
University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

May 2018

Invertebrate Paleoecology of High Paleo-latitude
Carboniferous Strata of the Tepuel-Genoa Basin,
Argentina
Kate M. Gigstad
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Climate Commons, Ecology and Evolutionary Biology Commons, and the Geology
Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Gigstad, Kate M., "Invertebrate Paleoecology of High Paleo-latitude Carboniferous Strata of the Tepuel-Genoa Basin, Argentina"
(2018). Theses and Dissertations. 1807.
https://dc.uwm.edu/etd/1807

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1807?utm_source=dc.uwm.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 

 

INVERTEBRATE PALEOECOLOGY OF HIGH PALEO-LATITUDE CARBONIFEROUS 

STRATA OF THE TEPUEL-GENOA BASIN, ARGENTINA  

by 

Kate Gigstad 

 

 

A Thesis Submitted in 

Partial Fulfillment of the  

Requirements for the Degree of 

 

Master of Science  

in Geosciences 

 

at  

The University of Wisconsin-Milwaukee 

May 2018 

 

 



ii 

 

ABSTRACT 

 

INVERTEBRATE PALEOECOLOGY OF HIGH PALEO-LATITUDE CARBONIFEROUS STRATA OF THE 

TEPUEL-GENOA BASIN, ARGENTINA 

 

by 

 

Kate Gigstad 

 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Dr. Margaret Fraiser 

 

 

The Late Paleozoic Ice Age (LPIA), which began in the latest Devonian and ended in the 

Late Permian, was a time of active environmental changes.  During this time, glaciers waxed 

and waned over the ancient continent of Gondwana that was situated over the southern pole.  

This time of transition from icehouse to greenhouse in the Permian is our closest analogue to 

our current environmental conditions and increased knowledge of our planetary past will 

greatly influence our future.  Much of the previous research on marine invertebrate 

paleoecology during the LPIA occurs in far-field or low paleolatitude localities, but less is known 

about the state of near-field invertebrate faunas of this time.  The focus of this study is on the 

paleoecology of the high paleolatitude communities in the Tepuel-Genoa Basin in western 

Argentina in which the hypothesis that ice proximal, near-field paleocommunities differed 

significantly from those in far-field regions during glacial episodes is tested.  Sedimentological 

and paleoecological data were collected and analyzed in two sections of the Pampa de Tepuel 

Formation (the lower and middle sections) in the Tepuel-Genoa Basin.  In the lower Pampa de 

Tepuel Formation, diversity and fossil abundance was higher than in the middle section.  These 

differences are accredited to changes in environmental factors attributed to the proximity to 
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glacial sediment input at the time of deposition.  Similar to low latitude studies, the effects of 

the LPIA glacial fluctuations differ by location.  However, the changes in the high-latitude 

paleocommunities occur with fluctuations in the environment within the Pampa de Tepuel 

Formation. 
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1. Introduction 

The late Paleozoic Ice Age (LPIA) ~374-256 Ma was a unique and environmentally 

dynamic time in Earth’s history (e.g., Crowell and Frakes, 1970; Crowell, 1983; Caputo et al., 

2008; Isaacson et al., 2008; Isbell et al., 2012; Frank, 2015 ). It was one of Earth’s few 

“icehouse” environmental states, which comprise less than 25 percent of the planet’s history 

(Montañez and Poulsen, 2013).  The LPIA was the largest and longest icehouse interval to occur 

in the Phanerozoic (e.g., Fielding et al., 2008a; Montañez and Poulsen, 2013). It is presently the 

closest deep time analogue to modern climate change because its end marks the only icehouse 

to greenhouse transition that occurred when the planet had both complex fauna and flora, and 

evidence for high latitude glaciation, characteristics similar to the current state of the planet 

today (e.g., Gastaldo et al., 1996; Montañez and Soreghan, 2006; Isbell et al., 2008, 2012).   

    Gondwana, the landmass comprised of the modern continents of South America, Africa, 

Antarctica, India and Australia, was situated over the South Pole at the time of the LPIA (e.g., 

Crowel and Frakes, 1970; Crowell, 1983; González Bonorino, 1992; Isbell et al., 2003).  There is 

overwhelming evidence for ice cover over the southern supercontinent during the late 

Paleozoic, but the presence of  ice sheets and glaciers in the northern hemisphere is still under 

debate but unlikely (e.g., Crowell and Frakes, 1970; Crowell, 1983; Isbell et al. 2003 and 2016).  

Sedimentological data has shown evidence for glacial episodes comprising many small glaciers 

that waxed and waned over Gondwana during the LPIA (Fielding et al., 2008b; Lópes-Gamundí 

and Buatois, 2010; Isbell et al., 2012, 2016).  Three glacial episodes have been identified from 
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basins in Gondwana spanning times from the Late Devonian to the Early Mississippian (Glacial 

Episode I), Late Mississippian to Middle Pennsylvanian (Glacial Episode II), and finally Late 

Pennsylvanian to the Early Permian (Glacial Episode III) (Fig. 1; Lópes-Gamundí. 1997; Isbell et 

al. 2003).   

 The geochemical record reveals that the LPIA was a time of higher δ¹³C and is 

hypothesized to have been due to organic carbon sequestration resulting to result in low CO₂ 

concentrations (Gastaldo et al. 1996; Veizer et al., 1999; Frank et al. 2008).  High quantities of 

oxygen isotope δ¹⁸O concentrations are interpreted as the result of increased ice expansion and 

Figure 1. Path of the South Pole over Gondwana relative to Glacial Episodes.  From Frank et al. 2008 

(modified from Powell and Li, 1994 and Isbell et al., 2003). 
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drop in global temperatures causing high atmospheric O₂ due to the drawdown of CO₂ and 

decreased weathering (Gans et al., 1999; Veizer et al., 1999; Frank et al. 2008).   

 Much of the previous paleoecological research on the LPIA has focused on low paleo-

latitude regions (‘far-field’).  For example, Heim (2009) found evidence for increased faunal 

turnover but no substantial decrease in ecological diversity in paleoequaitoral regions that are 

now the U.S. states of Arkansas and Oklahoma.  In the Illinois Basin of the central United States, 

Bonelli and Patzkowsky (2008, 2011) found persistent faunal assemblages but less distinction 

between the near-shore and off-shore communities that were more greatly defined prior to the 

onset of the LPIA.  Low paleolatitude research has also revealed that narrowly distributed 

brachiopod genera experienced extinctions due to low thermal tolerances (Stanley and Powell, 

2003; Powell, 2005, 2007).  Powell (2008) discovered a mass extinction of fauna in the low-

latitude Central Appalachian Basin that specifically targeted genera with narrow latitudinal 

ranges in shallow near-shore areas.    

Previous research on near-field paleocommunities hint at key similarities in ecosystem 

responses between low- and high-paleolatitudes. Research from western Argentina on high 

paleo-latitude brachiopods and bivalves revealed increases in taxonomic turnover, decreased 

diversity and restructuring within paleocommunities (Balseiro, 2016) in the Early Carboniferous 

attributed to glacial episodes (Sterren and Cisterna, 2010).   

Still, more research is required for high paleo-latitude areas as little is known of the 

extent to which ‘near-field’ organisms responded similarly to ‘far-field’ organisms.  The study 

herein, focuses on near-field paleocommunities from the western margin of Gondwana 

exposed in present-day Patagonia, Argentina which was located above a latitude of 60°S, and 
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experienced at least one of the three LPIA glacial episodes (Fig. 1; Fig. 2; Veevers and Powell, 

1987; López-Gamundí and Buatois, 2010).   This study is a step towards filling that gap in our 

understanding of the effects on the high-latitude paleocommunities due to environmental 

fluctuations during the LPIA.   

 

 

 

 

 

 

 

 

Figure 2.  Earth during the Carboniferous.  Shaded box shows the low-latitude region where most 

research during the LPIA has taken place.  The red star denotes high-latitude research site in Argentina.  

Modified from Blakey, 2003. 
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1.1 Hypothesis 

The purposes of this study are to 1) quantify the paleoecology of high paleolatitude 

near-field marine invertebrate fossil assemblages during the late Paleozoic Ice Age in the 

Tepuel-Genoa Basin in western Gondwana, and 2) compare these results to those of 

paleocommunities from lower and higher paleolatitudes. I tested the over-arching hypothesis 

that the paleoecology of ice proximal, near-field paleocommunities differed significantly from 

those located distally in far-field regions during LPIA glacial episodes (Fig. 2).  Within this 

overarching hypothesis I also assessed how glaciers affected the marine invertebrate 

communities in near-field environmental settings via two working hypotheses: 1) Low diversity 

and low fossil abundance in the Tepuel-Genoa Basin occur as a result of proximity to glaciers,; 

and 2) faunal assemblages distal to glaciers in the Tepuel-Genoa Basin were more diverse and 

not adversely affected by glacial input. 
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2. Geologic Setting 

The geologic origin of Patagonia and its relation to South America and Gondwana has a 

history of debate.  Over the decades there have been two major hypothesis pertaining to 

Patagonia’s origin.  The first suggests evidence of Patagonia being autochthonous to South 

America (Forsythe, 1982; Dalla Salda et al. 1990), and the second suggests Patagonia as being 

an allocthonous terrane that was accreted to Gondwana in the Late Paleozoic (e.g., Pankhurst, 

2006; Ramos, 1984; Rapelini et al., 2010).  The second hypothesis would explain the lack of 

metamorphism in the Tepuel-Genoa Basin (the location of this study) but metamorphism to the 

east and the west of the Tepuel Basin due to accretionary processes (Fig. 3; Ramos, 2008).  

Recent age-dating studies on Patagonian basement rock suggest Patagonia was a para-

autochthonous terrane (Pankhurst, 2006; Ramos, 2008; Pagani and Taboada, 2010). 

Figure 3. Cross section of Patagonia showing accretionary processes. Tepuel Basin is the location of this study 

Modified from Ramos, 2008. 



7 

 

The western boundary of Patagonia has several basins formed during the Upper 

Paleozoic that provide an almost complete succession of the stratigraphic record of 

Carboniferous age strata (Limarino and Spalletti, 2006).  The Tepuel-Genoa Basin is surrounded 

by the Samuncura and Deseado mastiffs and was formed in the Late Mississippian around 330 

Figure 4. Orange circle indicates location of research in the Tepuel-Genoa basin in western 

Patagonia.  Modified from Limarino and Spalletti, 2006. 
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Mya (Fig. 4; Isbell, 2003; Limarinio and Spalletti, 2006).  It is considered to be a retroarc basin 

showing only minor metamorphic deformation (Fig. 3; Limarino and Spalletti, 2006; Ramos, 

2008).  Evidence also shows that the Carboniferous age strata of the Tepuel-Genoa Basin to be 

glaciomarine providing both glacial evidence and an extensive fossil record making this a model 

area for this study (e.g; López Gamuni, 1987).  

The specific area of this study is the Pampa de Tepuel Formation in the Tepuel Hills 

locality near the town of Tecka around 22 km to the North (Fig. 5).  The Pampa de Tepuel 

Formation lies between the Jaramillo and Mojón de Hierro Formations; together these make up 

the three formations in the Tepuel-Genoa Basin at Tepuel Hills. The Pampa de Tepuel 

Formation was deposited from the middle Mississippian to the early Permian, is almost 3000 

meters thick, and was determined to 

have been deposited in a marine slope 

setting (Andreis and Cuneo, 1989; 

Fielding et al., 2008; Isbell et al. 2003, 

2012; González and Saravia, 2010).  

The Pampa de Tepuel Formation 

contains course-grained sediment 

within deep marine mudrocks, which is 

mostly produced through rainout and 

subglacial till showing evidence for 

glacial influence (González-Bonorino, 

1992).   Possible glacial pavements have 

Figure 5. Yellow star denotes location of research 

within the Tepuel-Genoa Basin. Modified from 

González and Saravia, 2010.



9 

 

also been identified (e.g., González, 2003; Limarino and Spalletti, 2006) although they have 

more recently been debated (Isbell 2013; Pauls, 2014).  There is also non-glacially influenced 

marine deposits such as dark siltstone and fine-grained sandstone where the fossil assemblages 

in the Tepuel Hills are preserved (e.g., Pagani and Taboada, 2010; Pauls, 2014; Braun et al., 

2015).  The alternating deposition of glacial sediment and dark siltstone has been interpreted to 

indicate that up to six glacial episodes occurred in this region (e.g.; González and Saravia, 2010; 

Taboada, 2010).  

The biostratigraphy of this region is based mainly on brachiopod and mollusk faunas 

that has been revised many times since the first faunal zonations were established (e.g., Amos 

and Rolleri, 1965; Pagani and Taboada, 2010).  In the Pampa de Tepuel Formation, at least two 

biozones have been identified:  Lanipustula biozone (named for brachiopod Lanipustula 

patagoniensis) and Costatumulus biozone (named for brachiopod Costatumulus amosi) (e.g. 

Taboada, 2010; Pagani and Taboada, 2010).  The focus of this study is on the Lanipustula 

biozone, formally the Levipustula Zone (Amos and Rolleri, 1965) which has a time frame of Late 

Mississippian to Late Pennsylvanian (Fig. 6; Pagani and Taboada, 2010).     
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 Figure 6. Lithostratigraphy and biostratigraphy of the Late Paleozoic in the Tepuel-

Genoa Basin. Modified from Taboada, 2008, 2010; Cesari et al., 2011.  Modified from 

Taboada, 2008, 2010; Pagani and Taboada, 2010; Pauls et al., 2014; Braun et al. 2015. 
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Previous paleoecological research conducted in the Pampa de Tepuel Formation has 

indicated environmental fluctuations and diversity variations in paleocommunities during the 

LPIA.  Pauls et al. (2014) and Dineen et al. (2010) found relatively high alpha diversity in the 

middle of the Pampa de Tepuel Formation while Braun et al. (2015) found that many of the 

fossil assemblages in the lower Pampa de Tepuel Formation were diminished and low in alpha 

diversity.  

There were two sections in the Tepuel Hill where data were collected for this study, 

both belonging to the Pampa de Tepuel Formation. One measured section for the study herein 

was in the lower part of the Pampa de Tepuel Formation which is situated between those of 

Braun et al.  (2015) (where it slightly overlaps based on GPS data) and Dineen et al. (2013).  The 

other section measured in this study is in the middle of the Pampa de Tepuel Formation and lies 

above all previous studies including that of Pauls et al. (2014).  The addition of my data will 

create a more complete analysis from the bottom to the upper middle of the Pampa de Tepuel 

Formation (Fig. 7). 
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Figure 7.  Aerial view image from Google Earth of the Pampa de Tepuel Formation near Tecka, 

Argentina in stratigraphic order. Blue tacs represent previously sampled areas and yellow tacs 

represent areas sampled in this study. 

N 
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3. Methods 

 Within the Pampa de Tepuel Formation, two sections were measured to study the 

sedimentology and paleoecology of the Carboniferous strata of the Tepuel-Genoa Basin in 

western Argentina deposited during LPIA.  The lower Pampa de Tepuel (LPDT) section began 

near the base of the Pampa de Tepuel Formation (S43° 41’ 00.2”, W70° 44’ 55.8”) and 88 m 

were measured there.  The middle Pampa de Tepuel section (MPDT) (S43° 41’ 13.0”, W70° 42’ 

59.8”) was measured for 312 m near the upper middle portion of the Pampa de Tepuel 

Formation.  The two sections were measured using a Jacob staff and an Abney level.  

Sedimentological evaluation in the field included determining lithology, grain size, diagenesis, 

and sedimentary structures.  These data were used to construct stratigraphic columns using 

Adobe Illustrator, a vector graphics editor.   

 Fossils were identified in the field to the genus level.  Brachiopods and bivalves were 

tallied for full articulated specimens and tallied for pedicle and brachial or left and right valves. 

Only the whole specimen and largest number of either of the valves were counted which is 

referred to as the minimum number of individuals method (Gillinsky and Bennington, 1994). 

Crinoid ossicles were measured and counted individually in the field.  There are no reliable 

methods for using the number of ossicles to calculate abundances of individual crinoids (Moore 

and Jefords, 1968) so numbers were calculated using modern crinoid ossicles counts of a 

maximum of 350 (Roux et al., 2002).  Since all the counts in this study were less than 350, a 

total of one individual crinoid was counted for each fossil assemblage unless there were 

different size ossicles and then two individuals were counted.   In the LPDT bryozoans were 
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numerous and overlapping. They were only counted if the taper toward the bottom of the 

colony was visible because of the need to decrease the possibility of counting a colony more 

than once due to breakage. The tapered area was visible on many of the colonies.   

 In each fossil assemblage, a minimum of 25 fossils were collected, when available, to 

ensure statistical significance (Forcino, 2012).  This number included bryozoan colonies, 

disarticulated valves and crinoid ossicles.  Some beds in the MPDT were not able to meet this 

criterion.  A rarefaction curve was used to rule out sampling biases and to assure that enough 

data was collected to infer accurate results (Hammer and Harper, 2006).  In a rarefaction 

analysis the expected number of individuals or taxa is computed when a sample is drawn at 

random from a sample that represents the fossil assemblage (Gotelli and Colwell, 2010).  The 

curve is plotted with number of sample location on the y-axis and number of genera or number 

of individual fossils from each sample on the x-axis.  If the curve flattens out, enough data has 

been collected to create reliable results.    

In each fossil assemblage, genera were totaled and given a mean rank order which gives 

each genera a rank based on the abundance (1 being most abundant) in each fossil assemblage.  

Breadth of distribution coefficient was also established to show the number of fossil 

assemblages in which each genus was found (Clapham et al., 2006).    Diversity and evenness 

indices such as the Simpson diversity index for dominance (1-D), the Shannon-Weiner index of 

diversity (H’), and evenness (E) were run on the fossil data to evaluate diversity in the 

invertebrate communities (Hammer and Harper, 2006).   The Simpson diversity index calculates 

the probability that two randomly selected individuals are from the same group or genera 

(Hammer and Harper, 2006).  The result will be closer to one if there is one group that is more 
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dominant.  The Shannon-Weiner diversity index calculates the probability to predict the next 

selected individual from a group and is based on relative abundance as well as total number of 

taxa (Hammer and Harper, 2006).  A higher number (closer to one) will signify a higher 

diversity.  Evenness is calculated to show how even the counts of genera are within each fossil 

assemblages.  Statistical Z-tests were conducted to determine if the most abundant genus in 

each section (LPDT and MPDT) had significantly larger numbers than the rest of the genera in 

each section.   

Multivariate statistics used in this study are cluster analysis (Euclidian, Chord, Bray-

Curtis, Dice, and Rho), rarefaction, and detrended correspondence analysis (DCA) using the 

PAST (Paleontological Statistics) computer program (free to download from and online source) 

to analyze for multivariate statistics (Hammer et al., 2001).  Cluster analysis groups fossil 

assemblages by likeness or similarities and displays them on a graph called a dendrogram 

(Hammer and Harper, 2006).  The farther the fossil assemblages are on the dendrogram the 

less alike they are interpreted to be.  DCA is another way to show relationships between data in 

a 3D plot meaning that it is plotted on 3 axes.  Clusters of data closer together are more similar 

than those farther away (Hammer and Harper, 2006).    

The functional groups in the community were also evaluated to help understand the 

community structure and modes of life such as feeding methods and locomotion (Clapham et 

al, 2006).  This data was collected from the Paleobiology database (fossilworks.org).   
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4. Results 

4.1 Sedimentology 

 In the two sections of the Pampa de Tepuel Formation examined herein, seven facies 

were identified: 1) Very fine- to medium-grained sandstone with lonestones, 2) clast-rich sandy 

conglomerate, 3) fossil-rich muddy siltstone, 4) fossil-poor sandy siltstone, 5) sandy siltstone 

with lonestones 6) fine-grained sandstone, and 7) clast-poor medium diamictite. 

 

4.1.1 Lower Pampa de Tepuel Formation (LPDT) 

The LPDT section herein begins approximately 450 m after the boundary of the Jaramillo 

Formation and above fossil horizons 1 through 8 measured by Braun et al. (2015).  My 

measured section overlaps with Braun’s (2015) fossil horizons 9 through 11.  The LPDT 

contained three of the identified lithofacies: very fine- to medium-grained sandstone, clast-rich 

sandy conglomerate, and fossil-rich muddy siltstone.  Almost 70 percent of this measured 

section is covered by vegetation and scree from above, and exposure to dangerous weather 

conditions limited our time on the outcrop. Nevertheless, 88 m were measured (Fig. 8).   

 

4.1.1.1 Very Fine- to Medium-Grained Sandstone with Lonestones Facies 

The very fine- to medium-grained sandstone with lonestones facies marks the base of 

the measured LPDT section and has an average strike of 30° and average dip of 31°.  The 
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sandstone is massive, orange in color, and contains discontinuous lenses (between 10 and 40 

cm) of a medium-grained, green sandstone (Table 1-1; Fig. 10-A).   The very fine- to medium-

grained sandstone with lonestones facies containing rounded to subrounded gravel- and 

cobble- sized lonestones that increases in abundance up the section for approximately 20 m 

until it transitions into the clast-rich sandy conglomerate facies (described below) (Fig. 8).  The 

transition between these two facies is not visible due to scree from above.  The very fine- to 

medium-grained sandstone with lonestones facies includes possible slump structures that are 

often associated near the medium-grained, green sandstone lenses as well as some mineral 

filled fractures.  However, much of the sandstone outcrop is lichen-covered and badly 

weathered.  No body fossils were found in this facies.  

 

4.1.1.2 Clast-Rich Sandy Conglomerate Facies 

The very fine- to medium-grained sandstone with lonestones facies transitions into a 

clast-rich sandy conglomerate facies containing cobble-sized, rounded clasts as well as angular 

interclasts of sedimentary and igneous origins (Table 1-2; Fig. 8; Fig. 10-B).  This facies is 

massive and has a very fine-grained sand matrix.  It also contains very course-grained sand 

grains that are subangular (Fig. 10-C).  The clast-rich sandy conglomerate is approximately 5 to 

6 m thick and also did not contain body fossils.   The very fine- to medium-grained sandstone 

and clast-rich sandy conglomerate were only seen from 0 to 45 meters in the LPDT.  Above the 

clast-rich sandy conglomerate facies there about 10 m of scree before there is a thin outcrop of 

very fine- to medium grained sandstone with lonestones facies (fig. 8). 
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4.1.1.3 Fossil-Rich Muddy Siltstone Facies  

Eighteen meters of scree covers the area between the clast-rich sandy conglomerate 

facies and the fossil-rich muddy siltstone facies (Fig. 8).  Strike and dip changes in these beds on 

the outcrop to 50° and 23° respectively.  The fossil-rich muddy siltstone facies is dark gray in 

color (Table 1-3).  This facies outcrops from 54 meters to 70 meters and contains all the fossil 

specimens from this section of the LPDT examined in this study (Fig. 8).   Bedding varied with 

laminations that are 1 mm to 4 cm in thickness (Fig. 10-D).  Fossils were deposited in layers of 1 

to 5 mm and the layers are 5 mm to 3 cm apart (Fig. 10-E).   

Figure 8. Stratigraphic representation of the Lower Pampa de Tepuel section. 
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 Figure 8.  Stratigraphic representation of the LPDT section. 
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4.1.2 Middle Pampa de Tepuel Formation (MPDT) 

 The analysis of the sedimentology in the MPDT indicated four facies: fossil-poor sandy 

siltstone, fossil-barren sandy siltstone with lonestones, fine-grained sandstone, and clast-poor 

intermediate diamictite.   Almost a third of this section is covered by vegetation and scree from 

above (Fig. 9).   

 

4.1.2.1 Fossil-Poor Sandy Siltstone Facies 

Outcrops of this facies have an average strike of 27° and an average dip of 25°.  

Throughout this MPDT, the fossil-poor sandy siltstone facies has color ranges from medium 

gray to brown.  Some thin layers of very fine sand are found interbedded with the fossil-poor 

sandy siltstone facies near the base of the section.  Only this facies of the MPDT examined in 

this study, contain fossils.  Fossil abundances drop to zero when lonestones and sedimentary 

structures became abundant (Fig. 9).  Much of the fossil-poor sandy siltstone facies shows signs 

of oxidation and the formation of concretions (Fig. 10-F; Table 1-4).  Bedding varies from 

laminated to thin, between 3 mm to 5 cm, and is often fissile.  Secondary fracturing was found 

throughout the siltstone that often cross cut beds.  Interclasts of a darker gray siltstone are 

visible in the sandy siltstone around 115 m, and small patches of course sand and granules (1-4 

mm in diameter) are dispersed in the siltstone beginning around 125 m.   

 

4.1.2.2 Fossil-Barren Sandy Siltstone with Lonestones Facies 
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This facies is demarcated at 140 m where no invertebrate body fossils were found (Table 

1-5; Fig. 9).  However, some small, horizontal unidentified trace fossils occur around 164 m.  

Bedding in this facies is laminar to thin and varied from 1 mm to 7 cm.  Soft sediment 

deformation, including slumping and folding, is present at around 160 m and again at 240 m 

(Fig. 10-G).  The siltstone also dips more severely to about 40° around 160 m.  Cobble size, 

rounded lonestones are found in the fossil-barren sandy siltstone layers at 237 m (Fig. 10-H).  

Lenses of course-grained sand and pebble-sized sediments were also found within this facies 

(Fig. 10-I).  Slight metamorphism is indicated by mineral filled fractures and possible slicken 

sides around 150 m. 

 

4.1.2.3 Fine-Grained Sandstone Facies 

The fine-grained sandstone facies is interbedded with the fossil-barren, sandy siltstone 

facies from 156 m to 190 m and again between 240 and 247 m (Table 1-6; Fig. 9). Bedding is 

think to medium and ranged between 1.5 cm and 24 cm.  Most of this fine-grained sandstone 

facies has a yellow-orange coloration.  At 169 m, the fine-grained sandstone facies contained 

ripple structures and crossbedding, and at 240 m wave ripple structures are visible with mud 

draping (Fig. 9; Fig. 10-J).  The fine-grained sandstone also contained soft sediment deformation 

in the form of slump and fold structures.  Low-grade metamorphism can also be seen in the 

fine-grained sandstone in the form of fracturing.  Between 241 and 244 m there are larger beds 

(averaging 21 cm) of fine-grained sandstone with sharp contacts interbedded with the siltstone 

(Fig. 10-K).    
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4.1.2.4 Clast-Poor Intermediate Diamictite Facies 

At 262 m, a clast-poor intermediate diamictite interbeds with finely laminated fossil-

barren, sandy siltstone facies (Table 1-7; Fig.9; Fig. 10-L).  Two beds of this diamictite facies are 

visible and about 20 cm thick.  They contain large cobble- to pebble-sized clasts of an unknown 

(due to time constraints) darker lithology, as well as angular very course sand, silt and mud-

sized grains. 
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Figure 9. Stratigraphic representation of the Middle Pampa de Tepuel section. 
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Facies Type Lithology 

Sedimentary 

Structures 

Bedding 

Characteristics Interpretations 

1) Very fine- to 

medium- 

grained 

sandstone 

Very fine grained 

sandstone  

Slump Structures Massively 

bedded 

Possible debris 

flow/mass transport 

Orange in color 

Lenses of 

medium-grained 

green sandstone 

 

Rounded gravel 

to cobble sized 

lone stones 

2) Clast-rich 

sandy 

conglomerate 

Medium to 

course sand with 

rounded and sub 

rounded cobble 

size clasts   

 
Very course 

subangular sand 

size clasts 

Angular 

interclasts 

 

None identified Massively 

Bedded 

Possible debris 

flow/mass transport 

3) Fossil-rich 

muddy 

siltstone 

Mud with very 

fine-to-fine sand 

and silt size 

grains 

Fossil rich 

None identified Laminations of 1 

mm to 4 cm 

Deep slope 

depostion below 

storm wave base 

Table 1. Summary of facies found in the Lower and Middle Pampa de Tepuel Formation. 
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4) Fossil-poor 

sandy siltstone 

Silt and very fine 

sand particles   

Pockets of rounded 

to subrounded very 

course sand size 

grains 

Interclasts 

Varied Deep slope 

depostion below 

storm wave base 

5) Fossil-barren 

sandy siltstone 

with 

lonestones 

Silt and very fine 

sand particles 

Rounded cobble 

and gravel size 

lone stones   

Slump and fold 

structures 

Clusters of course 

grained subrouned 

to rounded 

sediment. 

Varied Deep slope below 

storm wave base  

Lone stones and 

pockets of course 

grains due to distal 

glacial input or glaical 

rain-out 

6) Fine-grained 

sandstone 

Fine to very fine 

sand grains 

Yellow-orange 

coloration 

Ripples with mud 

drapes 

Varied Deep slope injections 

due to turbidity 

currents 

Slump and fold 

structures 

7) Clast-poor 

intermediate 

diamictite 

 

Contains 

rounded clasts 

and fine-grained 

matrix of sand, 

silt and clay 

None seen 20 cm Small scale debris 

flows of glacial 

material 
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A) B)  

C)  D)  

E) F) 

Figure 10.  Images of facies and sedimentary structures found in the LPDT and MPDT. A) Contact 

between very fine-grained orange sandstone medium-grained green sandstone.  Also a possible slump 

structure.  B) Clast-rich sandy diamictite with rounded to subrounded lonestones and angular 

interclasts. C) Subangular very course sand sized grains within the very fine- to medium-grained 

sandstone facies. D)  Laminated bedding in the fossil-rich muddy siltstone.  E)  Fossil layers found in the 

fossil-rich muddy siltstone.  F) Concretions and oxidation found in the fossil-poor sandy siltstone.  G) 

Soft sediment deformation fold nose in the fossil-barren sandy siltstone with lonestones.  H)  Cobble 

size rounded lonestone in the fossil-barren sandy siltstone with lonestones.  I)  Course sand and 

rounded pebble-sized grains in fossil-barren sandy siltstone with lonestones.  J)  Ripple structure in fine-

grained sandstone interbedded with fossil-barrens sandy siltstone with lone stones.  K)  Beds of fine-

grained sandstone interbedded with fossil-barren sandy siltstone with lonestones.  L)  Clast-poor 

intermediate diamictite. 
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G) H) 

I)  J)  

K) L) 
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4.2 Paleoecology 

4.2.1 Lower Pampa de Tepuel (LPDT) Formation 

 A total of four fossil assemblages were excavated in the LPDT at 54.5, 56, 60, and 67 

meters (Appendix A).  Alpha diversity ranges from six to 10 genera distributed among seven 

classes in the four fossil assemblages. The total fossil count for the LPDT section was 248 fossil 

elements. The genera with the highest numerical 

abundance in all four of the levels sampled were 

bryozoans Fenestella and Fistulamina (Fig. 11; 

Fig. 12).  Bivalves like Paleolima, Orbiculopectin 

and Limipectin, brachiopods Krotovia and 

Lanipustula, and rugose corals were present in 

smaller numbers (Fig. 12).  An analysis of 

distribution of fossil individuals counted in the 

four fossil assemblages of the LPDT shows a 

relatively even distribution of fossils throughout 

Figure 11. Bryozoan rich siltstone in the 

LPDT. 
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the LPDT.  Breadth of distribution of genera showed that Fenestella, Fistulamina, and 

Camptocrinus? were found in 100 percent of the fossil assemblages, and Lanipustula, 

Paleolima, and rugose coral were found in 75% of the fossil assemblages in the LPDT (Table-2).   

The Simpson diversity index (1-D) for dominance results ranged from 0.35 to 0.62 

among the sampled fossil accumulations with values closer to 1 indicating a higher dominance 

Relative Abundance of Fauna in the LPDT

Fenestella Bryozoan Fistulamina Bryozoan Unidentified Bryozoan

Camptocrinus? Crinioid Lanipustula Brachiopod Spiriferellina? Brachiopod

Krotovia Brachiopod Plicaterfinae Brachiopod Unidentified Brachiopod

Paleolima Bivalve Orbiculopecten Bivalve Limipecten Bivalve

Stereblachondria Bivalve Rugosa Coral

Figure 12. Relative abundance at the genus level in all fossil assemblages of the LPDT. 
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of any one particular genus (Appendix A).  The fossil assemblage at 56 meters shows the least 

dominance of any particular genus; it was the most even assemblage examined.  However, all 

four fossil assemblages show relatively moderate eveness.  The Shannon-Weiner diversity index 

(H’) ranges from 1.04 to 1.62 and eveness (E) ranges from 0.45 to 0.7 with 1 indicating 

completely even paleocommunities (Appendix A).  A Z-test indicates that the abundance of the 

bryozoan Fenestella in the LPDT is significanlty more abundant (p=0.0002) than other taxa in 

the paleocommunities of the LPDT.   

 

4.2.2 Middle Pampa de Tepuel (MPDT) Formation 

 Fossil data for the MPDT was collected at 32, 35, 40, 46, 51, and 139 meters (Appendix 

A).  Alpha diversity in the MPDT is represented by 13 genera from 9 invertebrate classes.  The 

number of genera range from two to nine in the six tallied fossil assemblages.  In the MPDT, the 

total fossil count for this study is 130 individuals for all six assemblages.  This number makes the 

MPDT less taxonomically rich by about 50 percent than the LPDT.  The most numerically 

abundant genus in this section is ostracod Graphiadactylloides? which accounts for over 70 

percent of the counted individuals (Fig. 13).  The other genera found in the MPDT include 

bivalves such as Phestia and Paleolima, Lanipustula brachiopods, hyolithes, crinoid 

Camptocrinus?, and gastropod Glabrocingulum (Fig. 13). Over 60 percent of the fossil elements 

are found at 32 meters (fossil assemblage 1) (Fig. 9).  No one genus has 100% distribution in all 

fossil assemblages.  The two most common genera in terms of breadth of distribution is crinoid 
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Camptocrinus?, found in 5 out of 6 fossil assemblages, and ostracod Graphiadacylloides?, found 

in 4 of 6 fossil assemblages (Table 2).   

The Simpson diversity index (1-D) for dominance results range from 0 to 0.78 (Appendix 

A).  Those fossil assemblages (40 m and 46 m) that have a Simpson dominance of zero had very 

low (two to four) numbers of genera and have one individual for each genus.  The Shannon-

Weiner diversity index (H’)  

 

Figure 13.  Relative abundance of individuals at the genus level in all fossil assemblages of the MPDT. 

Relative Abundance of Individuals in the MPDT

Graphiadactylloides? Phestia Bivalve Nuculopsis Bivalve

Unidentified Bivalve Paleolima Bivalve Stenophora Bryozoan

Glabrocingulum Fistulamina Bryozoan Unidentified Brachiopod

Eucondridae Bivalve Spiriferellina? Brachiopod Lanipustula Brachiopod

Hyolithes Sueroceras? Camptocrinus?
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Class Genus Diet 
Δ Salinity 
Tolerance 

Fossil 

Assemblage 

Crinoidea Camptocrinus? 
suspension 

feeder 
stenohaline 

1, 2, 3, 4, 5, 6, 

7, 8, and 10 

Gymnolaemata Fenestella 
suspension 

feeder 
stenohaline 1, 2, 3, and 4 

Stenolaemata Fistulamina 
suspension 

feeder 
stenohaline 1, 2, 3, and 4 

Stenolaemata Stenophora 
suspension 

feeder 
stenohaline 5 

Bivalvia Paleolima 
suspension 

feeder 
euryhaline 1, 2, 4,  and 5 

Bivalvia Limipecten 
suspension 

feeder 
euryhaline 1 and 2 

Bivalvia Orbiculopecten 
suspension 

feeder 
euryhaline 1 and 2 

Bivalvia Streblochondria 
suspension 

feeder 
euryhaline 1 

Bivalvia Euchondria 
suspension 

feeder 
euryhaline 5 

Bivalvia Phestia 
suspension 

feeder 
euryhaline 5 

Bivalvia Nuculopsis 
suspension 

feeder 
euryhaline 8 

Strophomenata Lanipustula 
suspension 

feeder 
stenohaline 1,2,4, and 5 

Strophomenata Krotovia 
suspension 

feeder 
stenohaline 1 and 2 

Strophomenata Plicaferina 
suspension 

feeder 
stenohaline 1 

Rynchonellata Spiriferellina 
suspension 

feeder 
stenohaline 3 and 5 

Anthozoa Order: Rugosa 
suspension 

feeder 
stenohaline 2,3, and 4 

Hyolitha Hyolithes 
suspension 

feeder 
stenohaline 6, 7, and 9 

Ostracoda Graphiadactylloides?  detrivore  stenohaline 5, 6, 8, and 10 

Cephlapoda Sueroceras?  carnivore stenohaline 8 

Gastropoda Glabrocingulum? 
suspension 

feeder 
euryhaline 6 and 10 

Table 2.  Class, genus, diet, tolerance to salinity change and fossil assemblage distribution for 

fossils found in the Pampa de Tepuel Formation for this study. 
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results range from 0.57 to 1.4 and evenness (E) range from 0.26 to 1.01 (Appendix A).  The 

number of ostracod Graphiadacylloides? individuals in the MPDT fossil assemblages compared 

to other organisms is established to be significant (p=0.00017) through the use of a Z test. 

 

4.2.3 Multivariate Analyses of the Lower and Upper Pampa de Tepuel 

To be sure that the fossil counts (i.e. enough samples were taken in each of the 

measured sections) were accurate enough to form conclusions, a rarefraction curve was 

Figure 14. Rarefaction curve for the fossil counts and genera in fossil assemblages 1-10 in 

LPDT and MPDT. 
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created for the total genera and total individual counts for the LMDT and UPDT sections.  The 

curves plateau showing that enough data were collected to ensure a complete representation 

of the paleocommunity.   
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The cluster analysis resulted in three general dendrogram patterns.  One pattern groups 

fossil assemblages 1 through 4 and fossil assemblages 5 through 10 together (Rho, Bray-Curtis, 

and Chord).  The Dice analysis groups fossil assemblages 1-5 together and fossil assemblages 6-

10 together.  Euclidian cluster analysis groups fossil assemblages 1 and 5 as outliers and 
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1.28
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Figure 15. Cluster Analysis for the fossil assemblages in the Pampa de Tepuel 

Formation using the Chord cluster analysis based on similarities. 
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displays three groups of 2, 3 and 4; 6 and 10; and 7, 8 and 9.  In all but one of the cluster 

analyses, fossil assemblages 1 and 5 are the farthest apart from each other meaning they had 

the largest differences.  The dendrogram with the highest correlation (99.5%) is the result of 

the Chord cluster analysis (Fig. 15).  The Chord analysis grouped the fossil assemblages of the 

LPDT together and the fossil assemblages of the MPDT together showing the fossil assemblages 

within each section of the Formation (either LPDT or MPDT) are more similar to each other than 

to the other.  The cluster analysis with the lowest correlation is the Dice analysis with 86%.     

The results of the cluster analysis is mirrored in the DCA graph, which had a separation 

of points that correspond to the fossil assemblages of the LPDT and the MPDT (Fig. 16).     
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Figure 16. Detrended correspondence analysis for fossil assemblages 1 through 10 based on genus and fossil 

counts in each fossil assemblage. 
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5. Discussion 

 

5.1 Lower Pampa de Tepuel (LPDT) 

5.1.1 Sedimentology 

I interpret the LPDT studied herein to have been deposited in a slope environment distal 

to glacial influence and during a transition into an interglacial period. The muddy nature of the 

fossil-rich muddy siltstone facies suggests deep slope deposition below storm wave base (Pauls 

et al. 2014; Braun et al. 2015).  The expression of very few sedimentary structure in this facies 

also suggests a relatively quiet environment that would be found in a deep-slope setting.  The 

very fine-to medium-grained sandstone facies and clast-rich sandy conglomerate facies are 

interpreted to be the result of a mass transport as an effect of structure failure from the shelf 

(e.g.; Hampton, 1972; Pickering and Hiscott, 2015).  Research shows that this type of event can be 

triggered by destabilization of underlying sediments on the shelf as a result of decreased 

loading by the receding of glaciers (e.g.; Bryn, 2005; Steel et al. 2008).  The very fine- to 

medium grained sandstone facies and clast-rich sandy conglomerate facies may have been 

deposited in a shallower setting than the fossil-rich muddy siltstone facies. This general fining 

upward or deepening sequence in this section may have been triggered by glacial retreat 

(Pagani and Taboada, 2010; Braun et al., 2015).  However, the soft sediment deformation 

within these two facies is more in line with the slumping and debris flows that occur with mass 

transport (e.g.; Hampton, 1972; Pickering and Hiscott, 2015).  Further, the fossil-rich muddy 
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siltstone facies in the LPDT does not show evidence of glacial input as course grained sediments 

and lonestones were absent in this facies. 

 

5.1.2 Paleoecology 

The paleoecology of the LPDT displays moderately diverse paleocommunities with the 

largest counts of individual fossils belonging to the Phylum Bryozoa.  The Shannon-Weiner 

diversity index (H’) values (1.037-1.589) are in a moderate range.  Average scores for the 

Shannon-Weiner diversity index range between 1.5 and 3.5 (Magurran, 2004).  Evenness (E) is 

slightly above mid-range (0.45 to 0.7) for possible scores (between 0 and 1) showing that the 

paleocommunities in the LPDT were moderately even meaning individuals were somewhat 

distributed among taxonomic groups.  The overall LPDT paleocommunity was solely comprised 

of one functional group (benthic filter feeders).  This may explain why alpha diversity was 

moderate (Clapham et al., 2006).  It is also possible that only the benthic filter feeders were 

preferentially preserved.   

Aragonite, a form of calcium carbonate that it less stable than the calcite form, is 

preferentially dissolved in sea water and can skew alpha diversity in paleoecological studies 

(Bush and Bambach, 2004).   Calcium carbonate utilizing invertebrates, such as bryozoans and 

brachiopods, in cold water environments experience even higher rates of dissolution post-

mortem (e.g.; Smith et al., 1992; Clark, 1993; Zamelczyk, 2014). In the LPDT and MPDT, calcium 

carbonate is the dominant material used by invertebrates to create shell material.  Due to this 

fact I do not believe that there was preferential preservation of just one type of functional 
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groups since members of many types of functional groups can be composed of calcium 

carbonate.          

The most abundant fossil in this LPDT section was “Fenestella”, from the Order 

Fenestrata.  Research on the distribution of bryozoan structural types in a present day Antarctic 

glacial fjord shows that encrusting, low profile bryozoans are most likely seen in areas that are 

highly disturbed by glacial sedimentation, turbidity and ice scour (Pabis et al., 2014).  The fan-

shaped, erect morphology of the bryozoans found in the LPDT fossil assemblages lends more 

support for the lack of glacial input in fossil-rich muddy siltstone facies due to the lack of 

breakage of the fragile bryozoan colonies.   

The bryozoan fossils are found in layers (Figure 8-E) and many are whole (shown by 

rounded ends of the bryozoan instead of sharp, broken ends) or only slightly broken (shown by 

sharp or abrupt ends together with partial colonies).  The deposition in layers may suggest 

possible transport of the bryozoans down the slope from the shelf due to storm wave activity 

(sensu Barns and Kuklinski, 2010).  However, the lack of damage to the fragile colonies supports 

quick burial due to storm energy (Hess, 1999; Lefebvre et al., 2016).  Crinoid ossicles are 

commonly found deposited disarticulated and at different orientations, although some were 

found in intact with up to 20 ossicles articulated.  This preservation is an indication for some 

movement of these specimens after death and may suggest they were parautochthonous to 

this site (Hunter and Underwood, 2009). 

In the LPDT rugose corals were found in three out of the four fossil assemblages that 

were excavated in the fossil-rich muddy siltstone facies. Their presence suggests that the 
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depositional environment was warmer, either due to a shallower environment or even possibly 

because of a glacial low or interglacial period (Bonn et al., 1994; Cisterna, 2010; Balserio, 2016).  

Due to the interpretation that this is a slope depositional setting, this advocates for a warmer 

environment during an interglacial period.  This is in accord with the lack of glacial sediments in 

the fossil-rich muddy siltstone of the LPDT. 

Further evidence supportive of an interglacial climate interpretation for the LPDT is the 

presence of a high percentage (75%) of stenohaline genera that have narrow salinity 

tolerances.  When glacial ice is present there are seasonal variations in salinity due to the 

melting and freezing of ice resulting in fluctuations in freshwater input (e.g.; Dierssen et al., 

2002; Barns and Conlan, 2007).  Brine formation due to the salt seep from the creation of sea 

ice can also cause fluctuations in the colder months when more sea ice forms (Jardon et al., 

2013).  The lack of salt-fluctuation- tolerant genera suggests the absence of sea ice and glacial 

input.   
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5.2 Middle Pampa de Tepuel (MPDT) 

5.2.1 Sedimentology 

I interpret the MPDT to have been 

deposited in a slope setting more proximal 

to glacial influence than the LPDT. The 

presence of siltstone is evidence of a slope 

depositional setting (Oliveira et al., 2009).   

Sedimentary structures such as soft 

sediment deformation in the form of folds and 

slumps were evident in the fossil-poor sandy 

siltstone facies. The fossil-barren sandy siltstone with lonestones facies signifies a position 

higher on the slope where it can be influenced by clastic influx (turbidity flows or tectonic 

processes as seen in fracturing and slickensides in this facies) on the shelf and upper slope (e.g.; 

Bonn et al., 1994; Bryn, 2005; Steel et al. 2008). Within the MPDT section the evidence for 

glacial influence is strong.  Lonestones and pockets of course grained sediments are found in 

the in the fossil-barren sandy siltstone. The lonestones are interpreted here to signify debris 

deposited by ice rafting and iceberg roll (dump structures; Thomas and Connell, 1985). The 

interbedded fossil-barren sandy siltstone with lonestones facies and fine-grained sandstone 

facies have sharp contacts. I am interpreting this as a channel of fine sand sediments being 

deposited in the slope due to turbidity currents that can be caused by distal glacial activity (e.g. 

Bonn et al., 1994).  Soft sediment deformation such as slumping and folding can also be seen 

Figure 17.  Slump structure in the fine-grand 

sandstone of the MPDT. 
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near these channels signifying that these are the result of this turbidity (Henry, 2010; Pickering 

et al., 2015; Figure 17).  It is unknown as to the cause of the turbidity flows but glacial evidence 

in the MPDT section points to glacial influence as a source.  Two beds of clast-poor diamictite 

near the top of this measured section suggest that the glacier would be in its most proximal 

position and depositing glacial sediments due to gravity flows and meltwater plumes.  Near the 

top of the section a finely laminated fossil-barren sandy siltstone facies returns but without 

lonestones.  At the top of the measured section a medium to course-grained sandstone occurs.  

This sandstone was not measured, but a coarsening upward succession was recorded which 

suggests the occurrence of a regressional succession. Such deposits are the result of 

progradation and in the deep ocean suggest potential changes in base level (cf. Catuneanu, 

2006).   

 

5.2.2 Paleoecology 

Fossil assemblages are rare in this portion of the MPDT.  Shannon-Weiner diversity 

values (H’) (ranging from 0.6931 to 1.386) are low.  Dominance (1-D), however, results in higher 

values for the first two fossil assemblages (0.7 and 0.8 in fossil assemblages 5 and 6 

respectively) and lower values in fossil assemblages 7, 8, 9 and 10 (values between 0 and 0.5).  

Three of the excavated fossil assemblages (40 m, 46 m, and 51 m that correspond with 

assemblages 7, 8 and 9) have exceedingly low fossil counts.  The low numbers of individuals 

skew the results for evenness to have high scores of 1 or close to 1 meaning they have high 

evenness.  These same skewed results are also reflected in the low Simpson diversity index (1-
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D) values (values of 0) in fossil assemblages 7 and 8, which do not reflect the actual health of 

the paleocommunities in these locations (figure 20). 

I interpret that increased amounts of glacial input had a significant effect on diminished 

benthic taxonomic diversity found in the MPDT.  The transition between the fossil-poor sandy 

siltstone facies and the fossil-barren sandy siltstone facies with lonestones, around 140 m (fig. 

9), exemplifies complete loss of body fossils.  Overall, taxonomic richness was low; the MPDT 

contains half the number individuals collected compared to that of the LPDT.  The most 

abundant genus in this section was ostracod Graphiadactylloides?.  Ostracods are benthic, such 

as Graphiadactylloides, or planktonic, and most are detritus feeders although some can also be 

filter feeders (e.g.; Díaz Saravia and Jones, 1999; Nigro et al., 2016).  The significance of the 

large number of ostracods found in this section to the near exclusion of other benthic 

invertebrates may indicate that they are an opportunistic taxon, meaning they will thrive when 

other fauna in the community go absent (Pauls, 2014; Braun, 2015).  The bivalve Phestia, 

another opportunistic taxa (Sterren and Cisterna, 2010), was also found in the MPDT but not 

the LPDT.  The presence of these opportunistic taxa may signify the onset of environmental 

changes in this section of the Pampa de Tepuel Formation due to glacial input or changing base 

level conditions.   

Though lack of fossils in the fossil-barren sandy siltstone can be attributed to the 

increase of sedimentations seen in this faces, the low fossil counts in the fossil-poor sandy 

siltstone are not as easily explained.   This invertebrate absence could be because there are 

simply were not living in this setting due to environmental changes or it could be a taphonomic 

bias.  The fossil-barren sandy siltstone has no evidence of debris flows or turbidity, such as in 
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the fossil-barren sandy siltstone, that indicate removal the fauna from the slope (Thatje et al., 

2005; Pasotti et al., 2015).  There are also no lonestones or evidence of an increase in 

sediments that could have buried and suffocated the fauna (Holte and Gulliksen, 1998).  

Wlodarska-Kowalczuk et al. (2005), in a study of Arctic fjords, found that organisms near high 

sedimentation were much smaller and are often motile deposit feeders.  This may be an 

explanation for high ostracod counts in this section.  Sediment rates may have already been 

increasing but they were very fine grained resulting in a sandy instead of muddy siltstone.   

Water temperature changes due to the onset of glaciations could have caused those 

invertebrates that were more susceptible to temperature changes to migrate or perish, leaving 

behind a more tolerant fossil assemblage.  Water circulations patterns could also be altered 

during an onset of glaciations that could alter both oxygen that is available to benthic 

communities as well as food supply (e.g.; Kawagata et al., 2006; Cottier et al., 2010; Shi and 

Waterhouse, 2010).  Environmental changes would cause preferential selection of fauna that 

were metabolically more capable of handling this type of stress such as brachiopods.  

Brachiopods, with a higher metabolism than bivalves, are able to handle changes to their 

environment more readily (Payne et al. 2014).  In the MPDT the number of bivalve genera 

outnumber the number of brachiopod genera five to three.  The opposite is true in the LPDT.      
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The other scenario would be a taphonomic bias that would result in the hindered 

preservation carbonate fossils.  Research on the taphonomy of carbonate shells in cold water 

regions shows that cold water can increase the solubility of carbonate hindering fossil 

preservation (e.g.; Clark, 1993; Zamelczyk, 2014).  If this was the case it would also be 

challenging to create shell material of dissolution was high.  This would then point back to 

environmental changes as the cause for the lack of fauna in the MPDT.     
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Figure 18. Breadth of distribution at the genus level of all 10 fossil assemblages.  Bar length corresponds 

to the proportion of fossil assemblages in which each is found. 
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5.3 Abundance and Diversity Comparisons between the Studied Sections 

  Though the LPDT and MPDT faunas have significant differences, some similarities exist.  

Crinoid Camptocrinus? was found in both of the sections (LPDT and MPDT) and in 9 out of 10 of 

the fossil assemblages (Fig. 18).  Lanipustula, Fistulamina, and Palaeolima were also found in 

both the LPDT and MPDT sections (Fig. 18; Fig. 19).   

 Overall individual fossil count was higher in the LPDT (248 individuals) than in the MPDT 

(136 individuals) regardless of the two extra fossil assemblages in the MPDT.  However, the 

compositions of the two sections, especially the most dominant genus, were different.  In the 

LPDT bryozoan Fistulamina was found in the greatest numbers in comparison with the MPDT 

which had the largest group of individuals as ostracod Graphiadactylloides? (Fig. 19).  

Fistulamina was not found in the MPDT and Graphiadacylloides? was not found in the LPDT.   
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 Diversity comparisons between the LPDT and MPDT show that the overall Shannon-

Weiner diversity values (H’) in the LPDT (1.037-1.589) are higher than those of the MPDT 

(0.6931-1.386) (Fig. 20).  The Simpson diversity index (1-D) values were more varied across the 

measured sections of Pampa de Tepuel Formation as well as within the LPDT and MPDT 

sections.  This is due to the high counts of bryozoans and ostracods in the LPDT and MPDT 

respectively. 
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Figure 19. Numerical abundance of genera in the Lower and Middle measured sections of the Pampa de Tepuel 

Formation. 
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 The multivariate analysis of the LPDT and MPDT fossil assemblages show that they have 

more similarities within each section than between the sections.  In the cluster analysis, fossil 

assemblages of the LPDT (1-4) were grouped together and fossil assemblages of the MPDT (5-

10) (Fig. 15) showing the similarities within each section.  The DCA analysis also shows similar 

groupings (Fig. 16).   These two analyses provide evidence of the differences between the fauna 

in the LPDT and that of the MPDT. 

 The totality of the fauna found in the LPDT were benthic suspension feeders.  The MPDT 

displayed more variety in modes of life: the majority of the individuals (76%) were detrital 

scavengers/grazers due to the high number of ostracods.  The second largest group were 

suspension feeders (24%).  The nautiloid was the only carnivore found in the MPDT.   

Figure 20.  Results of the Simpson diversity index and Shannon-Weiner diversity index and evenness 

values for fossil assemblage 1-10 in the Pampa de Tepuel Formation. 
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5.4 Brachiopod and Bivalve Comparisons and Significance 

 Brachiopods, along with crinoids, ostracods, and cephalopods, were the dominant 

organisms in terms of taxonomy and numerical abundance in the Paleozoic Fauna (Sepkoski, 

1981; Sepkoski and Miller, 1985). The Paleozoic Fauna dominated the world’s oceans until the 

end of the Paleozoic and the end-Permian mass extinction (Sepkoski, 1981).  This transition 

gave rise to the Modern fauna that included bivalves, and other taxa such as gastropods, fish, 

and echinoids (Sepkoski, 1981; Sepkoski and Miller, 1985).  The transition from brachiopod 

dominance to bivalve dominance was thought to be initiated by the end-Permian mass 

extinction but in some instances research shows that this transitions may have already began in 

the late Paleozoic (Clapham et al., 2006; Clapham and Bottjer, 2007; Sterren and Cisterna, 2010; 

Balseiro, 2016).  The data collected in this study seems to agree.  Brachiopod and bivalve genus 

and individual counts were close to even in both the LPDT and MPDT sections.  In the MPDT, as 

discussed above, bivalve numbers surpassed those of brachiopods making bivalves slightly 

more diverse than brachiopods. Previous research done by Braun et al. (2015) also confirms an 

increase in bivalve numbers and diversity in the Pampa de Tepuel Formation.     
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5.5 Previous High Latitude Research 

5.5.1 Australia 

 Some research has been done in high latitude areas such as research done by Clapham 

and James (2008).  Their study done in eastern Australia shows the decrease and eventual 

disappearance of cold tolerant genera of bivalve during the Early to Middle Permian.  They also 

found that changes began in the deeper environments.   This finding shows a disparity from the 

near shore fauna that was most affected in the Central Appalachian Basin which was 

paleoequatorial during the LPIA (Powell, 2008).  In this case, the disparity may be related to the 

differences in the affect the LPIA glaciations had on those communities proximal versus distal to 

the ice.  
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5.5.2 Argentina (Pampa de Tepuel Formation) 

 

In Argentina, paleoecological results varied between studies.  Pauls et al. (2014) found 

high diversity within paleocommunities although some communities were more diverse or 

more established than others (Fig. 21).  A previous study by Dineen (2010) showed similar 

results to that of Pauls et al. (2014).  Braun et al. (2015) found more impoverished communities 

near the base of the Pampa de Tepuel Formations than Pauls et al. (2014) and Dineen (2010) 

near the lower middle portion of the Pampa de Tepuel formation (Fig. 21).  Braun et al. (2015), 

like Pauls et al. (2014) and Dineen (2010), also found that environmental factors such as 
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Figure 21. Comparison of Simpson diversity indices and Shannon-Weiner indices from Dineen (2010), 

Pauls et al. (2014), Braun et al. (2015) and Gigstad et al. (2018) in stratigraphic order.  Fossil assemblages 

1-11 (Braun et al., 2015), fossil assemblages 12-15 (Gigstad et al., 2018), fossil assemblages 15-20 

(Dineen, 2010), fossil assemblages 21-26 (Pauls et al., 2014) and fossil assemblages 27-32 (Gigstad et al., 

2018). 
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sediment flux due to glacial input seemed to play a major part in the diversity seen in different 

sections of the Pampa de Tepuel Formation.  Dineen et al. (2013) also found that invertebrate 

communities closer to glacial input experienced greater stress than those distal to glaciers.  This 

study found some communities had higher diversity than others which was generally reflected 

in the amount of glacial input found. 

In a comparison of both Simpson diversity and Shannon-Weiner diversity indices, similar 

results were found (Fig. 22).  The fossil assemblages in this study found slightly higher diversity 

than Braun et al. (2015), but overall similar results were found which is beneficial for showing 

data can be replicated in the same locality.   

Figure 22.  Comparison of over lapping fossil assemblages in terms of Simpson diversity indices and Shannon-

Weiner diversity indices from Braun et al. (2015) (fossil assemblages 8-11) and Gigstad et al. (2018) fossil 

assemblages (1-4). 
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One of the main goals of this study is to continue to fill in the gaps of the 

paleoecological analysis of the Pampa de Tepuel Formation.  The fossil assemblage sites for this 

study are between (and sometimes overlapping) and above the sections that have been 

previously analyzed in the Pampa de Tepuel Formation.  When the diversity indices taken from 

the studies of Dineen (2010), Pauls et al. (2014), Braun et al. (2015), and Gigstad et al. (2018) 

are put in stratigraphic order, an overall trend of decreasing diversity (H’) though the 

Carboniferous is seen to at least the upper middle of the Pampa de Tepuel Formation (Fig. 23).  

This can be interpreted as indication that the fluctuations form the waxing and waning of 

glaciers throughout the LPIA did have an overall negative affect on the invertebrate 

communities in the Pampa de Tepuel Formation over time.         

Figure 23.  Diversity values from Simpson diversity and Shannon-Weiner diversity indices for fossil 

assemblages in stratigraphic order from Dineen (2010), Pauls et al. (2014), Braun et al. (2015) and Gigstad et 

al. (2018). 
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5.5.3 Low Latitude and High Latitude Comparisons 

 Studies from low latitude areas during the LPIA reflected a variety of outcomes from 

sustained diversity but increased turnover (Heim, 2009), to less differentiation in fauna 

between inshore and offshore environments (Bonelli and Patzkowsky, 2008), to second order 

mass extinctions (Powell, 2008).  High latitude studies such as Clapham and James (2008), 

Dineen (2010; 2013), Pauls et al. (2014), Braun et al. (2015) as well as this one show that 

benthic invertebrate communities are negatively affected when situated proximal to the waxing 

and waning of glaciers.  Heim (2009) discussed the importance of looking at these results on a 

regional basis in that different regions will be affected in different ways by climate change.  It is 

also important to remember that different fauna will respond in various ways to these changes 

and thus will have varying degrees of success.  This is definitely reflected in the varying results 

in both low and high latitude environments form different regions during the LPIA.  This also 

highlights the complexity of environmental factors that are associated with climate change such 

as fresh water inputs, increased sedimentation, changes in salinity, sea level fluctuations, and 

changes in ocean circulation patterns (e.g.; Barns and Conlan, 2007; Shi and Waterhouse, 2010). 

 

5.6 Present Day Effects of Glacial influence 

Modern glacial environments can shed light on the different obstacles that benthic 

invertebrates may have faced in or near ancient glacial environments.  Modern research in the 



55 

 

Antarctic has shown that glacial and sea ice play a major role in the disturbance of benthic 

communities.  As glaciers reach into the ocean basins, the grounded ice can plough through the 

shelf and slope removing benthic invertebrates in their path (Brey et al., 1996; Barnes and 

Kuklinski, 2010).  During glacial maximums this can mean complete restructuring of 

communities or even extinction of some endemic faunas.  Ice scour occurs when sea ice or 

icebergs come in contact with the sea floor creating a trench in the sediment.  Sea ice and 

icebergs can dig into sediment that is as deep as 600 meters (e.g.; Gutt, 200; Pasotti et al., 

2015).  These scour marks can also be 350 meters wide and 15 km long (Barnes and Conlan, 

2007).  Gutt proposed, in a study from 2001, that every part of the Antarctic shelf could be 

scoured once every 340 years.  The destruction left by the keels of icebergs and sea ice can be 

severe for benthic communities, especially in areas of high disturbance.  In many cases, the 

scour marks themselves are described as different environments or communities than the 

undisturbed sea floor.  In a study by Conlan et al. (1998) they found that the diversity inside the 

scour marks was significantly lower than outside.  The benthic community structure in areas 

where there is increased intensity of scouring is often halted at early successional stages (Pugh 

and Davenport, 1997; Smale et al., 2007). Conlon et al. (1998) also found that there was an 

increase in deposit feeders and scavengers in the areas of scour.  This idea is congruent with 

other studies showing that the first fauna to reoccupy scour tend to be motile (Peck et al, 

1999).   

Sedimentation related to glacial activity can also be a disruptive to benthic 

invertebrates.  As glaciers meet the marine realm, they deposit sediment though glacial melt 

water and rafted ice debris (e.g.; Dowdeswell, J. A. and J. D. Scourse, 1990).  Large sediments 
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such as boulders can drop into the ocean and crush benthic organisms.  High amounts of 

sediment influx can suffocate filter-feeding organisms or bury them.  Research in Norwegian 

fjords show that increased sedimentation has an adverse effect on benthic communities.  

Where glacial melt is maximum in the fjords, a decrease in species richness is observe and is 

most likely due to the burial of infant stages of benthic biota (Holte and Gulliksen, 1998).  An 

increase in meltwater coming off the glacial front, especially during times of dynamic 

environmental change and warming, can cause an influx of fresh water increasing turbidity 

(Pasotti et al., 2015).  In near shore areas, this turbidity can cause a decrease in light 

penetration, which can disturb primary production affecting the rest of the food chain (Dierssen 

et al., 2002).  Deep water turbidity currents can also play a role in the disturbance of benthic 

organisms on the shelf and slope especially in areas where soft sediment is dominant.  Turbidity 

currents are propelled by gravity from the shelf and slope down to the basin, depositing courser 

grained sediments in a normally fine-grained environment.  Turbidity currents can be initiated 

by glaciers, storms, currents, and sediment instability causing debris flows, landslides, and 

slumps (e.g.; Hampton, 1972; Harris, 2014).  These processes can cause burial or removal of 

benthic biota due over long periods with continuous pressure and intensity (Harris, 2014). 

The Modern shows us that there are many different tribulations that benthic 

invertebrates face living near glacial input.  Within the MPDT section of this study there is 

evidence for ice rafted debris in the form of lonestones and pockets of course-grained sand in 

the fossil-barren sandy siltstone with lonestones facies.  There is also evidence for glacial 

meltwater resulting in the clast poor intermediate diamictite facies as well as for turbidity 

currents supported by the fine-grained sandstone channels and soft sediment deformation in 
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the fossil-barren sandy siltstone with lonestones facies.   Any of these can result in decreased 

species richness and diversity and in some cases, extinction.  Perhaps these recent studies on 

high latitude invertebrates can be used as an analog to help better understand ancient high 

latitude invertebrate systems both proximal and distal to glacial influence.  
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6.Conclusion 

The Pampa de Tepuel Formation in southwestern Argentina provides an almost 

complete sequence of the stratigraphic recorded of Carboniferous age strata that can be 

compared to previous studies of low paleolatitude regions of the United States.  Low latitude 

studies have shown varied results from turnover but no loss in diversity to mass extinctions. 

(Stanley and Powell, 2003; Powell, 2005 and 2007; Heim, 2009).  These varied results show the 

importance of looking at the climate changes associated with the LPIA at a regional level 

instead of the all high paleolatitude regions as a whole (Heim, 2009).  The results of this study 

are also varied, but on a smaller scale.  Within the sections of the Pampa de Tepuel Formation 

that were in this study, variations in diversity occurred with changes in environments. 

The sedimentation in the LPDT displays a lack of glacial evidence.  Diamictite is not 

found in this 88 m of the lower Pampa de Tepuel Formation and lonestones are not found in 

the fossil-rich muddy siltstone facies.  Within the LPDT paleocommunities taxonomic richness is 

high as well as the abundance of bryozoan Fenestella.  Moderate Shannon-Weiner diversity 

values are also found the LPDT paleocommunities.  The presence of rugose coral and a high 

percentage of stenohaline fauna deduce a warmer interglacial climate. 

The sedimentation in the MPDT exhibits evidence of a more proximal glacial setting.  

Within the 312 meters of the MPDT section, diamictite, fossil-barren sandy siltstone with 

lonestones facies, turbidity deposits, and soft sediment deformation in the form of slumps and 

folds all support this evidence.  The lack of taxonomic richness and low Shannon-Weiner 

diversity index values in the MPDT locality are interpreted as being the result of this increased 
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sedimentation.  High abundance of the ostracod Graphiadacylloides?, known as being an 

opportunistic taxa (Pauls, 2014; Braun, 2015), and higher percentages of euryhaline fauna 

support the hypothesis that these paleocommunities, more proximal to glaciers, were more 

stressed. 

The hypothesis that near-field invertebrate paleocommunities differed greatly from far-

field paleocommunities is supported by this study.  Paleocommunities in low latitude areas saw 

some decreases in diversity by region or no decrease at all.  In contrast, in the high latitude 

paleocommunities, diversity varied with changes in the environment expressed by influxes in 

course-grained glacial sedimentation.  This paints a picture of a dynamic environment of the 

waxing and waning of glaciers throughout the LPIA that must have created many challenges for 

marine fauna.       
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APPENDIX A 

 

Fossil Assemblage 1 

(LPDT 54.5 m) Count Groups 
 

LPDT 

Groups  

Camptorinus? Crinoid 1 Crinoid 1 Crinoid 7 

“Fenestella” Bryozoan 67 Bryozoan 70 Bryozoan 195 

Fistulamina Bryozoan 3 Bivalve 11 Bivalve 18 

Palaeolima Bivalve 5 Brachiopod 6 Brachiopod 19 

Limipecten Bivalve 1 Coral  0 Coral 9 

Orbiculopecten Bivalve 4 
    

Streblochondria 

Bivalve 1 
    

Lanipustula 

Brachiopod 2 
    

Krotovia  Brachiopod 2 
    

Plicatiferina 

Brachiopod 2 
    

 

Fossil Assemblage 2 

(LPDT 56 m) Count Groups 
 

Camptocrinus? 

Crinoid 2 Crinoid 2 

“Fenestella” Bryozoan 32 Bryozoan 35 

Fistulamina Bryozoan 3 Bivalve 5 

Palaeolima Bivalve 3 Brachiopod 9 

Orbiculopecten 

Bivalve 1 Coral 6 

Limipecten Bivalve 1 
  

Lanipustula 

Brachiopod 3 
  

Krotovia Brachiopod 4 
  

Unidentified 

Brachiopod 2 
  

Rugosa 6 
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Fossil Assemblage 3 

(LPDT 60 m) Count Groups 
 

Camptocrinus? 

Crinioid 2 Crinoid 2 

“Fenestella” Bryozoan 25 Bryozoan 40 

Fistulamina Bryozoan 13 Bivalve 0 

Unidentified Bryozoan 2 Brachiopod 2 

Spiriferellina 

Brachiopod 1 Coral 2 

Unidentified 

Brachiopod 1 
  

Rugosa 2 
  

 

Fossil Assemblage 4 

(LPDT 67 m) Count Groups 
 

Camptocrinus? 

Crinoid 2 Crinoid 2 

“Fenestella” 

Bryozoan 37 Bryozoan 50 

Fistulamina 

Bryozoan 13 Bivalve 2 

Palaeolima Bivalve 2 Brachiopod 2 

Lanipustula 

Brachiopod 2 Coral 1 

Rugosa 1 
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Fossil Assemblage 5 

(MPDT 32 m) Count Groups 
 

MPDT 

Groups  
Camptocrinus? 

Crinoid 1 Crinoid 1 Criniod 5 

Graphiadactylloides? 68 Bryozoan 2 Bryozoan 2 

Stenopora Bryozoan 1 Bivalve 6 Bivalve 11 

Fistulamina Bryozoan 1 Brachiopod 4 Brachiopod 4 

Palaeolima Bivalve 1 Ostracod 68 Ostracod 97 

Euchondria Bivalve 1 Gastropod 0 Gastropod 6 

Phestia Bivalve 2 Hyolith 0 Hyolith 4 

Lanipustula 

Brachiopod 1 
  

Cephlapod 1 

Spiriferellina 

Brachiopod 1 
    

Unidentified Bivalve 2 
    

Unidentified 

Brachiopod 2 
    

 

Fossil Assemblage 6 

(MPDT 35 m) Count  Groups 
 

Camptocrinus? Crinoid 1  Crinoid 1 

Graphiadactylloides? 17  Bryozoan 0 

Glabrocingulum? 

Gastropod 1  Bivalve 2 

Hyolithes 1  Brachiopod 0 

Unidentified Bivalve 2  Ostracod 17 

   

Gastropod 1 

   

Hyolith 1 

 

Fossil Assemblage 7 

(MPDT 40 m) Count  Groups 
 

Camptocrinus? 

Crinoid 1 Bryozoan 0 

Hyolithes 1 Bivalve 0 

  

Brachiopod 0 

  

Ostracod 0 

  

Gastropod 0 

  

Hyolith 1 

  

Crinoid 1 
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Fossil Assemblage 8 

(MPDT 46 m) Count Groups 
 

Camptocrinus? 

Crinoid 1 Criniod 1 

Graphiadactylloides? 1 Bryozoan 0 

Nuculopsis Bivalve 1 Bivalve 1 

Sueroceras? 

Nautiloid 1 Brachiopod 0 

  

Ostracod 1 

  

Gastropod 0 

  

Hyolith 0 

  

Cephlapod 1 

 

Fossil Assemblage 9 

(MPDT 51 m) Count Groups 
 

Unidentified Bivalve 2 Criniod 0 

Hyolithes 2 Bryozoan 0 

  

Bivalve 2 

  

Brachiopod 0 

  

Ostracod 0 

  

Gastropod 0 

  

Hyolith 2 

  

Cephlapod 0 

 

Fossil Assemblage 10 

(MPDT 139 m) Count Groups 
 

Camptocrinus? Crinoid 1 Criniod 1 

Graphiadactylloides? 11 Bryozoan 0 

Glabrocingulum? 

Gastropod 5 Bivalve 0 

  

Brachiopod 0 

  

Ostracod 11 

  

Gastropod 5 

  

Hyolith 0 

  

Cephlapod 0 
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Fossil Assemblage 1-D H’ E 

1 - LPDT – 54.5 m 0.58 1.04 0.45 

2 - LPDT – 56 m 0.33 1.62 0.7 

3 - LPDT – 60 m 0.37 1.24 0.64 

4 - LPDT – 67 m 0.47 1.09 0.61 

5 - MPDT – 32 m 0.78   0.57 0.26 

6 - MPDT – 35 m 0.72 0.59 0.43 

7 - MPDT – 40 m 0 0.69 0.98 

8 - MPDT – 46 m 0 1.40 1.01 

9 - MPDT – 51 m 0.33 0.68 0.98 

10 - MPDT – 139 m 0.48 0.81 0.74 
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