to reduce the dimension of a data set and 

to separate the noise from major components (Richards and Richards, 1999). The purpose of PCA 

is to create a new set of orthogonal axes which can maximize the data variance. Original dataset 

bands are correlated in multispectral and hyperspectral images. PCA compresses the original 

intercorrelated data into serval uncorrelated variables, named as principal components. The 

amount of variance decreases with the increase of the component’s number. Generally, the first 

three components of PCA contribute more than 90% of the variance in the original dataset.  

Tasseled Cap (TC) transformation orthogonally transforms the original data into a three-

dimensional space (Kauth and Thomas, 1976), including brightness, greenness, and wetness 

(Jensen and Lulla, 1987). If the dataset is Landsat 7 enhanced thematic plus (ETM+), the results 

will contain three more outputs, e.g., fourth, fifth, and sixth. The first TC band relates to the overall 

brightness of the image while the second output band corresponds to the degree of greenness. The 

third band indicates the wetness of the land surface. TC transformation was originally designed to 

maximize separation of the different growth status of vegetation.  
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Band normalization (BN) reassigns the range of the pixel value in each band linearly. 

Contrasting information will be well presented in the stretched output. BN includes two steps: 1) 

finding out the maximum and minimum values in a band, and 2) calculating equation (26) in each 

pixel. With BN, light materials will display as lighter while dark regions appear darker, improving 

the efficacy of visual interpretation.  

,min ,max ,min( ) / ( )
k k k k k

BN R R R R                                                                                                                                    (26) 

where BNk is the band normalization value in band k. Rk is original spectral reflectance in band 

k. 
,maxk

R  and 
,mink

R  are the maximum and minimum values of band k respectively.  

Discrete wavelet transformation (DWT) can be implemented through fast wavelet transform 

[FWT, (Li, 2002; Strang and Nguyen, 1996; Vetterli and Herley, 1992)]. Mother wavelet is 

represented by a set of high-pass and low-pass filters in the filter bank. At the beginning, the 

original image signal goes through the filter bank. Then the result of the high-pass filter is named 

detail coefficients while the consequence of low-pass filter is called approximation coefficients. 

In the single-step discrete wavelet transformation, the original signal goes through the filter once. 

The image can be well reconstructed by using the approximation coefficients and setting other 

coefficients to zeros (Li, 2002). In this study, only single-level decomposition was performed with 

different wavelets (e.g., bior1.1 (DWT1), coif1 (DWT2), db1 (DWT3), rbio1.1 (DWT4), and sym2 

(DWT5)).  

3.2.2.2 Nonlinear spectral transformation 

In addition to linear spectral transformation methods, we also examined four major non-linear 

transformation techniques, including continuum removal [CR, (Kruse, 1988)], spatial filtering 

transformation [e.g. Low pass (LP) filter, high pass (HP) filter, Gaussian low pass (GLP) filter, 
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and Gaussian high pass (GHP) filter], normalized spectral mixture analysis [NSMA, (Wu, 2004)], 

and Tie spectral (Tie) transformation (Asner and Lobell (2000). These transformation methods are 

summarized in Table 8, and described as follows. 

Continuum removal (CR) is a method of spectral reflectance normalization. During the CR, 

straight-line segments connect every peak of local spectra to construct a convex hull (Kruse, 1988). 

The first and last peak in the local spectra are set to 1 in the continuum removal data while other 

data points in the original spectral curve are assigned as less than 1. It can enhance the absorption 

features from a spectral curve, eliminating the slope effects, topography, illumination, and grain-

size effect. CR can be expressed as equation (27). 

/
k k k

CR R C                                                                                                                                                                      (27) 

where 
k

CR  is Continuum removed spectrum in band k, Rk is original spectral reflectance in band 

k, and Ck is the corresponding continuum curve value in band k.  

Spatial filtering is another type of spectral transformation. Generally, it involves a 3×3 or 5×5 

moving window to construct a filter. The center value of the original pixel is replaced by a 

mathematical computation with the pixel value and their corresponding filter value (moving 

window value). Filters can be defined as high pass or low pass which highlights the corresponding 

frequency and suppresses the other frequency.  If a filter is defined as high pass, rough areas where 

the spectral reflectance changes dramatically will be enhanced while smooth areas will be 

compressed. The low pass filter emphasizes the smooth areas instead of rough regions. Low pass 

(LP) filter, high pass (HP) filter, Gaussian low pass (GLP) filter, and Gaussian high pass (GHP) 

filter are commonly employed in remote sensing to enhance the corresponding land surface 

characteristics.   
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Normalized spectral mixture analysis (NSMA) was proposed by Wu (2004). Reflectance is 

divided by the mean value of the corresponding pixel in all band. Brightness can be eliminated or 

reduced through the NSMA, improving the separability of urban land cover classes. It can be 

calculated through equation (28).    

/ 100
k k

NSMA R u                                                                                                                                                         (28) 

where 
1

(1/ )
b

k

k

u b R


  , 
k

NSMA  is normalized value of band k, 
k

R is the original reflectance of 

band k. u is the mean reflectance of the corresponding pixel. b is the number of band. 

Tie spectral (Tie) transformation was introduced by Asner and Lobell (2000). They employed 

the waveband of 2080nm as the tie point, then all other bands minus the tie point to get the tie 

transformation. Consequences indicated that tie spectra could reduce the variation caused by soil 

moisture, leaf and litter area index, tissue optics, and canopy architecture. However, only 

shortwave infrared bands were examined in their study. It is still meaningful to explore the 

potential tie points in visible and near infrared wavebands in urban and suburban areas. Thus, all 

bands were viewed as potential tie points and each tie transformation was calculated respectively.  

Table 8 Spectral transformation 

Transformation Linearity Reference 

DA(1-3) Linear Tsai and Philpot (1998) 

ICA Linear Hyvarinen (1999) 

MNF Linear Green et al. (1988) 

PCA Linear Richards and Richards (1999) 

TC Linear Kauth and Thomas (1976) 

BN Linear  

DWT(1-5) Linear Vetterli and Herley (1992), Strang and Nguyen (1996) 

CR Nonlinear Kruse (1988)  

GHP, GLP, HP, LP Nonlinear  

NSMA Nonlinear Wu (2004) 

Tie (1-7) Nonlinear Asner and Lobell (2000) 
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3.3 Experiments 

3.3.1 Study areas and data sources 

Three cities were examined in this study, including Janesville, WI, Asheville, NC, and Columbus, 

OH (Figure 5). Janesville is on the western shore of Lake Michigan, within the humid continental 

climate. It has long nights in the winter and cool temperatures in summer. Flat plain is the major 

landscape in Janesville. Asheville is the largest city in western North Carolina. It is in the Blue 

Ridge Mountains where two rivers, the Swannanoa and French Broad, merge together. The climate 

in Asheville is humid subtropical, which is cool in winter and not as hot as other eastern cities in 

summer. Mountainous characteristics are significant in the Asheville area. Residential buildings 

are constructed based on its local terrain. Columbus, the largest city in Ohio, has relatively flat 

topography. Like Janesville, its climate is humid continental. Winter is cold and dry while summer 

is hot and muggy. The landscapes of the three study areas are similar. They are mainly occupied 

by commercial buildings, freeways, parking lots, residential houses, soil, and vegetation (trees and 

grass).   
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Figure 5 Study areas of Columbus OH, Janesville WI, and Asheville NC.  

A scene of Landsat 8 Operational Land Imager (OLI) imagery acquired on September 14th, 2015 

for Columbus, Ohio, a scene of Landsat 8 OLI imagery acquired on June 3rd, 2014 for Janesville, 

Wisconsin, and a scene of Landsat 5 Thematic Mapper (TM) imagery acquired on June 2nd, 2009 

for Asheville, North Carolina were employed in this study. Image preprocessing, such as 

radiometric calibration, atmospheric correction using Fast Line-of-sight Atmospheric Analysis of 

Hypercube (FLAASH) with corresponding parameters, and reprojection to Universal Transverse 



 

 

 

57 

 

Mercator (UTM) (Janesville: Zone 16; Asheville and Columbus: Zone 17), were applied. 

Historical high spatial resolution images (Columbus: August 22nd, 2015; Janesville: June 12th, 

2014; Asheville: May 30th, 2009) acquired on Google Earth were employed for accuracy 

assessment.   

3.3.2 Method  

3.3.2.1 Sample selection 

Four land cover classes were selected in corresponding Landsat images, including vegetation 

(V), high albedo impervious surface area (ISAh), low albedo impervious surface area (ISAl), and 

soil (S). They were collected with the assistance of high spatial resolution images to avoid incorrect 

pixels. The number of training samples of V, ISAh, ISAl, and S are the same in each study area. 

They are 50, 50, and 50 in study areas of Janesville, Asheville, and Columbus respectively. Each 

training sample set was used for corresponding spectral library construction.   

Testing samples were collected to access each scheme’s performance. We selected 44, 60, and 

50 testing samples in the Janesville, Asheville, and Columbus regions. Each testing sample is 

3pixels×3 pixels (90m ×90m) to avoid the geometric error impact acquired from reprojection and 

data acquisition. Fractions of impervious surface area within the testing samples were calculated 

through digitizing the corresponding area in high spatial resolution images. 

3.3.2.2 SMA and repeat test 

Twenty-six transformed schemes (e.g., DA1-3, ICA, MNF, PCA, TC, BN, CR, GHP, GLP, HP, 

LP, NSMA, Tie1-7, and DWT1-5) were applied on the original data to get the transformed results 

in three different study areas (Janesville, Asheville, and Columbus). Fully constrained linear 

spectral mixture analysis was applied to transformed and untransformed data using the V-ISAh-
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ISAl-S model. Each scheme was tested 100 times using randomly selected spectra in the 

corresponding spectral library.  

3.3.2.3 MAE comparison   

The performance of each transformed scheme was evaluated with mean absolute error (MAE). 

MAE was calculated based on comparison between estimated and referenced ISA fractions. 

Estimated fractions of ISA were calculated by the sum of ISAh’s and ISAl’s fractions in the same 

pixel. Boxplot and description of MAE were applied to detail the MAE distribution in each scheme. 

Statistical description, such as range, maximum value, minimum value, mean, and standard 

deviation, were employed to describe the MAE distribution. Boxplots can reveal the distribution 

of MAE using quantiles. The 25%, 50%, and 75% of the MAE can be mapped in the boxplot.   

Since Boxplots only depicts the distribution of each scheme, the difference between transformed 

and untransformed schemes are still unclear, as they do not compare each test’s performance. 

Therefore, paired-samples T tests were employed to test if there were significant differences of 

SMA mean between transformed and untransformed schemes. Unlike the analysis of variance 

(ANOVA), paired-samples T test compares the differences test by test. It can reveal the difference 

of each test. Mean difference is calculated by using the MAE of untransformed subtracting the 

transformed scheme. Positive values mean the MAE of untransformed schemes is larger than 

transformed schemes while negative values represent the opposite consequence. In addition the 

number of improved tests as well as their improved percentages were also counted to demonstrate 

their performance. 
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3.3.3 Results 

The Landsat 8 OLI has one more band than Landsat 5 TM imagery. The second band of OLI 

matches the first band of TM. Thus, tie spectral transformation in Asheville (Landsat 5 TM) started 

naming from Tie2 to match the same Tie2 of Janesville and Columbus (Landsat 8 OLI).   

The range and the standard deviation of the MAE in each transformed scheme can indicate the 

stability (Table 9). Large ranges imply relatively unstable performance. Many schemes’ ranges 

varied dramatically across the three study areas. Some schemes show small ranges in one study 

area but display large ranges in other study areas (range differences between study areas are larger 

than 0.1), such as CR, GHP, LP, Tie1, Tie5, and DWT2. Other schemes, such as the untransformed 

scheme, DA2, DA3, ICA, PCA, GLP, Tie3, Tie4, Tie6, and Tie 7, showed a stable performance 

as their range differences among the three study areas are less than 0.05.  

  Table 9 Description of MAE in three study areas  

Schemes Janesville Asheville Columbus 

  Range Min. Max Mean SD Range Min. Max Mean SD Range Min. Max. Mean SD 

Original 0.15 0.07 0.22 0.11 0.03 0.18 0.05 0.23 0.11 0.04 0.17 0.10 0.26 0.14 0.03 

DA1 0.19 0.07 0.26 0.12 0.03 0.15 0.04 0.20 0.09 0.04 0.12 0.09 0.21 0.12 0.03 

DA2 0.16 0.08 0.24 0.12 0.03 0.19 0.04 0.23 0.09 0.03 0.15 0.08 0.23 0.13 0.03 

DA3 0.14 0.08 0.22 0.12 0.03 0.17 0.04 0.21 0.10 0.04 0.16 0.08 0.24 0.14 0.03 

ICA 0.16 0.07 0.23 0.12 0.03 0.19 0.05 0.24 0.12 0.05 0.16 0.07 0.23 0.12 0.03 

MNF 0.18 0.07 0.25 0.12 0.03 0.15 0.05 0.20 0.10 0.04 0.10 0.07 0.17 0.11 0.02 

PCA 0.16 0.07 0.24 0.11 0.03 0.18 0.05 0.22 0.11 0.04 0.17 0.09 0.26 0.14 0.03 

TC 0.16 0.07 0.23 0.11 0.03 0.20 0.05 0.25 0.11 0.05 0.13 0.09 0.22 0.14 0.03 

BN 0.17 0.08 0.25 0.14 0.04 0.25 0.05 0.30 0.12 0.06 0.19 0.10 0.29 0.15 0.04 

CR 0.22 0.08 0.30 0.20 0.06 0.28 0.06 0.34 0.14 0.06 0.10 0.08 0.18 0.11 0.02 

GHP 0.22 0.10 0.33 0.18 0.05 0.33 0.13 0.47 0.21 0.06 0.23 0.17 0.40 0.25 0.05 

GLP 0.16 0.08 0.23 0.11 0.04 0.16 0.05 0.21 0.11 0.04 0.20 0.09 0.28 0.13 0.04 

HP 0.25 0.11 0.36 0.18 0.05 0.30 0.14 0.43 0.21 0.05 0.23 0.15 0.39 0.25 0.05 

LP 0.33 0.08 0.41 0.12 0.06 0.23 0.05 0.28 0.12 0.05 0.17 0.09 0.25 0.13 0.04 

NSMA 0.12 0.06 0.18 0.10 0.03 0.18 0.05 0.23 0.09 0.04 0.13 0.08 0.21 0.12 0.02 

Tie1 0.18 0.08 0.26 0.13 0.04 
     

0.29 0.09 0.38 0.14 0.04 

Tie2 0.17 0.08 0.25 0.12 0.04 0.20 0.05 0.25 0.11 0.05 0.23 0.09 0.32 0.15 0.04 

Tie3 0.15 0.08 0.23 0.12 0.03 0.19 0.05 0.24 0.10 0.04 0.16 0.07 0.23 0.13 0.03 
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Tie4 0.15 0.08 0.23 0.11 0.03 0.14 0.05 0.18 0.09 0.03 0.17 0.08 0.25 0.14 0.03 

Tie5 0.17 0.08 0.24 0.11 0.03 0.28 0.05 0.33 0.10 0.04 0.19 0.07 0.26 0.13 0.03 

Tie6 0.18 0.08 0.26 0.12 0.04 0.15 0.05 0.20 0.10 0.04 0.15 0.09 0.24 0.14 0.03 

Tie7 0.15 0.09 0.24 0.12 0.03 0.19 0.05 0.24 0.10 0.04 0.15 0.08 0.23 0.15 0.03 

DWT1 0.29 0.08 0.38 0.13 0.05 0.20 0.05 0.24 0.11 0.04 0.20 0.08 0.29 0.13 0.04 

DWT2 0.27 0.08 0.35 0.13 0.05 0.16 0.05 0.21 0.12 0.04 0.21 0.09 0.30 0.15 0.04 

DWT3 0.27 0.08 0.35 0.13 0.05 0.17 0.05 0.22 0.11 0.04 0.18 0.10 0.28 0.14 0.04 

DWT4 0.17 0.08 0.25 0.12 0.03 0.26 0.05 0.31 0.12 0.05 0.18 0.09 0.27 0.14 0.04 

DWT5 0.25 0.08 0.32 0.12 0.05 0.28 0.06 0.33 0.12 0.05 0.18 0.09 0.26 0.13 0.04 

 

However, range as well as standard deviation of MAE only illustrate stability. They do not 

indicate how good the performance is. Mean, to a certain degree, implies the average performance 

of a scheme. Most of the transformed schemes’ mean MAE are like the untransformed scheme 

except the schemes of CR, GHP, HP, and Tie1 (MAE difference is larger than 0.05). Unfortunately, 

the mean MAEs of CR, GHP, HP, and Tie1 are 0.05 larger than the untransformed scheme. In 

particular, the mean MAE of GHP and HP are larger than the untransformed scheme in all study 

areas, implying their poor performance.  

As described in Figure 6, about 50 percentage of the untransformed scheme’s (Original) MAE 

are less than 0.11 in Janesville area. Other schemes, like the PCA, TC, GLP, LP, and Tie4, Tie5, 

Tie7, DWT1-5, have similar number of tests which their MAEs are less than 0.11. NSMA has a 

significantly higher percentage (more than 60%) and the MAE is less than 0.11. Transformed 

schemes of DA1-3, ICA, BN, Tie1-3, and Tie have slightly less tests that their MAEs are less than 

0.11. The remaining transformed schemes, such as BN, CR, GHP, and HP, almost all tests’ MAE 

are larger than 0.11, indicating that they would weaken SMA results.   
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Figure 6 Boxplot of MAE of Janesville 

MAE distributions in Asheville are generally different from Janesville (Figure 7). There are 

higher percentages of MAE less than 0.1 in Asheville. However, the range of the schemes looks 

larger than Janesville as well. The mean MAE of untransformed scheme is about 0.1, which is 

close to the mean MAE of the Janesville study area. Schemes of DA1-3, GLP, and Tie1-6 have 

slightly better performances than the untransformed scheme, as their medians are lower than 0.1. 

NSMA performance is the best among the other schemes. More than 75% of the MAEs are less 

than 0.10. However, schemes of ICA, CR, GHP, HP, and DWT2-3 weaken SMA performance, 

resulting in larger percentage of high MAE values.    
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Figure 7 Boxplot of MAE of Asheville 

The median MAE of the untransformed scheme in Columbus (Figure 8) is about 0.13, which is 

worse than the performances in the Janesville and Asheville study areas. Schemes of GHP and HP 

illustrate extreme high MAEs in all study areas. Other schemes, such as DA1-2, ICA, CR, GLP, 

LP, NSMA, Tie3, Tie5, DWT1, DWT4 and DWT5, have higher percentage of MAEs that are less 

than 0.13. In particular, the performance of MNF and CR are much better than the untransformed 

scheme, as most of their MAEs are less than 0.13. DA3, PCA, TC, Tie1-2, Tie6-7, and DWT2-3 

have similar MAE distributions with the untransformed scheme.  
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Figure 8 Boxplot of MAE of Columbus 

Table 10 reveals that only NSMA shows improvement. Its mean MAE is lower than the 

untransformed scheme in all study areas. Paired-samples T test results illustrate that differences 

between NSMA and untransformed scheme are significant, as their p values are less than 0.05. 

Some schemes, such as DA1-2, MNF, GLP, and Tie3-5, have slightly lower mean MAEs in two 

study areas but have larger mean MAEs in another study area compared to the untransformed 

scheme. However, paired-samples T tests cannot indicate the significant difference since many of 

these transformed schemes’ p values are larger than 0.05. DA1-3, CR, NB, Tie4, and Tie 6-7 

perform better only in one study area and the other two areas weaken SMA results. Other 

transformed schemes, such as TC, BN, GHP, HP, Tie1, and DWT2-4 all decrease the accuracy as 

the mean differences are negative in all three study areas. However, significant differences 

between the untransformed scheme and transformed schemes except BN, GHP, and HP cannot be 

determined as their p values are larger than 0.05.  
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In addition, we counted the number of improved tests as well as the mean improved percentage 

for each scheme.  Generally, transformed schemes in Asheville perform better than the other two 

study areas as the number of improved tests is generally larger than the other two areas, such as 

the schemes of DA2-3, NSMA, Tie2, Tie4, Tie 6-7. The NSMA performs better than the 

untransformed scheme in Janesville, Asheville, and Columbus as 67%, 69%, and 62% of the tests 

have lower MAEs. The performance of CR is very unstable. The number of improved tests varies 

greatly with number of 11, 32, and 87 in Janesville, Asheville, and Columbus respectively. Only 

a few numbers of tests of GHP and HP perform better than the untransformed scheme. The 

improved percentages in each scheme are relative high. Many of the transformed schemes can 

have more than 30% mean improvement in the improved test.  

Table 10 Results of Paired-Samples T test and comparison  

Schemes Paired-Samples T Test Numbers of  

improved test 

Improved 

percentage (%) Mean difference Sig. (2 tailed) 

 
Jane. Ash. Col. Jane.  Ash. Col. Jane.  Ash. Col. Jane.  Ash. Col. 

DA1 -0.008 0.015 0.012 0.054 0.011 0.003 38 58 66 28.0% 47.3% 23.8% 

DA2 -0.008 0.020 0.002 0.043 0.001 0.618 36 67 53 29.3% 54.9% 27.2% 

DA3 -0.009 0.012 -0.003 0.059 0.058 0.429 40 59 46 31.0% 58.5% 23.1% 

ICA -0.009 -0.015 0.014 0.031 0.024 0.002 37 37 59 28.0% 55.0% 29.6% 

MNF -0.009 0.007 0.030 0.069 0.219 0.000 45 52 79 28.4% 43.2% 35.3% 

PCA 0.001 -0.001 -0.006 0.894 0.864 0.208 49 47 41 29.2% 53.0% 32.2% 

TC -0.001 -0.002 -0.001 0.908 0.763 0.890 52 49 49 28.6% 46.5% 21.5% 

BN -0.028 -0.014 -0.016 0.000 0.050 0.002 25 44 40 26.0% 44.6% 22.8% 

CR -0.087 -0.036 0.030 0.000 0.000 0.000 11 32 87 26.5% 43.6% 24.1% 

GHP -0.069 -0.102 -0.113 0.000 0.000 0.000 11 6 2 21.7% 15.6% 48.6% 

GLP -0.001 0.001 0.002 0.848 0.912 0.753 55 52 55 26.0% 21.2% 14.5% 

HP -0.073 -0.103 -0.112 0.000 0.000 0.000 10 5 1 19.8% 11.1% 11.7% 

LP -0.013 -0.013 0.005 0.061 0.100 0.318 46 46 59 25.6% 24.8% 13.5% 

NSMA 0.015 0.022 0.014 0.001 0.000 0.001 67 69 62 32.8% 38.9% 29.2% 
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Tie1 -0.014   -0.009 0.003  0.081 37  47 23.6%  21.6% 

Tie2 -0.012 0.002 -0.016 0.009 0.774 0.003 35 54 41 27.3% 59.3% 6.2% 

Tie3 -0.008 0.005 0.001 0.051 0.381 0.870 37 52 55 25.3% 18.5% 18.4% 

Tie4 0.003 0.016 -0.005 0.544 0.002 0.281 49 58 45 30.4% 48.5% 22.7% 

Tie5 -0.002 0.011 0.010 0.623 0.063 0.024 46 57 61 33.1% 51.8% 25.1% 

Tie6 -0.009 0.012 -0.008 0.054 0.049 0.093 39 54 46 27.6% 57.5% 24.9% 

Tie7 -0.009 0.008 -0.010 0.071 0.152 0.023 44 54 38 28.7% 51.1% 23.2% 

DWT1 -0.013 0.000 0.002 0.030 0.977 0.682 43 55 56 27.8% 46.4% 25.2% 

DWT2 -0.014 -0.010 -0.013 0.024 0.073 0.018 45 43 35 25.9% 37.2% 30.7% 

DWT3 -0.014 -0.007 -0.004 0.027 0.272 0.424 43 45 48 29.0% 38.5% 25.1% 

DWT4 -0.007 -0.007 -0.004 0.094 0.294 0.527 40 52 50 25.6% 37.0% 29.1% 

DWT5 -0.009 -0.008 0.002 0.133 0.232 0.711 43 44 57 30.3% 40.0% 23.2% 

 

3.4 Discussion 

Spectral variability, including between- and within-class variability, is widely present in 

remotely sensed imagery. Factors, such as materials’ spectral characteristics, geometry, and other 

environmental elements, contribute to differences of spectral reflectance (Portigal et al., 1997; 

Zhang et al., 2006). These spectral variabilities cause significant confusion in image classification. 

Efforts (e.g., weighted spectral mixture analysis, spectral transformation) are made by researchers 

to minimize the within-class variability and to maximize the between-class variability.  

Although many scholars have applied spectral transformation in their applications, there is still 

not a consensus about which transformed scheme should be used.  This study compared most of 

the spectral transformations and applied them in three different study areas to test their 

performance. Moreover, 100 times repeated tests with different endmembers’ spectra as well as 

tests in different regions could reveal the reliability of each scheme. Janesville, Asheville, and 

Columbus are far from each other. Residential areas, commercial areas, soil, tree, and grass are the 

major land feature types in each of these areas. These regions can be viewed as typical urban and 
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suburban environments in the U.S.A. Therefore, it is meaningful to compare these three locations 

with the same endmember model, to test the reliability of each transformed scheme.  

3.4.1 Linear or nonlinear transformation? 

Results in this study indicate that there is not a significant difference between linear and 

nonlinear spectral transformation. It cannot be concluded that linear (nonlinear) transformation is 

better than nonlinear (linear) in SMA. Theoretically, the linear transformation maintains the linear 

relationship while the nonlinear change the linearity. Li et al. (2002) stated that abundance 

estimation accuracy of the linear spectral mixture model (LSMM) decreased when the nonlinear 

wavelet transformation was applied. Nonlinear transformation might be good for the nonlinear 

spectral mixture model (NSMM) instead of LSMM. However, results in this study and the earlier 

results of Wu (2004) illustrate that this conclusion might not be true when the study area is located 

in an urban area, since NSMA in the three study areas as well as in the study of Wu (2004) 

performed better than the untransformed scheme. Further, statistical tests also implied their 

differences were significant.  

3.4.1.1 Linear transformed schemes 

Many linear spectral transformations have different performance in each study area. Results of 

DA1 and DA2 are slightly worse than the results in the study of Zhang et al. (2004). This can be 

attributed to the different data sources. Zhang et al. (2004) applied hyperspectral data while 

multispectral data were employed in this study. Hyperspectral data can provide more spectral 

information than multispectral imagery, which may be good for SMA unmixing. However, Zhang 

et al. (2004) did not provide a comparison with untransformed data, which make it difficult to 

evaluate the performance of the derivative spectral unmixing (DSU). DA can get rid of 

unnecessary signal components and highlight minor absorption features by using spectral 



 

 

 

67 

 

smoothing and the feature reduction method.  However, it can also raise the possibility of ignoring 

essential spectral features (Youngentob et al., 2011). Different locations may have different 

essential spectral features. DA may miss different features in different study areas. Thus, the 

performance of DA varies from place to place. Results in this study also illustrate an unstable 

performance of DA, since DA only performed better in some regions while weakening the result 

in other areas. 

ICA showed an opposite result compared to the study of Wang and Chang (2006). It did not 

perform better than the second-order statistics-based methods like PCA and MNF. That may be 

due to the theory of ICA--that it only conserves crucial and critical information such as anomalies, 

endmembers, and small targets instead of variance which preserved by PCA and MNF (Wang and 

Chang, 2006). However, there is not a clear pattern about the ICA, PCA, and MNF, as the results 

indicated that their performance varied from place to place.  

The performance of PCA, MNF, TC, and BN are not satisfactory in this study. PCA evaluates 

the components based on eigenvalues while the MNF employs the signal-noise ratio (SNR) to rank 

the importance of each components. The limitation of PCA and MNF may be attributed many 

subtle material substances in Landsat imageries not being identified by second-order statistics 

(Wang and Chang, 2006), which may provide confusion between classes.  The last three bands of 

PCA, TC and MNF contain little variance, so they may reduce the between-class variance and 

increase the within-class variance, adding more confusion during the classification. BN does not 

seem to be necessary in SMA since it weakened the results in all three study areas.  

DWT’s performance conflicted with the result of Li (2004). The differences between this study 

and Li (2004)’s study are due to the land cover types, data sources, wavelet types, and endmember 
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model. Li employed higher-level wavelet types (e.g., Db3, Sym3) while only lower-level wavelet 

transformation (e.g., db1, Sym2) is applied. Further, the land cover types in Li (2004)’s study are 

agriculture lands that contains soybean, large crabgrass, and soil. Only two and three endmember 

models in Li’s study were tested while this study used an applied four-endmember model. Another 

major limitation about Li (2004)’s study is that he did not test the untransformed scheme, which 

limits knowledge of how DWT improved the SMA result. Paired-samples T tests in this study 

demonstrated that lower-level DWT might not be good for SMA as they could not improve the 

accuracy.  

3.4.1.2 Nonlinear transformed schemes 

CR’s performance varies dramatically. Result in Columbus are similar to the result of 

Youngentob et al. (2011). However, the Janesville and Asheville results demonstrate the opposite. 

Though CR produced a promising result in chemical concentrations estimation in leaves by 

removing irrelevant background reflectance and emphasizing absorption features of interest, it did 

not show a stable performance in this study. This may be due to the difference of spectral 

characteristics between the leaves and impervious surface and the complexity of spectral 

reflectance in urban and residential areas.  CR can enlarge the band depth differences, reducing 

the error in spectroscopic estimation of vegetation quality (Mutanga et al., 2005). However, the 

variability in impervious surface area, both of high albedo and low albedo, are larger than 

vegetation, implying CR may enlarge the within-class variance as well. Some scholars state that 

CR may introduce more signature to noise interference, increasing the within-class variability of 

the same class (Carvalho Junior and Guimaraes, 2001). That may explain why CR weakened the 

SMA results in Janesville and Ashville.  
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Spatial filters, especially HP and GHP, are not suitable for SMA as they all reduce the large 

scale accuracy in all three study areas. GLP and LP still provided limited improvement in some 

areas. However, statistically tests could not indicate the significance. Therefore, spatial filters may 

be good for the edge detection or image smoothing instead of SMA.  

NSMA can address the confusion between impervious surface areas and soil effectively. 

Between-class variance between soil and impervious surface increased after NSMA. Moreover, 

the effect of shade can be removed by the brightness normalization. Both aspects can improve the 

accuracy of SMA. Janesville and Asheville’s landscapes are like Columbus, and NSMA has 

similar performance in these three study areas, proving the stability of NSMA in urban and 

suburban environments.   

3.4.2 Change after transformation  

Linear and nonlinear transformations show both better performance and drawbacks in SMA. It 

is impossible to conclude which type of transformation, linear or nonlinear, should be used in SMA. 

Therefore, the change of each transformed scheme needs exploration. Many transformed schemes’ 

objectives are to minimize the within-class variance and to enlarge the between-class variance. 

However, there is not an index to quantify the change of between- and within-class variance. 

Therefore, a between-class and within-class variance index (BWVI) was constructed to explore 

the change of within- and between-class variance. The BWVI is a ratio between the sum of 

differences of between- and within-class variance and sum of total variance. Theoretically, higher 

between-class variance and lower within-class variance will lead to a higher value of BWVI. 

BWVI can be expressed as equation (29).  
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reflectance of endmember j’s sample in band k. kR is the mean reflectance of all endmember’s 

sample in band k. b is the number of band. k
Bv , kWv  and kTv  are the between-class variance, 

within-class variance, and total-class variance in band k. m is the number of sample.  

3.4.3 Which transformation to choose? 

The relationships between BWVI and mean MAE were explored in all three areas. Regressions 

indicate significant linear relationships between these two parameters with p values of 0.049, 0.043, 

and 0.000 in Janesville, Asheville, and Columbus, respectively (Table 11, Figure 9, Figure 10, 

and Figure 11). In addition, linear models in the three study areas had similar patterns. Constant 

values are positive and b1 values are negative in all study areas. Moreover, the scale of the 

corresponding parameters are close to each other, implying that the relationship between BWVI 

and MAE is reliable.    

Table 11 Linear regression summary 

Study areas Model Summary  Parameter Estimates 

R Square F df1 df2 Sig.  Constant b1 

Janesville 0.147 4.291 1 25 0.049  0.136 -0.004 

Asheville 0.159 4.550 1 24 0.043  0.124 -0.006 

Columbus 0.567 32.765 1 25 0.000  0.166 -0.008 

The dependent Variable: MAE. The independent variable: BWVI. 
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Figure 9 Scatterplot of MAE and BWVI of Janesville 

 
Figure 10 Scatterplot of MAE and BWVI of Asheville 
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Figure 11 Scatterplot of MAE and BWVI of Columbus 

With the relationship between BWVI and MAE, the decision of which transformation to choose 

in a specified area can be made. A transformed scheme with a higher BWVI value will have a 

higher possibility to acquire low MAE (Figure 9, Figure 10, and Figure 11). Thus, if a transformed 

scheme has a higher BWVI, it may perform better in the SMA. In this case, researchers only need 

to compare the BWVI values instead of calculating the MAEs to decide which scheme to use in 

their applications. This will save a lot of time by reducing the unmixing calculation and MAE 

calculations. Researchers can find out the most accurate scheme quickly with the BWVI.     

3.4.4 Limitations and future work 

This study only focused on multispectral images and humid urban regions. More data sources, 

such as hyperspectral images and coarse spatial resolution images, and more study areas, e.g., arid 

and semi-arid areas, should be tested in the future. Further, different endmember models, such as 

three endmember models, need to be examined in the future.  
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3.5 Conclusions 

This study examined the performance of several linear and nonlinear transformations in 

Janesville, Asheville, and Columbus respectively. Many transformed schemes except NSMA 

could not illustrated a stable performance in all three study areas. Some transformed schemes only 

improved the SMA in one or two study area but weakened the results in other regions. Some 

transformed scheme weakened the performance in all three study areas. NSMA showed  reliable 

improvement in all three areas. Paired-samples T tests also indicated NSMA’s significance in 

reducing MAE. Although some transformed schemes’ mean MAE was less than the untransformed 

scheme, statistically tests demonstrated that these improvements were not significant. Both linear 

and nonlinear transformed schemes have advantages and disadvantages in subpixel unmixing. It 

is not possible to select the spectral transformed scheme based on linearity. It is time consuming 

to evaluate the performance of a transformed scheme by calculating its MAE. Therefore, this study 

constructed an index to guide the selection of a transformed scheme. The BWVI was designed 

based on a ratio between the sum of differences of between- and within-class variance and sum of 

total variance. Results demonstrated that there was a negative linear relationship between BWVI 

and MAE. Larger BWVI has a higher possibility to acquire lower MAE. Researchers can calculate 

the BWVI instead of MAE to decide if it is necessary to apply spectral transformation in SMA, 

which will save a lot of time and work by reducing the number of unmixing calculations. 
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CHAPTER4 DEVELOPMENT OF A CLASS-BASED MULTIPLE 
ENDMEMBER SPECTRAL MIXTURE ANALYSIS (C-MESMA) 

APPROACH FOR ANALYZING URBAN ENVIRONMENTS3 

4.1 Introduction 

Spectral mixture analysis (SMA) has been widely applied to address the mixed pixel problem, 

a typical issue associated with medium- and coarse-resolution remote sensing imagery (Powell et 

al., 2007; Roberts et al., 1992; Sabol et al., 1992; Settle and Drake, 1993). SMA assumes that each 

image pixel is comprised of several land cover classes, each of which has distinctive spectral 

signatures (Settle and Drake, 1993; Tompkins et al., 1997). Traditional SMA approaches, with a 

fixed set of endmembers, perform reasonably well in areas with relatively homogenous land 

covers, mostly due to the ease of identifying representative endmembers. In urban and suburban 

environments, however, inter-class and intra-class spectral variability widely exist (Kumar et al., 

2013; Roth et al., 2012; Settle, 2006; Thorp et al., 2013; Youngentob et al., 2011). Therefore, the 

capability of traditional SMA models to deal with complex urban and suburban landscapes has 

been questioned, as the few endmembers may not be able to represent their corresponding land 

cover classes (Radeloff et al., 1999; Song, 2005; Tang et al., 2007).  

As an improved version of SMA, multiple endmember spectral mixture analysis (MESMA) 

developed by Roberts et al. (Roberts et al., 1998) has successfully addressed the issues of 

endmember variability, and been widely applied to numerous fields, including impervious surface 

area (ISA) extraction, vegetation detection, and water management, etc. With MESMA, modeling 

errors, such as root mean square of the residual error [(RMSRE, (Tan et al., 2014)], have been 

typically considered as important criteria for selecting the best-fit model (Roberts et al., 1998). 

Generally, with the same number of endmembers, a model with a smaller RMSRE is chosen due
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to higher modeling accuracy. In the case of the availability of different endmembers’ numbers, the 

model with the fewer number of endmembers is selected when their RMSRE ’ difference is trivial 

(Song, 2005). For successful spectral unmixing, the selection of an appropriate endmember set is 

essential, and the selection may greatly impact the performances (Somers et al., 2011). In 

particular, if an endmember is mistakenly included in an SMA model, its abundance is likely to be 

over-estimated [e.g. greater than zero, (Jia et al., 2010)]. Moreover, with the minimization of 

RMSRE as the criterion, some erroneously selected endmembers may have a better fit due to the 

existence of within-class and between-class spectral variability. As an example, spectral signatures 

of ISAs are similar to those of dry soils (Deng and Wu, 2013b; Lu and Weng, 2009), and they are 

often mistakenly considered as endmembers in farmlands (Deng et al., 2012), where major land 

covers should only include vegetation and soil. This is primarily due to the selection of the ISA-

vegetation model instead of the vegetation-soil model if only RMSRE are considered. As a result, 

the abundance of ISAs in farmlands is mistakenly over-estimated while that of soil is 

underestimated by MESMA.  

Recently, several approaches have been proposed to address the abovementioned deficiency.  

Franke et al. (Franke et al., 2009) proposed a hierarchical multiple endmember spectral mixture 

analysis to divide an image into several land cover types (several levels) to limit the spatial 

distribution of endmembers. Sub-classes’ fractions were extracted from the upper level 

classification results. They found that the distribution of endmembers could be well constrained 

from the results obtained from the upper level, thereby improving classification accuracy. Liu and 

Yang (2013) introduced a similar method which classified the study area into rural and urban 

subsets with the assistance of road network density. Then MESMA was carefully applied to urban 

subsets using three types of endmembers (vegetation, ISA, and soil), while a supervised 
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classification model was employed for the rural area. Results illustrated that this method could 

minimize the spectral confusion between some urban land cover classes and agricultural 

landscapes.  

Although these two methods can spatially constrain the distribution of endmembers, they 

cannot fully address the mixed-pixel problem. A critical limitation of hierarchical MESMA 

(Franke et al., 2009) is that a pixel at level 1 is assigned to the ISA or the pervious surface class 

based on their corresponding fraction values resulted from a linear SMA. For instance, at level 1, 

a pixel is assigned to the impervious class with the ISA fraction higher than 50%, otherwise it is 

assigned to the pervious class. In other words, mixed pixels still exist in both pervious surface and 

ISA classes. Results from hierarchical MESMA is promising. However, these outcomes were only 

from high spatial resolution imagery (4 meters). This method still needs to be verified in the middle 

and coarse resolution images. In Liu and Yang’s research (Liu and Yang, 2013), a vegetation cover 

threshold was utilized to separate vegetation and non-vegetation. This threshold, however, is pixel-

based, which would also contain mixed pixels in both vegetation and non-vegetation classes.   

To address these problems, this chapter proposes a land cover class-based MESMA (C-

MESMA) to map the land cover fractions of urban/suburban environments using a Landsat image. 

This method was developed through combining supervised classification and MESMA techniques. 

At the first level, a support vector machine (SVM) was applied to classify the study area into six 

land cover classes, three pure land cover classes (e.g., ISA, vegetation, soil) and three mixed land 

cover classes (e.g., ISA-vegetation, vegetation-soil, and vegetation-ISA-soil). For pure land cover 

classes, a fraction value of one is assigned to the corresponding class. For mixed land cover classes, 

a MESMA was implemented with corresponding spectral libraries to extract each endmember’s 

fractional coverage. Finally, fractions of ISA, vegetation, and soil of each land cover class were 
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merged together to produce final fractional maps of ISA, vegetation, and soil. Performance of the 

developed C-MESMA was tested through comparing to results of the standard MESMA.  

The next section introduces the study area and data sources. Section 3 presents the method of 

C-MESMA, as well as comparative analyses with traditional MESMA. Results of C-MESMA and 

accuracy assessment are reported in Section 4. Finally, discussion and conclusions are provided in 

Sections 5 and 6.  

4.2 Study area and data source  

Two counties (Figure 12): Milwaukee and Waukesha in Wisconsin, United States were 

selected as the study area. Geographically, both counties are in the Great Lake Region with a 

humid continental climate. They cover about 2,665km2 with a population of 1.3 million (DeNavas-

Walt et al., 2009). Milwaukee is dominated by urban and suburban land uses (e.g., commercial, 

residential and industrial area etc.), while Waukesha is mostly covered by suburban and rural lands 

(e.g., farmland and forest). A large amount of ISA, bare soil, and vegetation exist in this study 

area, making it an ideal site for examining the effectiveness of the proposed C-MESMA model.  

A Landsat 7 Enhanced Thematic Mapper plus (ETM+) image (path 23, row 30) acquired on 

September 11th, 2001 was used as the primary data. Six spectral bands (except the thermal band) 

with a spatial resolution of 30 m were utilized for C-MESMA. Digital numbers (DNs) of the image 

were converted into calibrated radiance image using the Landsat calibration model provided by 

ENVI, a commercial remote sensing image processing software package. An atmospheric 

correction model, Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

(Atmospheric Model: Mid-Latitude Summer, Aerosol Model: Rural, Aerosol Retrieval: 2-Band 

(K-T), Output Reflectance Scale Factor: 1), was applied to accurately compensate for atmospheric 
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effects (FLAASH, 2009). A Digital Orthophoto Quarter Quadrangle (DOQQ, Scale: 1: 24,000) 

image of Milwaukee and Waukesha (April 13, 2000) was utilized as the reference data to evaluate 

the performance of supervised classification and the MESMA results. Water area was masked with 

a supervised classification method before applying C-MESMA. All the images were re-projected 

to the Universal Transverse Mercator (UTM) with zone 16 and datum WGS84. 

 

Figure 12 Study area. (A) United States. (B) Wisconsin. (C) False color of Landsat 7 ETM+. 

(D) NDVI. (E) BCI. (F) RNDSI.   

4.3 Methods 

C-MESMA includes two processes: supervised classification and MESMA (see Figure 13). 

Specially, supervised classification comprises the spectral indices generation and layer stacking 
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while the MESMA contains subpixel unmixing (MESMA) and fraction image merging. Three 

spectral indices: normalized difference vegetation index (NDVI) (Rouse et al., 1973), biophysical 

composition index (BCI) (Deng and Wu, 2012), and ratio normalized difference soil index 

(RNDSI) (Deng et al., 2015) were calculated and stacked with the Landsat reflectance image. 

Spectral characteristics of all land cover classes were expected to be enhanced by adding these 

three spectral indices (Shao and Liu, 2014). Then, a support vector machine (SVM) was applied 

to the stacked image with six classes of elaborately selected training samples. They were selected 

with the reference of DOQQ image to avoid the potential mixed pixel and to validate the 

correctness of the sample. These training samples contain three pure land cover classes: ISA (60 

samples), soil (37 samples), and vegetation (60 samples), and three mixed land cover classes: 

vegetation-ISA (60 samples), vegetation-soil (60 samples), and vegetation-ISA-soil (26 samples). 

The ISA-soil land cover type was merged into the class of vegetation-ISA-soil as very few pixels 

belong to the ISA-soil land cover type. The whole study area was partitioned into six layers based 

on the SVM results. Since the land cover classes of ISA, vegetation, and soil were considered as 

pure pixels, they were not involved in the unmixing process. Instead, fraction value of one was 

assigned to the corresponding class directly. MESMAs were applied to the three mixed land cover 

classes with corresponding spectral libraries. Three fractional maps of ISA, vegetation, and soil 

were finally produced through merging the pure land cover classes resulted from SVM and the 

fraction images acquired from MESMA. Figure 13 shows the flowchart of the C-MESMA. 



 

 

 

80 

 

 

Figure 13 Flowchart of class-based MESMA. High albedo, low albedo, and ISA were 

combined as ISA. Forest, planted land, and vegetation were combined as vegetation. Soil in soil 

pure land cover class and soil in fraction images were combined as soil. 

4.3.1 Supervised classification 

Spectral indices have been widely applied to remote sensing imagery to achieve better 

performances for image classification and visual interpretation (Zhang, 2010). In this study, this 

strategy was applied to emphasize the spectral signatures of different land cover classes, aiming to 

mitigate spectral confusion between high albedo ISA and dry soil, low albedo ISA and water, as 

well as shadow and water covers.  

Three spectral indices, including biophysical composition index (BCI), normalized difference 

vegetation index (NDVI), and ratio normalized difference soil index (RNDSI), were stacked into 

the original reflectance bands of Landsat image. BCI, which is calculated by a reexamination of 

Tasseled Cap Transformation, can enhance the ISA information in the urban/suburban area. It 

shows a better performance to reduce soil effect when compared to the normalized difference ISA 
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index (NDISI) and normalized built-up index (NDBI) (Deng and Wu, 2012). Normalized 

difference vegetation index (NDVI) is a spectral indicator that represents vegetation cover and 

condition. It is the most successful attempts to quickly identify vegetation area and their 

“condition” from remotely sensed imagery (Rouse et al., 1973). Further, RNDSI can suppress ISA 

and vegetation values, as well as highlight soil information (Deng et al., 2015). With each of these 

indices, only one land cover can be emphasized while others are suppressed, leading to enhanced 

differences between land cover types. These three indices can be calculated from Equations (30-

32). 
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BNIR and BRED refer to the reflectance in near-infrared and red bands respectively. 
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where band7 and band2 are the seventh and second band of Landsat TM/ETM+ image. Xmax and 

Xmin are the maximum and minimum values of corresponding bands respectively. 

SVM is a widely used approach for the classification of remotely sensed imagery (Melgani 

and Bruzzone, 2004). Its objective is to find the hyperplane that separates the dataset into a discrete 

predefined number of classes in a fashion consistent with the training samples (Mountrakis et al., 

2011). A large number of applications have shown that SVM can produce a better performance 

than other pattern recognition techniques, like maximum likelihood and neural network classifiers 

(Melgani and Bruzzone, 2004). Therefore, a SVM classification method was adopted in this 

research. With these three spectral indices (see Figure 12), as well as six Landsat spectral bands, 

an SVM classification was performed to classify the image into six land cover classes, namely 

ISA, vegetation, soil, ISA-vegetation, vegetation-soil, and vegetation-soil-ISA. Training samples 

were acquired from the Landsat image with a careful check from DOQQ image. In a total of 330 

reference samples (55 samples for each class) were employed to calculate the confusion matrix 

and to evaluate the performance SVM classification. 

4.3.2 MESMA 

4.3.2.1 Endmember selection and spectral library construction 

Endmember selection is a critical step for successfully implementing SMA (Elmore et al., 

2000). Deciding the number of endmembers and their corresponding spectral signature is the first 

step to select proper endmembers. In this study, endmembers were extracted through choosing 

“pure” pixels in the Landsat image. The endmembers were selected with the following steps, 

including: 1) examining the entire study area carefully through visualizing the DOQQ image, 2) 
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figuring out the number of endmembers in this study area, 3) overlapping the Landsat ETM+ image 

with the DOQQ image, 4) identifying regions containing corresponding endmembers, 5) extracting 

ETM+ pixels that locate in the center of each individual region, 6) comparing these selected pixels 

to the pixels of same location in the SVM image and removing erroneously labeled pixels, 7) 

averaging the spectra of selected pixels of each endmember and employing the mean spectrum as 

endmember. Finally, five endmembers: forest, planted lands, high albedo features, low albedo 

features, and soil, were selected to build the spectral library. As it is unnecessary to perform an 

MESMA for pure land cover types, three spectral libraries were constructed, each of which is 

corresponding to each mixed land cover class (e.g. ISA-vegetation, vegetation-soil, and 

vegetation-soil-ISA) (see Table 12). Spectral reflectance values and spectral indices of each 

endmember are shown in Figure 14.  

Table 12 Spectral libraries and endmembers 

Libraries (Number of 

endmember) 

Endmembers 

ISA-Vegetation (4) High albedo, Low albedo, Forest, Planted land 

Vegetation-Soil (3) Forest, Planted land, Soil 

Vegetation-Soil-ISA (5) 

High albedo, Low albedo, Forest, Planted land, 

Soil 
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Figure 14 Spectral reflectance(A) and Spectral indices (B) of each endmember.  

 

4.3.2.2 Model Construction 

SMA assumed that a spectrum of a mixed pixel is combined by several endmembers’ spectra. 

It centers on applying a mathematical method to derive the fraction of each endmember. Linear 

SMA is one of the most commonly used SMA with the assumption that each land cover was 

combined linearly to form a pixel’s spectrum. LSMA can be expressed as equation (34). 

iik

n

k

ki ERRfR 
1

                                                                                                                  (34) 

Where i = 1,…, m (m: number of bands); k = 1,…, n (n: number of endmembers); Ri is the spectral 

reflectance of band i; fk is the proportion of endmember k within the pixel; Rik is the known spectral 

reflectance of endmember k within the pixel on band i; and ERi is the estimation error for band i. 

A fully constrained least squares solution [24] was applied which assuming that the following two 

conditions are satisfied simultaneously: 
1

1
n

k

k

f


 , and 10  kf . 

Although simple, LSMA is not suitable for complex urban environments with many manmade 

materials. As only one endmember is allowed for each cover type, LSMA cannot adequately 

address spectral variability in complex urban areas (Okujeni et al., 2013; Quintano et al., 2013; 
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Roberts et al., 2012; Song, 2005). Multiple Endmember Spectral Mixture Analysis (MESMA), 

which was proposed by Roberts (Roberts et al., 1998), is an improved method accounting for 

within-class and between-class spectral variability. The number of spectra is not limited in the 

spectral library and the endmember combination can vary from pixel to pixel, which effectively 

solves the spectral variability issue in LSMA. In this study, MESMA was applied to three mixed 

land cover types with their corresponding spectral libraries. RMSRE (equation 35) was utilized as 

the parameter to select the best-fit endmember model. In other world, it is used to evaluate the 

performance of the endmember combination. Here the abbreviation of RMSRE is used in order to 

differentiate the root mean square error (RMSE) which was utilized for assessing the accuracy 

between estimated and reference fractions in MESMA results.   

2

1

N
i

i

ER
RMSRE

N

                                                                                                                 (35)  

where ERi is estimation error of band i, which was calculated using equation (5), and N is the total 

number of band. 

Generally, a model with more endmembers may lead to a lower RMSRE when compared to 

that with fewer endmembers. However, inappropriate endmembers may be included, and therefore 

lead to erroneous estimation of fractional land covers. To address this problem, a model with fewer 

endmembers may be selected as the best-fit model if, when compared to the model with a larger 

number of endmembers, the RMSRE difference is small (e.g. less than 0.1) (Franke et al., 2009). 

With land cover fractions derived from MESMA, vegetation fractions were derived as the 

summation of those of forest and planted lands, and ISA fractions were calculated through adding 

the fractions of low-albedo and high-albedo materials. Finally, the fractional land cover maps were 

generated through combining the fraction images resulted from SVM and MESMA. 
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4.3.3 Accuracy assessment  

Accuracy assessment is a required procedure for evaluating the model performance. 

Traditional accuracy assessment methods, such as confusion matrix, Kappa coefficient, and overall 

accuracy, however, are not applicable for subpixel-based mixture analysis (Finn, 1993; Foody, 

1996, 2002). The most commonly used approach is root mean square error (RMSE) which 

compares the fraction values between reference and modeled results. Reference fraction values 

were measured from the DOQQ imagery in the same sample sites as samples in MESMA result. 

In this study, only the fraction of ISA is chosen to be analyzed, owning to the facts that 1) soil and 

vegetation change extremely between seasons and 2) the acquisition date of DOQQ image was not 

perfectly matched to the date of the Landsat image. Therefore, accuracy analysis of vegetation and 

soil was ignored. RMSE can be written as equation (36). 
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                                                                                                             (36) 

Where ˆ
iX is the modeled ISA fraction value of sample i, and

iX is the reference ISA fraction value 

of sample i, and N is the number of samples.  

In total, 351 samples were selected (vegetation: 62, soil: 20, ISA: 32, vegetation-soil: 37, 

vegetation-ISA: 128, and vegetation-ISA-soil: 72) using a stratified random strategy. Each sample 

was designed as 90m×90m (3 pixels × 3 pixels in Landsat image) to mitigate the impact of 

geometric errors introduced in data acquisition and projection transformation. Fractions of ISA in 

the DOQQ image were extracted by digitalizing ISAs within the sample (See Figure 15). For 

examining the performance of C-MESMA, we identified eleven categories, including all samples, 

ISA samples, vegetation samples, soil samples, vegetation-soil samples, vegetation-ISA samples, 
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vegetation-ISA-soil samples, ISA-excluded samples, ISA-included samples, all pure land cover 

type samples, and all mixed land cover types samples. The accuracy of each category was also 

compared to the corresponding results of the traditional MESMA. 

 

Figure 15 Illustration of reference land cover fraction calculation. Background is a portion of a 

DOQQ image; red rectangle represents the 90m×90m (3×3 pixel in Landsat image) sample; 

green region is the area with impervious surfaces. The reference fraction was calculated through 

dividing the area of impervious surfaces by the area of the sample (8100 m2).  

4.4 Results 

4.4.1 SVM Classification 

With SVM, the whole study area was classified into six land cover classes. Classification 

results (see Figure 16) indicate that ISA areas were mainly located in the Milwaukee County, 

especially in the downtown area and large shopping malls. Vegetation was primarily distributed 

in the southern region. Soil, which was much more dispersed than vegetation and ISA, was majorly 

distributed in the rural area. Vegetation-ISA was the major land cover type in the residential area, 

which was located outside the central business district (CBD) region. Vegetation-soil areas mainly 

occupied the farmland area. Vegetation-ISA-soil areas were mainly close to roads and residential 

lands.  
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Confusion matrix and Kappa statistics were calculated to illustrate the accuracy of SVM 

classification. With the overall accuracy of 87.58% and Kappa coefficient of 0.85, SVM result is 

acceptable for further analysis. Details of classification accuracy are shown in Table 13.  

 

Figure 16 Result of SVM. ISA: impervious surface area, V: vegetation, S: soil, V-I: 

vegetation-ISA, V-S: vegetation-soil, V-I-S: vegetation-ISA-soil. Water was marked before 

applying the SVM. 

Table 13 Confusion matrix of SVM classification 

 Reference Data 

Classified IS V S I-V V-S V-I- Tota User Acc. 

ISA 54 0 6 2 1 1 64 84.38 

V 0 55 0 2 12 0 69 79.71 

S 0 0 43 0 1 0 44 97.73 

I-V 0 0 3 50 7 1 61 81.97 

V-S 0 0 3 1 34 0 38 89.47 

V-I-S 1 0 0 0 0 53 54 98.15 

Total 55 55 55 55 55 55 330  

Prod. Acc. 98. 10 78.1 90.9 61.8 96.3   

Overall Accuracy=87.58%        Kappa Coefficient=0.85 

Note: ISA, V, S, I-V, V-S, and V-I-S mean classes of impervious surface area, vegetation, 

soil, impervious surface-vegetation, vegetation-soil, and vegetation-impervious surface-soil 

respectively. 
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4.4.2 MESMA 

Five endmembers, including planted land, forest, high albedo, low albedo features, and soil, 

were selected to build the spectral libraries of corresponding land cover types. For each mixed land 

cover type (i.e. ISA-vegetation, vegetation-soil, and vegetation-soil-ISA), an individual MESMA 

was applied to estimate the fraction of these endmembers. Subsequently, the ISA fractional map 

was generated through adding the fractions of low and high albedo features for these mixed land 

cover types, and merging the fractional maps for the pure land cover classes (see Figure 17A). 

Similarly, the vegetation fractional map was derived through adding the fractions of forest and 

planted lands for the mixed land cover types, as well as merging those for the pure classes (see 

Figure 18A). Finally, the soil fractional map was created through merging the fractional soil maps 

for the mixed and pure soil fractional maps (see Figure 19A). For a better comparative analysis, 

the resultant fractions of ISA, vegetation, and soil generated from the traditional MESMA with the 

same endmembers, data source, and unmixing algorithm were also shown in Figure 17B, Figure 

18B, and Figure 19B. 

Visualization of the ISA fractional map (Figure 17A) suggests that high percentage of ISAs 

(%ISA) is concentrated in the CBD of Milwaukee City and large shopping malls. Besides, major 

roads and highways also contribute to high values of %ISA as well. Medium %ISA mainly 

dominated residential areas surrounding the CBD of Milwaukee. Comparatively, a consistent 

spatial pattern of ISA distribution was found with C-MESMA and MESMA. Major differences, 

though, lie in the ranges of the estimated %ISA values in urban and rural areas. With C-MESMA, 

higher %ISA values were obtained in urban areas, while lower %ISA values were derived in rural 

areas (see Figure 17A and B). Taking rural areas as an example, the %ISA of planted lands and 

forest areas is near zero with C-MESMA, while the values are approximately 20% with MESMA. 



 

 

 

90 

 

This overestimation is primarily due to the mistakenly inclusion of ISA endmembers in MESMA. 

Conversely, for urban areas, %ISA values are higher with C-MESMA, mostly due to the 

exclusions of soil members. 

In addition to %ISA, there are also differences in terms of the estimation of vegetation and 

soil fractions (see Figure 18 and Figure 19). It appears that, with C-MESMA, the fractions of 

vegetation are relatively higher when compared to those derived from MESMA (see Figure 18). 

For soil fractions, it appears that less soil was estimated in urban Milwaukee, and a higher amount 

of soil was derived in rural areas with C-MESMA (see Figure 19).  

 

Figure 17 ISA fraction. (A) ISA fraction of C-MESMA. (B) ISA fraction of MESMA. 
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Figure 18 Vegetation fraction. (A) Vegetation fraction of C-MESMA. (B) Vegetation fraction 

of MESMA. 
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Figure 19 Soil fraction. (A) Soil fraction of C-MESMA. (B) Soil fraction of MESMA. 

4.4.3 Accuracy assessment and comparative analysis 

In addition to the visual examinations of the fractional maps of ISA, vegetation, and soil, 

quantitative accuracy assessment was also applied. As discussed in Section 4.3, the accuracy of 

%ISA estimation for eleven groups of samples was examined, namely ISA, vegetation, soil, 

vegetation-soil, vegetation-ISA, vegetation-ISA-soil, ISA-excluded, ISA-included, all pure land 

cover types, and all mixed land cover types. RMSE of each group of samples was calculated for 

both C-MESMA and MESMA (see Figure 20). Results revealed that, for almost all categories 

except soil, RMSE values of C-MESMA were significantly lower than those of MESMA. With C-

MESMA, the overall RMSE was 0.12, which is significantly lower than that (0.18) with MESMA. 
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RMSE of soil with C-MESMA (0.35) was slightly higher than that in MESMA (0.34). Of course, 

both were relative high compared to those of the other land cover types, indicating the difficulty 

of separating ISA and bare soil. In addition to accuracy assessment for all samples, with C-

MESMA, RMSEs of vegetation, vegetation-soil, vegetation-ISA-soil, ISA-included, and mixed 

land cover samples were less than 0.1. Especially, the RMSE of vegetation land cover type was 

0.01, meaning that almost all fractions in the C-MESMA matched perfectly with the reference 

data. RMSEs in the corresponding land cover types of MESMA were at least 0.05 higher than 

those with C-MESMA. The RMSEs of ISA, vegetation-soil, ISA-excluded, and pure pixel with C-

MESMA were a little bit high, but their values were much lower than those with MESMA. In 

summary, these comparative analyses show that the performance of C-MESMA is better than 

MESMA for almost all land cover types in this research.  

 

Figure 20 RMSEs of ISA in C-MESMA and MESMA methods. All: global RMSE; ISA: ISA; 

V: vegetation; S: soil; V-S: vegetation- soil; V-I: vegetation-ISA; V-I-S: vegetation-ISA-soil; N-

ISA: ISA-excluded; I-ISA: ISA-included; PURE: pure land cover type (ISA, soil, and 

vegetation); MIXED: mixed land cover types (vegetation- soil, vegetation-ISA, and vegetation-

ISA-soil) 
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To further investigate the relationship between the estimated fractions in the result of C-

MESMA and the reference data, a scatter plot was employed to display their correlation (Figure 

21). The trend line which indicates the linear relationship showed that the slope was close to one, 

and the R square value was 0.88, indicating a significant correlation between the estimated 

fractions and the reference values.  

 

Figure 21 Scatter plot of ISA fraction 

 4.5 Discussion 

Although MESMA allows endmembers and their combinations to vary from pixel to pixel, 

the “best-fit” model may still choose an inappropriate endmember set, majorly due to inter-class 

and intra-class variations of endmember spectra. As a result, erroneous fractional estimates of land 

covers may be obtained due to the mistakenly inclusion or exclusion of endmembers in the model 

(Jia et al., 2010). Unfortunately, few SMA/MESMA techniques have addressed this problem in 

previous studies, and most scholars ignore the fact that endmembers are not equally distributed 

spatially. Franke et al. (Franke et al., 2009) and Liu and Yang (Liu and Yang, 2013) did partially 

address this limitation by dividing the whole study areas into several regions, which, to some 

degree, restricts the distribution of endmembers. Their methods are also with limitations. Mixed 
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pixels cannot be fully separated with the classes of impervious surface and non-impervious surface 

areas/vegetation, thereby leading to the misclassification in the resultant segmented images. To 

accommodate the mixed pixel problem, mixed land cover types were introduced in the SVM 

classification. That is, the entire study area is classified into three pure land cover types (e.g., ISA, 

soil, vegetation) and three mixed land cover types (e.g., ISA-vegetation, soil-vegetation, and ISA-

soil-vegetation). With this approach, a major limitation of pixel-based hard classifications, that 

only one land cover class can be assigned to a pixel (Deng et al., 2012; Tang et al., 2007), has been 

successfully addressed by allowing the assignment of pixels into a mixed land cover class.   

C-MESMA not only constrains the spatial distribution of endmembers but also improves the 

computational efficiency. An issue of the traditional MESMA approach is the employment of a 

global spectral library for an entire study area. Although it can address the inter-class and intra-

class spectral variability to some degree (Youngentob et al., 2011), the criteria of selecting the 

best-fit endmember model still need to be verified systematically, as it may include inappropriate 

endmembers . With C-MESMA, three separated spectral libraries are built based on corresponding 

mixed land cover types. On the one hand, the distribution of endmembers is restricted in the 

corresponding land cover classes, and inappropriate endmembers are excluded from the unmixing 

model. As an example, for the vegetation-ISA land cover type, only endmembers of vegetation 

and ISA are considered, and soil is effectively excluded in the model. With this advantage, the 

over-estimation of soil in urban areas was effectively addressed in the study area. On the other 

hand, with the reduction of irrelevant spectral endmembers, the number of spectral signatures 

decreases significantly, which improves the computational efficiency during the unmixng process. 

Moreover, with a lower number of spectral signatures in the spectral libraries, C-MESMA may 

also improve the computational efficiency. Some researchers have attempted to improve the 
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computational efficiency by separating the entire spectral library into several libraries. Each of 

these libraries only contains spectra of one land cover class (Dennison and Roberts, 2003). 

Computational time may be reduced with this strategy. However, only one spectrum of every land 

cover class can be included in each endmember combination, thereby reducing the performance of 

addressing the within-class variability. For instance, impervious surface area commonly contains 

two types of features, high albedo and low albedo surface features (Wu and Murray, 2003). These 

two types of land surface features are always close to each other, especially in the downtown areas. 

Misclassification may appear if only one of them is contained in the endmember combination 

models. On the contrary, C-MESMA considers all the spectra as potential endmembers. The 

reduction of spectral library size is attribute to the constraint of corresponding land cover types 

derived from the SVM classification. Besides, pure land cover classes resultant from the SVM are 

excluded from further spectral unmixing, which further reduces the computation time.  

Although it has advantages, C-MESMA cannot adequately address the confusion between soil 

and ISA. This is because that the spectral signatures of sandy soil are highly like those of high 

albedo ISA. As a result, fractions of dry soil are overestimated. Nonetheless, most of the sandy 

soil is in the developing regions or the factory areas. These areas, to a certain degree, are classified 

as urban land uses.  

4.6 Conclusions 

A novel approach called land cover-class based multiple endmember spectral mixture analysis 

(C-MESMA), which combines the pixel-based supervised classification and MESMA, is proposed 

to extract the fractions of the ISA, vegetation, and soil. The C-MESMA, which first partitions the 

land cover into three pure land cover classes (vegetation, impervious surface area, and soil) and 

three mixed land cover types (ISA-vegetation, soil-vegetation, and ISA-soil-vegetation) and then 
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estimates the fractional coverages of mixed land cover classes using MESMA, is a promising and 

efficient method to prevent the appearance of inappropriate endmembers. Mixed pixels are being 

classified as an independent land cover class, breaking through the limitation of pixel-based 

classification that every pixel should belong to a pure land cover class. A fraction value of one is 

assigned to the corresponding pure land cover classes while the mixed land cover classes are 

unmixed using MESMA with their corresponding spectral libraries, not only improving the 

computational efficiency but also avoiding overestimating the fraction of improper endmember 

and underestimating the suitable endmember’s fraction. Accuracy assessment and 

quantitative/qualitative analyses prove the significantly better performance of C-MESMA when 

compared to MESMA.   

Admittedly, the classification accuracy of soil is relative low. A major reason is that the 

spectra of sandy soil and ISA are almost the same, which cannot be well distinguished through the 

SVM and MESMA. Additional information about soil should be included to reduce the mixture of 

sandy soil in the future. Moreover, the number of land surface features identified in this research 

is limited, and more details of specified materials in urban environment are expected to be 

distinguished in future experiments with the help of hyperspectral data. 



 

 

 

98 

 

CHAPTER5 CONCLUSIONS 

5.1 Summary 

SMA has been widely applied in various fields. Most scholars applied SMA based on their 

background knowledge and application requirements. Analysis about SMA, specially the 

uncertainties of endmembers and spectral mixture models, have not been discussed adequately.  

Therefore, this study: 1) provided analysis of endmember uncertainties by examining WSMA and 

TSMA in different study areas; and 2) addressed the uncertainties of spectral mixture modeling by 

introducing a class-based MESMA.  

Specifically, this study explored endmember uncertainties by examining five existing weighting 

schemes as well as five potential weighting schemes in Janesville, WI and Asheville, NC, USA. 

Each scheme was tested 100 times with different spectra using the V-ISAh-ISAl endmember 

model.  ISA’s MAE was used to evaluate each scheme’s performance. Then paired-samples T tests 

were applied to test if there was a significant difference of mean MAE between weighted and 

unweighted schemes. In addition, the effectiveness of twenty-six spectrally transformed schemes 

as well as the untransformed scheme in three urban areas were examined with Landsat data sets. 

Like the examination of WSMA, each scheme was repeatedly tested 100 times with different 

spectra using the V-ISAh-ISAl-S endmember model.  MAE was also used as the criteria to assess 

each scheme’s accuracy. Significant differences of mean MAE between transformed and 

untransformed schemes were tested using paired-sample T tests. Further, an index named BWVI 

was introduced to indicate the change of between- and within-class variance. Regression analysis 

was conducted to analyze the relationship between BWVI and MAE. Finally, this study developed 

a land cover class-based multiple endmember spectral mixture analysis (C-MESMA) method to 

address spectral mixture model uncertainties. A supervised classification was employed to divide 
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the stacked Landsat image into six segments, including three pure-class segments and three mixed-

pixel segments. A fraction of one was assigned to the pure-classes’ pixels directly while MESMA 

with the corresponding spectral libraries were applied to the mixed-pixel parts respectively. 

RMSEs of impervious surface area were employed to assess the performance.  

5.2 Contributions 

The first contribution about this study is to analyze endmember uncertainties in WSMA. WSMA 

is an alternate way to address endmember variability, the major source of endmember uncertainties. 

However, only a few weighting schemes have been discussed in previous studies. This study 

explored both existing and potential weighting schemes, providing a thorough comparison 

between different weighting schemes in urban environments. It provides references for other 

scholars about how to address endmember uncertainties using weighting schemes. And it also 

provides guideline about which directions to use in constructing a practical weighting scheme. 

The second contribution of this study concerns addressing endmember uncertainties using 

TSMA. Like WSMA, TSMA is also a common method to address endmember uncertainties by 

highlighting the between-class variability and compressing the within-class variability. However, 

discussion about the TSMA in the literature is not sufficient. Therefore, this study provides a 

comprehensive analysis about how to address endmember uncertainties using a TSMA and which 

TSMA is the most effective to address endmember uncertainties. Additionally, an index named 

BWVI was developed to serve as a guide to select an appropriate transformed scheme for SMA in 

different study areas. 

The third contribution addresses the uncertainties of spectral mixture models by developing a 

class-based MESMA (C-MESMA). The major uncertainty of the spectral mixture model is that it 
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may include some incorrect endmember in the best-fit model. C-MESMA may avoid incorrect 

endmembers by restricting endmembers in corresponding mixed pixels. Thus, it could improve 

accuracy significantly and reduce much of the calculation burden.    

5.3 Future Research 

My future research will focus on: 1) incorporating social information and other spatial and 

spectral information into the unmixing process, and 2) human interpretation simulation of mixed 

pixel unmixing. Currently, some scholars have incorporated spatial and spectral information, e.g., 

stacking the spectral indices into the original data set, fusing the high spatial resolution image with 

a lower spatial resolution data set, and merging geographical information, to enhance spectral 

characteristics. However, most of them did not take human social activities, such as the WIFI 

coverage map, the cumulative social communication activities map and similar data into account. 

Human social activities are highly correlated with the impervious surface areas since most of us 

live in the urban/suburban environments where most of the areas are covered by impervious 

surfaces. Therefore, human social activities, to some degree, can indicate the existence of 

impervious surfaces. Moreover, fractional estimation using SMA is a one-way process that we 

only follow for image pre-processing, endmember selection, unmixing, and accuracy assessment. 

It is different from the process of humans use to understand their environment. Humans interpret 

an image based on texture, spectral information, and other factors. Further, humans also use their 

background knowledge to verify their estimated results and to correct results. Thus, the traditional 

unmixing process, compared to human interpretation, lacks feedback from the unmixed results. 

Therefore, additional information is needed to provide proper verification of SMA results. With 

the assistance of additional information, there is a chance for SMA to correct unmixing results 

automatically. Therefore, an improved SMA may be able to provide more reliable fractional results.  
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