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ABSTRACT 

PALEOBIOLOGY AND TAPHONOMY OF EXCEPTIONALLY PRESERVED PUTATIVE MACROALGAE 

FROM THE EDIACARAN ZUUN-ARTS BIOTA, ZAVKHAN PROVINCE, MONGOLIA 

by 

Keenan Hassell 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Stephen Q. Dornbos 

 

The first unequivocal evidence of complex multicellular life appears in exceptionally 

preserved Ediacaran (635-541 Ma) fossil deposits. The newly discovered Ediacaran Burgess 

Shale-type (BST) Zuun-Arts Biota of Zavkhan Province, Mongolia, contains putative macroalgae 

fossils. Morphological measurements of 821 individual specimens including length, width, and 

branching angle obtained using ImageJ software were used to calculate morphological 

parameters including median thallus length (16.75 mm), filament width (0.50 mm), branching 

angle (63.63⁰), and surface area/volume ratio (8.19 mm -1). The Zuun-Arts biota contains fossils 

of six distinct morphotypes: non-branching, dichotomous branching, monopodial branching, 

fan-shaped, shrub-like, and small non-branching, all morphologies are similar to macroalgae 

from the Ediacaran Lantian and Miaohe biotas. Morphological and taphonomic data rule out a 

non-macroalgae affinity, and SEM-EDS data indicate that the Zuun-Arts fossils are preserved as 

aluminosilicate and carbon films. Results indicate that the Zuun-Arts fossils are macroalgae 

preserved as aluminosilicate mineral films.  
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Introduction 

The Ediacaran Period stretches from 635 Ma to 542 Ma and is characterized by important 

paleobiological and paleoenvironmental changes. This period between the end of the Snowball 

Earth glaciations and the beginning of the Cambrian Period shows the first unequivocal complex 

animal life, and may hold the key to a better understanding of the origins of multicellular life 

(Xiao et al., 2008). The fossil record indicates a soft-bodied Ediacaran biota appearing as early 

as 575 Ma and persisting until around 541 Ma, at the beginning of the Cambrian Period (Xiao et 

al., 2008). Interpretations of these organisms have been controversial, and their phylogenetic 

affinities are still not entirely understood. Paleontologists first tried to shoehorn the Ediacaran 

organisms into Paleozoic phyla, however more recent studies suggest that many of these 

organisms belong to an extinct kingdom level taxon known as the rangeomorphs (Seilacher, 

1992; Narbonne, 2005). The Ediacaran biota is characterized by rangeomorphs and 

erniettomorphs, but also includes microbial colonies, algae, fungi, protists and stem-group 

bilaterians and other metazoans (Narbonne, 2005). 

The Ediacaran Period also contains fossil deposits of exceptional quality, known as Lagerstätten 

(Wang et al., 2014). Ediacaran Lagerstätten preserve a variety of soft-bodied organisms 

including enigmatic forms, putative metazoans, and algae that are not normally preserved, and 

show a variety of preservation types (Butterfield, 2003). Preservation types include external 

molds of soft tissue in fine-grained sand stone, carbonaceous compressions, phosphatization, 

pyritization, and silicification (Wang et al., 2014; Cai et al., 2010, Meyer et al., 2012; Brasier et 

al., 2011). Deposits that preserve carbonaceous compression fossils in fine-grained marine 
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siliciclastics, or Burgess Shale-type (BST) deposits, are a specific type of Lagerstätten that does 

an excellent job of preserving evidence of soft tissue (Wang et al., 2014). 

Ediacaran BST deposits are known from around the world, including the recently described 

Zuun-Arts Biota in the Zavkhan terrane of western Mongolia (Dornbos et al., 2016). The 

Zavkhan terrane is a Precambrian crustal fragment that was embedded in the core of the 

central Asian orogenic belt (Smith et al., 2016). During the Ediacaran Period, arc terranes were 

accreting to the south, causing the Zavkhan terrane to begin subducting beneath the 

Khantaishir-Dariv arc. This subduction created the foreland basin in which the Zuun-Arts 

Formation was deposited (Macdonald et al., 2009). The Zuun-Arts Formation is composed of a 

basal stromatolitic limestone, a thin black shale interval with a cherty phosphorite layer, and 

then a thick carbonate sequence (Dornbos et al., 2016). The Zuun-Arts Biota is only beginning to 

be studied, but so far two new species of putative macroalgae, Chinggiskhaania bifurcata and 

Zuunartsphyton delicatum, have been identified (Dornbos et al., 2016). Preliminary data 

suggest they are preserved as aluminosilicate films (Dornbos et al., 2016). 

The goal of this project was to test the hypotheses that 1) the Zuun-Arts fossils are indeed 

macroalgae, and 2) they are preserved as aluminosilicate films. These hypotheses were tested 

through thorough micro- and macroscopic study and morphometric analysis of Zuun-Arts fossil 

specimens in combination with scanning electron microscope energy dispersive x-ray 

spectroscopy (SEM-EDS) and x-ray diffraction (XRD) analysis. Learning more about the 

morphology, preservation, and the paleoenvironmental conditions under which these 
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exceptional fossils were preserved will provide a better understanding of early multicellular life 

in the Ediacaran. 

Background 

Functional morphology in modern macroalgae 

BST macroalgae fossils preserve only the exterior morphology of the the organism and can look 

similar to other types of fossils,  so establishing a macroalgae affinity can be difficult (Xunlai et 

al., 1999). Most notabley, macroalgae fossils can look similar to burrow fossils, although they 

can be distinguished from burrows by their flattend form, carbonaceous composition, clearly 

defined margins, jagged endings, and non-disturbance of adjacent sediment, all of which 

burrow fossils lack (Miller, 2007; Osgood, 1970). Macroalgae fossils can look similar to 

graptoliet fossils as well, however in scaning electron microscope backscatter (SEM-BSE) 

images, graptolite fusellae are clearly visable, while macroalgae lack these structures (Tang et 

al., 2017; Muscente and Xiao, 2015). Lastly, large bacterial sheaths produced by photosynthetic 

eukaryotes can look morphologically similar to non-branching tubular forms of macroalgae in 

the fossil record, however these macroalgae are an order of magnitude larger than the largest 

known bacterium with a similar morphology (LoDuca et al, 2017).  

Once a macroalgae affinity has been detrmined for a fossil, the biggest obstacle is a lack of any 

genetic information required for proper taxonomic classification (Xunlai et al., 1999). In some 

cases, 3-dimensional preservation of a thallus may provide additional information about the 

internal structure, however such preservation is rare. In most cases the only information 

available is gross thallus morphology, so this is the criteria used in the classification of ancient 
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macroalgae (Wang et al., 2014). Due to the role of morphology in classification, understanding 

the functional morphology of macroalgae is crucial for classifying and understanding their 

evolutionary history (Xiao et al., 2002).  

Although many Proterozoic and Cambrian macroalgae have no direct modern ancestors, they 

likely filled some of the same ecological roles as modern macroalgae. Extensive research has 

been done in order to understand the functional morphology of modern macroalgae, and much 

of this can be applied to ancient macroalgae as well (LoDuca and Behringer, 2009). 

Littler and Littler (1980) published an extensive study examining the cost/benefit of various 

aspects of modern macroalgae morphology to ecological interactions and physiological 

function. The evolution of features such as environmental hardiness, defense against predation, 

and interference with competition were considered in terms of the energetic cost, material 

commitment, and possible incompatibility with basic physiological processes for each feature. 

Community succession was examined experimentally by clearing and sterilizing an area of 

seafloor and observing which macroalgae species appeared over 12 months. Based on this 

experiment, macroalgae were divided into two main groups: opportunistic forms and late 

successional/climax forms (Littler and Littler, 1980).  

The first macroalgae to appear in the cleared areas are opportunistic forms, which are rapid 

colonizers with a simple thallus morphology and high surface area to volume ratio. 

Opportunistic thalli are characterized by rapid growth, high reproductive capacity, and a high 

and uniform distribution of nutrient value (caloric density) across the entire thallus. These algae 

maintain the same morphology throughout their life cycle, and avoid predation by having an 
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unpredictable spatial and temporal distribution. This life style allows opportunistic macroalgae 

to rapidly invade and cover newly exposed areas of seafloor. Since the thallus is made almost 

entirely of photosynthetic tissue, these algae are highly productive, allowing them to rapidly 

replace any tissue lost to herbivorous predators. Although opportunistic algae are well adapted 

for rapid colonization, many aspects of their morphology and life cycle prevent them from long-

term domination of their ecosystems. Although reproduction rates are high, mortality rates for 

reproductive bodies are also high. Once later successional forms of taller, more complex 

macroalgae begin to invade, opportunistic forms cannot adequately compete for light and 

other resources (Littler and Littler, 1980). 

Late successional macroalgae appear after opportunistic forms have established a community, 

and often push them out of the area. In general, late successional forms have a lower surface 

area to volume ratio, grow slower, have a more structurally differentiated thallus, and have a 

lower reproductive capacity than opportunistic forms. Although reproductive rates are lower, 

mortality rates in reproductive bodies are also lower, and larger size and structural 

differentiation of the thallus allows late successional forms to better compete for light. An 

overall toughness of the thallus combined with other morphological and chemical 

characteristics act as defense mechanisms against herbivorous predators (Littler and Littler, 

1980). 

Both of these morphologies provide advantages to macroalgae in terms of predation defense 

and light acquisition. Below is a summary of adaptations leading to these advantageous 

morphological features, some of which should be observable in the fossil record. 
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Morphological characteristics increasing productivity 

The morphology of macroalgae is the most important control of photosynthetic efficiency 

(Littler and Littler, 1980). Studies of modern macroalgae have found that sheet-like and finely 

branched morphologies result in the highest rates of photosynthetic productivity. 

Photosynthetic cells in macroalgae are concentrated in the outer tissue layer, so thalli with 

higher surface area to volume ratios will have more photosynthetic cells, and will therefore 

have a higher rate of photosynthetic productivity. In sheet-like forms, a higher surface area to 

volume ratio is achieved through folding of the thallus, and fine branching increases this ratio 

by decreasing branch volume and increasing surface area. In addition to increasing rates of 

photosynthesis, these thin morphologies have larger cells, which minimizes internal shelf-

shading by non-photosynthetic wall components (Littler, 1979).  

Defense mechanisms 

Macroalgae employ a variety of morphological and non-morphological strategies in order to 

protect themselves from herbivorous predation (Littler and Littler, 1980). Defense mechanisms 

fall into two broad categories: non-coexistence and coexistence (Iken, 2012). Non-coexistence 

strategies are non-morphological strategies that reduce the number and frequency of 

macroalgae-herbivore interactions (Iken, 2012). This is achieved through strategic temporal and 

spatial occurrences of macroalgae. Taxa using non-coexistence strategies live in locations that 

are not easily accessible to predators, or during seasons when herbivorous predators are not 

present. For example, some forms of brown algae are only susceptible to predation during early 



7 

 

life cycle stages. These algae reproduce during seasons when herbivores are not in the area. 

Once large numbers of predators arrive, many of these macroalgae will be in the adult stage of 

their life cycle, so predation is thwarted (Markel and DeWeede, 1998).  

Spatial and temporal defenses are often not an option, so macroalgae have evolved several 

morphological features for defense against predation (Iken, 2012). Producing high numbers of 

fleshy, lateral branches was an important morphological innovation leading to an increased 

resistance to predation. Filaments can be easily grazed upon, but the high number of lateral 

branches, along with the low cost of replacing damaged lateral branches, results in little impact 

on photosynthetic capacity (Iken, 2012; Van Alstyne, 1989). Littler and Littler (1980) also 

observed a morphological trend leading to thalli with a tough central axis containing the 

reproductive bodies. The development of a tough central axis with numerous soft lateral 

branches allows macroalgae to survive in environments with high populations of herbivorous 

predators (Iken, 2012; Littler and Littler, 1980). 

Based on this functional morphology study, Littler and Arnold (1982) established six functional 

form groups (FFGs). FFG 1 consists of thin tubular and sheet-like thalli, FFG 2 consists of 

delicately- branched thalli, FFG 3 consists of coarsely-branched thalli, FFG 4 consists of thalli 

composed of thick blades and branches, FFG 5 consists of articulated calcareous thalli, and FFG 

6 consists of encrusting thalli. These funtional form groups fall on a spectrum of photosynthetic 

prouctivey, environmental hardiness, and resistance to predation. The tubular and sheet-like 

morphologies in FFG 1 have the highest photosynthetic productivety due to their high surface 

area-volume ratio and lack of branches, which reduces self shading. Although FFG 1 is highly 
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productive, thalli have little to no abiity to resist harsh environmental conditions or herbivorous 

predation. From FFG 1 to FFG 6, photosynthetic productivety decreses at a steady rate (Littler 

and Littler, 1980; Littler and Arnold, 1982).  

Thalli in FFG 6 are the least photosynthetically productive, but have the greatest environmental 

hardiness and ability to resist herbivorous predation. These thalli have the most robust 

morphologies and highest degree of structural differentiation, allowing them to protect 

chloroplasts and reproductive structures inside a tough thallus when not in use (LoDuca, 2017). 

The robust morphologies of FFG 6 thalli also account for their low photosynthetic productivety, 

since the ratio of photosynthetic to non-photosynthetic tissue is much lower than in FFG 1 

(Littler and Arnold, 1982).  

Modern macroalgae have developed numerous morphological features which increase their 

photosynthetic efficiency and ability to defend themselves against predation (Littler and Littler, 

1980). Although evidence of some features, such as chemical defenses and non-coexistence 

strategies, cannot be observed in the fossil record, trends towards some morphological 

strategies should be observable. 

Applying the functional form group concept to the fossil record 

Due to the limitations associated with classifying ancient macroalgae, classification is based on 

morphogroups, which are groups of fossils with similar morphological features. LoDuca et al. 

(2017) performed a detailed survey of all known BST deposits containing macroalgae from the 

Cambrian, Ordovician, and Silurian periods and calculated canopy height, maximum length and 

surface area for all thalli. Based on these morphological data, nine morphogroups were 
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established for the early Paleozoic: tubiform, ribbon-like, spherical, delicately dichotomously 

branching, coursely dichotomously branching, soloniform, frondose, simple monopodial, and 

complex monopodial. Morphogroups were then assigned to a functional form group based on 

Littler and Littler (1980). The tubiform, ribbon-like, speherical, and frondose morphogroups 

were assinged to FFG 1, delicately dichotomously branching and stoloniform morphogroups 

were assigned in FFG 2, the simple monopodial morphogroup was assigned to FFG 2.5, complex 

monopodial and most of the coarsely dichotomously branched morphogroups were assigned to 

FFG 3, and one specimen from the coarsely dichotomously branched morphogroup was 

assigned to FFG 4 (LoDuca et al., 2017).  

LoDuca et al. (2017) found several trends in the evolution of macroalgae thallus morphology 

from the Cambrian through Silurian periods. First of all, there is a trend of incresing complexity 

of morphogroups. The Cambrian Period was dominated by the simplest tubiform and delicately 

dichotomously branching morphogroups. In the Ordovician Period, the tubiform morphogroup 

disappears, the delicate dichotomously branching morphogroup becomes less common, and 

the monopodial branching morphogroup becomes dominant. The Silurian macroalgae record is 

similar to the Ordovician, however the ratio of monopodial to delicately dichotomously 

branching morphogroups is slightly higher (LoDuca et al., 2017).  

A similar pattern is seen in functional form groups, with the Cambrian Period dominated by FFG 

1 and FFG 2. In the Ordovician, FFG 1 becomes less common, FFG 2 and FFG 2.5 become the 

most common, and FFG 3 first appears. The Silurian Period is similar to the Ordovician, with FFG 

2.5 and FFG 3 being the most common. The Silurian Period also contains one example of a FFG 
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4 specimen. Based on these trends in morphogroups and funtional form groups, there appears 

to be a general trend towards incresing complexity in macroalgae thalli from the Cambrian to 

the Silurian, with a major diversification occuring during the Ordovician radiation. This trend 

from highly efficient, delicate morogroups to less efficient, hardier morphogroups was likely 

driven primarily by the evolution of herbivorous predation (LoDuca et al., 2017). In order to 

better understand the early Paleozoic evolutionary trends seen in the fossil record of 

macroalgae, a better understanding of Proterzoic macroalgae is required, especially during the 

Ediacaran Period.  

The Proterozoic fossil record of macroalgae 

Macroalgae underwent a major diversification event during the Ediacaran Period, however 

macroalgae such as Grypania have been found in rocks as old 1.8-2.0 Ga (Han and Runnegar, 

1992). Other putative Paleoproterozoic macroalgae include the spherical to cylindrical forms of 

Churia, Ellipsophysa, and Tawuia from 1.7-1.8 Ga rocks in North China (Zhu et al., 2000). 

Although these putative Paleoproterozoic macroalgae are small and simple, some early 

morphological advances can be seen even at this time, including the development of stipe 

morphology and possibly the earliest holdfast structures (Xiao and Dong, 2006). 

Mesoproterozoic macroalgae include spherical, ellipsoidal, tomaculate and cylindrical thallus 

morphologies as well as more complex discoidal holdfasts and transverse annulations (Xiao and 

Dong, 2006). Ediacaran BST deposits containing abundant macroalgae fossils include the 

Lantian biota of southern Anhui Province, China, the Miaohe biota in the terminal Doushantuo 

Formation at Miaohe in Hubei Province, China, and the Zuun-Arts biota of western Mongolia. 
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The Lantian Biota 

The Lantian Biota of southern Anhui Province, China, is the oldest known Ediacaran BST deposit 

containing macroalgae (Yuan et al., 2011). This biota represents a slope basinal depositional 

environment within the photic zone, and is regarded as the oldest fossil assemblage containing 

macroscopic and morphologically complex life (Yuan et al., 2011).  

Two formations are present at this location; the Lantian Formation, which correlates with the 

635-551 Ma Doushantuo Formation based on δ13C chemostratigraphy, and the Piyuancun 

Formation, which correlates with the 551-542 Ma Dengying Formation in the Yangtze Gorges 

area (Xunlai et al., 1999). The stratigraphic column consists of 1.8 m of dolostone cap 

carbonate, 35 m of finely laminated, fossiliferous black shale, a 34 m unit of dolostone 

interbedded with mudstone and ribbon rock, and 20 m of black silty mudstone (Yuan et al., 

2002). The lower shale unit contains the Lantian biota fossils, and its age has been constrained 

to 579-565 Ma based on U-Pb radiometric dating (Condon et al., 2016). Fossils here are 

exceptionally preserved as carbonaceous compressions in black shale and are up to 40 mm in 

length. Several enigmatic forms are present here, including a cone shaped thallus with a 

globose holdfast and a splay of filaments at the top, a conical thallus with a fusiform inner 

body, and a thin stalk with a cylindrical thallus and a dark axial trace. Interpretations of these 

fossils remain controversial due to a lack of modern analogues for comparison (Yuan et al., 

2011). Different morphologies have been interpreted as macroalgae, Cnidarians, bilaterian 

worm-like organisms, and bilaterian metazoans (Xiao et al., 2002). Regardless of the taxonomic 
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affinities of these fossils, the presence of macroeukaryotes suggests that some amount of free 

oxygen must have been present in the environment while these organisms were alive (Yuan et 

al., 2011).  

The Lantian Biota also contains a diverse assemblage of megascopic, non-calcareous 

macroalgae ranging from 10-100 mm in length and 0.1-20 mm in width. Many of these 

specimens have holdfasts and include ribbon-like and dichotomous branching morphologies 

(Xunlai et al., 1999). Several morphotypes have been identified from the Lantian Biota 

macroalgae including thin and thick dichotomous and ribbon-like branching, fan shaped thalli 

with dichotomous branching, broom shaped thalli with all branches attached to a single basal 

structure, spherical/elliptical forms, and a variety of tube and cone shaped morphologies 

composed of many filaments attached to a basal structure. Septation is not common, but some 

forms have septated filaments. Filament branching as well as disc/globose holdfasts found in 

most specimens suggest that these were erect, benthic macroalgae (Xunlai et al., 1999).  

The Lantian Biota macroalgae are preserved as carbonaceous compressions, often associated 

with densely packed, framboidal pyrite (Wang et al., 2014; Yuan et al., 2011). The presence of 

pyrite in these fossils can be used to interpret the redox history of the basin. Pyrite framboids 

form in anoxic conditions, but the presence of macroeukaryotes suggest that there must have 

been some free oxygen present in the water. Wang et al. (2014) proposed a cyclical redox 

model to explain this apparent dichotomy by suggesting that there was a flux in oxygen levels 

between when the organisms were alive and when they died: the basin was largely anoxic, 

punctuated by brief oxic episodes. During oxic intervals, the chemocline was below the water-
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sediment interface and macroalgae lived in oxic waters within the photic zone. When oxic 

intervals ended, the chemocline shifted up into the water column, killing the algae (Wang et al., 

2014). Algal remains were buried in fine-grained siliciclastics, where they were preserved as 

carbonaceous compressions and acted as localized substrates for large pyrite framboids to form 

on. This led to primary preservation as carbonaceous compressions with some late stage 

Pyritization (Gabbott et al., 2004). 

The Miaohe Biota 

The other major Ediacaran BST deposit is the Miaohe Biota from the terminal Doushantuo 

Formation at Miaohe in Hubei Province, China (Xiao et al., 2002). The Doushantuo Formation at 

this location is about 200 m thick, and is composed of extremely finely laminated, organic rich 

shale and cherty carbonates deposited in a quiet subtidal environment, likely within a restricted 

basin (Wang et al., 1998; Ding et al., 1996). Fossils are within a 2 m thick interval in the upper 

shale member (Xiao et al., 2002).  

Several distinct morphologies have been identified in the Miaohe Biota, most are multicellular 

algae (Xiao et al., 2002). Most algal specimens have holdfasts and dichotomous branching, and 

some have reproductive structures preserved (Zhang et al., 1989). Morphologies include 

spherical cell-like vesicles, cylindrical forms with monopodial branching, unbranching cylindrical 

thalli, straight/zigzag central axis with dichotomous branching (some with several successive 

dichotomies), and ribbon-like thalli with or without branching and fan or dumbbell-shaped 

thalli composed of a bundle of filaments. Branching and the presence of basal attachment 

structures in most morphologies suggest an erect, benthic life habit (Xiao et al., 2002). 



14 

 

Miaohe Biota fossils are preserved primarily as carbonaceous compressions in fine-grained 

marine siliciclastic sediments (Xiao et al., 2002). Like the Lantian Biota, Miaohe carbonaceous 

compressions are often associated with framboidal pyrite, or cavities left by framboids that 

have weathered out (Wang et al., 2014). The presence of pyrite framboids suggests an 

environmental model similar to that of the Lantian Biota in which organisms lived during oxic 

episodes in a largely anoxic basin, and were preserved through carbonization and late-stage 

pyritization. Although the Lantian and Miaohe Biotas are over 600 km apart, they are both 

composed primarily of macroalgae preserved through carbonization and late-stage pyritization, 

suggesting that anoxic conditions were wide spread in this basin (Wang et al., 2014). 

The Zuun-Arts Biota  

The recently discovered Zuun-Arts biota is a late Ediacaran BST deposit in the Zuun-Arts 

Formation of Zavkhan Province, western Mongolia (Dornbos et al., 2016). The absolute age of 

the Zuun-Arts biota is unclear, however it lies beneath the oldest indisputable trace fossils in 

the region (~555 Ma) (Macdonald, 2011), and is therefore likely younger than the Miaohe Biota 

(Zhu et al., 2013). The stratigraphic sequence of the Zuun-Arts formation consists of a basal 

stromatolitic limestone followed by a shale interval, a cherty phosphorite unit, and a thick 

carbonate succession (Figure 1). Fossils are preserved in a roughly 40 cm thick black shale 

interval. The Zuun-Arts Formation represents a transgressive lag deposit and has an unclear age 

relationship with the Lantian and Miaohe Biotas, although it may correlate with the terminal 

Doushantuo Formation at Miaohe (Dornbos et al., 2016).  
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Figure 1. The stratigraphic context of the Zuun-Arts Biota. A) Regional map of Mongolia showing the location of the 

Zuun-Arts region. B) Stratigraphic column of the Zuun-Arts Formation. C) Detailed stratigraphic column of the 

Zuun-Arts Formation at the location of the Zuun-Arts biota. Modified from Dornbos et al. (2016). 
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Preliminary study of the Zuun-Arts Biota indicates two species of probable eukaryotic 

macroalgae (Dornbos et al., 2016). Chinggiskhaania bifurcata consists of thin filaments that lack 

transverse longitudinal ornamentation, are gently curving, and rarely branch. Filaments have 

fine length-wise lineations, no consistent distal tapering, and diverge at 43°-85°, with a mean 

branching angle of 63°. These specimens are mostly fragmentary, but one well-preserved 

specimen shows four filaments that are not densely grouped.  Chinggiskhaania bifurcata is not 

entirely analogous to any other know Ediacaran macroalgae, but it most closely resembles 

Doushantophyton from the Miaohe Biota and Huangshanophyton from the Lantian biota 

(Dornbos et al., 2016). The other probable macroalgae species found in the Zuun-Arts biota is 

Zuunartsphyton delicatum, which is known from three specimens. Zuunartsphyton delicatum 

exhibits a shrub-like morphology less than 3 mm in diameter, composed of tightly curling 

filaments lacking branching and longitudinal divisions or ornamentation. Attachment structures 

are unknown, and Zuunartsphyton delicatum does not appear to closely resemble any 

specimens from the Lantian or Miaohe Biotas (Dornbos et al., 2016). 

Preliminary SEM-EDS data show that filaments have high concentrations of Al and Si relative to 

other elements, and that Si is not enriched relative to the matrix (Dornbos et al., 2016). Carbon 

is locally concentrated in portions of specimens. These results are consistent with preservation 

as aluminosilicate clay mineral films. The presence of locally concentrated carbon suggests that 

these organisms were originally preserved as carbonaceous compressions, and were 

diagenetically altered to aluminosilicate mineral films. One specimen shows a concentration of 

Fe in a zone with a high C concentration, and SEM analysis reveals the presence of framboidal 

minerals consistent with pyrite. As in the Lantian and Miaohe Biotas, it appears that late-stage 
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pyrite formation occurred as a result of sulfate reduction during the decay of filaments, 

however aluminosilicate clay mineral preservation contrasts with the carbonaceous 

compressions fossils in the Lantian and Miaohe Biotas, as well as most other Ediacaran and 

Cambrian BST deposits (Dornbos et al., 2016). 

Burgess Shale-type taphonomy  

BST preservation is a unique taphonomic pathway that leads to 2-dimensional preservation of 

soft tissue as a film of carbon and/or aluminosilicate mineral films with a thickness on the scale 

of microns (Orr et al., 2009; Briggs and Williams, 1981). This rare taphonomic window is largely 

limited to the Ediacaran- early Ordovician Periods (~ 545-480 Ma) (Van Roy et al., 2010). The 

BST preservation pathway begins when a soft-bodied organism is buried in anoxic mud very 

soon after death, which isolates delicate morphological features and seals out heterotrophic 

microbes (Marshall, 1976). The carcass then begins to degrade, leaving behind only a thin film 

of organic carbon. Two primary models attempt to explain when aluminosilicate films form 

during fossil diagenesis, and both have implications for how organisms should appear in the 

fossil record (Orr et al., 2009; Butterfield et al., 2007).  

Orr et al. (2009) proposed an early diagenesis model in which aluminosilicate layers form on the 

decaying organism shortly after burial. In this model, the decaying carcass acts as a substrate 

for the accumulation of colloids or the precipitation of authegenic clays (Orr et al., 2009; Orr et 

al., 1998). Once the carcass decays, aluminosilicate clay that precipitates on the original C film. 

Over time, the rock containing the fossil is subjected to regional metamorphism, which alters 

the clay to a coherent aluminosilicate film. This model would result in a fossil film composed of 
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three layers: a layer of C in the middle with layers of Al above and below, or an Al layer in the 

middle with C layers above and below (Figure 2) (Orr et al., 2009; Orr et al., 1998). 

Butterfield et al. (2007) suggests an alternative late diagenesis origin of aluminosilicate films. In 

this model, the diagenetic process also begins with an organism being buried in anoxic mud, 

decaying, and leaving behind a carbon film. The role of clay in early diagenesis and the 

formation of aluminosilicate films, however, differ considerably from the early diagenesis 

model. In the late diagenesis model, clay minerals in the sediment absorb degradative enzymes 

due to their large surface area and high cation exchange capacity, indefinitely delaying the 

decay process (Butterfield, 1990; Thang, 1979). The formation of aluminosilicate films does not 

require a pre-existing mineral phase (Butterfield et al., 2007), as shown by the replacement 

and/or overgrowth of organic- walled graptolite fossils by aluminosilicate films as a result of 

metamorphism (Underwood, 1992). Thus, clay plays a vital role in preservation, but does not 

form the aluminosilicate film. The late diagenesis model should result in fossils composed 

primarily of aluminum, possibly with areas of elevated carbon concentrations (Butterfield, 

2007; Orr et al., 2009). 

Scanning electron microscopy 

SEM-EDS elemental mapping has become a common tool for paleontologists trying to 

understand how BST fossils form (e.g. Loydell, 2004; Huggett et al, 2000; Moore and Liberman,  
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Figure 2. A summary of the early taphonomic model for BST preservation. A-B result in Al films. A) Al inside, C 

outside, plane of plitting through the Al layer. B) C inside, Al outside, plane of splitting through the Al layer. C-D 

result in C films. C) C inside, Al outside, plane of splitting through the C layer. D) Al inside, C outside, plane of 

splitting through the C layer. E) Al inside, C outside, plane of splitting through the sedimentary matrix. Modified 

from Orr et al. (2009). 
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2009). Although EDS analysis can provide a wealth of information about the composition of 

fossils, determining the appropriate SEM parameters, especially accelerating voltage, can be 

difficult (Orr et al., 2009). BST fossils are extremely thin, often having a thickness of 0.05 µm or 

less, creating a challenge in EDS analysis. EDS works best at a high accelerating voltage, which 

creates a large interaction volume, extending far below the fossil of interest and into the rock 

containing the fossil. Orr et al. (2009) addressed this problem using Electron Flight Simulator 

software to generate interaction volumes for rocks with C films 2.5 µm, 0.175 µm and 0.15 µm 

thick at 15 keV (Figure 3), and 0.05 µm, 0.03 µm and 0.02 µm thick at 5 keV (Figure 4). For the 

15 keV accelerating voltage, the interaction volume extended far beneath the C film of interest. 

The 2.5 µm film showed up clearly, the 0.175 µm film was faint but visible, and the 0.15 µm film 

was not seen at all in the spectrum. The large interaction volume associated with a 15 keV 

accelerating voltage extended so far into the rock that the signals from the C films were washed 

out. At the 5 keV accelerating voltage, the 0.05 µm, 0.03 µm and 0.02 µm C films were all 

detectable in the spectrum. Since the 5 keV accelerating voltage produces a much smaller 

interaction volume than 15 keV, more of the signal came from the film and there was less 

background noise from the rock, resulting in an increase in resolution (Orr et al., 2009).   

 

Geologic Setting 
 

The Zuun-Arts Formation is located in the Zavkhan terrane of Western Mongolia, a Precambrian 

crustal fragment embedded in the core of the central Asian orogenic belt (Fig. 5) (Kroner et al.,  
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Figure 3. Simulated interaction volume of a 15 keV accelerating voltage in shale containing carbon films of various 

thicknesses. A) 2.5 µm thick carbon films, note the large carbon peak in the spectrum. B) 0.175 µm thick carbon 

films, note the subtle but still distinguishable carbon peak in the spectrum. C) 0.15 µm thick carbon film, the 

carbon peak is not distinguishable in the spectrum. Red boxes show the portion of the interaction volume 

penetrating into the matrix beneath the fossil. Modified from Orr et al. (2009). 
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Figure 4. Simulated interaction volumes for a 5 keV accelerating voltage in shale containing carbon films of various 

thicknesses. A) 0.05 µm thick carbon film, note the distinct carbon spike on the spectrum. B) 0.03 µm thick carbon 

films, note the distinct carbon spike on the spectrum. C) 0.02 µm thick carbon film, although the carbon speak is 

smaller, it is distinguishable in the spectrum. Red boxes show the portion of the interaction volume penetrating 

the matrix beneath the fossil. Modified from Orr et al. (2009). 
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Figure 5. Regional map showing the location of the Zavkhan Terrane. The orange star marks the region of the 

Zuun-Arts biota. Modified from Smith et al. (2016). 
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2010). Accretion of arc terranes occurred to the south of the Zavkhan terrane from the late 

Ediacaran through the Ordovician Period. The late Ordovician and Silurian Periods are marked 

by extensional magmatism and basin formation. The Zavkhan terrane was buckled during the 

arrival of North China from the early Devonian through the Permian Period (Kroner et al., 

2010). 

Cryogenian stratigraphy in the Zavkhan terrane begins with 773.3-803.4 Ma felsic igneous rocks 

containing ~755 Ma granitic intrusions (Macdonald et al., 2009). The Zavkhan Formation is then 

overlain by synrift and passive margin deposits.  The Zuun-Arts Formation is within the Tsagaan 

Oloom Group, which contains two Cryogenian glacial deposits. The first is the Maikhan-Uul 

Formation, which is a Sturtian age diamictite (717-660 Ma) and the Taishie Formation, which is 

composed of Sturtian cap carbonates and interglacial strata (Bold et al., 2006). These are 

overlain by the Khongor Formation, which has been correlated to Marinoan glacial deposits. 

The Ol Formation, which is correlative with 635 Ma basal Ediacaran cap carbonates, overlies the 

Khongor Formation. The Ol Formation is overlain by the early Ediacaran Shuurgat Formation, 

which consists of 100-500 m of carbonates, and is uncomformably overlain by the late 

Ediacaran Zuun-Arts Formation (Bold et al., 2006). The Zuun-Arts Formation was deposited in 

the Zavkhan basin. The age of continental arc volcanism, position of the accrectionary wedge 

and ophiolites on the northern margin of the Khantayshir-Dariv arc, and north vergent thrusting 

in the accrectionary zone all indicate that the Zavkhan basin was created through the 

subduction of the Zavkhan terrane beneath the Khantayshir-Dariv arc (Macdonald et al., 2009).  
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Chemostratigraphy of δ13C isotopic data has been used to interpret the environmental 

conditions present within the Tsagaan Oloom Group, including the Zuun-Arts Formation (Fig. 6) 

(Macdonald et al., 2009). δ13C values in the Maikhan diamictites are moderately negative, and 

increase to +8‰ in the overlying Tayshir Formation. δ 13C  then plummets abruptly from +8‰ 

to -7.5‰ during the third transgression in the Tayshir Formation before returning to +8‰ 

through the top of the Tayshir Formation (Macdonald et al., 2009). In the Ol Formation, the 

δ13C profile forms a sigmoidal pattern which reaches -6‰ and remains negative throughout the 

Ol Formation and into the beginning of the Ulaan Bulagyn Formation, where δ13C abruptly 

jumps to + 3‰ through the top of the Ulaan Bulagyn Formation. The carbon isotopic profile 

observed in the Ulaan Bulagyn Formation is consistent with a mid-Ediacaran age. The Zuun-Arts 

Formation overlies the Ulaan Member and has a variable δ13C profile, which ranges from +2‰ 

to -5‰, but is mostly negative. Strontium isotopic data shows a high 87Sr/86Sr value of 0.7085 in 

the Zuun-Arts Formation (Figure 6). These strontium isotopic values are consistent with values 

typically found during the Proterozoic-Phanerozoic transition, indicating a late Ediacaran age for 

the Zuun-Arts Biota (Bold et al., 2016). This, in addition to the mid-Ediacaran carbon isotopic 

values in the Ulaan Bulagyn Formation, supports the interpretation that there is a hiatus of 

about 35 MY between the Zuun-Arts Formation and the underlying Ulaan Bulagyn Formation 

(Macdonald et al., 2009). 
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Figure 6. Carbon isotope chemostratigraphy and lithostratigraphy of the Tsagaan Oloom Group. The red box shows 

the interval containing the Zuun-Arts biota. K-Khongoryn Fm, Ol- Ol Fm, MU- Maikhan UI Fm, DV- Dzabkhan 

volcanics. Modified from Macdonald et al. (2009).  
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Methods 

Morphological analysis 

Fossils were collected from the Zuun-Arts biota in Zavkhan Provence, Mongolia. Fossils were 

first examined under low magnification using a Leica EZ4D light microscope, and then 

photographed with a Canon EOS 350D camera under cross-polarized light. ImageJ software was 

used to take morphological measurements from the photographs. Morphological 

measurements of 821 individual fossil specimens include length, width and canopy height for all 

specimens, and branching angle for branching specimens. These morphological measurements 

were then used to calculate surface area, volume, and surface area/volume ratio. Fossils were 

modeled as cylinders based on one pair of 3-dimensionally preserved part-counterpart fossils 

with a tube-like cross section. Surface area, volume, and surface area/volume ratio were 

calculated as follows: 

Surface area (SA) = 2πrl + 2πr2 

Volume (V) = πr2 l 

Surface area/volume ratio (SA/V) = 𝑆𝑆𝑆𝑆𝑉𝑉  

where r is the radius of the filament �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑓𝑓𝑤𝑤𝑓𝑓ℎ2 � and l is the length of the filament. For 

specimens with more than one thallus element, total length and width were calculated as the 

sum of all elements. Median length, width, canopy height, branching angle, and surface 

area/volume ratio were calculated for all thalli. Canopy height was calculated as the total 



28 

 

distance between the seafloor and the top of the thallus in life. For specimens showing 

evidence of an erect, benthic lifestyle, canopy height is the total distance from the base of the 

thallus to the top of the highest thallus element. Specimens lacking evidence of an erect, 

benthic lifestyle were assumed to be either pelagic or benthic organisms that laid flat on the 

seafloor. Canopy height for these individuals is the same as width. 

To compare the Zuun-Arts fossils to accepted Ediacaran macroalgae, the above measurements 

and calculations were also performed on fossils from the Lantian and Miaohe biotas. The 

photos used were obtained from Xiao et al. (2008) and Xunlai et al. (1999).  

Scanning electron microscopy 

SEM-EDS mapping and line scans were used to examine the elemental composition of 39 

Chinggiskhaania fossils from the Zuun-Arts biota.  All SEM analysis was done on a Hitachi S-

4800 scanning electron microscope with a Bruker Quantax ESPIRIT energy dispersive x-ray 

detector in the scanning electron microscopy laboratory at the University of Wisconsin-

Milwaukee. Specimens were cut with a rock saw and mounted on a 1-inch stub using carbon 

glue, and the sides of the sample were painted with colloidal carbon paint to increase 

conductivity. Fossils were mounted with the long axis of the fossil perpendicular to the beam in 

order to examine the distribution of elements on the exterior (Figure 7). All specimens were 

coated with carbon using an Edwards’s vacuum coating unit. An accelerating voltage of 10 keV 

was used for all specimens to produce SEM-EDS maps for O, C, Al, Si and Fe. Line scans were  
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Figure 7.  Illustration showing the orientation of fossils with respect to the electron beam. Fossils were mounted 

perpendicular to the electron beam in order to examine elemental variations across the exterior surface. 
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also produced for C, Si, and Al. Backscatter images were used to locate the outer margins of 

fossils before EDS analysis was done.   

X-ray diffraction  

XRD was used to examine the clay mineral content of the Zuun-Arts shale. Grain size separation 

was used to segregate the clay size fraction from 6 samples of shale from the Zuun-Arts 

Formation. For each sample, approximately 10 grams of shale was ground with a mortar and 

pestle, soaked in deionized water in 200 ml glass beakers overnight, and blended for 3 minutes 

in a Waring blender. The fine grain fraction was decanted into plastic tubes for centrifugation.  

About 30 mg of sodium pyrophosphate dispersing agent was added to each tube, and samples 

were centrifuged at 750 rpm for 3.3 minutes. The clay size fraction was then decanted into a 

new tube, and this process was repeated 5-6 times to isolate the clay fraction. To induce 

flocculation, 2.2 g of CaCl2 were added to each sample. Samples were left overnight to 

flocculate, then centrifuged a final time for 3.3 minutes at 750 rpm, concentrating the clay 

fraction in the bottom of the tube. Sediment free water was removed with a vacuum hose, and 

the remaining samples were mounted on glass slides.  

To test for the presence of montmorillonite, three samples were run a second after adding 

ethyl glycol to the slides. Samples were run on a Bruker D8 Focus XRD with Diffrac Plus 

software, and interpretation was done using Diffrac Plus EVA software. 
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Results 

Morphology 

Two species of putative macroalgae, Chinggiskhaania bifurcata and Zuunartsphyton delicatum, 

have been identified in the Zuun-Arts biota (Figure 8; Figure 9). Zuunartsphyton delicatum has a 

shrub-like morphology. Chinggiskhaania bifurcata has four different morphologies: non-

branching, single monopodial branching, dichotomous branching, and fan-shaped. A small non-

branching morphology has also been identified, but its affinity is unclear.  

Small non-branching morphology 

The small non-branching morphology is composed of a single, non-branching element less than 

4 mm in length, and is often twisted or curved. Thalli have a median length of 2.87 mm (Figure 

10), median width of 0.16 mm and a median surface area/volume ratio of 27.4 mm-1 (Figure 11). 

Zuunartsphyton: Shrub-like morphology 

 The shrub-like morphology is composed of up to six thin elements twisted tightly together to 

form a shrub-like thallus. Individual elements have a median length of 3.80 mm (Figure 10) and 

a median width of 0.27 mm. Elements twist around and overlap one another. The entire thallus 

has a median surface area/volume ratio of 16.12 mm-1 (Figure 11) and a total width of less than 

6 mm. 
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Figure 8. The Zuun-Arts morphologies. A,E) dichotomously branching, B) fan-shaped, C) monopodial branching, D) 

non-branching,  F) shrub-like. Scale bars= 3mm. 
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Figure 9. Illustrations of the Zuun-Arts morphologies. A) non-branching, B) dichotomously branching, C) 

monopodial branching, D) fan-shaped, E) shrub-like, F) small non-branching. 
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Figure 10. Box and whisker plot showing total thallus length of the small non-branching and shrub-like 

morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X.  
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Figure 11. Box and whisker plot showing surface area/volume ratio of the small non-branching and shrub-like 

morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X. 
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Figure 12. Box and whisker plot showing total thallus length of the non-branching, monopodial, fan-shaped, and 

dichotomous branching morphologies. Median value is marked by the middle horizontal bar, mean is indicated 

with an X.  
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Figure 13. Box and whisker plot showing surface area/volume ratio of the non-branching, monopodial branching, 

fan-like, and dichotomously branching morphologies. Median value is marked by the middle horizontal bar, mean 

is indicated with an X. 
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Chinggiskhaania: Non-branching morphology 

The non-branching morphology is composed of a single, non-branching element with a median 

length of 17.9 mm (Figure 12), a median width of 0.48 mm, and a median surface area/volume 

ratio of 8.47 mm-1 (Figure 13). Non-branching fossils are found straight, slightly curved, or 

twisted, and often overlap each other on slabs containing multiple fossils. Non-branching fossils 

lack any evidence of basal attachment structures, transverse lineations, or distal tapering in 

width across the thallus. 

Chinggiskhaania: Single monopodial branching morphology 

The single monopodial branching morphology is composed of a central element running the 

entire length of the thallus and 1-2 secondary elements branching off the central axis in a 

monopodial fashion. The central element is straight or slightly curved and has a median length 

of 17.0 mm (Figure 12) and median width of 0.57 mm. Secondary elements have a median 

length of 5.10 mm, median width of 0.39 mm and a median branching angle of 50⁰. Thalli have 

an overall median canopy height of 17.0 mm, and surface area/volume ratio of 6.70 mm-1 

(Figure 13).  

Chinggiskhaania: Dichotomously branching morphology 

The dichotomous branching morphology consists of one primary element and two 

dichotomously branching secondary elements. Primary elements have a median length of 10.7 

mm (Figure 12) and median width of 0.44 mm. Secondary elements have a median length of 

8.66, median width of 0.45 mm, and a median branching angle of 60.4⁰. Thalli have an overall 
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median canopy height of 15.0 and median surface area/volume ratio of 8.89 mm-1 (Figure 13). 

All thalli have only one level of branching (1 primary element and 2 secondary elements). 

Chinggiskhaania: Fan-shaped morphology 

The fan shaped morphology is composed of 2-3 primary elements that come together in a fan 

shape. Individual elements have a median length of 8.084 mm (Figure 12) and median width of 

0.31 mm. Thalli have an overall canopy height of 8.08 mm and median surface area/volume 

ratio of 13.0 mm-1 (Figure 13).  

Of the 821 individual fossils examined, the non-branching morphology is the most dominant 

with 761 specimens (92.7 %). Branching morphologies are the most abundant after non-

branching with 39 dichotomously branching (4.8 %) and 14 monopodial branching (1.7 %) 

samples. There are only 3 fossils with a fan morphology (0.4 %), 2 with a small non-branching 

morphology (0.2 %) and 2 with a shrub-like morphology (0.2 %) (Figure 14).  

Scanning electron microscopy 

The results of EDS mapping show no variation in Fe and O concentrations between fossils and 

the surrounding matrix. There is, however, variation in C, Al and Si concentrations (Figure 15). 

All fossils have increased concentrations of Al and are depleted in Si compared to the matrix. 

Some fossils are composed entirely of Al, but most contain some amount of C (Figure 16). Some 

fossils have high concentrations of C around the margins and Al with little to no C in the center, 

however most have areas of elevated carbon throughout. Areas of the fossil with  
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Figure 14. Pie chart showing the relative abundance of different morphologies in the Zuun-Arts biota. The non-

branching morphology makes up 93% of the biota, with all other morphologies making up the remaining 7%. 
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Figure 15. Selected SEM-EDS maps of 5 fossils and surrounding matrix. A) Note high C and Al concentrations and Si 

depletion throughout the fossil. Scale bar = 300 µm, final magnification = 90x. B) Note high Al concentration and Si 

depletion within the fossil and the total absence of C within the fossil. Scale bar = 300 µm, final magnification = 90 

x. C) Note high C concentrations along the margins of and within the fossil and high Al concentrations and Si 

depletion throughout. Scale bar = 300 µm, final magnification = 90 x. D) Note high C and Al concentrations and Si 

depletion throughout the fossil. Scale bar = 400 µm, final magnification = 50 x. E) Note high C concentrations along 

the margins and high Al and Si depletion throughout the fossil. Scale bar = 200 µm, final magnification = 130 x. 
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Figure 16. EDS maps of fossils and surrounding matrix showing concentrations of C and Al. Areas of the fossils have 

elevated concentrations of C or Al, but never both. 
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high Al concentrations are depleted in C, and areas of high C concentrations are depleted in Al. 

All fossils are depleted in Si regardless of the distribution of Al and C. 

The relationship between C, Al, and Si is especially clear in line scans run perpendicular to the 

long axis of the fossils (Figure 17). In most specimens, Si concentrations are initially high in the 

matrix, decline sharply when the line passes over the fossil, then increase again when the line 

passes over the fossil and back into the matrix on the opposite side. Al concentrations show the 

opposite pattern: Al is relatively low in the matrix, increases sharply within the fossil, and then 

declines in the matrix on the opposite side. Similar to the elemental maps, line scans show 

variable C concentrations within the fossils, but are consistently low in the matrix. In specimens 

containing carbon within the fossil, spikes in C correspond to decreases in Al. 

In backscatter images of the Zuun-Arts fossils, areas with high C concentrations appear as 

conspicuous black to brown spots, and areas of high Al concentrations are not visible (Figure 

18). 

X-ray diffraction 

XRD patterns for all samples have large 2θ peaks around 9, 18, 21, and 27, although there is 

some variation between samples (Figure 19). For the three samples run with ethyl glycol, there 

is no difference in XRD patterns with and without ethyl glycol (Figure 20). In addition, there is 

no major difference in XRD patterns between samples from the fossil bearing and non-fossil 

bearing intervals.  
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Figure 17. Line scans run across the width of fossils, including a small amount of matrix on either side. Fossil 

margins are marked by vertical dashed lines. Fossils containing C also have large carbon peaks within the fossil. 

Line scan distance vary from 600 µm to 1,000 µm (see individual graphs). 
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Figure 18. Backscatter images of fossils and surrounding matrix. Dark areas indicate high C concentrations, areas 

with high Al concentrations are indistinguishable from the surrounding material. Fossils containing high C 

concentrations (A-C) are clearly seen in BSE mode, fossils composed primarily of aluminum (D-E) show little to no 

contrast against the matrix. All images were taken at an accelerating voltage of 10 keV, see individual images for 

scale and final magnification. 
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Figure 19. Clay fraction XRD patterns for samples from non-fossil bearing shale (upper) and fossil bearing shale 

(ZA_173) from the Zuun-Arts Formation. Notice the similarity of the two. 
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Figure 20. Clay fraction XRD patterns for a sample run without ethyl glycol (ZA_378) and with ethyl glycol 

(XA_378EG). The similarity of samples run with and without ethyl glycol indicates a lack of smectite. 
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Discussion  
 

Morphology 

Many body and trace fossils can have an ambiguous, tubular morphology similar to macroalgae, 

so a detailed morphological analysis is necessary to determine if the Zuun-Arts fossils are in fact 

macroalgae. Fossilized burrows have a tubular, branching morphology formed when an animal 

digs a burrow that later fills with sediment. The result is a 3-dimensional, often cylindrical fossil 

that can be distinguished from surrounding sediment by its tubular morphology as well as the 

burrow margins, which are not always clearly defined (Miller, 2007). In addition, burrows often 

result in disturbance of the sediment in the surrounding matrix (Cohen, 2009; LoDuca et al., 

2017). The Zuun-Arts fossils are preserved as 2-dimensional films and are composed of C and/or 

Al, they are not 3-dimensional sediment-filled casts. Unlike some burrows, the Zuun-Arts fossils 

have sharp margins that are easily distinguishable from the surrounding matrix, and there is no 

evidence of disturbance of the surrounding sediment. All morphological data suggest that the 

Zuun-Arts fossils are not burrows or any other type of trace fossil.  

BST macroalgae fossils can also look similar to hemichordate fossils such as graptolites, since 

both have a similar gross morphology and are commonly preserved as carbonaceous 

compressions (Muscente and Xiao, 2015). Although macroalgae and graptolites can appear 

superficialy similar, close examination of the Zuun-Arts fossils under a microscope failed to 

detect any structural features found in graptolites such as theca or zooids. SEM-BSE imaging 

also suggests that the Zuun-Arts fossils are not graptolites, since they lack fusellae which would 
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suggest a hemichordate affinity (Figure 21) (Tang et al., 2017). Detailed morphological 

examination and SEM-BSE imaging suggest that the Zuun-Arts fossils are not hemichordates.  

Another alternative interpretation of the Zuun-Arts fossils is that they are bacterial sheaths 

preserved as carbonaceous compressions. Some microrganisms living in marine environments 

attach to submerged substrates and many individuals align in a filamentous arrangment, 

enclosed by a sheath (LoDuca et al., 2017). Bacterial sheaths have morphologies similar to the 

non-branching fossils in the Zuun-Arts biota and can be preserved as BST fossils, however the 

Zuun-Arts fossils are about ten times larger than the largest known bacterial sheaths (LoDuca et 

al., 2017). The size of the Zuun-Arts fossils alone suggests that they are not bacterial sheaths 

preserved as carbonaceous compressions.  

In addition to ruling out the possibility that the Zuun-Arts fossils are burrows, graptolites or 

bacterial sheaths, several morphological features including the length, width, and branching are 

also consistent with a macroalgae interpretation. Most of the Zuun-Arts fossils also bear a 

morphological resemblance to other types of Ediacaran macroalgae. 

The non-branching specimens of Chinggiskhaania have a morphology that closely resembles 

the macroalgae genus Sinocylindra, which is common in the Ediacaran Miaohe biota, although 

Chinggiskhaania is generally smaller than most specimens of Sinocylindra. Chinggiskhaania has 

a median length of 17.865 mm and a median width of 0.481 mm, while Sinocylindra has a 

median length of 28.33 mm and median width of 0.481 mm (Xiao et al., 2002). Although 

Sinocylindra is larger, two have similar surface area-volume ratios, with Sinocylindra having a 

ratio of 7.77 mm-1 and Chinggiskhaania having a ratio of 8.47 mm-1. 
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Figure 21. A-C) Backscatter images of (A) BST hemichordate fossil and (B-C) BST macroalgae fossils. Scale bars = 0.2 

mm. D-E) BST macroalgae fossils from the Zuun-Arts biota. Scale bars = 0.5mm, final magnification = 90x. Note the 

transverse bands in A and lack of bands or any other internal structures in B-E. Modified from LoDuca et al. (2017). 
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The fan-shaped morphology of Chinggiskhaania somewhat resembles the Ediacaran 

macroalgae Doushantuophyton cometa, although the Chinggiskhaania specimens are much 

simpler. Fan- shaped Chinggiskhaania and Doushantuophyton cometa specimens have similar 

median lengths of 8.084 mm and 11.92 mm, respectively. With a median width of 0.09 mm, 

Doushantuophyton cometa filaments are generally much thinner than Chinggiskhaania 

filaments, which have a median width of 0.311 mm (Xunlai et al., 1999). The two also differ with 

respect to surface area-volume ratio and number of filaments. Doushantuophyton cometa has a 

SA/V of 44.61 mm-1 and about 40 filaments on average (Xunlai et al., 1999), Chinggiskhaania 

has a SA/V of 13.016 mm-1 and only 3 filaments. Based on these morphological data it is unclear 

whether the fan-shaped Chinggiskhaania morphology has any direct relationship to 

Doushantuophyton cometa. Although the fan-shaped morphology is much simpler than 

Doushantuophyton cometa, the general morphological resemblance at least indicates that this 

morphology is consistent with a macroalgae interpretation.  

The dichotomously branching morphology of Chinggiskhaania bears a general morphological 

resemblance to the Ediacaran macroalgae Doushantophyton rigidium. The dichotomous 

branching form of Chinggiskhaania and Doushantophyton rigidium both have a similar 

morphology consisting of a primary element that terminates in two dichotomous branches, and 

similar heights of 14.988 mm and 15.28 mm, respectively. Chinggiskhaania has a median width 

of 0.438 mm, has only 2 branches, and has a surface area-volume ratio of 8.891 mm-1, while 

Doushantophyton rigidium has a median width of 0.09 mm, has up to 6 branches, and has a 

surface area-volume ratio of 44.58 mm-1 (Xiao et al., 2002). Based on the number of branches 

and surface area-volume ratio, it appears that Doushantophyton rigidium is more complex than 
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the dichotomously branching Chinggiskhaania specimens. Overall, Chinggiskhaania does have a 

morphology generally similar to that of Doushantophyton rigidium, indicating that 

Chinggiskhaania has a macroalgae affinity. 

The single monopodial morphology of Chinggiskhaania resembles a simpler version of 

Doushantophyton quyuani, which is composed of a central axis with 6 or more monopodial 

branches. The monopodial Chinggiskhaania has a median height of 16.96 mm and 

Doushantophyton quyuani has a median height of 8.69 mm, and Chinggiskhaania has only 1-2 

monopodial branches. Doushantophyton quyuani also has a greater surface area-volume ratio 

of 33.49 mm-1 (Xunlai et al., 1999), compared to Chinggiskhaania, which has a ratio of 6.704 

mm-1. The monopodial branching morphology of Chinggiskhaania is morphologically similar to 

Doushantophyton quyuani, but is simpler in terms of the number of branches and surface area-

volume ratio.  

The shrub-like thallus of Zuunartsphyton is morphologically similar to the Ediacaran macroalgae 

Glomulus filamentous, which consists of a number of fine filaments twisted together into a 

colony. The shrub morphology of Zuunartsphyton consists of about 6 filaments forming a 

colony with a total width of 3.80 mm, while Glomulus filamentous consists of about 10 

filaments forming a colony with a total width of 5 mm (Xiao et al., 2002). 

The small non-branching morphology of Zuunartsphyton does not resemble any known form of 

macroalgae from the Ediacaran or early Paleozoic. Although it is possible that the small non-

branching form represents a novel morphology, it is more likely that these specimens are 

fragments or an earlier life cycle stage of Chinggiskhaania. Reproductive bodies are not 
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preserved in the Zuun-Arts fossils, so it is not possible to know with certainty how these 

organisms reproduced or what earlier life cycle stages would have looked like. The results of 

this morphological analysis indicate that the Zuun-Arts fossils are not trace fossils, graptolites or 

bacterial sheaths and that they bear a strong morphological resemblance to other Ediacaran 

macroalgae, supporting the hypothesis that these fossils are indeed macroalgae. 

Comparison of the Zuun-Arts biota with other Ediacaran BST deposits 

Lagerstätten are not common in the Ediacaran, and those that do occur often do not contain 

BST preservation, but when BST preservation is present, macroalgae fossils are often preserved 

(Xiao, 2002). Two Ediacaran BST deposits, the Lantian biota and the Miaohe biota, preserve a 

large number of macroalgae with a variety of morphologies (Xunlai et al., 1999; Xiao et al., 

2002). Compared to the Lantian and Miaohe biotas, the Zuun-Arts fossils are morphologically 

simple, and the biota as a whole is low in diversity, although the Zuun-Arts fossils do have 

length (Figure 22) and surface area-volume ratios similar to macroalgae in the Lantian and 

Miaohe biotas (Figure 23). The Lantian biota contains 13 macroalgae morphotypes (Xunlai et 

al., 1999) and the Miaohe biota contains 23 (Xiao et al., 2002), while the Zuun-Arts contains 

only 6. The Lantian and Miaohe biotas also include macroalgae with complex morphologies 

including a variety of complex dichotomous and monopodial branching thalli and tube-shaped 

thalli, some of which contain rhizoidal holdfasts and septation. The Lantian biota also contains 

enigmatic fossils that may have a metazoan affinity (Xunlai et al., 1999; Xiao et al., 2002). The 

Zuun-Arts biota lacks much of the morphological complexity seen in the Lantian and Miaohe 

biotas, and is morphologically simple even when compared to much older deposits (Han and  
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Figure 22. Box and whisker plot showing total length values for macroalgae from the Lantian, Miaohe, and Zuun-

Arts biotas. Note how similar the median values are in all three biotas.  
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Figure 23. Box and whisker plot showing surface area-volume ratios for macroalgae from the Lantian, Miaohe, and 

Zuun-Arts biotas. Median surface area-volume ratios for the Zuun-Arts fossils fall in between those for macroalgae 

from the Lantian and Miaohe biotas.  
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Runnegar, 1992). Definitive rhizoidal and discoidal holdfasts, annulations, and some degree of 

structural differentiation dates back to at least the Mesoproterozoic (Xiao and Dong, 2006).  

The Zuun-Arts biota is composed entirely of macroalgae belonging to FFG 1 and FFG 2, although 

over 93% of all specimens are in FFG 1 (non- branching). The Miaohe and Lantian biotas include 

macroalgae that fall within FFG 1, however most belong the FFG 2 or FFG 2.5.  These 

morphologies indicate that the Zuun-Arts macroalgae are highly photosynthetically productive 

and lack environmental hardiness and the ability to resist herbivorous predation. Specimens of 

the genus Doushantophyton tend to have higher surface area-volume ratio than specimens of 

Chinggiskhaania, which may suggest that Doushantophyton was more photosynthetically 

efficient that Chinggiskhaania, however Doushantophyton specimens also tend to have more 

branches than Chinggiskhaania, which could reduce photosynthetic efficiency by increasing 

self-shading (Xiao and Dong, 2006).  

Ediacaran macroalgae as a whole are simple compared to early Paleozoic macroalgae. The 

simplicity of Ediacaran morphologies should not be surprising, since much of the Paleozoic 

diversification of thallus morphology was driven by competition for light and adaptation to 

herbivorous predation (LoDuca et al., 2017; Littler and Littler, 1980). Macroalgae communities 

were just beginning to form in the Ediacaran, and the low number of individual macroalgae in a 

given community, especially in the Zuun-Arts biota, suggests there probably was not much 

competition for light, unlike in the dense, robust communities that formed in the Paleozoic 

(LoDuca et al., 2017). In addition to competition for light, adaptation to predation has been a 

major driving force behind macroalgae diversification. Most of the trends in macroalgae 
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evolution seen in the Phanerozoic, including an increase in surface area-volume ratio, a higher 

degree of thallus differentiation, the advent of lateral monopodial branching, and an overall 

increase in thallus toughness, have been driven by herbivorous predation (Littler and Littler, 

1980). Although evidence of small-scale herbivorous predation by microscopic organisms may 

be impossible to detect in the fossil record, there are no known examples of macro-herbivorous 

predation in the Ediacaran fossil record (LoDuca et al., 2017). The lack of predation and 

competition for light in Ediacaran macroalgae communities may explain the simplicity of thallus 

morphology. Structural differentiation comes with an enormous energy cost, so it makes sense 

that macroalgae facing little competition or predation pressure would not expend the energy 

required to develop more complex thallus morphologies. Ediacaran macroalgae are 

morphologically simple, highly photosynthetically efficient, and seem to be very well equipped 

for life in the Ediacaran.  

Scanning electron microscopy 

The SEM-EDS results indicate BST preservation as Al and sometimes C-rich films. These results 

are consistent with the SEM-EDS results from Dornbos et al. (2016), which indicate that the 

Zuun-Arts fossils are preserved primarily as aluminosilicate mineral films with some areas of 

elevated C content. Overall, these results support the second major hypothesis of this project, 

that the Zuun-Arts fossils are preserved through BST preservation as aluminosilicate mineral 

films.  

Although the goal of this project was not to evaluate the different models for the formation of 

BST fossils, the SEM-EDS data obtained may provide some new insight into the process. SEM-
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EDS data for the Zuun-Arts fossils does not necessarily provide support for or against the early 

diagenesis or late diagenesis models outlined earlier, but it may have implications for some 

aspects of these models.  

The early diagenesis model proposed by Orr et al. (2009) suggests a variety of ways that 

authegenic clay films can form in early diagenesis, as well as several models of how the 

elemental composition of fossils may appear based on the way the fossil splits into part and 

counterpart (Figure 2). In the early diagenesis model, the aluminosilicate film can form on the 

outside or inside of the cuticle, resulting in an a film composed of an internal C layer with Al 

above and below it, or an internal Al layer with C above and below it. Orr et al. (2009) also 

suggest that, when the fossil is split into part and counter-part, the split will happen 

preferentially through the C layer, the Al layer, or through the sediment encasing the fossil. In 

all cases, this model proposes that the splitting plane is confined to a single layer of the fossil, 

which should result in a fossil with a homogenous elemental composition.  

SEM-EDS results clearly show that some of the Zuun-Arts fossils are composed of Al and C, 

which seems to be inconsistent with the early diagenesis model. These results do not disprove 

the early diagenesis model as a mechanism for BST preservation, but do suggest that the model 

of how fossils split into part and counterpart may need to be revisited. It is possible that BST 

films do form in the way proposed in the early diagenesis model, but that the splitting plane is 

not always confined to a single layer of the film. Many of the Zuun-Arts fossils are composed 

mostly of Al, which is consistent with the splitting plane being confined to a single layer. The  
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Figure 24. One possible alternative to the splitting paths proposed in the early diagenesis model for the formation 

of BST fossils. A-B) cross section view of a zig-zag splitting path breaking through C and Al layers. C-D) the 

theoretical SEM-EDS map pattern created by the zig-zag splitting paths shown in A and B. This provides a potential 

explanation for the SEM-EDS map patterns seen in the Zuun-Arts fossils that does not necessarily conflict with the 

early diagenesis model.  
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Zuun-Arts fossils containing Al and C may represent instances where the splitting plane was not 

confined to one layer, leading to a fossil showing Al and C in SEM-EDS (Figure 24). 

The SEM-EDS results from the Zuun-Arts fossils are generally consistent with the late diagenesis 

model for BST fossil formation proposed by Butterfield et al. (2007). This model proposes that 

BST films are originally composed of organic C left behind by the organism in early diagenesis, 

and that the original C film is gradually overprinted by aluminosilicate minerals in later 

diagenesis as a result of low-grade regional metamorphism. Over time, this process should lead 

to a film composed entirely of aluminum. This taphonomic model may be able to explain why 

some of Zuun-Arts fossils contained C and Al; the original C films had not been completely 

overprinted by Al yet when regional metamorphism ended. However, it does seem odd that 

there would be any variation in the composition of fossils if regional metamorphism were the 

primary control of Al overprinting, since all of the Zuun-Arts fossils are from the same location, 

and have gone through the same diagenetic history. Overall, the SEM-EDS data from the Zuun-

Arts fossils are generally consistent with both the early diagenesis and late diagenesis models, 

although they do raise minor concerns with both.  

X-ray diffraction 

Prominent 2θ peaks around 18 and 21 in XRD patterns can be accounted for by quartz in all 

samples. Besides quartz, the largest 2θ peaks in most samples can be accounted for by illite. 

XRD results indicate that the clay size fraction of the Zuun-Arts shale is composed primarily of 

quartz and illite, although most samples contain additional minerals. In several samples, 
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kaolinite, muscovite, and possibly glauconite and vermiculite can account for many of the 

smaller peaks.  

Interestingly, there appears to be little to no montmorillonite in any of the samples. Some 

samples have one or two 2θ peaks that match montmorillonite peaks, but none have the large, 

low angle peaks that are diagnostic of montmorillonite. In addition, in samples re-run with 

ethylene glycol, XRD patterns with and without ethylene glycol are essentially identical. 

Smectite will absorb ethylene glycol, causing the XRD pattern to shift to the right (Moore and 

Reynolds, 1997). If the clay fraction contained montmorillonite, such a shift would have 

occurred after ethylene glycol was added to the slides, but this is not the case. It is possible that 

montmorillonite was present in early diagenesis and has since altered to illite. This process of 

alteration usually results in mixed layer illite-montmorillonite clays, however XRD analysis did 

not show any evidence of mixed layer illite-montmorillonite clay. 

Butterfield (1990) suggested that smectite may be important in the BST preservation process 

due to its ability to absorb degradative enzymes, delaying soft tissue decay. The lack of 

montmorillonite in the Zuun-Arts fossil bearing shale suggests that smectite is not necessary for 

BST preservation to occur, although it may be beneficial when present. In addition, the 

similarity of the clay fraction in the fossil bearing and non-fossil bearing intervals of the Zuun-

Arts Formation suggests that variation in clay mineral content cannot explain the lack of fossils 

in the non-fossil bearing intervals. Despite the lack of smectite in the Zuun-Arts Formation, clay 

minerals still play an important role in the BST preservation process. Even non-swelling clays 

could absorb degradative enzymes, since they have a large surface area compared to the non-
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clay component of the clay sized fraction. In addition, all minerals in the clay fraction play an 

important role early in the taphonomic process by packing around the organism and sealing out 

oxygen. If the organism is not sealed tight very soon after death, there is no chance of 

preservation.  

Conclusions 

Morphological analysis of Chinggiskhaania and Zuunartsphyton from the Zuun-Arts biota 

indicate six different morphologies: unbranching, dichotomously branching, single monopodial 

branching, fan-shaped, shrub-like and small non-branching. The dichotomously branching, 

single monopodial branching, and fan-shaped morphologies of Chinggiskhaania generally 

resemble species of the macroalgae Doushantophyton and the non-branching morphology 

resembles Sinocylindra, while the shrub-like morphology of Zuunartsphyton  generally 

resembles the macroalgae species Glomulus filamentous (Figure 25). Morphological 

measurements including width, length and surface area to volume ratio for the Zuun-Arts fossils 

are similar to the macroalgae from the Ediacaran Lantian and Miaohe biotas. In addition, 

morphological and SEM-BSE data indicate that the Zuun-Arts fossils are not hemichordates, 

trace fossils, or bacterial sheaths. All these data indicate that the Zuun-Arts fossils are indeed 

macroalgae, supporting the first hypothesis of this project. The Zuun-Arts biota is dominated by 

the non-branching morphology Chinggiskhaania, and lacks much of the macroalgal diversity 

preserved in the Lantian and Miaohe biotas.   

SEM-EDS data show that the Zuun-Arts fossils are preserved as films composed primarily of Al 

with areas of elevated C concentrations in some fossils. These data are consistent with  
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Figure 25. A comparison of the Zuun-Arts fossil morphologies with their closest Ediacaran macroalgae 

counterparts. A) Doushantuophyton cometa, a macroalgae species from the Lantian biota. B) The Zuun-Arts fan-

like morphology. C) Doushantophyton rigidium from the Miaohe biota. D) The Zuun-Arts dichotomously branching 

morphology. E) Doushantophyton quyuani from the Lantian biota. F) The monopodial branching morphology from 

the Zuun-Arts biota. G) Sinocylindra sp. from the Lantian and Miaohe biotas. H) The Zuun-Arts non-branching 

morphology. I) Glomulus filamentous from the Miaohe biota. J) The Zuun-Arts shrub-like morphology. A,E modified 

from Xunlai et al. (1999); C,G,I modified from Xiao et al. (2002). 
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preservation through the BST taphonomic pathway as aluminosilicate mineral films, supporting 

the second hypothesis of this project. Although these data do not definitively prove or disprove 

any of the models proposed for the formation of BST fossils in general, they do offer insights 

into how the plane of splitting passes through the fossil when the rock is split into part and 

counterpart (Figure 20). The similarity in clay mineral content between shale within and outside 

of the Zuun-Arts biota indicates that the lack of fossils outside of the fossiliferous zone is not 

due to a lack of swelling clays. In addition, the lack of smectite in the clay fraction of the Zuun-

Arts shale indicates that swelling clay is not necessary for BST preservation to occur. Overall, 

although simple compared to the Lantian and Miaohe biotas, the Zuun-Arts biota does provide 

a rare view of soft-bodied organisms during an important time in the history of life, and may 

lead to a more complete understanding of the origins of complex multicellular life. 
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Appendix A: 

SEM-EDS maps
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Appendix B:  

SEM-EDS map, C and Al overlay 
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Appendix C: 

SEM-EDS line scans 
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Appendix D: 

Morphological measurements, non-branching  

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
1

B
0

.5
6

1
.0

0
2

3
.3

8
0

.5
6

4
1

.2
3

5
.6

5
7

.2
9

2
3

.3
8

0
.5

6
4

1
.2

3
5

.6
5

7
.2

9

Z
A

_
1

C
0

.5
8

1
.0

0
3

5
.5

4
0

.5
8

6
5

.1
3

9
.3

5
6

.9
6

3
5

.5
4

0
.5

8
6

5
.1

3
9

.3
5

6
.9

6

Z
A

_
1

D
0

.7
3

1
.0

0
3

2
.8

0
0

.7
3

7
5

.8
0

1
3

.6
4

5
.5

6
3

2
.8

0
0

.7
3

7
5

.8
0

1
3

.6
4

5
.5

6

Z
A

_
1

E
0

.3
9

1
.0

0
7

.7
8

0
.3

9
9

.8
4

0
.9

4
1

0
.4

4
7

.7
8

0
.3

9
9

.8
4

0
.9

4
1

0
.4

4

Z
A

_
2

0
.7

2
1

.0
0

1
5

.7
4

0
.7

2
3

6
.1

9
6

.3
3

5
.7

1
1

5
.7

4
0

.7
2

3
6

.1
9

6
.3

3
5

.7
1

Z
A

_
3

A
0

.6
3

1
.0

0
1

1
.6

6
0

.6
3

2
3

.5
0

3
.5

8
6

.5
7

1
1

.6
6

0
.6

3
2

3
.5

0
3

.5
8

6
.5

7

Z
A

_
3

B
0

.7
5

1
.0

0
3

2
.6

2
0

.7
5

7
7

.1
8

1
4

.2
1

5
.4

3
3

2
.6

2
0

.7
5

7
7

.1
8

1
4

.2
1

5
.4

3

Z
A

_
3

C
0

.3
5

1
.0

0
2

4
.2

4
0

.3
5

2
6

.6
0

2
.2

9
1

1
.6

1
2

4
.2

4
0

.3
5

2
6

.6
0

2
.2

9
1

1
.6

1

Z
A

_
3

D
0

.4
9

1
.0

0
8

.7
7

0
.4

9
1

3
.8

7
1

.6
5

8
.3

9
8

.7
7

0
.4

9
1

3
.8

7
1

.6
5

8
.3

9

Z
A

_
3

E
0

.4
4

1
.0

0
1

1
.6

3
0

.4
4

1
6

.4
4

1
.7

8
9

.2
2

1
1

.6
3

0
.4

4
1

6
.4

4
1

.7
8

9
.2

2

Z
A

_
3

F
0

.4
4

1
.0

0
1

0
.3

3
0

.4
4

1
4

.6
4

1
.5

8
9

.2
4

1
0

.3
3

0
.4

4
1

4
.6

4
1

.5
8

9
.2

4

Z
A

_
3

G
0

.4
3

1
.0

0
2

5
.0

8
0

.4
3

3
4

.3
9

3
.6

9
9

.3
2

2
5

.0
8

0
.4

3
3

4
.3

9
3

.6
9

9
.3

2

Z
A

_
3

H
0

.1
7

1
.0

0
8

.7
6

0
.1

7
4

.8
0

0
.2

1
2

3
.3

5
8

.7
6

0
.1

7
4

.8
0

0
.2

1
2

3
.3

5

Z
A

_
3

I
0

.7
0

1
.0

0
1

5
.6

1
0

.7
0

3
5

.0
2

5
.9

9
5

.8
5

1
5

.6
1

0
.7

0
3

5
.0

2
5

.9
9

5
.8

5

Z
A

_
3

J
0

.3
9

1
.0

0
1

1
.1

3
0

.3
9

1
3

.7
9

1
.3

1
1

0
.4

9
1

1
.1

3
0

.3
9

1
3

.7
9

1
.3

1
1

0
.4

9

Z
A

_
3

K
0

.3
5

1
.0

0
1

8
.6

4
0

.3
5

2
0

.5
0

1
.7

6
1

1
.6

3
1

8
.6

4
0

.3
5

2
0

.5
0

1
.7

6
1

1
.6

3

Z
A

_
3

L
0

.3
5

1
.0

0
7

.7
7

0
.3

5
8

.6
6

0
.7

3
1

1
.7

8
7

.7
7

0
.3

5
8

.6
6

0
.7

3
1

1
.7

8

Z
A

_
3

M
0

.3
5

1
.0

0
7

.3
4

0
.3

5
8

.1
8

0
.6

9
1

1
.8

0
7

.3
4

0
.3

5
8

.1
8

0
.6

9
1

1
.8

0

Z
A

_
4

B
0

.6
7

1
.0

0
1

5
.1

4
0

.6
7

3
2

.5
5

5
.3

3
6

.1
0

1
5

.1
4

0
.6

7
3

2
.5

5
5

.3
3

6
.1

0

Z
A

_
5

A
0

.3
7

1
.0

0
3

7
.9

9
0

.3
7

4
4

.2
3

4
.0

6
1

0
.8

9
3

7
.9

9
0

.3
7

4
4

.2
3

4
.0

6
1

0
.8

9

Z
A

_
5

B
0

.3
5

1
.0

0
1

3
.0

3
0

.3
5

1
4

.4
3

1
.2

4
1

1
.6

5
1

3
.0

3
0

.3
5

1
4

.4
3

1
.2

4
1

1
.6

5

Z
A

_
5

C
0

.2
8

1
.0

0
1

0
.4

0
0

.2
8

9
.1

0
0

.6
2

1
4

.7
4

1
0

.4
0

0
.2

8
9

.1
0

0
.6

2
1

4
.7

4

Z
A

_
7

A
0

.5
2

1
.0

0
1

9
.4

5
0

.5
2

3
2

.2
5

4
.1

5
7

.7
8

1
9

.4
5

0
.5

2
3

2
.2

5
4

.1
5

7
.7

8

Z
A

_
7

C
0

.9
9

1
.0

0
1

6
.1

9
0

.9
9

5
1

.9
1

1
2

.4
8

4
.1

6
1

6
.1

9
0

.9
9

5
1

.9
1

1
2

.4
8

4
.1

6

Z
A

_
7

D
0

.5
8

1
.0

0
1

6
.2

8
0

.5
8

3
0

.2
8

4
.3

3
7

.0
0

1
6

.2
8

0
.5

8
3

0
.2

8
4

.3
3

7
.0

0

Z
A

_
7

E
0

.6
6

1
.0

0
8

2
.2

6
0

.6
6

1
7

2
.2

1
2

8
.4

7
6

.0
5

8
2

.2
6

0
.6

6
1

7
2

.2
1

2
8

.4
7

6
.0

5

Z
A

_
7

I
0

.7
4

1
.0

0
1

6
.4

0
0

.7
4

3
8

.7
5

6
.9

7
5

.5
6

1
6

.4
0

0
.7

4
3

8
.7

5
6

.9
7

5
.5

6

Z
A

_
7

J
0

.4
1

1
.0

0
1

4
.8

3
0

.4
1

1
9

.4
5

1
.9

8
9

.8
4

1
4

.8
3

0
.4

1
1

9
.4

5
1

.9
8

9
.8

4

Z
A

_
8

A
1

.1
1

1
.0

0
2

9
.0

2
1

.1
1

1
0

2
.9

0
2

7
.9

7
3

.6
8

2
9

.0
2

1
.1

1
1

0
2

.9
0

2
7

.9
7

3
.6

8

Z
A

_
8

B
0

.7
8

1
.0

0
2

0
.6

1
0

.7
8

5
1

.7
1

9
.9

5
5

.2
0

2
0

.6
1

0
.7

8
5

1
.7

1
9

.9
5

5
.2

0

Z
A

_
8

C
0

.6
0

1
.0

0
4

9
.9

0
0

.6
0

9
4

.7
4

1
4

.1
5

6
.7

0
4

9
.9

0
0

.6
0

9
4

.7
4

1
4

.1
5

6
.7

0

Z
A

_
8

D
0

.3
8

1
.0

0
2

5
.7

7
0

.3
8

3
0

.9
8

2
.9

2
1

0
.6

0
2

5
.7

7
0

.3
8

3
0

.9
8

2
.9

2
1

0
.6

0

Z
A

_
8

E
0

.3
8

1
.0

0
2

8
.5

8
0

.3
8

3
4

.3
3

3
.2

4
1

0
.6

0
2

8
.5

8
0

.3
8

3
4

.3
3

3
.2

4
1

0
.6

0

Z
A

_
8

F
0

.6
9

1
.0

0
3

2
.9

0
0

.6
9

7
1

.5
0

1
2

.1
2

5
.9

0
3

2
.9

0
0

.6
9

7
1

.5
0

1
2

.1
2

5
.9

0

Z
A

_
8

G
0

.6
0

1
.0

0
2

3
.7

7
0

.6
0

4
5

.4
3

6
.7

4
6

.7
4

2
3

.7
7

0
.6

0
4

5
.4

3
6

.7
4

6
.7

4

Z
A

_
8

H
0

.7
6

1
.0

0
3

9
.8

5
0

.7
6

9
6

.0
1

1
8

.0
7

5
.3

1
3

9
.8

5
0

.7
6

9
6

.0
1

1
8

.0
7

5
.3

1

Z
A

_
9

A
0

.6
0

1
.0

0
1

4
.5

3
0

.6
0

2
7

.8
5

4
.0

8
6

.8
3

1
4

.5
3

0
.6

0
2

7
.8

5
4

.0
8

6
.8

3

Z
A

_
9

B
0

.7
5

1
.0

0
3

9
.2

4
0

.7
5

9
3

.0
4

1
7

.2
4

5
.4

0
3

9
.2

4
0

.7
5

9
3

.0
4

1
7

.2
4

5
.4

0

Z
A

_
9

C
0

.3
3

1
.0

0
2

2
.2

3
0

.3
3

2
3

.4
8

1
.9

5
1

2
.0

7
2

2
.2

3
0

.3
3

2
3

.4
8

1
.9

5
1

2
.0

7

Z
A

_
9

D
0

.6
2

1
.0

0
3

1
.7

2
0

.6
2

6
1

.9
5

9
.4

5
6

.5
6

3
1

.7
2

0
.6

2
6

1
.9

5
9

.4
5

6
.5

6

Z
A

_
9

E
0

.6
2

1
.0

0
2

7
.4

2
0

.6
2

5
3

.6
3

8
.1

7
6

.5
7

2
7

.4
2

0
.6

2
5

3
.6

3
8

.1
7

6
.5

7

Z
A

_
9

F
0

.6
3

1
.0

0
3

5
.6

5
0

.6
3

7
1

.5
9

1
1

.2
5

6
.3

7
3

5
.6

5
0

.6
3

7
1

.5
9

1
1

.2
5

6
.3

7

Z
A

_
1

0
A

0
.5

0
1

.0
0

3
8

.3
2

0
.5

0
6

0
.6

8
7

.5
5

8
.0

4
3

8
.3

2
0

.5
0

6
0

.6
8

7
.5

5
8

.0
4

Z
A

_
1

0
B

0
.3

3
1

.0
0

2
1

.4
2

0
.3

3
2

2
.6

4
1

.8
8

1
2

.0
7

2
1

.4
2

0
.3

3
2

2
.6

4
1

.8
8

1
2

.0
7

Z
A

_
1

0
C

0
.5

3
1

.0
0

1
8

.0
7

0
.5

3
3

0
.4

0
3

.9
5

7
.6

9
1

8
.0

7
0

.5
3

3
0

.4
0

3
.9

5
7

.6
9

Z
A

_
1

0
D

0
.3

3
1

.0
0

1
8

.2
9

0
.3

3
1

9
.3

5
1

.6
0

1
2

.0
9

1
8

.2
9

0
.3

3
1

9
.3

5
1

.6
0

1
2

.0
9

Z
A

_
1

0
E

0
.6

0
1

.0
0

1
9

.6
8

0
.6

0
3

7
.7

8
5

.6
0

6
.7

5
1

9
.6

8
0

.6
0

3
7

.7
8

5
.6

0
6

.7
5

Z
A

_
1

1
A

0
.8

2
1

.0
0

1
8

5
.1

0
0

.8
2

4
7

8
.2

3
9

7
.9

4
4

.8
8

1
8

5
.1

0
0

.8
2

4
7

8
.2

3
9

7
.9

4
4

.8
8

Z
A

_
1

1
B

1
.1

8
1

.0
0

3
1

.0
0

1
.1

8
1

1
6

.6
3

3
3

.6
5

3
.4

7
3

1
.0

0
1

.1
8

1
1

6
.6

3
3

3
.6

5
3

.4
7

Z
A

_
1

2
A

0
.5

6
1

.0
0

1
0

0
.8

3
0

.5
6

1
7

7
.7

8
2

4
.8

2
7

.1
6

1
0

0
.8

3
0

.5
6

1
7

7
.7

8
2

4
.8

2
7

.1
6

S
p

e
ci

m
e

n
T

o
ta

l
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts



82 

 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
1

2
B

0
.2

6
1

.0
0

3
3

.2
6

0
.2

6
2

7
.6

8
1

.8
2

1
5

.2
1

3
3

.2
6

0
.2

6
2

7
.6

8
1

.8
2

1
5

.2
1

Z
A

_
1

2
C

0
.7

9
1

.0
0

5
0

.1
6

0
.7

9
1

2
5

.7
2

2
4

.7
0

5
.0

9
5

0
.1

6
0

.7
9

1
2

5
.7

2
2

4
.7

0
5

.0
9

Z
A

_
1

2
D

0
.2

6
1

.0
0

2
1

.7
1

0
.2

6
1

8
.1

0
1

.1
9

1
5

.2
4

2
1

.7
1

0
.2

6
1

8
.1

0
1

.1
9

1
5

.2
4

Z
A

_
1

2
E

0
.3

7
1

.0
0

2
9

.8
5

0
.3

7
3

5
.2

8
3

.2
8

1
0

.7
6

2
9

.8
5

0
.3

7
3

5
.2

8
3

.2
8

1
0

.7
6

Z
A

_
1

2
F

0
.3

7
1

.0
0

3
7

.3
0

0
.3

7
4

4
.0

2
4

.1
0

1
0

.7
5

3
7

.3
0

0
.3

7
4

4
.0

2
4

.1
0

1
0

.7
5

Z
A

_
1

2
G

0
.7

5
1

.0
0

4
1

.7
7

0
.7

5
9

8
.8

5
1

8
.3

0
5

.4
0

4
1

.7
7

0
.7

5
9

8
.8

5
1

8
.3

0
5

.4
0

Z
A

_
1

2
H

0
.7

5
1

.0
0

3
8

.4
0

0
.7

5
9

0
.9

5
1

6
.8

2
5

.4
1

3
8

.4
0

0
.7

5
9

0
.9

5
1

6
.8

2
5

.4
1

Z
A

_
1

2
I

0
.2

6
1

.0
0

2
7

.4
8

0
.2

6
2

2
.8

9
1

.5
0

1
5

.2
2

2
7

.4
8

0
.2

6
2

2
.8

9
1

.5
0

1
5

.2
2

Z
A

_
1

4
0

.5
0

1
.0

0
2

5
.8

2
0

.5
0

4
1

.2
5

5
.1

5
8

.0
1

2
5

.8
2

0
.5

0
4

1
.2

5
5

.1
5

8
.0

1

Z
A

_
1

5
A

0
.5

8
1

.0
0

6
4

.2
4

0
.5

8
1

1
6

.7
1

1
6

.7
3

6
.9

8
6

4
.2

4
0

.5
8

1
1

6
.7

1
1

6
.7

3
6

.9
8

Z
A

_
1

5
B

0
.7

4
1

.0
0

2
4

.7
0

0
.7

4
5

7
.8

5
1

0
.4

7
5

.5
2

2
4

.7
0

0
.7

4
5

7
.8

5
1

0
.4

7
5

.5
2

Z
A

_
1

5
C

0
.4

3
1

.0
0

5
1

.8
5

0
.4

3
7

0
.6

3
7

.6
0

9
.3

0
5

1
.8

5
0

.4
3

7
0

.6
3

7
.6

0
9

.3
0

Z
A

_
1

6
A

0
.7

6
1

.0
0

2
4

.6
6

0
.7

6
5

9
.6

7
1

1
.1

5
5

.3
5

2
4

.6
6

0
.7

6
5

9
.6

7
1

1
.1

5
5

.3
5

Z
A

_
1

6
B

0
.8

1
1

.0
0

3
4

.2
2

0
.8

1
8

8
.0

7
1

7
.6

3
5

.0
0

3
4

.2
2

0
.8

1
8

8
.0

7
1

7
.6

3
5

.0
0

Z
A

_
1

8
0

.4
2

1
.0

0
2

6
.5

9
0

.4
2

3
5

.6
8

3
.7

5
9

.5
1

2
6

.5
9

0
.4

2
3

5
.6

8
3

.7
5

9
.5

1

Z
A

_
1

9
0

.3
7

1
.0

0
3

9
.7

7
0

.3
7

4
5

.7
9

4
.1

6
1

1
.0

1
3

9
.7

7
0

.3
7

4
5

.7
9

4
.1

6
1

1
.0

1

Z
A

_
2

1
A

0
.5

7
1

.0
0

3
4

.5
8

0
.5

7
6

2
.0

7
8

.7
3

7
.1

1
3

4
.5

8
0

.5
7

6
2

.0
7

8
.7

3
7

.1
1

Z
A

_
2

1
B

0
.5

0
1

.0
0

4
1

.3
8

0
.5

0
6

4
.7

1
7

.9
6

8
.1

3
4

1
.3

8
0

.5
0

6
4

.7
1

7
.9

6
8

.1
3

Z
A

_
2

2
0

.5
8

1
.0

0
3

7
.5

2
0

.5
8

6
8

.3
7

9
.7

7
7

.0
0

3
7

.5
2

0
.5

8
6

8
.3

7
9

.7
7

7
.0

0

Z
A

_
2

3
A

0
.3

8
1

.0
0

1
0

.9
5

0
.3

8
1

3
.1

4
1

.2
1

1
0

.8
2

1
0

.9
5

0
.3

8
1

3
.1

4
1

.2
1

1
0

.8
2

Z
A

_
2

3
B

0
.4

8
1

.0
0

1
1

.9
8

0
.4

8
1

8
.2

2
2

.1
2

8
.5

9
1

1
.9

8
0

.4
8

1
8

.2
2

2
.1

2
8

.5
9

Z
A

_
2

3
D

0
.3

8
1

.0
0

1
2

.3
1

0
.3

8
1

4
.7

5
1

.3
7

1
0

.8
0

1
2

.3
1

0
.3

8
1

4
.7

5
1

.3
7

1
0

.8
0

Z
A

_
2

3
E

0
.6

2
1

.0
0

1
4

.7
0

0
.6

2
2

9
.2

2
4

.4
3

6
.5

9
1

4
.7

0
0

.6
2

2
9

.2
2

4
.4

3
6

.5
9

Z
A

_
2

6
0

.5
6

1
.0

0
2

3
.9

4
0

.5
6

4
2

.6
6

5
.9

1
7

.2
1

2
3

.9
4

0
.5

6
4

2
.6

6
5

.9
1

7
.2

1

Z
A

_
2

7
B

0
.6

5
1

.0
0

5
.6

9
0

.6
5

1
2

.2
2

1
.8

7
6

.5
3

5
.6

9
0

.6
5

1
2

.2
2

1
.8

7
6

.5
3

Z
A

_
2

8
A

0
.3

4
1

.0
0

1
5

.7
1

0
.3

4
1

7
.1

1
1

.4
5

1
1

.7
9

1
5

.7
1

0
.3

4
1

7
.1

1
1

.4
5

1
1

.7
9

Z
A

_
2

8
B

0
.5

0
1

.0
0

1
5

.3
4

0
.5

0
2

4
.4

7
3

.0
1

8
.1

3
1

5
.3

4
0

.5
0

2
4

.4
7

3
.0

1
8

.1
3

Z
A

_
2

8
C

0
.4

9
1

.0
0

2
2

.4
1

0
.4

9
3

4
.5

0
4

.1
4

8
.3

4
2

2
.4

1
0

.4
9

3
4

.5
0

4
.1

4
8

.3
4

Z
A

_
2

9
0

.4
8

1
.0

0
9

.4
1

0
.4

8
1

4
.5

7
1

.7
1

8
.5

3
9

.4
1

0
.4

8
1

4
.5

7
1

.7
1

8
.5

3

Z
A

_
3

0
A

0
.7

0
1

.0
0

3
0

.1
5

0
.7

0
6

7
.4

3
1

1
.7

3
5

.7
5

3
0

.1
5

0
.7

0
6

7
.4

3
1

1
.7

3
5

.7
5

Z
A

_
3

0
B

0
.4

1
1

.0
0

1
4

.5
0

0
.4

1
1

9
.0

3
1

.9
3

9
.8

5
1

4
.5

0
0

.4
1

1
9

.0
3

1
.9

3
9

.8
5

Z
A

_
3

0
C

0
.4

8
1

.0
0

2
3

.1
0

0
.4

8
3

5
.2

5
4

.2
0

8
.4

0
2

3
.1

0
0

.4
8

3
5

.2
5

4
.2

0
8

.4
0

Z
A

_
3

0
D

0
.5

8
1

.0
0

2
3

.9
2

0
.5

8
4

4
.3

2
6

.3
8

6
.9

4
2

3
.9

2
0

.5
8

4
4

.3
2

6
.3

8
6

.9
4

Z
A

_
3

0
E

0
.5

5
1

.0
0

2
0

.0
5

0
.5

5
3

5
.2

9
4

.8
1

7
.3

3
2

0
.0

5
0

.5
5

3
5

.2
9

4
.8

1
7

.3
3

Z
A

_
3

0
F

0
.5

2
1

.0
0

1
6

.0
4

0
.5

2
2

6
.6

6
3

.4
2

7
.8

0
1

6
.0

4
0

.5
2

2
6

.6
6

3
.4

2
7

.8
0

Z
A

_
3

0
G

0
.4

1
1

.0
0

1
0

.6
9

0
.4

1
1

4
.1

0
1

.4
2

9
.9

0
1

0
.6

9
0

.4
1

1
4

.1
0

1
.4

2
9

.9
0

Z
A

_
3

0
H

0
.4

1
1

.0
0

1
0

.7
1

0
.4

1
1

4
.1

2
1

.4
3

9
.9

0
1

0
.7

1
0

.4
1

1
4

.1
2

1
.4

3
9

.9
0

Z
A

_
3

0
I

0
.5

5
1

.0
0

7
.3

1
0

.5
5

1
3

.1
7

1
.7

5
7

.5
1

7
.3

1
0

.5
5

1
3

.1
7

1
.7

5
7

.5
1

Z
A

_
3

0
J

0
.6

0
1

.0
0

1
2

.2
1

0
.6

0
2

3
.5

7
3

.4
5

6
.8

3
1

2
.2

1
0

.6
0

2
3

.5
7

3
.4

5
6

.8
3

Z
A

_
3

0
K

0
.6

4
1

.0
0

1
0

.0
3

0
.6

4
2

0
.9

3
3

.2
6

6
.4

1
1

0
.0

3
0

.6
4

2
0

.9
3

3
.2

6
6

.4
1

Z
A

_
3

0
L

0
.4

2
1

.0
0

2
6

.4
7

0
.4

2
3

5
.1

8
3

.6
6

9
.6

0
2

6
.4

7
0

.4
2

3
5

.1
8

3
.6

6
9

.6
0

Z
A

_
3

0
M

0
.4

8
1

.0
0

1
5

.1
3

0
.4

8
2

3
.2

1
2

.7
5

8
.4

5
1

5
.1

3
0

.4
8

2
3

.2
1

2
.7

5
8

.4
5

Z
A

_
3

1
A

0
.5

2
1

.0
0

1
4

.7
4

0
.5

2
2

4
.5

3
3

.1
4

7
.8

1
1

4
.7

4
0

.5
2

2
4

.5
3

3
.1

4
7

.8
1

Z
A

_
3

1
B

0
.7

3
1

.0
0

2
3

.1
5

0
.7

3
5

4
.0

6
9

.7
4

5
.5

5
2

3
.1

5
0

.7
3

5
4

.0
6

9
.7

4
5

.5
5

Z
A

_
3

2
A

0
.6

4
1

.0
0

3
6

.5
2

0
.6

4
7

4
.2

7
1

1
.8

2
6

.2
9

3
6

.5
2

0
.6

4
7

4
.2

7
1

1
.8

2
6

.2
9

Z
A

_
3

2
C

0
.3

6
1

.0
0

1
3

.1
7

0
.3

6
1

4
.9

3
1

.3
1

1
1

.3
9

1
3

.1
7

0
.3

6
1

4
.9

3
1

.3
1

1
1

.3
9

Z
A

_
3

3
A

0
.4

6
1

.0
0

2
5

.4
6

0
.4

6
3

7
.0

3
4

.2
1

8
.7

9
2

5
.4

6
0

.4
6

3
7

.0
3

4
.2

1
8

.7
9

Z
A

_
3

3
B

0
.7

8
1

.0
0

3
5

.5
8

0
.7

8
8

8
.2

0
1

7
.0

3
5

.1
8

3
5

.5
8

0
.7

8
8

8
.2

0
1

7
.0

3
5

.1
8

Z
A

_
3

3
C

0
.7

2
1

.0
0

1
6

.2
7

0
.7

2
3

7
.3

3
6

.5
3

5
.7

2
1

6
.2

7
0

.7
2

3
7

.3
3

6
.5

3
5

.7
2

Z
A

_
3

4
A

0
.6

3
1

.0
0

3
3

.6
8

0
.6

3
6

7
.5

6
1

0
.5

9
6

.3
8

3
3

.6
8

0
.6

3
6

7
.5

6
1

0
.5

9
6

.3
8

Z
A

_
3

4
B

0
.5

1
1

.0
0

1
9

.8
7

0
.5

1
3

2
.2

2
4

.0
6

7
.9

4
1

9
.8

7
0

.5
1

3
2

.2
2

4
.0

6
7

.9
4

Z
A

_
3

4
C

0
.4

6
1

.0
0

9
.4

6
0

.4
6

1
4

.0
2

1
.5

8
8

.8
9

9
.4

6
0

.4
6

1
4

.0
2

1
.5

8
8

.8
9

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



83 

 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
3

4
D

0
.6

8
1

.0
0

3
6

.4
9

0
.6

8
7

8
.7

6
1

3
.2

8
5

.9
3

3
6

.4
9

0
.6

8
7

8
.7

6
1

3
.2

8
5

.9
3

Z
A

_
3

5
A

0
.6

2
1

.0
0

2
3

.4
1

0
.6

2
4

5
.9

4
6

.9
9

6
.5

7
2

3
.4

1
0

.6
2

4
5

.9
4

6
.9

9
6

.5
7

Z
A

_
3

5
B

0
.3

9
1

.0
0

4
2

.4
8

0
.3

9
5

1
.7

2
4

.9
7

1
0

.4
1

4
2

.4
8

0
.3

9
5

1
.7

2
4

.9
7

1
0

.4
1

Z
A

_
3

5
C

0
.6

5
1

.0
0

4
6

.8
4

0
.6

5
9

5
.5

1
1

5
.3

0
6

.2
4

4
6

.8
4

0
.6

5
9

5
.5

1
1

5
.3

0
6

.2
4

Z
A

_
3

6
A

1
.0

7
1

.0
0

3
0

.9
6

1
.0

7
1

0
5

.3
2

2
7

.5
7

3
.8

2
3

0
.9

6
1

.0
7

1
0

5
.3

2
2

7
.5

7
3

.8
2

Z
A

_
3

6
B

0
.8

6
1

.0
0

2
2

.2
7

0
.8

6
6

1
.0

2
1

2
.8

1
4

.7
6

2
2

.2
7

0
.8

6
6

1
.0

2
1

2
.8

1
4

.7
6

Z
A

_
3

7
A

0
.4

4
1

.0
0

3
2

.1
2

0
.4

4
4

4
.8

8
4

.9
3

9
.1

1
3

2
.1

2
0

.4
4

4
4

.8
8

4
.9

3
9

.1
1

Z
A

_
3

7
B

0
.6

0
1

.0
0

2
5

.0
8

0
.6

0
4

7
.5

8
7

.0
2

6
.7

8
2

5
.0

8
0

.6
0

4
7

.5
8

7
.0

2
6

.7
8

Z
A

_
3

8
A

0
.9

7
1

.0
0

4
3

.4
4

0
.9

7
1

3
3

.2
4

3
1

.8
2

4
.1

9
4

3
.4

4
0

.9
7

1
3

3
.2

4
3

1
.8

2
4

.1
9

Z
A

_
3

8
B

0
.6

7
1

.0
0

2
2

.2
4

0
.6

7
4

7
.7

0
7

.9
1

6
.0

3
2

2
.2

4
0

.6
7

4
7

.7
0

7
.9

1
6

.0
3

Z
A

_
3

8
C

0
.6

5
1

.0
0

1
9

.4
1

0
.6

5
3

9
.9

6
6

.3
4

6
.3

0
1

9
.4

1
0

.6
5

3
9

.9
6

6
.3

4
6

.3
0

Z
A

_
3

9
A

0
.2

2
1

.0
0

9
.4

4
0

.2
2

6
.6

6
0

.3
7

1
8

.2
3

9
.4

4
0

.2
2

6
.6

6
0

.3
7

1
8

.2
3

Z
A

_
3

9
B

0
.3

5
1

.0
0

1
2

.1
8

0
.3

5
1

3
.6

5
1

.1
8

1
1

.5
3

1
2

.1
8

0
.3

5
1

3
.6

5
1

.1
8

1
1

.5
3

Z
A

_
3

9
C

0
.4

2
1

.0
0

9
.4

1
0

.4
2

1
2

.7
8

1
.3

2
9

.6
7

9
.4

1
0

.4
2

1
2

.7
8

1
.3

2
9

.6
7

Z
A

_
4

0
A

0
.5

1
1

.0
0

1
6

.8
3

0
.5

1
2

7
.1

9
3

.4
0

8
.0

1
1

6
.8

3
0

.5
1

2
7

.1
9

3
.4

0
8

.0
1

Z
A

_
4

0
B

0
.4

8
1

.0
0

2
8

.1
6

0
.4

8
4

2
.9

9
5

.1
4

8
.3

7
2

8
.1

6
0

.4
8

4
2

.9
9

5
.1

4
8

.3
7

Z
A

_
4

0
C

0
.5

0
1

.0
0

8
.1

2
0

.5
0

1
3

.1
6

1
.6

0
8

.2
3

8
.1

2
0

.5
0

1
3

.1
6

1
.6

0
8

.2
3

Z
A

_
4

0
D

0
.3

4
1

.0
0

9
.1

7
0

.3
4

9
.8

5
0

.8
1

1
2

.1
2

9
.1

7
0

.3
4

9
.8

5
0

.8
1

1
2

.1
2

Z
A

_
4

1
A

0
.8

3
1

.0
0

1
4

.7
1

0
.8

3
3

9
.4

2
7

.9
5

4
.9

6
1

4
.7

1
0

.8
3

3
9

.4
2

7
.9

5
4

.9
6

Z
A

_
4

1
B

0
.4

9
1

.0
0

1
0

.2
1

0
.4

9
1

5
.9

1
1

.8
8

8
.4

4
1

0
.2

1
0

.4
9

1
5

.9
1

1
.8

8
8

.4
4

Z
A

_
4

2
A

0
.6

4
1

.0
0

1
8

.2
2

0
.6

4
3

6
.9

7
5

.7
7

6
.4

1
1

8
.2

2
0

.6
4

3
6

.9
7

5
.7

7
6

.4
1

Z
A

_
4

2
C

0
.6

1
1

.0
0

2
2

.7
7

0
.6

1
4

4
.0

5
6

.6
1

6
.6

7
2

2
.7

7
0

.6
1

4
4

.0
5

6
.6

1
6

.6
7

Z
A

_
4

2
A

0
.3

2
1

.0
0

7
.0

1
0

.3
2

7
.1

8
0

.5
6

1
2

.8
2

7
.0

1
0

.3
2

7
.1

8
0

.5
6

1
2

.8
2

Z
A

_
4

2
B

0
.2

8
1

.0
0

1
4

.2
8

0
.2

8
1

2
.6

7
0

.8
8

1
4

.4
3

1
4

.2
8

0
.2

8
1

2
.6

7
0

.8
8

1
4

.4
3

Z
A

_
4

2
C

0
.6

3
1

.0
0

5
0

.5
1

0
.6

3
9

9
.8

9
1

5
.5

4
6

.4
3

5
0

.5
1

0
.6

3
9

9
.8

9
1

5
.5

4
6

.4
3

Z
A

_
4

2
D

0
.6

2
1

.0
0

3
5

.7
9

0
.6

2
7

0
.2

9
1

0
.8

0
6

.5
1

3
5

.7
9

0
.6

2
7

0
.2

9
1

0
.8

0
6

.5
1

Z
A

_
4

2
E

0
.5

6
1

.0
0

2
0

.2
1

0
.5

6
3

6
.0

3
4

.9
8

7
.2

4
2

0
.2

1
0

.5
6

3
6

.0
3

4
.9

8
7

.2
4

Z
A

_
4

2
F

0
.3

2
1

.0
0

1
1

.5
3

0
.3

2
1

1
.7

1
0

.9
2

1
2

.7
1

1
1

.5
3

0
.3

2
1

1
.7

1
0

.9
2

1
2

.7
1

Z
A

_
4

2
G

0
.0

9
1

.0
0

9
.4

0
0

.0
9

2
.6

4
0

.0
6

4
5

.1
6

9
.4

0
0

.0
9

2
.6

4
0

.0
6

4
5

.1
6

Z
A

_
4

2
H

0
.2

0
1

.0
0

3
4

.1
1

0
.2

0
2

1
.2

7
1

.0
5

2
0

.2
6

3
4

.1
1

0
.2

0
2

1
.2

7
1

.0
5

2
0

.2
6

Z
A

_
4

5
A

0
.7

8
1

.0
0

1
9

.1
9

0
.7

8
4

7
.7

6
9

.0
9

5
.2

5
1

9
.1

9
0

.7
8

4
7

.7
6

9
.0

9
5

.2
5

Z
A

_
4

5
B

0
.3

1
1

.0
0

2
4

.5
2

0
.3

1
2

4
.2

5
1

.8
9

1
2

.8
6

2
4

.5
2

0
.3

1
2

4
.2

5
1

.8
9

1
2

.8
6

Z
A

_
4

5
C

0
.5

2
1

.0
0

2
8

.4
2

0
.5

2
4

6
.9

2
6

.0
6

7
.7

5
2

8
.4

2
0

.5
2

4
6

.9
2

6
.0

6
7

.7
5

Z
A

_
4

5
D

0
.4

3
1

.0
0

7
.4

8
0

.4
3

1
0

.4
8

1
.1

1
9

.4
8

7
.4

8
0

.4
3

1
0

.4
8

1
.1

1
9

.4
8

Z
A

_
4

5
E

0
.6

3
1

.0
0

7
.0

8
0

.6
3

1
4

.6
8

2
.2

2
6

.6
1

7
.0

8
0

.6
3

1
4

.6
8

2
.2

2
6

.6
1

Z
A

_
4

7
A

0
.3

1
1

.0
0

1
7

.4
5

0
.3

1
1

7
.1

9
1

.3
2

1
2

.9
8

1
7

.4
5

0
.3

1
1

7
.1

9
1

.3
2

1
2

.9
8

Z
A

_
4

7
B

0
.4

1
1

.0
0

1
7

.7
0

0
.4

1
2

3
.0

0
2

.3
2

9
.8

9
1

7
.7

0
0

.4
1

2
3

.0
0

2
.3

2
9

.8
9

Z
A

_
4

7
C

0
.6

7
1

.0
0

8
.1

3
0

.6
7

1
7

.8
0

2
.8

6
6

.2
2

8
.1

3
0

.6
7

1
7

.8
0

2
.8

6
6

.2
2

Z
A

_
4

8
A

0
.4

2
1

.0
0

2
2

.6
3

0
.4

2
2

9
.7

5
3

.0
6

9
.7

3
2

2
.6

3
0

.4
2

2
9

.7
5

3
.0

6
9

.7
3

Z
A

_
4

8
B

0
.4

4
1

.0
0

7
.4

9
0

.4
4

1
0

.6
2

1
.1

3
9

.3
8

7
.4

9
0

.4
4

1
0

.6
2

1
.1

3
9

.3
8

Z
A

_
4

8
C

0
.4

8
1

.0
0

1
8

.9
0

0
.4

8
2

8
.5

4
3

.3
5

8
.5

3
1

8
.9

0
0

.4
8

2
8

.5
4

3
.3

5
8

.5
3

Z
A

_
4

8
D

0
.6

2
1

.0
0

1
5

.4
5

0
.6

2
3

0
.6

7
4

.6
6

6
.5

8
1

5
.4

5
0

.6
2

3
0

.6
7

4
.6

6
6

.5
8

Z
A

_
4

9
A

0
.4

5
1

.0
0

1
4

.1
3

0
.4

5
2

0
.2

3
2

.2
4

9
.0

5
1

4
.1

3
0

.4
5

2
0

.2
3

2
.2

4
9

.0
5

Z
A

_
4

9
C

0
.5

0
1

.0
0

6
.4

9
0

.5
0

1
0

.6
3

1
.2

8
8

.2
8

6
.4

9
0

.5
0

1
0

.6
3

1
.2

8
8

.2
8

Z
A

_
5

0
A

0
.8

3
1

.0
0

2
7

.6
0

0
.8

3
7

3
.1

0
1

4
.9

6
4

.8
9

2
7

.6
0

0
.8

3
7

3
.1

0
1

4
.9

6
4

.8
9

Z
A

_
5

0
B

0
.3

8
1

.0
0

2
2

.8
2

0
.3

8
2

7
.3

8
2

.5
7

1
0

.6
4

2
2

.8
2

0
.3

8
2

7
.3

8
2

.5
7

1
0

.6
4

Z
A

_
5

0
C

0
.7

4
1

.0
0

2
3

.6
0

0
.7

4
5

5
.9

3
1

0
.2

3
5

.4
7

2
3

.6
0

0
.7

4
5

5
.9

3
1

0
.2

3
5

.4
7

Z
A

_
5

0
D

0
.3

2
1

.0
0

3
2

.7
3

0
.3

2
3

2
.5

3
2

.5
5

1
2

.7
6

3
2

.7
3

0
.3

2
3

2
.5

3
2

.5
5

1
2

.7
6

Z
A

_
5

0
E

0
.6

4
1

.0
0

1
9

.6
7

0
.6

4
3

9
.8

5
6

.2
3

6
.4

0
1

9
.6

7
0

.6
4

3
9

.8
5

6
.2

3
6

.4
0

Z
A

_
5

0
F

0
.6

7
1

.0
0

1
4

.1
3

0
.6

7
3

0
.3

8
4

.9
6

6
.1

2
1

4
.1

3
0

.6
7

3
0

.3
8

4
.9

6
6

.1
2

Z
A

_
5

0
G

0
.4

7
1

.0
0

2
2

.3
1

0
.4

7
3

3
.2

7
3

.8
7

8
.6

0
2

2
.3

1
0

.4
7

3
3

.2
7

3
.8

7
8

.6
0

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



84 

 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
5

0
H

0
.7

0
1

.0
0

7
.8

5
0

.7
0

1
8

.0
6

3
.0

3
5

.9
6

7
.8

5
0

.7
0

1
8

.0
6

3
.0

3
5

.9
6

Z
A

_
5

0
I

0
.8

0
1

.0
0

1
9

.8
8

0
.8

0
5

0
.9

4
9

.9
9

5
.1

0
1

9
.8

8
0

.8
0

5
0

.9
4

9
.9

9
5

.1
0

Z
A

_
5

0
K

0
.5

3
1

.0
0

7
.7

7
0

.5
3

1
3

.2
5

1
.6

8
7

.8
8

7
.7

7
0

.5
3

1
3

.2
5

1
.6

8
7

.8
8

Z
A

_
5

0
L

0
.5

8
1

.0
0

2
0

.7
3

0
.5

8
3

8
.2

7
5

.4
7

6
.9

9
2

0
.7

3
0

.5
8

3
8

.2
7

5
.4

7
6

.9
9

Z
A

_
5

1
A

0
.7

5
1

.0
0

8
.8

5
0

.7
5

2
1

.8
5

3
.9

5
5

.5
3

8
.8

5
0

.7
5

2
1

.8
5

3
.9

5
5

.5
3

Z
A

_
5

1
B

0
.6

5
1

.0
0

1
0

.8
8

0
.6

5
2

2
.8

4
3

.6
0

6
.3

5
1

0
.8

8
0

.6
5

2
2

.8
4

3
.6

0
6

.3
5

Z
A

_
5

1
C

0
.4

4
1

.0
0

5
.0

5
0

.4
4

7
.2

8
0

.7
7

9
.4

9
5

.0
5

0
.4

4
7

.2
8

0
.7

7
9

.4
9

Z
A

_
5

2
A

0
.8

6
1

.0
0

5
4

.5
5

0
.8

6
1

4
8

.1
3

3
1

.5
3

4
.7

0
5

4
.5

5
0

.8
6

1
4

8
.1

3
3

1
.5

3
4

.7
0

Z
A

_
5

2
B

0
.5

9
1

.0
0

1
3

.4
4

0
.5

9
2

5
.5

4
3

.7
0

6
.9

1
1

3
.4

4
0

.5
9

2
5

.5
4

3
.7

0
6

.9
1

Z
A

_
5

3
A

0
.4

7
1

.0
0

7
4

.1
2

0
.4

7
1

1
0

.2
0

1
2

.9
6

8
.5

0
7

4
.1

2
0

.4
7

1
1

0
.2

0
1

2
.9

6
8

.5
0

Z
A

_
5

3
C

0
.4

2
1

.0
0

1
5

.5
8

0
.4

2
2

0
.9

2
2

.1
8

9
.6

1
1

5
.5

8
0

.4
2

2
0

.9
2

2
.1

8
9

.6
1

Z
A

_
5

3
D

0
.7

5
1

.0
0

2
1

.0
3

0
.7

5
5

0
.1

4
9

.1
9

5
.4

6
2

1
.0

3
0

.7
5

5
0

.1
4

9
.1

9
5

.4
6

Z
A

_
5

4
0

.5
4

1
.0

0
1

4
.4

8
0

.5
4

2
5

.1
9

3
.3

6
7

.4
9

1
4

.4
8

0
.5

4
2

5
.1

9
3

.3
6

7
.4

9

Z
A

_
5

5
B

0
.3

3
1

.0
0

4
.6

2
0

.3
3

5
.0

2
0

.4
0

1
2

.4
1

4
.6

2
0

.3
3

5
.0

2
0

.4
0

1
2

.4
1

Z
A

_
5

5
C

0
.3

2
1

.0
0

8
.4

4
0

.3
2

8
.5

6
0

.6
7

1
2

.8
6

8
.4

4
0

.3
2

8
.5

6
0

.6
7

1
2

.8
6

Z
A

_
5

5
D

0
.6

6
1

.0
0

1
5

.9
3

0
.6

6
3

3
.7

0
5

.4
5

6
.1

9
1

5
.9

3
0

.6
6

3
3

.7
0

5
.4

5
6

.1
9

Z
A

_
5

5
E

0
.5

3
1

.0
0

1
9

.6
0

0
.5

3
3

3
.3

1
4

.3
9

7
.5

9
1

9
.6

0
0

.5
3

3
3

.3
1

4
.3

9
7

.5
9

Z
A

_
5

5
F

0
.4

2
1

.0
0

4
.8

4
0

.4
2

6
.6

1
0

.6
6

1
0

.0
1

4
.8

4
0

.4
2

6
.6

1
0

.6
6

1
0

.0
1

Z
A

_
5

6
A

0
.8

4
1

.0
0

3
5

.8
8

0
.8

4
9

5
.6

4
1

9
.8

3
4

.8
2

3
5

.8
8

0
.8

4
9

5
.6

4
1

9
.8

3
4

.8
2

Z
A

_
5

6
B

0
.5

4
1

.0
0

1
3

.7
3

0
.5

4
2

3
.7

5
3

.1
4

7
.5

5
1

3
.7

3
0

.5
4

2
3

.7
5

3
.1

4
7

.5
5

Z
A

_
5

6
C

0
.5

2
1

.0
0

1
4

.1
6

0
.5

2
2

3
.7

3
3

.0
5

7
.7

7
1

4
.1

6
0

.5
2

2
3

.7
3

3
.0

5
7

.7
7

Z
A

_
5

7
A

0
.7

8
1

.0
0

4
8

.3
6

0
.7

8
1

1
9

.2
4

2
3

.0
4

5
.1

8
4

8
.3

6
0

.7
8

1
1

9
.2

4
2

3
.0

4
5

.1
8

Z
A

_
5

7
B

0
.5

3
1

.0
0

4
1

.0
7

0
.5

3
6

8
.5

3
8

.9
9

7
.6

2
4

1
.0

7
0

.5
3

6
8

.5
3

8
.9

9
7

.6
2

Z
A

_
5

7
C

0
.3

3
1

.0
0

1
9

.2
4

0
.3

3
1

9
.8

0
1

.6
0

1
2

.4
1

1
9

.2
4

0
.3

3
1

9
.8

0
1

.6
0

1
2

.4
1

Z
A

_
5

7
D

0
.3

5
1

.0
0

1
6

.3
3

0
.3

5
1

8
.2

5
1

.5
9

1
1

.4
9

1
6

.3
3

0
.3

5
1

8
.2

5
1

.5
9

1
1

.4
9

Z
A

_
5

7
E

0
.4

5
1

.0
0

1
2

.3
5

0
.4

5
1

7
.5

6
1

.9
2

9
.1

5
1

2
.3

5
0

.4
5

1
7

.5
6

1
.9

2
9

.1
5

Z
A

_
5

8
A

0
.3

6
1

.0
0

6
.1

7
0

.3
6

7
.2

4
0

.6
4

1
1

.3
4

6
.1

7
0

.3
6

7
.2

4
0

.6
4

1
1

.3
4

Z
A

_
5

8
B

0
.7

3
1

.0
0

1
8

.3
9

0
.7

3
4

3
.1

2
7

.7
4

5
.5

7
1

8
.3

9
0

.7
3

4
3

.1
2

7
.7

4
5

.5
7

Z
A

_
5

8
C

0
.3

3
1

.0
0

1
9

.7
1

0
.3

3
2

0
.4

1
1

.6
5

1
2

.3
3

1
9

.7
1

0
.3

3
2

0
.4

1
1

.6
5

1
2

.3
3

Z
A

_
5

8
D

0
.4

1
1

.0
0

1
0

.9
8

0
.4

1
1

4
.2

5
1

.4
2

1
0

.0
3

1
0

.9
8

0
.4

1
1

4
.2

5
1

.4
2

1
0

.0
3

Z
A

_
5

8
E

0
.0

9
1

.0
0

1
0

.7
1

0
.0

9
3

.0
7

0
.0

7
4

4
.1

4
1

0
.7

1
0

.0
9

3
.0

7
0

.0
7

4
4

.1
4

Z
A

_
5

8
F

0
.3

9
1

.0
0

7
.2

3
0

.3
9

8
.9

7
0

.8
4

1
0

.6
7

7
.2

3
0

.3
9

8
.9

7
0

.8
4

1
0

.6
7

Z
A

_
5

8
G

0
.3

9
1

.0
0

9
.2

4
0

.3
9

1
1

.4
1

1
.0

8
1

0
.6

1
9

.2
4

0
.3

9
1

1
.4

1
1

.0
8

1
0

.6
1

Z
A

_
5

9
A

1
.3

4
1

.0
0

1
1

.4
0

1
.3

4
5

0
.7

8
1

6
.0

7
3

.1
6

1
1

.4
0

1
.3

4
5

0
.7

8
1

6
.0

7
3

.1
6

Z
A

_
5

9
B

0
.9

9
1

.0
0

1
4

.5
6

0
.9

9
4

7
.0

0
1

1
.2

9
4

.1
6

1
4

.5
6

0
.9

9
4

7
.0

0
1

1
.2

9
4

.1
6

Z
A

_
6

0
0

.7
8

1
.0

0
2

7
.4

0
0

.7
8

6
8

.4
1

1
3

.2
2

5
.1

8
2

7
.4

0
0

.7
8

6
8

.4
1

1
3

.2
2

5
.1

8

Z
A

_
6

1
A

0
.6

6
1

.0
0

4
.7

4
0

.6
6

1
0

.5
2

1
.6

3
6

.4
7

4
.7

4
0

.6
6

1
0

.5
2

1
.6

3
6

.4
7

Z
A

_
6

1
B

0
.5

3
1

.0
0

1
3

.2
0

0
.5

3
2

2
.5

3
2

.9
4

7
.6

6
1

3
.2

0
0

.5
3

2
2

.5
3

2
.9

4
7

.6
6

Z
A

_
6

1
D

0
.7

6
1

.0
0

4
.4

8
0

.7
6

1
1

.6
0

2
.0

3
5

.7
1

4
.4

8
0

.7
6

1
1

.6
0

2
.0

3
5

.7
1

Z
A

_
6

2
A

0
.4

8
1

.0
0

2
2

.1
6

0
.4

8
3

3
.8

4
4

.0
3

8
.4

1
2

2
.1

6
0

.4
8

3
3

.8
4

4
.0

3
8

.4
1

Z
A

_
6

2
B

0
.4

9
1

.0
0

1
4

.1
4

0
.4

9
2

2
.0

0
2

.6
3

8
.3

5
1

4
.1

4
0

.4
9

2
2

.0
0

2
.6

3
8

.3
5

Z
A

_
6

3
A

0
.7

7
1

.0
0

7
5

.2
8

0
.7

7
1

8
1

.7
4

3
4

.5
8

5
.2

6
7

5
.2

8
0

.7
7

1
8

1
.7

4
3

4
.5

8
5

.2
6

Z
A

_
6

3
B

0
.5

1
1

.0
0

1
3

.9
4

0
.5

1
2

2
.8

6
2

.8
8

7
.9

4
1

3
.9

4
0

.5
1

2
2

.8
6

2
.8

8
7

.9
4

Z
A

_
6

3
C

0
.4

3
1

.0
0

2
1

.0
0

0
.4

3
2

8
.4

4
3

.0
1

9
.4

6
2

1
.0

0
0

.4
3

2
8

.4
4

3
.0

1
9

.4
6

Z
A

_
6

3
D

0
.6

2
1

.0
0

2
2

.7
1

0
.6

2
4

4
.5

3
6

.7
7

6
.5

8
2

2
.7

1
0

.6
2

4
4

.5
3

6
.7

7
6

.5
8

Z
A

_
6

4
A

0
.4

9
1

.0
0

7
1

.6
0

0
.4

9
1

1
0

.5
4

1
3

.5
0

8
.1

9
7

1
.6

0
0

.4
9

1
1

0
.5

4
1

3
.5

0
8

.1
9

Z
A

_
6

4
B

0
.5

3
1

.0
0

4
5

.1
3

0
.5

3
7

5
.6

9
9

.9
9

7
.5

8
4

5
.1

3
0

.5
3

7
5

.6
9

9
.9

9
7

.5
8

Z
A

_
6

5
A

0
.4

2
1

.0
0

1
2

.1
0

0
.4

2
1

6
.3

1
1

.6
9

9
.6

4
1

2
.1

0
0

.4
2

1
6

.3
1

1
.6

9
9

.6
4

Z
A

_
6

5
B

0
.5

7
1

.0
0

2
8

.5
0

0
.5

7
5

1
.1

5
7

.1
7

7
.1

4
2

8
.5

0
0

.5
7

5
1

.1
5

7
.1

7
7

.1
4

Z
A

_
6

5
C

0
.5

6
1

.0
0

3
1

.6
6

0
.5

6
5

5
.7

5
7

.6
8

7
.2

6
3

1
.6

6
0

.5
6

5
5

.7
5

7
.6

8
7

.2
6

Z
A

_
6

5
D

0
.6

6
1

.0
0

4
5

.9
3

0
.6

6
9

5
.8

7
1

5
.7

0
6

.1
0

4
5

.9
3

0
.6

6
9

5
.8

7
1

5
.7

0
6

.1
0

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



85 

 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
6

6
B

0
.5

8
1

.0
0

1
9

.3
4

0
.5

8
3

5
.6

3
5

.0
7

7
.0

2
1

9
.3

4
0

.5
8

3
5

.6
3

5
.0

7
7

.0
2

Z
A

_
6

7
A

0
.6

7
1

.0
0

3
7

.3
8

0
.6

7
7

9
.2

2
1

3
.1

3
6

.0
3

3
7

.3
8

0
.6

7
7

9
.2

2
1

3
.1

3
6

.0
3

Z
A

_
6

7
B

0
.6

8
1

.0
0

1
4

.1
1

0
.6

8
3

0
.8

5
5

.1
2

6
.0

2
1

4
.1

1
0

.6
8

3
0

.8
5

5
.1

2
6

.0
2

Z
A

_
6

7
C

0
.6

8
1

.0
0

2
4

.7
6

0
.6

8
5

3
.6

0
8

.9
9

5
.9

6
2

4
.7

6
0

.6
8

5
3

.6
0

8
.9

9
5

.9
6

Z
A

_
6

8
A

0
.5

0
1

.0
0

2
5

.6
2

0
.5

0
4

0
.8

7
5

.0
9

8
.0

3
2

5
.6

2
0

.5
0

4
0

.8
7

5
.0

9
8

.0
3

Z
A

_
6

8
B

0
.4

6
1

.0
0

4
3

.8
2

0
.4

6
6

4
.1

8
7

.4
1

8
.6

7
4

3
.8

2
0

.4
6

6
4

.1
8

7
.4

1
8

.6
7

Z
A

_
6

8
C

0
.3

7
1

.0
0

1
1

.0
6

0
.3

7
1

3
.1

4
1

.2
0

1
0

.9
3

1
1

.0
6

0
.3

7
1

3
.1

4
1

.2
0

1
0

.9
3

Z
A

_
6

9
A

0
.4

7
1

.0
0

3
6

.2
3

0
.4

7
5

3
.4

7
6

.2
0

8
.6

2
3

6
.2

3
0

.4
7

5
3

.4
7

6
.2

0
8

.6
2

Z
A

_
6

9
B

0
.4

3
1

.0
0

1
3

.6
7

0
.4

3
1

8
.8

8
2

.0
1

9
.3

8
1

3
.6

7
0

.4
3

1
8

.8
8

2
.0

1
9

.3
8

Z
A

_
6

9
C

0
.4

3
1

.0
0

2
6

.1
4

0
.4

3
3

5
.8

3
3

.8
5

9
.3

1
2

6
.1

4
0

.4
3

3
5

.8
3

3
.8

5
9

.3
1

Z
A

_
6

9
D

0
.4

9
1

.0
0

1
3

.7
5

0
.4

9
2

1
.7

1
2

.6
3

8
.2

4
1

3
.7

5
0

.4
9

2
1

.7
1

2
.6

3
8

.2
4

Z
A

_
6

9
E

0
.3

7
1

.0
0

2
0

.1
1

0
.3

7
2

3
.4

5
2

.1
4

1
0

.9
7

2
0

.1
1

0
.3

7
2

3
.4

5
2

.1
4

1
0

.9
7

Z
A

_
6

9
F

0
.3

1
1

.0
0

1
2

.6
8

0
.3

1
1

2
.5

7
0

.9
7

1
2

.9
8

1
2

.6
8

0
.3

1
1

2
.5

7
0

.9
7

1
2

.9
8

Z
A

_
6

9
G

0
.5

8
1

.0
0

2
9

.3
5

0
.5

8
5

3
.7

9
7

.7
0

6
.9

9
2

9
.3

5
0

.5
8

5
3

.7
9

7
.7

0
6

.9
9

Z
A

_
6

9
H

0
.4

1
1

.0
0

2
7

.0
7

0
.4

1
3

5
.2

0
3

.5
9

9
.8

1
2

7
.0

7
0

.4
1

3
5

.2
0

3
.5

9
9

.8
1

Z
A

_
6

9
I

0
.7

6
1

.0
0

1
1

.4
9

0
.7

6
2

8
.2

5
5

.1
8

5
.4

5
1

1
.4

9
0

.7
6

2
8

.2
5

5
.1

8
5

.4
5

Z
A

_
6

9
J

0
.4

3
1

.0
0

1
2

.6
2

0
.4

3
1

7
.4

5
1

.8
6

9
.4

0
1

2
.6

2
0

.4
3

1
7

.4
5

1
.8

6
9

.4
0

Z
A

_
6

9
K

0
.5

1
1

.0
0

8
.0

4
0

.5
1

1
3

.1
6

1
.6

1
8

.1
7

8
.0

4
0

.5
1

1
3

.1
6

1
.6

1
8

.1
7

Z
A

_
6

9
L

0
.2

5
1

.0
0

6
.7

7
0

.2
5

5
.3

0
0

.3
2

1
6

.6
2

6
.7

7
0

.2
5

5
.3

0
0

.3
2

1
6

.6
2

Z
A

_
6

9
M

0
.4

3
1

.0
0

8
.1

6
0

.4
3

1
1

.3
9

1
.2

0
9

.4
8

8
.1

6
0

.4
3

1
1

.3
9

1
.2

0
9

.4
8

Z
A

_
7

0
A

0
.2

6
1

.0
0

8
.2

7
0

.2
6

6
.7

2
0

.4
2

1
5

.9
3

8
.2

7
0

.2
6

6
.7

2
0

.4
2

1
5

.9
3

Z
A

_
7

0
B

0
.5

1
1

.0
0

2
7

.9
9

0
.5

1
4

5
.2

4
5

.7
2

7
.9

1
2

7
.9

9
0

.5
1

4
5

.2
4

5
.7

2
7

.9
1

Z
A

_
7

0
C

0
.7

4
1

.0
0

1
6

.3
8

0
.7

4
3

9
.1

4
7

.1
2

5
.5

0
1

6
.3

8
0

.7
4

3
9

.1
4

7
.1

2
5

.5
0

Z
A

_
7

0
D

0
.3

2
1

.0
0

1
0

.4
9

0
.3

2
1

0
.8

0
0

.8
6

1
2

.5
7

1
0

.4
9

0
.3

2
1

0
.8

0
0

.8
6

1
2

.5
7

Z
A

_
7

0
E

0
.4

9
1

.0
0

4
0

.8
2

0
.4

9
6

3
.3

1
7

.7
2

8
.2

0
4

0
.8

2
0

.4
9

6
3

.3
1

7
.7

2
8

.2
0

Z
A

_
7

0
F

0
.4

3
1

.0
0

4
6

.8
9

0
.4

3
6

4
.2

0
6

.9
3

9
.2

6
4

6
.8

9
0

.4
3

6
4

.2
0

6
.9

3
9

.2
6

Z
A

_
7

1
A

0
.6

7
1

.0
0

2
9

.1
6

0
.6

7
6

2
.3

3
1

0
.3

7
6

.0
1

2
9

.1
6

0
.6

7
6

2
.3

3
1

0
.3

7
6

.0
1

Z
A

_
7

1
B

0
.7

3
1

.0
0

1
7

.6
5

0
.7

3
4

1
.0

0
7

.2
8

5
.6

3
1

7
.6

5
0

.7
3

4
1

.0
0

7
.2

8
5

.6
3

Z
A

_
7

1
C

0
.4

8
1

.0
0

1
3

.8
9

0
.4

8
2

1
.1

2
2

.4
7

8
.5

5
1

3
.8

9
0

.4
8

2
1

.1
2

2
.4

7
8

.5
5

Z
A

_
7

2
A

0
.8

7
1

.0
0

2
4

.6
1

0
.8

7
6

8
.5

9
1

4
.6

9
4

.6
7

2
4

.6
1

0
.8

7
6

8
.5

9
1

4
.6

9
4

.6
7

Z
A

_
7

2
B

0
.6

3
1

.0
0

2
3

.4
2

0
.6

3
4

6
.8

8
7

.2
7

6
.4

4
2

3
.4

2
0

.6
3

4
6

.8
8

7
.2

7
6

.4
4

Z
A

_
7

2
C

0
.3

9
1

.0
0

3
6

.5
3

0
.3

9
4

4
.9

7
4

.3
6

1
0

.3
1

3
6

.5
3

0
.3

9
4

4
.9

7
4

.3
6

1
0

.3
1

Z
A

_
7

2
D

0
.4

5
1

.0
0

1
6

.7
6

0
.4

5
2

3
.7

3
2

.6
1

9
.1

1
1

6
.7

6
0

.4
5

2
3

.7
3

2
.6

1
9

.1
1

Z
A

_
7

2
E

0
.3

9
1

.0
0

8
.9

0
0

.3
9

1
1

.1
4

1
.0

6
1

0
.4

8
8

.9
0

0
.3

9
1

1
.1

4
1

.0
6

1
0

.4
8

Z
A

_
7

2
F

0
.6

2
1

.0
0

8
.3

1
0

.6
2

1
6

.7
0

2
.4

8
6

.7
2

8
.3

1
0

.6
2

1
6

.7
0

2
.4

8
6

.7
2

Z
A

_
7

3
A

0
.5

0
1

.0
0

6
1

.6
9

0
.5

0
9

6
.8

6
1

2
.0

1
8

.0
6

6
1

.6
9

0
.5

0
9

6
.8

6
1

2
.0

1
8

.0
6

Z
A

_
7

3
C

0
.9

8
1

.0
0

1
9

.3
7

0
.9

8
6

0
.9

1
1

4
.5

1
4

.2
0

1
9

.3
7

0
.9

8
6

0
.9

1
1

4
.5

1
4

.2
0

Z
A

_
7

4
0

.9
4

1
.0

0
4

0
.6

5
0

.9
4

1
2

1
.2

4
2

8
.1

4
4

.3
1

4
0

.6
5

0
.9

4
1

2
1

.2
4

2
8

.1
4

4
.3

1

Z
A

_
7

5
0

.3
3

1
.0

0
1

7
.4

4
0

.3
3

1
8

.0
7

1
.4

6
1

2
.3

5
1

7
.4

4
0

.3
3

1
8

.0
7

1
.4

6
1

2
.3

5

Z
A

_
7

6
A

0
.3

1
1

.0
0

2
5

.3
3

0
.3

1
2

4
.5

7
1

.8
7

1
3

.1
1

2
5

.3
3

0
.3

1
2

4
.5

7
1

.8
7

1
3

.1
1

Z
A

_
7

6
B

0
.3

5
1

.0
0

1
7

.5
4

0
.3

5
1

9
.4

7
1

.6
9

1
1

.5
4

1
7

.5
4

0
.3

5
1

9
.4

7
1

.6
9

1
1

.5
4

Z
A

_
7

6
C

0
.1

4
1

.0
0

6
.7

4
0

.1
4

2
.9

3
0

.1
0

2
9

.4
9

6
.7

4
0

.1
4

2
.9

3
0

.1
0

2
9

.4
9

Z
A

_
7

6
D

0
.5

2
1

.0
0

6
.3

2
0

.5
2

1
0

.7
9

1
.3

5
7

.9
8

6
.3

2
0

.5
2

1
0

.7
9

1
.3

5
7

.9
8

Z
A

_
7

6
E

0
.3

1
1

.0
0

2
4

.7
5

0
.3

1
2

4
.0

1
1

.8
3

1
3

.1
1

2
4

.7
5

0
.3

1
2

4
.0

1
1

.8
3

1
3

.1
1

Z
A

_
7

7
A

0
.4

5
1

.0
0

2
1

.9
5

0
.4

5
3

1
.4

7
3

.5
2

8
.9

4
2

1
.9

5
0

.4
5

3
1

.4
7

3
.5

2
8

.9
4

Z
A

_
7

8
A

0
.7

8
1

.0
0

1
4

.2
5

0
.7

8
3

5
.8

1
6

.7
9

5
.2

8
1

4
.2

5
0

.7
8

3
5

.8
1

6
.7

9
5

.2
8

Z
A

_
7

9
A

0
.6

9
1

.0
0

1
7

.8
4

0
.6

9
3

9
.6

3
6

.7
4

5
.8

8
1

7
.8

4
0

.6
9

3
9

.6
3

6
.7

4
5

.8
8

Z
A

_
7

9
C

0
.5

8
1

.0
0

2
9

.8
9

0
.5

8
5

5
.0

5
7

.9
2

6
.9

5
2

9
.8

9
0

.5
8

5
5

.0
5

7
.9

2
6

.9
5

Z
A

_
8

0
A

0
.7

0
1

.0
0

6
5

.9
1

0
.7

0
1

4
5

.0
2

2
5

.1
4

5
.7

7
6

5
.9

1
0

.7
0

1
4

5
.0

2
2

5
.1

4
5

.7
7

Z
A

_
8

0
B

0
.7

0
1

.0
0

6
2

.9
5

0
.7

0
1

3
9

.9
3

2
4

.4
9

5
.7

1
6

2
.9

5
0

.7
0

1
3

9
.9

3
2

4
.4

9
5

.7
1

Z
A

_
8

0
C

0
.5

6
1

.0
0

1
7

.6
5

0
.5

6
3

1
.7

5
4

.4
1

7
.2

1
1

7
.6

5
0

.5
6

3
1

.7
5

4
.4

1
7

.2
1

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



86 

 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
8

1
0

.5
2

1
.0

0
9

4
.8

6
0

.5
2

1
5

6
.5

0
2

0
.4

5
7

.6
5

9
4

.8
6

0
.5

2
1

5
6

.5
0

2
0

.4
5

7
.6

5

Z
A

_
8

2
A

0
.4

8
1

.0
0

5
3

.5
6

0
.4

8
8

1
.5

9
9

.8
1

8
.3

2
5

3
.5

6
0

.4
8

8
1

.5
9

9
.8

1
8

.3
2

Z
A

_
8

2
B

0
.8

2
1

.0
0

2
4

.7
9

0
.8

2
6

4
.8

8
1

3
.0

8
4

.9
6

2
4

.7
9

0
.8

2
6

4
.8

8
1

3
.0

8
4

.9
6

Z
A

_
8

2
C

0
.5

9
1

.0
0

2
5

.3
9

0
.5

9
4

7
.2

6
6

.8
5

6
.9

0
2

5
.3

9
0

.5
9

4
7

.2
6

6
.8

5
6

.9
0

Z
A

_
8

2
D

0
.5

2
1

.0
0

3
4

.5
0

0
.5

2
5

7
.2

0
7

.4
4

7
.6

9
3

4
.5

0
0

.5
2

5
7

.2
0

7
.4

4
7

.6
9

Z
A

_
8

2
E

0
.5

0
1

.0
0

1
2

.0
3

0
.5

0
1

9
.1

7
2

.3
3

8
.2

1
1

2
.0

3
0

.5
0

1
9

.1
7

2
.3

3
8

.2
1

Z
A

_
8

2
F

0
.6

0
1

.0
0

2
0

.7
1

0
.6

0
3

9
.3

7
5

.7
9

6
.8

0
2

0
.7

1
0

.6
0

3
9

.3
7

5
.7

9
6

.8
0

Z
A

_
8

2
G

0
.3

5
1

.0
0

1
2

.1
2

0
.3

5
1

3
.5

5
1

.1
7

1
1

.5
6

1
2

.1
2

0
.3

5
1

3
.5

5
1

.1
7

1
1

.5
6

Z
A

_
8

2
H

0
.5

9
1

.0
0

3
2

.3
3

0
.5

9
6

0
.0

3
8

.7
2

6
.8

9
3

2
.3

3
0

.5
9

6
0

.0
3

8
.7

2
6

.8
9

Z
A

_
8

2
I

0
.3

5
1

.0
0

2
4

.3
5

0
.3

5
2

7
.0

3
2

.3
5

1
1

.4
8

2
4

.3
5

0
.3

5
2

7
.0

3
2

.3
5

1
1

.4
8

Z
A

_
8

3
A

0
.4

8
1

.0
0

2
9

.6
9

0
.4

8
4

5
.2

0
5

.3
9

8
.3

8
2

9
.6

9
0

.4
8

4
5

.2
0

5
.3

9
8

.3
8

Z
A

_
8

3
B

0
.3

4
1

.0
0

3
0

.0
9

0
.3

4
3

2
.3

1
2

.7
3

1
1

.8
3

3
0

.0
9

0
.3

4
3

2
.3

1
2

.7
3

1
1

.8
3

Z
A

_
8

3
C

0
.6

0
1

.0
0

1
6

.1
2

0
.6

0
3

0
.9

9
4

.5
7

6
.7

8
1

6
.1

2
0

.6
0

3
0

.9
9

4
.5

7
6

.7
8

Z
A

_
8

3
D

0
.3

8
1

.0
0

1
3

.1
2

0
.3

8
1

5
.8

9
1

.4
9

1
0

.6
8

1
3

.1
2

0
.3

8
1

5
.8

9
1

.4
9

1
0

.6
8

Z
A

_
8

3
E

0
.7

7
1

.0
0

2
9

.4
9

0
.7

7
7

2
.1

4
1

3
.6

9
5

.2
7

2
9

.4
9

0
.7

7
7

2
.1

4
1

3
.6

9
5

.2
7

Z
A

_
8

3
F

0
.3

6
1

.0
0

1
5

.1
9

0
.3

6
1

7
.3

7
1

.5
5

1
1

.2
4

1
5

.1
9

0
.3

6
1

7
.3

7
1

.5
5

1
1

.2
4

Z
A

_
8

3
G

0
.3

4
1

.0
0

1
6

.7
5

0
.3

4
1

8
.0

6
1

.5
2

1
1

.8
8

1
6

.7
5

0
.3

4
1

8
.0

6
1

.5
2

1
1

.8
8

Z
A

_
8

4
0

.8
5

1
.0

0
6

4
.3

9
0

.8
5

1
7

2
.9

8
3

6
.5

2
4

.7
4

6
4

.3
9

0
.8

5
1

7
2

.9
8

3
6

.5
2

4
.7

4

Z
A

_
8

5
A

0
.7

3
1

.0
0

4
0

.1
1

0
.7

3
9

2
.6

5
1

6
.7

3
5

.5
4

4
0

.1
1

0
.7

3
9

2
.6

5
1

6
.7

3
5

.5
4

Z
A

_
8

5
B

0
.4

8
1

.0
0

8
.6

2
0

.4
8

1
3

.3
9

1
.5

7
8

.5
5

8
.6

2
0

.4
8

1
3

.3
9

1
.5

7
8

.5
5

Z
A

_
8

5
C

0
.2

2
1

.0
0

9
.1

2
0

.2
2

6
.5

0
0

.3
6

1
8

.0
8

9
.1

2
0

.2
2

6
.5

0
0

.3
6

1
8

.0
8

Z
A

_
8

6
0

.8
9

1
.0

0
1

8
.1

5
0

.8
9

5
1

.6
5

1
1

.1
6

4
.6

3
1

8
.1

5
0

.8
9

5
1

.6
5

1
1

.1
6

4
.6

3

Z
A

_
8

7
A

0
.8

3
1

.0
0

4
3

.9
6

0
.8

3
1

1
6

.0
6

2
3

.9
4

4
.8

5
4

3
.9

6
0

.8
3

1
1

6
.0

6
2

3
.9

4
4

.8
5

Z
A

_
8

7
B

0
.5

9
1

.0
0

3
9

.2
5

0
.5

9
7

3
.1

3
1

0
.6

9
6

.8
4

3
9

.2
5

0
.5

9
7

3
.1

3
1

0
.6

9
6

.8
4

Z
A

_
8

7
C

0
.5

1
1

.0
0

3
0

.5
7

0
.5

1
4

9
.0

7
6

.1
7

7
.9

5
3

0
.5

7
0

.5
1

4
9

.0
7

6
.1

7
7

.9
5

Z
A

_
8

7
D

0
.3

3
1

.0
0

9
.5

1
0

.3
3

1
0

.1
1

0
.8

3
1

2
.2

2
9

.5
1

0
.3

3
1

0
.1

1
0

.8
3

1
2

.2
2

Z
A

_
8

7
E

0
.5

3
1

.0
0

1
5

.8
1

0
.5

3
2

6
.5

9
3

.4
5

7
.7

2
1

5
.8

1
0

.5
3

2
6

.5
9

3
.4

5
7

.7
2

Z
A

_
8

8
A

0
.3

2
1

.0
0

1
0

.6
8

0
.3

2
1

0
.8

5
0

.8
5

1
2

.7
3

1
0

.6
8

0
.3

2
1

0
.8

5
0

.8
5

1
2

.7
3

Z
A

_
8

8
B

0
.7

5
1

.0
0

1
0

.2
0

0
.7

5
2

4
.9

4
4

.5
2

5
.5

2
1

0
.2

0
0

.7
5

2
4

.9
4

4
.5

2
5

.5
2

Z
A

_
8

8
C

0
.3

2
1

.0
0

3
4

.4
3

0
.3

2
3

4
.6

5
2

.7
5

1
2

.6
0

3
4

.4
3

0
.3

2
3

4
.6

5
2

.7
5

1
2

.6
0

Z
A

_
8

8
D

0
.5

3
1

.0
0

1
1

.8
3

0
.5

3
2

0
.1

7
2

.6
2

7
.7

0
1

1
.8

3
0

.5
3

2
0

.1
7

2
.6

2
7

.7
0

Z
A

_
8

9
A

0
.7

3
1

.0
0

1
9

.2
5

0
.7

3
4

4
.8

9
8

.0
3

5
.5

9
1

9
.2

5
0

.7
3

4
4

.8
9

8
.0

3
5

.5
9

Z
A

_
8

9
B

0
.4

8
1

.0
0

8
.7

1
0

.4
8

1
3

.3
7

1
.5

5
8

.6
3

8
.7

1
0

.4
8

1
3

.3
7

1
.5

5
8

.6
3

Z
A

_
8

9
C

0
.4

0
1

.0
0

1
3

.1
6

0
.4

0
1

6
.5

7
1

.6
1

1
0

.2
8

1
3

.1
6

0
.4

0
1

6
.5

7
1

.6
1

1
0

.2
8

Z
A

_
8

9
D

0
.4

4
1

.0
0

1
5

.2
6

0
.4

4
2

1
.4

9
2

.3
4

9
.1

8
1

5
.2

6
0

.4
4

2
1

.4
9

2
.3

4
9

.1
8

Z
A

_
9

0
0

.6
9

1
.0

0
1

7
.8

4
0

.6
9

3
9

.5
1

6
.7

1
5

.8
9

1
7

.8
4

0
.6

9
3

9
.5

1
6

.7
1

5
.8

9

Z
A

_
9

1
0

.5
3

1
.0

0
2

3
.8

4
0

.5
3

4
0

.1
2

5
.2

6
7

.6
3

2
3

.8
4

0
.5

3
4

0
.1

2
5

.2
6

7
.6

3

Z
A

_
9

2
0

.2
9

1
.0

0
2

6
.4

9
0

.2
9

2
4

.2
6

1
.7

5
1

3
.8

7
2

6
.4

9
0

.2
9

2
4

.2
6

1
.7

5
1

3
.8

7

Z
A

_
9

4
A

0
.6

0
1

.0
0

1
9

.2
8

0
.6

0
3

6
.5

8
5

.3
6

6
.8

3
1

9
.2

8
0

.6
0

3
6

.5
8

5
.3

6
6

.8
3

Z
A

_
9

4
B

0
.6

0
1

.0
0

8
.5

9
0

.6
0

1
6

.6
1

2
.3

9
6

.9
6

8
.5

9
0

.6
0

1
6

.6
1

2
.3

9
6

.9
6

Z
A

_
9

4
C

0
.3

7
1

.0
0

1
4

.0
0

0
.3

7
1

6
.3

8
1

.4
9

1
1

.0
1

1
4

.0
0

0
.3

7
1

6
.3

8
1

.4
9

1
1

.0
1

Z
A

_
9

4
D

0
.6

5
1

.0
0

1
9

.7
6

0
.6

5
4

0
.6

7
6

.4
5

6
.3

0
1

9
.7

6
0

.6
5

4
0

.6
7

6
.4

5
6

.3
0

Z
A

_
9

5
0

.5
2

1
.0

0
2

2
.2

4
0

.5
2

3
6

.4
6

4
.6

5
7

.8
4

2
2

.2
4

0
.5

2
3

6
.4

6
4

.6
5

7
.8

4

Z
A

_
9

6
A

0
.3

0
1

.0
0

9
.1

5
0

.3
0

8
.6

7
0

.6
3

1
3

.6
9

9
.1

5
0

.3
0

8
.6

7
0

.6
3

1
3

.6
9

Z
A

_
9

6
B

0
.5

3
1

.0
0

1
9

.3
1

0
.5

3
3

2
.3

2
4

.1
9

7
.7

1
1

9
.3

1
0

.5
3

3
2

.3
2

4
.1

9
7

.7
1

Z
A

_
9

7
0

.4
4

1
.0

0
1

1
.4

4
0

.4
4

1
6

.0
4

1
.7

2
9

.3
1

1
1

.4
4

0
.4

4
1

6
.0

4
1

.7
2

9
.3

1

Z
A

_
9

8
0

.6
6

1
.0

0
1

2
.7

9
0

.6
6

2
7

.2
8

4
.4

0
6

.2
0

1
2

.7
9

0
.6

6
2

7
.2

8
4

.4
0

6
.2

0

Z
A

_
9

9
A

0
.3

0
1

.0
0

2
1

.0
8

0
.3

0
2

0
.2

7
1

.5
3

1
3

.2
5

2
1

.0
8

0
.3

0
2

0
.2

7
1

.5
3

1
3

.2
5

Z
A

_
9

9
B

0
.8

9
1

.0
0

1
3

.4
4

0
.8

9
3

8
.6

6
8

.3
0

4
.6

6
1

3
.4

4
0

.8
9

3
8

.6
6

8
.3

0
4

.6
6

Z
A

_
1

0
0

0
.7

2
1

.0
0

5
6

.5
5

0
.7

2
1

2
8

.2
9

2
2

.8
8

5
.6

1
5

6
.5

5
0

.7
2

1
2

8
.2

9
2

2
.8

8
5

.6
1

Z
A

_
1

0
1

A
0

.7
2

1
.0

0
3

0
.8

7
0

.7
2

7
0

.7
0

1
2

.6
0

5
.6

1
3

0
.8

7
0

.7
2

7
0

.7
0

1
2

.6
0

5
.6

1

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



87 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
1

0
1

B
0

.4
5

1
.0

0
9

.3
2

0
.4

5
1

3
.4

8
1

.4
8

9
.1

0
9

.3
2

0
.4

5
1

3
.4

8
1

.4
8

9
.1

0

Z
A

_
1

0
2

A
0

.7
3

1
.0

0
1

0
.6

9
0

.7
3

2
5

.3
7

4
.4

8
5

.6
6

1
0

.6
9

0
.7

3
2

5
.3

7
4

.4
8

5
.6

6

Z
A

_
1

0
2

B
0

.5
7

1
.0

0
2

6
.2

4
0

.5
7

4
7

.7
3

6
.7

6
7

.0
6

2
6

.2
4

0
.5

7
4

7
.7

3
6

.7
6

7
.0

6

Z
A

_
1

0
2

C
0

.4
5

1
.0

0
1

8
.6

5
0

.4
5

2
6

.8
5

3
.0

0
8

.9
4

1
8

.6
5

0
.4

5
2

6
.8

5
3

.0
0

8
.9

4

Z
A

_
1

0
3

A
0

.4
4

1
.0

0
2

7
.4

1
0

.4
4

3
8

.0
8

4
.1

5
9

.1
8

2
7

.4
1

0
.4

4
3

8
.0

8
4

.1
5

9
.1

8

Z
A

_
1

0
3

B
0

.2
0

1
.0

0
1

8
.2

9
0

.2
0

1
1

.3
2

0
.5

5
2

0
.5

2
1

8
.2

9
0

.2
0

1
1

.3
2

0
.5

5
2

0
.5

2

Z
A

_
1

0
4

0
.6

0
1

.0
0

4
0

.8
9

0
.6

0
7

8
.0

0
1

1
.6

7
6

.6
8

4
0

.8
9

0
.6

0
7

8
.0

0
1

1
.6

7
6

.6
8

Z
A

_
1

0
5

A
0

.7
3

1
.0

0
1

5
.2

1
0

.7
3

3
5

.7
1

6
.3

6
5

.6
1

1
5

.2
1

0
.7

3
3

5
.7

1
6

.3
6

5
.6

1

Z
A

_
1

0
5

B
0

.5
8

1
.0

0
1

3
.3

5
0

.5
8

2
4

.8
4

3
.5

3
7

.0
5

1
3

.3
5

0
.5

8
2

4
.8

4
3

.5
3

7
.0

5

Z
A

_
1

0
6

0
.5

6
1

.0
0

1
8

.8
9

0
.5

6
3

3
.9

5
4

.7
2

7
.2

0
1

8
.8

9
0

.5
6

3
3

.9
5

4
.7

2
7

.2
0

Z
A

_
1

0
7

B
0

.5
5

1
.0

0
1

9
.5

1
0

.5
5

3
4

.1
7

4
.6

3
7

.3
8

1
9

.5
1

0
.5

5
3

4
.1

7
4

.6
3

7
.3

8

Z
A

_
1

0
7

C
0

.4
6

1
.0

0
9

.7
1

0
.4

6
1

4
.3

2
1

.6
1

8
.9

2
9

.7
1

0
.4

6
1

4
.3

2
1

.6
1

8
.9

2

Z
A

_
1

0
8

A
0

.1
9

1
.0

0
2

.9
8

0
.1

9
1

.7
8

0
.0

8
2

2
.2

9
2

.9
8

0
.1

9
1

.7
8

0
.0

8
2

2
.2

9

Z
A

_
1

0
8

B
0

.5
8

1
.0

0
5

.0
7

0
.5

8
9

.6
9

1
.3

2
7

.3
4

5
.0

7
0

.5
8

9
.6

9
1

.3
2

7
.3

4

Z
A

_
1

0
8

C
0

.3
0

1
.0

0
5

.8
1

0
.3

0
5

.5
8

0
.4

1
1

3
.7

7
5

.8
1

0
.3

0
5

.5
8

0
.4

1
1

3
.7

7

Z
A

_
1

1
0

0
.8

3
1

.0
0

2
2

.3
7

0
.8

3
5

9
.1

7
1

2
.0

1
4

.9
3

2
2

.3
7

0
.8

3
5

9
.1

7
1

2
.0

1
4

.9
3

Z
A

_
1

1
2

0
.7

7
1

.0
0

1
6

.0
1

0
.7

7
3

9
.5

3
7

.4
1

5
.3

3
1

6
.0

1
0

.7
7

3
9

.5
3

7
.4

1
5

.3
3

Z
A

_
1

1
4

0
.3

1
1

.0
0

1
7

.0
7

0
.3

1
1

6
.6

1
1

.2
6

1
3

.1
5

1
7

.0
7

0
.3

1
1

6
.6

1
1

.2
6

1
3

.1
5

Z
A

_
1

1
7

A
0

.1
4

1
.0

0
9

.6
4

0
.1

4
4

.3
1

0
.1

5
2

8
.5

0
9

.6
4

0
.1

4
4

.3
1

0
.1

5
2

8
.5

0

Z
A

_
1

1
7

B
0

.4
0

1
.0

0
1

4
.3

9
0

.4
0

1
8

.2
3

1
.7

9
1

0
.1

9
1

4
.3

9
0

.4
0

1
8

.2
3

1
.7

9
1

0
.1

9

Z
A

_
1

1
8

A
0

.2
2

1
.0

0
1

3
.5

4
0

.2
2

9
.3

9
0

.5
1

1
8

.4
1

1
3

.5
4

0
.2

2
9

.3
9

0
.5

1
1

8
.4

1

Z
A

_
1

1
8

B
0

.2
5

1
.0

0
6

.4
7

0
.2

5
5

.0
7

0
.3

0
1

6
.6

4
6

.4
7

0
.2

5
5

.0
7

0
.3

0
1

6
.6

4

Z
A

_
1

1
9

A
0

.3
5

1
.0

0
2

9
.9

0
0

.3
5

3
3

.4
3

2
.9

4
1

1
.3

7
2

9
.9

0
0

.3
5

3
3

.4
3

2
.9

4
1

1
.3

7

Z
A

_
1

1
9

B
0

.2
8

1
.0

0
6

.8
0

0
.2

8
6

.1
0

0
.4

2
1

4
.5

8
6

.8
0

0
.2

8
6

.1
0

0
.4

2
1

4
.5

8

Z
A

_
1

1
9

C
0

.3
2

1
.0

0
2

0
.8

6
0

.3
2

2
1

.0
5

1
.6

7
1

2
.6

4
2

0
.8

6
0

.3
2

2
1

.0
5

1
.6

7
1

2
.6

4

Z
A

-1
1

9
D

0
.3

8
1

.0
0

8
.8

2
0

.3
8

1
0

.6
1

0
.9

7
1

0
.8

9
8

.8
2

0
.3

8
1

0
.6

1
0

.9
7

1
0

.8
9

Z
A

_
1

2
1

A
0

.2
6

1
.0

0
1

5
.5

2
0

.2
6

1
2

.9
2

0
.8

4
1

5
.3

4
1

5
.5

2
0

.2
6

1
2

.9
2

0
.8

4
1

5
.3

4

Z
A

_
1

2
1

B
0

.6
1

1
.0

0
1

9
.1

3
0

.6
1

3
7

.4
7

5
.6

6
6

.6
2

1
9

.1
3

0
.6

1
3

7
.4

7
5

.6
6

6
.6

2

Z
A

_
1

2
2

A
0

.4
8

1
.0

0
1

3
.9

4
0

.4
8

2
1

.1
9

2
.4

8
8

.5
5

1
3

.9
4

0
.4

8
2

1
.1

9
2

.4
8

8
.5

5

Z
A

_
1

2
2

B
0

.8
5

1
.0

0
6

.7
8

0
.8

5
1

9
.2

8
3

.8
6

4
.9

9
6

.7
8

0
.8

5
1

9
.2

8
3

.8
6

4
.9

9

Z
A

_
1

2
2

C
0

.6
7

1
.0

0
2

3
.9

2
0

.6
7

5
0

.8
0

8
.3

5
6

.0
8

2
3

.9
2

0
.6

7
5

0
.8

0
8

.3
5

6
.0

8

Z
A

_
1

2
3

A
0

.6
8

1
.0

0
1

5
.3

3
0

.6
8

3
3

.6
0

5
.6

1
5

.9
9

1
5

.3
3

0
.6

8
3

3
.6

0
5

.6
1

5
.9

9

Z
A

_
1

2
3

B
0

.6
2

1
.0

0
2

5
.8

0
0

.6
2

5
0

.7
4

7
.7

6
6

.5
4

2
5

.8
0

0
.6

2
5

0
.7

4
7

.7
6

6
.5

4

Z
A

_
1

2
4

A
0

.9
3

1
.0

0
5

3
.9

8
0

.9
3

1
5

8
.6

3
3

6
.4

9
4

.3
5

5
3

.9
8

0
.9

3
1

5
8

.6
3

3
6

.4
9

4
.3

5

Z
A

_
1

2
4

B
0

.3
2

1
.0

0
1

0
.0

9
0

.3
2

1
0

.4
3

0
.8

3
1

2
.5

4
1

0
.0

9
0

.3
2

1
0

.4
3

0
.8

3
1

2
.5

4

Z
A

_
1

2
5

1
.1

7
1

.0
0

1
4

.8
0

1
.1

7
5

6
.3

3
1

5
.8

0
3

.5
7

1
4

.8
0

1
.1

7
5

6
.3

3
1

5
.8

0
3

.5
7

Z
A

_
1

2
6

A
1

.1
6

1
.0

0
3

1
.4

1
1

.1
6

1
1

6
.6

3
3

3
.2

4
3

.5
1

3
1

.4
1

1
.1

6
1

1
6

.6
3

3
3

.2
4

3
.5

1

Z
A

_
1

2
6

B
1

.1
9

1
.0

0
1

1
.5

5
1

.1
9

4
5

.3
4

1
2

.8
2

3
.5

4
1

1
.5

5
1

.1
9

4
5

.3
4

1
2

.8
2

3
.5

4

Z
A

_
1

2
7

A
0

.5
1

1
.0

0
3

5
.3

7
0

.5
1

5
6

.8
3

7
.1

7
7

.9
3

3
5

.3
7

0
.5

1
5

6
.8

3
7

.1
7

7
.9

3

Z
A

_
1

2
7

B
0

.5
1

1
.0

0
1

8
.3

9
0

.5
1

2
9

.7
4

3
.7

3
7

.9
8

1
8

.3
9

0
.5

1
2

9
.7

4
3

.7
3

7
.9

8

Z
A

_
1

2
8

A
0

.2
2

1
.0

0
8

.2
1

0
.2

2
5

.8
5

0
.3

2
1

8
.1

0
8

.2
1

0
.2

2
5

.8
5

0
.3

2
1

8
.1

0

Z
A

_
1

2
8

B
0

.5
0

1
.0

0
7

.6
5

0
.5

0
1

2
.4

2
1

.5
1

8
.2

5
7

.6
5

0
.5

0
1

2
.4

2
1

.5
1

8
.2

5

Z
A

_
1

2
8

C
0

.4
5

1
.0

0
2

1
.3

9
0

.4
5

3
0

.4
1

3
.3

7
9

.0
2

2
1

.3
9

0
.4

5
3

0
.4

1
3

.3
7

9
.0

2

Z
A

_
1

2
8

D
0

.3
0

1
.0

0
1

7
.7

2
0

.3
0

1
6

.8
9

1
.2

6
1

3
.4

0
1

7
.7

2
0

.3
0

1
6

.8
9

1
.2

6
1

3
.4

0

Z
A

_
1

2
8

E
0

.4
3

1
.0

0
2

4
.5

6
0

.4
3

3
3

.0
6

3
.4

8
9

.4
9

2
4

.5
6

0
.4

3
3

3
.0

6
3

.4
8

9
.4

9

Z
A

_
1

2
9

A
0

.8
3

1
.0

0
6

0
.9

8
0

.8
3

1
6

0
.4

1
3

3
.1

4
4

.8
4

6
0

.9
8

0
.8

3
1

6
0

.4
1

3
3

.1
4

4
.8

4

Z
A

_
1

2
9

B
0

.8
2

1
.0

0
4

5
.5

5
0

.8
2

1
1

8
.6

3
2

4
.1

6
4

.9
1

4
5

.5
5

0
.8

2
1

1
8

.6
3

2
4

.1
6

4
.9

1

Z
A

_
1

2
9

C
1

.1
1

1
.0

0
1

4
.0

7
1

.1
1

5
0

.8
4

1
3

.5
4

3
.7

6
1

4
.0

7
1

.1
1

5
0

.8
4

1
3

.5
4

3
.7

6

Z
A

_
1

2
9

D
0

.7
8

1
.0

0
1

7
.8

6
0

.7
8

4
4

.5
2

8
.4

6
5

.2
6

1
7

.8
6

0
.7

8
4

4
.5

2
8

.4
6

5
.2

6

Z
A

_
1

3
0

B
0

.2
1

1
.0

0
3

.6
9

0
.2

1
2

.4
4

0
.1

2
2

0
.0

5
3

.6
9

0
.2

1
2

.4
4

0
.1

2
2

0
.0

5

Z
A

_
1

3
1

0
.5

4
1

.0
0

8
.5

8
0

.5
4

1
4

.9
3

1
.9

4
7

.6
8

8
.5

8
0

.5
4

1
4

.9
3

1
.9

4
7

.6
8

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



88 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
1

3
3

0
.5

4
1

.0
0

1
0

.9
8

0
.5

4
1

8
.9

0
2

.4
7

7
.6

6
1

0
.9

8
0

.5
4

1
8

.9
0

2
.4

7
7

.6
6

Z
A

_
1

3
4

A
0

.7
0

1
.0

0
1

3
.7

9
0

.7
0

3
1

.1
7

5
.3

4
5

.8
4

1
3

.7
9

0
.7

0
3

1
.1

7
5

.3
4

5
.8

4

Z
A

_
1

3
4

B
0

.2
8

1
.0

0
1

0
.3

1
0

.2
8

9
.2

2
0

.6
4

1
4

.4
3

1
0

.3
1

0
.2

8
9

.2
2

0
.6

4
1

4
.4

3

Z
A

_
1

3
4

C
0

.3
1

1
.0

0
8

.6
3

0
.3

1
8

.6
7

0
.6

7
1

2
.9

7
8

.6
3

0
.3

1
8

.6
7

0
.6

7
1

2
.9

7

Z
A

_
1

3
5

0
.9

0
1

.0
0

1
0

3
.9

8
0

.9
0

2
9

4
.7

8
6

5
.9

7
4

.4
7

1
0

3
.9

8
0

.9
0

2
9

4
.7

8
6

5
.9

7
4

.4
7

Z
A

_
1

3
6

B
0

.4
7

1
.0

0
2

6
.1

0
0

.4
7

3
8

.6
2

4
.4

7
8

.6
4

2
6

.1
0

0
.4

7
3

8
.6

2
4

.4
7

8
.6

4

Z
A

_
1

3
7

A
0

.4
9

1
.0

0
1

6
.0

4
0

.4
9

2
4

.8
9

2
.9

9
8

.3
4

1
6

.0
4

0
.4

9
2

4
.8

9
2

.9
9

8
.3

4

Z
A

_
1

3
7

B
1

.0
3

1
.0

0
3

0
.8

5
1

.0
3

1
0

1
.7

5
2

5
.8

5
3

.9
4

3
0

.8
5

1
.0

3
1

0
1

.7
5

2
5

.8
5

3
.9

4

Z
A

_
1

3
9

A
0

.3
9

1
.0

0
2

3
.2

0
0

.3
9

2
8

.3
5

2
.7

1
1

0
.4

5
2

3
.2

0
0

.3
9

2
8

.3
5

2
.7

1
1

0
.4

5

Z
A

_
1

3
9

B
0

.1
7

1
.0

0
4

8
.6

0
0

.1
7

2
6

.4
5

1
.1

4
2

3
.1

6
4

8
.6

0
0

.1
7

2
6

.4
5

1
.1

4
2

3
.1

6

Z
A

_
1

3
9

C
0

.7
1

1
.0

0
9

6
.0

8
0

.7
1

2
1

5
.3

0
3

8
.1

3
5

.6
5

9
6

.0
8

0
.7

1
2

1
5

.3
0

3
8

.1
3

5
.6

5

Z
A

_
1

4
0

A
0

.6
0

1
.0

0
3

8
.2

9
0

.6
0

7
3

.1
8

1
0

.9
6

6
.6

7
3

8
.2

9
0

.6
0

7
3

.1
8

1
0

.9
6

6
.6

7

Z
A

_
1

4
0

B
0

.7
4

1
.0

0
3

4
.5

4
0

.7
4

8
1

.3
5

1
4

.9
3

5
.4

5
3

4
.5

4
0

.7
4

8
1

.3
5

1
4

.9
3

5
.4

5

Z
A

_
1

4
0

C
0

.6
3

1
.0

0
8

.0
5

0
.6

3
1

6
.6

1
2

.5
2

6
.5

8
8

.0
5

0
.6

3
1

6
.6

1
2

.5
2

6
.5

8

Z
A

_
1

4
1

0
.6

6
1

.0
0

1
4

.0
0

0
.6

6
2

9
.7

9
4

.8
2

6
.1

9
1

4
.0

0
0

.6
6

2
9

.7
9

4
.8

2
6

.1
9

Z
A

_
1

4
4

A
0

.6
1

1
.0

0
2

1
.9

4
0

.6
1

4
2

.6
0

6
.4

1
6

.6
5

2
1

.9
4

0
.6

1
4

2
.6

0
6

.4
1

6
.6

5

Z
A

_
1

4
4

B
0

.3
9

1
.0

0
1

3
.9

7
0

.3
9

1
7

.3
0

1
.6

6
1

0
.4

3
1

3
.9

7
0

.3
9

1
7

.3
0

1
.6

6
1

0
.4

3

Z
A

_
1

4
4

C
0

.2
2

1
.0

0
1

1
.4

0
0

.2
2

8
.0

2
0

.4
4

1
8

.1
9

1
1

.4
0

0
.2

2
8

.0
2

0
.4

4
1

8
.1

9

Z
A

_
1

4
4

D
0

.1
4

1
.0

0
8

.3
3

0
.1

4
3

.6
4

0
.1

2
2

9
.2

3
8

.3
3

0
.1

4
3

.6
4

0
.1

2
2

9
.2

3

Z
A

_
1

4
4

E
0

.2
2

1
.0

0
8

.1
7

0
.2

2
5

.7
7

0
.3

2
1

8
.2

6
8

.1
7

0
.2

2
5

.7
7

0
.3

2
1

8
.2

6

Z
A

_
1

4
6

A
0

.3
7

1
.0

0
2

1
.8

1
0

.3
7

2
5

.8
3

2
.3

9
1

0
.7

9
2

1
.8

1
0

.3
7

2
5

.8
3

2
.3

9
1

0
.7

9

Z
A

_
1

4
6

B
0

.3
3

1
.0

0
1

2
.6

4
0

.3
3

1
3

.3
1

1
.0

9
1

2
.2

4
1

2
.6

4
0

.3
3

1
3

.3
1

1
.0

9
1

2
.2

4

Z
A

_
1

4
6

C
0

.3
7

1
.0

0
1

2
.4

6
0

.3
7

1
4

.8
5

1
.3

7
1

0
.8

6
1

2
.4

6
0

.3
7

1
4

.8
5

1
.3

7
1

0
.8

6

Z
A

_
1

4
7

A
0

.4
9

1
.0

0
5

.7
1

0
.4

9
9

.1
6

1
.0

8
8

.5
1

5
.7

1
0

.4
9

9
.1

6
1

.0
8

8
.5

1

Z
A

_
1

4
7

B
0

.6
5

1
.0

0
9

.2
4

0
.6

5
1

9
.6

5
3

.1
0

6
.3

3
9

.2
4

0
.6

5
1

9
.6

5
3

.1
0

6
.3

3

Z
A

_
1

4
9

0
.7

7
1

.0
0

2
3

.1
3

0
.7

7
5

6
.9

2
1

0
.7

9
5

.2
7

2
3

.1
3

0
.7

7
5

6
.9

2
1

0
.7

9
5

.2
7

Z
A

_
1

5
0

0
.3

7
1

.0
0

8
.0

4
0

.3
7

9
.6

6
0

.8
8

1
0

.9
4

8
.0

4
0

.3
7

9
.6

6
0

.8
8

1
0

.9
4

Z
A

_
1

5
1

A
0

.6
8

1
.0

0
8

.3
5

0
.6

8
1

8
.6

7
3

.0
7

6
.0

9
8

.3
5

0
.6

8
1

8
.6

7
3

.0
7

6
.0

9

Z
A

_
1

5
1

B
0

.6
5

1
.0

0
2

3
.4

0
0

.6
5

4
8

.4
2

7
.7

6
6

.2
4

2
3

.4
0

0
.6

5
4

8
.4

2
7

.7
6

6
.2

4

Z
A

_
1

5
1

C
0

.2
3

1
.0

0
7

.8
7

0
.2

3
5

.6
9

0
.3

2
1

7
.8

8
7

.8
7

0
.2

3
5

.6
9

0
.3

2
1

7
.8

8

Z
A

_
1

5
2

A
0

.4
8

1
.0

0
1

8
.1

5
0

.4
8

2
7

.4
8

3
.2

3
8

.5
1

1
8

.1
5

0
.4

8
2

7
.4

8
3

.2
3

8
.5

1

Z
A

_
1

5
2

B
0

.0
8

1
.0

0
1

0
.1

4
0

.0
8

2
.6

2
0

.0
5

4
8

.9
8

1
0

.1
4

0
.0

8
2

.6
2

0
.0

5
4

8
.9

8

Z
A

_
1

5
2

C
0

.6
5

1
.0

0
8

.3
3

0
.6

5
1

7
.7

3
2

.7
8

6
.3

8
8

.3
3

0
.6

5
1

7
.7

3
2

.7
8

6
.3

8

Z
A

_
1

5
2

D
0

.6
2

1
.0

0
5

.0
9

0
.6

2
1

0
.5

3
1

.5
4

6
.8

3
5

.0
9

0
.6

2
1

0
.5

3
1

.5
4

6
.8

3

Z
A

_
1

5
2

C
0

.5
5

1
.0

0
2

1
.3

9
0

.5
5

3
7

.2
1

5
.0

2
7

.4
1

2
1

.3
9

0
.5

5
3

7
.2

1
5

.0
2

7
.4

1

Z
A

_
1

5
4

A
0

.3
0

1
.0

0
6

.2
6

0
.3

0
6

.0
8

0
.4

5
1

3
.5

6
6

.2
6

0
.3

0
6

.0
8

0
.4

5
1

3
.5

6

Z
A

_
1

5
4

B
0

.1
7

1
.0

0
4

.1
5

0
.1

7
2

.2
2

0
.0

9
2

4
.4

3
4

.1
5

0
.1

7
2

.2
2

0
.0

9
2

4
.4

3

Z
A

_
1

5
5

A
0

.3
8

1
.0

0
1

3
.2

1
0

.3
8

1
5

.9
5

1
.4

9
1

0
.7

1
1

3
.2

1
0

.3
8

1
5

.9
5

1
.4

9
1

0
.7

1

Z
A

_
1

5
5

B
0

.3
5

1
.0

0
7

.4
7

0
.3

5
8

.3
8

0
.7

1
1

1
.7

3
7

.4
7

0
.3

5
8

.3
8

0
.7

1
1

1
.7

3

Z
A

_
1

5
5

C
0

.3
4

1
.0

0
1

2
.8

7
0

.3
4

1
3

.8
8

1
.1

6
1

1
.9

5
1

2
.8

7
0

.3
4

1
3

.8
8

1
.1

6
1

1
.9

5

Z
A

_
1

5
6

0
.6

3
1

.0
0

6
.9

0
0

.6
3

1
4

.3
2

2
.1

6
6

.6
2

6
.9

0
0

.6
3

1
4

.3
2

2
.1

6
6

.6
2

Z
A

_
1

5
7

A
0

.1
8

1
.0

0
1

6
.3

3
0

.1
8

9
.4

9
0

.4
3

2
1

.8
6

1
6

.3
3

0
.1

8
9

.4
9

0
.4

3
2

1
.8

6

Z
A

_
1

5
7

B
0

.4
0

1
.0

0
7

.6
3

0
.4

0
9

.7
6

0
.9

4
1

0
.3

4
7

.6
3

0
.4

0
9

.7
6

0
.9

4
1

0
.3

4

Z
A

_
1

5
7

C
0

.2
4

1
.0

0
1

2
.3

3
0

.2
4

9
.1

9
0

.5
3

1
7

.1
8

1
2

.3
3

0
.2

4
9

.1
9

0
.5

3
1

7
.1

8

Z
A

_
1

5
7

D
0

.0
9

1
.0

0
5

.8
8

0
.0

9
1

.7
1

0
.0

4
4

3
.8

2
5

.8
8

0
.0

9
1

.7
1

0
.0

4
4

3
.8

2

Z
A

_
1

5
7

E
0

.4
0

1
.0

0
8

.0
1

0
.4

0
1

0
.2

3
0

.9
9

1
0

.3
3

8
.0

1
0

.4
0

1
0

.2
3

0
.9

9
1

0
.3

3

Z
A

_
1

5
9

A
0

.4
4

1
.0

0
2

8
.8

6
0

.4
4

4
0

.1
8

4
.3

9
9

.1
6

2
8

.8
6

0
.4

4
4

0
.1

8
4

.3
9

9
.1

6

Z
A

_
1

5
9

B
0

.3
7

1
.0

0
1

2
.2

3
0

.3
7

1
4

.2
6

1
.2

9
1

1
.0

9
1

2
.2

3
0

.3
7

1
4

.2
6

1
.2

9
1

1
.0

9

Z
A

_
1

6
0

0
.4

8
1

.0
0

2
2

.3
2

0
.4

8
3

4
.0

7
4

.0
5

8
.4

1
2

2
.3

2
0

.4
8

3
4

.0
7

4
.0

5
8

.4
1

Z
A

_
1

6
2

0
.5

2
1

.0
0

1
2

.0
7

0
.5

2
2

0
.1

8
2

.5
7

7
.8

4
1

2
.0

7
0

.5
2

2
0

.1
8

2
.5

7
7

.8
4

Z
A

_
1

6
3

A
0

.3
8

1
.0

0
1

2
.6

8
0

.3
8

1
5

.4
4

1
.4

5
1

0
.6

3
1

2
.6

8
0

.3
8

1
5

.4
4

1
.4

5
1

0
.6

3

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



89 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
1

6
3

B
0

.4
4

1
.0

0
6

.9
3

0
.4

4
9

.7
8

1
.0

3
9

.4
6

6
.9

3
0

.4
4

9
.7

8
1

.0
3

9
.4

6

Z
A

_
1

6
3

C
0

.5
0

1
.0

0
1

7
.8

6
0

.5
0

2
8

.3
2

3
.4

8
8

.1
4

1
7

.8
6

0
.5

0
2

8
.3

2
3

.4
8

8
.1

4

Z
A

_
1

6
3

D
0

.4
8

1
.0

0
1

9
.2

0
0

.4
8

2
9

.4
9

3
.5

2
8

.3
9

1
9

.2
0

0
.4

8
2

9
.4

9
3

.5
2

8
.3

9

Z
A

_
1

6
6

0
.4

9
1

.0
0

5
9

.1
3

0
.4

9
9

1
.7

2
1

1
.2

4
8

.1
6

5
9

.1
3

0
.4

9
9

1
.7

2
1

1
.2

4
8

.1
6

Z
A

_
1

6
7

A
0

.2
2

1
.0

0
6

.9
3

0
.2

2
4

.8
4

0
.2

6
1

8
.5

5
6

.9
3

0
.2

2
4

.8
4

0
.2

6
1

8
.5

5

Z
A

_
1

6
7

B
0

.1
7

1
.0

0
1

3
.2

6
0

.1
7

7
.2

5
0

.3
1

2
3

.2
7

1
3

.2
6

0
.1

7
7

.2
5

0
.3

1
2

3
.2

7

Z
A

_
1

6
7

C
0

.4
7

1
.0

0
8

.3
3

0
.4

7
1

2
.6

7
1

.4
5

8
.7

3
8

.3
3

0
.4

7
1

2
.6

7
1

.4
5

8
.7

3

Z
A

_
1

6
7

D
0

.1
7

1
.0

0
9

.0
9

0
.1

7
4

.9
8

0
.2

1
2

3
.3

4
9

.0
9

0
.1

7
4

.9
8

0
.2

1
2

3
.3

4

Z
A

_
1

6
7

E
0

.0
8

1
.0

0
7

.0
4

0
.0

8
1

.7
1

0
.0

3
5

2
.2

3
7

.0
4

0
.0

8
1

.7
1

0
.0

3
5

2
.2

3

Z
A

_
1

6
9

0
.5

1
1

.0
0

5
1

.8
0

0
.5

1
8

3
.3

6
1

0
.5

8
7

.8
8

5
1

.8
0

0
.5

1
8

3
.3

6
1

0
.5

8
7

.8
8

Z
A

_
1

7
0

A
0

.2
5

1
.0

0
8

.5
9

0
.2

5
6

.8
4

0
.4

2
1

6
.2

3
8

.5
9

0
.2

5
6

.8
4

0
.4

2
1

6
.2

3

Z
A

_
1

7
0

B
0

.4
4

1
.0

0
4

.4
3

0
.4

4
6

.4
5

0
.6

8
9

.5
0

4
.4

3
0

.4
4

6
.4

5
0

.6
8

9
.5

0

Z
A

_
1

7
0

C
0

.0
9

1
.0

0
4

.2
9

0
.0

9
1

.2
0

0
.0

3
4

5
.9

2
4

.2
9

0
.0

9
1

.2
0

0
.0

3
4

5
.9

2

Z
A

_
1

7
1

A
0

.4
5

1
.0

0
1

5
.5

4
0

.4
5

2
2

.2
8

2
.4

7
9

.0
2

1
5

.5
4

0
.4

5
2

2
.2

8
2

.4
7

9
.0

2

Z
A

_
1

7
1

B
0

.5
3

1
.0

0
5

.3
7

0
.5

3
9

.2
8

1
.1

6
7

.9
9

5
.3

7
0

.5
3

9
.2

8
1

.1
6

7
.9

9

Z
A

_
1

7
2

B
0

.2
9

1
.0

0
8

.7
5

0
.2

9
8

.1
0

0
.5

8
1

4
.0

2
8

.7
5

0
.2

9
8

.1
0

0
.5

8
1

4
.0

2

Z
A

_
1

7
3

A
0

.5
4

1
.0

0
1

7
.9

2
0

.5
4

3
1

.0
8

4
.1

6
7

.4
6

1
7

.9
2

0
.5

4
3

1
.0

8
4

.1
6

7
.4

6

Z
A

_
1

7
3

B
0

.5
6

1
.0

0
2

0
.3

2
0

.5
6

3
6

.2
9

5
.0

2
7

.2
3

2
0

.3
2

0
.5

6
3

6
.2

9
5

.0
2

7
.2

3

Z
A

_
1

7
5

0
.7

8
1

.0
0

1
7

.6
0

0
.7

8
4

4
.0

6
8

.4
1

5
.2

4
1

7
.6

0
0

.7
8

4
4

.0
6

8
.4

1
5

.2
4

Z
A

_
1

7
7

0
.5

3
1

.0
0

2
2

.3
3

0
.5

3
3

7
.6

7
4

.9
4

7
.6

2
2

2
.3

3
0

.5
3

3
7

.6
7

4
.9

4
7

.6
2

Z
A

_
1

7
8

0
.7

5
1

.0
0

1
0

.3
2

0
.7

5
2

5
.2

1
4

.5
7

5
.5

2
1

0
.3

2
0

.7
5

2
5

.2
1

4
.5

7
5

.5
2

Z
A

_
1

7
9

A
0

.1
5

1
.0

0
7

.2
0

0
.1

5
3

.3
1

0
.1

2
2

7
.8

6
7

.2
0

0
.1

5
3

.3
1

0
.1

2
2

7
.8

6

Z
A

_
1

7
9

B
0

.1
5

1
.0

0
8

.2
1

0
.1

5
3

.7
7

0
.1

4
2

7
.8

3
8

.2
1

0
.1

5
3

.7
7

0
.1

4
2

7
.8

3

Z
A

_
1

7
9

C
0

.4
6

1
.0

0
1

0
.5

5
0

.4
6

1
5

.5
6

1
.7

5
8

.8
9

1
0

.5
5

0
.4

6
1

5
.5

6
1

.7
5

8
.8

9

Z
A

_
1

7
9

D
0

.5
2

1
.0

0
8

.3
5

0
.5

2
1

4
.1

6
1

.8
0

7
.8

7
8

.3
5

0
.5

2
1

4
.1

6
1

.8
0

7
.8

7

Z
A

_
1

7
9

E
0

.4
6

1
.0

0
1

0
.4

7
0

.4
6

1
5

.4
5

1
.7

4
8

.8
9

1
0

.4
7

0
.4

6
1

5
.4

5
1

.7
4

8
.8

9

Z
A

_
1

8
2

A
0

.2
7

1
.0

0
1

1
.4

1
0

.2
7

9
.6

4
0

.6
3

1
5

.2
1

1
1

.4
1

0
.2

7
9

.6
4

0
.6

3
1

5
.2

1

Z
A

_
1

8
2

B
0

.3
1

1
.0

0
9

.7
4

0
.3

1
9

.7
3

0
.7

5
1

2
.9

8
9

.7
4

0
.3

1
9

.7
3

0
.7

5
1

2
.9

8

Z
A

_
1

8
2

C
0

.2
7

1
.0

0
7

.4
7

0
.2

7
6

.3
5

0
.4

2
1

5
.3

1
7

.4
7

0
.2

7
6

.3
5

0
.4

2
1

5
.3

1

Z
A

_
1

8
2

D
0

.3
7

1
.0

0
8

.0
7

0
.3

7
9

.5
7

0
.8

6
1

1
.0

9
8

.0
7

0
.3

7
9

.5
7

0
.8

6
1

1
.0

9

Z
A

_
1

8
3

0
.4

4
1

.0
0

1
1

.2
0

0
.4

4
1

5
.7

4
1

.6
9

9
.2

9
1

1
.2

0
0

.4
4

1
5

.7
4

1
.6

9
9

.2
9

Z
A

_
1

8
4

A
0

.1
8

1
.0

0
9

.4
5

0
.1

8
5

.4
5

0
.2

5
2

2
.1

9
9

.4
5

0
.1

8
5

.4
5

0
.2

5
2

2
.1

9

Z
A

_
1

8
4

B
0

.1
8

1
.0

0
1

5
.5

8
0

.1
8

8
.9

5
0

.4
1

2
2

.1
1

1
5

.5
8

0
.1

8
8

.9
5

0
.4

1
2

2
.1

1

Z
A

_
1

8
6

C
0

.2
8

1
.0

0
7

.4
8

0
.2

8
6

.7
2

0
.4

6
1

4
.5

0
7

.4
8

0
.2

8
6

.7
2

0
.4

6
1

4
.5

0

Z
A

_
1

8
6

D
0

.3
1

1
.0

0
1

2
.5

0
0

.3
1

1
2

.4
8

0
.9

7
1

2
.9

0
1

2
.5

0
0

.3
1

1
2

.4
8

0
.9

7
1

2
.9

0

Z
A

_
1

8
7

B
0

.3
8

1
.0

0
6

8
.5

9
0

.3
8

8
2

.7
1

7
.9

0
1

0
.4

7
6

8
.5

9
0

.3
8

8
2

.7
1

7
.9

0
1

0
.4

7

Z
A

_
1

8
7

C
0

.3
0

1
.0

0
9

.9
3

0
.3

0
9

.5
6

0
.7

1
1

3
.4

5
9

.9
3

0
.3

0
9

.5
6

0
.7

1
1

3
.4

5

Z
A

_
1

8
7

D
0

.1
0

1
.0

0
7

.6
4

0
.1

0
2

.3
2

0
.0

6
4

1
.9

3
7

.6
4

0
.1

0
2

.3
2

0
.0

6
4

1
.9

3

Z
A

_
1

8
9

A
0

.7
0

1
.0

0
2

8
.5

5
0

.7
0

6
3

.0
6

1
0

.8
3

5
.8

3
2

8
.5

5
0

.7
0

6
3

.0
6

1
0

.8
3

5
.8

3

Z
A

_
1

8
9

B
0

.3
8

1
.0

0
1

1
.5

9
0

.3
8

1
3

.9
0

1
.2

9
1

0
.8

1
1

1
.5

9
0

.3
8

1
3

.9
0

1
.2

9
1

0
.8

1

Z
A

_
1

9
0

0
.4

7
1

.0
0

3
9

.3
4

0
.4

7
5

8
.0

3
6

.7
3

8
.6

2
3

9
.3

4
0

.4
7

5
8

.0
3

6
.7

3
8

.6
2

Z
A

_
1

9
1

A
0

.4
9

1
.0

0
2

7
.0

8
0

.4
9

4
2

.2
2

5
.1

5
8

.2
0

2
7

.0
8

0
.4

9
4

2
.2

2
5

.1
5

8
.2

0

Z
A

_
1

9
1

B
0

.2
6

1
.0

0
4

5
.6

0
0

.2
6

3
7

.3
3

2
.4

2
1

5
.4

3
4

5
.6

0
0

.2
6

3
7

.3
3

2
.4

2
1

5
.4

3

Z
A

_
1

9
2

A
0

.7
4

1
.0

0
1

1
.7

4
0

.7
4

2
8

.1
5

5
.0

5
5

.5
8

1
1

.7
4

0
.7

4
2

8
.1

5
5

.0
5

5
.5

8

Z
A

_
1

9
2

B
0

.7
0

1
.0

0
1

4
.6

1
0

.7
0

3
2

.9
8

5
.6

5
5

.8
3

1
4

.6
1

0
.7

0
3

2
.9

8
5

.6
5

5
.8

3

Z
A

_
1

9
2

C
0

.4
2

1
.0

0
8

.8
7

0
.4

2
1

2
.0

6
1

.2
5

9
.6

8
8

.8
7

0
.4

2
1

2
.0

6
1

.2
5

9
.6

8

Z
A

_
1

9
2

D
0

.4
2

1
.0

0
1

0
.7

9
0

.4
2

1
4

.6
2

1
.5

2
9

.6
4

1
0

.7
9

0
.4

2
1

4
.6

2
1

.5
2

9
.6

4

Z
A

_
1

9
3

0
.5

2
1

.0
0

2
7

.0
5

0
.5

2
4

4
.6

8
5

.7
6

7
.7

5
2

7
.0

5
0

.5
2

4
4

.6
8

5
.7

6
7

.7
5

Z
A

_
1

9
4

0
.9

7
1

.0
0

2
1

.5
5

0
.9

7
6

7
.1

8
1

5
.9

5
4

.2
1

2
1

.5
5

0
.9

7
6

7
.1

8
1

5
.9

5
4

.2
1

Z
A

_
1

9
5

B
0

.3
5

1
.0

0
1

9
.7

2
0

.3
5

2
1

.6
1

1
.8

5
1

1
.6

6
1

9
.7

2
0

.3
5

2
1

.6
1

1
.8

5
1

1
.6

6

Z
A

_
1

9
6

A
0

.4
6

1
.0

0
3

1
.0

9
0

.4
6

4
4

.8
4

5
.0

7
8

.8
4

3
1

.0
9

0
.4

6
4

4
.8

4
5

.0
7

8
.8

4

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



90 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
1

9
6

B
0

.5
2

1
.0

0
2

8
.7

8
0

.5
2

4
7

.3
2

6
.0

8
7

.7
8

2
8

.7
8

0
.5

2
4

7
.3

2
6

.0
8

7
.7

8

Z
A

_
1

9
6

C
0

.4
6

1
.0

0
2

2
.4

3
0

.4
6

3
2

.4
4

3
.6

6
8

.8
6

2
2

.4
3

0
.4

6
3

2
.4

4
3

.6
6

8
.8

6

Z
A

_
1

9
6

D
0

.2
9

1
.0

0
1

6
.6

3
0

.2
9

1
5

.1
7

1
.0

8
1

4
.0

1
1

6
.6

3
0

.2
9

1
5

.1
7

1
.0

8
1

4
.0

1

Z
A

_
1

9
6

E
0

.4
2

1
.0

0
8

.4
6

0
.4

2
1

1
.4

3
1

.1
7

9
.7

6
8

.4
6

0
.4

2
1

1
.4

3
1

.1
7

9
.7

6

Z
A

_
1

9
6

F
0

.3
7

1
.0

0
6

.4
6

0
.3

7
7

.6
6

0
.6

8
1

1
.2

1
6

.4
6

0
.3

7
7

.6
6

0
.6

8
1

1
.2

1

Z
A

_
1

9
7

A
0

.6
5

1
.0

0
5

6
.0

1
0

.6
5

1
1

4
.6

3
1

8
.4

6
6

.2
1

5
6

.0
1

0
.6

5
1

1
4

.6
3

1
8

.4
6

6
.2

1

Z
A

_
1

9
7

B
0

.4
3

1
.0

0
2

2
.1

1
0

.4
3

2
9

.8
5

3
.1

5
9

.4
8

2
2

.1
1

0
.4

3
2

9
.8

5
3

.1
5

9
.4

8

Z
A

_
2

0
0

A
0

.5
6

1
.0

0
8

7
.2

0
0

.5
6

1
5

2
.7

2
2

1
.1

6
7

.2
2

8
7

.2
0

0
.5

6
1

5
2

.7
2

2
1

.1
6

7
.2

2

Z
A

_
2

0
0

B
0

.5
6

1
.0

0
1

0
.8

1
0

.5
6

1
9

.3
6

2
.6

2
7

.3
8

1
0

.8
1

0
.5

6
1

9
.3

6
2

.6
2

7
.3

8

Z
A

_
2

0
0

C
0

.2
2

1
.0

0
2

0
.2

5
0

.2
2

1
4

.1
9

0
.7

8
1

8
.1

2
2

0
.2

5
0

.2
2

1
4

.1
9

0
.7

8
1

8
.1

2

Z
A

_
2

0
1

0
.7

8
1

.0
0

8
.6

0
0

.7
8

2
1

.9
9

4
.1

0
5

.3
7

8
.6

0
0

.7
8

2
1

.9
9

4
.1

0
5

.3
7

Z
A

_
2

0
2

0
.7

5
1

.0
0

3
6

.5
9

0
.7

5
8

7
.4

1
1

6
.2

9
5

.3
7

3
6

.5
9

0
.7

5
8

7
.4

1
1

6
.2

9
5

.3
7

Z
A

_
2

0
3

0
.5

8
1

.0
0

1
0

.4
7

0
.5

8
1

9
.5

3
2

.7
5

7
.1

1
1

0
.4

7
0

.5
8

1
9

.5
3

2
.7

5
7

.1
1

Z
A

_
2

0
4

0
.8

2
1

.0
0

9
.9

0
0

.8
2

2
6

.6
7

5
.2

7
5

.0
6

9
.9

0
0

.8
2

2
6

.6
7

5
.2

7
5

.0
6

Z
A

_
2

0
5

0
.6

8
1

.0
0

1
0

.4
2

0
.6

8
2

2
.8

0
3

.7
3

6
.1

2
1

0
.4

2
0

.6
8

2
2

.8
0

3
.7

3
6

.1
2

Z
A

_
2

0
6

A
0

.4
1

1
.0

0
3

4
.4

4
0

.4
1

4
5

.0
4

4
.6

3
9

.7
2

3
4

.4
4

0
.4

1
4

5
.0

4
4

.6
3

9
.7

2

Z
A

_
2

0
6

B
0

.3
7

1
.0

0
1

1
.1

3
0

.3
7

1
3

.2
5

1
.2

2
1

0
.9

0
1

1
.1

3
0

.3
7

1
3

.2
5

1
.2

2
1

0
.9

0

Z
A

_
2

0
6

C
0

.5
3

3
.0

0
2

5
.5

1
0

.5
3

4
3

.2
3

5
.7

1
7

.5
7

2
5

.5
1

0
.5

3
4

3
.2

3
5

.7
1

7
.5

7

Z
A

_
2

0
6

D
0

.4
4

1
.0

0
6

8
.8

8
0

.4
4

9
5

.2
5

1
0

.4
2

9
.1

4
6

8
.8

8
0

.4
4

9
5

.2
5

1
0

.4
2

9
.1

4

Z
A

_
2

0
6

E
0

.6
0

1
.0

0
2

5
.5

2
0

.6
0

4
8

.9
8

7
.3

1
6

.7
0

2
5

.5
2

0
.6

0
4

8
.9

8
7

.3
1

6
.7

0

Z
A

_
2

0
8

0
.6

7
1

.0
0

9
.7

3
0

.6
7

2
1

.0
7

3
.4

0
6

.2
0

9
.7

3
0

.6
7

2
1

.0
7

3
.4

0
6

.2
0

Z
A

_
2

0
9

0
.5

6
1

.0
0

2
8

.5
0

0
.5

6
5

0
.4

2
6

.9
7

7
.2

4
2

8
.5

0
0

.5
6

5
0

.4
2

6
.9

7
7

.2
4

Z
A

_
2

1
0

0
.5

7
1

.0
0

1
5

.7
2

0
.5

7
2

8
.4

4
3

.9
5

7
.1

9
1

5
.7

2
0

.5
7

2
8

.4
4

3
.9

5
7

.1
9

Z
A

_
2

1
1

0
.7

9
1

.0
0

7
.2

6
0

.7
9

1
8

.8
9

3
.5

2
5

.3
6

7
.2

6
0

.7
9

1
8

.8
9

3
.5

2
5

.3
6

Z
A

_
2

1
2

A
0

.6
8

1
.0

0
5

2
.2

5
0

.6
8

1
1

2
.6

1
1

9
.0

8
5

.9
0

5
2

.2
5

0
.6

8
1

1
2

.6
1

1
9

.0
8

5
.9

0

Z
A

_
2

1
2

B
0

.5
2

1
.0

0
1

8
.5

7
0

.5
2

3
0

.6
2

3
.9

1
7

.8
3

1
8

.5
7

0
.5

2
3

0
.6

2
3

.9
1

7
.8

3

Z
A

_
2

1
2

C
0

.5
1

1
.0

0
2

2
.8

0
0

.5
1

3
6

.7
7

4
.6

2
7

.9
6

2
2

.8
0

0
.5

1
3

6
.7

7
4

.6
2

7
.9

6

Z
A

_
2

1
2

D
0

.4
1

1
.0

0
2

6
.4

8
0

.4
1

3
4

.0
9

3
.4

4
9

.9
0

2
6

.4
8

0
.4

1
3

4
.0

9
3

.4
4

9
.9

0

Z
A

_
2

1
2

E
0

.3
2

1
.0

0
1

0
.3

4
0

.3
2

1
0

.5
8

0
.8

4
1

2
.6

5
1

0
.3

4
0

.3
2

1
0

.5
8

0
.8

4
1

2
.6

5

Z
A

_
2

1
4

A
0

.7
8

1
.0

0
3

6
.6

2
0

.7
8

9
0

.7
6

1
7

.5
3

5
.1

8
3

6
.6

2
0

.7
8

9
0

.7
6

1
7

.5
3

5
.1

8

Z
A

_
2

1
4

B
0

.2
0

1
.0

0
1

1
.4

0
0

.2
0

7
.1

1
0

.3
5

2
0

.4
8

1
1

.4
0

0
.2

0
7

.1
1

0
.3

5
2

0
.4

8

Z
A

_
2

1
7

A
0

.0
9

1
.0

0
4

.0
5

0
.0

9
1

.1
4

0
.0

3
4

5
.4

4
4

.0
5

0
.0

9
1

.1
4

0
.0

3
4

5
.4

4

Z
A

_
2

1
7

B
0

.2
5

1
.0

0
5

.2
5

0
.2

5
4

.2
6

0
.2

6
1

6
.2

5
5

.2
5

0
.2

5
4

.2
6

0
.2

6
1

6
.2

5

Z
A

_
2

1
7

E
0

.2
8

1
.0

0
2

.5
0

0
.2

8
2

.3
4

0
.1

6
1

4
.9

9
2

.5
0

0
.2

8
2

.3
4

0
.1

6
1

4
.9

9

Z
A

_
2

1
7

F
0

.2
3

1
.0

0
2

.9
9

0
.2

3
2

.2
0

0
.1

2
1

8
.3

7
2

.9
9

0
.2

3
2

.2
0

0
.1

2
1

8
.3

7

Z
A

_
2

1
8

A
0

.5
0

1
.0

0
2

1
.0

3
0

.5
0

3
3

.4
2

4
.1

3
8

.1
0

2
1

.0
3

0
.5

0
3

3
.4

2
4

.1
3

8
.1

0

Z
A

_
2

1
8

B
0

.4
9

1
.0

0
1

6
.2

8
0

.4
9

2
5

.4
3

3
.0

7
8

.2
9

1
6

.2
8

0
.4

9
2

5
.4

3
3

.0
7

8
.2

9

Z
A

_
2

1
8

C
0

.7
1

1
.0

0
1

8
.3

1
0

.7
1

4
1

.7
9

7
.3

1
5

.7
2

1
8

.3
1

0
.7

1
4

1
.7

9
7

.3
1

5
.7

2

Z
A

_
2

1
8

D
0

.1
4

1
.0

0
4

.1
3

0
.1

4
1

.8
3

0
.0

6
2

9
.2

6
4

.1
3

0
.1

4
1

.8
3

0
.0

6
2

9
.2

6

Z
A

_
2

1
9

0
.2

9
1

.0
0

2
5

.2
3

0
.2

9
2

3
.1

9
1

.6
8

1
3

.8
2

2
5

.2
3

0
.2

9
2

3
.1

9
1

.6
8

1
3

.8
2

Z
A

_
2

2
0

A
0

.2
5

1
.0

0
3

7
.8

1
0

.2
5

2
9

.9
0

1
.8

7
1

5
.9

9
3

7
.8

1
0

.2
5

2
9

.9
0

1
.8

7
1

5
.9

9

Z
A

_
2

2
0

B
0

.1
6

1
.0

0
6

.9
9

0
.1

6
3

.5
3

0
.1

4
2

5
.4

4
6

.9
9

0
.1

6
3

.5
3

0
.1

4
2

5
.4

4

Z
A

_
2

2
0

C
0

.4
1

1
.0

0
8

.4
0

0
.4

1
1

0
.9

3
1

.0
8

1
0

.1
1

8
.4

0
0

.4
1

1
0

.9
3

1
.0

8
1

0
.1

1

Z
A

_
2

2
0

D
0

.3
4

1
.0

0
8

.1
8

0
.3

4
8

.8
4

0
.7

3
1

2
.1

1
8

.1
8

0
.3

4
8

.8
4

0
.7

3
1

2
.1

1

Z
A

_
2

2
1

A
0

.3
1

1
.0

0
2

0
.6

3
0

.3
1

2
0

.4
9

1
.6

0
1

2
.8

4
2

0
.6

3
0

.3
1

2
0

.4
9

1
.6

0
1

2
.8

4

Z
A

_
2

2
1

B
0

.1
2

1
.0

0
8

.1
2

0
.1

2
3

.1
6

0
.1

0
3

2
.7

7
8

.1
2

0
.1

2
3

.1
6

0
.1

0
3

2
.7

7

Z
A

_
2

2
1

C
0

.3
1

1
.0

0
2

0
.6

7
0

.3
1

2
0

.5
4

1
.6

0
1

2
.8

4
2

0
.6

7
0

.3
1

2
0

.5
4

1
.6

0
1

2
.8

4

Z
A

_
2

2
1

D
1

.1
7

1
.0

0
6

.0
3

1
.1

7
2

4
.3

7
6

.5
1

3
.7

4
6

.0
3

1
.1

7
2

4
.3

7
6

.5
1

3
.7

4

Z
A

_
2

2
2

0
.4

7
1

.0
0

6
.8

2
0

.4
7

1
0

.3
4

1
.1

7
8

.8
6

6
.8

2
0

.4
7

1
0

.3
4

1
.1

7
8

.8
6

Z
A

_
2

2
3

A
0

.3
4

1
.0

0
1

0
.9

9
0

.3
4

1
2

.0
2

1
.0

2
1

1
.8

4
1

0
.9

9
0

.3
4

1
2

.0
2

1
.0

2
1

1
.8

4

Z
A

_
2

3
3

B
0

.6
7

1
.0

0
6

.3
0

0
.6

7
1

3
.8

6
2

.1
9

6
.3

2
6

.3
0

0
.6

7
1

3
.8

6
2

.1
9

6
.3

2

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



91 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
2

2
4

A
0

.9
4

1
.0

0
1

0
.5

4
0

.9
4

3
2

.5
0

7
.3

1
4

.4
5

1
0

.5
4

0
.9

4
3

2
.5

0
7

.3
1

4
.4

5

Z
A

_
2

2
4

B
0

.2
5

1
.0

0
1

2
.0

4
0

.2
5

9
.3

9
0

.5
7

1
6

.4
3

1
2

.0
4

0
.2

5
9

.3
9

0
.5

7
1

6
.4

3

Z
A

_
2

4
4

C
0

.2
5

1
.0

0
1

0
.3

9
0

.2
5

8
.1

2
0

.4
9

1
6

.4
5

1
0

.3
9

0
.2

5
8

.1
2

0
.4

9
1

6
.4

5

Z
A

_
2

2
4

D
0

.2
8

1
.0

0
4

.5
5

0
.2

8
4

.0
5

0
.2

7
1

4
.9

9
4

.5
5

0
.2

8
4

.0
5

0
.2

7
1

4
.9

9

Z
A

_
2

2
4

E
0

.2
8

1
.0

0
1

1
.4

4
0

.2
8

9
.9

9
0

.6
8

1
4

.7
2

1
1

.4
4

0
.2

8
9

.9
9

0
.6

8
1

4
.7

2

Z
A

_
2

2
4

F
0

.2
8

1
.0

0
5

.4
5

0
.2

8
4

.8
2

0
.3

2
1

4
.9

1
5

.4
5

0
.2

8
4

.8
2

0
.3

2
1

4
.9

1

Z
A

_
2

2
4

G
0

.3
5

1
.0

0
4

.9
7

0
.3

5
5

.6
0

0
.4

7
1

1
.9

3
4

.9
7

0
.3

5
5

.6
0

0
.4

7
1

1
.9

3

Z
A

_
2

2
5

0
.4

2
1

.0
0

2
1

.5
1

0
.4

2
2

8
.5

7
2

.9
6

9
.6

4
2

1
.5

1
0

.4
2

2
8

.5
7

2
.9

6
9

.6
4

Z
A

_
2

2
6

0
.9

7
1

.0
0

2
3

.2
7

0
.9

7
7

2
.1

1
1

7
.0

8
4

.2
2

2
3

.2
7

0
.9

7
7

2
.1

1
1

7
.0

8
4

.2
2

Z
A

_
2

2
7

0
.8

1
1

.0
0

2
3

.2
3

0
.8

1
5

9
.8

1
1

1
.8

5
5

.0
5

2
3

.2
3

0
.8

1
5

9
.8

1
1

1
.8

5
5

.0
5

Z
A

_
2

2
8

A
0

.4
5

1
.0

0
9

.6
0

0
.4

5
1

3
.8

8
1

.5
3

9
.1

0
9

.6
0

0
.4

5
1

3
.8

8
1

.5
3

9
.1

0

Z
A

_
2

2
8

C
0

.3
2

1
.0

0
2

9
.9

1
0

.3
2

3
0

.5
9

2
.4

6
1

2
.4

1
2

9
.9

1
0

.3
2

3
0

.5
9

2
.4

6
1

2
.4

1

Z
A

_
2

2
9

0
.4

7
1

.0
0

3
3

.8
1

0
.4

7
5

0
.4

6
5

.9
1

8
.5

3
3

3
.8

1
0

.4
7

5
0

.4
6

5
.9

1
8

.5
3

Z
A

_
2

3
0

0
.4

7
1

.0
0

2
0

.3
4

0
.4

7
3

0
.1

7
3

.4
8

8
.6

6
2

0
.3

4
0

.4
7

3
0

.1
7

3
.4

8
8

.6
6

Z
A

_
2

3
1

A
0

.8
1

1
.0

0
4

4
.4

0
0

.8
1

1
1

4
.2

5
2

2
.9

8
4

.9
7

4
4

.4
0

0
.8

1
1

1
4

.2
5

2
2

.9
8

4
.9

7

Z
A

_
2

3
1

B
0

.6
8

1
.0

0
9

.2
5

0
.6

8
2

0
.4

7
3

.3
6

6
.1

0
9

.2
5

0
.6

8
2

0
.4

7
3

.3
6

6
.1

0

Z
A

_
2

3
1

C
0

.3
4

1
.0

0
1

8
.4

9
0

.3
4

1
9

.9
2

1
.6

8
1

1
.8

7
1

8
.4

9
0

.3
4

1
9

.9
2

1
.6

8
1

1
.8

7

Z
A

_
2

3
2

C
0

.1
6

1
.0

0
2

7
.1

1
0

.1
6

1
4

.0
0

0
.5

7
2

4
.4

6
2

7
.1

1
0

.1
6

1
4

.0
0

0
.5

7
2

4
.4

6

Z
A

_
2

3
3

 
0

.5
0

1
.0

0
4

0
.7

1
0

.5
0

6
3

.7
9

7
.8

6
8

.1
1

4
0

.7
1

0
.5

0
6

3
.7

9
7

.8
6

8
.1

1

Z
A

_
2

3
4

B
0

.6
9

1
.0

0
4

4
.7

9
0

.6
9

9
7

.6
4

1
6

.6
9

5
.8

5
4

4
.7

9
0

.6
9

9
7

.6
4

1
6

.6
9

5
.8

5

Z
A

_
2

3
5

A
0

.3
7

1
.0

0
3

0
.3

8
0

.3
7

3
5

.3
2

3
.2

3
1

0
.9

4
3

0
.3

8
0

.3
7

3
5

.3
2

3
.2

3
1

0
.9

4

Z
A

_
2

3
5

B
0

.4
3

1
.0

0
1

9
.9

8
0

.4
3

2
7

.2
0

2
.8

9
9

.4
2

1
9

.9
8

0
.4

3
2

7
.2

0
2

.8
9

9
.4

2

Z
A

_
2

3
5

C
0

.6
3

1
.0

0
2

0
.2

7
0

.6
3

4
0

.9
2

6
.3

8
6

.4
2

2
0

.2
7

0
.6

3
4

0
.9

2
6

.3
8

6
.4

2

Z
A

_
2

3
6

0
.7

5
1

.0
0

7
.0

6
0

.7
5

1
7

.4
7

3
.1

0
5

.6
3

7
.0

6
0

.7
5

1
7

.4
7

3
.1

0
5

.6
3

Z
A

_
2

3
8

A
0

.5
2

1
.0

0
2

1
.7

5
0

.5
2

3
6

.0
1

4
.6

3
7

.7
7

2
1

.7
5

0
.5

2
3

6
.0

1
4

.6
3

7
.7

7

Z
A

_
2

3
8

B
0

.3
9

1
.0

0
1

1
.5

7
0

.3
9

1
4

.3
4

1
.3

7
1

0
.4

8
1

1
.5

7
0

.3
9

1
4

.3
4

1
.3

7
1

0
.4

8

Z
A

_
2

3
8

C
0

.3
9

1
.0

0
3

2
.9

8
0

.3
9

4
0

.4
1

3
.9

0
1

0
.3

7
3

2
.9

8
0

.3
9

4
0

.4
1

3
.9

0
1

0
.3

7

Z
A

_
2

3
8

D
0

.3
7

3
.0

0
1

7
.8

8
0

.3
7

2
0

.9
4

1
.9

1
1

0
.9

5
1

7
.8

8
0

.3
7

2
0

.9
4

1
.9

1
1

0
.9

5

Z
A

_
2

3
8

E
1

.3
3

1
.0

0
3

7
.4

5
1

.3
3

1
5

8
.8

3
5

1
.7

7
3

.0
7

3
7

.4
5

1
.3

3
1

5
8

.8
3

5
1

.7
7

3
.0

7

Z
A

_
2

4
0

B
3

.4
2

1
.0

0
5

.9
3

3
.4

2
8

1
.9

9
5

4
.4

0
1

.5
1

5
.9

3
3

.4
2

8
1

.9
9

5
4

.4
0

1
.5

1

Z
A

_
2

4
0

C
0

.3
2

1
.0

0
8

.4
9

0
.3

2
8

.7
5

0
.6

9
1

2
.6

6
8

.4
9

0
.3

2
8

.7
5

0
.6

9
1

2
.6

6

Z
A

_
2

4
1

A
0

.7
9

1
.0

0
4

2
.7

1
0

.7
9

1
0

7
.4

8
2

1
.1

4
5

.0
8

4
2

.7
1

0
.7

9
1

0
7

.4
8

2
1

.1
4

5
.0

8

Z
A

_
2

4
1

C
0

.3
1

1
.0

0
1

3
.4

2
0

.3
1

1
3

.2
6

1
.0

2
1

3
.0

1
1

3
.4

2
0

.3
1

1
3

.2
6

1
.0

2
1

3
.0

1

Z
A

_
2

4
3

A
0

.5
6

1
.0

0
2

5
.9

1
0

.5
6

4
6

.1
3

6
.4

0
7

.2
1

2
5

.9
1

0
.5

6
4

6
.1

3
6

.4
0

7
.2

1

Z
A

_
2

4
3

B
0

.3
7

1
.0

0
9

.0
1

0
.3

7
1

0
.5

4
0

.9
4

1
1

.1
8

9
.0

1
0

.3
7

1
0

.5
4

0
.9

4
1

1
.1

8

Z
A

_
2

4
6

A
0

.4
0

1
.0

0
1

5
.9

4
0

.4
0

2
0

.1
7

1
.9

8
1

0
.1

8
1

5
.9

4
0

.4
0

2
0

.1
7

1
.9

8
1

0
.1

8

Z
A

_
2

4
6

B
0

.6
8

1
.0

0
2

9
.4

0
0

.6
8

6
3

.3
0

1
0

.6
1

5
.9

7
2

9
.4

0
0

.6
8

6
3

.3
0

1
0

.6
1

5
.9

7

Z
A

_
2

4
9

0
.4

1
1

.0
0

3
7

.3
5

0
.4

1
4

8
.5

9
4

.9
8

9
.7

6
3

7
.3

5
0

.4
1

4
8

.5
9

4
.9

8
9

.7
6

Z
A

_
2

5
0

0
.5

0
1

.0
0

1
0

.9
9

0
.5

0
1

7
.5

4
2

.1
3

8
.2

3
1

0
.9

9
0

.5
0

1
7

.5
4

2
.1

3
8

.2
3

Z
A

_
2

5
1

A
0

.3
1

1
.0

0
3

4
.9

7
0

.3
1

3
3

.9
7

2
.6

0
1

3
.0

4
3

4
.9

7
0

.3
1

3
3

.9
7

2
.6

0
1

3
.0

4

Z
A

_
2

5
1

B
0

.3
9

1
.0

0
4

8
.0

1
0

.3
9

5
9

.0
4

5
.7

3
1

0
.3

0
4

8
.0

1
0

.3
9

5
9

.0
4

5
.7

3
1

0
.3

0

Z
A

_
2

5
1

C
0

.1
4

1
.0

0
7

.9
1

0
.1

4
3

.4
6

0
.1

2
2

9
.2

4
7

.9
1

0
.1

4
3

.4
6

0
.1

2
2

9
.2

4

Z
A

_
2

5
1

D
0

.3
1

1
.0

0
7

.3
6

0
.3

1
7

.2
7

0
.5

5
1

3
.2

6
7

.3
6

0
.3

1
7

.2
7

0
.5

5
1

3
.2

6

Z
A

_
2

5
1

E
0

.1
4

1
.0

0
2

2
.3

2
0

.1
4

9
.7

0
0

.3
3

2
9

.0
8

2
2

.3
2

0
.1

4
9

.7
0

0
.3

3
2

9
.0

8

Z
A

_
2

5
2

B
0

.3
1

1
.0

0
1

2
.0

2
0

.3
1

1
1

.8
9

0
.9

1
1

3
.0

3
1

2
.0

2
0

.3
1

1
1

.8
9

0
.9

1
1

3
.0

3

Z
A

_
2

5
2

C
0

.5
6

1
.0

0
4

.5
3

0
.5

6
8

.4
8

1
.1

2
7

.5
7

4
.5

3
0

.5
6

8
.4

8
1

.1
2

7
.5

7

Z
A

_
2

5
2

D
0

.3
7

1
.0

0
6

.2
8

0
.3

7
7

.4
0

0
.6

6
1

1
.2

8
6

.2
8

0
.3

7
7

.4
0

0
.6

6
1

1
.2

8

Z
A

_
2

5
3

B
0

.3
2

1
.0

0
3

3
.7

3
0

.3
2

3
4

.3
7

2
.7

6
1

2
.4

4
3

3
.7

3
0

.3
2

3
4

.3
7

2
.7

6
1

2
.4

4

Z
A

_
2

5
3

C
0

.4
5

1
.0

0
1

3
.2

1
0

.4
5

1
8

.9
0

2
.0

8
9

.0
8

1
3

.2
1

0
.4

5
1

8
.9

0
2

.0
8

9
.0

8

Z
A

_
2

5
4

A
0

.1
2

3
.0

0
9

.5
0

0
.1

2
3

.6
9

0
.1

1
3

2
.7

3
9

.5
0

0
.1

2
3

.6
9

0
.1

1
3

2
.7

3

Z
A

_
2

5
4

B
0

.1
4

1
.0

0
1

4
.3

1
0

.1
4

6
.1

9
0

.2
1

2
9

.3
4

1
4

.3
1

0
.1

4
6

.1
9

0
.2

1
2

9
.3

4

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



92 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
2

5
6

0
.4

4
1

.0
0

1
0

.0
5

0
.4

4
1

4
.1

6
1

.5
2

9
.3

1
1

0
.0

5
0

.4
4

1
4

.1
6

1
.5

2
9

.3
1

Z
A

_
2

5
7

1
.2

5
1

.0
0

1
0

7
.6

8
1

.2
5

4
2

4
.0

5
1

3
1

.4
4

3
.2

3
1

0
7

.6
8

1
.2

5
4

2
4

.0
5

1
3

1
.4

4
3

.2
3

Z
A

_
2

5
8

A
0

.8
3

1
.0

0
2

7
.6

1
0

.8
3

7
3

.3
1

1
5

.0
4

4
.8

7
2

7
.6

1
0

.8
3

7
3

.3
1

1
5

.0
4

4
.8

7

Z
A

_
2

5
8

B
0

.2
3

1
.0

0
9

.3
1

0
.2

3
6

.8
9

0
.4

0
1

7
.3

8
9

.3
1

0
.2

3
6

.8
9

0
.4

0
1

7
.3

8

Z
A

_
2

6
1

A
0

.3
3

1
.0

0
1

9
.6

8
0

.3
3

2
0

.3
7

1
.6

5
1

2
.3

3
1

9
.6

8
0

.3
3

2
0

.3
7

1
.6

5
1

2
.3

3

Z
A

_
2

6
1

B
0

.2
2

1
.0

0
4

.6
9

0
.2

2
3

.3
7

0
.1

8
1

8
.2

8
4

.6
9

0
.2

2
3

.3
7

0
.1

8
1

8
.2

8

Z
A

_
2

6
1

C
0

.4
6

1
.0

0
5

.0
4

0
.4

6
7

.6
5

0
.8

4
9

.0
5

5
.0

4
0

.4
6

7
.6

5
0

.8
4

9
.0

5

Z
A

_
2

6
2

A
0

.3
2

1
.0

0
1

9
.7

8
0

.3
2

2
0

.2
3

1
.6

2
1

2
.4

9
1

9
.7

8
0

.3
2

2
0

.2
3

1
.6

2
1

2
.4

9

Z
A

_
2

6
2

B
0

.4
9

1
.0

0
1

1
.7

6
0

.4
9

1
8

.3
5

2
.1

9
8

.3
8

1
1

.7
6

0
.4

9
1

8
.3

5
2

.1
9

8
.3

8

Z
A

_
2

6
2

C
0

.5
1

1
.0

0
1

3
.3

8
0

.5
1

2
1

.8
4

2
.7

3
7

.9
9

1
3

.3
8

0
.5

1
2

1
.8

4
2

.7
3

7
.9

9

Z
A

_
2

6
3

0
.6

6
1

.0
0

3
9

.8
6

0
.6

6
8

3
.7

9
1

3
.7

9
6

.0
7

3
9

.8
6

0
.6

6
8

3
.7

9
1

3
.7

9
6

.0
7

Z
A

_
2

6
4

A
0

.1
6

3
.0

0
4

.5
6

0
.1

6
2

.2
6

0
.0

9
2

6
.2

4
4

.5
6

0
.1

6
2

.2
6

0
.0

9
2

6
.2

4

Z
A

_
2

6
4

B
0

.4
7

1
.0

0
4

.7
6

0
.4

7
7

.3
7

0
.8

3
8

.9
3

4
.7

6
0

.4
7

7
.3

7
0

.8
3

8
.9

3

Z
A

_
2

6
4

C
0

.1
1

1
.0

0
7

.0
1

0
.1

1
2

.4
2

0
.0

7
3

6
.9

8
7

.0
1

0
.1

1
2

.4
2

0
.0

7
3

6
.9

8

Z
A

_
2

6
7

A
0

.2
7

1
.0

0
2

0
.0

1
0

.2
7

1
6

.9
5

1
.1

3
1

5
.0

3
2

0
.0

1
0

.2
7

1
6

.9
5

1
.1

3
1

5
.0

3

Z
A

_
2

6
7

B
0

.5
4

1
.0

0
2

8
.9

5
0

.5
4

4
9

.1
7

6
.5

3
7

.5
3

2
8

.9
5

0
.5

4
4

9
.1

7
6

.5
3

7
.5

3

Z
A

_
2

6
7

C
0

.4
6

1
.0

0
5

7
.3

6
0

.4
6

8
2

.6
4

9
.4

0
8

.7
9

5
7

.3
6

0
.4

6
8

2
.6

4
9

.4
0

8
.7

9

Z
A

_
2

6
8

A
0

.4
0

1
.0

0
7

.9
1

0
.4

0
1

0
.1

6
0

.9
9

1
0

.2
8

7
.9

1
0

.4
0

1
0

.1
6

0
.9

9
1

0
.2

8

Z
A

_
2

6
8

B
0

.2
1

1
.0

0
1

8
.3

2
0

.2
1

1
2

.1
5

0
.6

3
1

9
.1

6
1

8
.3

2
0

.2
1

1
2

.1
5

0
.6

3
1

9
.1

6

Z
A

_
2

6
9

0
.2

2
1

.0
0

3
2

.3
5

0
.2

2
2

2
.8

4
1

.2
7

1
7

.9
2

3
2

.3
5

0
.2

2
2

2
.8

4
1

.2
7

1
7

.9
2

Z
A

_
2

7
0

A
0

.3
9

1
.0

0
2

1
.3

5
0

.3
9

2
6

.3
9

2
.5

5
1

0
.3

5
2

1
.3

5
0

.3
9

2
6

.3
9

2
.5

5
1

0
.3

5

Z
A

_
2

7
0

B
0

.4
6

1
.0

0
1

7
.8

7
0

.4
6

2
6

.0
9

2
.9

6
8

.8
3

1
7

.8
7

0
.4

6
2

6
.0

9
2

.9
6

8
.8

3

Z
A

_
2

7
0

C
0

.2
1

1
.0

0
1

6
.9

1
0

.2
1

1
0

.9
5

0
.5

6
1

9
.6

3
1

6
.9

1
0

.2
1

1
0

.9
5

0
.5

6
1

9
.6

3

Z
A

_
2

7
0

D
0

.2
8

1
.0

0
3

4
.4

1
0

.2
8

2
9

.9
4

2
.0

6
1

4
.5

5
3

4
.4

1
0

.2
8

2
9

.9
4

2
.0

6
1

4
.5

5

Z
A

_
2

7
1

C
0

.6
0

1
.0

0
1

3
.1

3
0

.6
0

2
5

.2
6

3
.7

0
6

.8
3

1
3

.1
3

0
.6

0
2

5
.2

6
3

.7
0

6
.8

3

Z
A

_
2

7
1

D
0

.4
0

1
.0

0
2

2
.8

5
0

.4
0

2
9

.0
2

2
.8

8
1

0
.0

6
2

2
.8

5
0

.4
0

2
9

.0
2

2
.8

8
1

0
.0

6

Z
A

_
2

7
1

E
0

.4
6

1
.0

0
1

3
.7

5
0

.4
6

2
0

.1
1

2
.2

6
8

.8
8

1
3

.7
5

0
.4

6
2

0
.1

1
2

.2
6

8
.8

8

Z
A

_
2

7
3

A
0

.8
3

1
.0

0
1

3
.2

2
0

.8
3

3
5

.7
2

7
.2

2
4

.9
5

1
3

.2
2

0
.8

3
3

5
.7

2
7

.2
2

4
.9

5

Z
A

_
2

7
3

B
0

.8
7

1
.0

0
1

6
.8

0
0

.8
7

4
7

.0
8

9
.9

8
4

.7
2

1
6

.8
0

0
.8

7
4

7
.0

8
9

.9
8

4
.7

2

Z
A

_
2

7
4

A
0

.4
1

1
.0

0
5

.1
8

0
.4

1
6

.8
4

0
.6

7
1

0
.2

6
5

.1
8

0
.4

1
6

.8
4

0
.6

7
1

0
.2

6

Z
A

_
2

7
4

B
0

.2
3

1
.0

0
1

1
.1

9
0

.2
3

7
.9

8
0

.4
4

1
7

.9
6

1
1

.1
9

0
.2

3
7

.9
8

0
.4

4
1

7
.9

6

Z
A

_
2

7
4

C
0

.3
2

1
.0

0
5

.4
6

0
.3

2
5

.6
1

0
.4

3
1

2
.9

4
5

.4
6

0
.3

2
5

.6
1

0
.4

3
1

2
.9

4

Z
A

_
2

7
4

D
0

.2
5

1
.0

0
1

1
.8

1
0

.2
5

9
.4

0
0

.5
8

1
6

.1
1

1
1

.8
1

0
.2

5
9

.4
0

0
.5

8
1

6
.1

1

Z
A

_
2

7
5

0
.4

8
1

.0
0

9
.1

5
0

.4
8

1
4

.1
9

1
.6

6
8

.5
3

9
.1

5
0

.4
8

1
4

.1
9

1
.6

6
8

.5
3

Z
A

_
2

7
6

0
.3

0
1

.0
0

7
.0

0
0

.3
0

6
.7

6
0

.5
0

1
3

.5
7

7
.0

0
0

.3
0

6
.7

6
0

.5
0

1
3

.5
7

Z
A

_
2

7
7

A
0

.5
9

1
.0

0
4

.4
8

0
.5

9
8

.8
5

1
.2

3
7

.2
3

4
.4

8
0

.5
9

8
.8

5
1

.2
3

7
.2

3

Z
A

_
2

7
7

B
0

.6
7

1
.0

0
1

2
.3

4
0

.6
7

2
6

.8
0

4
.3

9
6

.1
1

1
2

.3
4

0
.6

7
2

6
.8

0
4

.3
9

6
.1

1

Z
A

_
2

7
7

C
0

.5
3

1
.0

0
2

1
.2

6
0

.5
3

3
6

.0
9

4
.7

6
7

.5
8

2
1

.2
6

0
.5

3
3

6
.0

9
4

.7
6

7
.5

8

Z
A

_
2

7
7

D
0

.5
1

1
.0

0
1

1
.7

4
0

.5
1

1
9

.1
0

2
.3

7
8

.0
6

1
1

.7
4

0
.5

1
1

9
.1

0
2

.3
7

8
.0

6

Z
A

_
2

7
8

0
.3

4
1

.0
0

7
.5

3
0

.3
4

8
.2

7
0

.6
9

1
1

.9
6

7
.5

3
0

.3
4

8
.2

7
0

.6
9

1
1

.9
6

Z
A

_
2

8
0

A
0

.3
7

1
.0

0
2

2
.1

0
0

.3
7

2
5

.8
2

2
.3

6
1

0
.9

3
2

2
.1

0
0

.3
7

2
5

.8
2

2
.3

6
1

0
.9

3

Z
A

_
2

8
0

B
0

.3
3

1
.0

0
4

.5
2

0
.3

3
4

.9
0

0
.3

9
1

2
.4

5
4

.5
2

0
.3

3
4

.9
0

0
.3

9
1

2
.4

5

Z
A

_
2

8
0

C
0

.2
8

1
.0

0
6

.3
6

0
.2

8
5

.6
5

0
.3

8
1

4
.7

6
6

.3
6

0
.2

8
5

.6
5

0
.3

8
1

4
.7

6

Z
A

_
2

8
0

D
0

.3
8

1
.0

0
1

4
.1

0
0

.3
8

1
7

.0
5

1
.6

0
1

0
.6

7
1

4
.1

0
0

.3
8

1
7

.0
5

1
.6

0
1

0
.6

7

Z
A

_
2

8
1

A
0

.5
2

1
.0

0
8

.8
6

0
.5

2
1

4
.8

4
1

.8
7

7
.9

5
8

.8
6

0
.5

2
1

4
.8

4
1

.8
7

7
.9

5

Z
A

_
2

8
1

B
0

.4
9

1
.0

0
3

.8
8

0
.4

9
6

.3
3

0
.7

3
8

.7
1

3
.8

8
0

.4
9

6
.3

3
0

.7
3

8
.7

1

Z
A

_
2

8
2

A
0

.5
1

1
.0

0
1

2
.3

4
0

.5
1

2
0

.0
9

2
.5

0
8

.0
4

1
2

.3
4

0
.5

1
2

0
.0

9
2

.5
0

8
.0

4

Z
A

_
2

8
2

B
0

.3
9

1
.0

0
1

0
.0

3
0

.3
9

1
2

.4
9

1
.1

9
1

0
.4

8
1

0
.0

3
0

.3
9

1
2

.4
9

1
.1

9
1

0
.4

8

Z
A

_
2

8
3

A
0

.6
0

1
.0

0
1

4
.6

4
0

.6
0

2
8

.1
5

4
.1

4
6

.8
0

1
4

.6
4

0
.6

0
2

8
.1

5
4

.1
4

6
.8

0

Z
A

_
2

8
3

B
0

.5
3

1
.0

0
1

5
.4

2
0

.5
3

2
5

.9
1

3
.3

5
7

.7
3

1
5

.4
2

0
.5

3
2

5
.9

1
3

.3
5

7
.7

3

Z
A

_
2

8
3

D
0

.4
3

1
.0

0
1

7
.3

9
0

.4
3

2
3

.9
9

2
.5

7
9

.3
3

1
7

.3
9

0
.4

3
2

3
.9

9
2

.5
7

9
.3

3

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



93 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
2

8
3

E
0

.3
8

1
.0

0
2

0
.2

9
0

.3
8

2
4

.3
8

2
.2

9
1

0
.6

5
2

0
.2

9
0

.3
8

2
4

.3
8

2
.2

9
1

0
.6

5

Z
A

_
2

8
5

B
0

.4
6

1
.0

0
1

4
.9

4
0

.4
6

2
2

.0
1

2
.5

0
8

.7
9

1
4

.9
4

0
.4

6
2

2
.0

1
2

.5
0

8
.7

9

Z
A

_
2

8
6

0
.7

3
1

.0
0

2
7

.0
1

0
.7

3
6

3
.0

9
1

1
.4

2
5

.5
2

2
7

.0
1

0
.7

3
6

3
.0

9
1

1
.4

2
5

.5
2

Z
A

_
2

8
7

0
.6

6
1

.0
0

1
2

.4
3

0
.6

6
2

6
.5

7
4

.2
9

6
.1

9
1

2
.4

3
0

.6
6

2
6

.5
7

4
.2

9
6

.1
9

Z
A

_
2

8
9

A
0

.6
3

1
.0

0
1

9
.8

6
0

.6
3

3
9

.6
0

6
.0

9
6

.5
0

1
9

.8
6

0
.6

3
3

9
.6

0
6

.0
9

6
.5

0

Z
A

_
2

8
9

B
0

.2
8

1
.0

0
1

6
.4

6
0

.2
8

1
4

.4
4

0
.9

9
1

4
.5

6
1

6
.4

6
0

.2
8

1
4

.4
4

0
.9

9
1

4
.5

6

Z
A

_
2

9
1

A
0

.3
4

1
.0

0
1

8
.3

8
0

.3
4

2
0

.0
4

1
.7

1
1

1
.7

4
1

8
.3

8
0

.3
4

2
0

.0
4

1
.7

1
1

1
.7

4

Z
A

_
2

9
1

B
0

.6
7

1
.0

0
2

0
.0

2
0

.6
7

4
2

.7
0

7
.0

1
6

.0
9

2
0

.0
2

0
.6

7
4

2
.7

0
7

.0
1

6
.0

9

Z
A

_
2

9
2

A
0

.4
4

1
.0

0
9

.2
4

0
.4

4
1

3
.1

8
1

.4
3

9
.2

3
9

.2
4

0
.4

4
1

3
.1

8
1

.4
3

9
.2

3

Z
A

_
2

9
2

B
0

.1
7

1
.0

0
1

5
.4

3
0

.1
7

8
.4

8
0

.3
7

2
3

.1
2

1
5

.4
3

0
.1

7
8

.4
8

0
.3

7
2

3
.1

2

Z
A

_
2

9
2

C
0

.3
1

1
.0

0
1

2
.5

3
0

.3
1

1
2

.4
7

0
.9

6
1

2
.9

4
1

2
.5

3
0

.3
1

1
2

.4
7

0
.9

6
1

2
.9

4

Z
A

_
2

9
2

D
0

.4
3

1
.0

0
1

4
.8

9
0

.4
3

2
0

.1
6

2
.1

1
9

.5
5

1
4

.8
9

0
.4

3
2

0
.1

6
2

.1
1

9
.5

5

Z
A

_
2

9
2

E
0

.3
7

1
.0

0
9

.9
1

0
.3

7
1

1
.5

9
1

.0
4

1
1

.1
3

9
.9

1
0

.3
7

1
1

.5
9

1
.0

4
1

1
.1

3

Z
A

_
2

9
3

0
.5

4
1

.0
0

1
7

.1
8

0
.5

4
2

9
.4

1
3

.8
9

7
.5

7
1

7
.1

8
0

.5
4

2
9

.4
1

3
.8

9
7

.5
7

Z
A

_
2

9
4

0
.4

9
1

.0
0

2
2

.4
4

0
.4

9
3

5
.0

4
4

.2
6

8
.2

2
2

2
.4

4
0

.4
9

3
5

.0
4

4
.2

6
8

.2
2

Z
A

_
2

9
5

1
.0

2
1

.0
0

8
6

.8
2

1
.0

2
2

8
0

.8
2

7
1

.4
7

3
.9

3
8

6
.8

2
1

.0
2

2
8

0
.8

2
7

1
.4

7
3

.9
3

Z
A

_
2

9
6

0
.8

5
1

.0
0

3
4

.2
2

0
.8

5
9

2
.0

3
1

9
.2

3
4

.7
9

3
4

.2
2

0
.8

5
9

2
.0

3
1

9
.2

3
4

.7
9

Z
A

_
2

9
7

A
0

.9
2

1
.0

0
1

6
0

.0
7

0
.9

2
4

6
3

.7
3

1
0

6
.3

5
4

.3
6

1
6

0
.0

7
0

.9
2

4
6

3
.7

3
1

0
6

.3
5

4
.3

6

Z
A

_
2

9
7

B
0

.4
2

1
.0

0
2

5
.5

1
0

.4
2

3
3

.7
6

3
.5

0
9

.6
5

2
5

.5
1

0
.4

2
3

3
.7

6
3

.5
0

9
.6

5

Z
A

_
2

9
8

0
.9

8
1

.0
0

3
6

.9
7

0
.9

8
1

1
4

.8
0

2
7

.6
5

4
.1

5
3

6
.9

7
0

.9
8

1
1

4
.8

0
2

7
.6

5
4

.1
5

Z
A

_
2

9
9

0
.7

6
1

.0
0

3
3

.1
3

0
.7

6
7

9
.9

6
1

5
.0

2
5

.3
2

3
3

.1
3

0
.7

6
7

9
.9

6
1

5
.0

2
5

.3
2

Z
A

_
3

0
0

A
0

.5
7

1
.0

0
2

9
.5

5
0

.5
7

5
2

.9
3

7
.4

1
7

.1
5

2
9

.5
5

0
.5

7
5

2
.9

3
7

.4
1

7
.1

5

Z
A

_
3

0
0

B
0

.4
9

1
.0

0
1

2
.1

7
0

.4
9

1
9

.2
5

2
.3

3
8

.2
6

1
2

.1
7

0
.4

9
1

9
.2

5
2

.3
3

8
.2

6

Z
A

_
3

0
1

A
0

.4
3

1
.0

0
1

6
.0

3
0

.4
3

2
1

.9
8

2
.3

4
9

.4
1

1
6

.0
3

0
.4

3
2

1
.9

8
2

.3
4

9
.4

1

Z
A

_
3

0
1

B
0

.4
3

1
.0

0
1

5
.1

3
0

.4
3

2
0

.7
7

2
.2

1
9

.4
1

1
5

.1
3

0
.4

3
2

0
.7

7
2

.2
1

9
.4

1

Z
A

_
3

0
2

A
0

.3
5

1
.0

0
1

6
.8

7
0

.3
5

1
8

.8
9

1
.6

5
1

1
.4

5
1

6
.8

7
0

.3
5

1
8

.8
9

1
.6

5
1

1
.4

5

Z
A

_
3

0
2

B
0

.4
7

1
.0

0
3

9
.1

1
0

.4
7

5
8

.1
9

6
.8

1
8

.5
4

3
9

.1
1

0
.4

7
5

8
.1

9
6

.8
1

8
.5

4

Z
A

_
3

0
4

0
.5

3
1

.0
0

3
1

.0
5

0
.5

3
5

2
.4

1
6

.9
2

7
.5

7
3

1
.0

5
0

.5
3

5
2

.4
1

6
.9

2
7

.5
7

Z
A

_
3

0
6

A
0

.5
4

1
.0

0
3

3
.6

0
0

.5
4

5
7

.4
3

7
.6

9
7

.4
7

3
3

.6
0

0
.5

4
5

7
.4

3
7

.6
9

7
.4

7

Z
A

_
3

0
6

B
0

.3
6

1
.0

0
8

.8
6

0
.3

6
1

0
.2

8
0

.9
1

1
1

.2
8

8
.8

6
0

.3
6

1
0

.2
8

0
.9

1
1

1
.2

8

Z
A

_
3

0
6

C
0

.8
1

1
.0

0
9

.3
6

0
.8

1
2

4
.8

1
4

.8
1

5
.1

6
9

.3
6

0
.8

1
2

4
.8

1
4

.8
1

5
.1

6

Z
A

_
3

0
6

D
0

.6
4

1
.0

0
7

.9
6

0
.6

4
1

6
.6

9
2

.5
7

6
.4

8
7

.9
6

0
.6

4
1

6
.6

9
2

.5
7

6
.4

8

Z
A

_
3

0
6

E
0

.1
0

1
.0

0
1

7
.7

2
0

.1
0

5
.5

8
0

.1
4

4
0

.1
1

1
7

.7
2

0
.1

0
5

.5
8

0
.1

4
4

0
.1

1

Z
A

_
3

0
6

F
0

.4
5

1
.0

0
2

8
.6

7
0

.4
5

4
0

.7
3

4
.5

4
8

.9
8

2
8

.6
7

0
.4

5
4

0
.7

3
4

.5
4

8
.9

8

Z
A

_
3

0
7

0
.9

0
1

.0
0

1
0

8
.1

9
0

.9
0

3
0

8
.3

9
6

9
.4

1
4

.4
4

1
0

8
.1

9
0

.9
0

3
0

8
.3

9
6

9
.4

1
4

.4
4

Z
A

_
3

1
0

B
0

.4
5

1
.0

0
2

7
.3

4
0

.4
5

3
8

.8
6

4
.3

3
8

.9
8

2
7

.3
4

0
.4

5
3

8
.8

6
4

.3
3

8
.9

8

Z
A

_
3

1
1

0
.9

6
1

.0
0

3
3

.6
0

0
.9

6
1

0
2

.6
3

2
4

.2
6

4
.2

3
3

3
.6

0
0

.9
6

1
0

2
.6

3
2

4
.2

6
4

.2
3

Z
A

_
3

1
3

A
0

.8
9

1
.0

0
1

6
.0

4
0

.8
9

4
6

.1
1

9
.9

9
4

.6
1

1
6

.0
4

0
.8

9
4

6
.1

1
9

.9
9

4
.6

1

Z
A

_
3

1
3

B
0

.7
5

1
.0

0
3

7
.4

1
0

.7
5

8
9

.2
2

1
6

.6
1

5
.3

7
3

7
.4

1
0

.7
5

8
9

.2
2

1
6

.6
1

5
.3

7

Z
A

_
3

1
4

A
0

.4
8

1
.0

0
4

6
.9

0
0

.4
8

7
0

.4
6

8
.3

4
8

.4
5

4
6

.9
0

0
.4

8
7

0
.4

6
8

.3
4

8
.4

5

Z
A

_
3

1
4

B
0

.2
9

1
.0

0
1

8
.2

9
0

.2
9

1
7

.0
2

1
.2

4
1

3
.7

1
1

8
.2

9
0

.2
9

1
7

.0
2

1
.2

4
1

3
.7

1

Z
A

_
3

1
4

C
0

.2
9

1
.0

0
7

0
.2

0
0

.2
9

6
4

.9
4

4
.7

6
1

3
.6

3
7

0
.2

0
0

.2
9

6
4

.9
4

4
.7

6
1

3
.6

3

Z
A

_
3

1
4

D
0

.6
5

1
.0

0
1

4
.2

8
0

.6
5

2
9

.9
4

4
.7

8
6

.2
7

1
4

.2
8

0
.6

5
2

9
.9

4
4

.7
8

6
.2

7

Z
A

_
3

1
4

E
0

.4
1

1
.0

0
2

0
.3

7
0

.4
1

2
6

.3
6

2
.6

6
9

.9
0

2
0

.3
7

0
.4

1
2

6
.3

6
2

.6
6

9
.9

0

Z
A

_
3

1
4

F
0

.4
1

1
.0

0
1

7
.8

7
0

.4
1

2
3

.2
1

2
.3

5
9

.8
9

1
7

.8
7

0
.4

1
2

3
.2

1
2

.3
5

9
.8

9

Z
A

_
3

1
4

G
0

.4
2

1
.0

0
2

4
.6

6
0

.4
2

3
2

.4
8

3
.3

5
9

.7
0

2
4

.6
6

0
.4

2
3

2
.4

8
3

.3
5

9
.7

0

Z
A

_
3

1
4

H
0

.5
0

1
.0

0
1

4
.0

7
0

.5
0

2
2

.2
9

2
.7

2
8

.2
1

1
4

.0
7

0
.5

0
2

2
.2

9
2

.7
2

8
.2

1

Z
A

_
3

1
5

A
0

.3
9

1
.0

0
2

0
.3

5
0

.3
9

2
4

.8
3

2
.3

7
1

0
.4

9
2

0
.3

5
0

.3
9

2
4

.8
3

2
.3

7
1

0
.4

9

Z
A

_
3

1
5

B
0

.3
4

1
.0

0
2

3
.2

4
0

.3
4

2
5

.2
9

2
.1

6
1

1
.7

1
2

3
.2

4
0

.3
4

2
5

.2
9

2
.1

6
1

1
.7

1

Z
A

_
3

1
5

C
0

.3
4

1
.0

0
5

.5
1

0
.3

4
6

.1
4

0
.5

1
1

1
.9

9
5

.5
1

0
.3

4
6

.1
4

0
.5

1
1

1
.9

9

Z
A

_
3

1
5

D
0

.5
4

1
.0

0
7

.9
2

0
.5

4
1

3
.9

9
1

.8
4

7
.6

1
7

.9
2

0
.5

4
1

3
.9

9
1

.8
4

7
.6

1

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



94 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
3

1
6

0
.1

9
1

.0
0

3
6

.9
2

0
.1

9
2

2
.2

0
1

.0
6

2
1

.0
0

3
6

.9
2

0
.1

9
2

2
.2

0
1

.0
6

2
1

.0
0

Z
A

_
3

1
7

A
0

.5
1

1
.0

0
2

8
.7

8
0

.5
1

4
6

.4
9

5
.8

8
7

.9
1

2
8

.7
8

0
.5

1
4

6
.4

9
5

.8
8

7
.9

1

Z
A

_
3

1
7

B
0

.8
1

1
.0

0
4

2
.2

0
0

.8
1

1
0

8
.6

4
2

1
.8

4
4

.9
7

4
2

.2
0

0
.8

1
1

0
8

.6
4

2
1

.8
4

4
.9

7

Z
A

_
3

1
7

C
0

.4
0

1
.0

0
1

9
.0

0
0

.4
0

2
3

.9
9

2
.3

6
1

0
.1

6
1

9
.0

0
0

.4
0

2
3

.9
9

2
.3

6
1

0
.1

6

Z
A

_
3

1
8

A
0

.6
3

1
.0

0
3

2
.9

5
0

.6
3

6
6

.1
3

1
0

.3
6

6
.3

8
3

2
.9

5
0

.6
3

6
6

.1
3

1
0

.3
6

6
.3

8

Z
A

_
3

1
8

B
0

.5
7

1
.0

0
3

6
.0

6
0

.5
7

6
4

.6
0

9
.0

7
7

.1
2

3
6

.0
6

0
.5

7
6

4
.6

0
9

.0
7

7
.1

2

Z
A

_
3

1
8

C
0

.5
1

1
.0

0
3

1
.2

8
0

.5
1

5
0

.1
1

6
.2

9
7

.9
7

3
1

.2
8

0
.5

1
5

0
.1

1
6

.2
9

7
.9

7

Z
A

_
3

2
1

A
0

.5
7

1
.0

0
1

2
.6

9
0

.5
7

2
3

.1
4

3
.2

1
7

.2
0

1
2

.6
9

0
.5

7
2

3
.1

4
3

.2
1

7
.2

0

Z
A

_
3

2
1

B
0

.7
7

1
.0

0
1

1
.4

7
0

.7
7

2
8

.6
0

5
.3

1
5

.3
8

1
1

.4
7

0
.7

7
2

8
.6

0
5

.3
1

5
.3

8

Z
A

_
3

2
1

C
0

.8
6

1
.0

0
1

9
.0

6
0

.8
3

5
0

.8
9

1
0

.3
6

4
.9

1
1

9
.0

6
0

.8
3

5
0

.8
9

1
0

.3
6

4
.9

1

Z
A

_
3

2
3

0
.6

1
1

.0
0

2
2

.2
0

0
.6

1
4

2
.8

3
6

.4
0

6
.6

9
2

2
.2

0
0

.6
1

4
2

.8
3

6
.4

0
6

.6
9

Z
A

_
3

2
4

0
.5

2
1

.0
0

1
5

.7
2

0
.5

2
2

6
.1

4
3

.3
5

7
.8

0
1

5
.7

2
0

.5
2

2
6

.1
4

3
.3

5
7

.8
0

Z
A

_
3

2
5

A
0

.1
1

1
.0

0
5

.7
1

0
.1

1
1

.9
4

0
.0

5
3

7
.7

3
5

.7
1

0
.1

1
1

.9
4

0
.0

5
3

7
.7

3

Z
A

_
3

2
5

B
0

.0
9

1
.0

0
8

.6
9

0
.0

9
2

.3
3

0
.0

5
4

7
.2

9
8

.6
9

0
.0

9
2

.3
3

0
.0

5
4

7
.2

9

Z
A

_
3

2
6

0
.7

0
1

.0
0

3
2

.3
2

0
.7

0
7

1
.3

9
1

2
.2

9
5

.8
1

3
2

.3
2

0
.7

0
7

1
.3

9
1

2
.2

9
5

.8
1

Z
A

_
3

2
8

A
0

.5
1

1
.0

0
3

3
.3

2
0

.5
1

5
3

.7
7

6
.8

0
7

.9
0

3
3

.3
2

0
.5

1
5

3
.7

7
6

.8
0

7
.9

0

Z
A

_
3

2
8

B
0

.4
3

1
.0

0
1

8
.5

5
0

.4
3

2
5

.3
9

2
.7

0
9

.3
9

1
8

.5
5

0
.4

3
2

5
.3

9
2

.7
0

9
.3

9

Z
A

_
3

2
9

A
0

.5
9

1
.0

0
2

1
.7

5
0

.5
9

4
0

.5
6

5
.8

6
6

.9
2

2
1

.7
5

0
.5

9
4

0
.5

6
5

.8
6

6
.9

2

Z
A

_
3

2
9

B
0

.3
7

1
.0

0
1

8
.2

5
0

.3
7

2
1

.6
5

2
.0

0
1

0
.8

0
1

8
.2

5
0

.3
7

2
1

.6
5

2
.0

0
1

0
.8

0

Z
A

_
3

2
9

C
0

.4
8

1
.0

0
1

3
.6

6
0

.4
8

2
0

.8
2

2
.4

4
8

.5
3

1
3

.6
6

0
.4

8
2

0
.8

2
2

.4
4

8
.5

3

Z
A

_
3

3
0

A
0

.5
6

1
.0

0
2

9
.6

4
0

.5
6

5
2

.1
3

7
.1

7
7

.2
7

2
9

.6
4

0
.5

6
5

2
.1

3
7

.1
7

7
.2

7

Z
A

_
3

3
0

B
0

.4
3

1
.0

0
1

0
.5

5
0

.4
3

1
4

.6
4

1
.5

5
9

.4
3

1
0

.5
5

0
.4

3
1

4
.6

4
1

.5
5

9
.4

3

Z
A

_
3

3
0

C
0

.4
3

1
.0

0
3

8
.8

6
0

.4
3

5
3

.1
3

5
.7

2
9

.2
9

3
8

.8
6

0
.4

3
5

3
.1

3
5

.7
2

9
.2

9

Z
A

_
3

3
1

0
.3

8
1

.0
0

6
.1

8
0

.3
8

7
.6

9
0

.7
2

1
0

.7
4

6
.1

8
0

.3
8

7
.6

9
0

.7
2

1
0

.7
4

Z
A

_
3

3
2

0
.6

0
1

.0
0

1
1

5
.5

6
0

.6
0

2
1

7
.9

2
3

2
.5

5
6

.7
0

1
1

5
.5

6
0

.6
0

2
1

7
.9

2
3

2
.5

5
6

.7
0

Z
A

_
3

3
4

0
.8

3
1

.0
0

4
2

.2
5

0
.8

3
1

1
1

.7
3

2
3

.0
7

4
.8

4
4

2
.2

5
0

.8
3

1
1

1
.7

3
2

3
.0

7
4

.8
4

Z
A

_
3

3
5

A
0

.2
7

1
.0

0
6

5
.6

1
0

.2
7

5
5

.7
4

3
.7

5
1

4
.8

5
6

5
.6

1
0

.2
7

5
5

.7
4

3
.7

5
1

4
.8

5

Z
A

_
3

3
5

B
0

.2
7

1
.0

0
3

9
.6

5
0

.2
7

3
3

.7
3

2
.2

7
1

4
.8

7
3

9
.6

5
0

.2
7

3
3

.7
3

2
.2

7
1

4
.8

7

Z
A

_
3

3
6

0
.4

1
1

.0
0

4
2

.7
8

0
.4

1
5

4
.9

3
5

.5
6

9
.8

7
4

2
.7

8
0

.4
1

5
4

.9
3

5
.5

6
9

.8
7

Z
A

_
3

4
0

0
.5

1
1

.0
0

2
6

.5
1

0
.5

1
4

2
.8

6
5

.4
1

7
.9

2
2

6
.5

1
0

.5
1

4
2

.8
6

5
.4

1
7

.9
2

Z
A

_
3

4
3

0
.6

0
1

.0
0

1
2

.4
3

0
.6

0
2

3
.9

1
3

.4
9

6
.8

5
1

2
.4

3
0

.6
0

2
3

.9
1

3
.4

9
6

.8
5

Z
A

_
3

4
4

0
.4

7
1

.0
0

2
6

.9
2

0
.4

7
4

0
.3

4
4

.7
3

8
.5

3
2

6
.9

2
0

.4
7

4
0

.3
4

4
.7

3
8

.5
3

Z
A

_
3

4
5

A
0

.2
3

1
.0

0
6

.5
9

0
.2

3
4

.8
0

0
.2

7
1

7
.8

5
6

.5
9

0
.2

3
4

.8
0

0
.2

7
1

7
.8

5

Z
A

_
3

4
5

B
0

.4
1

1
.0

0
3

.6
4

0
.4

1
4

.9
2

0
.4

8
1

0
.3

5
3

.6
4

0
.4

1
4

.9
2

0
.4

8
1

0
.3

5

Z
A

_
3

4
5

C
0

.2
6

1
.0

0
3

.4
3

0
.2

6
2

.9
1

0
.1

8
1

5
.9

7
3

.4
3

0
.2

6
2

.9
1

0
.1

8
1

5
.9

7

Z
A

_
3

4
5

D
0

.2
2

1
.0

0
4

.3
4

0
.2

2
3

.0
2

0
.1

6
1

8
.9

8
4

.3
4

0
.2

2
3

.0
2

0
.1

6
1

8
.9

8

Z
A

_
3

4
6

A
0

.5
2

1
.0

0
1

2
.0

1
0

.5
2

2
0

.0
7

2
.5

6
7

.8
4

1
2

.0
1

0
.5

2
2

0
.0

7
2

.5
6

7
.8

4

Z
A

_
3

4
9

A
0

.9
7

1
.0

0
4

3
.0

4
0

.9
7

1
3

2
.8

4
3

1
.9

2
4

.1
6

4
3

.0
4

0
.9

7
1

3
2

.8
4

3
1

.9
2

4
.1

6

Z
A

_
3

4
9

B
0

.7
8

1
.0

0
7

8
.0

1
0

.7
8

1
9

1
.7

7
3

7
.1

6
5

.1
6

7
8

.0
1

0
.7

8
1

9
1

.7
7

3
7

.1
6

5
.1

6

Z
A

_
3

5
0

A
0

.5
8

1
.0

0
6

1
.5

2
0

.5
8

1
1

3
.3

6
1

6
.4

7
6

.8
8

6
1

.5
2

0
.5

8
1

1
3

.3
6

1
6

.4
7

6
.8

8

Z
A

_
3

5
0

B
0

.4
6

1
.0

0
4

4
.8

2
0

.4
6

6
5

.2
1

7
.4

8
8

.7
2

4
4

.8
2

0
.4

6
6

5
.2

1
7

.4
8

8
.7

2

Z
A

_
3

5
1

0
.5

0
1

.0
0

6
7

.2
1

0
.5

0
1

0
5

.9
2

1
3

.1
9

8
.0

3
6

7
.2

1
0

.5
0

1
0

5
.9

2
1

3
.1

9
8

.0
3

Z
A

_
3

5
3

0
.7

3
1

.0
0

6
2

.4
6

0
.7

3
1

4
4

.6
1

2
6

.3
5

5
.4

9
6

2
.4

6
0

.7
3

1
4

4
.6

1
2

6
.3

5
5

.4
9

Z
A

_
3

5
4

A
0

.5
3

1
.0

0
4

8
.4

2
0

.5
3

8
0

.7
2

1
0

.6
0

7
.6

2
4

8
.4

2
0

.5
3

8
0

.7
2

1
0

.6
0

7
.6

2

Z
A

_
3

5
4

B
0

.4
4

1
.0

0
1

5
.6

4
0

.4
4

2
2

.1
1

2
.4

2
9

.1
4

1
5

.6
4

0
.4

4
2

2
.1

1
2

.4
2

9
.1

4

Z
A

_
3

5
5

0
.7

4
1

.0
0

1
8

.8
3

0
.7

4
4

4
.4

3
8

.0
3

5
.5

3
1

8
.8

3
0

.7
4

4
4

.4
3

8
.0

3
5

.5
3

Z
A

_
3

5
6

A
0

.4
6

1
.0

0
2

8
.0

6
0

.4
6

4
1

.0
4

4
.7

0
8

.7
3

2
8

.0
6

0
.4

6
4

1
.0

4
4

.7
0

8
.7

3

Z
A

_
3

5
6

B
0

.5
3

1
.0

0
8

.6
5

0
.5

3
1

4
.9

0
1

.9
2

7
.7

5
8

.6
5

0
.5

3
1

4
.9

0
1

.9
2

7
.7

5

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



95 

 

 

 

 

 

N
u

m
b

e
r 

A
v

g
. 

Le
n

g
th

 (
m

m
)

A
v

g
. 

W
id

th
 (

m
m

)
S

A
 (

m
m

2
)

V
 (

m
m

3
)

S
A

/V
 (

m
m

^
-1

)
A

v
g

 L
e

n
g

th
 (

m
m

)
A

v
g

. 
W

id
th

 (
m

m
)

S
A

 (
m

m
2

)
V

 (
m

m
3

)
S

A
/V

 (
m

m
^

-1
)

Z
A

_
3

5
7

A
0

.5
4

1
.0

0
1

3
.9

1
0

.5
4

2
4

.1
7

3
.2

2
7

.5
1

1
3

.9
1

0
.5

4
2

4
.1

7
3

.2
2

7
.5

1

Z
A

_
3

5
7

B
0

.7
3

1
.0

0
1

5
.5

7
0

.7
3

3
6

.6
2

6
.5

5
5

.5
9

1
5

.5
7

0
.7

3
3

6
.6

2
6

.5
5

5
.5

9

Z
A

_
3

5
7

C
0

.3
6

1
.0

0
1

7
.4

4
0

.3
6

1
9

.9
1

1
.7

7
1

1
.2

3
1

7
.4

4
0

.3
6

1
9

.9
1

1
.7

7
1

1
.2

3

Z
A

_
3

5
8

0
.4

6
1

.0
0

2
3

.0
9

0
.4

6
3

3
.6

8
3

.8
3

8
.7

8
2

3
.0

9
0

.4
6

3
3

.6
8

3
.8

3
8

.7
8

Z
A

_
3

5
9

A
0

.6
6

1
.0

0
1

0
.7

9
0

.6
6

2
3

.0
1

3
.6

8
6

.2
6

1
0

.7
9

0
.6

6
2

3
.0

1
3

.6
8

6
.2

6

Z
A

_
3

5
9

B
0

.5
2

1
.0

0
1

0
.5

1
0

.5
2

1
7

.6
2

2
.2

4
7

.8
7

1
0

.5
1

0
.5

2
1

7
.6

2
2

.2
4

7
.8

7

Z
A

_
3

6
3

0
.5

6
1

.0
0

4
2

.1
2

0
.5

6
7

4
.4

1
1

0
.3

3
7

.2
0

4
2

.1
2

0
.5

6
7

4
.4

1
1

0
.3

3
7

.2
0

Z
A

_
3

6
6

A
0

.2
4

1
.0

0
1

6
.0

0
0

.2
4

1
2

.3
6

0
.7

5
1

6
.5

2
1

6
.0

0
0

.2
4

1
2

.3
6

0
.7

5
1

6
.5

2

Z
A

_
3

6
6

B
0

.3
6

1
.0

0
2

1
.7

6
0

.3
6

2
4

.4
5

2
.1

5
1

1
.3

6
2

1
.7

6
0

.3
6

2
4

.4
5

2
.1

5
1

1
.3

6

Z
A

_
3

6
7

A
0

.5
3

1
.0

0
7

3
.9

7
0

.5
3

1
2

4
.4

8
1

6
.5

6
7

.5
2

7
3

.9
7

0
.5

3
1

2
4

.4
8

1
6

.5
6

7
.5

2

Z
A

_
3

6
7

B
0

.4
7

1
.0

0
3

3
.2

4
0

.4
7

4
9

.7
2

5
.8

4
8

.5
2

3
3

.2
4

0
.4

7
4

9
.7

2
5

.8
4

8
.5

2

Z
A

_
3

6
9

0
.5

3
1

.0
0

6
9

.9
6

0
.5

3
1

1
6

.8
6

1
5

.4
3

7
.5

8
6

9
.9

6
0

.5
3

1
1

6
.8

6
1

5
.4

3
7

.5
8

Z
A

_
3

7
5

A
0

.5
2

1
.0

0
5

.5
0

0
.5

2
9

.4
7

1
.1

8
8

.0
0

5
.5

0
0

.5
2

9
.4

7
1

.1
8

8
.0

0

Z
A

_
3

7
5

B
0

.5
3

1
.0

0
1

3
.7

8
0

.5
3

2
3

.3
7

3
.0

4
7

.6
9

1
3

.7
8

0
.5

3
2

3
.3

7
3

.0
4

7
.6

9

Z
A

_
3

7
5

C
0

.2
1

1
.0

0
7

.3
4

0
.2

1
4

.9
6

0
.2

6
1

9
.1

4
7

.3
4

0
.2

1
4

.9
6

0
.2

6
1

9
.1

4

Z
A

_
3

7
5

D
0

.4
7

1
.0

0
9

.1
4

0
.4

7
1

3
.9

5
1

.6
1

8
.6

6
9

.1
4

0
.4

7
1

3
.9

5
1

.6
1

8
.6

6

Z
A

_
3

7
8

A
0

.6
9

1
.0

0
3

2
.5

7
0

.6
9

7
1

.1
1

1
2

.1
0

5
.8

8
3

2
.5

7
0

.6
9

7
1

.1
1

1
2

.1
0

5
.8

8

Z
A

_
3

7
8

B
0

.5
1

1
.0

0
1

7
.9

1
0

.5
1

2
9

.1
5

3
.6

7
7

.9
4

1
7

.9
1

0
.5

1
2

9
.1

5
3

.6
7

7
.9

4

Z
A

_
3

7
9

A
0

.4
7

1
.0

0
2

7
.6

5
0

.4
7

4
0

.7
1

4
.6

9
8

.6
7

2
7

.6
5

0
.4

7
4

0
.7

1
4

.6
9

8
.6

7

Z
A

_
3

7
9

B
0

.5
6

1
.0

0
2

2
.6

8
0

.5
6

4
0

.6
6

5
.6

6
7

.1
8

2
2

.6
8

0
.5

6
4

0
.6

6
5

.6
6

7
.1

8

Z
A

_
3

8
0

A
0

.2
9

1
.0

0
1

3
3

.3
8

0
.2

9
1

1
9

.4
8

8
.5

0
1

4
.0

5
1

3
3

.3
8

0
.2

9
1

1
9

.4
8

8
.5

0
1

4
.0

5

Z
A

_
3

8
0

B
0

.4
0

1
.0

0
3

0
.4

7
0

.4
0

3
8

.9
1

3
.9

0
9

.9
7

3
0

.4
7

0
.4

0
3

8
.9

1
3

.9
0

9
.9

7

Z
A

_
3

8
0

C
0

.4
0

1
.0

0
2

8
.3

2
0

.4
0

3
6

.1
8

3
.6

3
9

.9
7

2
8

.3
2

0
.4

0
3

6
.1

8
3

.6
3

9
.9

7

Z
A

_
3

8
1

A
0

.4
7

1
.0

0
2

5
.1

5
0

.4
7

3
7

.5
4

4
.3

8
8

.5
7

2
5

.1
5

0
.4

7
3

7
.5

4
4

.3
8

8
.5

7

Z
A

_
3

8
1

B
0

.4
2

1
.0

0
2

1
.2

7
0

.4
2

2
8

.4
0

2
.9

6
9

.6
0

2
1

.2
7

0
.4

2
2

8
.4

0
2

.9
6

9
.6

0

Z
A

_
3

8
1

C
0

.2
1

1
.0

0
2

3
.7

3
0

.2
1

1
5

.7
2

0
.8

2
1

9
.1

3
2

3
.7

3
0

.2
1

1
5

.7
2

0
.8

2
1

9
.1

3

Z
A

_
3

8
4

0
.5

1
1

.0
0

3
4

.8
6

0
.5

1
5

6
.3

4
7

.1
5

7
.8

9
3

4
.8

6
0

.5
1

5
6

.3
4

7
.1

5
7

.8
9

Z
A

_
3

8
8

A
0

.5
3

1
.0

0
8

1
.1

1
0

.5
3

1
3

5
.6

9
1

7
.9

5
7

.5
6

8
1

.1
1

0
.5

3
1

3
5

.6
9

1
7

.9
5

7
.5

6

Z
A

_
3

8
8

B
0

.5
0

1
.0

0
7

6
.1

0
0

.5
0

1
1

9
.8

7
1

4
.9

4
8

.0
3

7
6

.1
0

0
.5

0
1

1
9

.8
7

1
4

.9
4

8
.0

3

Z
A

_
3

8
8

C
0

.1
8

1
.0

0
3

3
.3

6
0

.1
8

1
8

.5
9

0
.8

2
2

2
.6

6
3

3
.3

6
0

.1
8

1
8

.5
9

0
.8

2
2

2
.6

6

Z
A

_
3

9
2

A
0

.4
7

1
.0

0
7

1
.1

8
0

.4
7

1
0

6
.3

0
1

2
.5

5
8

.4
7

7
1

.1
8

0
.4

7
1

0
6

.3
0

1
2

.5
5

8
.4

7

Z
A

_
3

9
2

B
0

.4
7

1
.0

0
6

0
.8

4
0

.4
7

9
0

.9
0

1
0

.7
3

8
.4

7
6

0
.8

4
0

.4
7

9
0

.9
0

1
0

.7
3

8
.4

7

Z
A

_
3

9
2

C
0

.4
7

1
.0

0
6

1
.4

6
0

.4
7

9
1

.8
2

1
0

.8
4

8
.4

7
6

1
.4

6
0

.4
7

9
1

.8
2

1
0

.8
4

8
.4

7

Z
A

_
3

9
2

D
0

.4
7

1
.0

0
7

6
.7

0
0

.4
7

1
1

4
.5

1
1

3
.5

3
8

.4
6

7
6

.7
0

0
.4

7
1

1
4

.5
1

1
3

.5
3

8
.4

6

Z
A

_
3

9
2

E
0

.4
7

1
.0

0
3

0
.4

1
0

.4
7

4
5

.6
1

5
.3

6
8

.5
0

3
0

.4
1

0
.4

7
4

5
.6

1
5

.3
6

8
.5

0

Z
A

_
3

9
2

F
0

.4
7

1
.0

0
1

8
.8

9
0

.4
7

2
8

.4
7

3
.3

3
8

.5
4

1
8

.8
9

0
.4

7
2

8
.4

7
3

.3
3

8
.5

4

Z
A

_
3

9
4

0
.5

6
1

.0
0

1
7

.3
7

0
.5

6
3

1
.2

0
4

.3
2

7
.2

2
1

7
.3

7
0

.5
6

3
1

.2
0

4
.3

2
7

.2
2

Z
A

_
3

9
7

A
0

.3
9

1
.0

0
5

1
.6

1
0

.3
9

6
2

.7
9

6
.0

4
1

0
.4

0
5

1
.6

1
0

.3
9

6
2

.7
9

6
.0

4
1

0
.4

0

Z
A

_
3

9
7

B
0

.1
3

1
.0

0
1

8
.4

7
0

.1
3

7
.5

1
0

.2
4

3
1

.1
2

1
8

.4
7

0
.1

3
7

.5
1

0
.2

4
3

1
.1

2

Z
A

_
3

9
7

C
0

.1
3

1
.0

0
2

6
.5

4
0

.1
3

1
0

.7
8

0
.3

5
3

1
.0

8
2

6
.5

4
0

.1
3

1
0

.7
8

0
.3

5
3

1
.0

8

Z
A

_
3

9
8

A
0

.5
7

1
.0

0
9

.8
3

0
.5

7
1

8
.1

0
2

.5
1

7
.2

2
9

.8
3

0
.5

7
1

8
.1

0
2

.5
1

7
.2

2

Z
A

_
3

9
8

B
0

.4
3

1
.0

0
4

5
.1

6
0

.4
3

6
1

.8
3

6
.6

8
9

.2
6

4
5

.1
6

0
.4

3
6

1
.8

3
6

.6
8

9
.2

6

Z
A

_
3

9
8

C
0

.1
6

1
.0

0
1

6
.3

7
0

.1
6

8
.3

2
0

.3
3

2
4

.9
7

1
6

.3
7

0
.1

6
8

.3
2

0
.3

3
2

4
.9

7

Z
A

_
3

9
8

D
0

.1
6

1
.0

0
2

8
.1

0
0

.1
6

1
4

.2
5

0
.5

7
2

4
.9

2
2

8
.1

0
0

.1
6

1
4

.2
5

0
.5

7
2

4
.9

2

Z
A

_
4

0
2

A
0

.2
7

1
.0

0
4

4
.5

6
0

.2
7

3
7

.3
3

2
.4

8
1

5
.0

8
4

4
.5

6
0

.2
7

3
7

.3
3

2
.4

8
1

5
.0

8

Z
A

_
4

0
2

B
0

.4
8

1
.0

0
1

6
.5

9
0

.4
8

2
5

.3
2

2
.9

9
8

.4
7

1
6

.5
9

0
.4

8
2

5
.3

2
2

.9
9

8
.4

7

Z
A

_
4

0
2

C
0

.4
2

1
.0

0
2

0
.2

7
0

.4
2

2
7

.0
1

2
.8

1
9

.6
2

2
0

.2
7

0
.4

2
2

7
.0

1
2

.8
1

9
.6

2

Z
A

_
4

0
2

D
0

.2
7

1
.0

0
2

7
.6

1
0

.2
7

2
3

.1
8

1
.5

3
1

5
.1

1
2

7
.6

1
0

.2
7

2
3

.1
8

1
.5

3
1

5
.1

1

Z
A

_
4

0
3

B
0

.6
3

1
.0

0
2

1
.3

1
0

.6
3

4
2

.8
5

6
.6

6
6

.4
3

2
1

.3
1

0
.6

3
4

2
.8

5
6

.6
6

6
.4

3

Z
A

_
4

0
4

A
0

.4
8

1
.0

0
1

4
.5

7
0

.4
8

2
2

.4
2

2
.6

6
8

.4
4

1
4

.5
7

0
.4

8
2

2
.4

2
2

.6
6

8
.4

4

Z
A

_
4

0
4

B
0

.3
7

1
.0

0
1

7
.0

7
0

.3
7

2
0

.0
0

1
.8

2
1

0
.9

6
1

7
.0

7
0

.3
7

2
0

.0
0

1
.8

2
1

0
.9

6

S
p

e
ci

m
e

n
C

a
n

o
p

y
 H

e
ig

h
t 

(m
m

)
P

ri
m

a
ry

 E
le

m
e

n
ts

T
o

ta
l



96 

 

Appendix E: 

Morphological measurements, dichotomous branching 
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Appendix F: 

Morphological measurements, single monopodial  
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Appendix G: 

Morphological measurements, fan-shaped 
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Appendix H: 

Morphological measurements, small non-branching 
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Appendix I: 

Morphological measurements, shrub-like  
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Appendix J: 

XRD patterns 
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