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thesis will present a method for estimating the parameters of a GARCH(1,1) process with
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CHAPTER 1

INTRODUCTION

1.1 Overview of Financial Time Series Analysis

One of the most crucial assumptions in classical time series analysis, as well as other sta-

tistical analysis techniques, is constant variance. This leads to the most popular linear time

series models, such as the autoregressive moving average (ARMA) model, posed by Peter

Wittle [12]. However, strides have been made by many to relax the assumption of constant

variance to account for real-world properties portrayed by financial time series. The two

greatest strides made for nonlinear modeling of time series come from Robert F. Engle

[3] and Tim Bollerslev [2]. Engle, who won a Nobel Peace Price in Economics for his

work, developed the autoregressive conditional heteroskedastic (ARCH) time series model

[3]. Bollerslev [2] went on to generalize this model, coining the generalized autoregressive

conditional heteroskedastic (GARCH) model. Both of these models focus on creating a

conditional variance equation, allowing for nonconstant variance.

This thesis focuses primarily on the GARCH(1,1) model. As Bollerselv [2] defines it,

the random error terms are assumed to be distributed normally. However, for our research,

the GARCH(1,1) model with error terms distributed non-normally, in particular shifted

Gamma, is considered. For the remainder of this chapter, facts regarding log-returns of

financial data are presented, as well as key definitions of stationary time series processes.

Also in Chapter 1, the definition for the GARCH(1,1) process of Bollerslev [2], as well

as properties of this model, are introduced. In Chapter 2, properties of the GARCH(1,1)

model with shifted Gamma-distributed errors are presented and proven. In Chapter 3, a

method for estimating the parameters in the GARCH(1,1) model of interest is proposed,

and a simulation study is conducted to test the method. In Chapter 4, log-return data of

exchange rates is analyzed using the GARCH(1,1) model with shifted Gamma-distributed
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errors. Chapter 5 concludes the thesis with remarks and potential future study.

1.2 Log-Returns

Suppose there is a discrete financial time series process, Pt, observed at equally spaced

times t. Many authors, such as Mikosch and Stărică [11] have asserted the usefulness of

using a log-transformation of the financial time series process, rather than just the process

itself. This log-transformation, called the log-returns is mathematically defined as

xt = logPt − logPt−1, (1.1)

where t = 0, 1, 2, 3, · · · . Figure 1.1 show two time series plots of the Dow Jones Industrial

Average (DJIA) from January 2010 to December 2014. The plot on the left is of the daily

closing price. The plot on the right is of the log-return daily closing price. The log-return

daily closing price exposes two primary attributes: it is de-trended (from the differencing),

and the volatility of closing prices is exposed (with obvious non-constant volatility, which

was highest around late 2011).

Figure 1.1: Time Series Plots of the Dow Jones Industrial Average (DJIA)

Mikosch and Stărică [11] state the following three properties of log-returns of financial

time series data:
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1. The distribution of log-returns is not normal, but rather with a high peak at zero and

heavy-tailed. This comes from most days having little change, i.e. a ”flat” day.

2. There is dependence in the tails of the distribution. These tails represent major

changes in returns, which do not happen often, but tend to trend together.

3. There is long-range dependence in the log-returns process.

To help visualize some of the properties, consider property 1. Figure 1.2 is the kernel

density of the log-return daily closing prices of the DJIA. This kernel density has a very

high peak, with heavy tails. This affirms the first property listed above.

Figure 1.2: Kernel Density Plot of Log-Return Daily Closing Prices of DJIA

1.3 Classical GARCH(1,1) Process

Many models have been proposed to capture the listed effects. However, the most widely

used is the classical GARCH(1,1) model of Tim Bollerslev [2]. This model is mathemati-
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cally defined as

Xt = σtεt; εt ∼ iid Normal(0, 1), (1.2)

σ2
t = ω + αX2

t−1 + βσ2
t−1, (1.3)

where α, β, and γ are called the GARCH(1,1) parameters. It is well-known that the vari-

ance structure of Xt can be rewritten as an ARMA(1,1) process, as defined by Engle[3],

i.e.

Xt − φXt−1 = Zt + θZt−1; Z ∼WN(0, 1),

where WN denotes a strong white noise process (a process with mean 0 and no correlation

at different times). The derivation of this fact is as follows: From Equations 1.2 and 1.3,

the difference νt = X2
t − σ2

t is

X2
t − σ2

t = X2
t − (ω + αX2

t−1 + βσ2
t−1)

= X2
t − ω − αX2

t−1 − βσ2
t−1

= X2
t − ω − αX2

t−1 − βσ2
t−1 + (βX2

t−1 − βX2
t−1)

= X2
t − ω + β(X2

t−1 − σ2
t−1)− (α + β)X2

t−1

νt = X2
t − ω + βνt − (α + β)X2

t−1

X2
t = ω + (α + β)X2

t−1 − (1− β)νt

X2
t − (α + β)X2

t−1 = ω − (1− β)νt.
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If it can be shown that νt follows a white noise process, this sufficiently proves that X2
t can

be written as an ARMA(1,1) process.

E[νt] = E[X2
t − σ2

t ]

= E[σ2
t (ε

2
t − 1)]

= E[σ2
t ]E[ε2t − 1]

E[ε2t − 1] = E[ε2t ]− 1 = 1− 1 = 0

⇒ E[νt] = 0

E[νtνt−h] = E[(X2
t − σ2

t )(X
2
t−h − σ2

t−h)]

= E[σ2
t (ε

2
t − 1)σ2

t−h(ε
2
t−h − 1)]

= E[σ2
t σ

2
t−h]E[(ε2t − 1)(ε2t−h − 1)]

= E[σ2
t σ

2
t−h]E[(ε2t − 1)][E[(ε2t−h − 1)]

⇒ E[νtνt−h] = 0

1.4 Stationarity

One of the most prominent, important characteristics of time series processes is stationar-

ity.

Definition 1.1 (Strictly Stationary). Let {Xt} be a time series process with joint cumulative

distribution function FX(xt1 , xt2 , · · · , xtk). The process {Xt} is called strictly stationary

if

FX(xt1 , xt2 , · · · , xtk) = FX(xth+1
, xth+2

, · · · , xth+k
)

for all time lags h.

Definition 1.2 (Weakly Stationary). Let {Xt} be a time series process such that E[X2
t ] <

∞ (finite second moment). The process {Xt} is called weakly stationary if
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1. E[Xt] is independent of t

2. Cov[Xt, Xt+h] is independent of t for all time lags h

Both of these definitions define a time series process in which statistical characteris-

tics, such as mean and covariance, are constant over time. This consistency over all time

possible time lags is important for statistical inference, such as estimating model parame-

ters and forecasting. As implied by the names, proving strict stationarity is a stronger result

than proving weak stationarity, since the equivalence of joint cumulative distributions over

time directly implies weak stationarity. In practice, however, proving weak stationarity

under certain conditions is sufficient for valid statistical inference, and can prove to be

significantly more efficient than proving strict stationarity.

1.5 Motivation

The original intent for this thesis was to investigate a potential model for the arc length of

time series data. For a time series at times t1, t2, · · · , tn, define the k-step ahead arc length

as

An =
n∑
j=2

√
(tj − tj−k)2 + (Xtj −Xtj−k

)2 (1.2)

Typically, k is considered to be one. This is a natural, intuitive measure of volatility in

time series analysis. Asymptotic behavior of these arc lengths is investigated by Wickra-

marachchi et. al [13]. If applied to log-return financial data, the arc length transformation

can give insight into what time periods the data is less/more volatile (possibly seasonality).

Additionally, since the arc lengths of daily stock price return vary across different time

periods, if an adequate ARCH(q) or GARCH(p, q) model can be fit to arc length data, then

inference can be used to help predict future volatility of stocks through forecasting. Also,

if an adequate model can be fit to arc length data, then cluster analysis could potentially
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be used to help group stocks by volatility, which could then be used by investment firms to

help investment decisions.

Trying to model arc length data, where At =
√

1 + (Xt −Xt−1)
2, (not the sum of

all arc lengths, as given in Equation 1.2; rather, individual arc length measures) with a

GARCH(p,q) process, however, becomes problematic. The issue derives from the assump-

tion in Equation 1.2, where the error terms are distributed as strong white noise. It is

obvious that the distribution of arc lengths is strictly positive; see Figure 1.3. This elim-

inates the possibility of negative error terms, meaning that the error assumption required

for GARCH(p,q) processes is violated. Therefore, a new type of time series model must

be considered: one that both takes into account varying volatility across time periods, and

error terms that are strictly positive.

Figure 1.3: Plots of Arc Lengths of Log-Returns
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CHAPTER 2

GARCH(1,1) WITH GAMMA-DISTRIBUTED ERRORS

2.1 The Model

As stated in the introduction, a typical GARCH(1,1) process has the mathematical form

Xt = σtεt, (2.1)

where εt ∼ N(0, 1), and the recursive equation for σt is

σ2
t = ω + αXt−1 + βσ2

t−1. (2.2)

However, the basis of this thesis is that εt is not normally distributed. GARCH processes

with innovations that follow a student t-distribution have been discussed by Bollerslev [1].

Even though some discussion can be found about modeling option prices and exchange

rates using skewed distributions, no extensive study has been carried out in the literature.

In this study we assume that innovations of a GARCH(1,1) process follow a shifted gamma

distribution as follows:

Xt = σtγt, (2.3)

σ2
t = ω + αXt−1 + βσ2

t−1. (2.4)

where γt follows a shifted Gamma distribution, defined by the equation

γt = εt −
a

b
; εt ∼ Γ(a, b). (2.5)

Note that ε has probability density function

fεt(x) =
ba

Γ(a)
xa−1e−xb. (2.6)

In this section we will solve Equations 2.3 and 2.4 in order to obtain the necessary and

sufficient conditions that guarantee the existence of a unique strictly (weakly) stationary

solution.
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First, it is beneficial to express Equation 2.2 explicitly, rather than recursively. For a

given time t, and with a maximum time lag n, that derivation is

σ2
t = ω + αX2

t−1 + βσ2
t−1

= ω + α(σ2
t−1γ

2
t−1) + βσ2

t−1

= ω + (αγ2t−1 + β)σ2
t−1

= ω + (αγ2t−1 + β)(ω + αX2
t−2 + βσ2

t−2)

= ω + (αγ2t−1 + β)(ω + α(σ2
t−2γ

2
t−2) + βσ2

t−2)

= ω + (αγ2t−1 + β)(ω + (αγ2t−2 + β)σ2
t−2)

...

= ω
t∑
i=1

i−1∏
j=1

Mt(j) + σt−n

n∏
j=1

Mt(j), (2.6)

where Mt(j) = αγ2t−j + β, and the empty product has been set to one.

Of particular interest for this process is determining under what circumstances the pro-

cess has stationary solutions, both strict and weak. The necessary and sufficient condition

for strict stationarity must ensure that the summation term in Equation 2.6 converges and

the product term disappears at the limit. Thus the necessary and sufficient condition for the

stationarity will follow from the existence of the random variable

S2 = ω
∞∑
i=1

i−1∏
j=1

αγ2−j + β (2.7)

Note that, when the random variable S2 exists we get S2 = σ2
0 .

Before those theorems are introduced and proven, extra notation is necessary. Partic-

ularly, define log+(x) as

log+(x) = log(max{x, 1}) (2.7)

Theorem 2.1 (Strictly Stationary Solution). Suppose that {Xt|t ∈ Z} is a GARCH(1,1)

process specified by Equations 2.3 and 2.4 that satisfies

E
[
log+(αγ20 + β)

]
<∞
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Then {Xt|t ∈ Z} admits a unique, non-anticipative, strictly stationary solution if and only

if

E
[
log(αγ20 + β)

]
< 0 (2.8)

Proof. Alluding to Equation 2.6,

σ2
t = ω

n∑
i=1

i−1∏
j=1

Mt(j) + σt−n

n∏
j=1

Mt(j)

= S2
n +R2

n,

where S2
n = ω

n∑
i=1

i−1∏
j=1

(αγ2t−j + β) and R2
n = σ2

t−n

n∏
j=1

(αγ2t−j + β).

First we will show that R2
n converges to zero almost surely.

R2
n = σ2

t−n

n∏
j=1

(αγ2t−j + β)

= σ2
t−nexp

{
n

[
1

n

n∑
j=1

ln(αγ2t−j + β)

]}
.

By the Strong Law of Large Numbers, for a fixed t, as n→∞,

1

n

n∑
j=1

ln(αγ2t−j + β)
a.s.−→ E

[
ln(αγ20 + β)

]
.

Therefore,

R2
n ≈ σ2

t−nexp
{
n
[
E
[
ln(αγ20 + β)

]]}
.

Since σ2
t−n is bounded, R2

n
a.s.−→ 0 if and only if E [ln(αγ20 + β)] < 0.

Now we see that as n −→∞,

σ2
0 = S2.

Therefore we need to show that the random variable S2 converges if and only if E [log|αγ20 + β|] <

0.
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S2 = ω
∞∑
i=1

i−1∏
j=1

(αγ2−j + β)

= ω

∞∑
i=1

exp

{
(i− 1)

i−1∑
j=1

1

i− 1
ln(αγ2−j + β)

}
.

By the Strong Law of Large Numbers, for a fixed t, as i→∞,

i−1∑
j=1

1

i− 1
ln(αγ2t−j + β)

a.s.−→ E
[
ln(αγ20 + β)

]
.

Therefore,

S2 ≈ ω
n∑
i=1

exp

{
(i− 1)

i−1∑
j=1

E
[
ln(αγ20 + β)

]}
.

Therefore, S2 converges if and only if E [ln(αγ20 + β)] < 0, which concludes the proof.

Theorem 2.2 (Weakly Stationary Solution). Suppose that {Xt|t ∈ Z} is a GARCH(1,1)

process specified by equations 2.3 and 2.4. Then {Xt|t ∈ Z} admits a unique weakly

stationary solution if and only if
a

b2
α + β < 1 (2.10)

Proof. To prove weak stationarity, it only needs to be shown that E[Xt] and E[X2
t ] are in-

dependent of t. Since E[γt] = 0, E[Xt] = E[σt]E[γt] = 0. Next, E[X2
t ] = E[σ2

t ]E[γ2t ] =

E[σ2
t ]
a

b2
. Therefore, if it can be shown that E[σ2

t ] is independent of t, then the proof is

complete.

E
[
σ2
t

]
= ω + ωE [Mt(1)Mt(2) · · ·Mt(i)]
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E [Mt(1) · · ·Mt(k)] = E
[
αγ2t−k (Mt(1) · · ·Mt(k − 1)) + β (Mt(1) · · ·Mt(k − 1))

]
= αE

[
γ2t−k

]
E [(Mt(1) · · ·Mt(k − 1))] + βE [(Mt(1) · · ·Mt(k − 1))]

= α
( a
b2

)
E [(Mt(1) · · ·Mt(k − 1))] + βE [(Mt(1) · · ·Mt(k − 1))]

=
(
α
a

b2
+ β

)
E [(Mt(1) · · ·Mt(k − 1))]

...

=
(
α
a

b2
+ β

)k
Therefore,

E
[
σ2
t

]
= ω + ω

∞∑
i=1

(
α
a

b2
+ β

)i
= ω

∞∑
i=0

(
α
a

b2
+ β

)i
=

ω

1−
(
α
a

b2
+ β

)
It is apparent that E [σ2

t ] is independent of t. The condition under equation 2.10 comes

from the convergence criteria for an infinite geometric series, requiring the radius be less

than 1. Thus this proves the condition for a weak stationary solution.

2.2 Maximum Likelihood Estimation

The probability distribution function (pdf) and the corresponding log-likelihood function is

derived for the GARCH(1,1) model with shifted-Gamma distributed errors.
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P (Xt ≤ xt) = P (σtγt ≤ xt)

= P
(
σt

(
εt −

a

b

)
≤ xt

)
= P

(
εt ≤

xt
σt

+
a

b

)
fXt(xt) =

1

σt
fεt

(
xt
σt

+
a

b

)
=

1

σt

ba

Γ(a)

(
xt
σt

+
a

b

)a−1
exp

{
−b
(
xt
σt

+
a

b

)}
ln(f) = −ln(σt) + aln(b)− ln(Γ(a)) + (a− 1)ln

(
xt
σt

+
a

b

)
− bxt

σt
− a

= −ln(σt) + a(ln(b)− 1)− ln(Γ(a)) + (a− 1)ln
(
xt
σt

+
a

b

)
− bxt

σt

Therefore, the conditional log-likelihood function of the observations x1, x2 . . . xn of a SG-

GARCH(1,1) process when x0 and σ2
0 are given can be written as,

L =
n∑
t=1

ln(σt)−na(ln(b)−1)−nln(Γ(a))+(a−1)
n∑
t=1

ln
(
xt
σt

+
a

b

)
− b

n∑
t=1

xt
σt

(2.11)

Since σ2
t also depends on parameters (ω, α, β), one must solve for σ2

t before maximizing

the likelihood function. When σ2
0 and x0 are given, the solution for σ2

t can be written in the

following form.

σ2
t = ω

t−1∑
i=0

βi + βtσ2
0 + α

t−1∑
i=0

βix2t−1−i

Hence, the maximum likelihood estimates of the parameters can be estimated after substi-

tuting σ2
t into the likelihood function and maximizing it with respect to the GARCH(1,1)

parameters and the two Gamma distribution parameters.

In order to better understand the behavior of the log-likelihood function, a visualiza-

tion is useful. However, this can be challenging, since there is no useful visualization for

six-dimensional space. In order visualize the log-likelihood function, the Gamma distri-

bution parameters a and b, as well as the GARCH(1,1) parameter ω, are fixed. Therefore,

the only values that vary will be α and β, and different values of these two parameters
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will be plotted against the log-likelihood function. Two plots will be presented to show the

behavior of the log-likelihood function:

1. A two-dimensional plot with colors corresponding to the intensity of the log-likelihood.

2. A three-dimensional plot to help visualize increasing/decreasing behavior.

In order to construct the plots, one set of data are simulated (reference Section 3.1) with

parameter values ~θ = (a, b, ω, α, β) = (2, 3, 1E−6, 0.1, 0.8). Using simulated data, the

log-likelihood function is computed for fixed values of a, b, and ω corresponding to the

actual parameter values, and varying values of α and β. Figure 2.1 is the two-dimensional

plot, and Figure 2.2 is the three-dimensional plot. Note that for both plots, the values for β

range only from 0.6 to 1, because for all other values, the log-likelihood is zero. A value

of zero for the log-likelihood function represents the unfeasible region for the parameters

α and β, based on Equation 2.10.

Both figures reveal a decreasing pattern for the log-likelihood for increasing values of

β in the feasible region. This would suggest a peak at around β = 0.8, which is expected.

However, it is difficult to observe in Figure 2.2 by the naked eye what the behavior of the

log-likelihood is for increasing values of α. In order to better visualize the behavior, β is

fixed at the actual parameter value, 0.8, and the log-likelihood function is plotted against

the different values of α (Figure 2.3).

As it can be seen in Figure 2.3, there is a peak at around α = 0.1, which is also

expected. The result of the two peaks for corresponding values of α and β shows sufficient

evidence that there should be a global maximum for the log-likelihood function in general.

2.3 Numerical Estimation of MLE

This process for finding maximum likelihood estimators works well for processes with

nicely-defined gradient vectors, and with few parameters. However, in the case of the
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Figure 2.1: Two-Dimensional Plot of Log-Likelihood Values

GARCH(1,1) model with shifted-Gamma distributed errors, there are five parameters of in-

terest, leading to a 5x5 system of equations, and even though the gradient vector is analytic,

deriving the gradient vector is messy, and then solving the resulting system of equations

would be tedious.

Considering the impracticality of analytically deriving the maximum likelihood esti-

mates of five parameters, numerical methods to find maximum likelihood estimates is a

viable, practical alternative. If a numerical method can provide consistently accurate max-

imum likelihood estimates for the five parameters of a GARCH(1,1) model with shifted

Gamma-distributed errors for a given set of data, this can be used in practice for forecast-

ing future data points. For this thesis, two different numerical methods are considered, each

with distinct advantages and disadvantages.
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Figure 2.2: Three-Dimensional Plot of Log-Likelihood Values

1. Grid Search

A grid search algorithm take a range of values for every parameter of an objective

function (the negative log-likelihood function, −l(~θ)), and evaluates the objective

function for every distinct combination of parameters values. Once all of these values

are computed, the minimum is computed. This can be used as a tool to obtain an

initial set of estimates for model parameters. In R, the function gridSearch from

the “NMOF” package [5] can be used to implement a grid search algorithm. The

only required inputs are the objective function and box constraints for each of the

parameters.

Advantages
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Figure 2.3: Two-Dimensional Plot of Log-Likelihood Values with Fixed Beta

• A grid search algorithm does not require an initial guess, guaranteeing conver-

gence to a result.

• A grid search algorithm is more likely to find a global maximum, rather than a

local maximum.

• The results of a grid search algorithm are consistent across different random

samples with similar parameter values.

Disadvantages

• A grid search algorithm requires exceedingly high computation time, especially

with an objective function with many parameters.

• The results of grid search algorithm can not exceed the box constraints set by
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the user. If the real parameters exceeds the box constraint set, the grid search

will achieve a perfect result with probability 0.

2. Nonlinear Constrained Optimization

When an objective function is nonlinear, a numerical implementation of a nonlin-

ear optimization is appropriate. Furthermore, many optimization problems involve

constraints, either linear or nonlinear, on the parameters in the objective function.

Therefore, nonlinear constrained optimization can be implemented for these types of

problems. The negative log-likelihood function is obviously nonlinear, and Equation

2.10 can be seen as a nonlinear constraint on the objective function.

There are numerous algorithms for nonlinear constrained optimization, each falling

under one of two categories: those requiring an explicit form of the gradient vector,

and those that do not. Given the complexity of the negative log-likelihood function,

the latter is considered. Of those algorithms that do not require an explicit form for

the gradient vector, there are global and local maximum algorithms. Examples of

global maximum algorithms are the DIRECT algorithm by Jones et.al. [7] and the

controlled random search with a local mutation modification posed by Kaleo and

Ali [8]. These algorithms, and numerous more, can be implemented in R using the

nloptr function in the “nloptr” package [6].

Advantages

• The nonlinear constrained optimization algorithms are generally quick in com-

putation time.

• If a nonlinear constrained optimization algorithm can converge to an accurate

result consistently, then precision can be increased with little cost to computa-

tion time.
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• Most of the algorithms require the parameters to be bounded, but high/low finite

bounds can be set if the user is unsure of actual parameter values, with little cost

to computation time.

Disadvantages

• The results for the nonlinear constrained optimization algorithms seem to be

inconsistent across different algorithms, especially for higher number of pa-

rameters.

• An initial guess close to the actual parameter values is required to guarantee

convergence, which is troublesome for objective functions with many parame-

ters.

Given the inconsistent results of the nonlinear constrained optimization, a grid search

algorithm to find the minimum of the negative log-likelihood function is chosen. Further

comments can be found in the conclusion chapter.
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CHAPTER 3

NUMERICAL STUDY

3.1 Simulation Study

As mentioned in Section 2.3, a grid search algorithm will be used to compute numerical

maximum likelihood estimates for the GARCH(1,1) model with shifted Gamma-distributed

errors. Note that this is not the optimal method for parameter estimation since the likelihood

is maximized over a set of pre-selected values for respective parameters in a gird. Future

study to find an alternative algorithm for more precise, faster estimation is discussed in

Chapter 4.

It is of interest to determine the accuracy of these estimates. To this end, two separate

calculations are useful: bias and mean squared error (MSE). Bias is mathematically defined

as

Bias
(
~θ, ~̂θ
)

= E
[
~̂θ − ~θ

]
= E

[
~̂θ
]
− ~θ, (3.1)

where ~̂θ is the estimator of the parameters of interest. Bias is a measure of how far off

(and in which direction) the expected value of the estimator is from the actual parameter

value(s). Mean squared error is mathematically defined as

MSE = E

[(
~θ − ~̂θ

)2]
= V ar

(
~̂θ
)

+
[
Bias

(
~θ, ~̂θ
)]2

. (3.2)

Mean Squared Error is a measure of deviation of an estimator from the real parameter

value(s) under a squared-loss function. Both of these measures paint a picture of how well

an estimator performs. As described in Chapter 2, however, an explicit equation for the

maximum likelihood estimator would be extremely tedious, if not impossible, to analyti-

cally derive. The best alternative, therefore, is to estimate the bias and MSE numerically.

This can be done through a simulation study.

The general idea of a simulation study is that data are generated under a process with

set, fixed parameters. For this instance, a GARCH(1,1) process with shifted-Gamma errors
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is simulated into data. Once data are generated, a numerical estimation process is applied

to the data to generate an estimate for the parameter(s) of interest. For this instance, a grid

search algorithm is implemented to find a maximum likelihood estimate. This process is

repeated a fixed number of times. After a collection of estimates is computed, some kind

of accuracy/consistency measure is taken. For this instance, the accuracy measures are bias

and mean squared error.

A psuedocode for the simulation study involving maximum likelihood estimation of

the GARCH(1,1) model is provided in Algorithm 1. Let Γ(a, b) denote a random sample

of a Gamma distribution with shape parameter a and scale parameter b.
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input : N , n, a, b, ω, α, β

output: Bias, MSE

for i=1 to N do
Simulate Data

σ0 =
√

ω

1− (α a
b2

+ β)
;

γ0 = Γ(a, b)− a
b
;

x0 = σ0γ0;

for j=1 to n do

σj =
√
ω + αx2j−1 + βs2j−1;

γj = Γ(a, b)− a
b
;

xj = σjγj;

end

x = {x0, . . . , xn};

Parameter Estimation

~̂θ =
~̂
θ such that max{L(~θ)} is achieved;

end

Bias
(
~θ, ~̂θ
)

= E
[
~̂θ − ~θ

]
;

MSE = E

[(
~θ − ~̂θ

)2]
;

Algorithm 1: Psuedocode for Simulation Study
Algorithm 1 is implemented in the statistical program R, with many computations in-

volving the “base” package [9]. For the parameter estimation step, a grid search algorithm

is used. In particular, the R function gridSearch under the ”NMOF” package [5] is

used. The R code for the simulation study, as well as the graphics generated in Chapters 1

and 2, can be found in Appendix A.
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3.2 Simulation Study Results

For this thesis, three different simulation studies are conducted for varying values of α and

β. The three set of parameter values are

1. ~θ1 = (a, b, ω, α1, β1) = (2, 3, 1E−6, 0.3, 0.6)

2. ~θ2 = (a, b, ω, α2, β2) = (2, 3, 1E−6, 0.2, 0.7)

3. ~θ3 = (a, b, ω, α3, β3) = (2, 3, 1E−6, 0.1, 0.8)

For each simulation study, 100 estimates for ~θ are numerically computed using a grid

search algorithm, each estimate coming from a data set of 250 simulated observations of

a GARCH(1,1) process with shifted Gamma-distributed errors. Once these estimates are

computed numerically, both bias and mean squared error are estimated. Table 3.1 contains

average estimated parameter values, and Table 3.2 contains estimated biases, and Table 3.3

contains estimated mean squared errors.

Table 3.1: Table of Average Estimated Parameter Values

~θ ¯̂a
¯̂
b ¯̂ω ¯̂α

¯̂
β

(2, 3, 1E−6, 0.3, 0.6) 2.650 3.215 7.700E−7 0.461 0.489

(2, 3, 1E−6, 0.2, 0.7) 2.375 3.030 7.300E−7 0.425 0.542

(2, 3, 1E−6, 0.1, 0.8) 2.060 2.895 7.450E−7 0.406 0.579
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Table 3.2: Table of Estimated Biases

~θ Biasâ Biasb̂ Biasω̂ Biasα̂ Biasβ̂

(2, 3, 1E−6, 0.3, 0.6) 0.650 0.215 −2.30E−7 0.161 -0.111

(2, 3, 1E−6, 0.2, 0.7) 0.375 0.030 −2.70E−7 0.225 -0.158

(2, 3, 1E−6, 0.1, 0.8) 0.060 -0.105 −2.55E−7 0.306 -0.221

Table 3.3: Table of Estimated Mean Squared Errors

~θ MSEâ MSEb̂ MSEω̂ MSEα̂ MSEβ̂

(2, 3, 1E−6, 0.3, 0.6) 4.00 6.16 2.69 1.79 1.89

(2, 3, 1E−6, 0.2, 0.7) 3.12 5.62 2.69 1.87 1.80

(2, 3, 1E−6, 0.1, 0.8) 2.26 5.73 2.69 1.91 1.82

One note from the numerical study is that as values of α decrease and β increase, the

average parameter estimates of those two also decrease and increase, respectively. This

means that the average estimates are tending to the correct direction. Also, since the bias

(defined in Equation 3.1) of α is always positive, α is generally overestimated. Similarly,

since the bias of β is negative, β is generally underestimated.

3.3 Application to Exchange Rate Data

For a real-data application, data regarding the exchange rate of the U.S. Dollar to the Euro

from March 1, 2015 until February 29, 2016, is used. The data was extracted from the

International Monetary Fund website [4]. Figure 3.1 shows the time series and density

plots for the exchange rate data. As mentioned previously, it is advantageous to work with
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Figure 3.1: Plots for Exchange Rate Data

the log-returns of financial data, rather than the raw data. Figure 3.2 shows the time series

and density plots of the log-returns of the exchange rate data.

Note that in Figure 3.2, there is a slight skew to the right in the density plot of the log-

returns, and literature suggests employing a skewed conditional distribution in analyzing

exchange rates [10], meaning that a shifted Gamma distribution can be appropriate for a

GARCH(1,1) model. Given this information, the grid search algorithm for estimating the

parameters for an SG-GARCH(1,1) model is applied to the mean-shifted log-returns of the

exchange rate data. The estimated parameters of the SG-GARCH(1,1) model is given as

~̂θSG−GARCH = (â, b̂, ω̂1, α̂1, β̂1) = (74.5, 13.0, 1E−7, 0.042, 0.980) (3.3)

Although the estimates for the Gamma parameters are quite large, the estimated vari-

ance,
â

b̂2
, is less than 1. A large estimate for the shape parameter a is expected, since this

corresponds to a shape closer to symmetric, as seen in Figure 3.2.

In order to evaluate the accuracy of the parameter estimates, prediction can be used

to determine how close the predicted values are to the actual shifted log-returns. However,
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Figure 3.2: Plots for Exchange Rate Data

prediction must be conducted on the squared values of the log-returns. This leads to the

concept of volatility predicting. Predicting the square values of the log-returns is necessary

because trying to predict the log-returns, Xt, assuming they follow a SG-GARCH process,

given previous data Ψ, yields

E[Xt|Ψ] = E[σtγt|Ψ] = E[σt|Ψ]E[γt|Ψ] = E[σt|Ψ]E[γt] = E[σt|Ψ](0) = 0,

meaning that every predicted value will be 0. Therefore, prediction on X2
t is conducted,

yielding

E[X2
t |Ψ] = E[σ2

t γ
2
t |Ψ] = E[σ2

t |Ψ]E[γ2t |Ψ] = E[σ2
t |Ψ]E[γ2t ] = σ2

t

a

b2
. (3.4)

Therefore, the prediction of X2
t is

X̂2
t = σ̂2

t

â

b̂2
. (3.5)

It follows from Equation 3.5 that if prediction is to be conducted on X2
t , σ2

t must also be

predicted. This can be easily done using Equation 2.2, i.e.

σ̂2
t = ω̂ + α̂X̂2

t−1 + β̂σ̂2
t−1, (3.6)
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Figure 3.3: Volatility Forecasting using SG-GARCH Model

where σ2
0 can be predicted as the mean of the squared mean-shifted log-returns, i.e.

σ̂2
0 = X̄2

t . (3.7)

Given the initial estimates X̂2
0 and σ2

0 , predicted values are computed by alternating

between Equations 3.5 and 3.6, where each of the predicted parameters come from Equa-

tion 3.3.

Figure 3.3 shows a comparison of the squared mean-shifted log-returns and the fore-

casted volatilities using a SG-GARCH(1,1) model, as well as two classical GARCH(1,1)

models, one with normally-distributed errors, the other with t-distributed errors. This was

done in order to compare the forecasted volatilities of the SG-GARCH model to see if the
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Figure 3.4: Volatility Forecasting using Classical GARCH Models

forecasted volatilities are better or worse than those of the more classical GARCH models.

These classical model parameters were calculated using the R package fGarch [14]. The

parameter estimates for each of those models are

~̂θGARCH-Normal = (ω̂2, α̂2, β̂2) = (1.878E−11, 1.000E−8, 0.999)

~̂θGARCH-t = (ω̂3, α̂3, β̂3) = (6.307E−6, 0.011, 0.658)

For the classical GARCH model with normally distributed errors, the predicted volatil-

ities do not follow the pattern closely. For the GARCH model with t-distributed errors, the

forecasted volatilities appear to follow a similar pattern to the squared log-returns, but not

as closely as the SG-GARCH model. Although the predicted volatilities from the SG-

GARCH model are far from perfect, they still appear to respond to the volatility pattern of
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the log-returns better than the other two models.
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CHAPTER 4

CONCLUSION

4.1 Overview of Results

In this thesis, a prominent problem in financial time series analysis was presented in the

form of modeling a strictly-positive conditionally distributed time series with varying volatil-

ity. To address this problem, a new class of GARCH(1,1) with shifted Gamma distributed

errors (SG-GARCH) was introduced. Conditions for strict and weak stationary solutions

to the SG-GARCH(1,1) process were presented and proven.

The likelihood function for the GARCH(1,1) process was also derived. In order to find

maximum likelihood estimates for the process with a complicated likelihood function, nu-

merical estimates were considered. Numerically estimating maximum likelihood estimates

were generated using a grid search algorithm. Nonlinear constrained optimization was de-

sired, but given the observed inconsistencies of that algorithm, the former was used. The

author notes that using a grid search algorithm for obtaining numerical estimates is lim-

ited in practice. For the SG-GARCH model to be useful in practice, nonlinear constrained

optimization must be used.

A simulation study was conducted to test the results of the grid search algorithm

for finding numerical estimates for maximum likelihood estimates. The simulation study

found that as the GARCH parameters α and β were changed, the maximum likelihood es-

timates also changed the correct direction, although the bias of the estimates was obvious.

Finally, the grid search algorithm to compute maximum likelihood estimates for the SG-

GARCH(1,1) model was applied to the log-returns of exchange rate data, and the parameter

estimates were used to estimate volatility. It was shown that, although far from perfect, the

SG-GARCH estimates lead to better volatility forecasting than classical GARCH models.
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4.2 Future Research

Future research in the uses and implementation of SG-GARCH parameter estimation is

planned. First and foremost, the problems regarding the inconsistencies of nonlinear con-

strained optimization need to be resolved for that algorithm to be applied to finding maxi-

mum likelihood estimates for the parameters of interest. This will allow for more precise,

accurate, and timely estimates. Secondly, once nonlinear constrained optimization is im-

plemented well, using the model for volatility forecasting must be improved. Once that

is improved, the SG-GARCH model can be used for volatility clustering, forecasting, and

many other useful applications, particularly in financial time series analysis.

Another possible route for future research is standardizing the error by subtracting the

mean and dividing by the standard deviation of the errors. This will force the mean and

variance of the errors to be zero and one, respectively. Doing this would allow for estima-

tion of the mean and standard deviation, rather than the shape and scale parameters. This is

advantageous for interpretation, rather than trying to interpret shape and scale parameters.
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Appendix A

R CODE

Appendix A contains R code for the simulation study, as well as code for the graphics

generated in Chapters 1 and 2.

#####Simulation Study######

###Create Function to Simulate Data###

##N - Number of Repetitions Desired##

##n - Size of Simulated Data Sets##

##a,b - Gamma Parameters##

##omega,alpha,beta - GARCH(1,1) Parameters##

simulation=function(N,n,a,b,omega,alpha,beta){

set.seed(5) #Set Random Seed for Replicability#

require(NMOF)

#Initialization#

theta=matrix(0,N,5)

lev=list(seq(.5,4,.5),seq(.5,4,0.5),

seq(0.0000005,.0000015,.0000005),seq(0.01,0.99,0.01),seq(0.01,0.99,0.01))

#Create Function for Data Simulation#

sim=function(n,a,b,omega,alpha,beta){

s=rep(0,n)

e=rep(0,n)
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x=rep(0,n)

s[1]=sqrt((omega/(1-(a*alpha/bˆ2+beta))))

e[1]=rgamma(1,a,b)-(a/b)

x[1]=s[1]*e[1]

for (i in 1:n){

s[i+1]=sqrt(omega+beta*s[i]ˆ2+alpha*x[i]ˆ2)

e[i+1]=rgamma(1,a,b)-(a/b)

x[i+1]=s[i+1]*e[i+1]}

x=x[1:n]

s=s[1:n]

return(x)}

#Create Negative Log-Likelihood Function#

#Requires Levels Input#

L=function(w){

n=length(x)

s1=0

s2=0

s3=0

s0=w[3L]/(1-(w[1L]*w[4L]/w[2L]ˆ2+w[5L]))

if((w[1L]*w[4L]/w[2L]ˆ2+w[5L])>=1){ #Stationarity Constraint#

like=0}

else{

for (i in 1:n){
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s1[i]=w[5L]ˆ(i-1)

s2[i]=w[5L]ˆ(i-1)*x[n-i+1]ˆ2

s3[i]=w[5L]ˆ(i)}

s1=cumsum(s1)

s2=cumsum(s2)

s=sqrt(w[3L]*s1+s3*s0+w[4L]*s2)

if(min(x/s+w[1L]/w[2L])<=0){

like=0}

else{

q=x/s+w[1L]/w[2L]

like=sum(log(s))-n*w[1L]*(log(w[2L])-1)+n*log(gamma(w[1L]))-

(w[1L]-1)*sum(log(q))+w[2L]*sum(x/s)

}}

return(like)}

for (i in 1:N){

x=sim(n,a,b,omega,alpha,beta)

sol=suppressMessages(gridSearch(fun=L,levels=lev))

theta1[i,]=sol$minlevels

}

return(theta1)

}

#Set Values of Theta#
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theta1=c(2,3,1e-6,.3,.6)

theta2=c(2,3,1e-6,.2,.7)

theta3=c(2,3,1e-6,.1,.8)

#Create 100 Estimates for Each Value of Theta#

g1=simulation(100,250,2,3,1e-6,.3,.6)

g2=simulation(100,250,2,3,1e-6,.2,.7)

g3=simulation(100,250,2,3,1e-6,.1,.8)

#Calculate Average Estimation#

theta1_hat_bar=colMeans(g1)

theta2_hat_bar=colMeans(g2)

theta3_hat_bar=colMeans(g3)

#Calculate Bias#

bias1=colMeans(g1)-theta1

bias2=colMeans(g2)-theta2

bias3=colMeans(g3)-theta3

#Calculate MSE#

MSE1=colMeans((g1-theta1)ˆ2)

MSE2=colMeans((g2-theta1)ˆ2)

MSE3=colMeans((g3-theta1)ˆ2)
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#####Graphics Code for 2D and 3D Plots#####

##Simulate Data##

x=sim(n,a,b,omega,alpha,beta)

#Create Positive Log-Likelihood Function#

L2=function(w){

n=length(x)

s1=0

s2=0

s3=0

s0=w[3L]/(1-(w[1L]*w[4L]/w[2L]ˆ2+w[5L]))

if((w[1L]*w[4L]/w[2L]ˆ2+w[5L])>=1){

like=0}

else{

for (i in 1:n){

s1[i]=w[5L]ˆ(i-1)

s2[i]=w[5L]ˆ(i-1)*x[n-i+1]ˆ2

s3[i]=w[5L]ˆ(i)}

s1=cumsum(s1)

s2=cumsum(s2)

s=sqrt(w[3L]*s1+s3*s0+w[4L]*s2)
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if(min(x/s+w[1L]/w[2L])<=0){

like=0}

else{

q=x/s+w[1L]/w[2L]

like=-sum(log(s))+n*w[1L]*(log(w[2L])-1)-

n*log(gamma(w[1L]))+(w[1L]-1)*sum(log(q))-w[2L]*sum(x/s)

}}

return(like)}

#Calculate Likelihood Function Values#

#Full range for alpha, beta from .6 to .999#

alpha1=seq(.001,.999,.001)

beta1=seq(.6,.999,.001)

z1=matrix(0,999,400)

for (i in 1:999){

for (j in 1:400){

w=c(2,3,1e-6,alpha1[i],beta1[j])

z1[i,j]=L2(w)}}

alpha2=seq(.001,.85,.001)

z2=rep(0,length(alpha2))

for (i in 1:length(alpha2)){

z2[i]=L2(c(2,3,1e-6,alpha2[i],.8))}

beta2=seq(.78,.975,.001)
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z3=rep(0,length(beta2))

for (i in 1:length(beta2)){

z3[i]=L2(c(2,3,1e-6,.1,beta2[i]))}

#Create 2D Plot with Colors Corresponding to Likelihood Function Values#

image2D(z1,y=seq(.6,1,length.out = ncol(z1)),xlab="Alpha",ylab="Beta",

clab="Likelihood",main="2D Plot of Likelihood Function")

mtext("a=2, b=3, omega=1E-6")

#Create 3D Plot#

persp3D(z=z1,clab="Likelihood",xlab="Alpha",ylab="Beta",zlab="Likelihood",

main="3D Plot of Likelihood Function")

mtext("a=2, b=3, omega=1E-6")

#Create 2D Plots for Alpha and Beta#

plot(alpha2,z2,type="l",main="Log-Likelihood Values",xlab="Alpha",

ylab="Likelihood")

mtext("a=2, b=3, omega=1E-6, Beta=0.8")

plot(beta2,z3,type="l",main="Log-Likelihood Values",xlab="Beta",

ylab="Likelihood")

mtext("a=2, b=3, omega=1E-6, Alpha=0.1")

#####Application: Exchange Rate Data#####
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#Load Data, Create Plots for Exchange Rates#

setwd("D:/Research") #Sets Working Directory for Loading Data#

rate=scan("rate.txt")

rate1=ts(rate)

plot(rate1,main="Dollar-Euro Foreign Exchange Rates",ylab="Exchange Rate",

xaxt="n")

axis(1,at=c(0,50,100,150,200,250),labels=c("Mar 2015","May 2015","July 2015",

"Oct 2015","Dec 2015","Feb 2016"))

d1=density(rate)

plot(d1,main="Density Plot of Dollar-Euro Exchange Rates")

#Create Log-Returns of Exchange Rates#

n=length(rate)

lreturn=log(rate[-1]/rate[-n])

d2=density(lreturn)

plot(d2,main="Density Plot of Log-Returns of Dollar-Euro Exchange Rates")

lreturnts=ts(lreturn)

plot(lreturnts,xaxt="n",main="Log-Returns of Dollar-Euro Exchange Rates",

ylab="Log-Returns")

axis(1,at=c(0,50,100,150,200,250),labels=c("Mar 2015","May 2015","July 2015",

"Oct 2015","Dec 2015","Feb 2016"))

#Attempt to Fit Classical GARCH(1,1) Models for MS Log-Returns#

fit1=garchFit(formula=˜garch(1,1),data=x,include.mean=FALSE,trace=FALSE)

fit2=garchFit(formula=˜garch(1,1),data=x,include.mean=FALSE,trace=FALSE,

cond.dist="std")
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v1=volatility(fit1,"h")

v2=volatility(fit2,"h")

#Estimate Parameters for SG-GARCH(1,1) Model#

x=lreturn-mean(lreturn)

lev=list(seq(67,75,.5),seq(10,17,0.5),seq(0.1e-6, 1e-6, 0.1e-6),

seq(0.03,0.045,0.001),seq(0.99,0.9,-0.01)))

sol=gridSearch(fun=L,levels=lev)

t_hat=sol$minlevels

#Compute Forecasted Volatilities#

omega=t_hat[3]

alpha=t_hat[4]

beta=t_hat[5]

s0=mean(xˆ2)

sig=0

sig[1]=omega+alpha*s0+beta*s0

for (i in 2:length(x)){

sig[i]=omega+alpha*x[i-1]ˆ2+beta*sig[i-1]}

sig=sig*(a/bˆ2)

#Create Comparison Plots#

plot(ts(xˆ2),main="Volatility Forecasting: SG-GARCH", ylab="Squared Data",xaxt="n")

axis(1,at=c(0,50,100,150,200,250),labels=c("Mar 2015","May 2015","July 2015",

"Oct 2015","Dec 2015","Feb 2016"))

lines(ts(sig),type="l",col="blue")

legend(0,.00023,c("SG-GARCH"),
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lty=c(1),lwd=c(2.5),col=c("blue"),

title="Predicted Volatility")

plot(ts(xˆ2),main="Volatility Forecasting: Classical Models",

ylab="Squared Data",xaxt="n")

axis(1,at=c(0,50,100,150,200,250),labels=c("Mar 2015","May 2015","July 2015",

"Oct 2015","Dec 2015","Feb 2016"))

lines(ts(v1),type="l",col="green")

lines(ts(v2),type="l",col="red")

legend(0,.00023,c("Normal GARCH", "t-GARCH"),

lty=c(1,1),lwd=c(2.5,2.5),col=c("green","red"),

title="Predicted Volatility")
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