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ABSTRACT 

A PHYSICOCHEMICAL PREDICTION OF PROLONGED NATURAL CO2 LEAKAGE IN 
THE LITTLE GRAND WASH FAULT ZONE, GREEN RIVER, UTAH 

 
by 

Kyungdoe Han 

 
The University of Wisconsin-Milwaukee, 2016                                                                           

Under the Supervision of Professor Timothy Grundl 
 
 
 

Physicochemical investigation on a natural CO2 system and the accommodated fault-

controlled fluids using a geochemical modeling method provides important information 

regarding the security assessment for geological carbon sequestration (GCS), which is the most 

promising method for enhancing our knowledge of the side effects of GCS. By employing 

utilized series of regional fluid chemistry and hydrogeologic parameters, this study investigated 

the consequences caused by migration of CO2 in a naturally leaking CO2 system that developed 

in normal faults in the southwestern U.S. 1-D and 2-D models were conducted using the multi-

phase, multi-component reactive transport simulator, TOUGHREACT, to establish sets of 

descriptive and interpretive data elaborating the heterogeneous water-rock-CO2 interactions such 

as diagenetic quartz and phyllosilicate, and reduction of iron oxide observed on fault traces in the 

region. Converging evidence from silicate mineral alterations and subsurface carbonate deposits 

examined in the study suggest that the fault conduit has a potential to be clogged as a 

consequence of CO2-bearing fluid migration. Results showed that continuous CO2 leakage in the 

same location is unlikely to happen because: (i) a precipitation process involving diagenetic 

quartz and clay growths that are stable in the given condition of water chemistry and (ii) 

subsurface carbonate deposition that enhances the sealing capability of a fault zone. 
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Additionally, the bleaching phenomena observed in this study showed that CO2 is the main cause 

of Fe mobilization in the region, without influence of methane and hydrocarbons. 
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1. Introduction 

 Geologic carbon sequestration (GCS) has been considered an adequate method of 

segregating CO2 from the atmosphere for the purpose of reducing the emission of greenhouse 

gases (Reichle et al., 1999). During the process of GCS, CO2 is disposed into a target brine 

(saline) storage aquifer from large fixed sources such as fossil-fuel power stations. CO2 that is 

injected to the subsurface storage aquifer may encompass an expansive areal extent over a long 

time-scale targeting more than 10,000 yrs. (e.g., over 10 km in linear dimension or further; 

Pruess et al. (2001)). Such a developed CO2 plume with a long migration history could have 

potentials to encounter geologic imperfections such as fault zones or fractures, which would 

allow CO2 to escape from primary storage aquifers into upper shallow regional groundwater 

systems (Pruess, 2008). 

Thus, despite their efficacy and efficiency, the possibility of CO2 leakage near injection 

sites is a major drawback to emerging GCS projects. Numerous concerns arise due to potential 

hazards associated with CO2 discharge through preferential pathways to the surface. These 

include (1) potential groundwater contamination caused by water-rock interactions by acidic and 

corrosive characteristics of CO2-laden fluid (Apps et al., 2010; Atchley et al., 2013; Carroll et al., 

2009; Czernichowski-Lauriol et al., 1996; Gunter et al., 1997; Kharaka et al., 2010; Siirila et al., 

2012; Wang and Jaffe, 2004; Wilson et al., 2007); 2) asphyxiation of animal species caused by a 

dense gaseous CO2 accumulation on the land surface, for example, Mammoth Mountain, CA, 

USA (Lewicki et al., 2007) and Lake Nyos, Cameroon (Kling et al., 1987; Kusakabe et al., 

1989); and 3) the decrease of storage efficiency while the GCS targets a long period of time for 

the containment of CO2 in reservoirs, more than thousands of years (Bachu et al., 1994; White et 

al., 2005). 
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It may be inferred that the most probable leakage pathways could be sub-vertical faults 

and fracture zones that have not been identified during the characterization of GCS sites, 

connecting the target storage reservoir and land surface (Person et al., 2007; Pruess, 2008). Since 

a fault zone, in general, exhibits various geologic imperfections that allow fluids to make 

headway (fracture segments and damage zones), a focused channel for fluid flow can be formed 

in any given fault zone architecture (Anderson and Fairley, 2008; Eichhubl et al., 2009; Matthäi 

and Belayneh, 2004). 

Hence, enhancing our knowledge about leaking CO2 and the relevant changes induced by 

CO2 in such fault zones will help to assess the long-term security of GCS and gain public 

acceptance. A considerable amount of literature has discussed the escape of CO2 through 

geologic imperfections in an effort to evaluate the long-term security of GCS (Burnside et al., 

2013; Chang et al., 2008; Chiaramonte et al., 2008; Lewicki et al., 2007; Lu et al., 2012; 

Oldenburg and Lewicki, 2006; Pruess, 2005; Pruess, 2008; Rinaldi et al., 2014; Shipton et al., 

2004). From the above previous studies, the following are suggested for study in order to assist a 

selection of appropriate storage sites and achieve safer storage conditions for CO2 leakage: 1) 

changes in properties of CO2 and reservoir fluids (i.e., brine) during its migration along faults 

and fractures; 2) numerical modeling that exhibits a realistic leakage scenario with chemical 

changes induced by water-rock-CO2 interactions; and 3) investigations on natural analogues such 

as natural CO2 reservoirs and CO2-leaking faults.  

Only a handful of studies, however, are able to quantify the hypothetical CO2 leakage 

through geologic imperfections and obtain empirical evidence from the leakage phenomena in 

natural analogues (Ennis-King and Paterson, 2002; Pruess, 2008; Pruess and Garcia, 2002; 

Rutqvist and Tsang, 2002; Shipton et al., 2004). The conducted numerical modeling studies in 
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hypothetical CO2 leakage systems have provided the quantitative and mechanical understanding 

of flow behavior. It has been suggested that natural analogues can provide crucial evidence 

regarding geochemical processes that will contribute to adjust the existing numerical models 

(Gherardi et al., 2007; Haszeldine et al., 2005). 

Therefore, this study sought to examine the CO2-rich natural environment with the 

currently ongoing leakage phenomena to overcome the practical constraints of modeling, by 

implementing field-based geologic parameters on reactive transport simulations. The research 

site that was investigated is a naturally leaking CO2 system, which revealed anomalous CO2 flux 

(i.e., diffusive leakage) and eruptive CO2 emission (i.e., advective leakage) adjacent to normal 

faults in Utah. The principal focus of examination is the water-rock interaction with gaseous CO2 

that would be promoted by CO2 migration through a fault conduit residing in the region. 

Implemented site-specific fluid chemistry data were collected from 1965 to 2014 (Baer and 

Rigby, 1978; Barton and Fuhriman, 1973; Heath et al., 2009; Kampman et al., 2014; Kharaka et 

al., 1997; Shipton et al., 2004; Spangler, 1992; Watson et al., Submitted Article). Applied 

mineral abundances, fault geometry, and formation settings followed previously observed data 

on the study area (Allis et al., 2001; Burnside, 2010; Hanshaw and Hill, 1969; Hansley, 2000; 

Hintze, 1993; Hood and Patterson, 1984; Jung et al., 2015; Trimble and Doelling, 1978; White et 

al., 2003; Zuluaga et al., 2014). 

From the investigations made in this study, the following key issues were examined in 

terms of quantitative results from the series of multi-phase reactive transport models: 1) the 

alterations of minerals inducing physical and chemical changes in a fault conduit by coupled 

heterogeneous reactions (i.e., dissolution and precipitation of minerals); 2) a potential 

connectivity of the cold water geyser system with subsurface CO2 distribution along the fault 
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structure and geometry; and 3) a cause of in-situ mobilization and deposition of iron-bearing 

minerals with correlations to field observations. 

Understanding the multi-phase flow behavior and reactive transport mechanism resulting 

from water-rock interactions under a naturally leaking CO2 system, as seen in the results of this 

study, can provide information to assess the long-term security of GCS and in turn, gain public 

acceptance.  

 

2. Research Site Description 

2.1. Regional Geology 

The Greater Colorado Plateau area is a slightly elevated tectonic block which encompasses 

390,000 km2 throughout the Four Corners region of UT, CO, AZ, and NM (Stewart et al., 1972; 

Fig. 1a). The plateau has distinct natural resources: 1) hydrocarbon potentials (Baars, 1966; Baker, 

1933; Brandt, 1987; Hansley, 2000; Nuccio and Condon, 1996), 2) mineral resources (e.g., Potash 

salts, Cu and Ag ores; Hite and Gere, 1958; Morrison and Parry, 1986), and 3) naturally occurring 

CO2 fields with an estimated CO2 storage of over 28 × 109 to 2,800 × 109 m3 (Allis et al., 2001). 

The connatural CO2-rich fields in the region are mostly sealed laterally toward the fault center by 

anticlines, which are compartmentalized with a dome-type four-way anticlinal closure or fault 

seals (Shipton et al., 2004). In this region, the CO2 fields contain gases dominated by CO2 (up to 

98 vol. %). These CO2 reservoirs (e.g., Gordon Creek, Farnham Dome, Lisbon and McElmo Dome 

fields; Fig. 1) were economically developed to be used in the process of CO2 enhanced oil recovery 

and dry ice production (Allis et al., 2001; Cappa and Rice, 1995; Dobbin, 1969; Gerling, 1983; 

Walton, 1955).  
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The intraforeland flexural Paradox Basin associated with the Uncompaghre Uplift is 

positioned at the northwest boundary of the Colorado Plateau, trending asymmetrically NW-SE 

with an accumulation of thick carbonates, halite and clastic deposits (Barbeau, 2003; Nuccio and 

Condon, 1996; Fig. 1a). The region is a part of the intracratonic basin associated with the ancestral 

Rocky Mountains (Dickinson and Lawton, 2003; Trudgill, 2011). The border of the basin 

characterizes the total extent of the salt in the Paradox Formation (Fig. 1b; Hite, 1968; Shipton et 

al., 2004). The stratigraphy of the basin spans from the Pennsylvanian Paradox Formation to the 

Mid-cretaceous Mancos Shale (Dockrill and Shipton, 2010). In addition, this thick Paleozoic 

sediment reflects a high subsidence rate of the basin, showing an alternating sequence of shallow 

and deep marine depositional environments (Barbeau, 2003). 
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Figure 1. Map of the research area. (a) Areal view of the Paradox Basin including natural CO2 reservoirs and commercial CO2 pipelines (modified from Allis et 

al., 2001). (b) Geologic map of the research area, the northwest corner of the Paradox Basin (redrawn from Dockrill, 2006). 
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2.2. The Little Grand Wash (LGW), Salt Wash (SW), and Moab Fault systems  

Fault systems in the Paradox Basin developed in the Permian age due to the regional 

elongation of the basin and reactivated again by Sevier and Laramide orogenies from Cretaceous 

and Oligocene periods (Pevear et al., 1997; Solum et al., 2010; Chan et al., 2000). During the 

deformation of the basin, faulting was concentrated throughout the margin of valleys residing 

along the crests of salt anticlines, which caused highly diffuse deformation in the area, e.g., 

warping, tilting, and deformation of valley-fill deposits (Hecker, 1993). Evidence provided by 

local earthquakes indicates that the stress regime of the region could be characterized by a NW-

trending horizontal extension, although there are low differential stresses and variances in the 

magnitude of seismicity (Zoback and Zoback, 1989). In addition, the currently active uplift of the 

Colorado Plateau maintains the region under an extensional stress regime (Frery et al., 2015). 

Finally, the mobility and solubility of halite deposits in the basin caused a series of Cenozoic 

dissolutional collapses which indicates that faults retain the potential for local and regional 

seismicity. This is supported by field observations of distinct NW oriented faults in the western 

Colorado plateau (Hecker, 1993). 

The Little Grand Wash (LGW) and the Salt Wash (SW) normal faults are situated adjacent 

to the town of Green River, UT (Fig. 1b), cutting the northern outskirts of the Paradox Basin. The 

east-west striking LGW fault intersects the north- to northwest plunging Green River anticline 

(Dockrill, 2005; Shipton et al., 2004). The fault is extended approximately 30 km, showing a 70° 

dip-slip to south. The fault slip varies by the location (Dockrill and Shipton, 2010a; Dockrill and 

Shipton, 2010b; Williams, 2005), but its major offset consists of Jurassic Morrison members and 

Cretaceous Mancos Shale (Table 1). The maximum fault throw appears to be 260 m proximate to 

the Crystal Geyser (Fig. 2a) and gradually declines toward the east- and west-ends of the LGW 
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fault. At the surface, the LGW fault juxtaposes late Jurassic formations (e.g., Morrison, 

Summerville, and Curtis) on the northern footwall with Cretaceous (e.g., Mancos shale) formations 

on the southern hanging wall. Despite uncertainties of subsurface information, lithologic data from 

Amerada Hess wells #1 and #2 revealed that the fault may penetrate deep into the Pennsylvanian-

aged formation (Dockrill and Shipton, 2010a) where halite is abundant (Nuccio and Condon, 1996) 

consists of  two parallel strands with an average width of 800 m dips southward at an average of 

73° (Dockrill and Shipton, 2010a; Dockrill and Shipton, 2010b).  

The SW fault has a graben over 23 km along the strike of the fault while the offset of the 

fault cuts the north plunging Green River Anticline (Fig. 1b). The northern SW fault has a dip of 

78° S and the southern fault has a dip of 87° N (Williams, 2005). The maximum offset across the 

northern and southern faults is 366 m and 210 m, respectively. At the northern footwall, the 

bleached Jurassic Entrada Sandstone is exposed at the surface while the Cretaceous to Jurassic 

Cedar Mountain Formation is exposed at the surface on the southern SW graben (Table 1; Wigley 

et al., 2012).  

To the east-end of the SW fault, the Tenmile Graben extends over 9 km (Williams, 2005; 

Fig. 1b). Geometric complexities through the fault traces and variations in the throw along the 

strike imply there is a linkage of kinematic movement between the Tenmile Graben and the SW 

Fault system (Dockrill and Shipton, 2010a; Dockrill and Shipton, 2010b). Reservoir-scale faults 

(Moab and Salt Valley faults) which penetrate the entire Paradox formation are located further east 

(Doelling et al., 1988; Foxford et al., 1998). The Moab Fault is a 45 km-long normal fault system 

(Doelling, 1985; Foxford et al., 1996), with three main constituents: 1) the southern section with 

poor exposure; 2) the central section with the greatest throw (~1km); and 3) the northern section 

with complex branches (Solum et al., 2010). 
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Constraining the timing of continued movement of the Moab and Salt Valley faults is 

difficult although early Tertiary and Quaternary slips were discovered by trenching on those faults 

(Pevear et al., 1997; Williams, 2005). The consistent dissection of Mancos Shale throughout 

surficial fault traces coevals with the fault activity that occurred at least up to the Mid-Cretaceous 

period (Vrolijk et al., 2005) while fault-related diagenesis and the K-Ar dating results of shale 

gouge in the Morrison Formation indicate that the faulting occurred between 60 and 43 Ma 

(Davatzes and Aydin, 2003; Pevear et al., 1997). Even though there is no direct evidence, both the 

SW fault and Tenmile graben could potentially penetrate to the Paradox Formation based on their 

geographical proximity to these large fault systems.  
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Table 1. Stratigraphy of the Green River area where Grp., Fm., and Mbr. stand for group, formation and member, 

respectively. Data were obtained from Trimble and Doelling (1978); Hintze (1993); Hanshaw and Hill (1969); Hood 

and Patterson (1984). Shaded portions of the table represent major CO2-sourcing and CO2-charged aquifers. 
 

Age Group Formation and Member 
Thickness 

(m) 

Cretaceous  

Mancos Shale 

Upper Shale 200 + 

Ferron Sandstone 6 - 10 

Tununk Shale 105 - 125 

Dakota Sandstone 0 - 10 

Cedar Mountain Formation 45 - 55 

Buckhorn Conglomerate 0 - 10 

Jurassic 

 
Morrison 
Formation 

Brushy Basin Member 70 - 146 

Salt Wash Member 45 - 90 

Tidwell Member 6 - 15 

San Rafael 

Summerville Fm. 30 - 120 

Curtis Fm. 40 - 70 

Entrada Sandstone 120 - 145 

Carmel Fm. 65 - 90 

Glen 
Canyon 

Navajo Sandstone 130 - 155 

Kayenta Fm. 58 - 73 

Wingate Sandstone 90 - 120 

Triassic   

Chinle Fm. 

Church Rock Mbr. 60 - 120 

Moss Back Mbr. 16 - 30 

Temple Mountain Mbr. 0 - 12 

Moenkopi Fm. 

Moody Canyon & Torrey 
Mbrs. 

140 - 200 

Sinbad Limestone Mbr. 10 - 15 

Black Dragon Mbr. 50 - 65 

Permian 
Cutler 
Grp. 

Kaibab Limestone 0 - 45 

White Rim Sandstone 90 - 150 

Organ Rock Shale 0 - 90 

Elephant Canyon 300 - 365 

Pennsylvanian 
Hermosa 

Grp. 

Honaker Trail Formation 150 - 300 

Paradox Formation 365 - 760 

Mississippian   Leadville Limestone 185 - 245 
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2.3. Evidence of Fault Leakage Phenomena 

The abundance of subsurface CO2 in the region is reflected on the surface as travertine 

deposits. At the center of the LGW fault, two strands (northern and southern traces) extend 3.2 km 

east and 0.1 km west to the Green River (Fig. 2a). The active travertine deposit appears a few 

meters north of the LGW fault where the Crystal Geyser periodically emits effluents. In contrast, 

a stratigraphic succession of inactive travertine deposits appears alongside geologic imperfections 

(e.g., faults and fractures; Barth, 2012; Doelling, 1994; Gratier et al., 2012). Currently, the inactive 

travertines are topographically higher than the active travertine. Recently, the U-Th age dating 

results of the travertine mounds revealed that CO2 has leaked for at least 113,900 yrs along the 

LGW fault and 413,000 yrs along the SW fault (Fig. 2a and 2b; Burnside et al., 2013).  

The exposure of the bleached red-bed Entrada sandstones at the northern footwall of the 

SW fault shows further evidence of CO2-rich fluid leakage (Fig. 2c). Regional burial diagenesis 

has developed Fe-oxide grain coatings in the Jurassic Entrada sandstones, giving the perceptible 

reddish color (Cullers, 1995; Trimble and Doelling, 1978; Wigley et al., 2013b). Petrological 

alterations (e.g., dissolution of Fe-oxide grain coatings and K-feldspar) induced by acidic 

dissolution reactions of CO2-rich brine at low pH are considered to be a cause of bleaching in the 

Entrada Formation (Wigley et al., 2013b). Bleached Entrada sandstones are also observed at drilled 

in-situ cores from the CO2W55 well located at 90 m north of LGW fault trace and 285 m west of 

the Crystal geyser (Kampman et al., 2014). In addition, distinctive iron oxide reduction and pyrite 

cementation are observed in the Moab Fault zone (Foxford et al., 1996). 
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Figure 2. Geologic map of the Little Grand Wash and Salt Wash fault zones overlapped with surveyed soil CO2 flux data [g m-2d-1] from Jung et al. (2014) and 
travertine deposits from Burnside et al. (2010); (a) Little Grand Wash Fault, (b) Salt Wash Fault and (c) bleached Entrada Sandstone adjacent to the Tenmile 

Geyser. 
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A series of advective-diffusive CO2 flux anomalies above the fault traces and cold-water 

geysers/springs also show active leakage of faults (Allis et al., 2001; Han et al., 2013; Jung et al., 

2014). Highly anomalous CO2 fluxes were observed specific to the northern footwall of both LGW 

and SW faults, and the adjoining locations of two fault strands where massive travertine deposits 

exist (Fig. 2a and b). Furthermore, unnaturally leaking artificial wells such as Crystal and Tenmile 

geysers were developed following traces of LGW and SW faults (Figs. 1b, 2a and 2b). Other 

carbonate springs (e.g., Torrey’s Spring, Big Bubbling Spring, and Small Bubbling Spring) chiefly 

located along the northern footwall of the SW fault trace (Baer and Rigby, 1978; Campbell and 

Baer, 1978; Doelling, 1994) emit both CO2 and brine from CO2-bearing formations (e.g., Jurassic 

Entrada and Navajo sandstones). In addition, a fresh hydrocarbon seep east of the Crystal Geyser 

shows evidence of reductive fluid migration to the surface (Shipton et al., 2004). 

Seismic activities that are likely to be associated with the study area can affect the leakage 

behavior of the CO2-laden fluid. Earthquake-induced changes in a stress field are a cause of 

hydrologic variations including fluctuation of fluid and gas flux (Elkhoury et al., 2006). 

Deformation by static stress change can induce changes in pore pressure and in the amount of pore 

fluid (Manga and Wang, 2007). In short, dynamic stress variation on sandstones in the area can 

cause an opening and closing of preferential pathways for migrating fluids by oscillating pore 

pressures and changes in permeability (Liu and Manga, 2009; Elkhoury et al., 2006; Petit et al., 

1999; Renard et al., 2000). 

 

2.4. CO2 Origin 

Various processes can yield CO2 from source rocks in basin structures, e.g., carbonate 

metamorphism, hydrocarbon maturation, mantle degassing, and organic activities (Selley and 
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Sonnenberg, 2014). Former studies suggested possible scenarios for CO2 generation in this area: 

1) clay-carbonate reactions in the Paradox Formation (Dockrill and Shipton, 2010a; Heath et al., 

2009), 2) thermal decomposition of Leadville Limestone by the Tertiary intrusions of the Henry 

and La Sal Mountains (Cappa and Rice, 1995; Shipton et al., 2004; Wilkinson et al., 2008), 3) 

thermal decomposition/maturation of kerogen and hydrocarbon (Cappa and Rice, 1995; Shipton 

et al., 2004), and 4) transportation of CO2 into the crust by igneous intrusions (Ross, 1998; 

Wilkinson et al., 2008). One hypothesis cannot solely describe the mechanism for CO2 

production in this region, but researchers generally agree that the Mississippian Leadville 

Limestone and the Paradox Formation are potential sourcing formations (Table 1). 

Carbon isotope ratios (δ13C in V-PDB; Vienna Pee Dee Belemnite) of gaseous CO2 bubbles 

ranges from -6.5 to -8.5 ‰ V-PDB at Green River springs (Wilkinson et al., 2008) and -5.7 to -

7.6  ‰ V-PDB at the Crystal Geyser area (Jeandel et al., 2010), respectively, which fall within the 

ranges of both bulk crustal- and mantle-originated carbon (Bulk crustal: -5 to -7‰ V-PDB and 

Mantle: -3 to -8‰ V-PDB) without indication of biologically originated carbon (Frery et al., 2015; 

Wilkinson et al., 2008). Due to no distinction of δ13C ratios indicating the source of CO2, previous 

studies relied on analyzing ratios of 3He/4He and CO2/3He to determine the sources (Heath et al., 

2009; Wilkinson et al., 2008). Initially, Heath et al. (2009) reported that 3He/4He ratios were 0.302 

and 0.310 at the Crystal Geyser and the Big Bubbling Spring, respectively, suggesting that 

degassing from the mantle or magma is not the major source although later Wilkinson et al. (2008) 

noted that these data might be contaminated with air. Alternatively, Wilkinson et al. (2008) 

suggested a source-tracking method using the CO2/3He ratio, by assuming that this ratio is 

conserved while CO2 migrates to the surface. Considering the mantle-originated CO2/3He ratio to 

be 1 × 109 to 6 × 109 (Marty and Jambon, 1987), the CO2/3He ratio data ranging from 1.4 × 1010 
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to 6.4 × 1012 in these geyser/springs indicate that CO2 originated dominantly from the crust. 

Therefore, supported from the fact that the Green River area was the most thermally matured zone 

in the Paradox basin, thermal decomposition of Leadville Limestone activated by tertiary tectonic 

events is considered to be the sourcing mechanism of CO2 (Gilfillan et al., 2008; Nuccio and 

Condon, 1996; Wilkinson et al., 2008). 
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Table 2. Averaged chemistry data of the Green River Springs (CO2-emitting springs and geysers). Data were adapted from §Watson et al. (submitted article), 
¶Barton and Fuhriman (1973), ӾKampman et al. (2014), †Baer and Rigby (1978), ‡Shipton et al., (2004), £Heath et al. (2009), and this study. *Stdev. stands for the 

standard deviation of averaged samples. 

 

 

Location 

Temperature 
Stdev. 

(T) 

pH 
Stdev 

(pH) 

Alkalinity 
Stdev. 

(Alk.) 

TDS 
Stdev. 

(TDS) 

Number 

of 

Samples 

References 

ºC (in situ) mEq/L mg/L 

Green River 
Airport Well 

(GRA) 

26.80 - 6.28 - 37.08 - 6058 - 1 Ӿ 

Crystal Geyser 
(CG) 

16.64 1.34 6.79 0.12 71.14 8.64 15,009.65 1182.42 72 §¶Ӿ† 

Small Bubbling 

Spring 
(SBS) 

16.50 3.82 6.28 0.06 59.11 2.45 15426.5 65.62 5 §£Ӿ 

Big Bubbling 

Spring 

(BBS) 

16.50 1.69 6.39 0.04 68.51 2.09 19098.9 742.32 3 §£Ӿ 

Tenmile Geyser 

(TG) 
15.65 4.03 6.51 0.06 58.76 1.66 18123.37 940.75 4 §Ӿ‡ 

Pseudo Tenmile 
Geyser 

(PT) 

15.00 1.13 6.45 0.04 63.95 1.37 19669.2 237.02 4 §Ӿ£ 

Torrey's Spring 
(TS) 

15.80 0.85 6.53 0.03 81.06 1.61 22223.35 1164.11 5 §Ӿ£‡ 

Tumbleweed 

Geyser 
(TWG) 

17.90 1.09 6.30 0.06 63.02 2.11 17818.3 601.98 3 Ӿ‡£ 

Chaffin Ranch 

Geyser 

(CRG) 

16.00 - 6.25 - 77.26 - 18556.4 - 1 Ӿ 
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Table 3 (continued). Averaged chemistry data of the Green River Springs (CO2-emitting springs and geysers). Data were adapted from §Watson et al. (submitted 

article), ¶Barton and Fuhriman (1973), ӾKampman et al. (2014), †Baer and Rigby (1978), ‡Shipton et al., (2004), £Heath et al. (2009), and this study. *Stdev 

stands for the standard deviation of averaged samples. 

 
  

Location 

Ca2+ 
Stdev. 

(Ca2+) 

K+ 
Stdev. 

(K+) 

Mg2+ 
Stdev. 

(Mg2+) 

Na+ 
Stdev. 

(Na+) 

Cl- 
Stdev. 

(Cl-) 

SO4
2- 

Stdev. 

(SO4
2-) 

mmol/l mmol/l mmol/l mmol/l mmol/l mmol/l 

 (GRA) 22.20 - 2.20 - 8.80 - 20.50 - 3.70 - 8.51 - 

 (CG) 24.81 1.91 8.31 0.82 9.10 1.12 154.60 17.10 105.30 13.73 22.05 2.63 

 (SBS) 21.96 3.05 9.16 0.51 10.16 0.92 179.45 20.72 119.85 11.10 25.63 4.91 

 (BBS) 24.34 1.61 11.23 0.25 9.79 0.69 233.50 21.49 156.80 22.34 29.60 6.79 

 (TG) 23.01 2.15 6.67 0.94 8.81 1.97 217.18 15.33 184.63 15.80 21.10 4.69 

 (PT) 22.16 2.06 11.48 0.11 9.15 0.92 246.90 32.67 166.55 17.75 31.89 5.95 

 (TS) 27.58 3.08 13.50 0.14 8.98 0.82 275.70 40.02 197.35 31.61 26.85 12.81 

(TWG) 28.30 2.14 8.60 0.31 10.30 0.75 192.70 24.81 154.90 19.06 29.60 5.95 

 (CRG) 27.60 - 8.60 - 10.30 - 194.20 - 154.80 - 29.90 - 
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3. Geochemical Observations 

3.1. Sample Collection and Compilation 

Analyses of pH, alkalinity, total dissolved solids (TDS), temperature, and dissolved 

concentration of species were conducted in this study. Water chemistry data consisting of 98 

entries were compiled to establish a reference chemistry dataset (Barton and Fuhriman, 1973; 

Heath et al., 2009; Hood and Patterson, 1984; Kampman et al., 2014; Kharaka et al., 1997; 

Shipton et al., 2004; Spangler, 1992; Watson et al., Submitted Article). The samples for water 

chemistry analysis were collected from 4 geysers and 4 springs, the Green River Airport Well, 

the CO2W55 drilling site and 5 brine sources from former studies. Crystal Geyser effluent 

samples were collected in Dec. 2010, May/June 2013, and May/June 2014 (Watson et al., 

Submitted Article).  

 

3.2. Characteristics of Regional CO2-rich Fluid Chemistry  

In the study area, eolian sandstones that are mostly composed of quartz arenite serve as 

reservoirs for a CO2-charged groundwater system with high porosity and permeability (Hintze, 

1993; White et al., 2005; Burnside, 2010). Formerly, the porosity of the Navajo Sandstone was 

measured up to 26.8 % (Hood and Patterson, 1984). In addition, the recently calculated porosity 

of the Navajo and Entrada sandstones were 19.5% and 26.4%, respectively, showing a high 

potential for rapid fluid motion inside the sandstones (Burnside, 2010).  

The regional chemistry of CO2-rich fluid are expressed by Stiff diagrams, which were 

drawn with a compiled dataset of Green River Springs (i.e., CO2-emitting springs and geysers). 

Major ionic concentrations were averaged by a total number of samples at each location (Fig. 3). 
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In addition, in-situ formation water chemistry data collected during the CO2W55 drilling project 

was also plotted (Kampman et al., 2014). The Green River Airport (GRA) well, which is located 

at the west-end of the LGW fault closest to the San Rafael Swell, is considered to be the closest 

approximation of meteoric water source of the area (Kampman et al., 2014). Following eastward 

over the trace of LGW fault, water chemistry from both the CO2W55 well and the Crystal Geyser 

(CG) show the elevated concentration of Na+ and Cl-, indicating an influx of deeply sourced brine. 

Further south of the LGW fault, Big Bubbling spring (BBS), Small Bubbling spring (SBS), 

Pseudo-Tenmile Geyser (PT), Tenmile Geyser (TG), and Torrey’s Spring (TS), which are located 

at the northern footwall of the SW fault and within the SW Graben (Fig. 3), emit even more saline 

effluent. The elevated concentration in the SW springs suggests the contribution of brine influx 

into the fault could be larger at the SW fault than the LGW fault. Further south, the Tumbleweed 

(TWG) and the Chaffin Ranch geysers (CRG), which are not directly above the fault systems, 

show continuous bubbling and intermittent eruptions, respectively. Although these geysers are 

positioned relatively distant from the SW fault, they still show comparable fluid chemistry to the 

SW springs (Fig. 3).  

Overall, concentrations of major cations for all CO2 geysers/springs show Na+ > Ca2+ > 

Mg2+ > K+, and anions for Cl- > HCO3
- > SO4

2-, respectively (Table 2).  
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Figure 3. Geologic map of the Green River area overlying Stiff diagrams from CO2 emitting springs and geysers; a geologic map 

was redrawn after Kampman et al. (2014). Orientation of formation boundaries depict the anticlinal structure of the region. The 
Stiff diagrams were plotted with total 93 samples compiled from Kampman et al. (2014), Shipton et al. (2004), Heath et al. 
(2009) and this study. Concentrations of major ions were averaged with the number of samples available at each location. 
Abbreviations of each unit follows Entrada Sandstone (ENT), Navajo Sandstone (NAV), Green River Airport Well (GRA), 

Crystal Geyser (CG), Small Bubbling Spring (SBS), Big Bubbling Spring (BBS), Tenmile Geyser (TG), Pseudo Tenmile Geyser 
(PT), Torrey’s Spring (TS), Tumbleweed Geyser (TWG), and Chaffin Ranch Geyser (CRG). 
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3.3. Characteristics of Fluid End-members and Evolution to the Green River Springs 

Effluents  

The aquifer system in the Paradox Basin was formerly classified into two categories: 1) 

the Shallow Jurassic Aquifers, consisting of permeable sandstones of the Entrada, Navajo, and 

Wingate Formations (Naftz et al., 1997), and 2) the Deep Paleozoic Aquifer influenced by the 

evaporites in the Paradox Formation (Rush et al., 1982). The Jurassic Navajo and Entrada 

Sandstones serve as major sources of CO2-unsaturated groundwater, due to their massive areal 

extent and thickness of formations (Hood and Patterson, 1984). The carbonate and salt species 

dissolved in brine presumably originated from the Mississippian Leadville Limestone and 

Pennsylvanian Paradox Formation, respectively (Table 1; Kampman et al., 2014; Wilkinson et 

al., 2008).  

These two fluid end-members, the Shallow Jurassic and Deep Paleozoic Aquifers, 

currently contribute to the ambient fluid chemistry within the fault zones, and consequently, the 

effluents of Green River Springs are evolved from mixtures of these two end-members. A 

modified Durov diagram presents this systematic evolution of mixed fault fluids (Fig. 4). Group I 

(pink) characterizes the Shallow Jurassic Aquifers that delineates the transition of fluid chemistry 

from Na+-HCO3
--typed to Na+-Cl--typed groundwater as the depth is increased from the Entrada, 

Carmel, to Navajo Formations (Fig. 4); for example, salinity notably increases from the Entrada 

Sandstone at 98 m (Na+ + K+: 39.9% and Cl-: 24.9%) to the Navajo Sandstone at 322 m (Na+ + 

K+: 63.6% and Cl-: 44.7%). Overall, the pH and TDS of the Shallow Jurassic Aquifers range 

from 5.1 to 6.3, and from 8,186.0 to 13,254.8 mg/L, respectively, revealing the most acidic and 

least dissolved solid concentration relative to the other end-member fluids (see plane for TDS vs. 

pH). In addition, concentration of carbonate species (HCO3
- + CO3

2-) within the Shallow Jurassic 
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Aquifers is the highest among the groups (Table 3), which indicates accumulation of CO2-

charged brine.  

Finally, the distinct discrepancy in chemical characteristics between these Entrada (red 

rectangle) and Navajo (brown rectangles) aquifers is presumably due to the segregation of 40-70 

m thick low-permeability Carmel formation. 

 

Figure 4. A modified Durov diagram plotting samples from the shallow Jurassic aquifers (Entrada, Camel, and 

Navajo formations), deep Paleozoic aquifer, and the Green River springs (geysers and springs). Water chemistry 

data were collated from Kampman et al. (2014), Kampman et al. (2009), Heath et al. (2009), Shipton et al. (2004), 

Barton and Fuhriman (1973), Spangler (1992), Kharaka et al. (1997), Watson et al., (submitted article), and this 

study. 
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Group II (green) depicts the chemistry of Deep Paleozoic Aquifer, which was estimated 

from 5 samples gathered at adjacent hydrocarbon fields (Kharaka et al., 1997; Spangler, 1992). 

All these brine samples showed approximately 234,000 mg/L of TDS with highly Na+-Cl- rich 

compositions (Na+: 93.4% and Cl-: 97.4%) and pH of 6.51 (Fig. 4). In detail, the elevated 

concentrations of this deeply originated brine range at Ca2+: 31.4 to 192.1 mmol/l, K+: 28.1 to 

114.3 mmol/l, Mg2+: 60.9 to 310.0 mmol/l, Na+: 2,263.0 to 5,024.0 mmol/l, Cl-: 3,103.0 to 

5,808.0 mmol/l, and SO4
2-: 2.1 to 61.8 mmol/l (Table 3).  

Group III (purple) represents the effluents of the Green River Springs on both the LGW 

and SW fault traces, reflecting a mixing between Groups I and II (Fig. 4); major cation/anion 

concentrations, pH, and TDS of Group III lie in between Group I and II within all planes of the 

Durov diagram (Fig. 4). Means of HCO3
-+CO3

2-, Ca2+, Na+, pH, and TDS throughout Group III 

were 29.9%, 20.4%, 72.1%, 6.5 and 16,313.0 mg/L, respectively. Considering the semi-log plane 

(Ca2+ vs. log TDS), the concentration of Group II is one-order greater than the other groups, and 

Group I and Group III are clustered together. These data infer that the Green River Springs 

effluents are apparently fed by the Shallow Jurassic Aquifers due to their close proximity of 

chemistry. Similarly, Heath (2004) and Kampman et al. (2014) supported this observation from 

analyses of δ18O and δD isotopes in the Green River Springs effluents and revealed that 

approximately 80-90% of the Green River Springs effluents originated from the Shallow Jurassic 

aquifers, and the remaining 10-20% from the Deep Paleozoic Aquifer.
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Table 4. Chemistry of shallow Jurassic aquifer and Paleozoic brine. Drilling samples representing the shallow Jurassic aquifer (Entrada, Carmel, and Navajo) are 

from Kampman et al. (2014). Samples of the deep Paleozoic brine were from 1) Spangler (1992) and 2) Kharaka et al. (1997). *pH of the Entrada and Carmel 

formations were measured on the surface of the drilling site. **Indicates each different Paradox Valley Well brine source from Kharaka et al. (1997). ND stands 
for no measured data. 
 

 depth Temperature pH Ca2+ Fe2+ Sr2+ K+ Mg2+ Na+ Cl- SO4
2- Alkalinity TDS 

Formation (m) ºC (in situ) mmol/l μmol/l μmol/l mmol/l mmol/l mmol/l mmol/l mmol/l mEq/L mg/L 

Entrada 98 13.6 6.3* 27.64 348.93 186.30 3.25 10.75 47.65 26.84 17.86 45.00 7647 

Carmel 188 15.5 6.2* 24.06 126.77 110.10 4.83 9.54 48.32 32.49 16.08 56.68 8711 

Navajo 206 15.9 5.3 25.31 26.95 119.70 5.17 10.54 52.58 33.60 16.57 50.62 7788 

Navajo 224 16.3 5.21 23.37 23.80 123.90 5.95 10.13 72.37 49.97 18.56 59.24 9339 

Navajo 276 17.4 5.15 23.42 15.34 128.50 6.63 9.99 92.55 69.40 19.64 62.14 10730.6 

Navajo 322 18.3 5.13 24.12 36.65 135.10 7.19 10.08 112.53 84.94 20.67 63.74 11967.7 

Brine 1) ND 24 6.8 192.1 ND ND 28.14 65.84 2263 3103 11.45 1.23 173609 

Brine 2) 2E** ND 6.32 34.68 ND ND 107.4 60.91 3990 4231 61.84 5.13 255038 

Brine 2) 12E** ND 6.56 33.18 ND ND 114.3 62.55 3912 4147 61.63 4.23 250449 

Brine 2) 4E** ND 6.18 34.43 ND ND 107.4 61.73 3851 4174 61.63 4.83 249789 

Brine 2) 10E** ND 6.67 31.44  ND ND  109.2 64.2 3703 4090 61 3.7 243303 
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4. Reactive Transport Modeling Framework and Approaches 

4.1. Numerical Simulation Methods 

The multi-phase and multi-component reactive transport simulator, TOUGHREACT (Xu 

et al., 2004; Xu et al., 2006) was utilized to predict changes in reactive fluid chemistry and 

mineral assemblages when both the separate and dissolved phases of CO2 migrate through the 

subsurface (Xu et al., 2004). The fluid properties of both CO2/brine and their mixture are 

predicted with the ECO2N module, which covers the thermodynamic condition of 10 °C ≤ T ≤ 

110 °C and P ≤ 600 bar (Spycher et al., 2003). Furthermore, the fugacity coefficient of CO2(g) 

follows Spycher and Reed (1988) and activity coefficients of aqueous species are calculated by 

the extended Debye-Hückel equation (Helgeson et al., 1981). Equilibrium constants for minerals, 

aqueous and gaseous species are mainly sourced from the EQ3/6 database version 7.2b (Wolery, 

1992), and minor revisions on thermodynamic properties of minerals and aqueous species have 

been incorporated from Xu et al. (2005). Precipitation and dissolution of minerals are dependent 

on the status of local equilibrium and/or kinetic conditions (Steefel and Lasaga, 1994). The 

kinetic laws are derived from the transition state theory (Lasaga, 1984) under control of the 

concentration of hydrogen and hydroxide ions, and dependent on acid-basis reactions, as shown 

below: 

𝑟𝑟𝑛𝑛 =  �𝑘𝑘25𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑎𝑎𝑛𝑛𝑛𝑛𝑅𝑅 �1𝑇𝑇 − 1298.15��+ 𝑘𝑘25𝐻𝐻+𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑎𝑎𝐻𝐻+𝑅𝑅 �1𝑇𝑇 − 1298.15�� ∙ 𝑎𝑎𝐻𝐻+𝑛𝑛𝐻𝐻+ + 𝑘𝑘25𝑂𝑂𝐻𝐻−𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑎𝑎𝑂𝑂𝐻𝐻−𝑅𝑅 �1𝑇𝑇 −
1298.15�� 𝑎𝑎𝑂𝑂𝐻𝐻−𝑛𝑛𝑂𝑂𝐻𝐻−� ∙ 𝐴𝐴𝑛𝑛�1− 𝛺𝛺𝑛𝑛𝜃𝜃�𝜂𝜂                                                                           (1) 

where the superscripts ne, H+, and OH- are neutral, acid, and base mechanisms, respectively, and η 

and θ are experimental coefficients. The ‘a’ is the activity of the species. Ωn is the kinetic mineral 
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saturation ratio of the equilibrium mineral index ‘n’, and k25 is the rate constant at 25 °C 

(298.15 °K). The terms rn, Ea, R, and T stand for the reaction rate of mineral index ‘n’, the 

activation energy, the gas constant, and the absolute temperature in Kelvin, respectively. The 

values of parameters defined in the equation (1) have been collated for various minerals in 

Palandri and Kharaka (2004) (Table 8).  Finally, permeability and porosity changes in fault 

conduit are calculated by the Kozeny-Carman relationship (Bear, 1972). Further description of 

the transition state theory is described in Appendix A, and reactions of minerals and aqueous 

species are described in Appendix B. 

Table 5. Boundary conditions and initial grid compositions of 1-D and 2-D models. Regional geothermal gradient 
data were collated from Heath et al. (2009) and Smouse (1993). Top and bottom boundary conditions of temperature 

and pressure slightly varied by the values of vertical discretization (Δz). Rock density and heat capacity values were 
referred and modified from averaged data of Manger (1963) and Somerton (1992). 

Model Properties and Conditions Assigned Values 

1-D model 

Number of elements: 

Size of each element (m): 

Rock density (kg m-3): 

Rock heat capacity (kJ kg-1 

ºC-1): 

x-direction: 1; y-direction: 1; z-direction: 120 

Δx = 10; Δy = 1; Δz = 5 

2,600 

1,000  

Boundary conditions • Top: Dirichlet-type constant pressure (0.12 MPa) 
and temperature (25.0 °C) 

• Bottom: Dirichlet-type constant pressure (5.86 MPa) 
and temperature (37.7 °C) 

2-D model 

Number of elements: 
Size of each element (m): 
Rock density (kg m-3): 
Rock heat capacity (kJ kg-1 

ºC-1): 
 

x-direction: 101; y-direction: 1; z-direction: 60 
Δx = 300, 200, 100, 50, 25, 10, 5, 1; Δy = 1; Δz = 10 
2,600 
1,000  
  

Boundary conditions • Top: Dirichlet-type constant pressure (0.14 MPa) 
and temperature (25.1 °C) 

• Lateral: Dirichlet-type hydrostatic 
pressure/temperature (25.1 to 37.7 °C) 
with 0.25 MPa elevated at the northern Navajo 
Sandstone grid-blocks   

• Bottom: Neumann-type no-flow with pressure of 
5.86 MPa and temperature of 37.7 °C 
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4.2. Conceptual Models Describing Fault-Focused Flow in the LGW Fault  

To evaluate changes in the LGW fault system resulting from the fault-focused flow, both 

1- and 2-dimensional models were developed in this study (Fig. 5). The simplified 1-D model 

was developed to investigate the detailed water-rock interaction by implementing the upscaled 

LGW fault conduit configuration (Fig. 5a). A more complex 2-D model was built to assess 

reasonable subsurface CO2 distribution by implementing fault structure (dip, throw, fault gouge, 

and damage zone) and the regional dip of stratigraphy (Fig. 5b and 5c). 

The 1-D model consists of 120 grid-blocks with the discretization of Δz = 5 m, while the 

lateral width is fixed with Δx = 10 m and Δy = 1 m (Table 4). The model was vertically extended 

to the depth of 600 m from the surface to the Chinle Formation, covering the footwall-side 

stratigraphy of the LGW fault (Fig. 5a). For the initial condition, a hydrostatic pressure profile 

was assigned, and a temperature profile was applied based on a regional geothermal gradient of 

21.2 °C/km with 25 °C at the top boundary (Heath et al., 2009; Smouse, 1993). With this given 

condition of CO2 being set under the critical point (P = 7.38 MPa and T = 31.1°C), CO2 stayed in 

a gas phase throughout the model. Vertical permeability of 1.0×10-15 m2 was uniformly assigned 

with a porosity of 0.2 (Table 5), based on setting the LGW fault as the low-permeability fault 

(10-17 < kh < 10-16 m2 and 5×10-16 < kv < 10-15 m2). The assigned k values were quantified in Jung 

et al. (2015) after the calibration of the model with the field-monitored spatial CO2 flux dataset. 

Salt mass fraction (Xsm = 0.011) was calculated from the Crystal Geyser effluent, which was 

uniformly assigned in the model. Relative permeability and capillary pressure functions for 

CO2(g) and brine were predicted from the van Genuchten-Mualem model and the van Genuchten 

model, respectively (Table 6) (Corey, 1954; van Genuchten, 1980). For the boundary conditions, 

the Dirichlet condition was assigned at both the top and bottom grid-blocks (Table 4). 
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Table 6. Porosity (ϕ) and permeability (k) of each geologic formation in the study area. Stratigraphy data were 

collated from Allis et al. (2001), Burnside (2010), Hansley (1995), Hood and Patterson (1984), White et al. (2004), 

Zuluaga et al. (2014), and Jung et al. (2015). kh and kv are horizontal and vertical permeability of each formation, 
respectively. Upscaled vertical permeability value of 1-D simulation and modeled fault conduit parameters follow 

the estimated low-k fault values of Jung et al. (2015).  

1
-D
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Formation   
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  kh (m2)   kv (m2) 
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Damage        
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  0.21   2.2×10-13   2.2×10-14 
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CO2(g) with 60% saturation (SCO2 = 0.6) was then released at the bottom boundary to 

mimic the influx of CO2 from the Deep Paleozoic Aquifer. The intensity of the CO2 source 

representing SCO2 = 0.6 was adapted from Jung et al. (2015), who identified subsurface CO2 

distribution and accumulation within regional geometry of formations without consideration of 

chemical reactions. Finally, the model was simulated to predict the migration rate of the CO2(g) 

front and associated chemical reactions for a period of 300 yrs.  

Table 7. Physical parameters for salinity, relative permeability and capillary pressure functions applied in both 1-D 

and 2-D model. References from a) Jung et al. (2015), b) Van Genuchten (1980), c) Corey (1954). 

Salinity (Salt Mass Fraction, Xsm) 0.011a) 

Relative Permeability 

Phase Liquidb)  (Slr: irreducible water saturation, λ: exponent) Gasc)  (Slr: irreducible gas saturation) 
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P0 = 19.59 kPa 

 

The 2-D model represents subsurface stratigraphy at the N-S cross-section of the Green 

River area, which intersects both the LGW fault and the Green River Anticline (Fig. 1b and 5b). 

The lateral extent of the 2-D model was set to 10,000 m while the depth of the model remained 
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the same as the 1-D model. The horizontal discretization of the grid-block (Δx) varied from 300 

m to 1 m in order to capture CO2 transport and associated chemical reactions precisely adjacent 

to the LGW fault, and also for minimizing the lateral boundary effects of the model (Fig. 5b). 

Vertical discretization (Δz) was consistently set to 10 m, resulting in the total number of grid-

blocks to be 6,060. Regional characteristics (e.g., dipping angle, thickness, and vertical offset) of 

all 13 geologic formations including the LGW fault were considered in the model, and the actual 

settings followed the former study of Jung et al. (2015) (Table 5). Configuration of the LGW 

fault conduit followed constituents (e.g., fault conduit, gouge, and damage zone) defined by 

Caine (1996), as shown in Fig. 5c. Here, geologic properties of fault plane and damage zone 

were adapted from Jung et al. (2015). The fault gouge surrounded by the damage zone was 

assigned with adjacent parent rock values, assuming that the fault gouge mainly originates from 

both cataclasites of parent rocks and clay-rich gouge, regardless of authigenic minerals in the 

damage zone (Caine, 1996; Faulkner et al., 2010); e.g., permeability of fault gouge material 

adjacent to the Navajo Sandstone was assigned a value identical to the Navajo Sandstone 

permeability. In addition, salinity, relative permeability, and capillary pressure were set to the 

same conditions as the 1-D models.  

For the top boundary, the Dirichlet condition was assigned to represent atmospheric 

pressure and surface temperature (P = 0.14 MPa and T = 25.1 °C) while the no-flow condition 

(Neumann-type boundary) was given at the bottom boundary, precluding additional flow from 

underneath and highlighting the fault-focused fluid flow (Fig. 5b). Lateral boundaries of the 

model were set to maintain the initial hydrostatic pressure and geothermal gradient during the 

simulation period. Exceptionally, pressure of left-lateral boundary representing Navajo and 

Entrada Sandstones was increased 0.25 MPa from the hydrostatic pressure to reflect the over-



 

31 
 

pressurized aquifer condition as described in Kampman et al. (2014). For the sources, CO2 was 

released at two designated locations (Fig. 5b): 1) CO2 mass fraction (XCO2) of 0.05 was assigned 

at the northern Navajo Sandstone boundary (leftmost boundary on the footwall side) to mimic 

natural CO2 accumulations in the Shallow Jurassic Aquifers and 2) CO2(g) was assigned at the 

bottom of the LGW fault conduit, where 60% of CO2 saturation (SCO2 = 0.6) was assigned 

equally to the 1-D model. Lastly, the simulation period was set to 1,000 yrs (Fig. 5b). 

The hydrostatic pressure gradient applied to each model was implemented from 

theoretical CO2 saturation calculations from in-situ observation of shut-in pressures at the 

CO2W55 well by Kampman et al. (2014), and from former model settings of Jung et al. (2015). 

Slightly over-pressurized Carboniferous and Permian strata (i.e., high hydraulic heads), which 

forces groundwater toward the fault, are reflected on the model in the form of increased 

boundary pressure on the footwall side (Kampman et al. 2014; Hood and Patterson, 1984). 

Sensitivity analyses on hydrogeologic model parameters were conducted prior to the 

actual modeling of the 1-D and 2-D systems in order to evaluate the influence of input variables 

on simulation results. Porosity, permeability and dilation width (Δx of fault zone grid-block) of 

the fault zone were varied during the analyses. First, since the applied porosity values in the 

study area were relatively higher (0.2 to 0.3) compared to the average Jurassic Sandstones (0.034 

to 0.25; Manger, 1963), porosity values were varied by a factor of 2 during this test. Gain in 

porosity and permeability caused an increased speed of CO2 fronts in the 1-D and 2-D models, 

and loss in porosity and permeability led to a decrease in migration velocity. For instance, when 

the porosity of 1-D and 2-D models was halved, the arrival time of CO2 on the surface was 

approximately 15% slower than the original model. When the porosity was doubled, the 

migration velocity of CO2 increased up to 20%. Furthermore, when the permeability of each 
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model was halved, the arrival time of CO2 on the surface was delayed about 40% of the original 

model. The dependency of flow velocity on the horizontal grid-block size (Δx) was not 

significant, showing ±5 % of difference when Δx varied up to one order of magnitude.  

However, varying hydrogeologic parameters did not affect the distribution of CO2 and 

mineral reaction patterns in the 1-D and 2-D models, but only the migration time of CO2. Thus, 

the models and physical parameters in this study were set to match the CO2 propagation rate of 

Jung et al. (2015) by using formerly suggested field values, to get a similar arrival time of CO2 

on the surface of the model, as displayed in Tables 5 and 6.



 

 
 

3
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Figure 5. Conceptual models describing the Little Grand Wash Fault zone with fault-focused fluid flow; (a) a 1-D upscaled fault conduit model for investigation 

on mineralogic changes induced by CO2 displacement. The apparent stratigraphy is estimated from stratigraphic information in the footwall side of the LGW 

fault. b) An overview of the 2-D conceptual fault zone model. CO2 is released at two locations; gaseous CO2 at the bottom of the LGW fault equivalent to the 1-D 
conduit model and aqueous CO2 at the Navajo Sandstone in the lateral boundary of footwall. c) A magnified view of 2-D fault conduit shown in (b). Vertical 

solid lines in black represent changing grid-block sizes at the location. 
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4.3. Mineral Assemblage and Kinetic Parameters 

The X-ray diffraction (XRD) analysis of the in-situ Navajo Sandstone core collected from 

CO2W55 well revealed a quartz-rich lithology (Kampman et al., 2014) with ranges of quartz 

(80.4 to 93.0 wt.%), albite (0.0 to 0.4 wt.%), K-feldspar (2.5 to 8.7 wt. %), illite (1.5 to 8.4 

wt. %), carbonate minerals as calcite and dolomite (0.4 to 4.8 wt. %), and hematite (0.0 to 0.1 

wt. %). Additionally, the presence of kaolinite in the altered portion of the Navajo Sandstone 

(0.2 to 4.6 vol. %) was taken into account as a primary mineral species and applied in the models 

(Beitler et al., 2005). Based on these selected minerals, a series of numerical batch reactions was 

conducted with same 1-D and 2-D model settings of TOUGHREACT to identify an equilibrated 

initial fluid composition suitable to the local pressure and temperature gradients in the given 

media settings.  

Following the outputs of batch reaction, the initial albite and dolomite facies were 

completely dissolved and transited to quartz, illite, calcite, and magnesite. Additionally, 

secondary pyrite was precipitated during this stage of modeling from a reaction with the ambient 

fluid. Consequently, 8 primary and 9 secondary mineral assemblages were selected (Table 7). 

Among the 8 primary minerals, calcite is assumed to be an equilibrium reaction according to the 

Ca2+-rich condition of fluid chemistry in the research area. For the rest of the minerals, 

precipitation and dissolution were kinetically treated following the equation (1). Both rate 

constants and kinetic parameters are described in Table 7.  

Initial volume fraction of minerals was converted from the weight fraction of the XRD 

dataset by assuming mineral grains to be a uniform and spherical radius (10-3 m). Mineral 

reactive surface area data were adapted from Xu et al. (2010) who calculated the areas by 

assuming the whole rock construction as a cubic array consisting of truncated spheres. For the 
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clay minerals in this study, increased surface area of 151.6 cm2/g was specifically applied to take 

into account surface edges within sheet silicates (Nagy, 1995). Reactive surface areas of the 

remaining minerals were comparable to values (near 10 cm2/g) in Knauss et al. (2005) and Zerai 

et al. (2006). Finally, for the sake of numerical simplicity and due to limited data of crystalline 

composition, the chosen mineralogic data were uniformly applied to both 1-D and 2-D models 

with varying hydrogeologic parameters in each geologic formation (Table 5). 

 

4.4. Chemical Species and Initial Aqueous Solutions  

The modeled geochemical systems in this study are depicted by primary and secondary 

species, indicating basis species and aqueous complexes, respectively (Reed, 1982). In this case, 

the concentration of each secondary species is represented by a function of primary species 

(Reed, 1982), by the following equation: 

𝐶𝐶𝑖𝑖 =  𝐾𝐾𝑖𝑖−1 ∙ 𝛾𝛾𝑖𝑖−1 ∙ ∏ 𝐶𝐶𝑗𝑗𝑣𝑣𝑖𝑖𝑖𝑖 ∙ 𝛾𝛾𝑗𝑗𝑣𝑣𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑗𝑗=1                               (2) 

Here, Ci and Cj are the molal concentration of each i-th secondary and j-th primary species, 

respectively. γi and γj are activity coefficient of species. Ki and vij are the equilibrium constant of 

species i and the stoichiometric coefficient of reaction involving species ‘j’ in terms of ‘i’, 

respectively.  

In this study, a total of 13 primary and 53 secondary species were selected based on 

speciation from the batch reaction with analytical fluid chemistry data (Table 8). Primarily, O2(aq) 

is used for representing the redox state of the ambient fluid in each grid-block in the models by 

attribution of the oxidation potential (Nordstrom and Munoz, 1986; Wolery, 1992, Xu et al., 

2004). The negative O2(aq) concentration on Table 8 is assumed from Xu et al. (2004), which 
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resulted from negative stoichiometric coefficient of aqueous oxygen in the deep saline water of 

models (Eh = -100 mV). This assumption corresponds to the field observation of Kampman et al. 

(2014), who reported the lower bound fluid Eh in the range of -100 to -150 mV. 

In the 1-D model in Fig. 5a, the Crystal Geyser effluent was applied as the ambient fluid 

because the Crystal Geyser effluent is interpreted to be a mixture of the Deep Paleozoic and the 

Shallow Jurassic aquifers (Group I and II; Fig. 4). In the 2-D model, fluids of the two end-

members, Entrada and Navajo Sandstones, were applied to each designated depth. For instance, 

the fluid chemistry of Entrada formation was applied to above the Carmel Formation at both the 

hanging wall and footwall. Consequently, the fluid chemistry in the Navajo formation was 

applied below the Entrada Sandstone (Fig. 5b). This 2-D model setting of differential fluids was 

established in order to simulate potential mixing of each end-member fluid on both aquifers and 

the fault zone.  

 

5. Model Results 

5.1. 1-D Fault Conduit Model 

5.1.1. CO2 displacement and Reactive Front Migration 

Displacement of the ambient fluid within the 1-D LGW fault conduit occurred 

immediately after the release of CO2(g) began at the bottommost grid-block (Fig. 6a). CO2(g) 

saturation of 0.21 reached the middle of the Carmel Formation after 300 yrs (blue line in Fig. 

6a). The migration velocity of CO2(g) through the 1-D fault conduit model similarly matched the 

former prediction by Jung et al. (2015), whose 2-D model predicted the arrival time of CO2(g) to 

the surface to be between 300 and 400 yrs. In the meantime, the migration velocity of CO2(g) 
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continuously accelerated from 0.8 m/yr (~100 yrs; red line) and 1 m/yr (~200 yrs; green line) to 

1.37 m/yr (~300 yrs; blue line) as the CO2(g) front approaches the shallower depths. Since CO2 is 

compressible gas, which has lower density and viscosity compared to water, the migrating CO2 

front in the fault conduit will exert strong buoyancy force with accompanying volume expansion 

in the shallow depths (Pruess, 2007). In addition, an increase in CO2 volume corresponds to a 

relative increase in its saturation within pores in the given medium, resulting in the enhancement 

of relative permeability of CO2(g) (Pruess, 2008).  

Continued influx of CO2(g) at the bottom of the model gradually elevated the average CO2 

saturation within the fault conduit; as aforementioned, CO2 saturation reached 0.21 at 300 yrs 

(Fig. 6a). Considering that the initial CO2 saturation at the bottom was set to 0.6, it is implied 

that the remaining CO2(g) was dissolved into the ambient fluid. Hence, dissolved CO2(aq) 

concentration increased to 920 mmol/L at 300 yrs within the Navajo Sandstone (blue squares in 

Fig. 6a). In order for further quantification, the simulated CO2(aq) concentrations were compared 

with in-situ sampled CO2 concentrations (yellow squares) collected at the CO2W55 well, which 

was drilled 90 m north of the LGW fault trace (Kampman et al., 2014). Comparison of CO2(aq) 

generally revealed good agreement specifically at the bottom of the Navajo Formation despite 

that the well did not penetrate the LGW fault directly. Additionally, the basin-scale CO2 

solubility curve calculated from local pressure and temperature gradients using Duan et al. 

(2006) revealed similarity to the simulated CO2 profile (Fig. 6a).  

As a consequence of CO2(g) dissolution, acidification of the ambient fluid observed was 

coincident to the CO2-moving front (Fig. 6b). For example, as CO2(g) migrated upward, pH of the 

ambient fluid declined to ~4.98 at 100 yrs (red), 5.13 at 200 yrs (green), and 5.17 at 300 yrs 

(blue). The migrating pH front was sharp early in both 100 yrs and 200 yrs, concurrently 
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revealing the local pH minima at the front. However, the sharp low-pH fronts at 100 yrs and 200 

yrs notably smoothed out at 300 yrs, resulting from buffering by water-rock interactions similar 

to an observation made by Xu et al. (2010). In-situ measured pH values (yellow squares) 

obtained at the lower part of Navajo Sandstone showed proximities to the simulated pH curve 

(blue line) at 300 yrs. However, field samples at the upper part of the Navajo Fm. have 

deviations of pH, which is similar to the profile of CO2(aq) concentration in Fig. 6a. This 

discrepancy occurred presumably due to the simplification of the 1-D model from adapting the 

uniform hydrogeological properties (e.g., permeability and porosity) throughout the model 

(Table 5).   
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Figure 6. Results of 1-D simulation along the vertical column (depth=600m; Δz=5m; stratigraphy of the northern footwall is presented on Fig. 5) during 300 
years of period. a) Calculated gas saturation and computed/measured CO2(aq) concentrations, where SL represents saturation of liquid phase in each grid-block. 
CO2(g) saturation is calculated by 1-SL. Basin-scale CO2 solubility curve was adapted from Kampman et al. (2014); b) Computed and measured pH values. Each 

colored section of background reflects the depth and thickness of each formation at the northern footwall of the LGW fault. Square symbols represent in-situ 

measured values from the CO2W55 wellbore (Kampman et al., 2014) and numerically computed values from simulation at 300 years. Abbreviations of Fm. and 

Ss. in figures stand for formation and sandstone, respectively. 
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5.1.2. Changes in Minerals and Fluid Chemistry 

Changes in mineral assemblages are shown as: i) dissolution of calcite, magnesite, 

hematite, and K-feldspar and ii) precipitation of pyrite, illite, and quartz (Fig. 7). The largest 

mineralogical alteration appeared in the carbonate minerals (up to -6.5 mol/m3
·solid; Fig. 7a) 

while the rest showed changes less than 0.4 mol/m3
·solid. Due to the dissolution of calcite 

(CaCO3) and magnesite (MgCO3), dissolved Ca2+ and Mg2+ concentrations were elevated, 

showing an increase of Ca2+ and Mg2+ up to 0.025 mol/kg·H2O in the ambient fluid (Fig. 7a and 

8a).  

This observation implies that the carbonate minerals are the most sensitive to the 

dissolved CO2, which induces an increase in dissolved inorganic carbons and lowers pH of the 

ambient fluid (Rau and Caldeira, 2000). Especially, the dissolution fronts of calcite were greater 

in the beginning but decreased as the CO2 front moved upward, implying re-precipitation of 

calcite after dissolution (Fig. 7a). Therefore, the prolonged leakage of CO2 could supply 

sufficient amounts of Ca2+ to the ambient fluid, resulting in a supersaturated condition with 

respect to calcite. On the contrary, magnesite did not reach the supersaturated condition, and 

thus, continuously dissolved with increasing Mg2+ concentration (Fig. 7a and 8a), indicating 

minimal precipitation of Mg-bearing minerals such as dolomite, illite, and ankerite.  
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Figure 7. Changes in mineral assemblages of 1-D model. a) calcite and magnesite; ; b) pyrite and hematite c) K-

feldspar and illite; d) quartz and kaolinite. Note that the unit of all mineral is changes in mol/m3
·solid in each 

individual grid-block. Note that each graph does not indicate an exchange between two minerals displayed therein. 
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The exchange of iron species between Fe-bearing minerals such as pyrite (FeS2) and 

hematite (Fe2O3) is shown in Fig. 7b. As a consequence of continued CO2 influx into the ambient 

fluid, the total dissolved amount of hematite reached ~0.00028 mol/m3
·solid at 300 yrs. In the 

meantime, the precipitated amount of pyrite (~0.00056 mol/m3
·solid) was approximately double 

that of the dissolved hematite. In the model, such pyrite precipitation and hematite dissolution 

are controlled by O2(aq) content in the ambient fluid (Xu et al., 2000). Although hematite actually 

contains Fe3+, because the concentration of species is represented in the model in terms of total 

numerical concentration (Reed, 1982), the sum of aqueous Fe2+ and O2(aq) is calculated and 

utilized in the stead of Fe3+. This oxygen approach to represent redox condition is described in 

Nordstrom and Munoz (1986) and Wolery (1992).  

In the model, the dissolution of hematite releases Fe2+, which is used in the following 

equations to calculate the precipitation of pyrite (Xu et al., 2000):  

𝐹𝐹𝑒𝑒2𝑂𝑂3 + 4𝐻𝐻+ ↔ 2𝐹𝐹𝑒𝑒2+ + 0.5𝑂𝑂2 + 2𝐻𝐻2𝑂𝑂                       (3) 

𝐹𝐹𝑒𝑒𝑆𝑆2 + 𝐻𝐻2𝑂𝑂 + 3.5𝑂𝑂2 ↔ 𝐹𝐹𝑒𝑒2+ + 2𝐻𝐻+ + 2𝑆𝑆𝑂𝑂42−              (4) 

These equations revealed that the precipitation of pyrite consumes the total amount of 

sulfate and proton within the ambient fluid (Fig. 8b). The source of Fe in the iron concretions 

including pyrite was indicated as the host-rock itself (e.g., dissolution of hematite), based on 

proton-promoted or reductive dissolution of iron-oxides in the rock, much like the dissolving 

hematite in the models of this study (Busigny and Dauphas, 2007). In addition, former studies 

indicated that the presence of small and disseminated pyrite grains in bleached sandstones show 

that Fe was mobilized and migrated in a form of Fe(II) (Beitler et al., 2005; Parry et al., 2004). In 

addition, these previous studies noted that a mixing between reducing fluid and groundwater may 
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have induced the concretion of iron-bearing minerals in the region; this is reflected in model-

observed pyrite-hematite reactions in this study (Chan et al., 2000).  

Although the overall reaction of hematite-pyrite oxidizes the ambient fluid by releasing 

O2(aq), the initial reducing condition in the model is likely to cause these transitions of iron-

bearing minerals. Thus, during a period of 300 yrs., average concentrations of redox aqueous 

species in the model varied by the influx of CO2. An increase in HS- and S2- (8.49 × 10-3 

mol/kg·H2O and 1.24 × 10-8 mol/kg·H2O) is caused by a sum of the reduced portion of H2S, 

SO2(aq) and SO4
2- (-6.85 × 10-3 mol/kg·H2O, -2.39 × 10-19 mol/kg·H2O and -6.12 × 10-8 

mol/kg·H2O) in each grid-block on average. Furthermore, small changes in hematite occurred 

above the CO2 fronts without influence of CO2 as a result of the reducing condition in the 

ambient fluid (pH = 6.52; Eh = -100 mV) that exceeds the stable range of hematite in the 

regional aquifer settings (Chan et al., 2000).  

In addition, a minor increment of CH4(aq) in the medium was observed (~1.0 × 10-3 

mol/kg·H2O), indicating a reinforced reducing condition established by the migration of CO2-

laden fluid in the model. As suggested by Wigley et al. (2012), who used a thermodynamic 

modeling method PHREEQC (Parkhurst and Appelo, 1999) with WATEQ4F database (Ball and 

Nordstrom, 1991), the overall stoichiometric dissolution of hematite in the region was stated as 

the following equation: 

20𝐹𝐹𝑒𝑒2𝑂𝑂3 + 5𝐶𝐶𝐻𝐻4 + 64𝐶𝐶𝑂𝑂2 + 19𝐻𝐻2𝑂𝑂 + 11𝐻𝐻+ = 30𝐹𝐹𝑒𝑒2+ + 10𝐹𝐹𝑒𝑒𝐻𝐻𝐶𝐶𝑂𝑂3+ + 59𝐻𝐻𝐶𝐶𝑂𝑂3−  (5) 

Furthermore, the precipitation of pyrite and reduction of sulfur in this study is shown by 

the following equation (Parry et al., 2004): 

4𝐹𝐹𝑒𝑒2𝑂𝑂3 + 16𝑆𝑆𝑂𝑂42− + 17𝐻𝐻+ + 15𝐶𝐶𝐻𝐻4(𝑔𝑔) = 8𝐹𝐹𝑒𝑒𝑆𝑆2 + 31𝐻𝐻2𝑂𝑂 + 15𝐻𝐻𝐶𝐶𝑂𝑂3−                      (6) 



 

44 
 

As methane reacts with the ambient fluid, the redox potential of fluid decreases to sulfate 

reduction, which is necessary for pyrite precipitation (Parry et al., 2004); thus, sulfate in the fluid 

is reduced to S2
2-. Therefore, a trace amount of CH4 is needed to keep the redox state of the 

ambient fluid, but an increased activity of CH4 is not necessary to promote further dissolution of 

hematite (Wigley et al., 2012). The presence of CH4 in the region was previously reported by 

Wigley et al., (2012), indicating the aforementioned reductive fluid chemistry. 

Fe2+ in the ambient fluid consistently increased, although the amount was almost 

negligible (Fig. 8d). Thus, it is implied that the dissolution rate of hematite slightly exceeds the 

precipitation rate of pyrite in the given condition of ambient fluid chemistry. In addition, because 

the change of Fe2+
(aq) is significantly small when compared to the range of molar changes that 

occurred in the two mineral abundances, this indicates the instantaneous and direct precipitation 

of iron into pyrite.
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Figure 8. Changes in element concentrations of 1-D simulation along the vertical column during 300 years of simulation period. a) Ca2+ and Mg2+; b) SO4
2- and 

Cl-; c) Na+ and K+; d) AlO2
- and Fe2+. Unit of all concentrations is changes in mol/kg·H2O in each individual grid-block. 
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Table 8. Parameters for computing kinetic rate constants in the model (Eqn. 1-2 in Appendix A). The kinetic constants are collated from Golubev et al (2009), 

Holland and Powell (1998), Knauss et al. (2005), McKibben and Barnes (1986), Palandri and Kharaka (2004), Ruan and Gilkes (1995), Tester et al. (1994). 

Dolomite kinetic data were calculated by Xu et al. (2010), using Gibbs free energy values of Rock et al. (2001) and entropy works of Robie and Hemingway 
(1995). Where k25 = kinetic constant at the temperature of 25°C, Ea = activation energy. For equation 1 and 2, the power term n for acid and base mechanisms 

both are described with respect to H+. Since the pyrite mechanisms are dependent of O2(aq), H+ and Fe3+, n of neutral mechanism is derived from O2, and n for acid 

mechanism is with respect to H+ and Fe3+. Calcite was applied as an equilibrium reaction species, and the initial volumetric fraction as zero. a) Initial volume 

fraction of each mineral was based on XRD analyses on the Navajo Sandstone of Kampman et al. (2014). 

Mineral 

  

Chemical Composition 

  

Initial Volume 

Fractiona) 

  
Specific 

Surface 

Area 

(cm2/g) 

  
  

        

  References 

   

Primary          

Quartz  SiO2  9.55 × 10-1  9.8   Tester et al. (1994) 

Hematite  Fe2O3  4.39 × 10-4  12.9 

 

 Ruan and Gilkes (1995) 

Illite  K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2  1.51 × 10-2  151.6         set to smectites 

K-feldspar  KAlSi3O8  1.02 × 10-2  9.8              Palandri and Kharaka (2004) 

Kaolinite  Al2Si2O5(OH)4  1.86 × 10-2  151.6               Palandri and Kharaka (2004) 

Magnesite  MgCO3  2.49 × 10-4   9.8               Palandri and Kharaka (2004) 

Pyrite 
 

FeS2  
 

9.48 × 10-8 
 

12.9 
    McKibben and Barnes (1986) 

          

Calcite  CaCO3          3.94 × 10-4  

Secondary          

Dolomite  CaMg(CO3)2  0  9.8   Xu et al. (2010) 

Chlorite  Mg2.5Fe2.5Al2Si3O10(OH)8  0  9.8   Holland and Powell (1998) 

Oligoclase  CaNa4Al6Si14O40  0  9.8   Palandri and Kharaka (2004) 

Albite   NaAlSi3O8  0  9.8   Palandri and Kharaka (2004) 

Siderite  FeCO3  0  9.8   Knauss et al. (2005); Golubev et al (2009) 

Dawsonite  NaAlCO3(OH)2  0  9.8   set to siderite 

Ankerite  CaMg0.3Fe0.7(CO3)2  0  9.8   set to siderite 

Na-Smectite  Na0.290Mg0.26Al1.77Si3.97O10(OH)2  0  151.6   Palandri and Kharaka (2004) 

Ca-Smectite  Ca0.145Mg0.26Al1.77Si3.97O10(OH)  0  151.6   Palandri and Kharaka (2004) 
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Table 8 (continued).  

 
 

 

 

 

 

 

Mineral 

  Kinetic rate parameters 

  

Neutral Mechanism 

  

Acid Mechanism 

  

Base Mechanism 

k25 (mol/m2/s) 
Ea           

(kJ/mol) 
k25 (mol/m2/s) Ea (kJ/mol) n (H+) k25 (mol/m2/s) Ea (kJ/mol) n (H+) 

Primary              

Quartz  1.02 × 10-14 87.7         

Hematite 

 

2.51 × 10-15 66.2  4.07 × 10-10 66.2 1.00     

Illite  1.66 × 10-13 35.0  1.05 × 10-11 23.6 0.34  3.02 × 10-17 58.9 -0.40 

K-feldspar  3.89 × 10-13 38.0  8.71 × 10-11 51.7 0.50  6.31 × 10-12 94.1 -0.82 

Kaolinite  6.92 × 10-14 22.2  4.89 × 10-12 65.9 0.78  8.91 × 10-18 17.9 -0.47 

Magnesite  4.57 × 10-10 23.5  4.17 × 10-70 14.4 1.00     

Pyrite 
 2.82 × 10-50 56.9  3.02 × 10-80 56.9 -0.50  

   
 

  
n(O2(aq)) = 0.5 

 
 

n(Fe3+) = 0.5 

 
   

Calcite  Equilibrium reaction 

Secondary            

Dolomite  2.95 × 10-80 52.2  6.46 × 10-40 36.1 0.50     

Chlorite  3.02 × 10-13 88.0  7.76 × 10-12 88.0 0.50     

Oligoclase  1.45 × 10-12 69.8  2.14 × 10-10 65.0 0.46     

Albite   2.75 × 10-13 69.8  6.92 × 10-11 65.0 0.46  2.52 × 10-16 71 -0.57 

Siderite  1.26 × 10-90 62.8  6.46 × 10-40 36.1 0.50     

Dawsonite  1.26 × 10-90 62.8  6.46 × 10-40 36.1 0.50     

Ankerite  1.26 × 10-90 62.8  6.46 × 10-40 36.1 0.50     

Na-Smectite  1.66 × 10-13 35.0  1.05 × 10-11 23.6 0.34  3.02 × 10-17 58.9 -0.40 

Ca-Smectite  1.66 × 10-13 35.0  1.05 × 10-11 23.6 0.34  3.02 × 10-17 58.9 -0.40 
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Table 9. Initial water chemistry of each reactive transport model. All models follow the same chemical species setting in this study. Fluid chemistry values were 

adapted from the averaged values of Table 3 and converted into model input format. a) All secondary species are described in terms of total concentration of 

primary species (Reed, 1982), where ATOT stands for total numerical concentration of species “A”. All initial water composition is equilibrated in the model for 
2,000 yrs. b) Brine end-member was selected from well 2E fluid chemistry of Kharaka et al. (1997) as a representative value for the Deep Paleozoic Aquifer. 

O2(aq), H+ and H2O are assigned in the model to give fluid properties of redox balance, pH and initial solvent, respectively. O2(aq) values were assumed from Xu et 

al. (2006) who evaluated CO2 behavior in deep sedimentary basins and uniformly applied on all cases to have same redox condition. (*Formation fluid samples 

from Kampman et al., 2014) 

 

Primary Species 

(ATOT)a) 

  
Secondary Species (designated role on reactions) 

  Chemical 

Components 

(mmol/L) 

 
Entrada* 

  
Navajo* 

  Crystal 

Geyser          

H+   pH   pH  6.30E+00  5.13E+00  6.79E+00 

Na+   NaCl(aq), NaCO3
-, NaHCO3(aq), NaHSiO3(aq), NaOH(aq), NaSO4

-   Na+  4.76E+01  1.13E+02  1.55E+02 

K+   KCl(aq), KSO4
-   K+  3.30E+00  7.20E+00  8.31E+00 

Ca2+   CaCl+, CaCl2(aq), CaCO3(aq), CaHCO3
+, CaOH+, CaSO4(aq)   Ca2+  2.76E+01  2.41E+01  2.48E+01 

Mg2+   MgHCO3
+, MgCO3(aq), MgCl+, MgH3SiO4

+, MgOH+, MgSO4(aq)   Mg2+  1.07E+01  1.01E+01  9.10E+00 

Fe2+   Fe3+, FeHCO3
+, FeCO3(aq), FeCl+, FeCl4

2-   Fe2+  3.49E-01  3.66E-02  2.50E-04 

AlO2
-   Al3+, HAlO2(aq), NaAlO2(aq), AlOH2+, Al(OH)2

+   AlO2
-  3.00E-04  1.20E-03  5.50E-06 

SiO2(aq)   H3SiO4
-   SiO2(aq)  1.06E-01  5.92E-02  2.46E-01 

HCO3
-   

CaCO3(aq), CaHCO3
+, FeHCO3

+, FeCO3(aq), MgHCO3
+, MgCO3(aq), 

NaCO3
-, NaHCO3(aq), CO2(aq), CO3

2-, CH4(aq), CH3COOH(aq) 
  HCO3

-  4.50E+01  6.37E+01  7.11E+01 

Cl-   CaCl+, CaCl2(aq), FeCl+, FeCl4
2-, KCl(aq), MgCl+, NaCl(aq)   Cl-  2.68E+01  8.49E+01  3.70E+00 

SO4
2-   H2S(aq), HS-, S2-   SO4

2-  1.94E+01  2.35E+01  2.21E+01 

O2(aq)   Redox Balance   O2(aq)  -8.65E-02  -8.65E-02  -8.65E-02 

H2O   Initial Solvent   H2O  1.00E+00   1.00E+00   1.00E+00 
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Reactions of silicate minerals (K-feldspar, kaolinite, illite, and quartz) also corresponded 

to the migration of the reactive front (Fig. 7c and 7d). Continuous precipitation of illite and 

quartz, and dissolution of K-feldspar and kaolinite were observed; these changes were relatively 

less significant than carbonate minerals (~0.4 mol/m3·solid) but greater than Fe-bearing species. 

However, SiO2 and Fe2O3 concentrations showed an inverse correlation in a field study (Busigny 

and Dauphas, 2007). 

A considerable amount of quartz precipitated along the fault conduit at the relatively 

lower temperature settings of the model (25 – 37.7 °C; Fig. 7c). Precipitation of quartz occurs in 

response to the lowered temperature and pressure when the saturated fluid migrates upward 

through the fault conduit (e.g., Sibson, 1990). In the model, illite precipitation caused 

consumption of the K+ ion, which was released from K-feldspar and kaolinite dissolution as the 

reactive front moved upward (Fig. 7c and 8c). In addition, the Na+ ion was consumed to form a 

secondary Na+-species in the given pH condition, while no precipitation of Na-bearing minerals 

(i.e., oligoclase, dawsonite and Na-smectite) was observed (Fig. 8c; Table 7 to 8). On the 

contrary, the concentration of AlO2
-, resulting from the precipitation of illite with a minor 

amount of aqueous complexation, continuously decreased in the model (Fig. 8d).  

Due to model limitations, amorphous silica (SiO2(am)) was not included in the model 

components; quartz and SiO2(am) compete with the same amount of SiO2(aq) in the model and 

thus, lead to the failure of model convergence. Hence, the model was not able to represent both 

the initial sandstone composition using quartz and the precipitation of SiO2(am) at the same time, 

due to numerical formulation of singular matrices. However, when SiO2(am) was solely assigned 

in the model instead of quartz, the precipitation pattern of the mineral was equivalent to the one 
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of quartz. Therefore, in this study, quartz is used to represent the overall SiO2 mineral 

precipitation. 

Release of silica into the ambient fluid from the dissolution of these minerals mainly 

promotes the precipitation of quartz and illite in low temperatures by providing soluble silica for 

cementation of such minerals. Feldspar weathering and transition of smectite to illite were 

formerly suggested as the internal sources of silica precipitation in reservoir rocks; this is 

reflected in the model results (Weber and Ricken, 2005; Lynch et al., 1997). In addition, 

dissolution of feldspar in low-pH regions, forming an input of the SiO2-rich ambient fluid, was 

formerly observed in the numerical model of the White Rim Sandstone on the Colorado Plateau 

with a reservoir temperature of 54 °C (White et al., 2005). At this temperature range, the SiO2(aq) 

concentration (~0.03 mol/kg∙H2O) in the ambient fluid, that is derived from a dissolution of 

kaolinite (~1 mol/m3∙solid) and feldspar (~0.25 mol/m3∙solid), overtakes the solubility of quartz 

by approximately 21 times (Morey et al., 1962).   

 

5.2. 2-D Fault Zone Model 

5.2.1. Distribution of Subsurface CO2 in the 2-D Fault Zone Model 

CO2 distribution through the regional stratigraphic structures as shown in Fig. 5b is 

assessed in Fig. 9. Overall, CO2 released from two designated sources (i.e., grid-blocks on the 

leftmost boundary at the Navajo Sandstone and the bottommost grid-blocks of fault conduit; Fig. 

5b) that depicts CO2 generated from the deep Paleozoic Aquifers and the natural CO2-charged 

condition of the Navajo Sandstone (Jung et al., 2015), is spreaded through the LGW fault to the 

surface and accumulated under regional low-k caprocks (e.g., Summerville, Carmel, and Kayenta 

Formations; Fig. 9a; Table 5). 
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At the onset of the simulation, the buoyant CO2 filled the bottom-most region within the 

LGW fault, and additional CO2 supplied from the Navajo sandstone merged together at the LGW 

fault. Configuration of the LGW faults (i.e., fault conduit, gouge, and damage zone) governs CO2 

distribution as CO2 migrated through the LGW fault. For example, throughout the 300-yr 

simulation period, CO2 predominantly migrates through the high-k damage zone (Fig. 9b). When 

CO2 became more saturated throughout the fault and encountered low-k gouges and planes, the 

CO2 spread out and found other preferential pathways (Fig. 9c). Throughout the 2-D simulation, 

the vertical migration velocity of CO2 within the LGW fault was estimated as 1.8 m/yr on 

average, which is slightly higher than the one predicted from the 1-D model (0.8-1.37 m/yr; Fig. 

9d). This is because the 2-D model had two CO2 sources assigned, resulting in a rapid supply of 

CO2 specifically from the lateral Navajo Sandstone source (Fig. 9a). 

The LGW fault is characterized as both the north-plunging anticlinal structure and low-k 

barrier that affect an accumulation of CO2 under the subsurface (Jung et al., 2015). Hence, the 

anticlinal structure of the fault on the footwall side (the crest of anticlinal trap in Jung et al., 

2015) showed strong CO2 trapping ability than dipping formations in the hanging wall side. For 

instance, CO2 saturations in Entrada, Navajo, and Wingate sandstones at the footwall side are 

more elevated than those of the handing wall side (Fig. 9d). Especially, in the footwall, the 

buoyant nature of CO2 makes the plume remain stagnant at the crest of anticlinal structure where 

the low-k LGW fault intersects. Therefore, the small-scale CO2 natural reservoir presumably 

built up in this location, and consequently, this accumulation of CO2 could induce the geysering 

mechanisms at the Crystal Geyser (Fig. 9d). A certain amount of CO2, which horizontally 

penetrates through the LGW fault, followed the regional Jurassic aquifers under the Summerville 

and Carmel Formations to the SW fault, implying that both LGW and SW faults are 
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hydrodynamically connected each other and share the CO2 origins (Fig. 9a). The estimated 

horizontal CO2 migration velocity under regional dipping caprocks was 1.9 m/yr in average, 

which is compatible with the formerly predicted range of 2.2 to 2.4 m/yr by Jung et al. (2015). 

The estimated velocity suggested that the CO2 plume will arrive at the SW Fault in 

approximately 4,200 yrs (Fig. 9a). 
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Figure 9. Two-dimensional CO2 and pH distribution of the cross-sectional area depicted on Fig. 1b. a) Overall CO2 saturation in 2-D model at 1,000 years of 

simulation period. Magnified view of CO2 saturation along the fault zone at b) t = 300 years, c) t = 600 years and d) t = 1000 years. pH distribution along the 
fault zone at e) t = 300 years, f) t = 600 years and g) t = 1000 years with in-situ and modeled pH data along the Crystal Geyser. Note that pH values of the 

Entrada and Carmel Fm. were measured on the surface (Kampman et al., 2014). 
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Once CO2 dissolved into the ambient brine, the density of CO2-saturated brine increased 

2 to 3 % greater than the ambient fluid, inducing a density-driven gravitational segregation 

(Garcia, 2001). Ultimately, convective mixing within formations occurred and further enhanced 

the CO2 dissolution process. The pH changes shown in Fig. 9e, 9f and 9g are mainly driven by 

the gravitational segregation of dissolved CO2. Especially, within the both Wingate and Navajo 

Formations, the gravitational segregation of dissolved CO2 is significant, and thus, the low pH 

fluid is dominant. The pH observed at 1,000 yrs in Fig. 9 show overall range of 5.0 to 6.2 within 

the model but dropped to 5.0-5.4 specific to the fault zone (pH=5.1 on average of the 1-D model 

at 300 yrs; Fig. 6b). Furthermore, the simulated profile (yellow-dashed line) of pH along the 

Crystal Geyser shown in Fig. 9g approximately matched the in-situ sampled pH values at 

CO2W55 well (Table 3). 

 

5.2.2. Minerals and Fluid Changes in 2-D Subsurface Environment 

Primary changes observed previously in the 1-D model were: 1) dissolution of carbonate 

minerals (calcite and magnesite); 2) an exchange of iron species between hematite and pyrite; 3) 

an alteration of silicate minerals (K-feldspar and kaolinite); and 4) an evolution of 

quartz/phyllosilicate facies. Focusing on these reactions, concentrations of major aqueous species 

and mineral abundances were tracked to understand the evolution of minerals and fluid 

chemistry in the 2-D model during a period of 1,000 yrs (Fig. 10 and Fig. 11). Patterns 

describing change in major aqueous species and minerals mimic the overall distribution of CO2 

plume (Fig. 9 and Fig. 10). As marked by the dashed lines (spatial extent of each element at 300 

and 600 yrs) in Fig. 10, fronts of dissolved species corresponding to mineral dissolution regime 
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Figure 10. Two-dimensional distribution of the aqueous species and relevant mineral abundances at t = 1,000 years 

along the cross-sectional area depicted on Fig. 1b. Note that the right model boundary was cut at 7,500 m from the 

leftmost margin, to enhance visibility of figures. a) Ca2+ concentration; b) Fe2+ concentration; c) SO4
2- concentration; 

f) pyrite abundance; d) SiO2(aq) concentration. The dashed lines with blue and magenta depicts the extent of each 

element species at 300 and 600 years, respectively. Note that SO4
2- concentration values are negative, indicating 

consumption of the anion. 
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Figure 11 (continued). Two-dimensional distribution of the aqueous species and relevant mineral abundances at t = 
1,000 years along the cross-sectional area depicted on Fig. 1b. Note that the right model boundary was cut at 7,500 

m from the leftmost margin, to enhance visibility of figures. e) calcite abundance; f) hematite abundance; g) pyrite 

abundance; h) quartz abundance. Note that hematite abundance values are negative, indicating overall dissolution of 

the mineral. 
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also resembles the migrating CO2 fronts. Additionally, density segregation of the CO2-bearing 

fluid caused intense mineral alteration reactions, especially for the areas adjacent to the fault 

conduit (Fig. 10). The intense alteration caused in these regions is relatively large as displayed in 

the 2-D space, which could possibly be due to the the size of assigned grid-block (Δx=300m). 

However, the values associated with the reactions are still reasonable since the lateral boundary 

(Dirichlet-type) resides in the outskirts of the reaction fronts with no changes and with the 

minimum grid-block size (Δx=1m). 

First, the elevated patterns of Ca2+ concentration from calcite dissolution generally 

followed the subsurface CO2 migration pattern, concurrently showing the amount of released 

Ca2+ as 0.012 mol/kg·H2O on average (Fig. 9a and 10a). The calcite dissolution (~ -15 

mol/m3·solid) was especially substantial under the Carmel Fm. at the hanging wall side and the 

leftmost Navajo Fm. on the footwall side (Fig. 10b). At the same time, calcite precipitation (up to 

~ 5.0 mol/m3·solid) occurred beneath the regions with intensive dissolution. Accordingly, it is 

implied that strong CO2 sources and the anticlinally-trapped CO2 can lead to a mineralization of 

calcite under these CO2-rich zones, by pH buffering resulting from silicate and carbonate 

dissolution.  

Fig. 10d displays locations where hematite dissolution was intensified (~ -0.001 

mol/m3·solid), which is adjacent to the bottom part of the fault conduit. Particularly, the 

strongest dissolution of hematite was observed near the damage zone of the fault where the pH 

was observed at the lowest (pH=5.0; Fig. 9g). Due to the hematite dissolution compensated by 

pyrite precipitation, change in Fe2+ occurred at ~ 6.0 × 10-15 mol/kg·H2O in the ambient fluid, 

which was similar to the observation from the 1-D modeling result shown in Fig. 8d. Hematite 

dissolution and pyrite precipitation revealed approximately 2:1 exchange ratio of Fe between the 
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two minerals (Fig. 10d and 10f). During this exchange, the SO4
2- concentration in the ambient 

fluid decreased up to -8.0 × 10-9 mol/kg·H2O, since the process of pyrite precipitation consumed 

SO4
2- (Fig. 10e). Decrease in SO4

2- concentration implies possible precipitation of iron-bearing 

mineral (i.e., pyrite veins) formally observed within this region (Chan et al., 2000; Foxford et al., 

1996; Garden et al., 1997).  

Distribution of SiO2(aq) concentration showed almost an identical construction to CO2 

saturation, with respect to its local intensities and distribution pattern (Fig. 9a, 10g). An input of 

the quartzofeldspathic fluid, which resulted from the dissolution of K-feldspar and kaolinite, 

feeds SiO2(aq) to the ambient fluid (Fig. 10g) and lead to the precipitation of quartz and illite as 

formerly shown in Figs. 7c and 7d (Fig. 10h). More importantly, the concentration of SiO2(aq) 

shows strong influence of CO2 on the footwall side of the fault zone. According to the reactions 

described above, intense leaching of SiO2 under the Kayenta and the Carmel Fms. suggests there 

will be more diagenetic clay and quartz. The results show that the precipitation of quartz and 

illite will be continued with a sufficient supply of SiO2(aq), K+, Mg2+, and AlO2
- provided by the 

ambient fluid. This indicates a slight growth of relatively stable minerals (quartz and illite) from 

acid-vulnerable minerals (K-feldspar and kaolinite), which will remain longer in the given 

chemistry condition. 

Overall changes in average mineral abundance throughout the 2-D model were assessed 

during 1,000 yrs (Fig. 11). According to the model, carbonate minerals continuously dissolved to 

900 yrs where the dissolution curves changed its direction towards the precipitation. This effect 

could be caused by the arrival and escape of CO2, which have migrated under the Summerville 

Fm. on the hanging wall side, at the surface (Dirichlet-type) boundary where no more dissolution 

would occur (Fig. 9a and 10b).
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Figure 12. Time-series graphs of average mineral abundance changes throughout the 2-D model during the 1,000-year simulation period. a) calcite and 

magnesite; b) hematite and pyrite; c) quart, illite, K-feldspar and kaolinite. Note that the y-axes of graphs vary by each mineral species.   



 

60 
 

However, the continuous dissolution and precipitation of Fe-bearing and silicate minerals under 

the same conditions suggest that their dissolution and precipitation primarily occurred at the 

subsurface where there is no significant boundary effect as seen in Figs. 10d, 10f, and 10h. 

 

5.2.3. Changes in Alterations Observed Adjacent to the Fault Conduit 

The Roman numeric (I, II, III, IV, and V) and numbers (1, 2, 3, 4, 5, and 6) marked on 

Fig. 12a indicate monitoring points for both caprocks (Summerville, Carmel, and Kayenta Fms.) 

and assigned conduit materials along the fault zone where changes of permeability and intrinsic 

CO2 in minerals were tracked. A significant increase in permeability of up to 15.7% was 

observed under caprocks (Zone I to V) while changes (1 to 6) in the fault conduit were limited to 

the value of 0.062 % (Fig. 12b and 12c).  

The maximum degree of change in permeability was observed at Zone III situated 

approximately 100 m away from the center of the fault conduit under the Kayenta Fm. on the 

footwall side; here, the maximum reduction of pH was also observed as depicted in Fig. 9g. By 

comparing permeability changes at Zone III (~15.7%) on the footwall side and Zone V (~2.8%) 

on the hanging wall side, it is distinct that the significant reactions are manifested on the footwall 

where CO2 is trapped under the anticlinal structure.  

The intrinsic CO2 indicates that the inherent amount of carbonate in each assigned grid-

block medium (Fig. 12d and 12e). When the CO2-laden fluid contacts a medium, this intrinsic 

CO2 will vary with alteration induced by the fluid and thus releasing carbonate from minerals. In 

the model, overall intrinsic CO2 decreased up to -1.19% and -0.36% at the caprocks and conduit 

from initial rock compositions, respectively.  
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However, changes of intrinsic CO2 in Zones I to V remained similar to the conduit 

measuring points (Zone 1 to 6) except Zone III, while the permeability under the caprocks 

changed more than two orders of magnitude compared to the conduit. To ascertain the cause of 

these large differences in permeability changes, calcite precipitation pattern, being the most 

altered mineral (~ -15 mol/m3·solid) was needed to be taken into account.  

Precipitation and dissolution patterns of calcite adjacent to the fault conduit at t = 1,000 

yrs is displayed in Fig. 12a, following the same resolution of magnification that was formerly 

observed in Fig. 9. The observed distribution of dissolution corresponds to the changes in 

permeability and intrinsic CO2. For instance, the most altered Zone III is affected by the strong 

dissolution that occurred under the Kayenta Fm., resulting in an intensive permeability increase. 

In addition, Zones 1 and 5 show an increase of intrinsic CO2 after 400 yrs with changes of -1 ~ 0 

mol/m3·solid, which is a slightly lower value of dissolution than the ambient area. Although 

Zone 4 is located on the similar anticlinal structure along the fault conduit, it does not, however, 

show the same trend of calcite precipitation as found in Zones 1 and 5, since the lateral boundary 

of the Navajo Fm. feeds the aquifer continuously.   

Thus, it is implied that the permeability reduction that occurred at Zones 1 and 5 is 

probably due to the Ca2+-rich back-flux resulting from intensive alterations near the zones, 

causing re-precipitation of carbonate species to fill up the pores.  
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Figure 13. a) Degree of alteration with respect to calcite t = 1,000 years of the simulated period. Permeability changes of: b) zone I to V under low-k caprocks; c) 

zone 1 to 6 along the fault damage zone. Changes in the amount of mineralized CO2 of: d) zone I to V under low-k caprocks; e) zone 1 to 6 along the fault 

damage zone. Note the unit of minerals is molar change in unit volume of the grid-block solid. 
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6. Discussions: CO2-induced Changes in the Leaking Fault Zone 

6.1. Fluid-assisted Diagenetic Sealing Process in the Fault Zone 

Prolonged displacement of the CO2-laden fluid in hypothetical storage reservoirs through 

formations and geologic imperfections showed two concomitant mechanisms in former studies: 

1) Self-enhancing, which promotes the fluid flux to be enlarged by alteration of formation rocks 

(Gaus, 2010; Gherardi et al., 2007; Shiraki and Dunn, 2000); 2) Self-limiting, which impels the 

fluid migration by decreased pore spaces (Gherardi et al., 2007; Pruess, 2005). In this study, the 

consistently increasing amount of dissolved minerals through time (i.e., increased flow 

availability) in the 1-D and 2-D porous media suggested that the self-enhancing mechanism of 

fluid migration is occurring in the fault zone (Fig. 12). However, the increase of vertical 

permeability in the fault conduit medium was only up to 0.06 % on average, resulting only in a 

minor change in migration considering the original kv (1.0 × 10-15 m2). Therefore, the continued 

precipitation of relatively stable minerals (i.e., quartz and illite) and calcite in the given condition 

of the fault zone (e.g., pH < 5.5; 25.1 < T < 37.6 °C; 5.84 MPa < P < 0.14 MPa) can cause the 

opposite phenomenon of the self-enhancing mechanism, as previously observed in simulation 

results. Since these minerals are not easily soluble, the increasing amount of quartz and illite 

facies predicts the fluid flow will be interrupted when a fault conduit gets filled up by these 

solids, indicating fluid-assisted diagenetic sealing as one aspect of the self-limiting mechanism.  

 

6.1.1. Silicate Mineral Alterations Induced by CO2 

Growth of quartz and illite as a result of kaolinite and K-feldspar alteration by CO2-

induced reactive fronts were widely observed throughout the models in this study, especially 

along the fault conduit (Fig. 10f, and 10h). Formerly, precipitation of illite as an alteration 
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product of alumino-silicates (albite and K-feldspar) in numerical models was observed much like 

the study by André et al. (2007). Field analogues on a fault adjacent to the study area also 

support model results; strong illite and quartz precipitation observed under the Kayenta Fm. on 

the footwall side showed similar localization of extensive chert cementation replacing limestone 

deposit on the crest of anticlinal structure in the Moab Fault zone (Fig. 10h) (Haszeldine et al., 

2005).  

The unconfined Paleocene fluid activity (i.e., fault-controlled fluid migration) was 

suggested as a cause of this silicate mineral enrichment along the Moab Fault zone (Solum et al., 

2010). In addition, Solum et al. (2005) noted that more than 50% of neocrystallized illite is 

formed largely due to the fault-related fluid migration. The gouges and the damage zone in the 

Moab Fault was enriched up to 40% and up to 50% in 1Md illite with respect to the protolith, 

respectively (Solum et al., 2005). Furthermore, quartz overgrowths on hematite grain in samples 

of the Navajo Sandstone have been previously reported (Beitler et al., 2005). Illite in the region 

was indicated as the alteration product of kaolinite, while kaolinite and illite occur as 

intergranular or intragranular pore linings (Beitler et al., 2005).  

Diagenetic clays and quartz as a consequence of this alteration can promote the fluid-

assisted fault healing processes (Evans and Chester, 1995; Tenthorey et al., 2003). Permeability 

of the fault conduit can be significantly controlled by the clay fraction until it reaches 25 to 40 

vol. % (Faulkner et al., 2010; Takahashi et al., 2007). Meanwhile, altered feldspars producing 

phyllosilicates have been associated with volume-loss, reduced permeability and rheological 

strength of a fault zone (Bense et al., 2013; Evans, 1988; Goddard and Evans, 1995; Wintsch et 

al., 1995). The dissolved and re-precipitated quartz has been indicated as a cause of significant 

permeability reduction of fault cores, by field and laboratory investigations (Chester and Logan, 
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1986; Evans, 1988). Furthermore, Haszeldine et al. (2005) suggested that the decrease of SiO2 

solubility associated with CO2 exsolution and pressure decline near the surface is one of the 

reasons that cause the self-sealing of a fault zone. 

Although the chemical affinity of clay-forming aqueous species can be greatly lowered 

when a layer of clay coating is developed (Zhu, 2005), the irreversibility of silicate reactions 

suggests that these alteration products (i.e., quartz and illite) will remain stable in the fault 

conduit (Langmuir et al., 1997). Furthermore, CO2-promoted silicate mineral alteration is 

significantly faster than the natural dissolution of silicate minerals in a formation. In-situ 

dissolution rates calculated formerly for K-feldspar and plagioclase in the Navajo Sandstone 

were 10-19 and 10-16 mol·m-2s-1, respectively (Zhu, 2005). When compared to the model-

estimated dissolution rates with an avg. value of 6.3 × 10-12 mol·m-2s-1, it is indicated that the 

input of CO2 plays a key role in silicic mineral alterations in the region, even though the 

thermodynamic constants were exaggerated in the model, e.g., Wigley et al. (2013a).  

 

6.1.2. Switching of Travertine Deposit Locations and Subsurface Calcite Precipitations  

Travertine deposit locations on the LGW and SW faults have been switched due to 

changes in properties of fault hydrologic parameters (Burnside, 2010). This switching 

mechanisms of travertine mounds were formerly suggested as i) closure of pathways by 

precipitation of minerals, ii) local and remote seismic activities, and iii) climate related changes 

(Burnside et al., 2013). In addition, volumetric variations of travertine were said to be due to the 

post-glacial isostatic unloading (Kampman et al., 2012). However, surface deposition of 

travertine by strong CO2 flux from overlapping leakage sources can cause slight closure of the 
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fault conduit with assistance from the aforementioned silicate mineral alterations in terms of a 

self-limiting process, which can lead to a switching of travertine deposition. Episodicity of this 

alternating sequence of travertine deposition (i.e., self-limiting) and fault opening (i.e., self-

enhancing) by over-pressurized fluid is described in Frery et al. (2015), showing repeated cycles 

of fault opening and sealing. 

The observed precipitation of calcite under the Kayenta and Carmel Fms. on the footwall 

side and on the hanging wall side, respectively, indicates a possible deposition of carbonate 

minerals in subsurface (Fig. 12a). In addition, abrupt changes in the curvature of calcite 

(dissolution curve) indicate precipitation of the mineral, suggesting that the system transits 

toward the supersaturated condition with respect to calcite due to the prolonged influx of CO2 

(Fig. 11a).  

 From the drilling operation of the Crystal Geyser, it was revealed that several portions of 

shale and sandstone formations (approx. 236 m; 588 m; and near surface) along the wellbore 

accommodates calcite deposits (Williams, 2005)(Glen Ruby #1-X Well Log). This discovery 

supports the plausibility of precipitation, where inhibition of formation-parallel flow to the fault 

is possible from the assistance of silicate mineral precipitations by decreased pore spaces (Fig. 

10h and 12a); this was also observed in a series of simulations in this study. On a large time 

scale, this will induce insufficient groundwater input to the fault zone, which may cause 

formation dry-out and salt precipitation, interrupting CO2-laden fluid in the fault conduit, e.g., 

(Pruess and Müller, 2009). However, if dissolution of the deposit occurs by the switching of 

pathways for CO2-bearing reactive fluid due to changes in remote stress, e.g., regional 

seismicity, this can lead to a development of a large sinkhole, e.g., Billi et al. (2007).  
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The term “inactive travertine” indicates that the mounds are no longer being deposited. 

The inactive travertine mounds in the study area were constrained to an area of high fracture 

density along the LGW fault particularly where the two main fault traces lie close together (Jung 

et al., 2014). At the SW fault, both active and inactive travertine deposits that were relatively 

smaller in size were restricted to the northern footwall (Fig. 2b). Large volumes of inactive 

travertines were intersected by the northern trace of the SW fault, but relatively small volumes of 

both inactive travertines and active travertines associated with CO2 springs were even further 

north of the SW fault. This structural relation implies that the intensity of a leakage is highly 

dependent on intrinsic parameters relying on structural features of the fault rather than the 

characteristics of CO2 on the surface. Correlations among travertine deposits, CO2 flux 

anomalies with topographical differences and U-Th age of travertine showed little significance 

(Burnside et al., 2013); the only notable correlation was between CO2 flux and both the size of 

ancient travertine deposits and their distances from fault traces. Thus, location switching is 

mainly due to the changes of fault/fracture properties observed in this study. 

 

6.2. Physicochemical Aspects of the Cold-Water Geyser System 

 Several cold-water geysers and springs reside in the Green River area (Fig. 1 and 3). 

Specifically, the largest CO2-driven cold-water geyser, the Crystal geyser (Glen Ruby #1-X 

well), has periodically erupted since it was drilled in the mid-1930’s, showing multiple 

transitions of eruption patterns (eruption intervals and duration). In the 1970’s, the geyser 

eruption was unimodal, consistently having an interval of 4 hr 15 min (Baer and Rigby, 1978). In 

2005, Gouveia and Friedmann (2006) attached pressure and temperature sensors to the hole at 

the surface. After capturing 140 eruptions over 76 days, they revealed that the eruption patterns 



 

68 
 

transited from a unimodal to a bimodal eruption with longer eruption durations. Further 

continuous monitoring showed that the geyser eruption pattern changed again from bimodal to 

unimodal patterns between 2011 and 2012 with distinctly long eruption duration (e.g., over 20 

hours) (Han et al., 2013; Watson et al., 2014). 

McKnight (1940) has reported that the Glen Ruby #1-X well was drilled down to 863 m, 

indicating that the Crystal Geyser can be fed by various aquifers underneath (Table 1). However, 

recent study on the geyser using inverse modeling suggests that the wellbore is fed by 53 to 56 % 

and 42 to 45 % of water from Navajo and Entrada Sandstone aquifers at the major eruption 

period, respectively (Watson et al., Submitted Article). According to the CO2 distribution in the 

2-D model, the potential sources of CO2 for the geyser can also be the Entrada and Navajo 

Sandstones. Therefore, the alternating eruption periods of MEP and mEP (major and minor 

eruption periods as in Han et al., 2013) can be driven by switching mechanisms between possible 

CO2 accumulation zones and CO2-charged Navajo and Entrada sandstones.  

Likewise, potential CO2 accumulation zones underneath the Crystal Geyser can affect 

eruption periods. Since the geyser has been dynamited and capped several times (Glennon, 2005; 

Murray, 1989; Shipton et al., 2004), chambers associated with these activities can reserve 

gaseous CO2 before water recharges the wellbore. Furthermore, the proposed subsurface 

reactions in this study, e.g., calcite precipitation and associated possible pathway clogging can 

also cause variations of erupting behavior. Continued influx of quartzofeldspathic and calcic 

fluid and their precipitation can cause clogging in the geyser as the leakage persists. 
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6.3. A Cause of Bleaching in the Region and Trace Metal Mobilizations 

Bleaching of sandstones is observed on the surface outcrops in the Colorado Plateau; the 

color of rocks is not uniform with the formations (Beitler et al., 2003; Beitler et al., 2005; Chan 

et al., 2000; Parry et al., 2004). Controversy about the cause for this bleaching phenomenon still 

rages unabated. Formerly, the culprit for the broad iron mobilization was suggested as 

hydrocarbon stored in the region (Beitler et al., 2003; Beitler et al., 2005). However, continuous 

research has revealed that bleaching is mainly induced by CO2, without support of such 

hydrocarbon (Haszeldine et al., 2005; Loope and Kettler, 2015; Wigley et al., 2012).  

The simulated results of hematite and pyrite in this study also suggested that the 

reduction of Fe3+ in hematite can be solely driven by CO2-induced changes in the ambient fluid, 

without any support of hydrocarbons and additional CH4 input assigned in the model (Fig. 10d 

and 10f). To illustrate, the phenomena are mainly due to the dense migration of CO2 and CO2-

saturated saline fluid, which develop vertical advective and diffusive flow of buoyant CO2 and 

gravity current of CO2-dissolved fluid causing acid-reductive metal mobilization,  respectively 

(Wigley et al., 2013b). The descending CO2-bearing fluid that formed during the occurrence of 

density-driven convective mixing can trap the migrating upward flow and then promote the 

reactions stated above. Moreover, the sustained and linked upslope fluid flow over a long time 

scale causing persistent exposure of CO2, has led to an expansive bleaching of the region (Loope 

and Kettler, 2015; Nielsen et al., 2009; Parry, 2011).  

In the meantime, the reducing acid-reactive front, formed by CO2-saturated fluid, releases 

and re-deposits Fe ion at the front when the pH is buffered by the ambient fluid (Wigley et al., 

2012). A former study observed that linear transects of the Moab fault showed a gradual 

transition from bleached sandstone to a dense iron mineralization area (Beitler et al., 2005; Chan 
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et al., 2000), indicating in-situ re-deposition of iron species. Figs. 10b and 10e suggest that the 

occurrence of pyrite coeval with the dissolution of hematite by showing concurrent transitions in 

the models, as interpreted previously by a paragenetic sequence of the two minerals (Garden et 

al., 2001). 

Furthermore, the mobilization of Fe that occurred in simulation results implies an 

artificial or natural CO2 leakage site with abundant Mississippi Valley Type (MVT) minerals in 

the pathways of fluid can exhibit an extensive amount of trace metal release to an aquifer, e.g., 

(Marcon and Kaszuba, 2015), causing probable pollution of the regional water system. In 

addition, since CO2 has an ability to mobilize trace metals without hydrocarbon and CH4, 

released Mn, Fe, Ca and pH can be useful markers for leakage indication (Little and Jackson, 

2010). 

 

7.  Conclusions: Predicted Consequences of Prolonged CO2 Leakage in the Fault Zone 

 The LGW and SW fault systems provide unique natural analogues for geologic carbon 

sequestration with potential CO2 leakage pathways. Numerical investigations by 1-D and 2-D 

reactive transport modeling in this study demonstrated that the prolonged migration of 

subsurface CO2 to the atmosphere is responsible for quartz and phyllosilicate precipitation, 

reduction of iron oxide, and carbonate deposition in subsurface environments. A buoyant and 

highly reactive acid-reductive CO2 front forms under the regional aquifer conditions and causes 

these changes.  

Diagenetic sealing processes of the LGW fault zone involving authigenic clay and quartz 

growths along the fault conduit observed in the model provide both a direct cause of fault 
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conduit closure. Relatively stable minerals such as quartz and illite in the given condition of the 

water chemistry and under influence of regional hydrogeologic parameters can survive through 

the continued history of CO2-induced changes in the fault conduit. For instance, a crystallized 

quartz grain is very insoluble and shows one of the smallest dissolution rate (Lasaga, 1984). 

Bleaching phenomena observed in this study showed that CO2 is the main cause of Fe 

mobilization in the region, without influence of methane and/or hydrocarbon sources.  

Since the fault zones in the Paradox Basin are mainly formed due to diffuse deformation 

along the crest of salt dissolution and the uplift of Colorado Plateau (Hecker, 1993), the LGW 

and SW faults have potential to be activated by a NW-trending extensional stress regime, 

resulting in increased fault zone permeability. Furthermore, the continuous uplift of the Colorado 

Plateau can affect the fault fluid migration regime by generating new fractures and faults where 

the alteration would be concentrated. The uplift mechanism can reduce the remote mean stress, 

and thus change the fluid pressure, permeability and geometry of a fault subject to failure 

(Davatzes et al., 2005).  

Previously, tectonic events, e.g., magmatic and seismic activities, were suggested as 

triggers for the release of CO2 from reservoirs, proposing strong needs for risk assessments 

(Lewicki et al., 2007). In this case, the oscillating sequence of pore pressure changes by 

seismicity can produce hydrofractures and thus, a significant leakage of CO2 can be induced 

(Nur and Walder, 1992). Furthermore, this oscillation can induce an episodicity of fluid and CO2 

leakage, which is reflected on the field as different travertine ages. However, the study area and  

western margin of the Colorado plateau have only subtle and ambiguous faulting evidence 

during the Quaternary, suggesting no recent seismicity in the area.  
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 From this standpoint, diagenetic sealing capacity of faults and caprocks is the key factor 

for assessing the long-term CO2 storage secureness. Prolonged alteration of minerals by CO2 can 

cause caprocks in the region to be subject to brittle deformations (Lu et al., 2009). Although the 

modeled fault conduit did not show significant changes in hydrologic properties, alteration of 

caprocks that caused ~16% increase of permeability can still be subject to sudden fracture 

generation. Especially, the alteration of silicate minerals observed in this study can significantly 

affect the caprock properties, principally the brittleness of the formation. In this case, invasion of 

CO2 into the water-saturated caprock without fracture can occur with: i) diffusive CO2 

transportation, and ii) capillary infiltration of gaseous CO2 (Gherardi et al., 2007).  

This article observed through the mechanisms that can possibly arise in faults and 

fractures adjacent to the artificial injection sites. Currently, converging evidences from silicate 

mineral alteration and carbonate deposits suggest that the fault conduit has a potential to be 

clogged as a consequence of CO2-bearing fluid migration. On the contrary, increasing porosity 

and permeability during the migration of CO2 shows self-enhancing of fluid through a pathway.  

Further studies are required to quantify more precise heterogeneous reactions in the given 

condition of CO2 reservoirs and also for non-isothermal effects, which could be adapted onto a 

series of models. Experimental investigations on in-situ carbonate crystallization and organic 

chemistry could precisely evaluate the potentials of precipitation.  
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APPENDIX A: 

The transition state theory describing kinetic rate law 
 

In the models in this study, the rate constant k is dependent on temperature, and is 

calculated by the Arrhenius equation below: 

 

k = 𝑘𝑘25𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑎𝑎𝑅𝑅 �1𝑇𝑇 − 1298.15��                                         (1) 

 

where k25 is the rate constant at the temperature of 25°C, Ea (J/mol) is the activation energy of 

the reaction, R (J/K·mol) is the universal gas constant and T is the absolute temperature (K). 

 The pathways of reaction as precipitation and dissolution are under control of the 

concentration of hydrogen and hydroxide ions, and reactions which the concentrations of each 

ion involved are acid and base mechanism, respectively. Hence, the sign of rn in the eqn. (2) is 

designated by the following equation including these acid-base mechanisms: 

 

𝑟𝑟𝑛𝑛 =  �𝑘𝑘25𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑎𝑎𝑛𝑛𝑛𝑛𝑅𝑅 �1𝑇𝑇 − 1298.15��+ 𝑘𝑘25𝐻𝐻+𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑎𝑎𝐻𝐻+𝑅𝑅 �1𝑇𝑇 − 1298.15�� ∙ 𝑎𝑎𝐻𝐻+𝑛𝑛𝐻𝐻+ + 𝑘𝑘25𝑂𝑂𝐻𝐻−𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑎𝑎𝑂𝑂𝐻𝐻−𝑅𝑅 �1𝑇𝑇 −
1298.15�� 𝑎𝑎𝑂𝑂𝐻𝐻−𝑛𝑛𝑂𝑂𝐻𝐻−� ∙ 𝐴𝐴𝑛𝑛�1− 𝛺𝛺𝑛𝑛𝜃𝜃�𝜂𝜂                                                                           (2) 

 

where the superscripts ne, H+, and OH- are neutral, acid, and base mechanisms controlling 

reactions, respectively, and η and θ are experimental coefficients. ‘a’ is the activity of the species 

in a reaction. Ωn is the mineral saturation ratio of the equilibrium mineral index ‘n’.
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APPENDIX B: 

Dissolution and precipitation reactions of the minerals and aqueous species considered in this study models 

Mineral Composition Reactions 

Quartz SiO2 SiO2 ↔ SiO2(aq) 

Hematite Fe2O3 Fe2O3 + 4H+ ↔ 2H2O + 0.5O2(aq) + 2Fe2+ 

Illite K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2 
K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2↔ 1.2H+ + 0.25Mg2+ + 0.6K+ + 

3.5SiO2(aq) + 0.4H2O + 2.3AlO2
- 

K-feldspar KAlSi3O8 KAlSi3O8 ↔ K+ + SiO2(aq) + AlO2
- 

Kaolinite Al2Si2O5(OH)4 Al2Si2O5(OH)4↔ 2H+ + 2SiO2(aq) + H2O + 2AlO2
- 

Magnesite MgCO3 MgCO3 + H+ ↔ Mg2+ + HCO3
-  

Pyrite FeS2  FeS2 + H2O + 3.5O2(aq) ↔ Fe2+ + 2H+ + 2SO42
- 

Calcite CaCO3 CaCO3 + H+
 ↔ Ca2+ + HCO3

- 

Dolomite CaMg(CO3)2 CaMg(CO3)2 + H+ ↔ Ca2+ + Mg2+ + 2HCO3
- 

Chlorite Mg2.5Fe2.5Al2Si3O10(OH)8 
Mg2.5Fe2.5Al2Si3O10(OH)8 + 8H+ ↔3SiO2(aq) + 2.5Fe2+ + 2.5Mg2+ + 8H2O + 

2AlO2
- 

Oligoclase CaNa4Al6Si14O40 CaNa4Al6Si14O40↔ 4Na+ + 14SiO2(aq) + Ca2+ + 6AlO2
- 

Albite NaAlSi3O8 NaAlSi3O8 ↔ Na+ + 3SiO2(aq) + AlO2
- 

Siderite FeCO3 FeCO3 + H+ ↔ Fe2+ + HCO3
-  

Dawsonite NaAlCO3(OH)2 NaAlCO3(OH)2 ↔ H+ + HCO3
- + Na+ + AlO2

- 

Ankerite CaMg0.3Fe0.7(CO3)2 CaMg0.3Fe0.7(CO3)2 + 2H+ ↔ 2HCO3
- + Ca2+ + 0.3Mg2+ + 0.7Fe2+ 

Na-smectite Na0.290Mg0.26Al1.77Si3.97O10(OH)2 
Na0.290Mg0.26Al1.77Si3.97O10(OH)2 ↔ 0.29Na+ + 0.96H+ + 0.26Mg2+ + 

3.97SiO2(aq) + 1.77AlO2
- 

Ca-smectite Ca0.145Mg0.26Al1.77Si3.97O10(OH) 
Ca0.145Mg0.26Al1.77Si3.97O10(OH) ↔ 0.52H2O + 0.145Ca2+ + 0.96H+ + 

0.26Mg2+ + 3.97SiO2(aq) + 1.77AlO2
- 
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APPENDIX C: 

Spearman Rank-Order Correlation coefficients in samples 
 

 

  TDS pH Na+ K+ Mg2+ Ca2+ Cl- HCO3
- SO4

2- 

TDS 1 0.72 0.88 0.67 0.11 0.17 0.93 0.14 0.58 

pH  1 0.72 0.72 0.74 0.79 0.69 0.77 0.63 

Na+   1 0.71 0.31 0.32 0.84 -0.05 0.37 

K+    1 0.32 0.43 0.66 0.07 0.61 

Mg2+     1 0.84 0.14 -0.35 -0.07 

Ca2+      1 0.17 -0.17 -0.03 

Cl-       1 -0.05 0.61 

HCO3
-        1 0.05 

SO4
2-                 1 

 
Spearman Rank-Order Correlation coefficients between TDS, pH, major cations and anions in 
samples. Values range between -1 and 1 and represented in diagonal direction in order of listed 
ions. Values > 0.75 are considered as high-positive correlations. Due to limited amount of pH 
data, 63 samples are collated to calculate pH rank-order, all other correlations were conducted 
using 98 chemistry data. 
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APPENDIX D: 

Contribution factors of each fluid end-member in the Green River area 
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