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ABSTRACT 
 

POTENTIAL PARALLELS BETWEEN PRO-ANA AND BODYBUILDING 
CONTENT ON SOCIAL MEDIA  

 
by 
 

Katherine Ann Craig 
 
 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Celeste Campos-Castillo 

 
 
 This thesis examined the relationship between pro-ana and bodybuilding social media 

content to understand the similarities between these populations’ identities and help inform 

social media content policies. Two interrelated studies were used to investigate this relationship: 

Study 1 used computational methods which compared the content through machine classification 

of pro-ana and bodybuilding social media posts on Twitter and Study 2 fielded an online survey 

experiment to compare the perceptions and human classification of content from these 

populations on Instagram. The findings from both studies broadly revealed that pro-ana and 

bodybuilding identities are similar, at least in social media content, which raises concern for the 

current state of social media censorship policies. The results of this thesis highlight the critical 

need for social media censorship policies to be cognizant of different populations expressing the 

same content, creating discrepancies when only one is censored.  

 

 

  



 

 iii 

 

 

 

 

 

 

 

 

 

© Copyright by Katherine Craig, 2020 
All Rights Reserved 

 
 

  



 

 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To 

my mentors, 

and especially my parents  



 

 v 

TABLE OF CONTENTS 
 

Page 
I. Introduction………………………………………………………………………………..1  
II. Literature Review….………………………………………………………………………3 

  Eating Disorders: Anorexia Nervosa……………………………………….3 
  Bodybuilding…………………………………………………………….....4 

III. Hypothesis Development………………………………………………………………….7 
Hypothesis 1………………………………………………………………10 
Hypothesis 2………………………………………………………………10 
Hypothesis 3………………………………………………………………11 

IV. Overview of Studies…………………………………………………………...…………11 
V. Study 1………………………………………………………………………………..….15 

Data Collection…...………………………………………………………16 
Study Design……..………………………………………………………18 
Analytic Plan…......………………………………………………………20 
Results……..…......………………………………………………………22 

Classifier 1-3………………………………………………….22 
Classifier 4-7………………………………………………….23 

Discussion……..…………………………………………………………23 
VI. Study 2…………………………………………………………………………...………26 

Study Design..…...………………………………………………………26 
Stimuli……..…….………………………………………………………28 
Participants........…………………………………………………………30 
Measures…........……………………………………...…………………31 
Analytic Plan….....………………………………………………………31 

Hypothesis 2………………………………………………….31 
Hypothesis 3………………………………………………….32 

Results…...…..….…….…………………………………………………33 
Sample Demographics.....……………………………....…….34 
Hypothesis 2………………………………………………….34 
Hypothesis 3………………………………………………….36 
Image Details...……………………………………………….37 

Discussion…….…..…….….……………………………………………42 
VII. Conclusion……………………………………………………………………...………..45 
VIII.  References…………………………………………………………..……………………49 
IX. Appendices……………………………………………………………………………….70 

Appendix A: Study 1 Search Terms………….…………………………70 
Appendix B: Study 2 Survey Documentation..…………………………71 

Document 1.………………………………………………….71 
Document 2.………………………………………………….73 
Document 3.....……………………………………………….76 

  



 

 vi 

LIST OF FIGURES 
 
 
 

Figure 1. Confusion Matrix………………………………………………………………………21 
 
Figure 2. Margins Plot for the Predicted Probabilities of Labelling an Image as Bodybuilder….38 
  



 

 vii 

LIST OF TABLES 
 
 

Table 1. Examples of Population Search Terms………………………………………………....16 
 
Table 2. Tweets by Population…………………………………………………………………...17 
 
Table 3. Classifiers……………………………………………………………………………….20 
 
Table 4. Classification Performance for Predicting the Classes of Bodybuilder, Pro-ana, and 
 Fitspo Tweets…………………………………………………………………………….22 
 
Table 5. Sample Demographics…………………………………………………………….........33 
 
Table 6. Chi-Square Test of Independence…………………………………………………...….34 
 
Table 7. Mixed-Effects Logistic Regression for Predicting the Odds of Labeling an Image as 
 Bodybuilder (N=243)…………………………………………………………………….35 
 
Table 8. Mixed-Effects Logistic Regression for Predicting the Odds of Labeling an Image as 
 Bodybuilder by Image (N=243)………………………………………………………….37 
  



 

 viii 

LIST OF ABBREVIATIONS 
 

ACT  Affect Control Theory 

SNS(s)  Social Networking Site(s) 

Pro-ana Pro-Anorexic 

AN  Anorexia Nervosa 

IFBB  International Federation of Bodybuilders 

NPC  National Physique Committee  

ML  Machine Learning 

Fitspo  Fitspiration 

Thinspo Thinspiration 

BERT  Bi-directional Encoder Representations from Transformers 

GPU  Graphic Processing Unit 

TP  True Positive 

TN   True Negative 

FP  False Positive; Type I Error 

FN  False Negative; Type II Error 

 
 
 
 
 
 
 
 
 



PRO-ANA AND SOCIAL MEDIA 

 1 

Introduction 
 

The impact of online content promoting and glorifying eating disorders as a lifestyle is a 

hotly debated topic within social media policy (Branley and Covey 2017; Argyrides and Kkeli 

2015; Syed-Abdul et al. 2013; Yom-Tov et al. 2012). The community of individuals that create 

and disseminate eating disorder content, referred to as pro-anorexic, “pro-ana”, or “ana” do so to 

inspire others to maintain or adopt anorexic or bulimic behaviors in the pursuit of thinness 

(Yom-Tov et al. 2016; Yom-Tov et al. 2012; Harshbarger et al. 2009). The public, health 

authorities, and academics scrutinize pro-ana content and often argue for the moderation of such 

content (Gerrard 2018; Yom-Tov et al. 2016; Tong et al. 2013; Yom-Tov et al. 2012; 

Christodoulou 2012) because it is linked to higher levels of body dissatisfaction and disordered 

eating (Custers and Van den Bulck 2009; Jett, LaPorte, and Wachisn 2010; Juarez, Soto, and 

Pritchard 2012; Peebles et al. 2012). The pressure from these entities resulted in major social 

networking sites (SNSs) censoring the content completely (Facebook 2019; Tumblr 2019; 

Pinterest 2019) and instituting warning labels (Martijn et al. 2009; Instagram 2019). Despite 

institutional censorship, regulatory pressures, and social stigma, the presence of pro-ana content 

on SNSs has not diminished (Casilli, Pailler, and Tubaro 2013).  

A similar, but understudied community are bodybuilders. Like eating disorders, 

specifically anorexia, bodybuilding revolves around body modification (Bulik et al. 2005; Linder 

2007). Both populations rely heavily on behaviors of restriction, exercise, and/or starvation to 

emphasize their physical appearance (American Psychiatric Association 2013; Bulik et al. 2005; 

Linder 2007). Yet, bodybuilding is idealized and eating disorders medicalized. These similar 

behavioral patterns and lifestyles produce drastically different social and cultural responses. 
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From this preliminary account of the intersections between behaviors, bodybuilding is potentially 

as harmful as eating disorders.  

The rise of SNSs affords lifestyles and behaviors associated with pro-ana and 

bodybuilders to reach a wider proportion of the population. The popular SNS Instagram, which 

bolsters twice the active users of Twitter, allows users to capture, edit, and share photos, videos, 

and messages with followers (Muralidhara and Paul 2018; Facebook 2019). Instagram’s intent 

was to allow users to display aspect of their lives through images, videos, and messages, which 

enables promoting unhealthy behaviors and lifestyles. Other users also publicize their lifestyles 

via the application and an increasing subset are the bodybuilders and fitness-centered users 

(Rahbari 2019; Magee 2018). As their lifestyles become more visible to the public, a growing 

proportion of the population has the potential to idealize these individuals and behaviors. 

Therefore, there is a need to understand bodybuilding’s parallels to eating disorders and their 

associated consequences to inform the design for social media content policies.  

The goal of this thesis is to compare the content and show the similarity of two distinct 

populations: bodybuilders and pro-ana on social media. The bodybuilding lifestyle has the 

potential of reframing anorexic behaviors while reaching a wider, unsuspecting audience who 

may fail to identify the content as harmful. This thesis comprised two interrelated studies to 

understand the similarities and perceptions of social media posts from bodybuilders and eating 

disorder (henceforth pro-ana) users. Study 1 used computational methods to compare the content 

through machine classification of bodybuilding and pro-ana social media posts on Twitter, and 

Study 2 fielded an online survey experiment to compare the perceptions and human classification 

of images from Instagram. I used affect control theory (ACT) (Heise 1977, 1979; Smith-Lovin 

and Heise 1988; MacKinnon 1994) to hypothesize how content and perceptions will be similar 
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for the two populations. This project aimed to demonstrate that (i) while bodybuilding is 

idealized, it may indicate a medical problem because of its similarities to the anorexic 

population, and (ii) social media users may be negatively impacted by content that is disguised as 

“healthy”. The findings of this project will help inform the design of social media content 

policies. 

Literature Review 

Eating Disorders: Anorexia Nervosa 

 Eating disorder content online often focuses on anorexia nervosa. Anorexia Nervosa 

(AN) is associated with visible emaciation, starvation, and increased physical activity (Zipfel et 

al. 2005; Bulik et al. 2005). The psychological disorder consumes all aspects of an individual’s 

life as their obsession with their outward appearance and weight becomes the center of their self-

esteem, which is intertwined with their body-esteem (Bulik et al. 2005). While AN can affect 

individuals of all ages, sexes, races and sexual orientations, adolescent females and young adult 

women are disproportionally affected (Zipfel et al. 2005; Bulik et al. 2005; Noetel et al. 2017). 

Compared to other diagnosed mental illnesses, AN consistently has the highest morality rate 

(Chancellor, Mitra, and De Choudhury 2016), and in comparison to the general population, the 

mortality rate for all causes of death is six times higher for individuals with AN (Arcelus et al. 

2011; Papadopoulos et al. 2009). 

 Pro-ana content is an online movement that promotes anorexic behaviors as a lifestyle 

choice (Rodgers and Meioli 2016; Yom-Tov et al. 2016; Tong et al. 2013; Yom-Tov et al. 2012; 

Harshbarger et al. 2009; Norris et al. 2006). Individuals in these communities disseminate photos 

and text on websites and SNSs to inspire others to lose weight and provide advice on how to do 

so (Yom-Tov et al. 2012; Harshbarger et al. 2009; Norris et al. 2006). As a lifestyle choice, these 
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individuals do not see AN as a serious health condition and maintain behaviors that are 

medically unhealthy (Chancellor, Mitra, and De Choudhury 2016; Christodoulou 2012; 

Harshbarger et al. 2009). Pro-ana content is highly prevalent online and on SNSs (Yom-Tov et 

al. 2012; Teufel et al. 2013) and is frequented by both men and women (Wilson et al. 2006). 

Increasing proportions of the population use the Internet to find health related information (Fox 

2014), which opens the door for users to encounter the pernicious content. While the broader 

population stigmatizes pro-ana content, engagement is common among teens and women 

(Arseniev-Koehler et al. 2016). 

 Exposure to pro-ana content can negatively impact body image concerns and body 

satisfaction. In female adolescent and college populations, exposure to pro-ana content was 

associated with increased body dissatisfaction (Custers and Van den Bulck 2009; Jett, LaPorte, 

and Wachisn 2010; Juarez, Soto, and Pritchard 2012; Yom-Tov et al. 2016) and higher levels of 

disordered eating (Peebles et al. 2012). Moreover, experimental studies which examined the 

effects of exposure to pro-ana content on body image revealed participants reported higher levels 

of body dissatisfaction (Benton and Karazsia 2015; Homan et al. 2012; Taniguchi and Lee 2012), 

increased weight concerns and dieting intentions (Jin, Ryu, and Muqaddam 2018), and lower 

perceived attractiveness compared to participants who were exposed to non-pro-ana content 

(Bardone-Cone and Cass 2006; 2007). Body dissatisfaction can impact an individual’s 

psychological well-being (Sira and White 2010) and in severe cases cause self-harm (Goldfield 

et al. 2010) and suicide attempts (Presnell, Bearman, and Madeley 2007). These studies support 

the rationale behind SNSs content policies censoring pro-ana content.   

Bodybuilding 
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 Bodybuilding parallels the lifestyle and behaviors of AN, but is not the subject of social 

media content policies. Competitive bodybuilding is similar to sports like powerlifting, 

strongman competitions, and Olympic weightlifting, but places emphasis on the overall physical 

package of the body through muscle mass, symmetry, and definition (Mosely 2009; Siewe et al. 

2014). Depending on the division within the sport, the previous factors are weighted differently 

in judging the overall package of the competitor. The International Federation of Bodybuilders 

(IFBB), which is the professional governing organization of bodybuilders, and its amateur 

counterpart, the National Physique Committee (NPC) currently list eight divisions that define 

different physical aspects within the sport (NPC News Online 2020): Bodybuilding, Women’s 

Physique, Bikini, Fitness, Figure, Men’s Classic Physique, Men’s Physique, and Wellness. 

 Bodybuilding as a discipline is directed towards the development of an aesthetically 

pleasing body, as defined by the division criteria (Linder 2007). The typical image of a 

bodybuilder is exemplified by Arnold Schwarzenegger through the “aesthetic of bigness”, which 

is a combination of muscle mass, muscle definition, and shape (Linder 2007; Mangweth et al. 

2001). However, other divisions cater to different aesthetics that emphasize symmetry over sheer 

muscularity, like the Bikini division (NPC News Online 2020).  

 While the weight placed on judgement criteria varies for each division, the behaviors or 

lifestyle of the competitors are similar and resemble an AN lifestyle. Like AN, bodybuilders 

compulsively exercise, specifically to create an aesthetically pleasing physique that aligns 

closely with the criteria of their division. This exercise takes the form of weight training and 

lifting, which aims to maximize efficient workouts without increasingly heavy weights (Linder 

2007; Murray et al. 2016). These regiments vary by athlete, but all follow a compulsive, driven, 

and structured format (Murray et al. 2016). Bodybuilders aim to train nearly every day of the 
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week by performing sets that range from two to five exercises per body part, with a repetitive 

movement between eight to 30 within each set (Linder 2007). Bodybuilders penalize their fellow 

members for skipping or failing to finish a set or training session, as it is detrimental to their 

overall physical package in the long run (Underwood 2018; Murray et al. 2016). Some members 

of the community even go as far as verbally harassing other bodybuilders and gym patrons 

whom they deem as muscularly inferior, exhibiting mental and physical weakness, or training 

improperly (Smith and Stewart 2012). 

  Bodybuilders also shape their bodies by manipulating their caloric intake through 

managing the consumption of a food’s protein, carbohydrates, fats, vitamins, minerals, and water 

(Linder 2007; Mosely 2009; Murray et al. 2016). In this community, individuals commonly 

reduce their food consumption far below the average daily caloric intake. These diets diverge 

extremely from healthy nutritional recommendations and use reductionistic scientific language 

and reasoning to rationalize the deviance (Bazzarre, Kleiner, and Litchford 1990; Elliot et al. 

1987; Linder 2007). Mangweth et al.’s (2001) research on bodybuilding men highlights the 

distorted relationship these individuals have with food in that study participants reported eating 

habits were determined by schedule rather than hunger, avoided social gathering and restaurants 

where they could not manipulate their diet, and felt guilt for skipping or eating food outside their 

diet plan.  

  Dieting and weight training follow a cycle in which the intensity of exercise and amount 

of food vary over a course of time. During the prep period(s) of the cycle, bodybuilders exhibit 

high levels of exercise and consume low amounts of food which has been termed “reverse 

anorexia” as bodybuilders desire to lose weight but maintain greater musculature (Pope, Katz, 

and Hudson 1993; Choi, Pope, and Olivardia 2002). Conversely, during the offseason period(s), 
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the emphasis is reversed. The length of time in which the bodybuilder experiences the prep and 

offseason phase(s) of the cycle varies by division and individual, but the dieting and weight 

training remain the same. 

Despite the parallels to the AN lifestyle, literature on bodybuilding is scarce after 2010 

and mostly focuses on the relationships between gender, power, and sexuality (Pickett, Lewis, 

and Cash 2005; Linder 2007; Meckiffe 2003). There is a critical need to revamp this research 

area because of the changing media ecosystem. For example, studies examine oversexualization 

of women who body build in magazines and websites (Meckiffe 2003; Perloff 2014; Hendrickse 

et al. 2017), but bodybuilders and the general population as a whole favor SNSs (Perloff 2014; 

Jin, Ryu, and Muqaddam 2018). Traditionally, access to this population’s ideals and lifestyles 

were only obtainable through personal contact or magazine publications (Juarascio, Shoaib, and 

Timko 2010; Linder 2007; Meckiffe 2003), but the advent of SNSs has exposed bodybuilders to 

a larger audience not familiar with its content. Many athletes and the broader public who have 

undertaken this lifestyle are unaware of the pending consequences that follow their choices 

(Smith and Stewart 2012). As fitness and exercise become more valued in a society and 

consumed on SNSs (Alberga, Withnell, and von Ranson 2018; Boepple and Thompson 2016; 

Robinson et al. 2017; Muralidhara and Paul 2018; Tiggemann and Zaccardo 2015), the 

repercussions and health risks continue to rise if bodybuilding becomes an “ideal” standard. 

Hypotheses Development 

 To understand the affinity between bodybuilder and pro-ana content, I make use of affect 

control theory (ACT). ACT maintains that identities such as bodybuilder or pro-ana evoke affect 

that individuals attempt to maintain through their behavior in social interactions (Moore and 

Robinson 2006; Robinson, Smith-Lovin, and Wisecup 2006). In the case of bodybuilders and 
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pro-ana individuals, the cultural labels that are associated with these identities carry contrasting 

sentiments. A person who identifies as a bodybuilder, therefore, would unlikely identify as a pro-

ana individual as well. Yet, I will argue that these populations exhibit similar behaviors, 

suggesting the two identities are more closely aligned than presumed and, further, that the social 

media content from the two populations resemble each other closely.   

 Despite no research explicitly comparing sentiments towards these two identities, 

existing research suggests the two should differ sharply. Unlike bodybuilding, the public views 

AN as a serious health concern (Christodoulou 2012; Harshbarger et al. 2009). When the AN or 

pro-ana identity is activated within a social context, they receive a rather negative appraisal, 

while activating the bodybuilding identity receives more positive associations and evaluations. 

Furthermore, AN is labeled as a “deeply perplexing illness that ravages both the mind and body” 

(Bulik et al. 2005:1) whereas bodybuilders boast labels such as “Most Perfectly Developed Man” 

(Magee 2018:7).  

 Although the identities for pro-ana and bodybuilding likely evoke distinct sentiments, the 

associated social media content should still resemble each other because of the affinity of the 

behaviors expressed to affirm the identities. By looking at the Diagnostic and Statistical Manual 

of Mental Disorders, Fifth Edition (DSM-5) we can better understand the parallels between 

bodybuilding and anorexic behaviors. According to the American Psychiatric Association (2013) 

the revised diagnostic criteria for anorexia consists of three pieces: 

A. Restriction of energy intake relative to requirements leading to a significantly 

low body weight in the context of age, sex, developmental trajectory, and physical 

health. Significantly low weight is defined as a weight that is less than minimally 

normal or, for children and adolescents, less than that minimally expected.  
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B. Intense fear of gaining weight or becoming fat, or persistent behavior that 

interferes with weight gain, even though at a significantly low weight.  

C. Disturbance in the way in which one's body weight or shape is experienced, 

undue influence of body weight or shape on self-evaluation, or persistent lack of 

recognition of the seriousness of the current low body weight. 

 Both AN and bodybuilders restrict food to produce similar body responses which align 

with criterion A. As mentioned above, bodybuilders restrict their dietary intake to enhance their 

physique and attain a muscular look. While restriction for bodybuilders leads to low body weight 

as with AN, it also minimizes body fat, which helps to display muscularity. Since low body fat is 

correlated with low body weight, this creates a bodybuilder who could be diagnosed as anorexic.  

 Competing causes fear of weight gain and creates persistent behaviors among 

bodybuilder, aligning with criterion B. During the prep part of their cycle, bodybuilders restrict 

food and increase exercise to achieve a low body fat and weight. This cycle approximately lasts 

for 16 weeks and results in behaviors that consistently interfere with gaining weight, even while 

the bodybuilder at that moment is already at low levels of weight.  

 Focusing on the latter half of criterion C, bodybuilders fail to recognize the detrimental 

effects that low body fat and weight have on their health, leading to a host of health problems 

(Melnik, Jansen, and Grabbe 2007; Mosely 2009; Smith and Stewart 2012). Further, members of 

the bodybuilding community speculate that those among them have a type of body dysmorphia 

related to the cycle of competition which maps on to the initial half of criterion C. Research 

partially affirms this speculation with literature linking the desire for large muscular bodies to 

body dysmorphic disorder (Choi, Pope, and Olivardia 2002; Mangweth et al. 2001; Mosely 

2009). 
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 Thus, although the identities are different, the behaviors used to express them are similar. 

I therefore expect social media content between the two to also be similar and result in 

misclassification by machine learning techniques and humans alike.  

 Hypothesis 1: If bodybuilder and pro-ana content is similar, a machine learning technique 

 will likely report a low accuracy when attempting to classify. 

 Hypothesis 2: If bodybuilder and pro-ana content is similar, an individual will likely 

 mislabel bodybuilder content as anorexic. 

 In addition to testing affinity between bodybuilding and pro-ana content, it is pertinent to 

understand the perceptions of such content. As noted above, the bodybuilding identity receives 

more positive appraisals and evaluations compared to the pro-anorexic identity. On SNSs, this 

likely takes the form of social endorsement of bodybuilding content. Research shows that 

appearance-related imagery on social media receives more engagement in the form of “likes” 

and comments compared to neutral images (Bakhshi, Shamma, and Gilbert 2014). While pro-ana 

content often emphasizes appearance (Christodoulou 2012; Syed-Abdul et al. 2013), the 

censorship constraints placed on them likely limit the engagement these images receive from the 

general population compared to bodybuilding content. Therefore, it is more likely that 

bodybuilding images associated with appearance receive higher levels of social engagement. 

 Increased engagement with content represents acceptance and further indicates 

popularity, peer attention, and validation (Chua and Chang 2016), which assists in the 

dissemination of beauty and body ideals (Jong and Drummond 2013). Because of censorship 

constraints imposed on pro-ana content, bodybuilding related content likely receives more 

engagement in comparison thereby validating the beauty and body ideals of this population. In 
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tandem with the negative perceptions of anorexic individuals and increased societal emphasis on 

fitness, bodybuilders are likely perceived as more attractive.  

 Hypothesis 3: If bodybuilder and pro-ana content is similar, an individual is more likely 

 to label content as a bodybuilder if they deem the person as attractive. 

Overview of Studies 

 Traditional data collection techniques face many barriers when attempting to study hard-

to-reach populations through surveys and interviews (Wang et al. 2017). This is relevant for pro-

ana users who are hard to detect and reach due to denial of illness, ambivalence of treatment and 

high drop-out rate (Guarda 2008). Even if the data can be obtained, its reliability and accuracy is 

suspect because participants conceal their condition and its extent (Wang et al. 2017). The 

introduction of SNSs as sources of data can overcome some of these limitations because they 

afford large sample size, a semi-anonymous platform to disclose and socialize, and a naturally 

occurring flow of data (Wang et al. 2017). These affordances of the platforms help bolster 

generalizability, validity, and are an unobtrusive way to obtain data. Thus, research points to 

SNSs as a site to study eating disorders and other mental illnesses (Juarascio, Shoaib, and Timko 

2010; Paul and Dredze 2014; Wang et al. 2017; Muralidhara and Paul 2018).  

 SNSs allow users to document the details of their daily lives as well as express and 

exchange thoughts (Wang et al. 2017). Many SNSs encourage users to share truthful, personal 

information (Herring and Kapidzic 2015), thus individuals tend to present their “real identity” 

through the information they provide about themselves (Zhao, Grasmuck, and Martin 2008). Yet, 

users can still manipulate their content to create what they consider favorable impressions of 

themselves (Ellison, Steinfield, and Lampe 2007; Lui 2007; Salimkhan, Manago, and Greenfield 

2010), which some researchers have been critical of when analyzing SNS data as representative 



PRO-ANA AND SOCIAL MEDIA 

 12 

of truthful information (Herring and Kapidzic 2015). Although SNS users tend to emphasize 

positive aspects of their lives (Chou and Edge 2012) and self (Valkenburg, Schouten, and Peter 

2005), their online self-presentation typically reflects their “true” self (Back et al. 2010). 

Moreover, it is difficult to regularly skew positive impressions on SNSs because of the power 

audiences have over a user’s content. Marder et al. (2016) theorizes users share content that 

appeals to their “strongest audience” which constrains one’s online behavior to align with the 

values of that audience. These values, which are largely determined by the perceived social 

losses and gains that the audience can inflict on the user (Marder et al. 2016), control what users’ 

share. Thus, users cannot consistently present positive impressions because they share control 

with others about what is posted about themselves online.  

 Additionally, it is difficult to cultivate multiple self-presentations within the same social 

media account due to context collapse. Unlike face-to-face interactions, SNS users cannot 

control the audience who consumes their content and tailor each interaction (Marwick and boyd 

2011). Therefore, to avoid context collapse between different audiences, users cannot present 

multiple selves, or they risk encountering embarrassing and uncomfortable situations (Davis and 

Jurgenson 2014). While some individuals cultivate multiple self-presentations across different 

accounts within the same SNS (Molina 2017), users typically present only one self within an 

account.  

 Despite SNSs affording users to selectively share personal information and manage 

multiple accounts with different self-presentations, there is a growing interest in utilizing SNS 

data to detect and address mental health concerns. Previous studies have shown that SNSs can 

help researchers infer the mental health state of a user through their content expressed online 

(Juarascio, Shoaib, and Timko 2010; Wang et al. 2017) and are increasingly being validated with 
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grounded truth from online statements of diagnoses (De Choudhury et at. 2014; Coppersmith, 

Dredze, and Harman 2014; Coppersmith, Harman, and Dredze 2014), medical records 

(Eichstaedt et al. 2018), and psychometric instruments (De Choudhury et al. 2014; De 

Choudhury, Counts, and Horvitz 2013). These efforts that make inferences on users’ mental 

health often rely on machine learning (ML) techniques. One approach, digital phenotyping which 

relies on passive data (Onnela and Rauch 2016), argues that an individual’s health status can be 

inferred, diagnosed, and subjected to interventions, based on data garnered from interactions 

with online technologies, like SNSs (Jain et al. 2015; Onnela and Rauch 2016; Torous et al. 

2016). The results of ML techniques inferring mental health from SNS footprints suggest 

promise (Coppersmith et al. 2018; Guntuku et al. 2017; Reece and Danforth 2017; Thorstad and 

Wolff 2019) and are being adopted by some social media platforms to address self-harm. 

Facebook’s suicide prevention algorithm employs digital phenotyping to detect and address posts 

indicating suicidal ideation (de Andrade et al. 2018).  

 Research utilizes various platform, applications, and networks to study pro-ana 

populations. De Choudhury (2015) relied on Tumblr to examine differences in post content 

between pro-anorexia and pro-recovery users. Similarly, researchers utilized Tumblr to predict 

the likelihood of recovery for users who identified as having an eating disorder within the 

application (Chancellor, Mitra, and De Choudhury 2016). Researchers have also explored in-

group and out-group interaction of eating disorder communities on Flickr, Youtube and 

Facebook (Yom-Tov et al. 2012; Syed-Abdul et al. 2013; Juarascio, Shoaib, and Timko 2010). 

Recent studies turned to Instagram as an increasingly popular application among younger 

populations to examine eating disorder content through the application’s hashtagging function 

(Muralidhara and Paul 2018; Chancellor et al. 2016). 
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 Compared to other SNSs, the affordances of Twitter also make the platform an ideal site 

for studying pro-ana populations. The microblog platform is the most common source of social 

media data in the academic community (Wang et al. 2017). Among Twitter’s advantages is its 

API, which allows researchers access to one percent of publicly available information about 

users’ account and post(s) information. Twitter’s API software can be used to curate, filter, and 

search a large collection of tweets, re-tweets, and user’s accounts in real-time and over the past 7 

days (Twitter Developer 2020). While most researchers rely on Twitter’s free API, social 

analytic industries and government entities subscribe to the premium API which allows access to 

ten percent of the overall Twitter data (Pfeffer, Mayer, and Morstatter 2018). Regardless of the 

API version, the data garnered can be analyzed to infer the social-behavioral context of users 

(Wang et al. 2017). Additionally, while other applications have taken precautions to limit the 

dissemination of pro-eating disorder content, Twitter has made no such attempt (Chancellor, Lin, 

and De Choudhury 2016). Hence, Twitter is favored in social media research of pro-ana 

communities.  

 In review of the pro-ana studies, this research utilized the SNSs Twitter and Instagram. 

While Twitter is favored among pro-ana academics, reliance on this SNSs as well as Tumblr and 

Facebook potentially exclude crucial factors of the pro-ana community. Eating disorder 

populations often base their self-esteem in their outward physical display of extreme thinness or 

emaciation (Yom-Tov et al. 2012; Harshbarger et al. 2009, Bulik et al. 2005); which is better 

expressed through images. Bodybuilders also use the physical display of their personal 

performance or physique through pictures or videos as a form of identity credibility (Smith and 

Stewart 2012). Although Tumblr and Facebook possess image-based content, a SNS with an 

image-sharing orientation is preferred as imagery is the normative content. Additionally, 
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research indicates that the photo-based aspect of SNSs is most important for body image (Mabe, 

Forney, and Keel 2014; Meier and Gray 2014). 

 Twitter and Instagram users broadly reflect the demographic makeup of the United States 

population with the exception of age. The race and gender makeup of both SNSs’ users are 

relatively representative of United States population (Smith and Anderson 2018). However, 

Twitter and Instagram users are typically younger, and more educated than the general 

population (Smith and Anderson 2018). Despite this skew, Twitter and Instagram are still 

advantageous for studying pro-ana and bodybuilder populations because their associated content 

is more relevant for younger populations. 

 Thus, Instagram is the ideal platform for pro-ana and bodybuilding studies regarding the 

display of physical appearance and perceptions by users. Hypotheses 2 and 3 will be tested using 

Instagram. However, Instagram’s API is impervious to data collection techniques which limits 

the amount of data that feasibly can be accumulated (Gonzalez-Bailon et al. 2014; Morstatter et 

al. 2013). To address this limitation, Twitter is utilized to amass tweets with pro-ana and 

bodybuilding content to complement the images attained from Instagram and test Hypothesis 1. 

Utilizing Twitter and Instagram is tandem allows for the study to leverage the advantages of each 

SNSs and effectively address the hypotheses. 

Study 1  

 To compare bodybuilder and pro-ana content on Twitter, I utilized a relatively new 

methodology within social science known as computational social science (Lazer et al. 2009). 

Computational social science is an interdisciplinary approach to studying the social dynamics of 

society that integrates social science and computer science to investigate vast quantities of data 

produced online (Oboler, Welsh, and Cruz 2012). In collaboration with computer scientists at the 
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University at Buffalo, the objective of Study 1 was to investigate that bodybuilding and pro-ana 

content resembles one another on social media through machine classification.  

Data Collection 

 To compare and investigate the similarities between bodybuilder and pro-ana populations 

on Twitter, I initially gathered tweets over a four-week time span from May 2019 to June 2019, 

with each collection occurring once per week using MAXQDA 2018 (VERBI Software 2019). 

MAXQDA relies on Twitter’s standard API to curate publicly available information posted on 

the platform within the past seven days. I specifically collected tweets using key words or phrase 

specific to each population. The exhaustive list of keywords and phrases used to identify pro-ana 

and bodybuilder tweets is presented in Appendix A.  

 Pro-ana keywords and phrases were selected from previous work (See Wang et al. 2017 

or Arseniev-Koehler et al. 2016) as well as my own domain knowledge of the online pro-ana 

community. The keywords or phrases which were used to amass the bodybuilding data resulted 

exclusively from my domain knowledge of the field, because to my knowledge there is no 

classification studies of bodybuilding or recent language studies of the population. Examples of 

the key words for the pro-ana and bodybuilder populations are presented in Table 1.  

Table 1. Examples of Population Search Terms  
Pro-ana Bodybuilding 

edprobs anabolic 

thighgap quads 

anamia procard 

anorexic gainz 
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 Tweets related to fitspiration (fitspo) were also collected. With the help of researchers 

from the University at Buffalo, fitspo tweets were collected retrospectively using Twitter’s 

premium API, which allowed us to gather the tweets during the same time frame in which the 

bodybuilder and pro-ana tweets were collected. It was necessary for all the tweets to be collected 

within the same time frame to exclude any temporal effects. The keywords used to collect fitspo 

tweets were “#fitspo” and “#fitspiration” which were selected based on literature examining this 

population on SNSs (See Santarossa et al. 2019; Tiggemann and Zaccardo 2015, 2018). The 

number of tweets by populations is presented in Table 2.  

Table 2. Tweets by Population 
Population # of Tweets 

Pro-ana 7598 

Bodybuilder 20212 

Fitspo 21569 

 

 Fitspo data was used to compare the difference with bodybuilder, and pro-ana tweets to 

control for possible overlap between populations. Fitspo consists of motivational language and 

imagery that promotes healthy eating and fitness-related ideals (Tiggemann and Zaccardo 2018). 

While bodybuilder content is not necessarily motivational, there is probably overlap in SNS 

content of these two populations because of the focus on fitness and diet. Additionally, 

researchers note an association between fitspo and pro-ana content. While fitspo has been 

positioned as a healthy alternative to thinspiration (or thinspo) content, which aligns with pro-ana 

behaviors (Tiggemann and Zaccardo 2018), analyses suggest both populations contain 

potentially harmful content emphasizing dietary restriction and thin body ideals for women 

(Boepple and Thompson 2016; Tiggemann and Zaccardo 2015, 2018). Thus, bodybuilder and 

pro-ana content are both likely to overlap with fitspo content. However, this overlap in content is 
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not the same as the hypothesized similarities between bodybuilders and pro-anas. Bodybuilder 

and pro-ana are identities which individuals attempt to maintain through their behaviors, whereas 

fitspo is a type of aesthetic individuals disseminate online rather than an identity with a set of 

associated behaviors. Thus, fitspo will likely overlap with bodybuilder and pro-ana content, but 

this is different compared to the hypothesized link between bodybuilder and pro-ana. 

 In order to control for this possible overlap, the bodybuilder tweets were separated into 

two categories: (1) “real” bodybuilding tweets which excluded any tweets that also used #fitspo 

or #fitspiration and (2) “mixed” bodybuilder tweets which included tweets with #fitspo and 

#fitspiration. Regardless of overlap, bodybuilder and pro-ana content will be more similar 

because of the underlying behaviors presented in these identities which fitspo does not possess. 

Study Design 

 I proposed that if bodybuilder and pro-ana content is similar, a machine learning 

technique will likely report a low accuracy when attempting to classify content. In order to test 

the hypothesis that their content is similar, we trained a classifier using Twitter content posted by 

bodybuilders, pro-anas, and fitspo users to differentiate the populations’ tweets. The classifier 

will rely on the linguistic structure, or words choice, of tweets to separate populations. If the 

classifier reports a low accuracy when attempting to separate bodybuilder and pro-ana content, it 

indicates the content likely resembles each other, which would support Hypothesis 1.  

 A classifier belongs to a broader family of computational techniques known as supervised 

ML. Supervised ML relies on prior knowledge provided to make predictions about new, unseen 

datapoints (Schrider and Kern 2018). Supervised ML algorithms obtain the prior knowledge 

through a training set made up of labeled data examples, which ultimately trains the predictor. 

Specifically, this study used a binary logistic regression classifier to predict the bodybuilder or 
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pro-ana label by training the classifier through labeled examples of bodybuilder and pro-ana 

tweets.   

 Binary logistic classifiers are more advantageous compared to other supervised ML 

techniques but still face limitations. Binary classifiers are more easily interpretable compared to 

decision trees or support vector machines and can be easily updated with new data (Tharwat 

2018). Additionally, binary logistic classifiers are an alternative to discriminant analysis, which 

is more complex and carries different assumptions (Caruana and Niculescu-Mizil 2006). Unlike 

discriminant analysis, binary classifiers do not assume an independent distribution nor a linear 

relationship between predictors and target variables (Thawart 2018). However, binary classifiers 

require a large sample size to achieve stable results and often suffer from multicollinearity 

(Tharwat 2018). Despite these limitations, binary classifiers are still a more suitable supervised 

ML technique because of its straight-forward interpretability and assumptions. 

 The goal of Study 1 is to compare bodybuilder and pro-ana tweets based on their 

linguistic features to investigate whether the content resembles each other. To achieve this goal, 

seven experiments were designed to validate Hypothesis 1 using a classifier. The classifier 

conducted tweet classification through two components. The first component is a sentence 

embedding extractor called Bidirectional Encoder Representations from Transformers (BERT) 

(Devlin et al. 2019). The goal of sentence embedding extractor is to transform the given tweet to 

a 716-dimensional vector which is able to capture the linguistic characteristic of the tweet. 

Typically, training such a model requires multiple computers with powerful graphic processing 

units (GPUs). Even with this requirement, the model will still need weeks to finish transforming 

the tweets because they contain millions of parameters and needs to learn the language pattern 

from the large text corpus. Luckily, previous researchers pretrained a similar model on large text 
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datasets like BooksCorpus (800M words) and English Wikipedia (2,500M words) (Zhu et al. 

2015) which can be used instead because the developers made it publicly available online 

(Devlin et al. 2019). Thus, we leveraged this model to transform tweets using a Python package 

called sentence-transformers. From this first component of the classifier, we are able to embed 

all the tweets into 716-dimensional feature vectors.  

 The second phase of the classifier used binary logistic regression to classify the tweets 

according to the groups (e.g. Pro-ana) of the users who post them. Therefore, the feature vectors 

of the tweets extracted by BERT served as the data of the regressions and the groups to which 

tweets belonged are the labels. We used 5-fold cross-validation and report the mean and standard 

deviation of seven classifier accuracies for five of the experiments. The results of the experiment 

differentiating the two bodybuilder populations and fitspo are exclude since the experiment did 

not control for sample size. The sample size for the first three experiments was 7598 and the 

remaining experiments 3388 tweets. The seven classifiers used to differentiate tweets between 

bodybuilder, pro-ana, fitspo content are reported in Table 3. 

Table 3. Classifiers 
Classifier 

(1) Fitspo vs. Pro-ana 

(2) Fitspo vs. Bodybuilder 

(3) Bodybuilder vs. Pro-ana 

(4) “Mixed” Bodybuilder vs. Fitspo 

(5) “Real” Bodybuilder vs. Fitspo 

(6) “Mixed” Bodybuilder vs. Pro-ana 

(7) “Real” Bodybuilder vs. Pro-ana 

 

Analytic Plan 
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 Binary logistic regression classifiers estimate the probability of unseen data falling into 

one of two categories based on labeled examples (Singh, Thakur, and Sharma 2016). The output 

from a classification model represents the predicted binary class label of the unseen/labeled 

samples which can be represented in a confusion matrix (Tharwat 2018). 

Figure 1. Confusion Matrix 

  True Label 
  Positive (P) Negative (N) 

Predicted Label True (T) True Positive (TP) False Positive (FP) 
False (F) False Negative (FN) True Negative (TN) 

Source: Tharwat 2018 

 The labeled examples are used to construct the true label, which is either positive (P) or 

negative (N) for the data. The results of the classifier are the predicted label which can either be 

true (T) or false (F). True positive (TP) and true negative (TN) represent the correct predictions 

from the classifier. If the unseen data represents the positive label and is classified as the true 

label, then the classifier correctly labeled the positive sample (TP). Conversely, if the data is 

positive but classified as negative, it is considered a false negative (FN) or a Type II error. If the 

data is negative and classified as negative, it is considered true negative (TN), but if it is 

classified as positive, it is a false positive (FP) or Type I error.  

 From these classifications, the confusion matrix is used to calculate the performance of a 

classifier. The proportion of correct classification by the regression is a measure of classifier 

accuracy (Singh, Thakur, and Sharma 2016), which is commonly used to assess classification 

performance (Tharwat 2018). In this study, the classifier reported the accuracy for each tweet 

being labeled as bodybuilder and pro-ana. If the estimated probability of a tweet is greater than 

0.5, meaning it aligns with the true label of a category (T), the tweet is classified correctly (TP) 

otherwise it is classified into the other category (TN). The proportion of TP and TN classified 
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tweets for a population is divided by the total classification sample to produce the accuracy 

rating: Acc = TP + TN/(TP + TN + FP + FN) (Sokolova, Japkowicz, and Szpakowicz 2006). 

Because of its central use in classification performance, the results of the classifiers are analyzed 

using the reported accuracies. 

Results 

Table 4. Classification Performance for Predicting the Classes of Bodybuilder, Pro-ana, and 
Fitspo Tweets. 

Classifier Accuracy 

(1) Fitspo vs. Pro-ana 0.822 
(0.004) 

(2) Fitspo vs. Bodybuilder 0.681 
(0.006) 

(3) Bodybuilder vs. Pro-ana 0.748 
(0.007) 

(4) “Mixed” Bodybuilder vs. Fitspo 0.674 
(0.007) 

(5) “Real” Bodybuilder vs. Fitspo 0.692 
(0.01) 

(6) “Mixed” Bodybuilder vs. Pro-ana 0.882 
(0.003) 

(7) “Real” Bodybuilder vs. Pro-ana 0.766 
(0.011) 

Notes: Standard deviations are in parentheses 

 Classifier 1-3. The first set of experiments trained three logistic regression classifiers to 

separate bodybuilder, pro-ana, and fitspo tweets. All three classifiers reported high accuracies 

when differentiating tweets, meaning all the classifiers could distinguish between each 

populations’ content. Classifier 1 revealed fitspo and pro-ana content were the least similar for 

this experiment (Accuracy [Acc] = 0.822, Standard Deviation [SD] = 0.004). Notably, 

bodybuilder tweets were more easily distinguishable from pro-ana tweets (Acc = 0.748, SD = 

0.007) compared to the fitspo (Acc = 0.681, SD = 0.006). This suggests bodybuilder and pro-ana 
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content is less similar than bodybuilder and fitspo content. However, because the bodybuilder 

and pro-ana classifier yielded a high accuracy rate, Classifier 3 does not support Hypothesis 1.  

 Classifier 4-7. This next set of experiments incorporated the two categories of 

bodybuilder tweets to test similarities in bodybuilder, pro-ana, and fitspo tweets. The “real” 

bodybuilder and fitspo classifier reported a higher accuracy rate (Acc = 0.692, SD = 0.01) than 

the “mixed” bodybuilder and fitspo classifier (Acc = 0.674, 0.007). The reduced accuracy for 

both bodybuilder sets of tweets is probably due to a smaller, controlled sample size in these 

experiments (N=3388). 

 In terms of pro-ana, the “mixed” bodybuilder and pro-ana classifier had a higher accuracy 

(Acc = 0.882, SD = 0.003) compared to “real” bodybuilder and pro-ana classifier (Acc = 0.766, 

SD = 0.011), suggesting the tweets that overlap between bodybuilder and fitspo are more easily 

separated from pro-ana tweets in comparison to tweets that do not overlap with fitspo. With 

“mixed” bodybuilder tweets being more similar in terms of content than “real” bodybuilder 

tweets with fitspo, these results mirror the first classifier where the fitspo and pro-ana results had 

a higher accuracy than bodybuilder and pro-ana classifier. One could argue that bodybuilder 

tweets that do not overlap with fitspo (“real” bodybuilder population) are harder to separate from 

pro-ana than fitspo and tweets that overlap between bodybuilder and fitspo (“mixed” bodybuilder 

population). Thus, suggesting “real” bodybuilder and pro-ana tweets have more similar content 

than “mixed” bodybuilder and pro-ana or fitspo and pro-ana tweets. However, the accuracy rates 

are still relatively high across all experiments. 

Discussion 

 In terms of the overall study objective, the classifiers broadly reported high accuracies 

which means bodybuilder and pro-ana tweets could be easily separate. Moreover, Classifier 1 
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reported the highest accuracy of classification which suggests fitspo and pro-ana content is easily 

distinguishable and therefore not similar. This finding runs counter to literature suggesting fitspo 

and thinspo, often a proxy for pro-ana (Borzekowski et al. 2010; Ghaznavi and Taylor 2015), 

share similar content (Boepple and Thompson 2016; Tiggemann and Zaccardo 2018). One 

explanation is the probable specific linguistic features associated with pro-ana content that allow 

the classifier to easily separate the tweets, rather than the underlying similar context of the 

tweets. 

 However, when the results of the classifiers are interpreted relative to each other, they 

suggest bodybuilder and pro-ana tweets are similar. In classifiers 4-7, which ultimately 

controlled for any potential boosts in accuracy from overlap between fitspo and bodybuilder 

content, the “real” bodybuilder and pro-ana classifier reported a lower accuracy compared to the 

“mixed” bodybuilder and pro-ana classifier. Meaning, bodybuilder tweets that do not overlap 

with any fitspo content are harder to separate from pro-ana tweets than bodybuilder tweets that 

overlap with fitspo. This suggests that bodybuilder and fitspo are similar but once controlled for, 

reveal bodybuilder and pro-ana content is likely more similar because of the lower accuracy 

which would support Hypothesis 1.  

 Interpreting the findings from the classifiers in relative terms is more reasonable 

compared to absolute terms for this study because this current analysis cannot assess whether the 

classifiers are performing well. In other words, this study does not provide enough information to 

determine if the classifier is being conflated due to artifacts of the data or true linguistics 

differences in populations’ tweets. Accuracy can only assess the performance of the classifier in 

proportion to these rest of the sample, which may contain subsets of which are more easily 

differentiated from other populations therefore resulting in high accuracy scores. For example, 
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pro-ana tweets likely contain linguistic features that bodybuilder and fitspo tweets do not, which 

is why the classifier can separate the content easily. This assumption can be tested in the future 

using topic models to uncover the latent topics with each population. Should the topic model 

yield themes highly specific to only the pro-ana population, it is likely the classifier is picking up 

on this information when categorizing the tweets and producing a high accuracy. Similarly, a 

qualitative analysis of the raw Twitter data should be conducted to understand whether there are 

any Type I or II errors in classification.  

 This study is not without limitations. First, the sample size of tweets is relatively small in 

comparison to the vast majority of Twitter content which likely constrains the population of 

users whom which we garner tweets from and effects the stability of the classifiers (Tharwat 

2018). Furthermore, sampling bias may exist because bodybuilders go through periodic cycles 

during the year (Hunter 2013; Smith and Stewart 2012) which likely affects the content they 

share. Future research should increase the sample size of tweets and sample content over a longer 

time period or at different points in time to account for seasonality of the bodybuilder population. 

Second, the study does not account for gender difference in tweets which likely affects the 

content expressed by all populations but specifically pro-ana users who are more likely to be 

female (Branely 2015; Branely and Covey 2017). Despite methods existing to infer gender from 

Twitter data (De Choudhury, Counts, and Horvitz 2013; Wang et al. 2017), gender differences 

were not assessed in this study because of the ethical concerns associated with inferring gender 

on Twitter (Fink, Kopecky, and Morawski 2012). Lastly, Twitter is favored among SNSs for 

research on pro-ana communities because of the lack of censorship (Chancellor, Lin and De 

Choudhury 2016) but whether this is an ideal platform to investigate bodybuilder communities 

still needs to be determined. Bodybuilders do not face the same censorship constraints as pro-ana 
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users on SNSs which allows them to share their content on different platforms which they may 

favor or others. Research is needed to investigate whether Twitter content adequately captures 

bodybuilding communities because physical presentation is a key feature of this identity which is 

unlikely captured on a textual-based platform. The following study investigated this key aspect 

of bodybuilder and pro-ana identities through the photo-based platform Instagram to understand 

similarities in content. 

Study 2 

 To understand how individuals classify bodybuilding and anorexic content on Instagram, 

I fielded an online survey experiment using Qualtrics. Study 2 sought to assess two main 

objectives: 1) show that participants mislabeled bodybuilder Instagram posts as pro-ana and 2) 

investigate perceived attractiveness on labeling bodybuilder and pro-ana content. Objective 1 

complements the focus of the first study, which investigated how ML techniques classify 

bodybuilding and anorexic content on Twitter while objective 2 investigated a potential feature 

individuals rely on when attempting to categorize content. 

Study Design 

 The rationale of Study 2 is to understand how individuals classify bodybuilding and pro-

ana images on Instagram. I proposed that individuals will mislabel bodybuilder images as pro- 

ana and rely on perceived attractiveness to categorize content. To test this experimentally, I 

presented participants with non-labeled, partial blurred images that could plausibly come from 

either population and asked them to classify, rate the attractiveness, and explain why they labeled 

the image as such in an online survey.  

 The survey began by having participants review an informed consent document and 

agreeing to voluntarily participate in the study. After consent, participants responded to 
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demographic questions before moving on to the main survey. The main survey repeatedly 

presented participants with one of nine randomized images of either a bodybuilder or anorexic 

and asked them to respond to questions about the classification of the image and why, perceived 

attractiveness, likelihood of the image depicting a bodybuilder or anorexic, and what type of 

account would post the image.  

 At random, participants were presented with two attention check questions to make sure 

they were not haphazardly skipping through the survey. All participant who failed to meet the 

attention checks were directed promptly to the end of the survey and informed why they would 

not be receiving compensation and their results excluded. While participants were informed of 

the minimal risk involved in internet surveys, they were allowed to skip any questions they 

deemed as personal or upsetting without penalty. This meant all eligible participants who 

reached the end of the survey received their entitled compensation and additional bonuses, 

excluding those who failed the attention checks. However, all incomplete surveys were excluded 

from the analysis. 

 Participants were compensated for their answers. The initial compensation for reaching 

the end of the survey was $0.10, but the compensation was adjusted after 7 days of a low survey 

response turnover. Only one participant received the initial compensation. With the adjusted 

compensation, eligible participants who reach the end of the survey received a payment from 

Amazon of $0.50. Additionally, participants could receive a bonus for providing a detailed 

response to the open-ended portion of the questions for each image about how the participant 

identified the type of person in the image. A detailed response constituted identifying a feature of 

the person and providing a rationale for why that feature led to identifying the type of person in 

the image. Each feature and corresponding rationale received a bonus of $0.01 with a cap of five 
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features and rationales per image, resulting in a maximum bonus of $0.45. The maximum 

compensation for reaching the end of the survey with bonuses was $0.95. The survey concluded 

by thanking the participants for their time and provided them each with a validation code for 

their compensation. Directions for how to receive compensation were also included. 

Stimuli 

 The experimental stimuli for Study 2 were images depicting bodybuilder or pro-ana 

content on Instagram. Images were sought out that could plausibly be identified as either 

bodybuilder or anorexic content by study participants. The plausibility of images was important 

to elicit participants’ mental schema of bodybuilder and anorexic individuals when confronted 

with label uncertainty. These schemas will force participants to rely on key features they deem as 

important to bodybuilder and anorexic identities when categorizing content that could plausibly 

be either population rather than relying on cultural sentiments, and thus make them more 

accessible during measurement.   

 To identify pictures, I first utilized Instagram’s search function to input a keyword as a 

hashtag to pull the associated top posts for #bodybuilding and #anorexic. These keywords were 

chosen based on their direct relation to the content I aimed to identify. Both hashtags were broad 

enough to capture the majority of related content but also specific enough to exclude direct 

overlap between the populations. The terms #bodybuilding and #anorexic yielded over 105 

million and two million posts respectively. Prior to eliminating any posts, I scanned through each 

Instagram page to confirm the chosen keywords were accurately pulling content related to 

bodybuilding and pro-ana and decided it was doing so. 

 After pulling the associated top posts, I began eliminating content. Instagram’s search 

function presents all public content directly linked to a specific hashtag. Unlike other SNS 
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platforms like Twitter, Instagram does not allow users to also apply search filters to concentrate 

search results which is why each key term yielded millions of posts. In order to minimize the 

number of posts to investigate for plausibility, I developed a selection criteria. First, all posts that 

did not solely focus on a single individual were excluded. This excluded images that depicted 

individuals but were otherwise obscured by unrelated content or not the central focus on the post. 

Next, I selected posts for investigation that only depicted females because male-related 

bodybuilding and anorexic content were not the focus on this study. Finally, I assessed any 

written content attached to a selected image to verify the post was in line with bodybuilding and 

anorexic content. This is specifically important for #anorexic as content related to recovery 

rather than promoting anorexic ideals is difficult to differentiate solely based on an image. The 

selection criteria yielded an initial 84 possible posts. 

 The initial posts were then assessed for plausibility using a pilot. First, one female with 

minimal knowledge of bodybuilder and pro-ana Instagram content classified the 84 images as 

what she believed were the true labels of the posts. Because she was unaware of the typical 

nature of these populations’ content on Instagram, her classification was unbiased in comparison 

to a female who regularly viewed bodybuilder and pro-ana content. From her classification, four 

bodybuilder and five pro-ana images were selected as potentially plausible. Next, three females 

with limited to expert knowledge on bodybuilding and pro-ana Instagram content were asked to 

classify the nine images. This was done to understand if the images were still plausible if a study 

participant possessed knowledge of these populations’ content on Instagram and to support the 

first female’s classification. Each individual was provided with the unaltered and unlabeled set of 

images and asked to classify them based solely on the image. The results of the pilot showed that 
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these individuals were uncertain of the images’ label as they could not categorize them correctly. 

Thus, the nine images were assumed to be plausible of either population. 

 The selected images were edited using Adobe Photoshop 2020 before being fielded in the 

online survey. While Instagram allows the fair use of public information, like username and 

content shared on public accounts for research purposes (Instagram Data Policy 2019), steps 

were taken to help protect the identifiability of the accounts from which images were taken and 

the individuals depicted. I removed personally identifiable information such as Instagram 

handles, captions and comments, and blurred the background for each image. The number of 

“likes” were also removed from the image as “likes” are known to influence individuals’ 

perceptions of appearance-related imagery in the form of social endorsement (Bakhshi, Shamma, 

and Gilbert 2014). Additionally, because censorship constraints are placed on pro-anorexic or 

eating disorder content (Facebook 2019; Tumblr 2019; Pinterest 2019), images derived from 

#anorexic received substantially less “likes” compared to #bodybuilding. Thus, “likes” were 

removed to limit any social endorsement and standardized images across populations. The 

images 1, 2, 3, and 5 denoted the bodybuilder label and images 4, 6, 7, 8, and 9 the anorexic 

label.  

Participants 

 Because pro-ana content is frequented and shared by young women more often than men 

(Branely 2015; Branely and Covey 2017) and females are more likely to develop eating disorders 

(Fairburn and Harrison 2003; Hudson et al. 2007; Preti et al. 2009), participants were required to 

be 18 years and older and female. Additionally, participants were required to reside in the United 

States. Eligible participants were recruited through Amazon Mechanical Turk and taken to the 

Qualtrics survey where they reviewed the informed consent (See Appendix B) and voluntarily 
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agreed to participate in the study. Participants who did not meet the eligibility criteria were 

directed to the end of the survey and informed why they would not be receiving compensation 

and their results excluded. 

Initially, 74 individuals responded to the survey. However, 63% of these were excluded 

due to quality controls to confirm participant eligibility and check their attention, resulting in a 

final sample size of 27 participants.  

Measures  

 The dependent variable for Hypothesis 2 and 3 was constructed from participants’ 

classification of images based on the question, “Is the individual in the picture a/an:” with the 

response options “Anorexic” coded as 0 and “Bodybuilder” codes as 1. The focal independent 

variable used to test hypothesis 2 which was the correct label of the image (anorexic images = 0 

and bodybuilder images = 1). For Hypothesis 3, attractiveness rating was the focal independent 

variable and constructed from participants’ responses to, “How attractive is the person in this 

photo?” with responses “Very unattractive”, “Unattractive”, “Neither attractive nor unattractive”, 

“Attractive”, and “Very attractive” codes as 1 through 5 respectively. Additionally, each of the 

nine images was coded with its corresponding 1 through 9 number derived from the pilot study. 

All of the survey questions used to construct the measures are presented in Appendix B. 

Analytic Plan  

In order to control for responses nested within individuals, the data was transformed into 

individual evaluation, where each response was a separate observation, by reshaping the data 

from wide to long format in Stata 13. This allowed me to investigate each response to the stimuli 

rather than participants as a whole. After reshaping the data, the final dataset included 243 

individual evaluations.  
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Hypothesis 2. Hypothesis 2 investigated the relationship between a participants’ 

classification of an image and the image’s true label. First, I performed a chi-square test of 

independence between the dependent label variable and the focal true label variable to 

investigate the correlation between the two variables. I followed up the bivariate analysis by 

conducting a mixed-effects regression. 

 Mixed-effects models allow one to account for interdependencies between observations. 

Data collected on repeated measures, such as this study, in which one rater evaluates multiple 

images, are often dependent as responses are nested within participants (Bauer et al. 2013). This 

correlation violates the independence of observations assumed in many statistical models. Thus, 

models like logistic regressions are poorly suited to analysis of repeated measures data. 

However, multilevel or mixed-effects models are well suited for analyzing repeated 

measurement data because they do not assume independent observations (Bauer et al. 2013; 

Goldstein 2011). The mixed model approach used in this study was a mixed-effects logistic 

regression. A mixed-effects logistic regression is a logistic regression containing both fixed and 

random effects. In the mixed logistic regression model for binary data, the conditional 

distribution of the responses is assumed to be independent Bernoulli observations dependent on 

the covariates, fixed effects, and the random effects (Rijmen et al. 2003). While the complexity 

of mixed-effects logistic regressions sometimes dissuades researchers of their use in favor of 

more straightforward models (Molenberghs and Verbeke 2004), the ability to assume non-

independence and interpret results in the form of odds ratios makes mixed-effects logistic 

regression highly advantageous for this study. 

  The mixed-effects Model 1 predicted the odds of labeling an image as bodybuilder based 

on the associated image’s true label as bodybuilder. In this model, the fixed effect was true 
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image label variable and the random effect the participants identifier. The choice of the variable 

for fixed and random effects were based on modeling the dependence between responses for 

labeling of the same participant. 

 Hypothesis 3. Hypothesis 3 investigated the relationship between a participant’s 

classification of an image and perceived attractiveness. This was first achieved by performing a 

t-test to investigate the difference between the means of labeling an image as bodybuilder or 

anorexic by attractiveness rating. The bivariate analysis was then followed by the mixed-effects 

model’s 2 and 3. Model 2 predicted the odds of labeling an image as bodybuilder based on 

attractiveness rating and Model 3 which added the variable for the true image label as 

bodybuilder to Model 2. In both models, the random effect was participants’ identifier whereas 

for Model 2 the fixed effect was attractiveness rating and Model 3’s fixed effects were the 

attractiveness rating and true image label variables. 

 Additionally, I performed a secondary analysis to disaggregate effects by image. Using 

mixed-effects models, Model 4 predicted the odds of labeling an image a bodybuilder based on 

each specific image and Model 5 added the attractiveness variable to Model 4. The results of the 

regressions were further elaborated by calculating predicted probabilities of being labeled a 

bodybuilder. Lastly, open-ended responses to each question about why participants labeled an 

image as bodybuilder or anorexic were open coded using MAXQDA 2020 (VERBI Software 

2019) to investigate how participants perceived the content of each image. 

Results 

Table 5. Sample Demographics (N=27) 
 Mean Percent Range 

Age 39.41  23-67 
Marital Status 1.7  1-4 

(1) Married  55.56  
(2) Unmarried (Cohabitating)  25.93  
(3) Never Married  11.11  



PRO-ANA AND SOCIAL MEDIA 

 34 

(4) Divorced  7.41  
US Born 0.89  0-1 

(1) Yes  88.89  
(2) No  11.11  

Income 4.07  1-6 
(1) $0 to $19,999  3.7  
(2) $20,000 to $34,999  3.7  
(3) $35,000 to $49,999  18.52  
(4) $50,000 to $74,999  40.74  
(5) $75,000 to $99,999  22.22  
(6) $100,000 or more  11.11  

Latino or Hispanic 0.11  0-1 
(1) No  88.89  
(2) Yes  11.11  

Race 1.3  1-3 
(1) White  81.48  
(2) Black or African American  7.41  
(3) Asian  11.11  

Education 2.56  1-4 
(1) Some college, no degree  22.22  
(2) Technical/Associates/Junior 

College (2-year) 
 11.11  

(3) Bachelor’s Degree (4-year)  55.56  
(4) Graduate Degree   11.11  

Employment Status 1.22  1-4 
(1) Employed  88.89  
(2) Retired  3.7  
(3) In school  3.7  
(4) Unemployed/Other  3.7  

 

 Sample Demographics. Table 5 displays the sample demographics for Study 2. All 

participants were female and resided in the United States with only 3 respondents (11.1%) 

having been born in a foreign country. 81.5% of the respondents identified as White, followed by 

11.1% identifying as Asian and 7.4% as Black or African American. Most respondents identified 

as non-Hispanic or Latino/a (88.9%) and the mean age of respondents was 39. Over half of 

respondents were married and completed a bachelor’s degree (55.6%). The mean annual 

(combined) household income of respondents was $50,000 to $74,000. 

 Hypothesis 2. My first objective with this study was to investigate that participants would 

mislabel bodybuilder content as anorexic due to similarities. To empirically investigate this 
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objective, I proposed Hypothesis 2 which states, “If bodybuilder and pro-ana content is similar, 

an individual will likely mislabel bodybuilder content as pro-ana.”  

Table 6. Chi-Square Test of Independence 
 True Label  

Participant’s Label Anorexic Bodybuilder Total Misclassified 
Anorexic 23 

(58.9) 
83 

(47.1) 106 

Bodybuilder 112 
(76.1) 

25 
(60.9) 137 

Total Correctly Labeled 135 108 243 
Chi2 (1) = 87.2881 Pr = 0.000 
Notes: Expected values in parentheses. 
 
 A chi-square test of independence was performed to examine the relationship between 

participants’ classification of an image and the image’s true label. The results indicated 

participants overwhelming mislabeled bodybuilder and pro-ana content X2 (1, N=27) = 87.29, p < 

0.000. Specifically, participants underreported the correct label for both populations. The 

patterns in Table 6 revealed participants consistently labeled bodybuilder content as pro-ana and 

notably, pro-ana content as bodybuilder. The chi-square analysis supports Hypothesis 2, which 

was further investigated in a mixed-effects model to account for interdependencies between 

observations. 

Table 7. Mixed-Effects Logistic Regression for Predicting the Odds of Labeling an Image as 
Bodybuilder (N=243) 
Variables Model 1 Model 2 Model 3 
True Image Label: Bodybuilder 0.042*** 

(0.017) 
 0.078*** 

(0.032) 
Attractiveness Rating  2.931*** 

(0.499) 
2.034*** 

(0.379) 
Notes: *** p<0.001, ** p<0.01, * p<0.05; Standard deviations in parentheses. 
 

  The results from a mixed-effects logistic regression predicting the odds of labeling an 

image as bodybuilder based on the image’s true label as bodybuilder is presented in Table 7 

under Model 1. The predicted odds of labeling an image as bodybuilder (versus anorexic) is 
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0.042 smaller for the true image label being bodybuilder than they true image label being 

anorexic (p < 0.000). In other words, the predicted odds of labeling an image as bodybuilder 

rather than anorexic is reduced by 95.8% [(1-0.042) x 100 = 95.8] when the true image label is 

bodybuilder versus the actual image label being anorexic. This model reveals true bodybuilder 

images are less likely to be labeled as bodybuilder whereas true pro-ana images are more likely 

to be labeled as bodybuilder. Model 1 confirms the results of the chi-square test, which found 

participants overwhelmingly mislabeled each population and supports the classification patterns 

by participants that consistently labeled bodybuilder images as pro-ana and vice versa. Together, 

the results of Model 1 and the bivariate correlation provide support for Hypothesis 2.  

 Hypothesis 3. The second objective of this study was to show that participants had a 

preference towards bodybuilder Instagram posts, compared to anorexic, based on attractiveness. 

When an individual is uncertain of an image’s label and the images are similar, participants need 

to rely on other characteristics to determine the label. One such characteristic is attractiveness, 

where bodybuilders are suggested to be perceived more attractive than anorexics. Thus, this 

analysis allows me to understand the labeling of each image after removing a suggested feature 

for classification. I proposed Hypothesis 3 to empirically test this objective which stated, “If 

bodybuilder and pro-ana content is similar, an individual is more likely to label an image as a 

bodybuilder if they deem the person as attractive.”  

 An independent t-test was performed to determine if there were differences in 

attractiveness rating between participants’ classification of an image as bodybuilder or anorexic. 

The results showed images labeled as bodybuilder had significantly higher attractiveness ratings 

(Mean = 3.92, SD = 0.08) compared to images labeled as anorexic (Mean = 2.80, SD = 0.11) 

[t(28) = -8.61, p < 0.000]. Specifically, bodybuilder-labeled images were on average perceived 
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as “attractive” while anorexic-labeled images perceived as “neither attractive nor unattractive”. 

The results of the t-test support the notion that bodybuilders are perceived as more attractive 

compared to anorexics and that attractiveness is a possible feature participants relied on to 

categorize content when they are uncertain of the image’s label. The bivariate analysis lends 

support to Hypothesis 3, which was further investigated in Model 2 and 3. 

 The results of Model 2 and Model 3 are presented in Table 7. Model 2 predicted the odds 

of labeling an image as bodybuilder based on attractiveness rating. The predicted odds of 

labeling an image as bodybuilder (versus anorexic) is 2.93 larger for each increase in 

attractiveness rating (p < 0.000). In other words, the predicted odds of labeling an image as 

bodybuilder is 193% greater for each increase in attractiveness rating [(2.93-1) x 100 = 193]. 

Model 2 supports Hypothesis 3 as images perceived as more attractive were more likely to be 

labeled as bodybuilder rather than anorexic.  

 Model 3 added the true label variable to Model 2 and predicted the odds of labeling an 

image as bodybuilder based on attractiveness rating and the true image label. Even after 

controlling for true bodybuilder images, the predicted odds of labeling an image as bodybuilder 

were twice as large for each increase in attractiveness rating compare to anorexic (OR = 2.03; p < 

0.000). While the results of Model 3 show images perceived as more attractive are more likely to 

be labeled as a bodybuilder, thus supporting Hypothesis 3, a true bodybuilder image is still less 

likely to be labeled as bodybuilder when controlling for attractiveness. Therefore, participants 

likely invoke other features besides attraction when attempting to label bodybuilding images. 

 Image Detail. As a follow-up to the main analyses, I employed another set of models to 

disaggregate the effects of labeling an image as bodybuilder by each image. This set of models 

allowed for additional details to surface as to what image(s) were more or less likely to be 
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misclassified by participants and to partial out the effects of perceived attractiveness on 

participants’ classification. This allows me to understand how other features besides 

attractiveness effect each image’s predicted odds of being labeled as a bodybuilder.  

Table 8. Mixed-Effects Logistic Regression for Predicting the Odds of Labeling an Image as 
Bodybuilder by Image (N=243) 
Variables Model 1 Model 2 
Image   
   2 1.854 

(1.202) 
1.956 

(1.330) 
   3 0.444 

(0.334) 
0.436 

(0.335) 
   4 9.762** 

(6.669) 
4.861* 

(3.466) 
   5 0.444 

(0.334) 
1.138 

(0.931) 
   6 38.381*** 

(32.143) 
37.534*** 

(33.293) 
   7 38.381*** 

(32.143) 
20.000*** 

(17.015) 
   8 62.077*** 

(58.179) 
32.439*** 

(31.185) 
   9 12.096*** 

(8.445) 
7.804** 

(5.607) 
Attractiveness Rating          2.297 

       (0.510) 
Notes: *** p<0.001, ** p<0.01, * p<0.05; Standard deviations in parentheses. 

 The results of the mixed-effects logistic regressions which disaggregated the effects of 

images are presented in Table 8. Model 1 estimated the predicted the odds of labeling an image 

as bodybuilder for each specific image while Model 2 estimated the same predicted odds but 

included the attractiveness rating variable. I used these models to estimate and graph the 

predicted probability of labeling an image as bodybuilder to further elaborate the effects of each 

image. 

Figure 2. Margins Plot for the Predicted Probabilities of Labelling an Image as Bodybuilder 
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 Next, I compared the predicted probabilities between each image which are displayed 

graphically in Figure 2. In order to compare the predicted probabilities of labeling an image as 

bodybuilder, I conceptualized relatively high, moderate, and low predicted probabilities based on 

the marginal predicted mean. A high predicted probability was conceptualized at or above 0.8, 

meaning respondents are “good” at labeling an image as a bodybuilder. A moderate predicted 

probability is between 0.79 and 0.4, meaning respondents are “adequate” at labeling an image as 

a bodybuilder. A low predicted probability is below 0.39 and suggests respondents are “good” at 

labeling an image as not a bodybuilder. The greater the predicted probability for an image, the 

more likely the image depicts characteristics similar to participants’ bodybuilder schemas. These 

predicted probabilities were used to infer which of the bodybuilder or pro-ana images were more 

or less likely to align with bodybuilder schemas, and the identify other key features besides 

attractiveness guiding classification.  

 The anorexic images 6 and 8 have the highest probability of being labeled as bodybuilder 

whereas anorexic image 4 as the lowest predicted probability relative to the other anorexic 

images. This suggests image 6 and 8 likely feature the most characteristics similar to participants 
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schema of bodybuilders and therefore more likely to be labeled as a bodybuilder. Image 4, while 

still possessing perceived characteristics of bodybuilders, likely does not depict all the 

characteristics image 6 and 8 feature which resulted in a lower predicted probability of being 

classified as bodybuilder. The bodybuilder images 1 and 3 reported the lowest predicted 

probabilities whereas the bodybuilder image 2 highest probability relative to the other 

bodybuilder images. While as a collective the bodybuilder images were less likely to be labeled 

as bodybuilder and therefore less likely to align with participants’ bodybuilder schemas, image 1 

and 3 can be inferred as presenting the least amount of similarities relative to the other 

bodybuilder images.  

 This secondary analysis continues to support the previous findings that bodybuilder and 

pro-ana content is mislabeled by participants and supports the consistent mislabeling of pro-ana 

content as bodybuilder. What this analysis further suggests is the probability of mislabeling the 

content varies between images, where certain images are more or less likely to align with 

participants’ bodybuilder schemas.  

  These findings are further elaborated in participants’ responses to the open-ended 

questions about their chosen label. In response to the chosen label participants assigned to each 

image, they were asked to explain, “…how do you know the individual is a/an anorexic or 

bodybuilder?” and their responses open coded to identify broad themes. Participants often 

described why they labeled an image as bodybuilder or anorexic by denoting how they did not 

appear as the opposite label. Specifically, participants would use bodybuilder attributes to 

describe how an image they labeled as anorexic lacked those characteristics and vice versa. For 

example, when describing why they labeled an image as a bodybuilder, one participant 

responded, “The person has abdominal muscles, which I've never seen in someone who's 
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anorexic. They're thin but have somewhat larger/proportionate breasts, which people who are 

anorexic don't have because they don't have enough fat. This person is clearly healthy.” Here the 

participant notes that the individual depicted in the post lacked a non-defined mid-section and 

flat chest often associated with anorexics. When asked to describe why they labeled an image as 

a bodybuilder, one participant reported, “No lanugo, thick hair, well-defined abs. No sagging 

skin. It is assumed this person eats healthily, exercises and has sufficient protein intake. Their 

thin / defined waist could be a result of caloric restriction, but they look too healthy & muscular 

to have full anorectic behavior.” Like the previous response, this participant used the lack of 

characteristics associated with the opposite label to describe the individual in the image. These 

responses align with the previous findings and further suggest participants likely see bodybuilder 

images as anorexic and anorexic images as bodybuilder.  

 Not all participants believed the images were indicative of either a bodybuilder or 

anorexic. Participants were only allowed to label an image as either a bodybuilder or anorexic 

which some suggested as constraining their classification. While none of the participants offered 

a label to capture what they believed the individual depicted should be classified as, they simply 

denoted that neither label was appropriate. For example, one participant responded, “For her 

height; she appears to be underweight. If she were a bodybuilder she would probably be more 

muscular. If there were more options, I may have picked differently.” Another reported, “I don't 

think they're a body builder, but I don't think they're anorexic.” Yet, not every participant 

expressed this concern in their open-ended response suggesting that the majority of participants 

believed images were either bodybuilder or anorexic in nature. 

 Another broad theme that emerged from the open-ended responses was the positive 

appraisal of bodybuilder images compared to anorexic images. Participants commonly used 
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language like “healthy”, “attractive”, and “proud” when describing bodybuilder images. 

Conversely, participants described anorexic images as “unhealthy”, “too thin”, and “disturbing”. 

Moreover, participants noted the presence of muscles positively as “well defined” and “shapely”. 

The positive appraisal of female bodybuilders by these participants lends support to Hypothesis 

3.  

 The open-ended responses also revealed participants cited body language, specific body 

parts, and overall appearance when explaining why they labeled an image as bodybuilder or 

anorexic. 40% of participants discussed an individual’s body language in their explanation for 

their chosen label. Participants noted an individual’s muscle presences (85%), mid-section 

(78%), and legs (56%) in their response. Lastly, a majority of participants discussed the overall 

appearance of the individual by commenting on whether they appeared to be proportional (59%), 

fit or toned (67%), and thin or skinny (85%). The reliance on body language, specific body parts, 

and overall appearance by participants when explaining why they labeled an image as such 

suggests that these are some of the key features participants used to identify bodybuilder and 

anorexic identities.  

Discussion 

 The present study compared and investigated the similarities between bodybuilder and 

pro-ana social media content in Instagram posts through human classification. The results clearly 

indicated bodybuilder and pro-ana content is overwhelmingly mislabeled and notably, pro-ana 

content is more likely to be labeled as bodybuilder by participants. These findings remain 

unchanged when perceived attractiveness is accounted for in participants’ classification. In 

addition, perceived attractiveness had a significant effect on participants’ chosen label but was 

not the only feature used to categorize bodybuilder and pro-ana content.  
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 The finding that bodybuilder and pro-ana images were mislabeled was not as surprising 

as the finding that both sets of images were consistently labeled as the opposite population. 

Bodybuilder and pro-ana identities evoke cultural labels with contrasting sentiments which 

would suggest individuals perceive their associated social media content differently and 

therefore would be unlikely to be label as the opposite identity. Yet, this study reports the 

converse: bodybuilder images are consistently and more likely to be categorized with the 

anorexic label and vice versa. This suggests individuals indeed possess two distinct schemas of 

bodybuilder and anorexic identities but overwhelmingly apply them incorrectly. Future research 

examining individuals perceived certainty of an image’s identity is needed to investigate why 

participants routinely misapplied their bodybuilder and anorexic schemas. 

 This study also tested a hypothesized feature participants relied on to distinguish 

bodybuilder and pro-ana content. As discussed, bodybuilder and pro-ana identities carrying 

contrasting sentiments where bodybuilders are perceived as more attractive compared to 

anorexics. Perceived attractiveness is therefore likely a distinguishing feature in participants’ 

schemas they used to categorize bodybuilder and pro-ana identities when presented as similar. 

Bodybuilder-labeled images were reported as more attractive compared to anorexic-labeled 

imaged by participants which confirmed the attractiveness sentiment associated with bodybuilder 

identities. Yet, additional analyses which disaggregated the effects of each image and 

attractiveness on labeled bodybuilder images suggested the effect of perceived attractiveness on 

labeling an image as bodybuilder varies for each image. Thus, while perceived attractiveness is 

likely a key feature used to distinguish bodybuilder and pro-ana content, each image likely 

possessed other features participants more or less relied on when categorizing the content.  
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 The next logical step to understanding the features participants used to classify 

bodybuilder and pro-ana Instagram content is to link the features noted in the open-ended 

responses by image to the quantitative data and conducted another series of models that account 

for these features similar to the perceived attractiveness models. Perhaps perceived muscle mass 

or body shape could account for more variation in labeling an image as bodybuilder. A 

qualitative assessment of the open-ended responses suggested that body language, physical 

attributes, and overall appearance were other features participants noted as important when 

labeling an image.  

 The present findings need to be interpreted in the context of the study limitations. First, 

the sample size was small and limited to predominately a white female population, which 

inhibits the ability to generalize the findings to other populations. Future research should 

increase the number of individuals sampled and investigate the perceptions of bodybuilder and 

pro-ana content in males who are more demographically representative of the bodybuilding 

community (Mosely 2009) and view pro-ana content as well (Wilson et al. 2006). Additionally, 

while bodybuilder and pro-ana content largely depict white individuals (McGrath and Chananie-

Hill 2009), research should also investigate how perceptions vary in racial and ethnically diverse 

samples. Second, the study only presented one of the many possible types of female 

bodybuilders which limits the findings to only this demographic of bodybuilders. While this was 

done deliberately to elicit label uncertainty in participants and control for cultural sentiments, 

this excluded other possible types of female bodybuilders individuals may encounter on SNSs 

which would likely elicit different responses from participants. A similar study to the present 

could include other divisions of female bodybuilder to investigate how participants perceive the 

different features of these females and whether their visual content is still similar to pro-ana. 
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Lastly, the physical features presented by bodybuilders vary depending on their behavioral cycle 

which likely effects how participants perceive them and how similar they are to pro-ana 

individuals. Future research should investigate at what point in the cycle do bodybuilders present 

physical features similar to pro-ana individuals and how social media content posted at different 

phases of the cycle are more or less similar to pro-ana content. Despite these limitations, the 

present study clearly demonstrates bodybuilder and pro-ana Instagram posts are similar and more 

notably, bodybuilder images are consistently labeled as pro-ana and pro-ana images labeled as 

bodybuilder.  

Conclusion 

 The goal of this thesis was to compare bodybuilder and pro-ana content and show how 

similar the two populations are through SNSs. Bodybuilder and pro-ana identities carrying 

contrasting cultural sentiments which is highlighted by the idealization of bodybuilding and 

medicalization of eating disorders. Problematically, the intersections between these populations’ 

behaviors propose bodybuilder and pro-ana identities are more similar than previously thought, 

potentially setting unsuspecting individuals up to adopt harmful behaviors. With SNSs affording 

bodybuilders to publicize and disseminate their behaviors unlike ever before, this thesis 

investigated the potential parallels between bodybuilder and pro-ana social media content.  

 While this research is not the first to discuss the link between bodybuilding and anorexia, 

to my knowledge this thesis represents the first explicit comparison of bodybuilder and pro-ana 

social media content which can help inform social media content policies. Currently, pro-ana 

content is widely censored on SNSs (Facebook 2019; Tumblr 2019; Pinterest 2019), which limits 

users’ exposure and access to this harmful content. However, the broad finding that bodybuilder 

and pro-ana social media content resembles one another suggests current censorship policies 
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need to be revised because pro-ana ideals, lifestyles, and behaviors can be re-framed through 

bodybuilding content, thus exposing unsuspecting users to harmful content. Additionally, with 

bodybuilder and pro-ana content being similar, it would be discriminatory to only censor one of 

these populations. While I am not advocating for the complete censorship of either population, 

steps could be taken to construct less discriminatory policies which censor only the most harmful 

topics, as opposed to an entire population. 

 Topics within bodybuilder and pro-ana content can be classified and tested to identify the 

most problematic and harmful content to be censored. A classifying algorithm could be trained to 

learn the broader context of the pro-ana population, which would then gather data only for this 

population to construct a dataset that is then subjected to topic modeling. Topic modeling 

uncovers the structure within a dataset without any prior knowledge by assuming there are latent 

topics within the human language (Schrider and Kern 2018). The topic model would expose 

subtopics within the pro-ana populations. Researchers could then conduct an experiment, with 

content representing each subtopic, to identify which one(s) raise body dissatisfaction among 

users and the likelihood at which they adopt problematic behaviors. Based on the contextual 

information of the subtopics, they can potentially be labeled as problematic or benign and be 

used to categorize the harmful topics within populations. Such examination can help construct 

less discriminatory policies in which only the most harmful topics are censored, as opposed to 

entire population. 

 While beyond the scope of this study, more research is needed to understand bodybuilder 

and pro-ana contents effects on body dissatisfaction. To date there is a plethora of work on mass 

media’s effects on body concept (Scharrer 2013; Bell and Dittmar 2011; Tiggeman 2011; 

Morgan et al. 2009; Hogan and Strasburger 2008; Thompson et al. 1999). Often these studies 
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posit the exposure to body image standards imposed by mass media as central to the 

internalization of unrealistic ideals (i.e. magazines, movies, and television) (Stice and Shaw 

2002; Cusumano and Thompson 1997). For women, the ideal physique emphasized by the media 

is thin and athletic, which is virtually impossible for most women to attain (Low et al. 2003; 

Cusumano and Thompson 1997). Exposure to this unachievable standard portrayed by the media 

is positively associated with body dissatisfaction and eating disorder behaviors in both 

correlational, longitudinal, and experimental studies (Bardone-Cone and Cass 2006, 2007; 

Benton and Karazsia 2015; Homan et al. 2012; Jin, Ryu, and Muqaddam 2018; Smolak and 

Thompson 2009; Taniguchi and Lee 2012; Vaughan and Fouts 2003; Harrison 2001; Stice, 

Spangler, and Agras 2001). However, these studies have overwhelmingly focused on traditional 

mass media, which has experienced a steep decline in utilization, especially among young adults 

(Perloff 2014). This is problematic as young adults are more vulnerable to media influence (de 

Vries, Vossen, and van der Kolk-van der Boom 2019; de Vries et al. 2016; Rousseau et al. 2017; 

Holland and Tiggeman 2011) and have since migrated to contemporary forms of media 

consumption (Perrin 2015). 

 Overall, the findings from Study 1 and 2 suggest bodybuilder and pro-ana identities are 

similar, at least in social media content. Moreover, these similarities are present on two distinct 

social media platforms which strengthens this finding. This highlights the critical need for social 

media censorship policies to be cognizant of different populations expressing the same content, 

when only one is censored. These findings also have implications for research on body image as 

bodybuilding content may exert the same or increased negative effect on body dissatisfaction as 

reported in exposure to pro-ana content. Accordingly, this thesis can contribute to social media 
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content policies and advance the current state of bodybuilding, pro-ana, and body dissatisfaction 

research. 
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Appendix A: Study 1 Search Terms 
 
Bodybuilder Pro-ana Fitspo 
wbff thinsp fitspo 
npc thinspiration fitspiration 
ifbb meanspo  
nanbf bonespo  
ocb legspo  
inbf proana  
wnbf anabuddy  
flexfriday anorexia  
bodybuilding anorexic  
bodybuilder pro-ana  
girlswholift proanorexic  
swoll anorexianervosa  
flexfriday proanatips  
shredded anacoach  
gainz proanaandpromia  
swole promia  
gymfreak mia  
legday bulimia  
quads bulimic  
booty pro-mia  
abs probulimia  
prepcoach probulimic  
peakweek proed  
anabolic pro-ed  
physique ednos  
figure eatingdisorder  
classicphysique ed  
mensphysique edprobs  
wpd edtwt  
npcbikini fatty  
roadtopro skinny  
procard skinnier  
ifbbbikini thin  
 hipbones  
 backbone  
 bones  
 collarbone  
 hips  
 thighgap  
 thyghgap  
 bikinibridge  
 GW,CW,LW,UGW  
 bodycheck  
 ABCdiet  
 projectthin  
 binge  
 bloated  
 laxatives  
 bingeeating  
 triggerwarning  
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Appendix B: Study 2 Survey Documentation 
 
Document 1. Informed Consent 

University of Wisconsin-Milwaukee 
Informed Consent to Participate in Research 

 

Study title: Impressions of Instagram posts 

Researcher[s]: Katherine Craig and Celeste Campos-Castillo 

Study Description: The purpose of this research study is to understand how people 
differentiate content on Instagram. Approximately 1,000 subjects will participate in this study. 
If you agree to participate, you will be asked to complete an online survey that will take 
approximately 10 minutes to complete. The questions will present you Instagram pictures and 
then ask you identify the type of person in the image and how you came to that conclusion. 
They will also ask you about your demographic background. 

Risks / Benefits: Risks to participants are considered minimal. Collection of data and survey 
responses using the internet involves the same risks that a person would encounter in everyday 
use of the internet, such as breach of confidentiality. While the researchers have taken every 
reasonable step to protect your confidentiality, there is always the possibility of interception or 
hacking of the data by third parties that is not under the control of the research team. However, 
questions may be personal and upsetting. You may skip any question you are not comfortable 
answering without penalty.  

There will be no costs or individual benefits to participants in this study. We believe that 
understanding how individuals identify social media content will provide a societal benefit.  

Eligibility and compensation 

Eligible participants who reach the end of the survey will receive payment from Amazon of 
$0.50 However, participants can receive a bonus of $0.01 with a cap of $0.05 per question for 
a maximum bonus of $0.45. The bonus will be rewarded for providing a detailed response to 
the open-ended portion of each question about how you identified the type of person in the 
image. A detailed response constitutes identifying a feature of the person and providing a 
rationale for why that feature led to identifying the type of person in the image. Each feature 
and corresponding rationale receive a bonus of $0.01 with a cap of five features and rationales 
per question. The maximum compensation for reaching the end of the survey with bonuses is 
$0.95. Participation is contingent on you meeting the following requirements:  

· You are at least 18 years old  

· You are female  



PRO-ANA AND SOCIAL MEDIA 

 72 

· You live in the United States  

· You correctly answer attention check questions that check to see if you read and understand 
the instructions 

Limits to Confidentiality: Researchers will have access to your MTurk worker ID which may 
be able to be linked to your personal information including your Amazon public profile page. 
Amazon will have access to your MTurk ID and personal information (social security number, 
IP address, bank account information, etc...). MTurk worker IDs will not be shared with 
anyone and will be used solely for the purposes of distributing compensation. Your MTurk 
Worker ID will only be stored on Amazon's servers and will not be stored in the same dataset 
as your responses. Instead, you will be assigned a unique ID, distinct from the MTurk worker 
ID, which you will receive while completing the Qualtrics survey. Qualtrics IDs will be 
removed from the dataset in 5 years. Data will be retained on the Amazon and Qualtrics 
servers for 5 years and will be deleted by the research staff after this time. However, data may 
exist on backups or server logs beyond the time frame of this research project. Data transferred 
from the survey site will be saved on a password protected computer for 5 years. Only the PI 
listed above and research staff will have access to the data collected by this study. However, 
the Institutional Review Board at UW-Milwaukee or appropriate federal agencies like the 
Office for Human Research Protections may review this study’s records. All study results will 
be reported without worker ID so that no one viewing the results will ever be able to match 
you with your responses 

Future research: De-identified data (all identifying information removed) may be shared with 
other researchers. You won’t be told specific details about these future research studies. 

Voluntary Participation: Your participation in this study is voluntary. You may choose to 
not answer any of the questions or withdraw from this study at any time without penalty. Your 
decision will not change any present or future relationship with the University of Wisconsin 
Milwaukee or Amazon. 

Who do I contact for questions about the study? For more information about the study or 
study procedures, contact Katherine Craig at kcraig@uwm.edu or Celeste Campos-Castillo at 
camposca@uwm.edu. 

Who do I contact for questions about my rights or complaints towards my treatment as a 
research subject? Contact the UWM IRB at 414-229-3173 or irbinfo@uwm.edu  

Research Subject’s Consent to Participate in Research:  

By entering this survey, you are indicating that you have read the consent form, you are age 18 
or older and that you voluntarily agree to participate in this research study. Please make sure 
that you have read and agree to Amazon’s Mechanical Turk participant and privacy 
agreements as these may impact the disclosure and use of your personal information. 
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Thank you! 

 
 
Document 2. Demographic Questions 

 
 
Q5 What year were you born? 

▼ 1920 (587) ... 2005 (672) 

 

Skip To: End of Survey If What year were you born? = 2003 

Skip To: End of Survey If What year were you born? = 2004 
Skip To: End of Survey If What year were you born? = 2005 
 
 
Q6 What is your current occupational status?  

o Employed  (1)  

o Unemployed  (2)  

o Retired  (3)  

o In school  (4)  

o Homemaker  (5)  

o Other  (6) ________________________________________________ 
 
 
 
Q7 Were you born in the United States?  

o No  (1)  

o Yes  (2)  
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Q9 Are you Hispanic or Latino/a?  

o No  (1)  

o Yes  (2)  
 
 
 
Q10 What race or races do you consider yourself to be (check all that apply)?  

▢ White (Caucasian)  (1)  

▢ Black or African American  (2)  

▢ Asian  (3)  

▢ American Indian or Alaska Native  (4)  

▢ Native Hawaiian or other Pacific Islander  (5)  

▢ Other  (6) ________________________________________________ 
 
 
 
Q11 What is the highest grade or level of schooling you've completed?  

o No diploma  (1)  

o High School Diploma/GED  (2)  

o Some college, but no degree  (3)  

o Technical/Associate/Junior College (2 yr, LPN)  (4)  

o Bachelor's Degree (4 yr, BA, BS, RN)  (5)  

o Graduate Degree (Masters, PhD, Law, Medicine)  (6)  
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Q12 What is your marital status?  

o Married  (1)  

o Married, living apart  (2)  

o Unmarried partner (cohabitating)  (3)  

o Never married  (4)  

o Divorced  (5)  

o Separated  (6)  

o Widowed  (7)  
 
 
 
Q13 What is your (combined) annual household income?  

o $0 to $9,999  (1)  

o $10,000 to $14,999  (2)  

o $15,000 to $19,999  (3)  

o $20,000 to $34,999  (4)  

o $35,000 to $49,999  (5)  

o $50,000 to $74,999  (6)  

o $75,000 to $99,999  (7)  

o $100,000 to $199,999  (8)  

o $200,000 or more  (9)  
 

End of Block: Default Question Block 
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Document 3. Survey Questions 

 
 
Please rate the following image from an Instagram account. 
 
 
 

<IMAGE> 
 
 
 
QX. How attractive is the person in this photo?  

o Very unattractive  (1)  

o Unattractive  (2)  

o Neither attractive nor unattractive  (3)  

o Attractive  (4)  

o Very attractive  (5)  
 
 
 
QX. Is the individual in the picture a/an:  

o Anorexic  (1)  

o Bodybuilder  (2)  
 
 
 
QX. In response to your answer above, how do you know the individual is a/an 
anorexic/bodybuilder? (A bonus can be earned for providing a detailed response. A detailed 
response constitutes identifying a feature of the person and providing a rationale for why the 
feature led to identifying the type of person in the image. Each feature and corresponding 
rationale receive a bonus of $0.01, up to $0.05 for this specific person in the image.) 

________________________________________________________________ 

________________________________________________________________ 
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________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
 
 
 
QX. What type of Instagram account would post this picture? 

o Thinspiration (thinspo)  (1)  

o Fitspiration (fitspo  (2)  
 
 
 
QX. How likely do you think this person is a bodybuilder? 

o Very likely  (1)  

o Likely  (2)  

o Somewhat likely  (3)  

o Neither likely nor unlikely  (4)  

o Somewhat unlikely  (5)  

o Unlikely  (6)  

o Very unlikely  (7)  
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QX. How likely do you think this person is an anorexic? 

o Very likely  (1)  

o Likely  (2)  

o Somewhat likely  (3)  

o Neither likely nor unlikely  (4)  

o Somewhat unlikely  (5)  

o Unlikely  (6)  

o Very unlikely  (7)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Potential Parallels Between Pro-Ana and Bodybuilding Content on Social Media
	Recommended Citation

	Microsoft Word - Thesis_Final_01.04.21.docx

