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ABSTRACT

Epistasis is the interaction between two or more genes to control a single phenotype.

We model epistasis of the prey in a two-locus two-allele problem in a basic predator-

prey relationship. The resulting model allows us to examine both population sizes

as well as genotypic and phenotypic frequencies. In the context of several numerical

examples, we show that if epistasis results in an undesirable or desirable phenotype in

the prey by making the particular genotype more or less susceptible to the predator or

dangerous to the predator, elimination of undesirable phenotypes and then genotypes

occurs.
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CHAPTER 1

INTRODUCTION

The usual starting point for models in population genetics is a model of random

mating for a one-locus, two-allele problem with Hardy-Weinberg proportions for the

alleles. Refer to Karlin, [5], for an overview of mathematical models of population

genetics. In genetic problems, the genotype is defined to be the genetic makeup

of an organism. For example, in a one-locus, two-allele model, one can label the

alleles as A (dominant) and a (recessive). The possible genotypes are then AA, Aa,

and aa. On the other hand, the phenotype is defined to be the set of observable

characteristics of an individual resulting from the interaction of its genotype with the

environment. In the absence of epistasis, defined in the next paragraph, with the

above genotypes, the phenotypes would be A for the genotypes of type AA and Aa

and a for the genotype of type aa.

Epistasis occurs when the genotype results in a phenotype different from that

expected. For example, in the context of the example above, epistasis would occur if

either the AA or Aa genotype did not result in the phenotype expected, A.

One of the more interesting examples of epistasis in humans occurs in human

blood in the form of the Bombay Phenotype, which has been popularized in the day-

time soap opera, General Hospital, the 2012 film “Get the Gringo,” and the Canadian

television series “My Babysitter’s a Vampire.” The Bombay Phenotype is a very rare

blood phenotype in humans that is scientifically referred to as the hh (the H) antigen

that results in a phenotype of type O, even though the genotype of these individuals

is of type ABO, which typically would be expressed as of type AB. People with the

Bombay Phenotype can donate to any member of the ABO blood group system, but

they can only receive blood from others with the Bombay Phenotype. The Bombay

Phenotype is very rare and only occurs in approximately 1 in 250,000 humans.
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In the study of epistasis discussed here the modifications introduced are that

epistasis is incorporated into a standard predator-prey model, so that one genotype

of the prey may be more or less susceptible to the predator than other prey with a

different genotype, but the same phenotype in the absence of epistasis. Second, we

introduce epistasis in the standard predator-prey model so that one genotype of the

prey is dangerous (lethal or poisonous) to the predator than other prey with different

genotypes but the same expected phenotype in the absence of epistasis.

This is accomplished by a perturbation of the random mating model within the

context of established ecological models for the evolution of a predator-prey popula-

tion.

Of course, general mating preferences almost certainly depend on numerous ex-

ternal factors that might include but are not limited to available mates, parasites,

season, climate, and such that are beyond the scope of the model discussed here, but

could lead to interesting extensions of the situations discussed here.



CHAPTER 2

FORMULATION OF THE MODEL

2.1 The Standard Predator-Prey Equations

Let x = x(t) denote the size or density of the prey population and y = y(t) denote

the size or density of the predator population. Then the standard predator-prey

equations take the form

x′ = x (a− ky) = xa− kxy

y′ = y(−c+ dx) = dxy − cy

x(0) = x0, y(0) = y0,

(2.1)

where a, k, c, and d are all positive constants. Refer to Karlin, [5], for basic details

regarding the standard Predator-Prey model. In the absence of the predator, the prey

has linear growth, given by the x′ = ax term. The death rate of the prey is governed

by predator-prey interactions given by the quadratic −k xy term, which contributes

to the growth rate of the predator by the d xy term. We interpret k to be the catch-

ability of the prey x by the predator y. Details regarding the standard predator-prey

equations and different interpretations of the coefficients are discussed in most in-

troductory differential equations texts like Abell and Braselton, [1], or introductory

mathematical modeling and/or mathematical biology texts such as Beltrami, [2], or

Murray, [7].

The most important result for system (2.1) is that the equilibrium (rest) point

(x0, y0) = (c/d, a/k) is classified as a center in the corresponding linearized system

because the eigenvalues of the Jacobian of system (2.1),

J(x, y) =







∂

∂x
(xa− kxy)

∂

∂y
(xa− kxy)

∂

∂x
(dxy − cy)

∂

∂y
(dxy − cy)






=







a− ky −kx

dy −c+ dx






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Figure 2.1: We choose a = 2, k = −1, c = −3, and d = 1. Observe how the solution

curves revolve about the center, (x0, y0) = (3, 2).

evaluated at the equilibrium (rest) point (x0, y0) = (c/d, a/k) are

λ1,2 =

∣

∣

∣

∣

∣

∣

∣

a− ky −kx

dy −c+ dx

∣

∣

∣

∣

∣

∣

∣

(x0,y0)=(c/d,a/k)

=

∣

∣

∣

∣

∣

∣

∣

0 −ck/d

ad/k 0

∣

∣

∣

∣

∣

∣

∣

= ±i
√
ac.

While the stability of the equilibrium point in the nonlinear system is generally in-

conclusive in this case, other solution methods can verify that the equilibrium point

is, in fact, a center. A typical example is shown in Figure 2.1, where we have used

the values a = 2, k = −1, c = −3, and d = 1. In Figure 2.1, observe how the limit

cycles revolve about the center, (x0, y0) = (3, 2).

2.2 A Two-Locus, Two-Allele Model

In the two-locus, two-allele problem, the number of genotypes is nine but in the

absence of epistasis, the number of phenotypes is four. If the A and B alleles are

dominant, the expected result is four phenotypes AB (x1, x2, x4, and x5), Ab (x3
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and x6), aB (x7 and x8), and ab (x9), as described next. For the two-locus, two-allele

problem,we consider a population x = x(t) with size (or density) x = x1 + x2 + x2 +

x3 + x4 + x5 + x6 + x7 + x8 + x9, where

• x1 is the size of the population of type AABB (expected phenotype AB),

• x2 is the size of the population of type AABb (expected phenotype AB),

• x3 is the size of the population of type AAbb (expected phenotype Ab),

• x4 is the size of the population of type AaBB (expected phenotype AB),

• x5 is the size of the population of type AaBb (expected phenotype AB),

• x6 is the size of the population of type Aabb (expected phenotype Ab),

• x7 is the size of the population of type aaBB (expected phenotype aB),

• x8 is the size of the population of type aaBb (expected phenotype aB) and

• x9 is the size of the population of type aabb (expected phenotype ab).
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The proportion of gametes of type AB, Ab, aB, and ab are given by

px =
1

x

(

x1 +
1

2
(x2 + x4) +

1

4
x5

)

,

qx =
1

x

(

x3 +
1

2
(x2 + x6) +

1

4
x5

)

,

rx =
1

x

(

x7 +
1

2
(x4 + x8) +

1

4
x5

)

,

and

sx =
1

x

(

x9 +
1

2
(x6 + x8) +

1

4
x5

)

,

(2.2)

respectively. Observe that px + qx + rx + sx = 1. Table A.1 in the Appendix shows

the expected ratio of offspring produced by each xi-xj combination. Refer to articles

like Szathmáry, [8], for details regarding these and similar calculations.

Assuming random mating between the genotypes of the prey, the predator-prey

equations (2.1) become

x′

1 = axp2 − k1x1y

x′

2 = 2axpq − k2x2y

x′

3 = axq2 −m3x3y

x′

4 = 2axpr − k4x4y

x′

5 = 2ax (ps+ rq)− k5x5y

x′

6 = 2axqs−m6x6y

x′

7 = axr2 − f7x7y

x′

8 = 2axrs− f8x8y

x′

9 = axs2 − l9x9y

y′ = y(−c+ dx)

(2.3)

with initial conditions

x1(0) = x10, x2(0) = x20, x3(0) = x30, x4(0) = x40, x5(0) = x50,

x6(0) = x60, x7(0) = x70, x8(0) = x80, x9(0) = x90, y(0) = y0,

(2.4)
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where we have used Table A.1 in the Appendix to compute the coefficients and sim-

plified the results using equation (2.2) as well as omitted the subscripts for the p = px,

q = qx, r = rx, and s = sx terms.

If k = k1,2,4,5 = m3,6 = f7,8 = l9, adding system (2.3), substituting the proportion

of gametes given in equation (2.2), and adding x = x1+x2+x2+x4+x5+x6+x7+x8+x9

results in the predator-prey equations, system (2.1). Also, using equations (2.2), the

allele frequencies of A, a, B, and b are given by

1

x

(

x1 + x2 + x3 +
1

2
(x4 + x5 + x6)

)

= p+ q,

1

x

(

x7 + x8 + x9 +
1

2
(x4 + x5 + x6)

)

= r + s,

1

x

(

x1 + x4 + x7 +
1

2
(x2 + x5 + x8)

)

= p+ r,

and

1

x

(

x3 + x6 + x9 +
1

2
(x2 + x5 + x8)

)

= q + s,

(2.5)

respectively.

Also, using system (2.3) and equations (2.2), we have

x′

1 + x′

2 + x′

3 +
1
2
(x′

4 + x′

5 + x′

6)

x1 + x2 + x3 +
1
2
(x4 + x5 + x6)

− x′

x
= 0,

x′

7 + x′

8 + x′

9 +
1
2
(x′

4 + x′

5 + x′

6)

x7 + x8 + x9 +
1
2
(x4 + x5 + x6)

− x′

x
= 0,

x′

1 + x′

4 + x′

7 +
1
2
(x′

2 + x′

5 + x′

8)

x1 + x4 + x7 +
1
2
(x2 + x5 + x8)

− x′

x
= 0,

x′

3 + x′

6 + x′

9 +
1
2
(x′

2 + x′

5 + x′

8)

x3 + x6 + x9 +
1
2
(x2 + x5 + x8)

− x′

x
= 0.

(2.6)

Integrating and exponentiating each equation in (2.6) results in the following

p+q = p(0)+q(0), p+r = p(0)+r(0), q+s = q(0)+s(0), and r+s = r(0)+s(0).

(2.7)

This proves the theorem
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Theorem 2.1. For random mating, the relative frequencies of the alleles A, a, B,

and b are constant, agreeing with the Hardy-Weinberg equation.

Theorem 2.2. If k = k1,2,4,5 = m3,6 = f7,8 = l9, there are up to 14 equilibrium (rest)

points, provided that the appropriate quantities are nonnegative.

Proof. In the following, x1 = x1(0), x2 = x2(0), x3 = x3(0), x4 = x4(0), x5 = x5(0),

x6 = x6(0), x7 = x7(0), x8 = x8(0), and x9 = x9(0)).

E1,2 are given by

x1
∗ = ±

x5

(

2
√
2
√

cx2
5x8 (2cx8 − d(x5 + 2x8)2)± 4cx5x8 + dx5(x5 + 2x8)

2
)

8dx8(x5 + 2x8)2

x2
∗ =

x5
2

4x8

,

x3
∗ = − dx3

5(x5 + 2x8)
2

8x8

(

∓2
√
2
√

cx2
5x8 (2cx8 − d(x5 + 2x8)2)− 4cx5x8 + dx5(x5 + 2x8)2

) ,

x4
∗ = ±2

√
2
√

cx2
5x8 (2cx8 − d(x5 + 2x8)2)± 4cx5x8 + dx5(x5 + 2x8)

2

2d(x5 + 2x8)2
,

x5
∗ = x5,

x6
∗ = ± dx2

5(x5 + 2x8)
2

4
√
2
√

cx2
5x8 (2cx8 − d(x5 + 2x8)2)± 8cx5x8 ∓ 2dx5(x5 + 2x8)2

,

x7
∗ = −

x8

(

∓2
√
2
√

cx2
5x8 (2cx8 − d(x5 + 2x8)2)− 4cx5x8 + dx5(x5 + 2x8)

2
)

2dx5(x5 + 2x8)2
,

x8
∗ = x8,

x9
∗ = ± dx5x8(x5 + 2x8)

2

4
√
2
√

cx2
5x8 (2cx8 − d(x5 + 2x8)2)± 8cx5x8 ∓ 2dx5(x5 + 2x8)2

, and

y∗ =
a

k
.

Next, E3,4 are given by

x1
∗ = 0, x2

∗ = 0, x3
∗ = 0, x4

∗ = 0, x5
∗ = 0, x6

∗ = 0,
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x7
∗ =

c− dx8 ±
√

c(c− 2dx8)

2d
,

x8
∗ = x8, x9

∗ =
c− dx8 ∓

√

c(c− 2dx8)

2d
and y∗ =

a

k
.

E5,6 are given by

x1
∗ = 0, x2

∗ = 0, x4
∗ = 0, x5

∗ = 0, x6
∗ = x6,

x7
∗ = 0, x8

∗ = 0, y∗ =
a

k
, x3

∗ =
c− dx6 ±

√

c(c− 2dx6)

2d
, and

x9
∗ =

c− dx6 ∓
√

c(c− 2dx6)

2d
.

E7,8 are given by

x2
∗ = 0, x3

∗ = 0, x4
∗ = x4, x5

∗ = 0, x6
∗ = 0,

x8
∗ = 0, x9

∗ = 0, y∗ =
a

k
, x1

∗ =
c− dx4 ±

√

c(c− 2dx4)

2d
, and

x7
∗ =

c− dx4 ∓
√

c(c− 2dx4)

2d
.

E9,10 are given by

x2
∗ = x2, x4

∗ = 0, x5
∗ = 0, x6

∗ = 0, x7
∗ = 0,

x8
∗ = 0, x9

∗ = 0, y∗ =
a

k
, x1

∗ =
c− dx2 ±

√

c(c− 2dx2)

2d
, and

x3
∗ =

c− dx2 ∓
√

c(c− 2dx2)

2d
.

E11 is given by x1
∗ = 0, x2

∗ = 0, x3
∗ = 0, x4

∗ = 0, x5
∗ = 0, x6

∗ = 0, x7
∗ = 0,

x8
∗ = 0, x9

∗ = c/d, and y∗ = a/k.

E12 is given by x1
∗ = 0, x2

∗ = 0, x3
∗ = c/d, x4

∗ = 0, x5
∗ = 0, x6

∗ = 0, x7
∗ = 0,

x8
∗ = 0, x9

∗ = 0, and y∗ = a/k.



10

E13 is given by x1
∗ = 0, x2

∗ = 0, x3
∗ = 0, x4

∗ = 0, x5
∗ = 0, x6

∗ = 0, x7
∗ = c/d,

x8
∗ = 0, x9

∗ = 0, and y∗ = a/k.

Finally, E14 is given by x1
∗ = c/d, x2

∗ = 0, x3
∗ = 0, x4

∗ = 0, x5
∗ = 0, x6

∗ = 0,

x7
∗ = 0, x8

∗ = 0, x9
∗ = 0, and y∗ = a/k.

For all 14 rest points, x1
∗+x2

∗+x3
∗+x4

∗+x5
∗+x5

∗+x7
∗+x8

∗+x9
∗ = c/9.

Observe that the Jacobian, J, for system (2.3) is a 10 × 10 matrix. We are

unable to compute the eigenvalues of J at E1 or E2. However, for the remaining rest

points (equilibrium points), E3, E4, . . . , E14, the eigenvalues of J evaluated at Ei are

λ1,2 = 0, λ3,4,5,6,7 = −a, λ8 = −a/2, and λ9,10 = ±i
√
ac. Thus, we expect the rest

points to usually be “center-like,” which is illustrated in the computations.

When k1 = k2 = k4 = k5 = k (phenotype AB), m3 = m6 = m (phenotype

Ab), or f7 = f8 = f (phenotype aB), the interpretation is that the corresponding

phenotype of the prey have the same catchability to the predator. In this situation,

we are not able to find exact formulas for the rest points as in the case when k =

k1,2,4,5 = m3,6 = f7,8 = l9. Thus, we conduct numerous numerical studies to explore

some of the possibilities.

When all parameter values have similar values as in the standard predator-prey

equations (2.1), we typically see a limit cycle that is illustrated in Figure 2.2.

Reviewing the standard predator-prey system of equations (2.1), we expect to

see that the higher parameter values of a and c (such as a = 2 and c = 3) giving

the advantage to the prey, because the parameter a is the growth rate of the (prey)

species x and the parameter c is the death (or emigration) rate of (predator) species

y.

With these parameter values, Figure 2.3 illustrates that the genotype AaBb

generally has the highest population sizes/densities. Because AaBb-AaBb matings

produce all of the other genotypes, all genotypes and phenotypes, AB, Ab, aB and
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Figure 2.2: We choose b = k = m = f = l = 1 and a = 2, c = 3. Initial values are

x10 = x20 = x30 = x40 = x50 = x60 = x70 = x80 = x90 = 0.25, y0 = 4. All solutions,

except for the equilibrium solution x = 3, y = 2, are periodic so all solution curves

are closed curves in the graph on the right.

ab coexist.

Choosing values for k and m to be greater than values for f and l (using the same

initial conditions and values for a, b, and c in (2.1)) causes the two-locus, two-allele

problem to typically result in a stable solution, such as the stable equilibrium point

illustrated in Figures 2.4 and 2.5.

Giving the “weakest” genotype, usually the genotype of type aabb (expected

phenotype is ab), an advantage with a low catchability rate with respect to the other

genotypes, such as l = 0.8, helps this genotype to persist, even with relatively low

population size/density. Regardless, in this simulation the genotype of type AaBb

again has the highest population density as illustrated in Figure 2.6.

From Figure 2.6 we see the stabilization points (or equilibrium or rest points)

for the predator and prey populations. In Figure 2.7, the population density for the

prey (black) converges to x = 3 and the population density of the predator (grey)

converges to y = 2.1.
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Figure 2.3: Because the genotype of type AaBb has an advantage over the others,

all genotypes coexist because random matings of this genotype produce all other

genotypes. (Refer to the Appendix.)
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Figure 2.4: The parameter values used are k = 1, m = 2, f = 0.8 and l = 0.8, which

result in stabilization.
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Figure 2.5: Stabilization with k = 1, m = 2, f = 0.8 and l = 0.8. The size/density of

the population of each expected phenotype stabilizes.
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Figure 2.6: Stabilization with k = 1.2, m = 3, f = 0.7 and l = 0.7.
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Figure 2.7: A limit cycle with k = 0.9, m = f = 1 and l = 0.75

Our final example using this model illustrates that when the expected weakest

genotype of type, aabb, dominates, both the a and b alleles may go to fixation. (In

the gene pool, fixation means that of two variants of a particular allele (gene), only

one of the alleles remains after a period of time.) Refer to Figure 2.7. Both prey

and predator populations/densities remain at almost oscillatory rates as shown in the

graph on the left in Figure 2.7).

In Figure 2.8, observe that we expected the “strongest” (lowest mortality rate

than the other prey genotypes experience with the predator) genotypes to survive, but

their population rates were continuously decreasing. At some point, around xi = 30,

all vanish. At the same time, the population density of the aabb genotype type starts

to increase and stabilizes in the range from 1.8 to 5: the a and b alleles go to fixation.
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Figure 2.8: Limit cycles with k = 0.9,m = f = 1 and l = 0.75. The organism of

genotype aabb survives; the a and b alleles go to fixation.



CHAPTER 3

EPISTASIS

As discussed previously, epistasis occurs when the genotype results in a phenotype

different from that expected. We model epistasis in a predator-prey relationship

by forcing the catchability (given by the ki, mi, or fi terms) of one genotype of a

particular phenotype to be greater or smaller than other organisms with the same

expected phenotype. Recall that the xi (or xi
′) (prey) and y (predator) population

densities are given by equations (2.3) and that a is the growth rate of species xi (prey)

while c is the death (or emigration) rate of species y (predator).

We use the same initial conditions and parameter values for a, b, and c as in the

previous simulations.

3.1 Example 1. k5 and l9 are the greatest

Setting k5 greater than the other ki values models epistasis by giving the genotype

AaBb (expected phenotype AB) a higher prey-induced death rate than the other

organisms with phenotype AB. We choose l9 to be large as well because some would

argue that the ab phenotype would often be the weakest, which we continue to assume

throughout the examples unless otherwise stated. Figure 3.2 illustrates that the pop-

ulation rate of the type AABB genotype (expected phenotype AB) stabilizes around

the point (x1 = 0.006). This happens because of several factors: the catchability of

this genotype is high (k1 = 1.2) and population rates for the genotypes of type AABb,

AaBB and AaBb (same expected phenotype AB) are low. The population size rate

for the genotype of type aabb with high catchability parameter l9 = 3 stabilizes at

the point around x5 = 0.15. The organisms with genotypes Aabb and aaBB have the

highest population rates (around 0.9).
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Figure 3.1: Stabilization with k1 = 1.2, k2 = 1.2, k4 = 1.2, k5 = 3, l9 = 3,m3 =

0.8,m6 = 0.8, f7 = 0.8, f8 = 0.8
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Figure 3.2: Stabilization with k1 = 1.2, k2 = 1.2, k4 = 1.2, k5 = 3, l9 = 3,m3 =

0.8,m6 = 0.8, f7 = 0.8, f8 = 0.8
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Figure 3.3: Stabilization with k1 = 3, k2 = 1.2, k4 = 1.2, k5 = 1.2, l9 = 3, m3 =

0.8, m6 = 0.8, f7 = 0.8, f8 = 0.8

3.2 Example 2. (a) k1 and l9 are the greatest

Setting k1 greater than the other ki values models epistasis by giving the genotype

AABB (expected phenotype AB) a higher prey-induced death rate than the other

organisms with phenotype AB. Using these parameters, stabilization took nearly

twice as long as in the previous model. Refer to Figures 3.3 and 3.4.

The high value of the catchability parameter k1 = 3 forces the organism of geno-

type AABB to very small levels, faster than in the previous example. The population

size rate for the organisms of type aabb with catchability parameter l9 = 3 is smaller

too (around 0.1). On the other hand, the organisms with lower catchability values

(genotypes AAbb, Aabb, aaBB, and aaBb) have the highest population densities.

Since k5 = 1.2 and mating between the organism of type AaBb produces all the

other genotypes, Aabb and aaBb (expected phenotype is Ab and aB respectively)

have the highest rates and more chances for survival.
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Figure 3.4: Stabilization with k1 = 3, k2 = 1.2, k4 = 1.2, k5 = 1.2, l9 = 3, m3 =

0.8, m6 = 0.8, f7 = 0.8, f8 = 0.8
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Figure 3.5: Stabilization with k1 = 3, k2 = 1, k4 = 1, k5 = 1, l9 = 3,m3 = 1,m6 =

1, f7 = 1, f8 = 1
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Figure 3.6: Stabilization with k1 = 3, k2 = 1, k4 = 1, k5 = 1, l9 = 3,m3 = 1,m6 =

1, f7 = 1, f8 = 1

3.3 Example 3. (b) k1 and l9 are the greatest while all other parameter

values are 1.

This case is interesting by the “slowness” in the rate at which the system stabilizes

when compared to the previous two examples. From Figure 3.5 we see that both

populations need around 170 steps to stabilize at one point.

This example numerically indicates that all genotypes except AABB and aabb

find stabilization at the hight value population rate point. Both types AABB with

dominant alleles and the weakest genotype aabb with recessive alleles have high catch-

ability value k1 = l9 = 3 and stabilize at the point close to zero (that is, they are

close to extinction).
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Figure 3.7: Limit cycle with k1 = 0.7, k2 = 1, k4 = 1, k5 = 1, l9 = 1,m3 = 1,m6 =

1, f7 = 1, f8 = 1. The A and B alleles go to fixation so the genotype AABB is the

only one to survive.

3.4 Example 3. k1 is the smallest: the catchability of the organism with

genotype AABB is the lowest.

Setting k1 smaller than the other ki values models epistasis by giving the genotype

AABB (expected phenotype AB) a lower prey-induced death rate than the other

organisms with phenotype AB. Figure 3.7 illustrates that the population/density

rate of the prey changes from approximately x = 1.5 to x = 5.3 while the predator

population/density rate changes from approximately y = 1.2 to y = 5.6.

Setting k5 smaller than the other ki values models epistasis by giving the genotype

AaBb (expected phenotype AB) a lower prey-induced death rate than the other

organisms with phenotype AB. The example illustrates an interesting situation. The

small catchability rate of the species with genotype AABB with dominant alleles A

and B and the same catchability rates for the other species with genotypes AABB

survive the competition between the other genotypes and forces them to extinction.

A critical point around t = 10 can be observed. In this case, the A and B alleles go
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Figure 3.8: Limit cycle with k1 = 0.7, k2 = 1, k4 = 1, k5 = 1, l9 = 1,m3 = 1,m6 =

1, f7 = 1, f8 = 1. The A and B alleles go to fixation to the genotype AABB is the

only one to survive.
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Figure 3.9: Stabilization with k1 = 1, k2 = 1, k4 = 1, k5 = 0.5, l9 = 3, m3 =

0.75, m6 = 0.75, f7 = 0.75, f8 = 0.75

to fixation.

3.5 Example 4. k5 is the smallest; l9 is the greatest.

Both predator and prey populations stabilize at almost the same rate (around 2.6 for

the predator and 3 for the prey with the parameter values we use) as shown in Figure

3.10.

When the growth advantage is given to the x5 organism (with genotype AaBb)

and because random mating of the organism with genotype AaBb produces all of

other genotypes, we observe the stabilization shown in Figure 3.11. Since x′

5 =

2ax(ps+ rq)− k5x5y, all other genotypes stabilize as well.

3.6 Example 5. (a) l9 is the largest; all other parameter values are equal.

With these parameter values, the example, which is graphically illustrated in Figure

3.11, illustrates how the k-phenotype group (x1, x2, x4, and x5) can be the strongest

(or survive with the highest population/density) with respect to the population

sizes/densities of the other genotypes. In this case, the A and B alleles go to fixation.
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Figure 3.10: Stabilization with k1 = 1, k2 = 1, k4 = 1, k5 = 0.5, l9 = 3, m3 =

0.75, m6 = 0.75, f7 = 0.75, f8 = 0.75
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Figure 3.11: Limit cycle with k1 = 1, k2 = 1, k4 = 1, k5 = 1, l9 = 3, m3 = 1, m6 =

1, f7 = 1, f8 = 1.
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Figure 3.12: Limit cycle with k1 = 1, k2 = 1, k4 = 1, k5 = 1, l9 = 3, m3 = 1, m6 =

1, f7 = 1, f8 = 1

Making the weakest species with genotype aabb (because the genes a and b are

recessive) more catchable by choosing large catchability parameter values forces the

genotype to extinction. We have also observed that a limit cycle sometimes occurs.

Population sizes/densities of the species with genotypes AABb and AaBB decrease

extremely slowly with the selected parameter values as shown in Figure 3.12.

3.7 Example 5. (b) Parameter value l9 is the greatest and we choose the

parameter values m6 and f8 to be smaller.

As in the previous example (refer to Figures 3.9 and 3.10), high population size/density

of the organism with genotype AaBb forces the system to stabilize. In this case,

the organisms with genotypes AaBb, Aabb and aaBb have the highest values be-
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Figure 3.13: Stabilization with k1 = 1, k2 = 1, k4 = 1, k5 = 1, l9 = 3, m3 = 1, m6 =

0.7, f7 = 1, f8 = 0.7

cause their catchability parameters are the lowest with respect to the other popula-

tion sizes/densities of the species with the other genotypes. The lowest population

sizes/densities, as we have seen in the simulation, are the organisms with genotypes

AABB and aabb (both around 0.1).
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Figure 3.14: Stabilization with k1 = 1, k2 = 1, k4 = 1, k5 = 1, l9 = 3, m3 = 1, m6 =

0.7, f7 = 1, f8 = 0.7



CHAPTER 4

EPISTASIS WITH DANGEROUS PREY

In the previous sections, epistasis was modeled by making the catchability (given by

the ki, mi, or fi terms) of one genotype different from other organisms with the same

expected phenotype.

Another way to model the situation is to examine how the effect of specific

genotypes of the prey differ from that of others on the predator. For example, epistasis

can manifest itself if some genotypes of the prey population have a negative effect on

the growth of the predator population, such as a poisonous prey.

To take into consideration the effect that specific genotypes of the prey have on

the growth rate of the predator, the y equation in equation (2.3) becomes:

y′ = y(−c+ (d1x1 + d2x2 + d3x3 + d4x4 + d5x5 + d6x6 + d7x7 + d8x8 + d9x9))

y′ = y

(

−c+
9
∑

i=1

dixi

)

.
(4.1)

As expected, when d = d1 = d2 = · · · = d9, equation (4.1) reduces to y′ =

y(−c + dy). Of interest is when the di values differ and, specifically, when some

di values are negative. Because the dixiy values indicate how an xi − y interaction

affects the growth of the y (predator) population, negative values of di are interpreted

to mean that xi − y interactions have a negative effect on the growth rate of the

predator. For example, a negative value of di could be interpreted that the prey

with population/density xi is lethal (such as being poisonous) to the predator with

population/density y.

In the following simulations, we use the same parameter values for a, b, c and

initial conditions as before. Then, the case with lethal (or poisonous) prey can be

illustrated with several examples.
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Figure 4.1: Stabilization with a negative value of d5: k1 = k2 = k4 = 1, k5 = 0.5, l9 =

3, m3 = m6 = f7 = f8 = 0.75, d5 = −1, d1 = d2 = d3 = d4 = d6 = d7 = d8 = d9 = 1

.

4.1 Example 1. Genotype of type AaBb is poisonous to the prey;

parameter value used: d5 = −1

Setting d5 = −1 and leaving the other di values positive models epistasis by making

the prey of genotype AaBb (expected phenotype AB) poisonous to the predator.

On the other hand, the other prey with phenotype AB continue to positively affect

the predator’s growth rate. In this simulation, the advantage is given to the prey

with population/density x5. The negative value of d5 result in a negative effect on

the growth rate of the predator y. As we see in Figure 4.1, stabilization appears to

occur very quickly, at approximately t = 12. When d5 = −1 we have much higher

population rates of the species with genotype AaBb (expected phenotype AB) as

illustrated in Figure 4.2.

In the previous sections, several examples used the same values for all catch-

ability parameters (refer to Example 4, Figures 3.9 and 3.10) yet the population

sizes evolved differently. Now, when the species with genotype AaBb is poisonous

to the prey, the phenotype rates for all prey are much higher. We have illustrated

that poisonous prey with genotype AaBb increases the population size/density of the

prey population/density. Additionally, as with the previous examples both prey and
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Figure 4.2: Stabilization with a negative value of d5

predator have close values after stabilization, but the simulation suggests that the

difference in the values is much greater.

Because of the influence of poisonous/lethal prey, we see a noticeable difference

between population sizes/densities of the genotypes of type AaBb and other types.

With the parameter values used here, population sizes/densities of genotype type

AaBb are around 2.7 times greater than the population sizes/densities of genotypes

AABb, Aabb and aaBb. These values are more than four times greater than the

population sizes/densities of the genotypes of type AAbb, aaBB, AABb and AaBB.

Overall, the simulations indicate an increase of more than 10 times greater then the

growth rate of the genotype of type AaBB rate and more then 30 times greater than

the (weakest) of type aabb.
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Figure 4.3: Stabilization with d5 = −1 and k5 = 0.5, k1 = mj = fj = 1.3, k2 = k4 =

l9 = di = 1 for i 6= 5

4.2 Example 2: An interesting case is observed if d5 = −1 and k5 = 0.5,

k1 = mj = fj = 1.3, k2 = k4 = l9 = di = 1 for i 6= 5.

Again, stabilization occurs very quickly (around t = 12), but the difference between

populations of prey and predator is much larger: the prey’s population is around

10 times greater than that of the predator. In this simulation, poisonous prey of

genotype AaBb (i.e, the prey with population x5 is poisonous to the predator) cause

the population size of the prey with this genotype to be many times greater than the

population size of other types of the prey with different genotypes.

4.3 Example 3: A Limit Cycle with d5 = −1 and the same parameter

values for ki, mj, fj, l9, di for i 6= 5 as used in the previous

simulations.

Giving a competitive advantage to the prey with genotype AaBb can result in a limit

cycle as shown in Figure 4.5.

Figure 4.6 illustrates a situation similar to that illustrated in Figure 4.5. The

poisonous prey of genotype AaBb sees its population size/density to finally be more

than twice greater than the prey populations of the other genotypes.
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Figure 4.4: Stabilization with d5 = −1 and k5 = 0.5, k1 = mj = fj = 1.3, k2 = k4 =

l9 = di = 1 for i 6= 5
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Figure 4.5: A limit cycle with d5 = −1 and all parameter values ki = mj = fj = l9 =

di = 1 for i 6= 5
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Figure 4.6: Cycle with d5 = −1 and all ki = mj = fj = l9 = di = 1 for i 6= 5

4.4 Example 4: Predator extinction

Setting more of the di parameter values to be negative gives additional advantage to

the prey, which is illustrated in Figure 4.7.

In the case illustrated in Figure 4.7, the population/densities of prey of all types

increases and forces the predator to extinction. The example illustrates that poisonous

prey do not benefit a predator susceptible to the poison of the prey.

Figure 4.8 illustrates that the increase of the prey with genotype AaBb rate

causes extreme population/density fluctuations.

4.5 Example 5: d6 and d8 are negative

Setting d6 and d8 to be negative and leaving the other di values positive models

epistasis by making the prey of genotypes Aabb (expected phenotype Ab) and aaBb

(expected phenotype aB) poisonous to the predator. On the other hand, the other

prey with phenotypes Ab and aB continue to positively affect the predator’s growth
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Figure 4.7: We use d5 = d6 = d8 = −1 and all ki = mj = fj = l9 = di = 1 for

i 6= 5, 6, 8
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Figure 4.8: Predator extinction when the parameter values are d5 = d6 = d8 = −1

and all ki = mj = fj = l9 = di = 1 for i 6= 5, 6, 8
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Figure 4.9: Stabilization with d6 = d8 = −1, l9 = 3 and all mj = fj = 0.75,

ki = di = 1, for i 6= 6, 8

rate. In Figure 4.9, stabilization of the prey population approachest x = 9.5, while

the predator population approaches y = 2.5.

It is interesting to observe in Figure 4.10 that in spite of the poisonous preys

with genotypes Aabb and aaBb, the AaBb has the higher population rate. As before,

with low catchability (k5 = 1) this genotype has an advantage over other types, even

poisonous ones or with same/lower catchability rates.

Because of their poisonous advantage, the two types Aabb (x6) and aaBb (x8)

have the second (after AaBb) highest population rates. The population size of the

organism of type aabb(x9) is close to zero. This is the weakest type because it has

the highest catchability parameter l9 = 3.

4.6 Example 6: Both d6 and d8 are negative: a limit cycle occurs

Population sizes/densities of all genotypes (except AABB) are decreasing. Some of

them (genotypes aabb, AAbb and aaBB) approach zero quickly. Poisonous genotypes

(Aabb and aaBb) have an advantage, but fail to survive. Refer to Figures 4.11 and

4.12.

The populations sizes/densities for the species with genotypes of AABb and

AaBB decrease very slowly and have strong oscillations. Further calculations that

are not illustrated in the figures show that the rates of x2 and x4 become lower than
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Figure 4.10: Stabilization with d6 = d8 = −1, l9 = 3 and all mj = fj = 0.75,

ki = di = 1, for i 6= 6, 8
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Figure 4.11: A limit cycle with d6 = d8 = −1, l9 = 3 and all ki = mj = fj = di = 1

for i 6= 6, 8
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Figure 4.12: A limit cycle with d6 = d8 = −1, l9 = 3 and all ki = mj = fj = di = 1

for i 6= 6, 8

1 only around the point t = 400. When t = 700 the situation does not change: they

continue decreasing.

4.7 Example 7.

In the case when one of the types has di = −2, we can observe a sudden growth of the

prey population. The growth is so extreme, that considerable difficulties arise in the

numerical algorithms after some point in the calculations (t = 35 for the situation

illustrated in Figure 4.13). Figure 4.13 illustrates behavior similar to that seen in

previous examples with population rates increasing to some critical point. When t

is close to 20, both rates change their behavior. The predator’s population starts

decreasing rapidly, while the prey’s population increases.

Figure 4.14 gives a closer look on the situation in the model. The point around
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Figure 4.13: Prey population growth with k1 = m3 = m6 = f7 = f8 = 0.75, k2 =

k4 = k5 = 1, l9 = 3, d1 = −2 and di = 1 for i 6= 1
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Figure 4.14: Prey population growth with k1 = m3 = m6 = f7 = f8 = 0.75, k2 =

k4 = k5 = 1, l9 = 3, d1 = −2 and di = 1 for i 6= 1

t = 20 is critical. The predator population size decreases to a very small size for a

very short period of time.

Figure 4.15 illustrates the case when the organism of type AABB is both poi-

sonous and has low catchability so it makes a greater impact on the predator’s ex-

tinction than the other genotypes.
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Figure 4.15: Prey population growth with k1 = m3 = m6 = f7 = f8 = 0.75, k2 =

k4 = k5 = 1, l9 = 3, d1 = −2 and di = 1 for i 6= 1

4.8 Example 8.

A limit cycle resulting in extreme populaton sizes/densities of both the predator and

prey are found in the model with negative parameters as shown in Figure 4.17.

Stabilization of this limit cycle goes slowly. The cycle area expands and stabilizes

only around the moment when t = 1000 as shown in Figure 4.17. These specific

examples show that during each cycle both prey and predator populations can become

close to extinction. Nevertheless, the populations are growing after every cycle and

never stabilize. Extreme situations like these that are illustrated in Figure 4.18.

probably are unlikely to happen in reality. However, extreme changes of population

size can be triggered by severe circumstances, such as changes of weather or other

external factors.

In Figure 4.18, epistasis is modeled when a particular di value differs from other
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Figure 4.16: Limit cycle with k1 = k2 = k4 = k5 = 1, l9 = 3,m3 = m6 = f7 = f8 =

0.75, d2 = d6 = d9 = −2 and di = 1 for i 6= 2, 6, 9
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Figure 4.17: Resulting limit cycle with k1 = k2 = k4 = k5 = 1, l9 = 3,m3 = m6 =

f7 = f8 = 0.75, d2 = d6 = d9 = −2 and di = 1 for i 6= 2, 6, 9
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Figure 4.18: Limit cycles with k1 = k2 = k4 = k5 = 1, l9 = 3,m3 = m6 = f7 = f8 =

0.75, d2 = d6 = d9 = −2 and di = 1 for i 6= 2, 6, 9. Observe that the A and B alleles

go to fixation.

prey that are expected to have the same phenotype.



CHAPTER 5

CONCLUSION

In this paper we have discussed different cases of epistasis of the prey in a two-locus,

two-allele problem in a basic predator-prey relationship. After discussing the most

famous example of epistasis in humans, The Bombay Phenotype, we constructed the

main model for a two-locus, two-allele problem with nine genotypes. Then we used

different values for “catchability” parameters to examine both population sizes as

well as genotypic and phenotypic population/densities.

In our simulations and examples, we saw that in different situations limit cycles or

stabilization can occur. The simulations showed that the model was highly sensitive

to the different parameters. Some cases illustrated total extinction of the weakest

types of the prey, while in other examples all population types survived and a limit

cycle occurred. Some interesting examples were observed where the weakest or the

strongest types also became extinct. Since random mating of the organism of type

AaBb produces all of the other genotypes (and phenotypes), this type had the highest

population rate most of the time.

Other models showed situations with dangerous (poisonous) prey. Forcing sev-

eral types or prey population to be poisonous (lethal to the predator), we modeled

the situation where total extinction of the predator population (after some critical

moment t) occurred. Other particular examples of dangerous prey situations illus-

trate cases with relatively rapid stabilization of both populations or cycling of both

population rates (with extremely slow speed of stabilization of the cycle).

Future studies might include using different predator-prey models such as epis-

tasis of the predator in a two-locus two-allele problem, epistasis of both predator and

prey in the same model, or epistasis in the dangerous predator case. In future studies,

we will be able to see how the numerical results obtained here might change or how



43

the situation might evolve differently if epistasis occurs in both the predator and the

prey. Other interesting studies would be to incorporate epistasis into competition,

cooperation problems, or host-parasite problems.

Computational Remarks

Mathematica 9.0, [9], was used to create the graphics and perform the computa-

tions presented in this paper. Copies of the Mathematica notebooks used are avail-

able from the thesis director by sending a request for them to Jim Braselton at

jbraselton@georgiasouthern.edu.
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Appendix A

RATIOS OF OFFSPRING FOR XI-XJ MATING COMBINATIONS
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x1 x2 x3 x4 x5 x6 x7 x8 x9

x1-x1 1

x1-x2 1/2 1/2

x1-x3 1

x1-x4 1/2 1/2

x1-x5 1/4 1/4 1/4 1/4

x1-x6 1/2 1/2

x1-x7 1

x1-x8 1/2 1/2

x1-x9 1

x2-x2 1/4 1/2 1/4

x2-x3 1/2 1/2

x2-x4 1/4 1/4 1/4 1/4

x2-x5 1/8 1/4 1/8 1/8 1/4 1/8

x2-x6 1/4 1/4 1/4 1/4

x2-x7 1/2 1/2

x2-x8 1/4 1/2 1/4

x2-x9 1/2 1/2

x3-x3 1

x3-x4 1/2 1/2

x3-x5 1/4 1/4 1/4 1/4

x3-x6 1/2 1/2

x3-x7 1

x3-x8 1/2 1/2

x3-x9 1
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x4-x4 1/4 1/2 1/4

x4-x5 1/8 1/8 1/4 1/4 1/8 1/8

x4-x6 1/4 1/2 1/4

x4-x7 1/2 1/2

x4-x8 1/4 1/4 1/4 1/4

x4-x9 1/2 1/2

x5-x5 1/16 1/8 1/16 1/8 1/4 1/8 1/16 1/8 1/16

x5-x6 1/8 1/8 1/4 1/4 1/8 1/8

x5-x7 1/4 1/4 1/4 1/4

x5-x8 1/8 1/4 1/8 1/8 1/4 1/8

x5-x9 1/4 1/4 1/4 1/4

x6-x6 1/4 1/2 1/4

x6-x7 1/2 1/2

x6-x8 1/4 1/4 1/4 1/4

x6-x9 1/2 1/2

x7-x7 1

x7-x8 1/2 1/2

x7-x9 1

x8-x8 1/4 1/2 1/4

x8-x9 1/2 1/2

x9-x9 1

Table A.1: Ratios of offspring for xi-xj mating combinations
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