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ABSTRACT 

FACTORS CONTROLLING DIFFUSIVE CO2 PRODUCTION AND TRANSPORT IN THE 

CEDARBURG BOG, SAUKVILLE, WISCONSIN 

by 

Emily K. Joynt 

The University of Wisconsin-Milwaukee, 2017                                                                       

Under the Supervision of Professor Timothy Grundl 

  

 Wetlands are vital components of the carbon cycle, containing an estimated 20-30% of 

the global soil carbon reservoir. The Cedarburg Bog of southeastern Wisconsin boasts a myriad 

of wetland habitats including the southernmost string bog found in North America. Soil carbon 

dioxide (CO2) behavior in these systems is the response of multiple interdependent variables that 

are, collectively, not well understood. Many studies have measured and modeled soil CO2 flux 

(soil respiration) based on isolated, intermittent measurements that do not account for the full 

range of soil CO2 flux intensity. In the Cedarburg Bog, high-resolution measurements of soil 

CO2 flux were recorded over two field seasons using a LI-COR 8100A soil gas flux analyzer at 

30 minute (May-Nov., 2014) and 60 minute (June-Oct., 2015) intervals. Additionally, soil 

moisture and temperature data were collected, and weather station variables (atmospheric 

temperature, radiation, wind, pressure, precipitation) were acquired for correlations. Stable 

isotope signatures were interpreted from a peat core (δ13C, δ15N) and from gaseous CO2 at the 

surface (δ13C) to determine sources of soil respired CO2. 

 The intensity of soil CO2 flux was broadly distributed across the entire data set, ranging 

from less than 1 to over 650 mg/min-m2. Average for all soil CO2 flux measured was 6.49 

mg/min-m2, with a median of 3.39 mg/min-m2. Soil respiration was attributed to two main 
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sources: 1) microbial respiration, and 2) root respiration (including rhizo-microbial respiration). 

Microbial respiration was, in part, influenced by soil temperature, and produced a constant, low 

flux (< 5 mg/min-m2). The addition of root respiration generally resulted in a diurnal increase in 

soil CO2 flux (medium flux, 5-50 mg/min-m2) in response to radiation and temperature trends 

reflecting photosynthetic assimilation of CO2. In addition, infrequent, high flux (> 50 mg/min-

m2) were observed, but were not correlated to the included parameters. Although high flux 

occurred much less frequently, it produced a significant amount of the CO2 mass respired from 

the soil. Correlations between soil CO2 flux and controlling parameters were addressed using 

JMP; multiple linear regression models presented weak and significant correlations due to the 

absence of lag/response time variables for assimilation and transport mechanisms of CO2. 

Wetland soils are structurally complex, and can be highly variable through time; improving 

correlations for soil respiration models requires high-resolution data sets, and determination of 

lag/response times of CO2 transport processes above ground and in the soil. 
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1. Introduction 

 Wetlands serve a multitude of vital roles across the Earth; habitats for biodiversity 

including rare and endangered plant and animal species, natural pollutant filtration systems, 

flood relief, peat harvesting, and priceless aesthetic and cultural values (Brooker et al. 2014; 

Mitsch et al. 2015). Although wetlands cover only an estimated 5-8% of the Earth’s terrestrial 

surface, wetlands store approximately 20-30% of global soil carbon (Mitsch et al. 2015). Natural 

cycling of nutrients in wetlands results in either the absorption or emission of greenhouse gases 

such as methane (CH4), nitrous oxide (NO2), and carbon dioxide (CO2). The rate at which 

wetlands decompose, and their potential to emit greenhouse gases, is dependent on multiple 

biological and physical factors, and processes above and below the surface (IPCC 2013).  

 Wetlands are recognized in many studies for the uncertainty in soil carbon storage 

potential, especially under changing climatic conditions (Comas et al. 2014; Darenova et al. 

2016; Dinsmore et al. 2013; Hashimoto and Komatsu 2005; Liu et al. 2015; Rosenberry et al. 

2006). On a global scale, wetlands are estimated to sequester 1,000 Tg (1015 g) of carbon per 

year from the atmosphere (Mitsch et al. 2015). How wetlands adapt and respond to changing 

climate and land use conditions depends, in part, on what controls the production and transport 

of greenhouse gases such as CO2.  

 The largest emission source of CO2 in terrestrial ecosystems is soil CO2 flux, also known 

as soil respiration (Goffin et al. 2014). Soil respiration represents one component of net 

ecosystem exchange (NEE), the positive or negative balance of CO2 in an ecosystem relative to 

the atmosphere. NEE studies identify environments as net sources or net sinks of CO2 based on 

an overall balance between CO2 uptake (photosynthetic assimilation) and release (soil respiration 
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and above ground respiration). Wetlands are commonplace in this type of research based on 

carbon storage potential, and the concern for increased CO2 emissions under changing climate 

conditions. Studies on soil CO2 flux focus specifically on the soil respiration component of NEE, 

using soil gas monitoring chambers to directly measure the rate of CO2 moving from the soil to 

the surface. 

 The desire to quantify wetland emissions has led to an abundance of research focusing on 

soil CO2 flux. Much of this research, however, relies on data sets of limited temporal and spatial 

measurement resolution. Studies overwhelmingly collect and represent soil CO2 flux data based 

on isolated, intermittent measurements. Measurements are integrated over an expansive amount 

of time, threatening to grossly over- or underestimate soil respiration and subsequently create 

models that largely simplify trends and controls. (Görres et al. 2016) 

 Soil CO2 production and transport varies in response to numerous criterion. Soil CO2 

production stems from multiple sources (i.e. microbial activity, root respiration) and subsequent 

transport to the surface is dependent on physical properties of soil media. To improve predictions 

of wetland response to climate and land use changes, a more detailed representation of these 

relationships must be developed. This study provides an unparalleled high-resolution, long-term 

temporal data set of soil CO2 flux (soil respiration) in a temperate wetland alongside controlling 

biological and physical parameters. 

2. Research Site 

The Cedarburg Bog is a Wisconsin State Natural Area, a National Natural Landmark, and 

one of the largest wetlands in southern Wisconsin (Grittinger, 1971). During the Wisconsinian 

glaciation, circa 12 ka, the Laurentide Ice Sheet terminated along the eastern boundary of the 
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current Cedarburg Bog, forming a pro-glacial lake lined with clay. Subsequent deposition of 

plant and animal material along the clay-lined lake bottom created a sediment layer that exists 

within roughly 1-3 meters of the modern peat surface (Reinartz 1985). Continued accumulation 

of peat and muck under favorable climate and hydrological conditions has established the 

habitats observed today (Figure 1a) (Graham, 2015). 

 Wetland classification is generally based on the hydrologic and biologic characteristics 

of an environment. In terms of hydrology, a precipitation fed wetland is classified as a ‘bog’, and 

a groundwater fed wetland is classified as a ‘fen’. The Cedarburg Bog is an area of groundwater 

recharge; the dissolution of Silurian dolomite bedrock in groundwater maintains the near neutral 

pH of surface water. Based on hydrology, the Cedarburg Bog therefore classifies as a fen (Kline 

1991). Biologically speaking, however, the Cedarburg Bog supports many plant species typically 

found in bogs such as Sphagnum moss (Reinartz 1985; Mitsch and Gosselink 2015). The unique 

diversity of the Cedarburg Bog makes it elusive to any individual wetland classification. 

At the heart of the Cedarburg Bog lies the southernmost string bog (also known as a 

‘patterned peatland’ or ‘Strangmoor’) identified in North America. The string bog is one of 

seven different wetlands classified in the area of the Cedarburg Bog, and supports plant and 

animal species typically found much further north. The morphology consists of raised hummocks 

(strings) of stunted cedar and tamarack trees alternating sedge-dominated hollows (flarks) that 

form perpendicular to the direction of water flow. In the Cedarburg Bog, the ‘string’ ridges range 

between < 0.1 m to > 0.3 m higher than the inter-fingered flark mats. Strings are up to 6 m wide, 

and in some cases run more than 30 m before terminating or adjoining another string (Grittinger 

1971). These patterns are thought to form from the linear expansion of initial downslope pools 
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compounded with peat accumulation in adjacent strings (Mitsch et al., 2015). The surrounding 

area is composed of various emerging aquatic wetlands, sedge meadow, shrub carr, an upland 

hardwood forest (glacial islands), and several interspersed lakes. (Reinartz 1985)  

The expansive 2,200-acre natural area is home to hundreds of different plant species and 

serves as breeding and migratory grounds for many different bird species (Reinartz, 1985). The 

University of Wisconsin-Milwaukee Field Station maintains facilities on over 300 acres outside 

the western entrance to the Cedarburg Bog, and has constructed a series of trails and floating 

boardwalks that end in the string bog (Figure 1b). The management of this area provides a rare 

opportunity to access a well preserved, complex, diverse, and isolated wetland environment, and 

as such is an ideal candidate for this study. 

)  
 

(a) 
 

Figure 1: (a) Quaternary geology of 

the Cedarburg Bog and surrounding 

region (modified from Wisconsin 

Geological & Natural History Survey). 

(b) Area map of the Cedarburg Bog 

and string bog region, each outlined. 

Field site and weather station locations 

marked (modified from Wisconsin 

Department of Natural Resources). 

 

(b) 
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3. Materials and Methods 

Data collection was sourced from multiple field and laboratory instruments over two 

separate field seasons, 2014 and 2015. With the exception of weather data, all measurements 

were collected within the centrally located string bog region of the Cedarburg Bog (Figure 1b). A 

series of trails and floating boardwalks grant access to this area from the western boundary of the 

Cedarburg Bog, terminating at the designated “Field Site” location. Instruments were located 

along the perimeter of the boardwalk (Figure 2), and in the case of prolonged exposure, housed 

on a partially enclosed platform for protection from field conditions (i.e. high water table, high 

temperatures).  

An automated soil gas flux system remained on the platform for the duration of each field 

season, measuring soil CO2 concentration and flux (Figure 2, right-hand insert). Additional soil 

temperature and moisture content were measured with external probes. Periodically, a stable 

isotope analyzer was deployed adjacent to the platform, collecting in situ carbon isotope 

signatures and concentrations from gaseous CO2 at the surface (Figure 2, center insert). In 

addition to gaseous isotope signatures, a peat core from the string bog region was extracted and 

analyzed in the laboratory for stable carbon and nitrogen isotopes within the soil using a mass 

spectrometer and elemental analyzer (Figure 2, left-hand insert). A monitoring well equipped 

with a pressure transducer also recorded groundwater level (Figure 2). Potential for the string 

bog region to support a mobile peat surface led to further observation of groundwater trends 

using trail cameras. Finally, weather data (atmospheric temperature, humidity, pressure, 

precipitation, radiation, wind speed) were obtained from the UW-Milwaukee Field Station, 

located 1.2 km from the Field Site location (Figure 1b).  
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Figure 2: Conceptual field site model along boardwalk in the Cedarburg Bog. Photo inserts: peat 

core collected from string bog (left), Picarro stable isotope analyzer (center), and LI-COR soil 

gas flux analyzer (right) (image modified from Weon Shik Han 2015). 

3.1 LI-COR 8100A Soil Gas Flux System 

The LI-COR 8100A automated soil gas flux system was used to record soil CO2 

concentration and flux, and soil temperature and moisture, deployed as a long-term measurement 

chamber and given supplemental external power by two paralleled 12V deep cycle batteries 

connected to the Auxiliary Sensor Interface. Chamber measurements enclosed 4 vertically 
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stacked PVC collars (diameter = 20 cm) pushed into the compact peat to a depth of 5.72 cm in 

2014, and 1.62 cm in 2015. Following each installment, plant material was removed from the 

chamber soil area. Although this instrument is designed to withstand a wide range of weather 

conditions, to ensure longevity the chamber and interface were housed on a raised wooden 

platform and covered on ¾ sides with a tarp (open due north). An accessory temperature probe 

was inserted to a depth of 25 cm beneath (2014) and beside (2015) the platform, collecting soil 

temperature in sync with CO2 concentration and CO2 flux data.  

LI-COR data were collected over 90-second measurement periods with a 30-second dead 

band during both field seasons. The dead band period represents the time allowed for steady 

mixing after the chamber is closed; flux calculations disregard data collected during these initial 

mixing conditions. The first field season of this study (2014) was executed by multiple 

individuals, reflecting some inconsistency in measurement criteria (i.e. soil area, chamber offset). 

Using LI-COR’s SoilFluxPro processing software, data sets were recalculated to reflect the 

appropriate parameters during measurement. Pre-purge represents the time allowed between 

measurements for chamber air to return to ambient air conditions. Post-purge represents the time 

following measurement, when the chamber begins to open, during which air continues to flow 

through the chamber. Pre- and post-purge values do not remain consistent across all data periods, 

but cannot be secondarily adjusted. All data sets have a post-purge time of 45 s, with the 

exception of the first period in 2014 (5/22-6/9/14) where a post-purge of 15 s was applied. Pre-

purge values are either 15 or 30 s, but are not relevant for the majority of data periods since 

collection intervals allowed adequate time for the chamber area to return to ambient conditions 

between measurements (typically 30-60 min.). The only exception being the period of 7/9-

7/10/14 where a 3 minute measurement interval was applied, leaving a much shorter period of 
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time in which the chamber could return to ambient conditions (30 s pre-purge followed by a 90 s 

measurement period). 

In 2014, measurement intervals of 20-30 minutes allowed for continuous data records 

generally consisting of 4-5 days between late May and early November (Figure 3). For one 22-

hour overnight period (July 9-10, 2014), measurements were collected every 3 minutes in order 

to enhance diurnal observations. Discontinuities between measurement periods in 2014 are 

variable and range from just a few hours to several weeks. In 2015, measurements were 

expanded to 60-minute intervals with added power from two solar panels directly charging the 

external 12V batteries. Under these conditions, continuous data records generally spanned 

periods of one to several weeks with measurement gaps typically less than one day, but no more 

than three days, between June and mid-October. In 2015, an accessory soil moisture probe was 

also placed in the peat beside the LI-COR platform, collecting measurements in sync with CO2 

concentration, CO2 flux, and soil temperature. 

To determine CO2 concentration the LI-COR 8100A uses a closed chamber method 

measuring the rate of infrared photon absorption due to the presence of CO2. Based on the rate of 

absorption inside the closed chamber, CO2 concentration is measured over a designated length of 

time (observation length, 90 s), and CO2 flux is in turn modeled from a series of exponential or 

linear regressions. Initial CO2 concentration values are neglected from CO2 flux calculations 

during a designated length of time (dead band, 30 s) for the closed chamber to establish mixing. 

These initial values are instead used in a separate regression of the first 10 seconds of 

measurements, the intercept of which represents conditions at the soil surface prior to chamber 

closure. In addition to CO2 concentration, the LI-COR 8100A measures and records chamber 
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pressure, temperature, relative humidity, and water vapor concentration. Soil CO2
 flux (Fc, 

µmol/m2s) is derived using these variables in the following equation: 

𝐹𝑐 = 10𝑉𝑃0(1 − 𝑊01000)𝑅𝑆(𝑇0 + 273.15)  𝜕𝐶′𝜕𝑡  

where V is the chamber volume (cm3), P0 is the initial pressure (kPa), W0 is the initial water 

vapor mole fraction (mmol/mol), R is the universal gas constant (8.314 m3Pa/Kmol), S is the soil 

surface area (317.8 cm2), T0 is the initial air temperature (ºC), and 𝜕𝐶′/ 𝜕𝑡 is the initial rate of 

change in water-corrected CO2 mole fraction (µmol/mol) following the dead band period. (LI-

COR, 2010) 

 

Figure 3: Measurement timeline of equipment used in the Cedarburg Bog during 2014 and 2015 

field seasons. 

 Soil temperature measurements were collected using a Rugged Penetration Omega 

Thermocouple T-Handle 25 cm probe connected to the LI-COR Auxiliary Sensor Interface. 

Measurement intervals for both field seasons were collected in sync with chamber CO2 flux data, 

with 2015 measurements beginning in early July. In 2014, the probe was placed directly beneath 

the LI-COR platform, but in 2015 was shifted to ~0.5 m beside the platform to avoid shaded 

temperature readings. 
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 In 2015 a 4-rod ThetaProbe ML2x moisture probe was connected to the Auxiliary Sensor 

Interface in order to measure volumetric soil water content in sync with other LI-COR variables. 

Using a frequency of 100 MHz the probe transmits a signal into the soil to determine the 

apparent dielectric constant of the material, which is a function of the water content (Delta-T 

Devices, Ltd., 1999). The probe was inserted into a sedge hummock adjacent to the LI-COR 

platform (~1 m away).  

3.2 Stable C and N Isotopes 

 The Picarro G2201-i analyzer measures δ13C from CO2 using cavity ring-down 

spectroscopy (CRDS). On July 8th, 2015 the analyzer was positioned along the boardwalk loop 

directly beside the LI-COR platform for a period of 3 hours in the early afternoon, powered by 

an 800 W Earthquake generator and 1000VA uninterrupted power source (UPS) backup battery 

system. Additional data collection in 2015 was performed in the afternoon/evening on the 6th of 

August (5 hours) and during an overnight period from August 27th-28th (9 hours), powered by a 

Subaru Industrial Portable generator and UPS for a lengthened measurement period. Restek 

stainless steel tubing (1/8” diameter) was connected to the distribution manifold and extended to 

collect measurements near the surface beside the LI-COR. An added seal of Teflon tape and 

subsequent breath tests ensured there were no leaks at the tubing connection point. LI-COR data 

also supplemented Picarro timelines at an increased resolution of 10-15 minute measurement 

intervals. 

 Soil isotope data were determined in the laboratory from a peat core collected near the 

boardwalk loop. In early spring of 2015, prior to the final surface thaw, a roughly cylindrical 27 

cm deep (not including 10 cm of uncompact living/dead plant material at the surface, and 15 cm 
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of living plant material extruding from the surface) sample was removed using a chainsaw. At 5 

cm depth intervals (beginning with plant material extruding from the surface) both plant/root and 

soil samples (~0.5 g each) were removed from the column and dried at 80 ºC overnight. After 

samples were devoid of moisture they were pulverized in liquid nitrogen using mortar & pestle, 

weighed in tin capsules, and run in an Elementar VisION Isotope Ratio Mass Spectrometer and 

Elemental Analyzer (IRMS-EA) to determine carbon and nitrogen isotope content. 

3.3 Weather Station 

University Field Station weather equipment is located in an open field approximately 1.2 

km northwest of the Cedarburg Bog boardwalk loop. Records consist of continuous 30-minute 

intervals of barometric pressure (Campbell Scientific SBP270 barometer) measured in millibar 

(converted to kPa), atmospheric temperature in degrees Celsius and percent relative humidity 

(Campbell Scientific CS500 probe), radiation in kilowatt per square meter (LI-COR LI200X 

pyranometer), precipitation in millimeters (OTT Pluvio2 rain gauge), and wind speed in meters 

per second (Campbell Scientific R. M. Young Wind Sentry-03001). Data were tracked and 

stored with a Campbell Scientific CR3000 Datalogger with the exception of a five-day period in 

early November 2014 (7th-11th) during equipment software updates. Although barometric 

pressure data are available from LI-COR chamber measurements, weather station pressure data 

are utilized in this study on the basis of measurement continuity. 

3.4 Groundwater Monitoring 

 A Solinst Levelogger Edge transducer was kept in a monitoring well roughly 10 m from 

the LI-COR platform along the string bog boardwalk, recording water column pressure (m) at 

regular intervals (2014: 10-30 minutes, 2015: 60 minutes). The transducer hung from a 2 m long 
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string below a 0.71 m well casing, recording data at a depth of 1.29 m beneath the surface. Both 

elevation and zero point-offset corrections were accounted for according to the Solinst 

Levelogger User Guide (Solinst, 2015). Atmospheric pressure readings from the Cedarburg Bog 

Field Station were used for pressure correction. 

 Visual observations of groundwater trends in the string bog region were alarmingly 

different from monitoring well recordings. Upon further literature search, similar observations 

were found in an archived field station bulletin (Reinartz, 1985).  The concern of a mobile peat 

surface in the string bog prompted additional investigation. As a simple solution, two Moultrie 

M-550 Gen2 trail cameras were placed on the boardwalk, recording 7 megapixel resolution 

images every 6 hours around 1 and 7 am/pm. From May – November of 2016 each camera was 

set to record images of the water/peat surface relative to 1) an anchored and ruled marked post 

(Figure 4a), and 2) the monitoring well casing (Figure 4b). 
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(a)                                                                  (b)  

Figure 4: Moultrie M-550 Gen2 trail camera locations recording (a) an anchored and marked 

post on the south end of the Boardwalk Loop, and (b) the groundwater monitoring well on the 

east end of the Boardwalk Loop. 

3.5 JMP 

 Hypothesized relationships between surface CO2 concentration, soil CO2 flux, and 

external parameters (soil temperature and moisture, weather data) were addressed using the SAS 

statistical software program JMP. Using JMP, basic statistics such as averages and distributions 

were produced for each variable. In an attempt to account for the variation of multiple 

parameters influencing soil CO2 flux and surface CO2 concentration, multiple linear regression 

models were developed to support theoretical correlations. 

3.6 Quality Control 

 Instruments used in the field were on occasion subject to conditions beyond the operation 

threshold designated by the manufacturer. Data have been filtered to exclude recordings made 

during these periods. In total, LI-COR recordings compile 7,872 data points, with data removed 
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based on the following criteria: i) chamber relative humidity > 95% (1.2%), ii) curve fit status 

error (0.2%), and iii) negative CO2 flux (0.7%). While negative soil CO2 flux calculations are not 

inherently incorrect, they are most likely the result of a leak in the instrument chamber while 

closed. 

4. Results 

4.1 Distribution of Soil CO2 Flux 

 The intensity of soil CO2 flux is broadly distributed across the entire data set. Flux was 

always positive, ranging from less than 1 to over 650 mgCO2/min-m2. Average for all CO2 flux 

measured was 6.49 mg/min-m2, with a median of 3.39 mg/min-m2. A review by Oertel et al. 

2016 highlighted studies of soil respiration in various environments providing similar results: in 

a temperate wetland, soil respiration averaged 6.73 mgCO2/min-m2; in a subtropical constructed 

wetland, soil respiration averaged 6.26 mgCO2/min-m2; other studies in the review averaged 

higher or lower rates of soil respiration (11.80 mgCO2/min-m2 in natural wetlands, and 5.28 

mgCO2/min-m2 in a tropical wetland). A Minnesota peatland study measured soil CO2 flux in 

hummocks and hollows and revealed averages of 6.81 and 3.75 mg/min-m2, respectively (Kim 

and Verma 1992). These ranges highlight the tendency of soil CO2 flux to be both temporally 

and spatially variable. 

 Figure 5 illustrates the frequency distribution of soil CO2 flux intensity collected in this 

study, the corresponding day and night percentages, and the contribution of each to the total 

mass of CO2 respired from the soil. Data were divided into three categories: i) < 5 mgCO2/min-

m2 (low flux), ii) 5-50 mgCO2/min-m2 (medium flux), and iii) > 50 mgCO2/min-m2 (high flux). 

Ranges were selected according to the distribution of measurement frequency, which decreased 

exponentially at 5 and 50 mg/min-m2. The inner pie chart in Figure 5 represents the 
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corresponding mass of soil respired CO2. The total mass of soil respired CO2 over the study 

period (1,915 gCO2/m
2) was determined by integrating each measurement over the time between 

measurements (typically 30 min. in 2014 and 60 min. in 2015). This approach was taken based 

on the observation that CO2 flux intensity most often increased and decreased similar to a normal 

distribution curve (as opposed to isolated events). It is recognized that the integration of CO2 flux 

over 30 and 60 min. periods may be an under- or overestimation of total CO2 mass, but this is the 

limit of the time resolution measured. Low flux occurred 71.1% of the time, and high flux 

occurred 1.4% of the time, each contributing a comparable amount to the mass of CO2 respiring 

from the soil (28.4% and 23.0%, respectively). Medium flux occurred 27.5% of the time, and 

supported 48.6% of total CO2 mass respired from the soil. Low flux showed no diurnal 

periodicity; 50.9% occurred during the day, and 49.1% occurred overnight. Medium and high 

flux typically occurred during the day (medium flux 77.0% and high flux 75.2%).  
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Figure 5: Bar charts showing distribution of soil CO2 flux intensity based on entire data set 

(2014 & 2015) and subsequent percentages occurring during day/night periods (day: radiation > 

0, night: radiation = 0). Inner pie chart represents the mass of CO2 contributed by each bar to 

total soil respiration. 

4.2 Diurnal and Seasonal Variations of CO2 

 Surface CO2 concentration typically illustrates distinct diurnal trends where concentration 

increases overnight and decreases during the day. In the majority of measurements, soil CO2 flux 

trends are inverse to surface CO2 concentration; this was investigated in detail during one 

overnight period from July 9th-10th, 2014, where LI-COR data were collected at 3-minute 

intervals. Figure 6a illustrates the frequency of this trend, where increased soil CO2 flux more 

often occurred during the day, and increased surface CO2 concentration occurred more often 

overnight.  
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(a) (b) 

 

Figure 6: (a) Diurnal distribution of soil CO2 flux and surface CO2 concentration collected at 3 

minute intervals (bars overlying, not stacked) and (b) corresponding timeline of data (July 9th-

10th, 2014). Dotted lines represent average atmospheric CO2. 

 The diel periodicity of surface CO2 concentration expands seasonally; from spring to 

summer CO2 concentration range increases, and from summer to fall CO2 concentration range 

decreases (Figure 7a). This is evident across the entire data set, as represented in Figure 7b, 

which illustrates seasonal changes with soil temperature. Measured weather parameters including 

wind speed, radiation, and atmospheric temperature are typically out of phase with diel changes 

in surface CO2 concentration.  
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(a)     (b) 

 

Figure 7: (a) General diurnal and seasonal 36-hour trends of surface CO2 concentration. Spring: 

May 23-25, 2014. Summer: Aug. 6-8, 2014. Fall: Oct. 21-23, 2014. Shaded bars represent 

overnight periods. (b) Seasonal soil temperature and surface CO2 concentration changes. Red 

lines represent average atmospheric CO2. 

4.3 Correlations to Soil CO2 Flux 

 Trends in soil CO2 flux are less consistent in diurnal and seasonal variation compared to 

that of surface CO2 concentration. Soil CO2 flux typically increases during the day (Figure 5), 

adding to the low flux that occurs both day and night. Figure 8 presents a tyipcal example of the 

variation in soil CO2 flux through time. Atmospheric temperature, radiation, and wind speed all 

vary in phase with the diurnal pattern of soil CO2 flux (Figure 9a, b), while surface CO2 

concentration is typically out of phase (Figure 9b). The immensity of data collected in this study 

makes a bulk correlation approach unrealistic. Instead, data were broken down into categories 

(i.e. range of soil CO2 flux intensity, day vs. night, environmental conditions) in an attempt to 

reveal correlations that might otherwise be masked by the large amount of variability observed 

across the entire data set. 
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Figure 8: Example of variation in soil CO2 flux intensity in the Cedarburg Bog from August 14 

– 23, 2014. Dotted lines represent flux categories (< 5/low flux, 5 – 50/medium flux, > 50/high 

flux). Note break in y-axis. 

 
(a) (b) 

 

Figure 9: Soil CO2 flux trends alongside (a) atmospheric temperature and radiation, and (b) 

wind speed and surface CO2 concentration, highlighting diurnal variation during May 31 – June 

3, 2014. Shaded bars represent overnight periods. Dashed line represents average atmospheric 

CO2. 

 Based on a linear regression model produced in JMP, soil temperature alone can account 

for 27.6% of the variation in low flux. Overnight (radiation = 0), 41.7% of low flux can be 

accounted for with soil temperature, surface CO2 concentration, wind speed, and atmospheric 

temperature. Medium flux is poorly correlated; wind speed, surface CO2 concentration, 
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atmospheric temperature, and precipitation can account for 2.3% of variation in medium flux. 

Wind speed can account for 1.7% of medium flux during the day, and 22.6% by soil and 

atmospheric temperatures overnight. No significant correlations were found using JMP when 

addressing high flux. An inclusive list of model inputs and results can be referenced in Appendix 

B. 

4.4 Correlations to Surface CO2 Concentration 

 CO2 concentration measured at the soil surface displays a strong diurnal cycle in response 

to radiation; decreasing as soon as radiation rises above zero during the day, and only increasing 

in the absence of radiation overnight (Figure 10). High surface CO2 concentration also varies in 

response to wind speed above a threshold of roughly 1-2 m/s, regardless of time of day. These 

trends are apparent across the entire data set, as seen in Figure 11. The data points that fall 

outside of the binary relationship between surface CO2 and radiation are transitional, caught near 

the day/night boundary and decrease over time (Figure 11a, arrow). A similar trend is apparent 

between wind speed and CO2 concentration, where concentrations increase during calm, low 

wind conditions and decrease near the level of atmospheric CO2 (400 ppm) in turbulent wind 

conditions. 
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Figure 10: Surface CO2 concentration trends alongside radiation and wind speed, highlighting 

out of phase diurnal variation for the period of September 16 – 19, 2014. Shaded bars are 

overnight periods. Dashed line represents average atmospheric CO2. 

 
(a)         (b) 

 

Figure 11: (a) Surface CO2 concentration and radiation, and (b) surface CO2 concentration and 

wind speed for entire data set (2014 and 2015). Arrow represents transition of decreasing CO2 

concentration with onset of radiation. Red line represents average atmospheric CO2. 
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 Multiple linear regression models reveal that wind speed, soil temperature, radiation, 

atmospheric temperature, and soil moisture content can account for 30.7% of variation in surface 

CO2 concentration. During the day (radiation > 0), wind speed, atmospheric temperature, and 

soil temperature can account for 22.8% of surface CO2; overnight, wind speed and soil 

temperature can account for 29.7% of variation in surface CO2 concentration. When wind speed 

< 2 m/s (assumed calm conditions), wind speed, soil temperature, atmospheric temperature, and 

radiation can account for 34.0% of CO2 concentration variation. For surface CO2 concentration > 

400 ppm (average atmospheric CO2), wind speed and soil temperature can account for 22.6% of 

CO2 concentration variation, and for concentrations < 400 ppm, atmospheric temperature, soil 

moisture content, and wind speed can account for 13.9% of variation in surface CO2 

concentration. 

4.5 Stable Isotope Signatures 

 Peat core samples show carbon isotope signatures of root and peat material converging 

between 5 and 20 cm beneath the compact peat surface (Figure 12). At this depth, root biomass 

δ15N signatures are ~0 ‰. Considering the signature of atmospheric δ15N remains consistently 

near 0 ‰ (Fry 2008), and that bacteria utilize atmospheric nitrogen in decomposition, the depth 

at which 0 ‰ δ15N signatures were measured indicates the presence of nitrogen-fixing organisms 

(microbes). The range of δ13C at the same depth suggests a δ13C microbial biomass signature to 

be between -19 and -22 ‰. 
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Figure 12: Cedarburg Bog peat core depth profile of IRMS-EA stable isotope signatures. Circles 

represent δ13C signatures, triangles represent δ15N signatures. ‘Peat’ (green) represents organic 

material beneath the surface, or plant material above the surface. ‘Roots’ (red) represents root 

material sampled at/beneath the surface. Shaded boxes represent depth of inferred microbial 

activity. (image modified from Erik Gulbranson 2015) 

 Carbon isotope signatures from gaseous CO2 collected with the Picarro stable isotope 

analyzer were interpreted for CO2 source signatures using Keeling plot analyses. Keeling plots 

are based on conservation of mass, with the assumption that measured δ13C of CO2 is a mix of 

two different end members (background and source). Plotting the inverse of concentration 

against δ13CO2 signatures displays the two end members on a linear regression line, the intercept 

of which represents the source component signature in the absence of background concentration 

(Pataki et al. 2001).  

 Each Picarro measurement period consisted of different collection criteria (i.e. time of 

day, measurement interval). This resulted in a wide range of δ13CO2 source signatures from 

Keeling plot analyses. Data from July 8, 2015 and Aug. 6, 2015 Picarro measurement periods 

produced poor correlations in Keeling plot analyses (R-square of 0.002 and 0.09, respectively), 

and so are not used as representative signatures for soil respired CO2. The period of Aug. 27-28, 
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2015 produced strong correlation to the regression line (R-square 0.97, Figure 12b). In this 

Keeling plot, the background end member is atmospheric δ13CO2, and the intercept soil respired 

δ13CO2. From the Keeling plot analysis, the δ13C of soil respired CO2 (y-intercept) is estimated to 

be -21.9 ‰. Figure 12a shows the transition between end members in time; more turbulent 

conditions during the day resulted in a stronger atmospheric δ13C signal, and moved towards a 

signal of soil respired δ13C during the calm overnight period. Furthermore, these end member 

signatures are consistent with literature δ13C signatures for atmospheric (~ -8 ‰) and terrestrial 

(~ -23 ‰) CO2 (Lajtha and Michener 1994; Sharp 2007).  

 
(a) (b) 

 

Figure 13: (a) LI-COR soil CO2 flux and Picarro δ13CO2 of atmospheric CO2 27-28 August 2015 

in the Cedarburg Bog and (b) corresponding Keeling plot with intercept of -21.9 ‰ (R-square 

0.97). Blue lines represents atmospheric δ13CO2. Shaded box represents overnight period. 

4.6 Water Table and Peat Surface Trail Camera Observations 

 Field notes during the second field season of this study (2015) describe the water table in 

the string bog region of the Cedarburg Bog remaining at or above the peat surface. However, 

transducer data collected from the boardwalk loop monitoring well did not reflect this 
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observation. A UW-Milwaukee Field Station Bulletin detailing the various wetland 

characteristics of the Cedarburg Bog also notes the difference in the “apparent” water table 

fluctuation in the string bog region compared to that of surrounding habitats (Reinartz 1985). In 

one survey, the Bog water level was observed to fluctuate almost 50 cm, while the string bog 

water level appeared to vary within only 15 cm. It has been suggested that the low nutrient and 

oxygen availability in the string bog inhibits plants from developing deep root zones. If the peat 

layer is unanchored by deeper root systems, it may be subject to movement with the rise and fall 

of the water table as a loose and expandable mat. Grittinger 1971 made a similar observation, 

noting that the string bog mat was “very soft and treacherous to tread upon, and though it appears 

to float, seems to lack some of the resiliency of the emergent aquatic mat.”   

 The two trail cameras placed in the string bog in 2016 showed the peat surface subsiding 

as much as 12 cm from May – August (Figure 14). While these changes cannot be extrapolated 

to represent changes in water table elevation during the study periods of 2014 and 2015, they 

confirm that the elevation of the peat surface in the string bog is not constant. The theoretical 

correlation between groundwater level and soil CO2 flux is based on an increase in oxygen 

content when the water table lowers, thus increasing CO2 emission (IPCC 2013). Because the 

transducer pressure data are corrected based on a specific elevation datum, the uncertainty in 

elevation of the peat surface relative to the water table makes the groundwater data ineffective 

for correlation with soil CO2 flux.  
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        (a)               (b) 

Figure 14: Trail camera observations of the boardwalk loop monitoring well in the string bog 

region of the Cedarburg Bog showing the subsidence of peat surface; May 20, 2016 (a) and Aug. 

11, 2016 (b). Colored bands are 1.8 cm thick. 

5. Discussion 

 Soil respiration studies often rely on data sets of limited temporal frequency (i.e. one 

measurement per day for several days, or several measurements weekly or monthly). Due to the 

large range of soil CO2 flux intensity, especially on a diurnal cycle, studies relying on limited 

measurements provide biased results, and subsequent models therefore over- or underestimate 

predicted soil CO2 flux. In addition, a review by Kuzyakov and Gavrichkova 2010 warned of the 

potential for studies to neglect controls that trend similarly in time. Atmospheric temperature, for 

example, co-varies with radiation, though most studies consider only the influence of 

temperature, and not that of radiation. Failure to account for influential variables affecting soil 

CO2 flux also creates estimates that poorly represent actual conditions. This study presents an 
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unparalleled high-resolution temporal data set of wetland soil CO2 flux. Soil CO2 flux is a 

function of multiple interdependent physical and biological processes; those presented here do 

not directly account for the entire variation of CO2 flux, but provide significant insight to the 

extent of variation, and the controls of production and transport of soil CO2. 

 Soil CO2 flux is derived from both heterotrophic (microbial decomposition of organic 

matter) and autotrophic (root) respiration (Czimczik et al. 2006; Hanson et al. 2000; Hopkins et 

al. 2012; Kuzyakov and Gavrichkova 2010). Root respiration is a product of both root activity 

and microbial activity in the rhizosphere (the dynamic area where plant roots exchange nutrients 

with the soil), and is considered here to represent both of these influences collectively (Hanson et 

al. 2000). Therefore, the two main sources of soil respiration discussed in this study are 1) root 

respiration (including rhizo-microbial respiration), and 2) microbial respiration. The contribution 

of each source to soil CO2 flux is dependent on the factors/processes controlling assimilation and 

release of CO2 by the plants/microbes, and soil transport of CO2 (Figure 15). 
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Figure 15: Root and microbe sources of soil respired CO2 and aboveground input of CO2 

acquired via photosynthesis. 

5.1 Microbial Respiration and Soil CO2 Flux 

 Across both field seasons, a continual low flux was observed, regardless of time of day. 

This ‘basal’ respiration (Koerber et al. 2010), is the product of microbial respiration in the soil. 

This is supported by the isotope analyses of δ13CO2 measured at the soil surface and of δ13C and 

δ15N from the peat core. The Keeling plot analysis of soil respired CO2 measured Aug. 27-28, 

2015 captured this basal respiration (Figure 13a), and revealed that soil respired CO2 had an 

isotopic signature of -21.9 ‰ (Figure 13b). The sampled soil media from the extracted peat core 

revealed an approximate microbial biomass δ13C of ~ -19 to -22 ‰ (Figure 12), confirming the 

source of low flux to be microbial respiration in the soil. 

 Rate of organic decomposition, and subsequent microbial production of CO2 in the soil, 

is dependent on soil temperature, soil moisture, and nutrient availability (Inglett et al. 2012). In 
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the Cedarburg Bog, 27.6% of low flux can be directly accounted for by soil temperature. Soil 

saturation can be influential to decomposition rate, based on the level of oxygen available 

(aerobic vs. anaerobic conditions). The low oxygen availability in the string bog region of the 

Cedarburg Bog is evident in the perpetually waterlogged peat (Reinartz 1985). During the 2015 

field season, soil moisture content was measured in the string bog, and revealed a nearly 

consistent level of saturation; volumetric water content = 0.61 ± 0.02 m3/m3. While soil moisture 

content is inherently influential to microbial productivity and subsequent soil respiration, the 

consistent level of saturation in the string bog region of the Cedarburg Bog minimalizes its 

influence to variation of soil CO2 flux in this study. 

5.2 Root Respiration and Soil CO2 Flux 

 The timeline of Picarro measurements did not coordinate with increased rates of soil CO2 

flux that are attributed to root respiration (5 – 50 mg/min-m2). However, it is assumed that if root 

respiration were apparent during the measurement period of Aug. 27-28, 2015 (Figure 13a), the 

source signature identified from the Keeling plot regression would be more depleted in δ13C 

(more negative). From the living plant material sampled in the peat core (above the surface), 

plant biomass were near -28 to -30 ‰ (not including an anomalous sample near -19 ‰). 

Assuming little/no fractionation, root respired δ13CO2 would be similar to the δ13C signature of 

plant biomass. 

 Tracer studies have also illustrated the importance of root respiration to soil CO2 flux, 

where isotopically labelled pulses of radioactive 14C or stable 13C are administered to a plant and 

measured later in soil respiration (Hanson et al. 2000). Root respired CO2 is in part dependent on 

the assimilation of CO2, performed above ground during photosynthesis. Photosynthesis is in 

turn dependent on photosynthetically active radiation (PAR), the availability of CO2, and 
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temperature. The simultaneous fluctuation in atmospheric temperature and radiation often masks 

the influence of radiation to CO2 assimilation and subsequent soil respiration. Either of these 

(radiation, CO2, temperature) can act as a limiting factor in photosynthetic assimilation of CO2, 

and so should be considered when addressing sources of total soil respiration. 

 In this study, a diurnal pattern of medium flux was often observed in response to 

increasing radiation and atmospheric temperature (Figure 9). This is attributed to root respiration 

in response to aboveground photosynthetic assimilation of CO2, and is thus linked to processes 

separate from that of soil temperature and microbial respiration mentioned previously (Hopkins 

et al. 2012; Kuzyakov and Gavrichkova 2010). Following plant assimilation of CO2 through 

photosynthesis, the response time of root respiration is variable depending on the transport 

mechanism used. Kuzyakov and Gavrichkova 2010 suggest two main transport mechanisms 

leading to root respiration: 1) direct transport and 2) indirect transport. 

Direct transport moves nutrients from leaves to roots through the phloem, and although 

the assimilation of CO2 in photosynthesis occurs within seconds, the time it takes for molecules 

to move through the plant depends largely on distance, or plant height. Transport rates typically 

range from 0.5 to 1 m/hr; the stunted cedar and tamarack trees, and the low sedge areas 

composing the string bog region are likely on the faster end of these averages. The second 

transport mechanism, indirect transport, relies on pressure concentration waves that occur several 

orders of magnitude faster than direct transport. Unlike direct transport, indirect transport is not 

the movement of molecules, but a concentration gradient that causes roots to release molecules 

they have already received. Though this mechanism occurs faster than direct transport, the 

duration of the resultant root respiration is shorter. Root respiration response to pressure 
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concentration waves, while significant, it is not considered as important to total root respiration 

as that of direct transport. (Gavrichkova and Kuzyakov 2012).  

 Multiple linear regression models were developed to address correlations between the 

range of soil CO2 flux attributed to root respiration (medium flux) and variables driving 

photosynthetic assimilation of CO2 (radiation, atmospheric temperature, surface CO2 

concentration). Although correlations between these variables are visually apparent (Figure 9), 

they were not reflected in JMP models. This is due to the missing variable of time. Multiple 

linear regression models did not account for the variation in time between CO2 assimilation and 

subsequent root respiration. If transport mechanisms (direct or indirect) and rates of CO2 

transport are identified, a variable of time can be included in JMP models, and correlations 

would increase. 

 Finally, the time it takes for root or microbial respired CO2 to diffuse through the 

soil/water column to the surface can be highly variable depending on the porosity and saturation 

of the soil (discussed further in 5.3), as well as the depth of production. The string bog region of 

the Cedarburg Bog may have a shallow rooting system (Reinartz 1985), therefore the depth of 

production may not be as limiting to response time as the physical structure of the peat. Based on 

a rate of medium flux, root respiration was estimated to contribute 48.6% of the total mass of soil 

CO2 respired. This is similar to the study by Silvola et al. 1996, who estimated the contribution 

of root respiration to soil respiration in a peatland environment to be 35-45%. 

5.3 Physical Controls of Soil CO2 Flux 

 The rate at which CO2 diffuses through the soil column is partly dependent on the 

physical structure of the soil; the permeability, tortuosity, porosity, and water content. It is 
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important to consider these properties when addressing soil CO2 flux because gas diffuses 

several thousand times slower in water than in air (Sherwood et al. 2013). The upper layer of 

peat in the string bog region is a loose/expandable mat (see section 4.6), suggesting that these 

properties are not static. However, the soil moisture probe deployed during the 2015 field season 

revealed a nearly constant volumetric water content of 0.61 ± 0.02 m3/m3. It should be noted that 

although the soil moisture probe was placed near the LI-COR soil gas flux analyzer (~1 m), the 

vegetation and soil surface are highly spatially variable in this region. Thus, soil moisture 

conditions and the subsequent control on gas diffusion rate may also be variable over short 

distances. 

 Multiple studies have considered soil gas release via ebullition (bubbling) in response to 

decreasing atmospheric pressure (Tokida et al. 2005; Tokida et al. 2007; Waddington et al. 

2009). The high solubility of CO2 in water implies that the primary mechanism for CO2 transport 

is diffusion, rather than ebullition. Still, the influence of atmospheric pressure was investigated in 

an attempt to explain irregular high flux measurements that were inconsistent with general trends 

of root and microbial respiration. When addressing the timeline of soil CO2 flux data in 

accordance with atmospheric pressure, several periods demonstrate an increase in CO2 flux 

intensity following decreasing atmospheric pressure. However, this is not observed exclusively, 

and the response in time and flux intensity, as well as the rate of falling atmospheric pressure, 

were highly inconsistent. A study on lake productivity of CO2 and CH4 by Casper et al. (2000) 

addressed ebullition in response to atmospheric pressure and revealed that 1% of CO2 transport 

across the air-water interface was through ebullition, and the other 99% diffusion. Based on this, 

and the overall lack of immediate CO2 flux response to decreasing atmospheric pressure, 

ebullition is an unlikely contributor to soil CO2 flux in this study.  
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 Precipitation is also suggested to act as a control of soil CO2 flux; during precipitation 

events, CO2 flux may be promoted through volumetric displacement of soil gas in air-filled pore 

space (LI-COR 2010). In the string bog region, the peat pore space remained more water-filled 

than air-filled (consistently saturated; and as previously discussed, CO2 rarely moves 

advectively), thus precipitation as a physical force is not considered influential to soil CO2 flux 

in this study. 

 The stark difference in intensity and frequency of high soil CO2 flux suggests other 

mechanism(s) operating in addition to those mentioned previously. However, the parameters 

measured in this study did not account for this variation. These high-intensity soil CO2 flux 

measurements are orders of magnitude above basal soil respiration, and although they occurred 

only 1.4% of the time, they account for 23.0% of CO2 mass moving from the soil, and so are just 

as important to consider as low and medium ranges of flux. Furthermore, studies collecting only 

periodic, intermittent measurements of soil CO2 flux risk either a) entirely missing this high rate 

of CO2 flux or b) capturing this rate of CO2 flux and subsequently overestimating CO2 flux for 

that period. 

LI-COR and weather measurements also provide insight to controls of surface CO2 

concentration, and could reveal a mass balance estimate of ecosystem respiration (source v. sink) 

if the height of the atmospheric boundary layer were determined. Overnight, when conditions are 

typically calm and no photosynthesis is occurring, CO2 stratifies in the atmosphere, building at 

the soil surface (Figures 10, 11). During the day, as the rate of photosynthesis and wind 

turbulence increase, CO2 concentration built up overnight becomes well mixed, and surface CO2 

concentration decreases to levels approximating atmospheric CO2, which averages near 400 ppm 

(NOAA 2017). The rate at which CO2 moves into or out of the ecosystem depends on the 
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difference in surface CO2 relative to atmospheric CO2, and the height of the atmospheric 

boundary layer. 

6. Conclusions 

 Soil CO2 flux can vary greatly over short periods of time. In the Cedarburg Bog, 

measurements ranged from less than 1 to over 650 mgCO2/min-m2. Studies that measure soil 

CO2 flux at limited intervals risk misrepresenting the full range of CO2 flux intensity, and risk 

creating biased models of soil CO2 flux. This study presented an unparalleled high-resolution 

temporal data set of soil CO2 flux in the Cedarburg Bog. Soil CO2 flux is a function of multiple 

interdependent physical and biological processes; those presented in this study do not directly 

account for the entire variation of soil CO2 flux, but provide significant insight to the extent of 

variation, the importance of high-resolution measurements, and the controls of production and 

transport of soil CO2.  

 Net ecosystem exchange depends on the balance between soil respiration, above ground 

respiration, and photosynthetic assimilation. In the Cedarburg Bog, soil respiration in 2014 and 

2015 resulted in a total soil CO2 flux of 1,915 gCO2/m
2, or ~2,200 kgCO2 throughout the entire 

string bog area (~1.2 km2). Sources of soil CO2 flux include microbial respiration and root 

(including rhizo-microbial) respiration. Basal soil respiration (low flux) is the result of microbial 

respiration and provides a continual source (day and night) of CO2. Microbial respiration trends 

partly mimicked soil temperature; 27.6% of the variation in low flux could be directly accounted 

for by changes in soil temperature. Although basal respiration occurred the vast majority of the 

time (71.1%), it contributed a relatively small percent (28.4%) of the total mass of CO2 respired 

from the soil. 
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 Root respiration largely depends on photosynthetic assimilation of CO2 above the 

surface, and as such was associated with the diurnal cycle of medium flux. The contribution of 

root respiration to soil CO2 flux is dependent on the rate of photosynthesis, which is in turn 

dependent on radiation, atmospheric temperature, and CO2 availability, as well as plant transport 

mechanisms.  Determining plant transport times leading to root respiration would increase 

correlations between variables controlling photosynthesis and the resultant medium soil CO2 flux 

from root respiration. In assessing the mass of CO2 moving from the soil, root respiration is 

especially important to consider, as it contributes just under half (48.6%) of total CO2 respired 

from the soil. 

 The range of infrequent high flux (only 1.4% of measurements) is poorly understood. It 

was hypothesized that high flux is controlled by atmospheric pressure (ebullition), precipitation 

(volumetric displacement), and/or water table elevation (oxic layer boundary conditions). None 

of these variables were correlated, but the occurrence of high flux remains of great importance as 

it contributed 23.0% of the mass of CO2 moving from the soil. 

  Soil respiration is a function of multiple interdependent physical and biological 

parameters. In order to improve predictions of wetland CO2 dynamics in a changing climate, 

these relationships and the models produced to represent them must be improved. In this study, 

numerous variables were measured in anticipation of correlation to soil CO2 flux; multiple linear 

regression models revealed weak and significant correlations due to missing variables of 

transport/response times. Wetland soils are structurally complex, and can be highly variable 

through time; improving correlations for soil respiration models requires high-resolution data 

sets, and determination of lag/response times of CO2 transport processes above ground and in the 

soil. 
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APPENDIX A: BASIC STATISTICS 

Basic statistics of measured variables for the duration of each field season (i.e. average 

atmospheric temperature for designated period, not for entire year) produced in JMP from 

LICOR and Weather data in Appendix D. 

May 22 – Nov 12, 2014 Average Std Dev Median Max Min Sample Size 

Soil CO2 Flux (mg/min-m2) 6.41 14.49 3.34 530.04 0.02 4832 

Cumulative Soil CO2 Flux = 814,565.80 mg/m2 ~ 0.815 kg/m2 

Surface CO2 Concentration (ppm) 442.93 88.83 403.31 857.07 336.59 4832 

Radiation (kW/m2) 0.20 0.28 0.02 1 0 8328 

Wind Speed (m/s) 1.13 1.01 0.98 5.4 0 8328 

Atmospheric Pressure (kPa) 101.58 0.59 101.63 103.12 99.81 8193 

Atmospheric Temperature (°C) 15.54 6.82 15.98 31.74 -6.71 8328 

Soil Temperature (°C) 13.95 3.81 14.68 19.52 5.68 4832 

Precipitation (mm) 0.05 0.49 0 14.10 0 8400 

Cumulative Precipitation = 461.89 mm 

Jun 1 – Oct 28, 2015 Average Std Dev Median Max Min Sample Size 

Soil CO2 Flux (mg/min-m2) 6.62 20.09 3.45 676.47 0.00 2862 

Cumulative Soil CO2 Flux = 1,100,242.92 mg/m2 ~ 1.100 kg/m2 

Surface CO2 Concentration (ppm) 459.70 118.36 407.06 1059.78 349.27 2862 

Radiation (kW/m2) 0.22 0.29 0.04 1 0 7200 

Wind Speed (m/s) 1.15 1.07 0.02 5.25 0 7200 

Atmospheric Pressure (kPa) 101.61 0.59 101.61 103.18 99.25 7200 

Atmospheric Temperature (°C) 17.56 6.03 17.65 32.13 -3.16 7200 

Soil Temperature (°C) 16.97 1.80 17.3 20.15 10.32 2289 

Soil Moisture Content 0.61 0.02 0.62 0.681 0.012 2858 

Precipitation (mm) 0.06 0.57 0 31.63 0 7200 

Cumulative Precipitation = 398.57 mm 
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APPENDIX B: JMP STATISTICAL CORRELATIONS 

Multiple linear regression model parameters and results (alpha = 0.2) produced in JMP using 

LICOR and Weather data from Appendix D. 

Dependent Variable Range Independent Variable(s) & p value(s) R Square 

Soil CO2 Flux All Atm. Temperature (<0.0001) 

Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

Atm. Pressure (<0.0001) 

Surface CO2 Concentration (0.0037) 

0.046899 

Soil CO2 Flux Day Atm. Temperature (<0.0001) 

Wind Speed (<0.0001) 

Soil Temperature (0.0044) 

0.030961 

Soil CO2 Flux Night Atm. Temperature (<0.0001) 

Soil Temperature (<0.0001) 

Wind Speed (<0.0001) 

Surface CO2 Concentration (0.0167) 

0.073316 

Soil CO2 Flux < 5 mg/min-m2 Soil Temperature (<0.0001) 

Atm. Temperature (<0.0001) 

Atm. Pressure (<0.0001) 

Surface CO2 Concentration (<0.0001) 

Radiation (0.0011) 

Soil Moisture Content (0.0082) 

Wind Speed (0.0159) 

0.19136 

Soil CO2 Flux < 5 mg/min-m2 Soil Temperature (<0.0001) 0.276164 

Soil CO2 Flux < 5 mg/min-m2 (Day) Soil Temperature (<0.0001) 

Soil Moisture Content (<0.0001) 

Wind Speed (<0.0001) 

0.132718 

Soil CO2 Flux < 5 mg/min-m2 (Night) Soil Temperature (<0.0001) 

Atm. Pressure (<0.0001) 

Wind Speed (0.0032) 

0.385887 

Soil CO2 Flux < 5 mg/min-m2 (Night) Soil Temperature (<0.0001) 0.416979 

Soil CO2 Flux 5 – 50 mg/min-m2 Wind Speed (<0.0001) 

Surface CO2 Concentration (<0.0001) 

Atm. Temperature (0.0011) 

Precipitation (0.0304) 

0.023383 

Soil CO2 Flux 5 – 50 mg/min-m2 (Day) Wind Speed (<0.0001) 0.016758 

Soil CO2 Flux 5 – 50 mg/min-m2 (Night) Soil Temperature (<0.0001) 

Atm. Temperature (<0.0001) 

0.225924 

Soil CO2 Flux >50 mg/min-m2 Soil Temperature (0.0149) 

Radiation (0.0193) 

0.087588 

Soil CO2 Flux >50 mg/min-m2 (Day) None N/A 

Soil CO2 Flux >50 mg/min-m2 (Night) None N/A 

Dependent Variable Range Independent Variable(s) & p value(s) R Square 

Surface CO2 Concentration All Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

Atm. Temperature (0.0001) 

Radiation (0.0018) 

Soil Moisture Content (0.0403) 

0.307727 

Surface CO2 Concentration Day Wind Speed (<0.0001) 

Atm. Temperature (<0.0001) 

Soil Temperature (<0.0001) 

0.227855 

Surface CO2 Concentration Night Wind Speed (<0.0001) 0.296597 
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Soil Temperature (<0.0001) 

Surface CO2 Concentration < 425 ppm Radiation (<0.0001) 

Atm. Temperature (<0.0001) 

Wind Speed (0.0002) 

0.142406 

Surface CO2 Concentration < 400 ppm (Day) Atm. Temperature (<0.0001) 

Radiation (<0.0001) 

Wind Speed (<0.0001) 

0.095618 

Surface CO2 Concentration < 400 ppm (Night) Wind Speed (<0.0001) 

Atm. Temperature (<0.0001) 

Soil Temperature (0.0003) 

0.129578 

Surface CO2 Concentration >400 ppm Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

0.226263 

Surface CO2 Concentration >400 ppm (Day) Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

Atm. Temperature (<0.0001) 

0.258038 

Surface CO2 Concentration >400 ppm (Night) Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

0.20024 

Surface CO2 Concentration Wind Speed < 2 m/s Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

Atm. Temperature (<0.0001) 

Radiation (0.0004) 

34.0145 

Surface CO2 Concentration Wind Speed < 1.5 m/s Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

Atm. Temperature (<0.0001) 

0.307192 

Surface CO2 Concentration Wind Speed < 1 m/s Wind Speed (<0.0001) 

Soil Temperature (<0.0001) 

Atm. Temperature (<0.0001) 

Radiation (0.0117) 

0.228998 

Surface CO2 Concentration Wind Speed >1 m/s Radiation (<0.0001) 

Atm. Temperature (<0.0001) 

0.069504 

Surface CO2 Concentration Wind Speed >2 m/s Radiation (<0.0001) 

Precipitation (<0.0001) 

Atm. Temperature (0.0001) 

Wind Speed (0.0025) 

0.037272 

Surface CO2 Concentration Wind Speed >2 m/s (Day) Precipitation (0.0012) 

Wind Speed (0.0036) 

Radiation (0.0053) 

Atm. Temperature (0.0255) 

0.023448 

Surface CO2 Concentration Wind Speed >2 m/s 

(Night) 

Atm. Temperature (<0.0001) 

Precipitation (<0.001) 

0.365798 
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APPENDIX C: COMPLETE LICOR AND WEATHER PLOTS 

Complete timeline of collected LICOR and Weather Station data, including soil CO2 flux (pink 

bars), radiation (purple line), wind speed (green line), surface CO2 concentration (light blue line), 

atmospheric temperature (orange line), precipitation (blue triangles), atmospheric pressure (black 

line), soil temperature (red line), and volumetric soil moisture content (dark blue line). Produced 

in Grapher using LICOR and Weather data from Appendix D. 

 



44 

 



45 

 



46 

 



47 

 



48 

 



49 

 



50 

 



51 

 



52 

 



53 

 



54 

 

 



55 

 

 

  



56 

 

APPENDIX D: SUPPLEMENTAL DATA SPREADSHEETS 

Appendix D includes complete LICOR, Weather Station, Picarro, and IRMS-EA data sets as an 

electronic file (Excel spreadsheets) titled “APPENDIX_D_Raw_Data_File.xlsx” outlined in the 

following table. 

Spreadsheet Description 

Filtered_LICOR_and_Weather Compilation of 2014 and 2015 LICOR and weather station 

data used in analyses, filtered from raw data according to 

quality control methods (see section 3.6). 

RAW_LICOR_2014 Raw LICOR data collected from 2014 field season (prior to 

quality control). 

RAW_LICOR_2015 Raw LICOR data collected from 2015 field season (prior to 

quality control). 

Weather_2014 Complete set of weather data collected from university 

Weather Station (see Figure 1b), 2014. 

Weather_2015 Complete set of weather data collected from the university 

Weather Station (see Figure 1b), 2015. 

Monitoring_well Transducer data during 2014, 2015 field seasons collected 

from Field Site location (see Figure 1b). 

Note: corrected water level does not reflect actual water table 

conditions relative to surface (see section 4.6). 

Picarro_8July2015 Picarro stable isotope analyzer data collected at Field Site 

(see Figure 1b) July 8th, 2015 (see sections 3.2, 4.5) 

Picarro_6August2015 Picarro stable isotope analyzer data collected at Field Site 

(see Figure 1b) August 6th, 2015 (see sections 3.2, 4.5) 

Picarro_27-28August2015 Picarro stable isotope analyzer data collected at Field Site 

(see Figure 1b) August 27th-28th, 2015 (see sections 3.2, 4.5) 

IRMS_EA Peat core (collected at Field Site location, see Figure 1b) data 

produced from isotope ratio mass spectrometer and elemental 

analyzer analysis (see sections 3.2, 4.5) 
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