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Do new sources of traffic data make the application of Chaos
Theory to traffic management a realistic possibility?
Abraham T. Narh, Neil Thorpe, Margaret C. Bell and Graeme A. Hill

Transport Operations Research Group, Newcastle University, Newcastle upon Tyne, UK

ABSTRACT
Current signal systems for managing road traffic in many urban
areas around the world lack a coordinated approach to detecting
the spatial and temporal evolution of congestion across control
regions within city networks. This severely inhibits these systems’
ability to detect reliably, on a strategic level, the onset of
congestion and implement effective preventative action. As traffic
is a time-dependent and non-linear system, Chaos Theory is a
prime candidate for application to Urban Traffic Control (UTC)
to improve congestion and pollution management. Previous
applications have been restricted to relatively uncomplicated
motorway and inter-urban networks, arguably where the
associated problems of congestion and vehicle emissions are less
severe, due to a general unavailability of high-resolution temporal
and spatial data that preserve the variability in short-term traffic
patterns required for Chaos Theory to work to its full potential.
This paper argues that this restriction can now be overcome due
to the emergence of new sources of high-resolution data and
large data storage capabilities. Consequently, this opens up the
real possibility for a new generation of UTC systems that are
better able to detect the dynamic states of traffic and therefore
more effectively prevent the onset of traffic congestion in urban
areas worldwide.
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1. Background

Traffic congestion is widely recognised as a major problem that makes a significant con-
tribution to global warming, environmental pollution and the depletion of fossil fuels
(Manley & Cheng, 2010; O’Flaherty, 2005; Papageorgiou, Diakaki, Dinopoulou, Kotsialos,
& Yibing, 2003). For example, vehicle miles has grown by nearly 500% in the USA since
1940, which causes substantial delays, especially in urban areas and adversely affects
journey times (US Census Bureau, 2005). Congestion has a significant impact on local air
quality with road transport being responsible for over 90% of domestic transport emis-
sions and the declaration of air quality management areas in urban areas (Department
for Transport, 2011). Congestion costs advanced economies such as the USA approxi-
mately £72 billion per year (Bloomberg, 2011), and the UK between £13 and £20 billion
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per year (Centre for Economics and Business Research, 2014; Goodwin, 2004; The Smith
Group, 1999). One of the root causes of the problem is the mismatch between rates of
growth in the demand for road travel and the supply of roadspace. For example, in the
UK, the average increase in road traffic has been approximately 4% per annum since
1950, whilst the corresponding increase in road capacity has only been around 0.5%
(Department for Transport, 2013a, 2013b; Goodwin, 2004). Therefore, whilst the amount
of road traffic has grown rapidly, road capacity has not expanded sufficiently to accommo-
date the additional demand. Building new roads to increase urban road capacity on a large
enough scale is unlikely, as this often tends to be unpopular, economically unaffordable
and environmentally unsustainable (Papageorgiou et al., 2003).

Globally, various Urban Traffic Control (UTC) systems have become pivotal in trying to
manage congestion to improve the efficiency of the urban road network in many countries
across the world. Typically, a managed urban network consists of a group of smaller ‘con-
trolled’ regions (which may or may not be connected in terms of information exchange),
where each region comprises a number of coordinated signals operating at the same cycle
time. However, due to their essentially parochial nature, current signal control systems for
managing traffic in urban areas lack a coordinated approach to detecting the spatial and
temporal evolution of congestion across signal control regions within cities. These systems
tend to perform better in undersaturated traffic conditions, as in oversaturated conditions,
they are unable to cope with sudden surges in traffic volumes. These occurrences at indi-
vidual junctions can have “knock-on” effects across the entire network (Papageorgiou
et al., 2003).

Consequently, congestion still poses a significant challenge for network managers. This
is because the traffic that converges to create the congestion on the link in the network
needs to be controlled at a strategic position upstream at a time prior to the onset of con-
gestion. The volatility in variables including vehicle speed, flow and density that are used
to analyse traffic streams makes it difficult to forecast congestion accurately. However,
identifying the emergence of chaos occurrences between free flow and congestion can
be used to identify the onset of congestion and thus trigger the implementation of
more strategic control action to prevent congestion from occurring.

According to Dreyer and Hickey (1991) writing with regard to dynamical systems, “the
term ‘chaotic’ is generally used to describe non-linear, but deterministic systems whose
dynamic behaviour proceeds from stable points through a series of stable cycles to a
state where there is no discernible regularity or order”. Chaos Theory is capable of
dealing with these complexities, by naturally accounting for all of the factors that are
responsible for the system’s dynamics. It can extract all the system information and
relationships without the need to determine first the laws or equations of the underlying
dynamics. It relies on identifying a deterministic, non-linear system that has sensitivity to
initial conditions. In such systems, the future (and even the past) state of the system can be
determined according to the evolutionary equations, based on Chaos analysis, if the initial
value is known (Frazier & Kockelman, 2004). The pioneering work in Chaos Theory was in
1961 by Edward Lorenz, an American mathematician and meteorologist, who observed
that a small change in the initial condition of a system’s conditions could have a significant
impact on its long-term state. For example, he observed that a change in an initial setting
of a weather prediction model by a tiny amount gave rise to a rapid divergence in the final
output of the model. This is known popularly as the “butterfly effect” (Gleick, 1988).

636 A. T. NARH ET AL.



Chaotic behaviour is almost ubiquitous. It is a property of a number of natural or artificial
systems that support our daily lives, but often, these systems appear so random that it is
impossible to recognise visually any chaotic patterns, although such patterns indeed may
exist. Therefore, Chaos Theory techniques enable large arrays of variables of chaotic
systems to be represented in phase space (e.g. a multi-dimension plot of a variable in
an X–Y–Z plane) so that any possible underlying patterns can be identified to enable fore-
casting to be undertaken (Uittenbogaard, 2011). Clearly, this could play a significant role in
the prevention of congestion on urban road networks. However, the key characteristics of
traffic behaviour needed to deploy Chaos Theory (e.g. traffic flow and occupancy) can vary
over a matter of seconds and within tens of metres across a network. Therefore, to detect
these variations, the system must capture relevant data at sufficiently high spatial and
temporal resolution to enable an understanding of the prevailing dynamic state and per-
turbations in traffic on a link, at a given point in time, and the evolution of the resulting
congested state in the near and short-term future. Given that low-resolution data fail to
preserve the short-term variations in traffic patterns makes the dynamic property of the
system unclear; therefore, such data do not adequately support the examination of
Chaos Theory.

This paper therefore aims to review the theory and previous applications of Chaos
Theory for analysing traffic behaviour, and to explore the potential that now exists due
to the increasing availability of high-resolution temporal and spatial data. In order to
achieve this, the paper is structured as follows: Section 2 presents a brief review of the
practice of traffic signal control. Section 3 discusses the fundamental principles of
Chaos Theory, whilst Section 4 presents the algorithms for the phase space reconstruction.
Section 5 argues qualitatively that the road traffic system is a chaotic system and identifies
the conditions under which chaos can emerge. Section 6 reviews previous applications of
the theory in traffic analysis, and identifies how these studies have been restricted to non-
urban environments due to the lack of high-resolution data and the complexity of con-
gested urban networks. Section 7 argues that the availability of high temporal resolution
data from sources such as Motes, Bluetooth, Split Cycle Offset Optimisation Technique
(SCOOT) and Automatic Number Plate Recognition (ANPR) can now overcome these limit-
ations. Section 8 includes a numerical example of applying Chaos Theory to highly
resolved traffic data to determine the states of traffic flow. Finally, Section 9 draws con-
clusions and makes recommendations for applying Chaos Theory, in the future, to
manage traffic in urban areas to reduce the problems of congestion and atmospheric pol-
lution, through the incorporation of new chaos-based algorithms within existing Urban
Traffic Management and Control (UTMC) systems.

2. Review of the practice of traffic control in urban areas (from the 1920s to
date)

Traffic signals are deployed alongside a number of technology-supported applications
such as UTC and variable message signs to enhance the strategic operation of local or
network-wide area road network (Hounsell & Mcdonald, 2001; Hounsell, Shrestha, Piao,
& Mcdonald, 2009). Early installations in the 1920s were isolated (uncoordinated) fixed-
time traffic signals, which had only a fixed amount of green time available irrespective
of the number of vehicles waiting to be discharged through the junction. Due to not
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optimising the green splits in real time, excess green could be available when only a few
vehicles are awaiting discharge and vice versa, making fixed-time signals largely unable to
tackle the challenges and complexities of urban road congestion. In the late 1950s, the ear-
liest UTC techniques were developed for coordinating the operation of fixed-time signals
on a route to achieve a ‘green wave’ along a set of connected links such as a radial
network. However, this strategy is unable to respond, in real time, to changing traffic con-
ditions, and is prone to causing lengthy delays to traffic on side roads and a lack of coordi-
nation in opposing traffic streams. Crucially, fixed-time UTC whether “green wave” or area-
wide is not demand-responsive, and therefore unable to handle the complex changes in
arrival patterns of vehicles at a stop line, or respond to unplanned incidents such as traffic
accidents (Hamilton, Waterson, Cherret, & Snell, 2012). Due to these drawbacks, their effec-
tiveness in controlling and managing traffic flow is limited to traffic conditions up to about
90–95% degree of saturation. Such conditions are becoming less likely in urban networks,
where the complex nature of the spatial and temporal evolution of congestion across net-
works makes fixed-time signals inappropriate. Moreover, their signal plans (compiled for
different times of the day and for recurring events on the network) degrade in effective-
ness rapidly relative to changes in traffic patterns, and require regular updating to be
effective (Bell, 1983).

In the 1960s, “intelligent” stand-alone (isolated) traffic signals such as Vehicle Actuation
(VA) and subsequently Microprocessor Optimised Vehicle Actuation (MOVA) techniques
were introduced for the efficient operation of traffic signals (Department for Transport,
1999). However, VA is prone to extend the green phase inefficiently, especially when
there are long queues waiting at red signals, because consideration is not given to oppos-
ing traffic streams. Moreover, it is difficult to set maximum greens effectively, and this can
degrade the performance if traffic arrival patterns become platooned which requires
coordination of adjacent signals as well as the balance of flows in conflicting traffic
streams (Simmonite, 2005). MOVA generates its own signal timings cycle-by-cycle,
which vary continuously with traffic conditions, and therefore is able to respond dynami-
cally to variations in vehicle arrival rates (Meehan, 2003). Simmonite (2005) suggests that
MOVA overcomes the problems of VA by implementing a strategy based on delay-and-
stops minimisation (under uncongested situations) or capacity-maximisation (under con-
gested conditions). Although VA and MOVA are effective controls, they are generally
limited to isolated junctions and generally not feasible at the network level, where it is
desirable to coordinate the operation of neighbouring junctions, making them of
limited use for urban traffic management. However, isolated junctions nonetheless
create congestion problems which can spill back and affect signal coordinated regions
and should be considered part of a strategic traffic management capability offered by
Chaos Theory.

In the 1970s, the (then) Transport and Road Research Laboratory (TRRL), in collaboration
with suppliers of traffic systems in the UK, developed the concept of demand-responsive
UTC systems to overcome the limitations of fixed-time UTC (Department for Transport,
1999). Current systems include SCOOT (Bourner, 1984), Sydney Co-ordinated Adaptive
Traffic System (SCATS) (Lowrie, 1982), Urban Traffic Optimisation by Integrated Auto-
mation (UTOPIA) (Donati, Mauro, Roncolini, & Vallauri, 1984), Real Time Hierarchical Opti-
mised Distributed and effective System (RHODES) (Mirchandani & Head, 2001),
Programming Dynamic (PRODYN) (Farges, Khoudour, & Lesort, 1990) and Method for
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the Optimization of Traffic signals In On-line controlled Networks (MOTION) (Busch, 1996).
These systems make use of detectors that monitor traffic flows continuously across the
network in real time and adjust the green splits, offsets and cycle times to optimise
their operations and reduce delays (Hamilton et al., 2012). These systems typically
monitor the network at the signal control region level (typically 4–12 adjacent junctions),
and undertake optimisation procedures to ensure the smooth flow of traffic across a par-
ticular section or area of the urban network. These demand-responsive systems manage
traffic much better than fixed-time systems, with an estimated reduction of approximately
12–20% (on average) in delays in SCOOT, for example, compared to fixed-time signals
(Department for Transport, 1999). Consequently, by combining SCOOT with Intelligent
Transport Systems such as variable message systems, for example, to redistribute traffic
over alternative routes in the event of incidents occurring on the network, UTC systems
have led to significant improvements in urban traffic management.

In spite of this success, the optimisation procedures are only effective within network
regions in undersaturated and close to saturated traffic conditions, where queues build
up during the red phase and dissipate during the green phase or can be stored on
longer links in the network by appropriate adjustment of offsets, cycle time or splits. In
oversaturated traffic conditions however, they are unable to cope with surges and pertur-
bations in the traffic flow or capacity, which go undetected. Consequently, their ability to
respond demand-responsively fails, as their optimisation procedures are unable to
produce appropriate manipulations of the signal timings dynamically but instead signal
control regresses to a fixed-time modus operandi. Furthermore, UTC systems are unable
to control and coordinate traffic flow between signalised regions or isolated junctions
that make up the urban road network. Therefore, due to the inability to manage traffic
between regions, traffic movement into an already saturated region continues unabated
even when congestion begins to emerge leading to the worsening of existing adverse
traffic conditions. If the possibility exists to control the amount of inflow into network
regions, then it would be possible to manage these inbound flows upstream, perhaps
on the outskirts of a town or city, to ensure that network regions remain in undersaturated
conditions.

All current demand-responsive signal control systems analyse and process real-time
traffic data (such as volume, density, lane occupancy) to carry out their basic operations
in order to determine the type of control strategy to implement (Jianming, Chunguang,
Jingyan, Zuo, & Jiangtao, 2003). The bias in their approach, that also limits their function-
ality, is that they are only able to implement solutions that tackle adverse network con-
ditions as or after they occur, rather than being pre-emptive of congestion events in
order to implement mitigating strategies beforehand. We argue that, in order for UTC
systems to be more effective, they must develop this capability to anticipate congestion
events and deal with them in advance. Appropriate mitigation plans, when implemented
ahead of congestion events, will improve urban traffic management and reduce conges-
tion and associated emissions, but this is only possible when traffic conditions can be fore-
cast spatially and temporally into the future with sufficient accuracy.

Given this background, it is important that modern UTC systems are equipped to fore-
cast network events much more accurately, at least in the short term, as an enhanced
benefit of Intelligent Transport Systems (ITS) applications to urban traffic management
(Han & Song, 2003). It is no surprise, therefore, that the development of traffic condition
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forecast models has become an area of growing interest amongst researchers and prac-
titioners alike who are exploring ways to understand the dynamics of traffic flow in
order to be able to simulate and forecast real-time traffic regimes more accurately
(Huang & Sadek, 2009; Kesting & Treiber, 2008; Qi & Ishak, 2014; Vlahogianni, Karlaftis, &
Golias, 2005). Traffic condition models are able to predict conditions within the coming
hour using data from roadway sensors. The ability to predict traffic conditions in real
time makes these models much more attractive than traditional methods that can only
make predictions based on (e.g.) annual growth factors. These are not only more suscep-
tible to inaccurate projections due to their long forecast horizons but also of little value to
the day-to-day operation of traffic networks. The benefits of a short-term prediction
horizon should not be underestimated. For example, Cheslow, Hatcher, and Patel (1992)
suggest that “the ability to make and continuously update predictions of traffic flows
and link times for several minutes into the future using real-time data is a major require-
ment for providing dynamic traffic control”. In recent years, several traffic condition
models have been developed including time series, non-parametric, filtering and
various hybrids of them. These are generally restricted in their applicability to congested
traffic situations due to inherent weaknesses in replicating, in the modelling process, traf-
fic’s non-linear behaviour (Guo, Huang, & Williams, 2014; Vlahogianni et al., 2005; Zhang,
Patuwo, & Hu, 1998; Zheng & Mcdonald, 2007). In order to overcome the limitations,
phase-state models based on Chaos Theory have emerged which have the greater poten-
tial for analysing the complexities in perturbing traffic flow, which are due to the various
unpredictable and immeasurable quantities within road traffic systems (Jianming et al.,
2003).

3. The logistic equation

The logistic equation is useful for understanding the characteristic features of dynamic
systems. It describes the evolution over time of an arbitrary variable X (e.g. flow), which
is a function of its previous value and a parameter k, which is the growth rate or ‘tuning
parameter’ and the determinant of the steepness of the function. The mathematical func-
tion is given by Xt+1 = kXt(1− Xt) where 0 , Xt , 1 and 0 , k , 4, and Xt and Xt+1
are the previous and current values, respectively. As illustrated in Figure 1, the parabolic
curve of this equation shows an exponential rise in Xt+1 as Xt is increased below the
mean value, but Xt+1 decreases as Xt is increased above the mean value. Another charac-
teristic feature is that there is increased rate of change in Xt+1 as the k-value is increased.

Figure 1 also illustrates the solution of the logistic equation determined graphically
through an iterative process. Let us suppose that we require a solution for the logistic
equation: Xt+1 = 3Xt(1− Xt), where t = 1, 2, 3 . . . 50. All values of Xt+1 will lie on the para-
bolic curve, whilst the 45° line shows the path of points when Xt+1 = Xt . Suppose that the
initial value (X0) = 0.20 at time (t) = 0, then the intercept X0B on the parabola defines X1
at the first iteration. At the second iteration, X0 = X1 (this is determined from the intercept
of X1BC on the 45° line), point D on the parabola defines the future value (X2) of the system.
Similarly, for the third iteration, let X0 = X2 and point F on the parabola defines the future
value (X3) of the system. This iterative process is repeated a number of times until even-
tually the variable converges to a steady equilibrium X∗ at 2/3. As long as the k-value is
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less than three, the system is stable and reaches some other steady -state values other
than the mean (Butler, 1990).

This equilibrium point, however, becomes unstable as soon as the k-value exceeds
three and the system starts to bifurcate (doubling of the solution) exhibiting a two-
period cycle where the solution alternates between two values. By increasing the
k-value gradually, the bifurcations increase further with the periodicity of 2n (where n =
1, 2, 3…), such that the cycles progress to a four-period cycle (where the system
repeats the same sequence after every fifth iteration), then an eight-period cycle, and
so on. The bifurcations become more rapid until the point of accumulation with a
k-value of approximately 3.57, when the system becomes chaotic, where there can be
an infinite number of periodic cycles. This illustrates the characteristic of chaotic
systems. The observation reveals that a change in the k-value affects the degree of
non-linearity in a deterministic system, which consequently impacts on the output sol-
utions. Xu and Gao (2008) identified the main features of unjammed traffic as period-1
and period-2 attractors, whilst period doubling and chaos are characteristics of heavy
traffic flow. Under chaotic traffic conditions, drivers are forced to accelerate and decelerate
giving rise to stop–start conditions, which are uncomfortable, increase fuel costs and
decrease road capacity. This knowledge of chaotic variables is therefore important to
enable traffic operators to provide stable traffic conditions to improve the safety and
level of service of the road system.

Butler (1990) further illustrated that the time series plot of Xt versus the number of iter-
ations for the logistic curve shows a fluctuating profile even though the system converges
to a stable point. Therefore, in our illustrative example above, it may be misconstrued
based on the fluctuating time series profile that the system lacks chaotic properties, if
the underlying pattern of the system is unknown. This demonstrates that the fluctuating
profile of time series data are not always outputs of completely random systems. Andrews
(1996) confirmed this observation indicating that deterministic systems could generate

Figure 1. A stable time path for a logistic growth curve.
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profiles that may be pseudo-random, but this is only due to their sensitivity to initial con-
ditions. This suggests that small changes in the initial conditions may be responsible for
disproportionate changes in the future values of the system. The above discussion, in
relation to the logistic curve, implies that traffic systems that generate non-linear time
series profiles may be possibly products of deterministic rather than stochastic processes.
In order to advance the discussion, the algorithms of the phase space reconstruction
approach for determining key chaos variables are discussed in the next section.

4. Phase space reconstruction

Takens (1981) provides the mathematical foundation of the phase space reconstruction
method for the non-linear analysis of dynamic systems. Using this method, it is possible
to construct the underlying dynamics of a non-linear system using the time series of
the system’s evolution. Through this approach, the characteristics of a dynamic system
can be understood based on only the time series information without the need of any
additional information (or evolutionary equations).

Suppose a scalar observed time series:

X(i) = [x(ti) . . . ], for ti = t0 + iDt, i = 1, 2, . . . ..N, (1)

where Dt is a constant sampling interval; t0 and N are the initial and final times, respect-
ively, within the sampling interval; and ti evaluates a specific time for the time series’
observation of interest. According to the delay coordinate embedding method (Jianming
et al., 2003), each scalar measurement x(t) is a component of a vector x(t) of m-dimen-
sions and t is the delay time (lag), as follows:

X(1) = [x(1), x(1+ t), x(1+ 2t), . . . . . . . . . , x(1+ (m− 1)t)],

X(2) = [x(2), x(2+ t), x(2+ 2t), . . . . . . , x(2+ (m− 1)t)],

X(3) = [x(3), x(3+ t), x(3+ 2t), . . . . . . . . . , x(3+ (m− 1)t)],

· · · · · ·
· · · · · ·

X(k) = [x(k), x(k + t), x(k + 2t), . . . . . . . . . , x(k + (m− 1)t)],

(2)

where m is the embedding dimension and N = k + (m− 1)t is the length of the time
series.

Two conventional approaches for calculating the lag are the autocorrelation and
mutual information methods (Jianming et al., 2003). The G-P Algorithm amethod by Grass-
berger and Procaccis (Xue & Shi, 2008; Wang, Shi, & Lu, 2005; Zhang & Liu, 2007), is widely
used to select the desired correlation dimension (D) and embedding dimension (m), based
on the following algorithm:

Let rij(m) denote the distance between them, so that:

rij(m) = Xi − Xj. (3)

Given a certain distance r, the ratio of the number of paired phase points whose
distance of separation is less than r to all the pairs of phase points is given by the
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accumulation function:

C2(r, m) = 1
N(N − 1)

∑N
i,j = 1
i = j

u(r − Xi − Xj), (4)

where u(z) is the Heaviside function, which is given by

u(z) = 0, z , 0
1, z ≥ 0

{
. (5)

Taking the natural log of both sides:

D(m) = ln C2(r, m)
ln r

. (6)

The correlation dimension is a type of fractal geometry, which defines the shape of
complex objects generated usually by the trajectory of a chaotic attractor. This is a fraction
unlike the dimensions of simple geometrical objects, which are whole numbers (Lorenz,
1993). Fractals possess a property of self-similarity at all scales, that is, by magnifying
several pieces of the same object, each of the magnified pieces is indistinguishable
from the whole system. They provide a statistical index used to judge the degree of com-
plexity of an object according to the ratio of how the detail in the fractal pattern changes
with the scale of measurement (Mandelbrot, 1983; Shirer, Fosmire, Wells, & Suciu, 1997).
For example, the Koch curve has a fractal dimension of about 1.26, which suggests that
the curve is rougher than a smooth curve or line that has a dimension of one. Since the
dimension is less than two, it has no area and therefore poor at filling up space compared
to a square. In chaos mathematics, the fractal dimension, as well as a positive Lyapunov
exponent, is used to indicate the presence of chaos (Jianming et al., 2003).

Chaos Theory helps to explain the evolution of chaotic systems through a measure of
the rate of change of a system, known as Lyapunov exponents. In the traffic system, the
Lyapunov exponents may be considered as an indicator of the lengthening and shorten-
ing of the gap between vehicles in a phase space. As such, it may be used to explain the
changing traffic conditions on an urban link.

For any two points in phase space with an initial separation of dX0, if after a time of a
certain period t the separation between the two orbits is dx(X0, t), then the Lyapunov
exponent (l) is given by

l = lim
t�1

|DX0| � 0

1
t
ln

dx(X0, t)
dX0

∣∣∣∣
∣∣∣∣. (7)

The next question is to establish whether chaos is present in urban road traffic, and, if so,
under what circumstances can it occur?

5. Chaos in road traffic networks

Chaos, amongst other reasons, is due to the combined effect of regular and randomly
occurring events such as variability in traffic speeds, buses stopping, pedestrians crossing,
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vehicles parking and unparking at the roadside and the effect of UTMC traffic systems. This
results in the traffic signals discharging only a portion of an entire queue length during the
green phase in each cycle, which, over time, leads to severe queuing, which then becomes
a recipe for chaotic behaviour to develop (Frazier & Kockelman, 2004). The presence of
non-linearity does not always guarantee chaos (Gleick, 1988); however, it has been estab-
lished that non-linearity does generate chaos in the traffic system (Lan, Lin, & Kuo, 2003;
Narh, Thorpe, Bell, & Hill, 2014; Shang, Wan, & Kama, 2007). Because this activity generates
chaos on specific links or at junctions in a network on a day-to-day basis, this opens up the
potential for the technique to identify patterns of traffic flow spatially and temporally that
lead to the congested state.

Due to its dynamic nature, traffic fluctuates between free flow and congestion, but any
future state of the network cannot be determined accurately. Primarily, this is due to the
varied mix of human behaviours, which is partly a function of environmental factors, and
partly due to the heterogeneity in drivers (e.g. personality mix of males and females of a
wide age range), which gives rise to varied reaction times consequent to different driving
styles (Dendrinos, 1994; Lee, Kwok, & Williams, 2014). Studies have attributed the chaotic
behaviour in traffic flow to delay in human reactions, some “mass random” phenomenon
and the varying physical and human elements, which ultimately pose challenges to fore-
casting accurately events on the road transport network (Safanov, Tomer, Strygin, Ashke-
nazy, & Havlin, 2002; Xu & Gao, 2008; Zhu, Xu, & Yan, 2010).

Road traffic networks can be prone to sudden gridlocking even when only minor events
occur. A small change in a single driver’s behaviour, for example when brakes are applied,
may affect network conditions, especially when the traffic volume is increasing and
unstable conditions are beginning to emerge. In other situations, fluctuations in speed
or the spacing between vehicles, car parking and unparking or pedestrians’ jay walking
even when traffic density is much lower than the jam density may result in spontaneous
traffic congestion.

Another reason why traffic can be prone to chaos is attributable to the similarity
between fluid particles and traffic streams. Fluid systems analysed using Chaos Theory
in scientific experiments indicate that particles released in the flow tend to deviate
from each other over time, with the distances between pairs of particles growing at an
exponential rate, which is normally characterised by the Lyapunov exponents (Károlyi, Pat-
tantyús-Ábrahám, & Józsa, 2010). Given the resemblance, the principles applicable to fluids
may also be relevant to streams of vehicles. This similarity can be observed, for example, if
one focuses on the waves that ripple through the network as vehicles brake or accelerate
in succession (Sipress, 1999). The transmission of “stop-and-go”movement through a road
network, as vehicles change speed, is comparable to the shock waves released when a
mass of gas fluid hits a bottleneck and transmits a wave of compressed air back in the
opposite direction to the stream of oncoming gas (Sessler, 2007). Hence, these character-
istics can potentially generate or exacerbate the chaotic state of the road network.

In contributing to this discussion, Dendrinos (1994) proposed a utility maximisation
model to explain the interactions of motorists in the environment and how this complexity
develops the chaotic state of network. The basic assumption in this model is that motorists
tend to choose speed, acceleration and spacing (headways) in order to maximise their
utility, or the degree of satisfaction enjoyed by a motorist on the road network. In practice,
the utility enjoyed by drivers under certain conditions influences their choice of speed and
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acceleration, which affects the dynamics of the traffic stream. The driving conditions are
also functions of other environmental factors, which may include the maximum allowable
speed, road surface conditions, weather and pedestrian activities. All this varying mix of
conditions faced by each individual motorist, coupled with the heterogeneity in the
driver population, gives rise to varied reaction times.

According to the model, the utility of each individual driver is given by the utility func-
tion as

Uj(t) = Uj{v̇j(t), v̈j(t), dj(t), t . . . . . . . . . . . . . . . .}. (8)

Such that:

Ct
jk {v̇j(t), v̈j(t), dj(t), rj(t), sj , t . . . . . . . . . . . . . . . .} ≤ Ĉ jk(t),

[v̇j(t), dj(t)] ≥ 0, v̈k = 0,

where:

. v̇j(t) . 0 is the operating speed of the jth vehicle at time t(t [ Ti), where Ti is the dur-
ation of a time segment i within a larger time interval T (say a day) across a designated
cross-section of the road;

. v̈j(t) . 0 (acceleration) and v̈j(t) , 0 (deceleration) are operational parameters of the
jth vehicle at time t at that point;

. dj(t) is the vehicle density in the local area at time t (as perceived by the driver);

. rj(t) is driver’s reaction time; and

. sj is sensitivity or car response to the driver’s handling.

The vehicle specific parameters are constrained also by other factors: Ĉjk(t), which
includes the constraint imposed by the local maximum allowable speed, road surface con-
ditions, weather and so on.

In the absence of congestion, drivers operate outside of a platooned environment and
are unaffected by both the behaviour of neighbouring vehicles, and the distances from
other vehicles. However, as vehicular interaction begins to increase in platooned environ-
ments, drivers respond to speed, acceleration and separation of vehicles in front and
behind. Consequently, the macro-scale density is affected by the choice of speed by the
individual drivers. Under these circumstances, motorists respond to the constantly chan-
ging influences of other motorists in attempts to maximise their individual utility. Conse-
quently, there is a constant fundamental feedback as motorists change their driving
behaviour in order to maximise utility. Dendrinos (1994) states that, “this interaction
alone, in effect, may be responsible for non-equilibrium unstable (possibly chaotic)
dynamics, depending on the connectances between speed, acceleration/deceleration
and immediate density at each individual’s utility and perceived constraint functions,
and the system wide environment”.

The speed-flow curve in Figure 2 shows an upper region of ‘stable flow’ and lower
region of ‘unstable flow’. Motorists enjoy their utility on the upper curve, but less utility
on the lower curve is characterised by congestion, increased journey time and significant
delays. As illustrated, speed tends to decrease (as flow increases) after an initial period of
little change, but at an increased rate of change of speed as flow approaches capacity.
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This region of a sharp deterioration in speeds defines the onset of an unstable region
(chaos) characterised by low speeds as vehicles are forced closer together on the link
(Ortuzar & Willumsen, 2006). Dendrinos (1994) identifies that the utility of the motorist
starts to become noticeably restricted due to the increased rate of interactions as flow
approaches capacity, and generates the fundamental feedback interaction that stimulates
chaos, which creates conditions for hyper-congestion. Given this background, the next
section reviews previous work using real-world data to investigate Chaos Theory in
traffic analysis.

6. Previous applications of Chaos Theory in road traffic analysis

Several studies have shown that traffic data can display chaotic behaviour close to satu-
rated conditions. Kirby and Smith (1991) conducted an exploratory study based on the
car-following theory. Their results identified the need to examine non-linear dynamics
in more detail and confirmed that various parameters that arise in transport models,
such as car following, do bear characteristic features of chaos. The authors concluded
that Chaos Theory is suitable for understanding the conditions under which instabilities
evolve and propagate through road transport systems. The study also highlighted the
need for guidance on how to select the forecasting horizon to make predictions realistic
and, finally, recommended a study into ways of analysing and summarising data for timely
detection of the transition to chaotic behaviour.

More recently, research into Chaos Theory has mainly focused on motorway networks,
as they are relatively simple systems to analyse compared to urban road networks, which
can be subject to various interacting elements. Motorways tend to be longer stretches of
carriageway, often without a dense deployment of detectors to provide sufficient and
appropriate traffic information to be able to understand the evolution and propagation

Figure 2. The standard static ‘operating speed’ versus ‘volume’ relationship.
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of the dynamic states on links in the network. These studies were based on relatively low
temporal resolution data, for example, one-hour intervals, and lacked investigations over a
wide spatial area (such as a network of coordinated junctions). Nair, Liu, Rilett, and Gupta
(2001) analysed average speed time series data aggregated into 5-minute data from
inductive loops installed on the San Antonio freeway system. The non-linear analysis of
the traffic data focused on average speed time series aggregated into 5-minute data. Simi-
larly, Shang et al. (2007) identified the existence of a possible geometry (rather than a sto-
chastic character) in traffic speed data sampled at every two minutes in Beijing, and
suggested that the traffic flow process could be viewed from a new perspective by refer-
ence to its chaotic properties. Both studies identified that traffic data were deterministic
and could be modelled based on phase space techniques.

Lan et al. (2003) collected automatic traffic count records sampled at one-minute inter-
vals at 20 selected stations on the Miami Freeway in the USA, for testing and predicting
traffic flow dynamics using Chaos Theory. The analysis carried out indicated consistently
strong evidence of a chaotic rather than a random structure. Furthermore, short-term
traffic flow predictions were possible. In a study in Sacramento, California, Frazier and
Kockelman (2004) confirmed that a more generalised view could only be drawn when a
wider range of traffic flow rates have been analysed. The study used data from inductive
loops collected over a one-month period at 30-second intervals on a section of Interstate
80. Crucially, it concluded that a lack of extensive data, or sampling at the inappropriate
frequency, fails to capture accurately the important dynamic features in a system. This
has severely inhibited progress applying Chaos Theory to traffic congestion management.

Similarly, Zhang and Liu (2007) confirmed chaotic and fractal properties in traffic data
by analysing traffic data for a range of resolutions between 30 seconds and 6 minutes. This
study concluded that in order to achieve a reliable forecast, the sample size should be
more than ten times that of the correlation dimension of the short-term traffic flow.
Krese and Govekar (2013) distinguished between the traffic dynamics of a ring road
around Ljubljana in Slovenia and several adjoining highways, based on chaos and the Lya-
punov spectrum. The study concluded that the maximal Lyapunov exponents showed the
sensitivity of the highway as higher than the ring road, which is an indication that the ring
road was capable of responding better to small traffic perturbations than the highway.

In a non-motorway study, research based on UTC–SCOOT data from the Traffic Manage-
ment Bureau in Beijing carried out traffic flow forecasts from data sampled at an averaging
frequency of 15 minutes (Jianming et al., 2003). The forecast and actual curves fitted well
with a mean square error of 7.09% and equalisation coefficient of 95.44%. It is unclear why
the study did not analyse the spatial and temporal evolution of congestion across the
network, but this could possibly be due to the low temporal resolution of the data and
the sparse distribution of available data for the network. Thus, even in the instance
where the study used urban area data, it could not investigate the complexities in the
urban flow network to determine whether chaos occurred at the micro-scale level or
across a network of interconnected junctions. Therefore, this review suggests that
Chaos Theory is relatively data-hungry and requires high temporal and spatial resolution
data in order to function appropriately to reveal congestion patterns evolving spatially and
temporally over a network.

The above evidence also suggests that earlier studies have only focused on systems
with low temporal resolution or simple linear networks such as motorways that are
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relatively easy to analyse, compared to urban road networks. Chaos Theory is data-hungry
and dependent upon the availability of large volumes of data from a densely surveyed
network with observations over a long period and possessing a reasonably (high) resol-
ution that preserves the variability in short-term traffic patterns. Suitable data could be,
for example, sub-one-minute interval for flow, speed, lane occupancy and traffic noise
(Frazier & Kockelman, 2004; Lan et al., 2003; Nair et al., 2001). This quality of data
enables a greater ability to identify transients, monitoring variations in congestion in
time and space. This facilitates ‘early warning signs’ of the state change within the
system to be detected giving network managers more time to react. In order to apply
Chaos Theory to traffic management in urban areas, there is need to explore road traffic’s
chaotic behaviour in detail. The optimum approach is to focus research on examining
complex networks, for example, a group of interconnected urban junctions, such as a
SCOOT region, using highly resolved traffic data. The next section suggests that there
are now new and enhanced data sources that overcome previous limitations with appli-
cations of Chaos Theory to urban networks.

7. New sources of high-resolution traffic data

The key characteristics of traffic behaviour needed to deploy Chaos Theory (e.g. traffic flow
and occupancy) can vary over a matter of seconds and within tens of metres across a
network. Therefore, to detect these variations, the system must capture relevant data at
sufficiently high spatial and temporal resolution to enable an understanding of the prevail-
ing dynamic state and perturbations in traffic on a link, at a given point in time, and the
evolution of the resulting congested state in the near and short-term future. Given that
low-resolution data fail to preserve the short-term variations in traffic patterns makes
the dynamic property of the system unclear; therefore, such data do not adequately
support the examination of Chaos Theory. Recent innovation in monitoring technologies
(such as pervasive sensors known as Motes and Bluetooth devices along with sophisti-
cated legacy system data sources (such as SCOOT and ANPR)) can generate high resolved
(temporal) traffic data over a sufficiently high spatial density. This provides a new stimulus
for further research into gaining a better understanding of characteristics of chaos in traffic
data to enhance the current automatic management of urban road traffic. Thus, the
benefits of integrating diverse data sources within existing urban control systems are
that they will serve a dual function of delivering the traffic management and control func-
tion as well as providing the data to enable Chaos Theory to report on the more strategic
situational state of the urban network in real time (Downes, Rad, & Aghajan, 2006). These
data sources are now discussed in more detail, in terms of their overall feasibility, and the
requirements for high temporal and spatial resolution data.

7.1. Pervasive devices

Motes and Bluetooth are relatively inexpensive devices that are easily and flexibly installed
with minimal visual intrusion, enabling mass deployment in urban areas at relatively low
capital and ongoing maintenance costs. A typical network consists of sensors attached to
street furniture, for example, traffic signal poles, lamp columns and railings (Figure 3). Also,
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these devices can be programmed to collect traffic and environmental data at any desired
level of temporal resolution (including second-by-second).

Motes can be mains or battery-powered, compact and low-cost devices that contain a
number of different types of sensors including temperature, humidity, carbon monoxide
(CO), nitric oxide (NO), nitrogen dioxide (NO2) and noise that can be programmed to
enable continuous monitoring and simultaneous measurement of ambient conditions
including vehicle movement and pollution over a networked area (Akyildiz, Su, Sankarasu-
bramaniam, & Cayirci, 2002; Bell & Galatioto, 2013; Bell, Galatioto, Hill, & Namdeo, 2009).
Depending on the type of in-built sensor, a mote device can gather traffic information
such as traffic flow, lane occupancy and speed when it detects vehicles within its zone
of surveillance (Shih et al., 2001). The first commercial deployment of the Newcastle
MESSAGE mote integrated with SCOOT system was in Medway and Newcastle (Figure
3). Data are sampled at 5 Hz, and averaged to one minute, and transmitted from sensor
to sensor (up to 5 hops) to a gateway which relays data from the whole array (up to
100 sensors) by General Packet Radio Service (GPRS) or LAN/Wi-Fi (North et al., 2009).

Bluetooth devices use a low-cost transceiver chip to communicate and exchange infor-
mation with other enabled devices within a global frequency range of 2.45 Hz. Figure 4
shows a typical Hi-Trac® Bluetooth equipment installed on a traffic signal pole. Each
device has a unique identification called a MAC (Media Access Control) address, which
facilitates the identification of individual vehicles (with an enabled Bluetooth device)
passing through the network. Bluetooth scans an enabled in-vehicle device (such as

Figure 3. A typical mote installed on a lamp column.
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mobile phone, laptop and in-vehicle electronics/engine management systems). When a
vehicle passes through the device’s detection zone, a data recorder stores the device
address and records the data type to the nearest second (Kay & Jackson, 2012).
Through the matching of MAC addresses at successive detection stations, Bluetooth
devices provide a large volume of high-resolution traffic data including traffic volume,
occupancy (density), speed and travel time (Blogg, Semler, Hingorani, & Troutbeck,
2010). Examples of areas where Bluetooth networks are already deployed for traffic data
collection are Queensland (in Australia), Indiana, Pennsylvania and Chicago (in North
America), and Altrincham, Manchester, Stockport and Wigan (in England), and Perth and
Inverness (in Scotland) (Cragg, 2013; Galas, 2010).

Unlike the Motes and Bluetooth detectors, SCOOT and ANPR systems are capital-inten-
sive and not as pervasive (i.e. installations are less frequent) making them less capable of
providing high-density spatial data, although they can collect high temporally resolved
data.

7.2. SCOOT and ANPR

It must be emphasised here that SCOOT and ANPR systems are not new data sources, but
the enhanced ability to analyse the data through increased storage capability and comput-
ing power makes them potential sources of data for Chaos Theory. Until recently, SCOOT

Figure 4. Typical Bluetooth installed on a traffic signal pole.
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and ANPR data sets were only available in aggregated form at low-resolution, therefore less
suitable for Chaos Theory. Although the raw data are collected in 20-second, 30-second,
one- and two-minute intervals, historically, measurements have been aggregated typically
in time synchronous intervals of 5 and 15 minutes providing average values for each time
period. This procedure reduces the size of the data files for storage in databases (such as
ASTRID), thus minimising the required memory and data writing (or retrieval) which can
be both expensive and computationally intensive. Once aggregated, any traffic variation
within the time interval is lost; therefore, such low-resolution data smoothe the short-
term variation in traffic patterns, which ultimately affects the accuracy of short-term fore-
casts (Zheng & Mcdonald, 2007). However, during the past few years, the unprocessed
data have started to become available to traffic managers enabling processing to take
place at second-by-second intervals. As such, future studies will benefit from data sets
whose short-term variations in traffic patterns are known and therefore make possible
the opportunity to investigate the underlying non-linear structure available in the detailed
measurements. Furthermore, the use of computer technologies such as The Cloud comput-
ing system is able to meet the real-time data processing requirements and the compu-
tational intensity associated with making these databases more suitable for the Chaos
Theory application.

The SCOOT system’s layout is shown in Figure 5. SCOOT is used in signalised urban net-
works in more than 250 towns and cities worldwide to manage traffic in small areas of the
urban network (Transport Research Laboratory, 2013). This relatively low number of
SCOOT and ANPR networks is due to their large capital cost and does imply that Chaos

Figure 5. The flow of information in a SCOOT-based urban traffic control system.
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Theory may be applicable only where high-resolution data are available, but it is unlikely
that the data are available at an entire citywide level. On the other hand, the spatial res-
olution of the data itself could be low depending on the distribution of loop detectors
within the network.

Figure 6 shows the system’s layout for ANPR, which provides continuous information
from monitoring sites to determine conditions such as flows and journey time on the
road network (Hounsell et al., 2009). In the UK, a number of regional and national sites
(and other local traffic control centres such as the ROMANSE office in Southampton)
collate more than six million records of traffic data per day for real-time application
(Zheng & Mcdonald, 2007). It is possible to process ANPR data at any time resolution
and therefore the installed sites could provide high-resolution data. As both SCOOT and
ANPR are potential data sources of low spatial density, it will be beneficial combined
with Bluetooth and Motes configured to deliver data at appropriate sampling time and
at ‘critical locations’. This will enable the problems regarding their network coverage to
be resolved for analysing the urban road network using Chaos Theory, provided proxy
measures of flow and occupancy can be derived from pollution and noise sensors (Gala-
tioto & Bell, 2013). The benefit offered by Chaos Theory is that it can use the wealth of data
available as a by-product of existing ITS legacy systems. In an environment of economic
restraints, policies of ‘more for less’ demonstrating additional spin-off benefits allow
local government to justify ongoing maintenance of existing UTMC systems.

8. An illustration of using Chaos Theory to detect traffic states

We present in Figure 7 a numerical example of the algorithms of Chaos Theory (Section 4)
to demonstrate the potential for Chaos Theory for traffic monitoring applied to a single
SCOOT link flow time series data averaged at 20-second intervals for 5 July 1999 from Lei-
cester, UK. Ideally, the region below the Lyapunov exponent of zero (theoretical) reference
line indicates that the network is extremely stable (i.e. when the link is free flowing due to

Figure 6. The schematic diagram for an ANPR system (Yasin, Karim, & Abdullah, 2009).
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low traffic flows or when in a congested state), whilst above the zero threshold indicates
unstable states of the link. Therefore, the area below the meta-stable reference line deter-
mines the times when the network is less sensitive to perturbations in traffic flow. This is
most likely to occur during the overnight period, which is not associated with the onset of
prolonged congestion, but can also occur in the following two situations. The first is in free
flow conditions when the network control system can respond to the randomness in the
traffic arrivals at the stop line, as there is plenty of spare capacity. The second is in the con-
gested state when traffic is generally stationary or very slow moving, in which state the
traffic is ‘calmed’. In both of these states, the network is considered to be stable and insen-
sitive, as there are virtually no interactions between vehicles, and the Lyapunov exponent
is negative, zero or a small value. The link starts to become sensitive as the degree of inter-
action between vehicles increases with high positive Lyapunov exponents indicating
extreme sensitivity. By observing the time series profile of the Lyapunov exponents, the
turning points can reveal the “shoulders of congestion” as a signal of impending conges-
tion to determine when to initiate traffic management plans (Narh, Thorpe, Bell, & Hill,
2015).

In a real-world application, it is possible that data from a single source will be
inadequate for the study of an area-wide network, and therefore supplementing with
other data sources may be necessary. As SCOOT and ANPR are capital-intensive and
limited to key locations only, pervasive instruments (such as Mote and Bluetooth) may
provide additional information, if required. They may also allow existing areas covered
by SCOOT and ANPR to operate through a ‘linking deployment’ of Motes or Bluetooth
sensors. The challenge to the implementation of Chaos Theory is whether these different
data sources could easily fuse together through an interoperable system.

In extending the principles of Chaos Theory to real-time applications, a traffic system’s
chaotic property will need to be determined continuously from the discrete measurement
of the dynamic traffic stream variables. Consequently, a further requirement will be an effi-
cient and dynamic means of analysing these variables, for example, through stream pro-
cessing. Stream processing has the capability to execute data continuously over long
periods so long as there is a supply of new data for processing. For example, by constantly

Figure 7. Typical 24-hour profile of Lyapunov exponents (5 July 1999) for Link 29.
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analysing the traffic data of network links in space and time, it will be possible through an
understanding of the spatial correlation between links to use the Lyapunov exponents to
forecast the congested links in real time. This would enable the network manager to
implement strategic mitigation plans in advance to avoid or minimise the adverse
impacts of congestion. As such, it will be important, therefore, to address any potential
memory constraints and computational inefficiencies within a computer system’s architec-
ture (Horton & Suh, 2005).

9. Conclusions

This paper has identified that current traffic signal control systems perform well in unsa-
turated and close to saturated traffic conditions, but are unable to handle congested net-
works due to their inability to detect the onset of congestion and implement effective
preventative action. The ability of Chaos Theory to analyse and forecast dynamic
systems has been explored, and there is evidence to suggest that this potential can be
realised for strategic network-wide control to complement the operation of existing
UTC systems, thus improving the effectiveness of managing demand in the urban road
network.

Chaos Theory could therefore play a role in delivering a step-change in approach for
traffic management, as the debate on how to deliver autonomic properties into traffic
control continues to gain momentum amongst academics and traffic practitioners alike.
In order to apply Chaos Theory to enhance the understanding of the evolution of the
road traffic system, it is important to obtain traffic data that are able to capture the
dynamics of how the system is evolving. An essential attribute of such data is that it
must be able to preserve the short-term variability in traffic patterns, and data (sub-one
minute) must be available at a high level of spatial density.

Previous studies have been limited due to either a lack of sufficiently high-resolution
data or confined to relatively simple systems such as motorways and inter-urban links
in sparse data environments, or both. However, due to recent developments, new and
enhanced data sources such as Motes, Bluetooth, SCOOT and ANPR are now available
that should stimulate further research to examine properly the potential for Chaos
Theory to help manage the urban road network. Also, it may be envisaged that the
UTMC industry will seek to configure their processing to deliver data at higher resolution
if it opens up further opportunity for sophistication in congestion management. The
numerical example suggests that flow and occupancy 20-second interval data are suitable
for understanding chaotic behaviour in urban traffic systems. The suitability of both vari-
ables demonstrates that the data source is limited to not only SCOOT but also any system
with the capability to provide either flow or link occupancy data.

Currently, network managers aim to optimise a set of parameters and conditions, or
continuously learn and apply corrections, to determine the appropriate strategy for mana-
ging the transport network and systems. Therefore, incorporating chaos-based algorithms
into current systems can be one step towards autonomic applications for traffic systems,
which require systems to self-manage their operations with minimal human intervention.
Chaos-based algorithms will provide a new and enhanced method for dealing with traffic
congestion through an innovative approach that ensures the enactment of appropriate
traffic control and management strategies that are ‘one step ahead’ rather than ‘one
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step behind’ traffic conditions. Consequently, this will help to minimise delays and
improve journey time reliability, as well as alleviate the environmental impacts of conges-
tion. This enhanced approach would be a significant step towards meeting national and
international targets for reducing CO2 emissions. Furthermore, it would enable local gov-
ernments to justify policies for the ongoing maintenance of existing UTMC systems, and
investments into the management rather than the expansion of existing network capacity.
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