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ABSTRACT 

 
      In change point problems, there are three main questions that researchers are interested 

in. First of all, is there a change point or not? Second, when does the change point occur in a 

time series? Third, how quickly can we detect the change point? In this thesis, we first explain 

what a change point is, and what a cross-correlation is. We then discuss prior research in this 

area. Then we discuss and examine a test based on Spearman's rho, introduced by Wied and 

Dehling (2011), which tests the null hypothesis of no change point, and compare the change 

point we set with the results from the proposed statistic in simulation. We also use this statistic 

on data we selected from the U.S. stock market. We conclude with the pros and cons of this 

statistical method, and how we can detect the change point sensitively using the proposed 

statistic. 
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CHAPTER 1 

INTRODUCTION 

1. Background 

1.1 Change point 

   Change point problems are problems with data collected over a period of time or space 

when there is a possible change in the underlying process/ population. It is of interest to analyze 

inferences about the point in the sequence where the change occurs (Everitt and Skrondal 2010). 

Research on change point problems was initially motivated by quality control in the industrial 

sector. Applications of change points occur in many areas such as: economics, finance, 

medicine, biology and computer science. Results of change point research also applies to the 

stock market. This helps with the observation of fluctuating price relative to time.  

   Hofrichter (2007) pointed out that change point models in a 2-dimnensional dataset can be 

divided into two groups. First, models with a continuous change at the change point (Fig. 1.1), 

and second, with discontinuous change at the change point (Fig. 1.2). In both of the following 

plots, it is clearly shown that when x = 6, there is a change point. 
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   Mathematically, a change point implies a location or time. Data follow two different 

models, one model before the change point and a different one after the change point. For 

instance, consider the following linear regression model. Assume the model for a data set is 

the following: 

{
𝑦𝑖 = 𝛼1 + 𝛽1𝑥𝑖 + 𝜀1𝑖,          𝑖 = 1, 2, … , 𝑡               

𝑦𝑖 = 𝛼2 + 𝛽2𝑥𝑖 + 𝜀2𝑖,          𝑖 = 𝑡 + 1, 𝑡 + 2, … , 𝑇
 

   In the above model, α’s and β’s are model parameters assumed to be fixed, ε’s are noise. 

The point (𝑥𝑡, 𝑦𝑡) is the change point. 

   However, in general, detecting a change point of actual data is not always so easy. For 

example, if we have a plot of the dataset y1 in Fig. 1.3, 

 

we can not definitely detect the main structural change point of the dataset. Actual data is like 

this. The only thing we can point out is that there may be a main structural change point 

somewhere around x = 6. However, it also may be the case that the correct population model 
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is nonlinear and there is no change point. Hence, we want to use some statistical methods to 

test for a significant change point. 

Along with detecting that there is a change in a process, researchers also want to know the 

exact time when the change happened. Pettitt (1979) introduced a nonparametric method based 

on a modification of the Mann-Whitney two-sample test in the change point problem. In this 

test we set two samples X1 ..., Xt and Xt+1, .., XT (1 ≤ 𝑡 < 𝑇 ) that come from the same 

population. Let: 

Dij = sgn (xi - xj) 

where 

𝑠𝑔𝑛(𝑥) = {

1,       𝑖𝑓 𝑥 > 0
0,       𝑖𝑓 𝑥 = 0
−1,    𝑖𝑓 𝑥 < 0

 

and consider 

𝑈𝑡,𝑇 = ∑ ∑ 𝐷𝑖𝑗 .

𝑇

𝑗=𝑡+1

𝑡

𝑖=1

 

Then Pettitt (1979) proposes the test of H0: no change vs. HA: change by using the statistic 

𝐾𝑇 = max
1≤𝑡<𝑇

|𝑈𝑡,𝑇| 

Pettitt (1979) also considered the condition for Bernoulli and Binomial observations. Since in 

the quality control area, manufacturer cares whether products are good or bad when they come 

out from the assembly line, we want to use this nonparametric method for Binomial 

observations, because we consider the parameters of Binomial are n and p, which are the 

number of trials and success probability in each trial. We can use this method in the quality 

control area to detect a change in p. This is a major consideration for the manufacturer in actual 

industrial production. Daniel Barry and J. A. Hartigan proposed a Bayesian analysis for change 
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point problems, especially in detecting sharp short-lived changes in the parameters (Hartigan, 

1993). Nobuyuki Tamura et al. showed how to use a Bayesian information criterion to solve 

the change point problem for failure-censored data which followed an exponential distribution. 

(Tamura, 2008). Another way to study change point problems is discrete wavelet analysis 

theory. Maitreyi Sur et al. proposed that discrete wavelet analysis could be used in change 

point problems in the case of animals moving through a complex environment (Maitreyi Sur, 

2014).  

In our following study, we evaluated the ability of a test based on Spearman’s rho proposed 

by Wied et al, (2011) to detect the change point in simulation and real data. 

1.2 Cross-correlation in the change point problem 

   Cross-correlation is a statistical measurement to compare and relate one time 

series of data with another time series of data with possible time lag. It was first introduced in 

the 1960s by Papoulis (1962) and Bracewell (1965). Correlation is the degree to which two 

measurements in the same group of elements show a tendency to vary together linearly. The 

Pearson product-moment correlation coefficient is defined as (Rodgers, 1988) : 

ρ =
𝐸(𝑋𝑖 − 𝜇𝑥)(𝑌𝑖 − 𝜇𝑦)

[𝐸(𝑋𝑖 − 𝜇𝑥)2𝐸(𝑌𝑖 − 𝜇𝑦)
2

]
1

2⁄
 

where 𝑋𝑖  and 𝑌𝑖  are two datasets for 𝑖  = 1, 2… n. Here we draw correlation plots for 

example, see Fig. 1.4. 
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Fig 1.4 Example Plots of Correlation 
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where 𝑋𝑡 and 𝑌𝑡  are two time series datasets with integer time index 𝑡 and the time lag 

pameter  𝜏 ,  𝜎 is the standard deviation of each dataset. When 𝜏  is positive, Xt are 

predictors of Yt, it is sometimes said that X leads Y, and with 𝜏 negative, we said that Y leads X.  

From the definitions above, we can conclude that cross-correlation is similar to regular 

correlation except for time lag effects.  

   We note that the cross-correlation coefficient (CCF), is between -1 and 1, as the regular 

correlation. The meaning of the cross-correlation coefficient is also similar to the correlation 

coefficient except we must point out the time lag when we interpret the cross-correlation 

coefficient. Hence, the cross-correlation coefficient provides us with a quantification of the 

level of relationship between two time series of data with possible time lag. 

Figure 1.5 depicts an example of cross-correlation. The X dataset in Fig. 1.5 is Eli Lilly and 

Company (LLY)’s stock price and Y dataset is Johnson & Johnson (JNJ)’s stock price from 

April 1st, 2009 to June 30th, 2009. 

Fig. 1.5 An Example plot of cross-correlation 
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   From the plot above, when lag = 0, the cross-correlation coefficient (CCF) is 0.7359, which 

means Eli Lilly and Company and Johnson & Johnson’s stock prices change in the same 

direction at the same time. This may due to the changes of the whole stock market index.  

   Cross-correlation analysis in financial markets has been used in many studies. Li Liu 

studied cross-correlations between crude oil and agricultural commodity markets (Liu, 2014). 

She used Podobnik’s Q test which can be easily implemented to detect linear cross-correlations 

between crude oil and agricultural commodities, then used detrended cross-correlation analysis 

(DCCA) proposed by Podobnik and Stanley to analyze those markets. Data in her paper were 

daily closing spot prices of crude oil and four agricultural commodities taking corn, soybean, 

oat and wheat as examples from January 3, 1994 to December 31, 2012. The results showed 

that at smaller lag length, the linear cross-correlations are not significant, while at large lag 

lengths, they are significant. The volatility cross-correlations are highly significant at all lag 

lengths. In addition, nonlinear cross-correlations are weak but significant for small time 

intervals from 4 to 128 days and not significant for large time intervals (about one year). Liu 

pointed out that their analysis supports studies which suggest that the food crisis was caused 

by high crude oil prices. Marwane El Alaoui and Saâd Benbachir mainly investigated cross-

correlation among four financial markets from the MENA (Middle East and North Africa) area 

via Multifractal detrended cross-correlation analysis (MF-DCCA) (El Alaoui, 2013). MF-

DCCA between the four markets shows these countries' markets have small but significant 

cross-correlations. The cross-correlation coefficient is very close to zero ( ρ < 0.05 ) for 

Amman Stock Exchange (AMX) and Tunis Stock Exchange (TUNINDEX), Casablanca Stock 

Exchange (MASI) and Tunis Stock Exchange (TUNINDEX) and Tunis Stock Exchange 

(AMX) and Casablanca Stock Exchange (MASI). But for other pairs, like AMX and the 
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Egyptian Exchange (EGX), MASI and EGX, and TUNINDEX and EGX, the cross-

correlations exceed 0.15 when time lag is greater than 800. The analysis reaches a coherent 

conclusion with the fact that, being the four signatories of a free trade agreement, the bonds 

between their markets are weak and their markets need further development. In sum, that paper 

shows that, in the case of MENA markets, the MF-DCCA method is valid. Boris Podobnik et 

al. did cross-correlation analysis between volume growth rate 𝑅̃, which is the difference in 

logarithm between two consecutive values of trading volume, and price change R in financial 

market (Podobnik et al., 2009). Podobnik et al. assumed that the underlying processes for 

logarithmic price change |R| and logarithmic volume change |𝑅̃| are similar, and used a new 

method based on DCCA, which applied the cross-correlation analysis in the financial market 

as a whole, not for individual companies. By analyzing the Standard and Poor’s (S & P) 500 

Index over the 59-year period 1950–2009, power-law cross-correlations between properties of 

volume growth rate |𝑅̃| and properties of price change |𝑅| are found, while no valid relation 

is found between 𝑅̃ and R. In addition, the cross-correlations between |𝑅𝑡+𝑛| and |𝑅̃𝑡| are 

not only significant at zero time lag (n = 0) but for a large range of time lags, where n is time 

lag around time t. Yet the author failed to reach a coherent conclusion for the central and tail 

part of the probability density function 𝑃(|𝑅̃|). 

2. Purpose of the Study 

   In our application of interest, we want to find the main structural change point between two 

stocks’ prices with minimum observations after the true change point. We hope to achieve our 

objective though analyzing the cross-correlation before and after a change point. Recent five-

year daily stock prices of Johnson and Johnson (JNJ) and Eli Lilly and Co. (LLY) in U.S. 

NASDAQ stock exchange from April 1st, 2009 to April 15th, 2014 were chosen as our study 
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subjects. It would be the first time to study these two stock prices via cross-correlation. These 

two companies are both well-known companies in pharmaceuticals. Their products share 

similar features: for instance, some of their medicine products target at the same kind of 

consumers in the market. It is of interest to study how these two stocks affect each other in 

terms of change points and cross-correlation, and how the other one reacts when one of these 

stocks decreases. The daily price for the last five years of JNJ and LLY are shown in Figure 

1.6. Overall, their prices have been increasing over the last 5 years.  

 

   We focus on the main structural change point which appears to occur about Jan.1st 2013, 

because before Jan.1st 2013, JNJ and LLY move relatively close, but JNJ sharply rises and 

LLY has a decrease after Jan.1st 2013. 
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   In this paper, we will investigate the behavior of a test, which is based on Spearman's rho 

to test the change point with simulation. We want to know how the number of observations 

before and after the change point affects detecting a known change point; also we would like 

to know how varying the difference in cross-correlation before and after a known change point 

affects detection. Then we apply this method to the study of Johnson & Johnson (JNJ) and Eli 

Lilly and Co. (LLY). The historical data for these stock prices can be found and downloaded 

from the NASDAQ website (http://www.nasdaq.com/). 

   The remainder of this paper is organized as follows: Chapter 2 is a description of the 

methodology. It provides mathematical functions to describe change points, cross-correlation 

and the testing method to determine change points. Chapter 3 is our simulation results. The 

simulation includes using the proposed test to investigate sensitivity to both the number of data 

values and change in the cross-correlation. Chapter 4 uses the method on JNJ and LLY’s stock 

prices. Chapter 5 is a summary of this study and future research interests.  
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CHAPTER 2 

METHODOLOGY 

A test based on Spearman's rho is used to determine the change point as proposed by Wied 

and Dehling. (Dominik Wied et al, 2011). They proposed a cumulative sum (CUSUM) method. 

Spearman's rho is probably the most common rank-based measure of association in economic 

and social sciences, as it has a much better performance in the presence of outliers and it has 

no other condition on the existence of moments.  

   Suppose we select samples from underlying population, denoted as xn, n = 1, 2… N. To 

detect a change point, partition the data into x1, x2, …, xk and xk+1, xk+2, …, xn for k = 2, 3, …, 

N-2.  

   We want to test if there is a change point between time k and k+1. For easy interpretation, 

we define the change point at time k. Let d denote the dimension of the data in the sample. For 

instance, with LLY and JNJ, we have two stocks, so d = 2.  

Define In terms of the rank, Spearman's rho up time k is defined as 

𝜌𝑘 = ℎ(𝑑) ∗ (
2

𝑘

𝑑

∑ ∏(1 − 𝑈̂𝑖,𝑗;𝑛) − 1)

𝑑

𝑖=1

𝑘

𝑗=1

 

with  

ℎ(𝑑) =
𝑑 + 1

2𝑑 − (𝑑 + 1)
 

and 

𝑈̂𝑖,𝑗;𝑛 =
1

𝑛
(𝑟𝑎𝑛𝑘 𝑜𝑓 𝑋𝑖,𝑗 𝑖𝑛 𝑋𝑖,1 … 𝑋𝑖,𝑛), 𝑖 = 1, … , 𝑑, 𝑗 = 1, … , 𝑛 
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where k is the kth observation, d is the dimension of the data, and n is the total number of 

observations. i and j are ranking indices. Rank in a dataset means the rank of the smallest 

observation is 1; the rank of largest one is n.  

Now, we want to test whether Spearman’s rho is significantly different in two segments. 

The null hypothesis is:  

H0:  𝜌𝑘 = 𝜌0, k = 1,…n  

The alternative hypothesis is  

Ha : ∃ 𝑘 ∈ {1, 2 … 𝑛 − 1}, 𝜌𝑘 ≠ 𝜌𝑘+1 

If the null hypothesis is rejected, there is a change in the cross-correlation, and the kth 

observation is where the change occurs. If the null hypothesis fails to be rejected, there is no 

change in cross-correlation. 

Wied and Dehling proposed the statistic test W as: 

W = 𝐷̂ max
1≤𝑘≤𝑛

|
𝑘

√𝑛
(𝜌̂𝑘 − 𝜌̂𝑛)|; 

   With the value of 𝐷̂ is defined as: 

𝐷̂ = 
1

√𝐷̂′
 

If W = 0 we fail to reject the null hypothesis. If W ≠ 0, we reject the null hypothesis, and the 

observation k is a change point in cross-correlation.  

     

where 
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𝐷̂′ = ℎ(𝑑)222𝑑 {
1

𝑛
∑ ∏(1 − 𝑈̂𝑖,𝑗;𝑛)

2
𝑑

𝑖=1

𝑛

𝑗=1

− (
1

𝑛
∑ ∏(1 − 𝑈̂𝑖,𝑗;𝑛)

𝑑

𝑖=1

𝑛

𝑗=1

)

2

+ 2 [ ∑ 𝑘 (
𝑚

𝛾𝑛
)

𝛾𝑛

𝑚=1

( ∑
1

𝑛
∏(1 − 𝑈̂𝑖,𝑗;𝑛)

𝑑

𝑖=1

𝑛−𝑚

𝑗=1

(1 − 𝑈̂𝑖,𝑗+𝑚;𝑛)

− (
1

𝑛
∑ ∏(1 − 𝑈̂𝑖,𝑗;𝑛)

𝑑

𝑖=1

𝑛

𝑗=1

)

2

)]} 

Where the 𝛾𝑛 is chosen such that  𝛾𝑛 = 𝑜(𝑛1/2), from the definition of function 𝑜(•

),  𝛾𝑛 ≤ √(𝑛) where n = n1+n2. And the kernel function k(•) is contained in the class 

𝒦2 of Andrews (1991), which includes the following: 

Truncated:   k(y) ={
1, 𝑓𝑜𝑟 |𝑦| ≤ 1
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Bartlett:      k(y) = {
1 − |𝑦|, 𝑓𝑜𝑟 |𝑦| ≤ 1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Parzen:       k(y) = {
1 − 6𝑦2 + 6|𝑦|3,     𝑓𝑜𝑟 0 ≤ |𝑦| ≤ 1/2

2(1 − |𝑦|)3,         𝑓𝑜𝑟 1/2 ≤ |𝑦| ≤ 1
0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Tukey-hanning:    k(y) = {
1+cos(𝜋𝑦)

2
,            𝑓𝑜𝑟 |𝑦| ≤ 1

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Quadratic Spectral:  k(y) = 
25

12𝜋2𝑦2
(

sin(6𝜋𝑦 5⁄ )

6𝜋𝑦 5⁄
− cos (

6𝜋𝑦

5
)) 

In a general dataset, we set xt as the value of the variable in period t, and xt-p is the value 

of the variable in period t-p or “lagged p period” or “lagged X.” The AR(p) model of this 

general dataset is: 
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𝑥𝑡 = 𝛼 + 𝛽𝑥𝑡−𝑝 + 𝜀 

   Most stock data is “best” modeled as AR (1) time series, which means time lag p = 1. In 

our study, the model of this condition is: 

𝑥𝑡 = 𝛼 + 𝛽𝑥𝑡−1 + 𝜀 

Since our study is based on lag truncation parameter p = 1 and for simplicity, we choose 

the truncated kernel function in our study.  
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CHAPTER 3 

SIMULATION STUDY 

3.1 Simulation procedure  

   We constructed simulations using FORTRAN (version: FTN 95), the Plato IDE compiler 

and the following procedure: 

1. Generate two sets of sample data with a given change point. We define n1 as the number 

of observations before the change point; n2 is number of observations after the change 

point. The cross-correlation between the two sets before the change point is r1; r2 is the 

cross-correlation between the two sets after the change point. The bandwidth  𝛾𝑛 is 

chosen such that  𝛾𝑛 = 𝑜(𝑛1/2), so 2 ≤  𝛾𝑛 ≤ √(𝑛1 + 𝑛2). 

2. The simulation data were created using the following function: 

yy1 = √(−2.0 ∗ 𝑙𝑜𝑔(𝑒)) ∗ 𝑐𝑜𝑠(2 ∗ 𝑒1 ∗ 𝜋)    and 

yy2 = √(−2.0 ∗ 𝑙𝑜𝑔(𝑒)) ∗ 𝑐𝑜𝑠(2 ∗ 𝑒1 ∗ 𝜋)    

with e and e1 as random numbers which were created by the FORTRAN system with 

Windows operating system clock time seed. This means that yy1 and yy2 are 

independent and follow a normal distribution N (0, 1). 

Now we set x(i) =yy1 and create y(i) as a function of x(i) with given cross-

correlation coefficients r1 and r2. When processing step i ≤ n1, 

y (i) = x (i)*r1+yy2*c1   otherwise, 

y (i) = x (i)*r2+yy2*c2   

where c1 and c2 are coefficients, 𝑐𝑖 = √1 − 𝑟𝑖
2. Here, x(i) and y(i) are two sets of data. 
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3. To compute the statistic test W for that simulation sample, the subroutines rank and sort 

were downloaded from the National Institute of Standards and Technology website 

(http://www.nist.gov/). 

Select different values of n1 and n2, r1 and r2 to construct different datasets to test 

the change point. The following table shows the conditions we used in the simulation. 

We didn’t set n2 greater than 50, because in the real world, 50 business days is more 

than two months after a true change point. We want to detect the change point as soon 

as possible to make a profit or to save funds. So it can be concluded that a change point 

detected after 50 business days is useless; ergo, n2 ≤  50. Table 3.1 shows the 

parameter settings for small sample sizes.  

Since we want to analyze the stock prices in the U.S. stock market, and almost every 

stock price has a large amount of historical data, we also set n1 = 200, 500, n2 = 5, 10, 

20, 50; r1 and r2 are the same as above. 

4. Repeat above steps for each scenario 1000 times. 

5. Use SAS 9.3 to analyze the mean, standard deviation, the 25th percentile, 50th percentile 

and 75th percentile of the 1000 estimated change points. 
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Table 3.1 Parameter Settings for Small Sample Sizes 

  n1   n2   r1   r2   n1   n2   r1   r2  

5 

5       5     

25 1 -1 5 25 0.5 -0.5 

50       50     

25 

5       5     

25 1 -1 25 25 0.5 -0.5 

50       50     

50 

5       5     

25 1 -1 50 25 0.5 -0.5 

50       50     

  n1   n2   r1   r2   n1   n2   r1   r2  

  5       5     

5 25 -0.7 0.4 5 25 0.4 0.7 

  50       50     

  5       5     

25 25 -0.7 0.4 25 25 0.4 0.7 

  50       50     

  5       5     

50 25 -0.7 0.4 50 25 0.4 0.7 

  50       50     

  n1   n2   r1   r2   n1   n2   r1   r2  

5 

5 

0.2 0.8 5 

5 

-0.8 0.4 25 25 

50 50 

25 

5 

0.2 0.8 25 

5 

-0.8 0.4 25 25 

50 50 

50 

5 

0.2 0.8 50 

5 

-0.8 0.4 25 25 

50 50 

3.2 Simulation results and analysis 

   In this part, first we must define the word “catch” in the following, we got means (𝑥̅) and 

standard deviations (s) from the SAS output. When the true change point located in the interval 

(𝑥̅ − 𝑠, 𝑥̅ + 𝑠), we said we catch the true change point. The words “meaningful results” have 

the same implication as above. 
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3.2.1   𝛾𝑛 effects 

   Table 3.2 Results of Effects of  𝛾𝑛 with n1 = 25, n2 = 5, 25, 50, r1 = 0.5, r2 = −0.5 

n1 n2   𝛾𝑛 Mean 
Std. 

Dev. 

25th  

Pctl. 

50th  

Pctl. 

75th 

Pctl. 

25 

5 

2 14.49 5.98 9 15 19 

3 14.62 6.15 10 15 20 

4 14.4 6.09 10 15 19 

5 14.46 6 10 15 19 

25 

2 21.09 8.22 16 22 25 

3 21.77 7.95 17 22 26 

4 21.22 7.88 16 22 25 

5 21.63 8.36 16 22 26 

6 21.54 8.18 16 22 26 

7 21.09 8.34 16 21 25 

50 

2 28.15 12.83 20 25 34.5 

3 28.21 12.47 20 25 35 

4 28.06 13.21 20 24 34 

5 28.05 13.03 20 24 34 

5 27.13 12.4 20 24 33 

7 28.21 12.75 20 25 35 

8 28.13 13.29 20 24 34 

First of all, Table 3.2 shows the results of parameter settings in a small sample size with n1 

= 25, n2 = 5, 25, 50, r1 = 0.5, r2 = −0.5 for example. We found a very interesting result:  𝛾𝑛 

does not seem to affect the results of the test. This phenomenon appeared in all of the parameter 

settings we examined. Hence we concluded that  𝛾𝑛 does not affect the results of the test, and 

any reasonable  𝛾𝑛 can be used. We choose  𝛾𝑛 = 3 in our following work. The tables of 

all results when  𝛾𝑛 = 3 are in Appendix B. 

3.2.2 The number of observations effect 

From Appendix B, we found that the number of observations before the true change point, 

n1, and the number of observations after the true change point, n2, clearly affects the detection 

of the change point. When n2 is equal to or greater than half of n1 and less than or equal to 
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n1;   
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1,  meaningful results can be found. Appendix B shows the proposed 

method can catch the true change point under almost every r1, r2 setting we examined, except 

when n1 = n2 = 5, r1 = 1 and r2 = -1. That may due to the very small sample size. Overall, this 

method effectively catches the true change point, especially when the number of observations 

after the change point is equal to the number of observations before the change point, which 

is 𝑛1 = 𝑛2. 

3.2.3 The cross-correlation effect 

In this section, we examined several conditions of r1 and r2 with varying signs and 

magnitudes of difference. The full results are given in the Appendix B. We discuss here some 

choices of n1 and n2 that illustrate our conclusion about the sample size given above. In “small 

sample size” cases, we will discuss n1 > n2 with n1 = 50, n2 = 25, n1 = n2 with n1 = n2 = 25, and 

n1 < n2 with n1 = 5, n2 = 50 as examples. In “large sample size” cases, we will discuss n1 = 500, 

n2 = 20 as an example. 

3.2.3.1 𝑟1 = 1, 𝑟2 = −1 

In this parameter setting, the difference between r1 and r2 is equal to 2, which is the largest 

possible difference. The cross-correlation before the true change point is the strongest positive, 

and the cross-correlation after the true change point is the strongest negative. 

When n1 = 50, n2 = 25, the mean of the estimated change point is 42.88 with standard 

deviation 7.35. The median of the estimated change point is 46. This simulation caught the true 

change point which is k = 50. The condition of the number of observation in this result 

satisfies 
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1. 
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For n1 = n2 = 25, the mean of the estimated change point is 21.24 with standard deviation 

3.91. The median of the estimated change point is 23. This simulation caught the true change 

point which is k = 25. The condition of the number of observation in this result satisfies 𝑛1 =

𝑛2. 

For n1 < n2, we use n1 = 5, n2 = 50 as an example. The mean of the estimated change point 

is 12.89 with standard deviation 11.82. The median of the estimated change point is 7.5. This 

simulation caught the true change point which is k = 5. The condition of the number of 

observation in this result did not satisfies 
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1, and the large difference between n1 

and n2 caused this biased result. 

For n1 > n2 with a large sample size. The mean of the estimated change point at this 

parameter setting is 329.38 with standard deviation 123.43. The median of the estimated 

change point is 350. This simulation does not catch the true change point which is k = 500. 

This result may due to the large difference between n1 and n2. 

3.2.3.2 𝑟1 = 0.5, 𝑟2 = −0.5 

In this parameter setting, the difference between r1 and r2 is equal to 1, which is half of the 

largest possible difference between r1 and r2, with the same signs as given in 3.2.3.1. 

For n1 > n2 with n1 = 50, n2 = 25, the mean of the estimated change point is 37.95 with a 

standard deviation 12.31. The median of the estimated change point is 41. This simulation 

caught the true change point which is k = 50. The condition of the number of observations in 

this result satisfies  
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1 , but the accuracy and sensitivity of this test is 

comparatively less than that of the result of 𝑟1 = 1, 𝑟2 = −1 setting. 
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For n1 = n2 = 25, the mean of the estimated change point is 21.77 with standard deviation 

7.95. The median of the estimated change point is 22. This simulation caught the true change 

point which is k = 25. 

For n1 < n2, we also used n1 = 5, n2 = 50 as an example. The mean of the estimated change 

point is 23.97 with standard deviation 12.89. The median of the estimated change point is 24. 

This simulation does not catch the true change point which is k =5. We did not get meaningful 

results because the condition of the number of observation in this result did not satisfies 
1

2
𝑛1 ≤

𝑛2 ≤ 𝑛1, and the large difference between n1 and n2 might cause this biased result. 

For large sample sizes, the mean of the estimated change point is 275.7 with standard 

deviation 117.52. The median of the estimated change point is 278.5. This simulation does not 

catch the true change point which is k = 500. This result may due to the large difference 

between n1 and n2, that does not satisfies the  
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1. 

3.2.3.3 𝑟1 = −0.7, 𝑟2 = 0.4 

In this parameter setting, the cross-correlation before the true change point is strong 

negative, and the cross-correlation after the true change point is positive. 

For n1 > n2, the mean of the estimated change point is 47.71 with standard deviation 10.86. 

The median of the estimated change point is 49. This simulation caught the true change point 

which is k = 50. The condition of the number of observation in this result satisfies 
1

2
𝑛1 ≤ 𝑛2 ≤

𝑛1, and the accuracy and sensitivity of the test here is better than the result of 𝑟1 = 1, 𝑟2 =

−1 setting. 
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For n1 = n2, the mean of the estimated change point is 28.09 with standard deviation 7.35. 

The median of the estimated change point is 27. This simulation caught the true change point 

which is k = 25. 

For n1 < n2 with n1 = 5, n2 = 50, the mean of the estimated change point is 28.27 with 

standard deviation 11.85. The median of the estimated change point is 29. This simulation does 

not catch the true change point which is k = 5. We did not get the meaningful results because 

the condition of the number of observation in this result does not satisfy 
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1, and 

the large difference between n1 and n2 might cause this biased result. 

For large sample sizes, the mean of the estimated change point is 349.54 with standard 

deviation 125.64. The median of the estimated change point is 374.5. This simulation does not 

catch the true change point which is k = 500. This result due to the large difference between n1 

and n2, that does not satisfy the  
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1. 

3.2.3.4 𝑟1 = 0.4, 𝑟2 = 0.7 

In this parameter setting, the r1 and r2 are very close to each other and have same sign. 

When n1 > n2, the mean of the estimated change point is 38.86 with standard deviation 

16.51. The median of the estimated change point is 40. This simulation caught the true change 

point which is k = 50, but the accuracy and sensitivity of the test here is not as good as the 

results of previous parameter settings. 

For example with n1 = n2 = 25, the mean of the estimated change point is 26.02 with 

standard deviation 10.54. The median of the estimated change point is 26. This simulation 

caught the true change point which is k = 25. 
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For n1 < n2 with n1 = 5, n2 = 50, the mean of the estimated change point is 27.96 with 

standard deviation 11.76. The median of the estimated change point is 28. This simulation does 

not catch the true change point which is k = 5. We did not get the meaningful results because 

of the same reason as other n1 < n2 examples. 

For n1 = 500, n2 = 20, the mean of the estimated change point is 275.5 with standard 

deviation 117.52. The median of the estimated change point is 278.5. This simulation does not 

catch the true change point which is k = 500. This result might due to the large difference 

between n1 and n2, that does not satisfy the  
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1. 

3.2.3.5 𝑟1 = 0.2, 𝑟2 = 0.8 

In this parameter setting, the r1 and r2 have a big difference, but both of them have the same 

sign. 

For n1 > n2, n1 = 50, n2 = 25, the mean of the estimated change point is 47.71 with standard 

deviation 10.86. The median of the estimated change point is 49. This simulation caught the 

true change point which is k = 50. 

We again use n1 = n2 = 25, the mean of the estimated change point is 28.09 with standard 

deviation 7.35. The median of the estimated change point is 27. This simulation caught the true 

change point which is k = 25.  

For n1 < n2 with n1 = 5, n2 = 50, the mean of the estimated change point is 28.27 with 

standard deviation 11.85. The median of the estimated change point is 29. This simulation does 

not catch the true change point which is k = 5. We did not get the meaningful results because 

of the same reason as other n1 < n2 examples. 

For large sample sizes, the mean of the estimated change point is 349.54 with standard 

deviation 125.64. The median of the estimated change point is 374.5. This simulation does not 
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catch the true change point which is k = 500. The reason is the same as other large sample size 

test results. 

3.2.3.6 𝑟1 = −0.2, 𝑟2 = 0.4 

The difference between r1 and r2 is same as in the previous such in, but r1 and r2 have 

different signs. 

When n1 > n2, the mean of the estimated change point is 43.56 with standard deviation 

14.44. The median of the estimated change point is 46. This simulation caught the true change 

point which is k = 50. 

For n1 = n2 = 25, the mean of the estimated change point is 27.86 with standard deviation 

9.37. The median of the estimated change point is 28. This simulation caught the true change 

point which is k = 25. Under the condition of the number of observations setting 𝑛1 = 𝑛2, the 

results are identical in every r1 and r2 settings we examined. 

For n1 < n2, the mean of the estimated change point is 27.28 with standard deviation 11.45. 

The median of the estimated change point is 28. This simulation does not catch the true change 

point which is k = 5. We did not get the meaningful results because of the same reason as other 

n1 < n2 examples. 

For large sample size with n1 = 500, n2 = 20, the mean of the estimated change point is 

285.5 with standard deviation 116.62. The median of the estimated change point is 288. This 

simulation does not catch the true change point which is k = 500. The reason is the large 

difference between n1 and n2, that does not satisfy the  
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1. 

All in all, based on the analysis given above,   𝛾𝑛 does not seem to affect the results of 

the test. Under the r1 and r2 settings we examined, the method effectively caught the change 

point especially when the number of observations after the change point is equal to the number 
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of observations before the change point, which is  𝑛1 = 𝑛2 . When  
1

2
𝑛1 ≤ 𝑛2 < 𝑛1 , the 

proposed method also gave the meaningful results, but the accuracy and sensitivity of the test 

here is not as good as the previous n1 and n2 setting. That may due to the large difference 

between n1 and n2, and results would be biased to the side with much more observations of 

data. 
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CHAPTER 4 

APPLICATION TO REAL DATA 

We selected Johnson & Johnson and Eli Lilly and Company two American 

global pharmaceutical companies’ stock price, from April 1st, 2009 to April 15th, 2014 as our 

real dataset. They have similar macroeconomic factors. They share a similar industrial 

structure since both of them are pharmaceutical companies. These macroeconomic factors can 

affect the two companies’ stock prices simultaneously. Hence, we suppose that they have a 

similar underlying economic environment. On the other hand, the companies’ own situation 

and market factors also affect the stock prices. That’s what we are looking for when a change 

point occurs via cross-correlation.  

Johnson & Johnson is an American pharmaceutical manufacturer founded in 1886. Their 

product line focuses on pharmaceuticals, medical devices and diagnostics, as well as consumer 

products. Johnson & Johnson includes over 250 subsidiary companies with operations in over 

57 countries. Their products, like Self-Measured Blood Glucose Monitors, Tylenol, Johnson's 

Baby and Clean & Clear, are sold in over 175 countries. In 2014, Johnson & Johnson had 

74.331 billion US dollars in revenue. Johnson & Johnson’s stock is traded on the New York 

Stock Exchange, code JNJ. Johnson & Johnson’s stock is also part of the Dow Jones Industrial 

Average Index and S&P 500 Index. (The Wall Street Journal, 2015 and Johnson & Johnson, 

2015) 

Eli Lilly and Company is an American global pharmaceutical company established in 1876. 

Eli Lilly and Company was the first business to mass produce penicillin and insulin, and is also 
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the first pharmaceutical company to use recombinant DNA to produce human insulin. Eli Lilly 

and Company has offices in 17 other countries and more than 37 thousand employees as of 

2013. Their products, Alimta for lung cancer, Prozac for antidepressants, Cialis for erectile 

dysfunction, and Humalog for Type 1 and Type 2 diabetes are sold in over 125 countries. As 

of 2013, Eli Lilly has 23.113 billion US dollars in revenue. Eli Lilly and Company’s stock is 

traded on the New York Stock Exchange, code LLY. (The Wall Street Journal, 2015 and Eli 

Lilly and Company, 2015) 

From Fig. 1.6, visually there might be two main structural change points around Jan. 1st, 

2013 and April 1st, 2013. At first we used the full data to detect a main structural change point 

around Jan. 1st, 2013. We did the cross-correlation analysis first before and after Jan. 1st, 2013. 

Table 4.1 was created by the results of cross-correlation analyses. As we said before, most 

stock data is best modeled as AR (1) time series, which means we should set lag = -1, 0, 1 in 

our results. 

Table 4.1 Cross-Correlation for the Full Dataset 

Due to the Visual Change Point, Jan. 1st, 2013 

Before Jan. 1st, 2013 After Jan. 1st , 2013 

LAG Cross-Correlation LAG Cross-Correlation 

-1 0.770 -1 -0.001 

0 0.776 0 0.015 

1 0.768 1 -0.001 

For the full dataset, before the visual change point, Jan. 1st, 2013, the cross-correlation is 

0.776 with 0 time lag. That means LLY and JNJ’s stock prices tend to move strongly together 

without lag or lead. After the visual change point, the cross-correlation is 0.015 with 0 time 

lag, which means the cross-correlation is so weak that we can say there is no relationship 

between these two stock prices. Hence there was a large difference between cross-correlation 
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before and after the visual change point. Since in the business calendar, Jan. 1st, 2013 was a 

Sunday without any stock trading, we can concluded that there may be a main structural change 

point on Jan. 2nd, 2013.  

Then we used proposed method to test the full dataset. As we stated before, 𝛾𝑛 = 3. The 

observation number of estimated change point is 521, which is April 25th, 2011. The test did 

not catch either the visual main structural change point around Jan. 1st, 2013 or the one around 

April 1st, 2013. To analyze this result, we computed n1 and n2 in the full dataset; the number 

of observations before the visual change point is 946, which means n1 = 946, the number of 

observations after the visual change point is 323, which means n2 = 323. There was a large 

difference between n1 and n2, which does not satisfy  
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1 for which the proposed 

method works well, as determined by the simulation study. Hence the proposed method cannot 

catch the visual change point in the full dataset. In addition, we got this result with 323 

observations after the visual main structural change point. This is almost 1.5 years after the 

visual main structural change point, and that does not satisfy our goal in this paper.  

Table 4.2 Estimated Change Point for Different Time Intervals 

Interval 

Estimated 

Change 

Point 

Change Point 

date 

10.31.2012-1.18.2013, 9 weeks before, 2 weeks after 23 Nov. 30th, 2012 

10.31.2012-3.8.2013, 5 weeks after 42 Dec. 28th, 2012 

10.31.2012-5.3.2013, 17 weeks after 53 Jan. 15th, 2013 

9.4.2012-1.18.2013, 17 weeks before, 2 weeks after 24 Oct. 4th, 2012 

9.4.2012-3.17.2013, 11 weeks after 81 Dec. 28th, 2012 

9.4.2012-5.3.2013, 17 weeks after 83 Jan. 2nd, 2013 
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In actual financial analysis, we do not typically use such a long a time interval, but a small 

moving window to analyze the data. Hence we tried some different reduced time windows to 

see how the results of real data match the simulation results. Table 4.2 shows part of the results 

of different time intervals in real data. The complete results are in Appendix C. In simulation, 

we concluded that our test effectively caught the change point especially well when the number 

of observations after the change point was equal to the number of observations before the 

change point, which is 𝑛1 = 𝑛2. So we selected data from September 4th, 2012 to May 3rd, 

2013. In this case, the time window before and after the visual change point were both 3 

business months, and a total of 163 observations. That is n1 ≈ n2, n = n1+n2 = 163. Fig 4.1 is 

the plot of the stock price of LLY and JNJ in the selected date interval. 
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From the cross-correlation analysis we constructed the following Table 4.3 for the 

reduced dataset from September 4th, 2012 to May 3rd, 2013. The cross-correlation coefficient 

before the estimated change point is 0.5656 when lag = 0; it changed to 0.9126 when lag = 0. 

That means before the estimated main structural change point, the JNJ’s stock price changes 

on the same day when the LLY’s stock price changes, and the relationship between them is 

moderate. After the estimated change point, the JNJ’s stock price changes on the same day 

as the LLY’s stock price changes, and the relationship between them is very strong without 

lag or lead. We can conclude that there is an estimated main structural change point on Jan. 

2nd, 2013 due to the cross-correlation change from 0.5656 with lag = 0 to 0.9126 with lag = 

0. 

   Table 4.3 Cross-Correlation for the Reduced Dataset  

    from September 4th, 2012 to May 3rd, 2013 

Before Jan. 2nd, 2013 After Jan. 2nd, 2013 

LAG Cross-Correlation LAG Cross-Correlation 

-1 0.4378 -1 0.8355 

0 0.5656 0 0.9126 

1 0.5922 1 0.8978 

From the test’s result using the reduced data, the observation number of the estimated 

change point is 80, which is Jan. 2nd, 2013. The test caught the visual change point very well. 

Then we reduced the time window to a new interval from Dec. 3rd, 2012 to Jan. 31st, 2013, 

which are one business month before and after the visual change point respectively. From the 

cross-correlation analysis we constructed the following Table 4.4 for the reduced dataset from 

Dec. 3rd, 2012 to Jan. 31st, 2013. The cross-correlation coefficient before the estimated change 

point is 0.149 when lag = 0; it changed to 0.773 when lag = 0. That means before the estimated 

main structural change point, the JNJ’s stock price changes on the same day when the LLY’s 
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stock price changes, and the relationship between them is weak. After the estimated main 

structural change point, the JNJ’s stock price changes on the same day as the LLY’s stock 

price changes, and the relationship between them is strong without lag or lead. We can also 

conclude that there is an estimated main structural change point on Jan. 3rd, 2013 due to the 

cross-correlation change from 0.149 with lag = 0 to 0.773 with lag = 0. 

Table 4.4 Cross-Correlation for the Reduced Dataset  

from Dec. 3rd, 2012 to Jan. 31st, 2013 

Before Jan. 3rd, 2013 After Jan. 3rd, 2013 

LAG Cross-Correlation LAG Cross-Correlation 

-1 0.070 -1 0.612 

0 0.149 0 0.773 

1 -0.176 1 0.548 

From the result of test, the observation number of estimated change point is 22, which is 

Jan. 3rd, 2013. The test caught the visual change point very well. 

We noticed that there also may be another main structural change point around April 1st, 

2013 due to the trend of LLY and JNJ’s stock prices. Fig 4.2 is the plot of the stock prices of 

LLY and JNJ from Jan. 2nd, 2013 to Jun. 28th, 2013, which are three months before and after 

the visual main structural change point, respectively. From the plot we found that there may 

be a main structural change point around beginning of the April, because before the point 

around April 1st, 2013, the stock prices of LLY and JNJ have trends of the same direction but 

different levels, after the point around April 1st, 2013, the stock prices of LLY and JNJ have 

trends with different directions and different levels.  

We did cross-correlation analysis for selected time intervals due to the number of 

observation before the visual change point is almost equal to the number of observation after 
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the visual change point, and created Table 4.5. In Table 4.5, the r1 and r2 of selected time 

intervals are very different. We can conclude that there is an estimated main structural change 

point around April 1st, 2013 due to the cross-correlation changes. 

Table 4.5 Cross-Correlation Analysis for Different Time Intervals 

around April 1st, 2013 

Time Interval 
Time 

Lag 
r1 r2 

1.2.2013-6.28.2013 

-1 0.833 -0.195 

0 0.899 -0.187 

1 0.780 -0.228 

2.1.2013-5.31.2013 

-1 0.798 -0.476 

0 0.906 -0.485 

1 0.817 -0.630 

3.1.2013-4.30.2013 

-1 0.638 -0.126 

0 0.842 -0.130 

1 0.639 -0.391 

P
ri

ce

40

50

60

70

80

90

date

01/01/2013 02/01/2013 03/01/2013 04/01/2013 05/01/2013 06/01/2013 07/01/2013

Fig. 4.2 Plot of LLY and JNJ Stock Prices from Jan. 2nd, 2013 to Jun. 28th, 2013

PLOT lly jnj



42 

We did the test to detect this visual change point by selected different time intervals. Table 

4.6 shows the results of test in different time intervals. From the Table. 4.6, the proposed 

method found that the location of change points depends on data size. We could not conclude 

that there is one estimated main structural change point around April 1st, 2013. The different 

estimated change points in selected time interval from Jan. 4th, 2013 to Jun. 25th, 2013 may due 

to multiple change points occur in the selected time interval, or may due to the biased number 

of observations of data before and after the true change point in the selected time intervals. 

Table 4.6 Estimated Change Point for Different Time Intervals around April 1st, 2013 

Time Interval 
Estimated 

Change Point 

Estimated Change 

Point date 

1.2.2013-6.28.2013 42 3.4.2013 

2.1.2013-5.31.2013 32 3.19.2013 

3.1.2013-4.30.2013 17 3.25.2013 
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CHAPTER 5 

SUMMARY AND DISCUSSION 

For time series data, change point theory is a mathematical methodology that focuses on 

detecting a particular time point when data flow changes. Industry uses it on quality control. 

Economists use this theory to study the stock market. Many methodologies have been built on 

this theory. A maximum likelihood estimator was introduced by P.K. Bhattacharya (P.K. 

Bhattacharya, 1987). Bayesian methods have been widely studied (Tamura, 2008 and 

Kleykamp, 2004).  

In this study, we wanted to know how one stock price changes relative to another one and 

how quickly we can detect a change point via cross-correlation. We used a test to find the 

change point in two-group time series data. We analyzed the cross-correlation on subgroups, 

before and after the estimated change point. We focus on how the cross-correlation changes 

before and after the change point between the two groups of data to detect the change point.  

A simulation study is presented in Chapter 3. The parameters are set at different situations. 

We simulated the change point shown at different parts over time: at the early stage, at the 

middle stage and at the later stage and with different sets of cross-correlation. Our simulation 

results have shown that the proposed method works effectively when the change point is shown 

at the middle stage and the later stage of time with cross-correlation setting we examined.  

We examined the cross-correlations between JNJ and LLY. Then we used a statistical test 

proposed by Dominik Wied (2011) to detect the change point. This proposed method is applied 
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to real stock data of JNJ and LLY for the full dataset from April, 2009 to April, 2014, the 

reduced dataset from September, 2012 to the beginning of May, 2013 and different reduced 

time intervals from Jan. 2nd, 2013 to Jun. 28th, 2013.  

For this test proposed by Dominik Wied (2011), we found that the bandwidth 𝛾𝑛 did not 

seem to affect the results of test. Any reasonable bandwidth 𝛾𝑛 could be chosen in the test. 

We set 𝛾𝑛 = 3 in our study. The number of observations before and after the true change 

point affect the results of the test. Meaningful results can be obtained when the number of 

observations after the change point is equal to or greater than half of the number of observations 

before the change point and less than or equal to the number of observations before the change 

point, which is 
1

2
𝑛1 ≤ 𝑛2 ≤ 𝑛1 . With this criterion, the method can effectively catch the 

change point especially when 𝑛1 = 𝑛2. On the other hand, the cross-correlation settings we 

looked at did not affect the results of test. 

The strengths of the proposed method are that it can effectively determine the change point; 

the criteria of this testing is clear; the result is easy to interpret; and this methodology is easy 

to apply to time series data with two or more groups. It is suggested that any reasonable 𝛾𝑛 can 

be used in the test. Also using a shorter moving time window to detect the change point may 

also be more useful than a whole historical dataset. The challenge of the proposed method is 

that it is not effective at catching the change point when | 𝑛1 − 𝑛2| > ∆ with large ∆. It may 

due to a lack of observations in subsample n1, which represents the observations before the 

change point, or the lack of observations in subsample n2, which represents the observations 

after the change point. In addition, when there are more than two change points in the dataset, 

the proposed method may not be effective at catching the main structural change point. Future 

research can be expanded to more than two-groups, higher dimension data. It is also of interest 
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to derive the power of the proposed method. Dose the proposed method have the same power 

in every r1 and r2 setting? Finally, detecting more than two main structural change points can 

also be a direction of future study. 

   REFERENCES 

Everitt, B.S. and A. Skrondal, THE CAMBRIDGE DICTIONARY OF STATISTICS, ed. 4. 2010: 

Cambridge University Press. 

Hofrichter, J., CHANGE POINT DETECTION IN GENERALIZED LINEAR MODELS. 

Dissertation paper, 2007. 

Pettitt, A.N., A NON-PARAMETRIC APPROACH TO THE CHANGE-POINT PROBLEM. 

Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979. 28(2): p. 

126-135. 

Barry, D. and J.A. Hartigan, A BAYESIAN ANALYSIS FOR CHANGE POINT PROBLEMS. 

Journal of the American Statistical Association, 1993. 88(421): p. 309-319. 

Tamura, N., e. Yuge, and S. Yanagi, ESTIMATION OF THE CHANGE POINT FOR 

FAILURE-CENSORED DATA VIA BAYESIAN INFORMATION CRITERION, in 

Secure System Integration and Reliability Improvement, 2008. SSIRI '08. Second 

International Conference. 2008. p. 207-208. 

Sur, M., et al., CHANGE DETECTION IN ANIMAL MOVEMENT USING DISCRETE 

WAVELET ANALYSIS. ECOLOGICAL INFORMATICS, 2014. 20: p. 47-57. 

Wied, D., et al., A FLUCTUATION TEST FOR CONSTANT SPEARMAN’S RHO. SFB 823 

Discussion paper, 2011. 2011/16: p. 2011a. 

Papoulis, A., THE FOURIER INTEGRAL AND ITS APPLICATIONS. 1962: New York: 

McGraw-Hill. 244-245 and 252-253. 



46 

Bracewell, R., PENTAGRAM NOTATION FOR CROSS CORRELATION. THE FOURIER 

TRANSFORM AND ITS APPLICATIONS. . 1965: New York: McGraw-Hill. 

Rodgers, J.L. and W.A. Nicewander, THIRTEEN WAYS TO LOOK AT THE CORRELATION 

COEFFICIENT. The American Statistician, 1988. 42(1): p. 59-66. 

Tsay, R.s., ANALYSIS OF FINANCIAL TIME SERIES, ed. r. edition. 2010: John wiley & sons, 

INC., publication. 

Aarts, R.M., R. Irwan, and A.J.E.M. Janssen, EFFICIENT TRACKING OF THE CROSS-

CORRELATION COEFFICIENT. Ieee Transactions On Speech And Audio Processing, 

2002. 10(6): p. 391-402. 

Liu, L., CROSS-CORRELATIONS BETWEEN CRUDE OIL AND AGRICULTURAL 

COMMODITY MARKETS. Physica A, 2014. 395: p. 293-302. 

Alaoui, M.E. and S. Benbachir, MULTIFRACTAL DETRENDED CROSS-CORRELATION 

ANALYSIS IN THE MENA AREA. Physica A, 2013. 392: p. 5985-5993. 

Podobnik, B., et al., CROSS-CORRELATIONS BETWEEN VOLUME CHANGE AND PRICE 

CHANGE. PNAS, 2009. 106(52): p. 22079–22084. 

Andrews, D.W.K., HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT 

COVARIANCE MATRIX ESTIMATION. Econometrica, 1991. 59(3): p. 817-858. 

Journal, T.W.S. JOHNSON & JOHNSON. 2015; Available from: http://quotes.wsj.com/JNJ. 

Johnson, J. JOHNSON & JOHNSON. 2015; Available from: http://www.jnj.com/. 

Journal, T.W.S. ELI LILLY AND COMPANY. 2015; Available from: 

http://quotes.wsj.com/LLY. 

Company, E.L.a. ELI LILLY AND COMPANY 2015; Available from: 

http://www.lilly.com/Pages/Home.aspx. 

http://quotes.wsj.com/JNJ
http://www.jnj.com/
http://quotes.wsj.com/LLY
http://www.lilly.com/Pages/Home.aspx


47 

Bhattacharya, P.K., MAXIMUM LIKELIHOOD ESTIMATION OF A CHANGE-POINT IN 

THE DISTRIBUTION OF INDEPENDENT RANDOM VARIABLES: GENERAL 

MULTIPARA METER CASE. Journal of Multivariate Analysis, 1987. 23(2): p. 183-

208. 

Western, B. and M. Kleykamp, A BAYESIAN CHANGE POINT MODEL FOR HISTORICAL 

TIME SERIES ANALYSIS. Political Analysis, 2004. 12(4): p. 354-374. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

APPENDIX A    

Code for Simulations 

FORTRAN code: 

program simul 

implicit none 

real :: 

r1,r2,c1,c2,e,pa,pb,sumpc,sumpm,gamma_n,ker,hd,d,dhatp,dhat,pbsq,kf,sumpuj,nnn,maxpd,

w,Maxij 

real :: yy1,yy2,e1 

integer, parameter :: NN = 1000 

integer, parameter :: pi = 3.1415926 

real,dimension(NN) :: xp,y,xr,yr,pu,rhok,pd,puj,cp 

integer :: i,n1,n2,n,j,m,k,nrep,ij,gn 

integer,dimension(1) :: place 

character(len=16) :: filename 

print *,'Input numbers before change point to continue' 

read *, n1 

print *,'Input numbers after change point to continue' 

read *, n2 

print *,'Input coefficient of relationship before change point to continue' 

read *, r1 

print *,'Input coefficient of relationship after change point to continue' 

read *, r2 

print *,'Gamma_n can be<=',int(sqrt(float(n1+n2)))  

print *,'Input gamma_n' 

read *, gamma_n 

print *,'Input the output file name' 

read *,filename 

open(unit=3, file='C:\Users\Administrator\Desktop\results\'//filename//'.txt') 
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c1 = sqrt(1-r1**2) 

c2 = sqrt(1-r2**2) 

call random_seed() 

d=2 

do nrep=1,100 

     Maxij=int(sqrt(float(n1+n2))) 

   Do ij=2,Maxij 

     Gamma_n = ij 

yy1=0 

yy2=0 

pa=0 

pb=0 

sumpc=0 

sumpm=0 

ker=0 

hd=0 

d=0 

dhatp=0 

dhat=0 

pbsq=0 

kf=0 

sumpuj=0 

nnn=0 

maxpd=0 

w=0 

xp=0 

y=0 

xr=0 

yr=0 

pu=0 

rhok=0 
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pd=0 

puj=0 

cp=0 

place=0     

y=0 

 do i = 1,n1+n2   

call random_number(e) 

call random_number(e1) 

yy1 = sqrt(-2.0*log(e))*cos(2*e1*pi) 

yy2 = sqrt(-2.0*log(e))*sin(2*e1*pi) 

xp(i)=yy1 

   if (i<n1) then  

     y(i)=xp(i)*r1+yy2*c1 

     else 

       y(i)=xp(i)*r2+yy2*c2 

       endif 

  end do 

  n=n1+n2 

  call rank(xp,n,xr) 

  call rank(y,n,yr) 

  pa=0 

  do i = 1,n1+n2 

  pu(i)=(1-xr(i)/n)*(1-yr(i)/n)  

  pa=pa+(((1-xr(i)/n)**2)*((1-yr(i)/n)**2))/n  

  pb=(sum(pu))/n  

    end do 

    pbsq=pb**2 

    sumpm=0 

 do m=1,n-1 

    ker = m/gamma_n 

    if (ker<=1) then  
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      kf=1    

    else 

     kf=0 

   end if 

    sumpc=0 

  do j=1,n-m 

    sumpc=sumpc+((1-xr(j)/n)*(1-yr(j)/n)*(1-xr(j+m)/n)*(1-yr(j+m)/n))/n  

    end do 

    do gn=1,gamma_n 

    sumpm = sumpm + kf*(sumpc-pbsq) 

    end do  

    end do 

    hd = 3 ! because hd=(d+1)/(2**d-(d+1)) where d=2 

    dhatp=(hd**2)*(2**(2*d))*(pa-pbsq+2*sumpm) 

    if(dhatp.le.0) dhatp=1 

    dhat=1/(sqrt(dhatp)) 

  do k=1,n 

    puj(j)=0 

    do j=1,k 

      puj(j)=(1-xr(j)/n)*(1-yr(j)/n) 

      end do 

      sumpuj=(sum(puj)*4/k-1)*3 

      nnn=n 

    rhok(k)=sumpuj 

    end do 

    do k=1,n 

    pd(k)=(k/sqrt(nnn))*(rhok(k)-rhok(n)) 

    end do 

    maxpd=maxval(abs(pd(1:n1+n2))) 

    w=dhat*maxpd 

    place=maxloc(abs(pd(1:n1+n2))) 
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    cp(nrep)=place(1)  

    write(3,*) n1,n2,r1,r2,gamma_N,w,cp(nrep) 

    end do 

    end do 

    close (3) 

end program simul 

 !+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  SUBROUTINE RANK(X,N,XR)  

! DOWNLANDED FROM HTTP://WWW.NIST.GOV/ 

      DIMENSION X(N),XR(N) 

      COMMON /BLOCK4/ XS(1000) 

      AN=N 

      IPR=6 

      HOLD=X(1) 

      DO 60 I=2,N 

      IF(X(I).NE.HOLD)GOTO 90 

   60 CONTINUE 

      WRITE(IPR, *)HOLD 

      AVRANK=(AN+1.0)/2.0 

      DO I=1,N 

      XR(I)=AVRANK 

      end do 

   90 CONTINUE 

      CALL SORT(X,N,XS) 

      NM1=N-1 

      XPREV=X(1) 

      DO 700 I=1,N 

      JMIN=1 

      IF(X(I).GT.XPREV)GOTO 770 

      IF(I.EQ.1)GOTO 790 

      IF(X(I).EQ.XPREV)GOTO 750 
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      GOTO 790 

  750 CONTINUE 

      XR(I)=RPREV 

      GOTO 880 

  770 CONTINUE 

      JMIN=K 

      IF(JMIN.LT.N)GOTO 790 

      IF(JMIN.EQ.N)GOTO 820 

      IBRAN=1 

      WRITE(IPR,*)IBRAN 

      WRITE(IPR,*)JMIN 

      STOP 

  790 CONTINUE 

      DO 800 J=JMIN,NM1 

      IF(X(I).NE.XS(J))GOTO 800 

      JP1=J+1 

      DO 900 K=JP1,N 

      IF(XS(K).NE.XS(J))GOTO 950 

  900 CONTINUE 

      K=N+1 

  950 CONTINUE 

      AVRANK=J+K-1 

      AVRANK=AVRANK/2.0 

      XR(I)=AVRANK 

      GOTO 880 

  800 CONTINUE 

  820 CONTINUE 

      J=N  

      K=N+1 

       IF(X(I).EQ.XS(J))GOTO 850 

      IBRAN=2 
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      WRITE(IPR,*)IBRAN 

      WRITE(IPR,*)X(I),XS(J) 

      STOP 

  850 CONTINUE 

      XR(I)=N 

  880 CONTINUE 

      XPREV=X(I) 

      RPREV=XR(I) 

  700 CONTINUE 

      RETURN 

      END subroutine rank 

      !++++++++++++++++++++++++++++++++++++++++++++++++ 

      SUBROUTINE SORT(X,N,Y) 

! DOWNLANDED FROM HTTP://WWW.NIST.GOV/ 

      DIMENSION X(N),Y(N) 

      integer,DIMENSION(1000):: IU,IL  

      IPR=6 

      HOLD=X(1) 

      DO 60 I=2,N 

      IF(X(I).NE.HOLD)GOTO 90 

   60 CONTINUE 

      WRITE(IPR,*)HOLD 

      DO 61 I=1,N 

      Y(I)=X(I) 

   61 CONTINUE 

      RETURN 

   90 CONTINUE 

      DO 100 I=1,N 

      Y(I)=X(I) 

  100 CONTINUE 

      NM1=N-1 
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      DO 200 I=1,NM1 

      IP1=I+1 

      IF(Y(I).LE.Y(IP1))GOTO 200 

      GOTO 250 

  200 CONTINUE 

      RETURN 

  250 M=1  

      I=1  

      J=N  

  305 IF(I.GE.J)GOTO 370 

  310 K=I  

      MID=(I+J)/2 

      AMED=Y(MID) 

      IF(Y(I).LE.AMED)GOTO 320  

      Y(MID)=Y(I) 

      Y(I)=AMED 

      AMED=Y(MID) 

  320 L=J  

      IF(Y(J).GE.AMED)GOTO 340  

      Y(MID)=Y(J) 

      Y(J)=AMED 

      AMED=Y(MID) 

      IF(Y(I).LE.AMED)GOTO 340  

      Y(MID)=Y(I) 

      Y(I)=AMED 

      AMED=Y(MID) 

      GOTO 340 

  330 Y(L)=Y(K) 

      Y(K)=TT 

  340 L=L-1 

      IF(Y(L).GT.AMED)GOTO 340  
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      TT=Y(L) 

  350 K=K+1 

      IF(Y(K).LT.AMED)GOTO 350  

      IF(K.LE.L)GOTO 330 

      LMI=L-I 

      JMK=J-K 

      IF(LMI.LE.JMK)GOTO 360 

      IL(M)=I 

      IU(M)=L 

      I=K  

      M=M+1 

      GOTO 380 

  360 IL(M)=K 

      IU(M)=J 

      J=L  

      M=M+1 

      GOTO 380 

  370 M=M-1 

      IF(M.EQ.0)RETURN 

      I=IL(M) 

      J=IU(M) 

  380 JMI=J-I 

      IF(JMI.GE.11)GOTO 310 

      IF(I.EQ.1)GOTO 305 

      I=I-1 

  390 I=I+1 

      IF(I.EQ.J)GOTO 370 

      AMED=Y(I+1) 

      IF(Y(I).LE.AMED)GOTO 390  

      K=I  

  395 Y(K+1)=Y(K) 
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      K=K-1 

      IF(AMED.LT.Y(K))GOTO 395  

      Y(K+1)=AMED 

      GOTO 390 

      END subroutine sort 

 

SAS code: 

%let dirname = C:\Users\Administrator\Desktop\results; 

filename DIRLIST pipe "dir /B &dirname\*.txt"; 

data dirlist ; 

     length fname $256;  

     infile dirlist length=reclen ; 

     input fname $varying256. reclen ; 

run; 

data results (drop=fname); 

  length myfilename $100; 

  set dirlist; 

  filepath = "&dirname\"||fname; 

  infile dummy filevar = filepath length=reclen end=done missover; 

  do while(not done); 

    myfilename = filepath; 

    input n1 n2 r1 r2 gamma_n w cp;   

    output; 

  end; 

run;/*http://www.ats.ucla.edu/stat/sas/faq/multi_file_read.htm*/ 

 

ods rtf; 

data r1eq1; 

set results; 

where r1=1 and gamma_n=3; 

run; 

proc univariate data=r1eq1 normaltest loccount plots; 

class n1 n2; 

var cp; 

run; 

proc means data=r1eq1 maxdec=2 mean std p25 p50 p75 ; 

class n1 n2 gamma_n; 

var cp; 

output 

out = r11gamma_n; 

title "r1=1 r2=-1"; 

run; 
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data r1eq05; 

set results; 

where r1=0.5 and gamma_n=3; 

run; 

proc univariate data=r1eq05 loccount plots normaltest; 

class n1 n2; 

var cp; 

run; 

proc means data=r1eq05 maxdec=2 mean std p25 p50 p75 ; 

class n1 n2 gamma_n; 

var cp; 

output 

out = r105gamma_n; 

title "r1=0.5 r2=-0.5"; 

run; 

data r1eqn07; 

set results; 

where r1=-0.7 and gamma_n=3; 

run; 

proc univariate data=r1eqn07 loccount plots normaltest; 

class n1 n2 gamma_n; 

var cp ; 

run; 

proc means data=r1eqn07 maxdec=2 mean std p25 p50 p75 ; 

class n1 n2 gamma_n; 

var cp; 

output 

out = r1n07gamma_n; 

title "r1=-0.7 r2=0.4"; 

run; 

data r1eq04; 

set results; 

where r1=0.4 and gamma_n=3; 

run; 

proc univariate data=r1eq04 normaltest loccount plots; 

class n1 n2; 

var cp; 

run; 

proc means data=r1eq04 maxdec=2 mean std p25 p50 p75 ; 

class n1 n2 gamma_n; 

var cp; 

output 

out = r104gamma_n; 

title "r1=0.4 r2=0.7"; 

run; 

data r1eq02; 
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set results; 

where r1=0.2 and gamma_n=3; 

run; 

proc univariate data=r1eq02 normaltest loccount plots; 

class n1 n2; 

var cp; 

run; 

proc means data=r1eq02 maxdec=2 mean std p25 p50 p75 ; 

class n1 n2 gamma_n; 

var cp; 

output 

out = r102gamma_n; 

title "r1=0.2 r2=0.8"; 

run; 

data r1eqn04; 

set results; 

where r1=-0.4 and gamma_n=3; 

run; 

proc univariate data=r1eqn04 normaltest loccount plots; 

class n1 n2; 

var cp; 

run; 

proc means data=r1eqn04 maxdec=2 mean std p25 p50 p75  ; 

class n1 n2 gamma_n; 

var cp ; 

output 

out = r1n04gamma_n; 

title "r1=-0.4 r2=0.2"; 

run; 

ods rtf close; 
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APPENDIX B    

Results of Simulations 

For 𝑟1 = 1, 𝑟2 = −1  

Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

5 5 3 1000 3.25 1.33 2.00 3.00 4.00 

25 3 1000 7.00 5.75 3.00 4.00 9.00 

50 3 1000 12.89 11.82 4.00 7.50 20.00 

25 5 3 1000 16.23 5.89 12.00 17.00 22.00 

25 3 1000 21.24 3.91 20.00 23.00 24.00 

50 3 1000 22.18 3.61 21.00 23.00 24.00 

50 5 3 1000 30.23 12.07 21.00 31.00 41.00 

25 3 1000 42.88 7.35 40.00 46.00 48.00 

50 3 1000 45.73 4.81 45.00 47.00 49.00 

20

0 

5 3 1000 104.52 44.89 68.00 105.00 138.00 

10 3 1000 121.39 48.47 84.00 125.00 164.00 

20 3 1000 153.22 44.71 124.50 170.00 191.00 

50 3 1000 178.69 25.42 170.00 189.00 197.00 

50

0 

5 3 1000 254.40 110.09 171.00 253.00 341.50 

10 3 1000 272.11 116.55 177.00 272.00 367.00 

20 3 1000 329.38 123.43 231.50 350.00 440.00 

50 3 1000 433.38 77.40 408.00 464.00 490.00 

 

For 𝑟1 = 0.5, 𝑟2 = −0.5 
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Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

5 5 3 1000 4.25 2.07 3.00 4.00 6.00 

25 3 1000 12.40 7.01 6.00 12.00 18.00 

50 3 1000 23.97 12.89 14.00 24.00 34.00 

25 5 3 1000 14.62 6.15 10.00 15.00 20.00 

25 3 1000 21.77 7.95 17.00 22.00 26.00 

50 3 1000 28.21 12.48 20.00 25.00 35.00 

50 5 3 1000 27.39 11.56 18.00 28.00 37.00 

25 3 1000 37.95 12.31 30.00 41.00 48.00 

50 3 1000 44.52 12.98 37.00 46.00 50.00 

20

0 

5 3 1000 101.81 44.76 65.00 100.00 139.00 

10 3 1000 107.72 46.77 69.00 109.00 145.50 

20 3 1000 124.60 49.70 86.00 129.00 166.00 

50 3 1000 158.81 44.48 133.00 175.00 195.00 

50

0 

5 3 1000 252.68 110.43 164.00 252.00 341.00 

10 3 1000 248.87 113.32 153.00 249.00 341.00 

20 3 1000 275.70 117.52 184.50 278.50 372.00 

50 3 1000 357.82 119.61 268.00 387.00 464.00 

 

For 𝑟1 = −0.7, 𝑟2 = 0.4 

Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

5 5 3 1000 5.72 1.90 4.00 6.00 7.00 

25 3 1000 15.31 6.14 10.00 16.00 20.00 

50 3 1000 28.27 11.85 18.00 29.00 38.00 

25 5 3 1000 19.14 6.69 14.00 21.00 24.00 

25 3 1000 28.09 7.35 24.00 27.00 32.00 
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Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

50 3 1000 35.69 12.38 26.00 32.00 44.00 

50 5 3 1000 33.52 13.45 23.00 34.50 47.00 

25 3 1000 47.71 10.86 44.00 49.00 53.00 

50 3 1000 54.79 11.59 49.00 52.00 60.00 

20

0 

5 3 1000 116.19 50.47 75.50 116.00 158.00 

10 3 1000 132.96 51.30 94.00 137.00 180.00 

20 3 1000 156.88 47.57 129.00 173.00 197.00 

50 3 1000 187.16 27.46 179.50 197.00 202.00 

50

0 

5 3 1000 269.74 118.06 172.00 267.50 365.00 

10 3 1000 298.76 127.90 193.00 306.00 412.00 

20 3 1000 349.54 125.64 253.00 374.50 463.00 

50 3 1000 437.64 87.51 412.50 474.00 498.00 

 

For 𝑟1 = 0.4, 𝑟2 = 0.7 

Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

5 5 3 1000 5.05 2.13 3.00 5.00 7.00 

25 3 1000 15.25 6.53 10.00 15.00 20.00 

50 3 1000 27.96 11.76 19.00 28.00 38.00 

25 5 3 1000 15.76 6.71 10.00 16.00 21.00 

25 3 1000 26.02 10.54 18.00 26.00 35.00 

50 3 1000 37.56 16.17 24.00 37.00 50.00 

50 5 3 1000 28.66 11.67 20.00 28.00 38.00 

25 3 1000 38.86 16.51 25.50 40.00 52.00 

50 3 1000 52.39 20.08 38.00 52.00 67.00 

5 3 1000 101.33 44.63 67.00 99.00 138.00 
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Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

20

0 

10 3 1000 108.45 47.09 71.00 112.00 145.00 

20 3 1000 113.72 50.36 74.50 115.00 153.00 

50 3 1000 132.49 55.08 90.00 132.00 181.00 

50

0 

5 3 1000 250.90 110.35 161.50 253.00 344.00 

10 3 1000 254.19 113.84 164.00 255.00 347.00 

20 3 1000 258.13 115.79 161.00 257.00 350.50 

50 3 2000 294.63 124.61 192.50 302.00 397.00 

 

For 𝑟1 = 0.2, 𝑟2 = 0.8 

Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

5 5 3 1000 5.25 2.04 4.00 5.00 7.00 

25 3 1000 15.43 6.00 11.00 15.00 20.00 

50 3 1000 28.21 11.60 19.00 28.00 37.00 

25 5 3 1000 15.61 6.60 11.00 16.00 21.00 

25 3 1000 27.11 10.00 20.00 27.00 34.00 

50 3 1000 37.89 15.22 26.00 38.00 50.00 

50 5 3 1000 28.95 12.26 20.00 29.00 39.00 

25 3 1000 40.97 15.97 29.00 43.00 53.00 

50 3 1000 53.90 18.90 42.00 53.00 68.00 

20

0 

5 3 1000 105.58 46.53 68.00 105.00 144.00 

10 3 1000 110.62 47.51 71.00 112.00 147.00 

20 3 1000 120.68 50.46 78.00 121.00 162.50 

50 3 1000 148.44 54.40 108.00 159.00 196.00 

50

0 

5 3 1000 248.06 112.92 153.00 248.00 337.00 

10 3 1000 262.66 116.49 167.50 261.50 354.00 
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Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

20 3 1000 278.50 119.69 179.00 278.00 374.00 

50 3 1000 331.45 128.64 228.00 345.00 448.00 

 

For 𝑟1 = −0.2, 𝑟2 = 0.4 

Analysis Variable : cp 

n1 n2 

gamma_

n 

N 

Obs Mean 

Std 

Dev 

25th 

Pctl 

50th 

Pctl 

75th 

Pctl 

5 5 3 1000 5.43 2.07 4.00 6.00 7.00 

25 3 1000 15.69 6.19 11.00 16.00 20.00 

50 3 1000 27.78 11.45 19.00 28.00 37.00 

25 5 3 1000 16.79 6.66 12.00 17.00 22.00 

25 3 1000 27.86 9.37 22.00 28.00 35.00 

50 3 1000 38.43 14.72 26.50 38.00 50.00 

50 5 3 1000 29.92 12.77 20.00 30.00 41.00 

25 3 1000 43.56 14.44 33.00 46.00 54.00 

50 3 1000 54.14 17.47 44.00 54.00 67.00 

20

0 

5 3 1000 107.62 47.63 70.00 105.00 147.00 

10 3 1000 114.11 49.46 73.50 114.00 156.00 

20 3 1000 127.28 52.63 86.00 132.00 172.00 

50 3 1000 157.06 51.33 122.00 172.00 199.00 

50

0 

5 3 1000 256.09 111.24 170.00 251.50 344.00 

10 3 1000 262.46 117.40 166.00 266.00 357.00 

20 3 1000 285.50 116.62 197.00 288.00 379.00 

50 3 1000 349.25 128.26 253.50 376.00 466.00 
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APPENDIX C    

Results of Different Time Intervals 

Date interval 
Estimated date of 

change 

10.31.2012-1.18.2013, 

9 weeks before, 2 

weeks after 

11.30.2012 

10.31.2012-2.1.2013, 4 

weeks after 
12.3.2012 

10.31.2012-2.8.2013, 5 

weeks after 
12.28.2012 

10.31.2012-2.15.2013, 

6 weeks after 
12.28.2012 

10.31.2012-3.1.2013, 8 

weeks after 
12.28.2012 

10.31.2012-3.28.2013, 

12 weeks after 
1.2.2013 

10.31.2012-5.3.2013, 

17 weeks after 
1.15.2013 

9.4.2012-1.18.2013, 17 

weeks before, 2 weeks 

after 

10.4.2012 

9.4.2012-2.1.2013, 4 

weeks after 
10.4.2012 

9.4.2012-3.1.2013, 8 

weeks after 
12.3.2012 

9.4.2012-3.15.2013, 10 

weeks after 
12.5.2012 

9.4.2012-3.22.2013, 11 

weeks after 
12.28.2012 

9.4.2012-3.28.2013, 12 

weeks after 
12.28.2012 
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9.4.2012-5.3.2013, 17 

weeks after 
1.2.2013 
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