
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Summer 2015

Labeled Trees and Spanning Trees: Computational
Discrete Mathematics and Applications
Demet Yalman

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation
Yalman, Demet, "Labeled Trees and Spanning Trees: Computational Discrete Mathematics
and Applications" (2015). Electronic Theses and Dissertations. 1297.
https://digitalcommons.georgiasouthern.edu/etd/1297

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N.
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1297?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1297&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

LABELED TREES AND SPANNING TREES: COMPUTATIONAL

DISCRETE MATHEMATICS AND APPLICATIONS

by

DEMET YALMAN

(Under the Direction of Hua Wang)

ABSTRACT

In this thesis, we examine two topics. In the first part, we consider Leech tree

which is a tree of order n with positive integer edge weights such that the weighted

distances between pairs of vertices are exactly 1, 2, . . . ,
(
n
2

)
. Only five Leech trees

are known and some non-existence results have been presented through the years.

Variations of Leech trees such as the minimal distinct distance trees and modular

Leech trees have been considered in recent years. In this thesis, such Leech-type

questions on distances between leaves are studied as well as some other labeling

questions related to the original motivation for Leech trees. In the second part, we

consider the question of finding spanning trees under various restrictions. A “dense”

tree, from graph theoretical point of view, has small total distances between vertices

and large number of substructures. In this thesis, the “density” of a spanning tree

is conveniently measured by the total distance of the tree. An edge-swap heuristic

for generating “dense” spanning trees is developed by utilizing established conditions

and relations between trees with the minimum total distance.

Key Words : edge-swap heuristic, dense tree, minimum spanning tree, Leech tree,

modular Leech tree, distances between leaves

2009 Mathematics Subject Classification: 90C27, 05C78

LABELED TREES AND SPANNING TREES: COMPUTATIONAL

DISCRETE MATHEMATICS AND APPLICATIONS

by

DEMET YALMAN

B.S. in Mathematics and Computer Science

B.S. in Computer Engineering

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2015

c©2015

DEMET YALMAN

All Rights Reserved

iii

LABELED TREES AND SPANNING TREES: COMPUTATIONAL

DISCRETE MATHEMATICS AND APPLICATIONS

by

DEMET YALMAN

Major Professor: Hua Wang

Committee: Goran Lesaja

Colton Magnant

Electronic Version Approved:

July 23, 2015

iv

DEDICATION

This thesis is dedicated to my all family and to all who believed and supported

me during my whole education life.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to show my deepest gratitude to my advisor, Dr.

Hua Wang for his excellent guidance, motivation, patience, enthusiasm and providing

me with an excellent atmosphere for doing research. I am immensely grateful to him

for his insights and sharing his pearls of wisdom with me during this research. I could

not have imagined having a better advisor and mentor for my study.

I want to thank my colleagues for their insight. Especially, I want to thank

Mustafa Ozen for assistance with implementation, contributions and comments that

greatly improved the manuscript. Also, I would like to thank to my department

providing me to have a great opportunity for my thesis and expertise that greatly

assisted the research.

I would never have been able to finish my thesis without guidance of my com-

mittee members, help from my friends, and support from my family who always

encourage me with their best wishes.

vi

TABLE OF CONTENTS

Page

DEDICATION . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 Definitions and Notations 1

1.2 Previous Work . 1

1.2.1 Leech Labeling . 1

1.2.2 Spanning Tree . 2

2 Leech Type Labeling of Trees . 3

2.1 Leaf-Leech Trees . 3

2.2 Leach v.s. Leaf Leach . 7

2.3 Concluding Remarks and Other Related Questions 9

3 Heuristic for Generating Dense Spanning Trees 11

3.1 Preliminaries . 11

3.2 The Edge-Swap Heuristic 14

3.3 Computational Results . 17

4 Results and Analysis . 24

vii

4.1 Examples for Leaf-Leech Trees 24

4.2 Pseudo-code for Heuristic 26

5 Conclusion . 28

REFERENCES . 29

A First Appendix . 31

A.1 Leech vs leaf-Leech . 31

A.2 Almost Leech vs Almost leaf-Leech 32

B Second Appendix . 33

B.1 Examples . 33

B.2 MainProgram.m . 34

B.3 rand starlike graph.m . 37

B.4 MST.m . 39

B.5 cycle control.m . 40

B.6 findRemovalEdges.m . 40

B.7 split.m . 43

B.8 findInsertionEdges.m . 44

B.9 g e max.m . 46

B.10 degree seq.m . 47

B.11 wiener index.m . 47

viii

LIST OF TABLES

Table Page

3.1 Results of ten randomly generated graphs on 15 vertices 18

ix

LIST OF FIGURES

Figure Page

1.1 The known Leech trees . 1

2.1 The tree with 2 leaves . 4

2.2 The tree with 3 leaves . 5

2.3 The tree with 4 leaves . 5

2.4 The tree with 5 leaves . 5

2.5 Caterpillar on n leaves . 6

2.6 An edge-weighted tree T (on the left) and its expansion T e (on the
right) . 7

2.7 A tree with a spanning vertex v 8

2.8 An “almost” Leech tree on 5 vertices 9

2.9 An “almost” modulo Leech tree on 5 vertices 9

2.10 A binary tree that accomodate multiple copies of each distances . 10

3.1 A greedy tree. 12

3.2 Step by step illustration of the algorithm 16

3.3 The original graph (on the left) and the resulted spanning tree (on
the right) . 16

3.4 The original graph (left) and the resulted spanning tree (right) . . 18

3.5 Initial spanning tree of the US Airport data set 19

x

3.6 Final spanning tree for the US Airport data set 20

3.7 A random graph (up), the first resulted spanning tree (left) and the
improved spanning tree (right) 21

3.8 A random graph (up), the first resulted spanning tree (left) and the
improved spanning tree (right) 22

3.9 Final spanning tree for the US Airport data set through modified
algorithm . 23

4.1 Leaf-Leech trees on 1, 2, 3 and 4 leaves 24

4.2 Almost leaf-Leech tree examples on 5 leaves 24

4.3 Almost leaf-Leech tree examples on 6 leaves 25

4.4 Modifed almost leaf-Leech tree example on 6 leaves 25

4.5 Almost leaf-Leech tree examples on 7 leaves 25

A.1 Leech tree on 2 vertices (left) and leaf-Leech tree on 2 leaves (right) 31

A.2 Leech tree on 3 vertices (left) and leaf-Leech tree on 3 leaves (right) 31

A.3 Leech tree on 4 vertices (left) and leaf-Leech tree on 4 leaves (right) 31

A.4 Leech tree on 4 vertices (left) and leaf-Leech tree on 4 leaves (right) 32

A.5 Leech tree on 6 vertices (left) and leaf-Leech tree on 6 leaves (right) 32

A.6 Almost Leech on 4 vertices (left) and almost leaf-Leech on 4 leaves
(right) . 32

B.1 Tree on 4 vertices . 33

B.2 π′ on the left and π′′ on the right 33

B.3 Tree on 4 vertices . 34

xi

CHAPTER 1

INTRODUCTION

1.1 Definitions and Notations

A Leech tree of order n is a tree whose edges are weighted by positive integers

and the weighted distance between the
(
n
2

)
pairs of vertices are exactly 1, 2, . . . ,

(
n
2

)
.

This concept was proposed by John Leech in 1975 [4], motivated from the question

of finding an efficient design for electrical circuits.

Given an undirected graph G with vertex set V and edge set E, a subtree of

G is a connected acyclic subgraph of G. A subtree with vertex set V is a spanning

tree of G. The question of finding spanning trees (under various restrictions) of a

given graph is of importance in many applications such as Information Technology

and Network Design.

1.2 Previous Work

1.2.1 Leech Labeling

Throughout the years various properties of Leech trees have been presented [5,

6, 7]. The following are the five known Leech trees (Figure 1.1) and it is conjectured

that they are the only Leech trees.

1 1 2 1 3 2

1 2

4 5 4

8

1

2

Figure 1.1: The known Leech trees

More recently, variations of Leech trees have been introduced and studied. Such

concepts include the minimal distinct distance trees [1] and modular Leech trees [2, 3].

2

1.2.2 Spanning Tree

Many questions about spanning trees have been studied, including, but not lim-

ited to, the well-known minimum-weight spanning tree problem (MSTP), spanning

trees with bounded degree, with bounded number of leaves, or with bounded number

of branch vertices.

For MSTP which is one of the most popular combinatorial optimization problems,

efficient methods have been studied over the years. In the last few decades, some faster

algorithms for finding MSTP have been developed in order to make time bound one

step closer to linearity[16]. Expected linear-time method was proposed by Karger,

Klein and Tarjan[17].

Throughout years, many studies have been done for spanning trees with bounded

degree [18]. In connected graphs, spanning trees with various degree restrictions

have been studied [19]. Furthermore, biconnected spanning subgraphs with bounded

degree have been considered [20, 21, 22].

The goal in such studies is usually to find efficient algorithms. In a recent work, an

edge-swap heuristic for generating spanning trees with minimum number of branch

vertices was presented [10], where an efficient algorithm resulted from iteratively

reducing the number of branch vertices from a random spanning tree by swapping

tree edges with edges not currently in the tree.

A tree of given number of vertices is considered “dense” if the number of substruc-

tures (including isomorphic subgraphs) is large or the total distance between vertices

is small. In applications, such spanning trees have obvious advantages such as having

more choices of sub-networks and efficient transfer of resources with minimum cost.

In this thesis, we consider an edge-swap heuristic, inspired by similar work presented

in [10], for finding dense spanning trees. Computational results are presented for

randomly generated graphs and specific examples originated from applications.

CHAPTER 2

LEECH TYPE LABELING OF TREES

2.1 Leaf-Leech Trees

In many areas of study, the distances between leaves are of interest in addition to

the distances between all vertices. Motivated by the concept of Leech tree, we define

the leaf-Leech tree as follows.

Definition 1. A tree T with n leaves is a leaf-Leech tree if the distances between pairs

of leaves are exactly 3, 4, . . . ,
(
n
2

)
+ 2.

Remark 1. Since only distances between leaves are considered, we do not require the

presence of 1 or 2 among the distances. Also, note that the distances considered for

leaf-Leech trees are not weighted.

For Leech trees, the beautiful Taylor’s condition [6] asserts that the order n of

a Leech tree must be a perfect square or a perfect square plus two. Below is an

analogous statement following very similar argument as that in [6].

Proposition 2.1.1. If there is a leaf-Leech tree on n leaves, we must have n = k2 or

n = k2 + 2 for some k.

Proof. Let T be a leaf-Leech tree on n leaves and v be one of the leaves. Define

• O to be the set of leaves at odd distance from v;

• E to be the set of leaves at even distance from v (note that v ∈ E).

First note that the distance between a pair of vertices in O (E) is even and the

distance between a vertex in O and a vertex in E is odd. Now consider two cases:

4

• If
(
n
2

)
is even, then the number of odd distances between leaves is the same as

the number of even distances. Consequently(
|O|
2

)
+

(
|E|
2

)
= |O| · |E|,

which can be rewritten as

n = |O|+ |E| = (|O| − |E|)2.

• If
(
n
2

)
is odd, then the number of odd distances between leaves is one more than

the number of even distances. Consequently(
|O|
2

)
+

(
|E|
2

)
+ 1 = |O| · |E|,

which can be rewritten as

n = |O|+ |E| = (|O| − |E|)2 + 2.

�

It is shown in [5], among more general results, that other than the ones shown

in Figure 1.1, no Leech tree can be a star which is a tree with one internal node and

n leaves. Similar arguments yield the analogous conclusion that there are only a few

starlike (with exactly one vertex of degree at least 3) leaf-Leech trees.

Proposition 2.1.2. There is no starlike leaf-Leech trees on more than 4 leaves.

Proof. Let T be a starlike leaf-Leech tree on at least 5 leaves. In order to have distance

3 between leaves, we must have a pendant edge and a pendant path of length 2.

v

Figure 2.1: The tree with 2 leaves

5

Then, in order to have distance 4 between leaves, the next shortest pendant

path must be of length 3. The distances between these three leaves are 3, 4, and 5,

respectively.

v

Figure 2.2: The tree with 3 leaves

In order to obtain distance 6 between leaves, the next shortest pendant path

must be of length 5 (for any shorter path will result in multiple appearance of the

same distance from the existing leaves). Then, the distance between these four leaves

are 3, 4, 5, 6, 7, 8.

v

Figure 2.3: The tree with 4 leaves

For T to be a leaf-Leech tree, the fifth shortest pendant path must generate a

distance 9 with some of the first four leaves. The only way to do so is for this pendant

path to have length 8, generating new distances 9, 10, 11, 13 from the existing leaves.

v

Figure 2.4: The tree with 5 leaves

Similarly, to generate 12 requires the next shortest pendant path to be of length

6

11, which also generate a second distance 13 between leaves. Thus, a starlike leaf-

Leech tree can have at most four leaves. �

It is known that no path can be a Leech tree except for the ones in Figure 1.1.

In fact, it is shown in [5] that a Leech tree cannot contain a long path. In regard to

leaf-Leech trees, we show that there are only a few caterpillars (trees whose removal

of leaves result in paths) that can be leaf-Leech trees.

Proposition 2.1.3. There is no leaf-Leech caterpillars on more than 4 leaves.

v1

v2 v3 vn−1

vn

Figure 2.5: Caterpillar on n leaves

Proof. Let T be a leaf-Leech caterpillar in Figure 2.5 with leaves v1, v2, . . . , vn. It is

easy to see that no vi and vj (i 6= j) can share a common neighbor (which would

create a distance 2 between leaves). Now let ui be the unique neighbor of vi and

define an edge-weighted path P as follows:

• V (P) = {u1, . . . , un};

• two vertices ui and uj are adjacent in P if no other uk lies on the path connecting

them in T ;

• the weight of an edge uiuj in P is the distance between ui and uj in T .

Since the distances between pairs of vertices in {v1, . . . , vn} are
{

3, . . . ,
(
n
2

)
+ 2
}

, the

weighted distances between pairs of vertices in {u1, . . . , un} are exactly
{

1, . . . ,
(
n
2

)}
,

implying that P is a Leech path. The rest of the proof simply follows from that in

[5] on the non-existence of long Leech path. �

7

2.2 Leach v.s. Leaf Leach

Given the very similar properties of leaf-Leech trees and what is known for Leech

trees, it is natural to ask if there is any obvious connection between the two. Intu-

itively, a leaf-Leech tree seems to be easier to find than a Leech tree. Indeed, this is

confirmed by our next observation.

Given a tree T with positive integer weights on edges, the expansion T e of T is

defined as follows (Figure 2.6):

• For any edge uiuj ∈ E(T) with weight w, subdivide this edge into a path of

length w from ui to uj;

• To every vertex ui ∈ V (T), append a pendant edge uivi.

u1 u2 u3

u4

1 3

2

u1 u2 u3

u4

Figure 2.6: An edge-weighted tree T (on the left) and its expansion T e (on the right)

Then, similar argument as that of Proposition 2.1.3 implies the following.

Theorem 2.2.1. If there exists a Leech tree T on n vertices, there exists a leaf-Leech

tree, namely T e, on n leaves (See Appendix A for examples).

On the other hand, it is not obvious whether the inverse is true. Figure 2.7

shows a tree on three leaves that is not the expansion of any tree. This is because of

the vertex v with degree at least three and no leaf neighbors. We call such vertices

spanning vertices.

8

v

Figure 2.7: A tree with a spanning vertex v

To see why such a vertex prevent the tree to be the expansion of a tree, we argue

as follows. At first, there must be a pendant edge and a pendant path of length 2

in order to have a leaf-Leech tree. If there exists a spanning vertex (existent vertices

cannot be a spanning vertex), it should be pended with at least distance one to the

root of the tree. Pendant paths of spanning vertex must be at least 2 by its definition.

If we have a leaf-Leech tree consisting such a structure, it is easy to see that it is not

the expansion of any tree.

It is also easy to see that the following is similar to that in the proof of Proposi-

tion 2.1.3. Note that Propositions 2.1.2 and 2.1.3 follow as immediate corollaries of

Proposition 2.2.2 and known facts on the Leech trees.

Theorem 2.2.2. Every tree with no spanning vertex is the expansion of some edge-

weighted tree.

A natural question follows:

Question 2.2.1. Does there exist a leaf-Leech tree that contains at least one spanning

vertex?

A negative answer to this question would imply the equivalence of the Leech

trees and leaf-Leech trees. In the other direction, we have not been able to find a

leaf-Leech tree that is not the expansion of a Leech tree.

9

2.3 Concluding Remarks and Other Related Questions

We studied the characteristics of leaf-Leech trees and explored its connection

with Leech trees.

Given Leech’s original motivation for the concept of Leech trees, some other

variations may also be interesting. Knowing that no Leech tree exists on n vertices,

the minimal distinct distance tree [1] is one way to generalize the concept and to

find the next best weighted tree in this aspect. It is also natural to pack, instead of

distinct values, as many as possible values of {1, . . . ,
(
n
2

)
} into the set of distances

between vertices. Figure 2.8 is such an “almost Leech tree” on 5 vertices, where 6 is

the only distance missing from the set {1, . . . , 10}. Of course, it is easy to see that

the expansion of an “almost Leech tree” yields an “almost leaf-Leech tree”.

1
7

2

3

Figure 2.8: An “almost” Leech tree on 5 vertices

A tree with positive integer edge weights such that the weighted distances be-

tween vertices yields 1, 2, . . . ,
(
n
2

)
when taking modulo

(
n
2

)
+ 1 is called as a modular

Leech tree [2, 3]. It is known that there is no modular Leech tree of order 5. Figure 2.9

shows an “almost modulo Leech tree” of order 5.

1
7

2

4

Figure 2.9: An “almost” modulo Leech tree on 5 vertices

Another question of obvious interest is to “pack” as many copies of each distance

from a given set of values as possible, in a tree with as few vertices as possible. As an

10

example, Figure 2.10 is a weighted binary tree where every sub-star on four vertices

is an exact copy of the Leech star on four vertices. When the structure is extended

indefinitely, it is easy to see that each of the distances 1, 2, . . . appear at least three

times.

These are interesting topics but we will not work further on them in this thesis.

1 4
2 4 2414

11 1 12222

2

4

2

4

1

1

1

1

Figure 2.10: A binary tree that accomodate multiple copies of each distances

CHAPTER 3

HEURISTIC FOR GENERATING DENSE SPANNING TREES

3.1 Preliminaries

The number of subtrees and the total distance of a tree belong to a group of graph

invariants, called topological indices, that are used in the literature as effective de-

scriptors of graph structures. For instance:

• the sum of distances between all pairs of vertices is also known as the Wiener

index as one of the most well known distance-based index in chemical graph

theory; (see Appendix B.1 for an example)

• the number of subtrees is an example of counting-based indices first introduced

from pure-mathematical point of view.

These two indices have been extensively studied in recent literature. In particular, it

is well known that the star minimizes the Wiener index and maximizes the number

of subtrees while the path maximizes the Wiener index and minimizes the number

of subtrees. More interestingly, among tress of given degree sequence, the greedy tree

(Definition 2 below) was shown to minimize the Wiener index [11, 14] and maximize

the number of subtrees [15], where the degree sequence is simply the nonincreasing

sequence of vertex degrees.

Definition 2 (Greedy trees). Given the sequence, the greedy tree is achieved through

the following “greedy” algorithm:

i) Start with a single vertex v = v1 as the root and give v the appropriate number

of children so that it has the largest degree;

ii) Label the neighbors of v as v2, v3, . . ., assign to them the largest available

degrees such that deg(v2) ≥ deg(v3) ≥ · · · ;

12

iii) Label the neighbors of v2 (except v) as v21, v22, . . . such that they take all the

largest degrees available and that deg(v21) ≥ deg(v22) ≥ · · · , then do the same for v3,

v4, . . .;

iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors

of the labeled vertex with largest degree whose neighbors are not labeled yet.

For example, Fig. 3.1 shows a greedy tree with degree sequence

(4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

v1

v2 v3 v4 v5

v21 v22 v23 v31 v32 v33 v41 v42 v51 v52

Figure 3.1: A greedy tree.

Interestingly, the greedy trees are also extremal with respect to many other graph

indices, among which is the following special case of the Randić index [8], also called

the weight of a tree [9]:

R(T) =
∑

uv∈E(T)

deg(u)deg(v). (3.1)

A comprehensive discussion of the extremal trees of given degree sequence with respect

to functions defined on adjacent vertex degrees can be found in [12].

For trees of different given degree sequences, much work has been done in com-

paring the greedy trees (of the same order) of different degree sequence. In particular,

for two nonincreasing sequences π′ = (d′1, · · · , d′n) and π′′ = (d′′1, · · · , d′′n), π′′ is said

13

to majorize π′ if for k = 1, · · · , n− 1

k∑
i=0

d′i ≤
k∑

i=0

d′′i and
n∑

i=0

d′i =
n∑

i=0

d′′i . (3.2)

The concept of majorization has been applied to the comparison of greedy trees of

different degree sequences in order to find the dense structure (with minimal distance

function or maximal number of subtrees) under various constraints. See [15] for an

example of such discussions. For convenience we also say that π′′ is higher in the

majorization ladder than π′ if π′′ majorizes π′. (See appendix B.1 for an example)

In terms of finding dense spanning trees, the edge-swap heuristic starts with a

random spanning tree and continuously remove a “bad” edge and add a “good” edge

in order to improve the density of the spanning tree. From the aspect of distance-

based and structure-based graph indices, evaluating the corresponding index of the

resulted tree at each step would be extremely time consuming.

We propose an edge-swap heuristic that is based on the above results and use

R(T) defined in (3.1) instead of the distance or number of subtrees as an effective

measure. In every step, we consider the degrees of the end vertices of the edge to be

removed or added, as well as the resulted change in R(T). Such a strategy simul-

taneously optimizes the value of the R(T) and improves the degree sequence in the

ladder of majorization. The consideration of R(T) results in an efficient algorithm

that quickly finds a dense spanning tree, which we present in the next section. Com-

putational results will be provided for both randomly generated graphs and specific

examples from applications. We also comment on potential improvements with the

degree sequences taken into account.

14

3.2 The Edge-Swap Heuristic

In this section we present an edge-swap heuristic in details. The following algorithm

takes a graph G = (V,E) as input and return a dense spanning tree T as output.

ALGORITHM: Finding a dense spanning tree T for a given graph G = (V,E).

Step 1.

Input G(V,E) and generate a random spanning tree T for G. Let SPARSE be “true”.

Step 2.

Step 2-1: Find the candidate edge e to be removed from T .

For each edge e = uv ∈ E(T), let

f(e) = dudv +
du−1∑
i=1

dui
+

dv−1∑
i=1

dvi

be contribution of e, where du and dv are the degrees of the vertices u and v respec-

tively (in T), dui
for 1 ≤ i ≤ du − 1 (dvi for 1 ≤ j ≤ dv − 1) are the degrees of the

other neighbors of u (v) in T .

Let e be an edge with the minimum contribution.

Step 2-2: Generate the spanning forest T ′ = T − e with two components Tu and

Tv.

Step 2-3: Find the candidate edge e′′ to be added to T .

For each edge e′ = u′v′ ∈ E(G) with u′ ∈ Tu and v′ ∈ Tv, let

g(e′) = (du′ + 1)(dv′ + 1) +

du′∑
i=1

du′i +

dv′∑
i=1

dv′i

be contribution of e′, where du′ and dv′ are the degrees of the vertices u′ and v′

respectively (in T ′), du′i for 1 ≤ i ≤ du′ (dv′i for 1 ≤ j ≤ dv′) are the degrees of the

neighbors of u′ (v′) in T ′.

15

Let e′′ be such an edge with the maximum contribution calculated by g(.).

Step 2-4: Generate the spanning tree T ′′ = T ′ + e′′.

Step 2-5: If f(e) < g(e′′), let SPARSE be “true”. Otherwise let SPARSE be

“false”.

Step 3.

While SPARSE is “true”, let T = T ′′ and repeat Step 2. Return T when SPARSE is

“false”.

Figure 3.2 and Figure 3.3 below presents a step by step illustration of the algo-

rithm, where the spanning trees in each step is shown in red and the removed edge

in each step is shown as dotted.

16

Figure 3.2: Step by step illustration of the algorithm

Figure 3.3: The original graph (on the left) and the resulted spanning tree (on the

right)

17

In the above algorithm, the value

g(e′′)− f(e) = R(T ′′)−R(T)

is the maximum possible improvement in R(.) over one swap. In the case of a tie (i.e.,

multiple edges can serve as e or e′′), we simply pick one of them. Since after each

swap, the value of R(T) is strictly increasing, this process terminates after finitely

many steps.

3.3 Computational Results

Of course, the heuristic proposed in the previous section does not guarantee the

densest spanning tree as an output. But as experimental results show, this heuristic

effectively finds a dense spanning tree within very few swaps and hence is of great

practical interests. When tested the algorithm on 100 randomly generated graphs,

each of order 15 and containing a spanning star, the algorithm returns a star in over

60 runs. Part of this data is shown in Table 3.1.

Note that a star on 15 vertices has total distance 196. As shown in Table 3.1, all

resulted spanning trees are dense (even if it is not a star) with only one exception.

In the following example (Figure 3.4), 7 edge-swaps resulted in the final spanning

tree from the original graph on 15 vertices and 37 edges.

18

Graphs Number of swaps Initial distance Final distance Returns a star

A 9 386 238 N

B 15 384 196 Y

C 10 404 196 Y

D 0 348 348 N

E 10 432 196 Y

F 10 382 196 Y

G 8 374 232 N

H 13 348 196 Y

I 16 382 196 Y

J 10 382 196 Y

Table 3.1: Results of ten randomly generated graphs on 15 vertices

Figure 3.4: The original graph (left) and the resulted spanning tree (right)

When applied to the US Airports data set of 332 vertices and 2126 edges [13],

only 15 edge-swaps were needed to obtain the final spanning tree in Figure 3.6).

During edge-swaps, the total distance decreases from 1444880 to 1421327.

19

Figure 3.5: Initial spanning tree of the US Airport data set

20

Figure 3.6: Final spanning tree for the US Airport data set

21

A simple way of improving the likelihood of achieving the denser spanning tree

can be obtained by replacing Step 2-5 of the algorithm with the following:

(Step 2-5)′: If f(e) < g(e′′) or f(e) = g(e′′) and the degree sequence of T ′′

majorizes that of T , let SPARSE be “true”. Otherwise let SPARSE be “false”.

In this case, after each swap, the value of R(T) is strictly increasing or non-

decreasing with the degree sequence moving up in the majorization ladder. Take,

for instance, two of the randomly generated graphs on 15 vertices as discussed in the

previous section, Figure 3.7 and 3.8 show improvements in the resulted spanning tree.

Figure 3.7: A random graph (up), the first resulted spanning tree (left) and the

improved spanning tree (right)

22

Figure 3.8: A random graph (up), the first resulted spanning tree (left) and the

improved spanning tree (right)

When applying the modified algorithm to the US Airports data set, the new

resulted spanning tree is shown in Figure 3.9, with significant improvements over the

previous result in Figure 3.6. The total distance of the improved result is 1412038.

23

N
od

e
1

N
od

e
2

N
od

e
3

N
od

e
4

N
od

e
5

N
od

e
6

N
od

e
7

N
od

e
8

N
od

e
9

N
od

e
10

N
od

e
11

N
od

e
12

N
od

e
13

N
od

e
14

N
od

e
15

N
od

e
16

N
od

e
17

N
od

e
18

N
od

e
19

N
od

e
20

N
od

e
21

N
od

e
22

N
od

e
23

N
od

e
24

N
od

e
25

N
od

e
26

N
od

e
27

N
od

e
28

N
od

e
29

N
od

e
30

N
od

e
31

N
od

e
32

N
od

e
33

N
od

e
34

N
od

e
35

N
od

e
36

N
od

e
37

N
od

e
38

N
od

e
39

N
od

e
40

N
od

e
41

N
od

e
42

N
od

e
43

N
od

e
44

N
od

e
45

N
od

e
46

N
od

e
47

N
od

e
48

N
od

e
49

N
od

e
50

N
od

e
51

N
od

e
52

N
od

e
53

N
od

e
54

N
od

e
55

N
od

e
56

N
od

e
57

N
od

e
58

N
od

e
59

N
od

e
60

N
od

e
61

N
od

e
62

N
od

e
63

N
od

e
64

N
od

e
65

N
od

e
66

N
od

e
67

N
od

e
68

N
od

e
69

N
od

e
70

N
od

e
71

N
od

e
72

N
od

e
73

N
od

e
74

N
od

e
75

N
od

e
76

N
od

e
77

N
od

e
78

N
od

e
79

N
od

e
80

N
od

e
81

N
od

e
82

N
od

e
83

N
od

e
84

N
od

e
85

N
od

e
86

N
od

e
87

N
od

e
88

N
od

e
89

N
od

e
90

N
od

e
91

N
od

e
92

N
od

e
93

N
od

e
94

N
od

e
95

N
od

e
96

N
od

e
97

N
od

e
98

N
od

e
99

N
od

e
10

0
N

od
e

10
1

N
od

e
10

2
N

od
e

10
3

N
od

e
10

4

N
od

e
10

5

N
od

e
10

6

N
od

e
10

7

N
od

e
10

8

N
od

e
10

9

N
od

e
11

0

N
od

e
11

1
N

od
e

11
2

N
od

e
11

3

N
od

e
11

4

N
od

e
11

5

N
od

e
11

6

N
od

e
11

7
N

od
e

11
8

N
od

e
11

9

N
od

e
12

0
N

od
e

12
1

N
od

e
12

2
N

od
e

12
3

N
od

e
12

4

N
od

e
12

5

N
od

e
12

6
N

od
e

12
7

N
od

e
12

8

N
od

e
12

9

N
od

e
13

0

N
od

e
13

1

N
od

e
13

2

N
od

e
13

3

N
od

e
13

4

N
od

e
13

5

N
od

e
13

6

N
od

e
13

7

N
od

e
13

8

N
od

e
13

9

N
od

e
14

0

N
od

e
14

1
N

od
e

14
2

N
od

e
14

3

N
od

e
14

4
N

od
e

14
5

N
od

e
14

6

N
od

e
14

7

N
od

e
14

8

N
od

e
14

9

N
od

e
15

0

N
od

e
15

1

N
od

e
15

2
N

od
e

15
3

N
od

e
15

4
N

od
e

15
5

N
od

e
15

6
N

od
e

15
7

N
od

e
15

8

N
od

e
15

9

N
od

e
16

0

N
od

e
16

1

N
od

e
16

2

N
od

e
16

3
N

od
e

16
4

N
od

e
16

5

N
od

e
16

6

N
od

e
16

7

N
od

e
16

8

N
od

e
16

9

N
od

e
17

0

N
od

e
17

1
N

od
e

17
2

N
od

e
17

3

N
od

e
17

4

N
od

e
17

5

N
od

e
17

6

N
od

e
17

7
N

od
e

17
8

N
od

e
17

9

N
od

e
18

0

N
od

e
18

1

N
od

e
18

2

N
od

e
18

3

N
od

e
18

4
N

od
e

18
5

N
od

e
18

6

N
od

e
18

7

N
od

e
18

8

N
od

e
18

9

N
od

e
19

0

N
od

e
19

1

N
od

e
19

2

N
od

e
19

3

N
od

e
19

4
N

od
e

19
5

N
od

e
19

6

N
od

e
19

7

N
od

e
19

8

N
od

e
19

9

N
od

e
20

0

N
od

e
20

1

N
od

e
20

2
N

od
e

20
3

N
od

e
20

4

N
od

e
20

5

N
od

e
20

6

N
od

e
20

7

N
od

e
20

8

N
od

e
20

9

N
od

e
21

0

N
od

e
21

1

N
od

e
21

2
N

od
e

21
3

N
od

e
21

4

N
od

e
21

5
N

od
e

21
6

N
od

e
21

7

N
od

e
21

8

N
od

e
21

9
N

od
e

22
0

N
od

e
22

1

N
od

e
22

2

N
od

e
22

3

N
od

e
22

4

N
od

e
22

5

N
od

e
22

6

N
od

e
22

7

N
od

e
22

8

N
od

e
22

9
N

od
e

23
0

N
od

e
23

1

N
od

e
23

2

N
od

e
23

3

N
od

e
23

4

N
od

e
23

5

N
od

e
23

6

N
od

e
23

7
N

od
e

23
8

N
od

e
23

9
N

od
e

24
0

N
od

e
24

1

N
od

e
24

2

N
od

e
24

3

N
od

e
24

4
N

od
e

24
5

N
od

e
24

6

N
od

e
24

7

N
od

e
24

8

N
od

e
24

9
N

od
e

25
0

N
od

e
25

1

N
od

e
25

2
N

od
e

25
3

N
od

e
25

4
N

od
e

25
5

N
od

e
25

6

N
od

e
25

7

N
od

e
25

8
N

od
e

25
9

N
od

e
26

0
N

od
e

26
1

N
od

e
26

2
N

od
e

26
3

N
od

e
26

4

N
od

e
26

5
N

od
e

26
6

N
od

e
26

7
N

od
e

26
8

N
od

e
26

9

N
od

e
27

0
N

od
e

27
1

N
od

e
27

2
N

od
e

27
3

N
od

e
27

4
N

od
e

27
5

N
od

e
27

6

N
od

e
27

7
N

od
e

27
8

N
od

e
27

9
N

od
e

28
0

N
od

e
28

1
N

od
e

28
2

N
od

e
28

3
N

od
e

28
4

N
od

e
28

5

N
od

e
28

6

N
od

e
28

7

N
od

e
28

8

N
od

e
28

9

N
od

e
29

0

N
od

e
29

1

N
od

e
29

2
N

od
e

29
3

N
od

e
29

4

N
od

e
29

5

N
od

e
29

6N
od

e
29

7
N

od
e

29
8

N
od

e
29

9
N

od
e

30
0

N
od

e
30

1

N
od

e
30

2

N
od

e
30

3

N
od

e
30

4

N
od

e
30

5
N

od
e

30
6

N
od

e
30

7

N
od

e
30

8

N
od

e
30

9

N
od

e
31

0

N
od

e
31

1

N
od

e
31

2 N
od

e
31

3

N
od

e
31

4
N

od
e

31
5

N
od

e
31

6
N

od
e

31
7

N
od

e
31

8

N
od

e
31

9

N
od

e
32

0
N

od
e

32
1

N
od

e
32

2
N

od
e

32
3

N
od

e
32

4

N
od

e
32

5

N
od

e
32

6

N
od

e
32

7

N
od

e
32

8

N
od

e
32

9

N
od

e
33

0

N
od

e
33

1

N
od

e
33

2

Figure 3.9: Final spanning tree for the US Airport data set through modified algo-

rithm

CHAPTER 4

RESULTS AND ANALYSIS

In this chapter, we present computational results and examples for Leech type tree

labeling and pseudo-code for dense minimum spanning trees.

4.1 Examples for Leaf-Leech Trees

As shown in the Proposition 2.1.2, trees in figure 4.1 are starlike leaf-Leech trees of

at most 4 leaves giving distances from 3 to
(
n
2

)
+ 2.

Figure 4.1: Leaf-Leech trees on 1, 2, 3 and 4 leaves

Since there are no more leaf-Leech trees on n leaves where n > 4, we present

some examples of almost leaf-Leech trees below.

Figure 4.2: Almost leaf-Leech tree examples on 5 leaves

Last two distances are missing in the first tree in figure 4.2. Second tree has

just one missing distance, 8. For the last example on 5 leaves, there is one missing

distance,
(
5
2

)
+ 2 and one extra distance which is

(
5
2

)
+ 3.

25

For trees on 6 leaves in figure 4.3, there are at least two missing distances. For

the last tree, there is also an unsolicited distance. In order to get rid of that distance,

path of length 11 can be placed as in figure 4.4. In that case, unwanted edge is

removed and number of missing distances decreases to one.

Missing distances: {15,16}, {14,16,17}, {16,17}

Figure 4.3: Almost leaf-Leech tree examples on 6 leaves

Figure 4.4: Modifed almost leaf-Leech tree example on 6 leaves

Figure 4.5: Almost leaf-Leech tree examples on 7 leaves

26

4.2 Pseudo-code for Heuristic

In this section, we describe pseudo-code for the edge-swap heuristic for generating

dense spanning trees in detail in Algorithm 1. For MATLAB code, see Appendix B.

The algorithm starts with loading data set in the format of a n × 3 matrix.

First two columns represent an edge with two vertices and last column shows weights

between these vertices. In addition to some specific data sets, we also have a function

“rand starlike graph” for generating a data set of random, undirected graphs, each

of which contains a spanning star. After loading data, a minimum weighted spanning

tree T is computed through Kruskal algorithm. As described earlier, we set true

as initial value of “sparse” since we assume that the tree is not dense enough at

the beginning. Edge-swap heuristic continues to be made until stopping criterion is

satisfied (i.e.“sparse” is false).

Each iteration includes removing a “bad” edge and adding a “good” edge which

is not in the current tree. The first task in the loop is to find the edge to be removed.

Function “findRemovalEdges” gets adjacency matrix of the tree T as an input and

returns list of the candidate edges with the minimum value of f(.). From candidate

list, one of the edges, e = (u, v) is chosen randomly to be removed. After removing

the edge from the adjacency matrix of the tree T , we obtain “T r” as updated tree.

Function “split” is used to split the adjacency matrices of new two subtrees up and

return the lists of neighbors of vertices u and v.

Function “findInsertionEdges” takes neighbor lists, adjacency matrices of up-

dated tree and the original graph as inputs. After calculating g(.) for each candidate

edge, it returns minimum g(.) and list of corresponding edges. One of the candidate

edges e′′ = (u′′, v′′) is chosen to be inserted and the updated tree “T a” is obtained.

After this process, f(e) is compared with g(e′′). If it is less than g(e′′), it means

that new tree is denser than previous. Thus, iterations continue. If f(e) = g(e′′),

27

the degree sequences of the initial tree and current tree are calculated. If the degree

sequence of the current tree “T a” majorizes that of T (and the two degree sequences

are not the same), then an edge-swap is made; otherwise process is terminated.

Data: G = (V,E)

Result: Updated tree T

1 Load data set: G ← data set;

2 T ← MST(G);

3 sparse ← true;

4 while sparse is true do

5 (L remove, min f(e)) ← findRemovalEdges(T);

6 Select removal edge: e ← (u, v);

7 T r ← T \(u, v);

8 (neighbors u, neighbors v) ← split(T r, (u, v));

9 (L add, max g(e)) ← findInsertionEdges(G,T r,neighbors u,neighbors v)

10 Select insertion edge: e′′ ← (u′′, v′′);

11 T a ← T r ∪ (u′′, v′′) ;

12 if min f(e) < max g(e′′) then

13 T ← T a

14 else if min f(e) == max g(e′′) then

15 if degree sequence of T a majorizes degree sequences of T then

16 T ← T a;

17 else

18 sparse ← false;

19 end

20 else

21 sparse ← false;

22 end

23 end

Algorithm 1: Pseudo-code for modified edge-swap heuristic

CHAPTER 5

CONCLUSION

In this thesis, we considered questions of labeled trees and generating dense

spanning trees.

In the first part, we studied questions motivated from a concept called the Leech

trees. In addition to presenting known Leech trees, some non-existence results and

recently studied variations such as modular Leech trees; Leech-type questions on

distances between pairs of leaves which we define as leaf-Leech trees are proposed.

Besides, relation between Leech and leaf-Leech trees and some related questions are

examined such as“almost” Leech and “almost” modulo Leech trees.

In the second part, an edge-swap heuristic for generating dense spanning trees

from a given graph structures is studied. In this case, “dense” trees are determined by

measuring total distance of trees calculated by using Randić index. A MATLAB code

is implemented according to developed efficient algorithm. Computational results are

provided for randomly generated graphs and specific examples from applications. For

further improvement of the results, the concept of majorization between degree se-

quences is included into the algorithm. The outcomes of experiments show significant

improvements over the previous results.

29

REFERENCES

[1] B. Calhoun, K. Ferland, L. Lister, and J. Polhill, Minimal distinct distance trees,
Journal of Combinatorial Mathematics and Combinatorial Computing, 61 (2007),
33-57.

[2] D. Leach, Modular Leech trees of order at most 8, International Journal of Com-
binatorics, (2014), Article ID 218086.

[3] D. Leach and M. Walsh, Generalized Leech trees, Journal of Combinatorial Math-
ematics and Combinatorial Computing, 78 (2011), 15-22.

[4] J. Leech, Research problems: another tree labelling problem, The American
Mathematical Monthly, 82(9) (1975), 923-925.

[5] L.A. Szkely, H. Wang, and Y. Zhang, Some non-existence results on Leech trees,
Bulletin of the Institute of Combinatorics and its Applications, 44 (2005), 37-45.

[6] H. Taylor, Odd path sums in an edge-labeled tree, Mathematics Magazine, 50(5)
(1977), 258-259.

[7] H. Taylor, A distinct distance set of 9 nodes in a tree of diameter 36, Discrete
Mathematics, 93 (1991), 167-168.

[8] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97
(1975) 6609–6615.

[9] D. Rautenbach, A note on trees of maximum weight and restricted degrees, Dis-
crete Math. 271 (2003) 335–342.

[10] R. Silva, D. Silva, M. Resende, G. Mateus, J. Goncalves, P. Festa, An edge-swap
heuristic for generating spanning trees with minimum number of branch vertices,
Optim. Lett. 8 (2014) 1225–1243.

[11] H. Wang, The extremal values of the Wiener index of a tree with given degree
sequence, Discrete Applied Mathematics, 156 (2008), 2647–2654.

[12] H. Wang, Functions on adjacent vertex degrees of trees with given degree se-
quence, Central European J. Math. 12 (2014) 1656–1663.

30

[13] Pajek datasets, US Air lines: http://vlado.fmf.uni-lj.si/pub/networks/data/

[14] X.-D. Zhang, Q.-Y. Xiang, L.-Q. Xu, R.-Y. Pan, The Wiener index of trees
with given degree sequences, MATCH Commun.Math.Comput.Chem., 60 (2008),
623–644.

[15] X.-M. Zhang, X.-D. Zhang, D. Gray, H. Wang, The number of subtrees of trees
with given degree sequence, J. Graph Theory, 73(3) (2013), 280–295.

[16] C.-F. Bazlamacci, K.-S. Hindi, Minimum-weight spanning tree algorithms: a
survey and emprical study, Computers and Operations Research, 28 (2001), 767–
785.

[17] D.R. Karger, P.-N. Klein, R.-E. Tarjan, A randomized linear-time algorithm to
find minimum spanning trees, J. Association for Computing Machinery, 42(2)
(1995), 321–328.

[18] W.B. Strothmann, Bounded degree spanning trees. PhD thesis, Department of
Computer Science, University of Paderborn, 1997.

[19] R.-J. Douglas, NP-completeness and degree restricted spanning trees, Discrete
Mathematics, 105 (1992), 41–47.

[20] D.W. Barnette, 2-connected spanning subgraphs of planar 3-connected graphs,
J. Combinatorial Theory, Series B, 61(1994), 210–216.

[21] Z. Gao, 2-connected coverings of bounded degree in 3-connected graphs, J. Graph
Theory, 20(3)(1995), 327–338.

[22] D.P. Sanders, Y. Zhao,On 2-connected spanning subgraphs with low maximum
degree. Revised manuscript, htp://www.math.ohio-state.edu/ dsanders/paper-
s/lmd.ps, 1996.

Appendix A

FIRST APPENDIX

A.1 Leech vs leaf-Leech

In this section, expansion of known Leech trees are shown. In leaf-Leech trees,

nodes which are shown as star are roots of the tree and dotted edges show pendant

edges.

Figure A.1: Leech tree on 2 vertices (left) and leaf-Leech tree on 2 leaves (right)

Figure A.2: Leech tree on 3 vertices (left) and leaf-Leech tree on 3 leaves (right)

Figure A.3: Leech tree on 4 vertices (left) and leaf-Leech tree on 4 leaves (right)

32

Figure A.4: Leech tree on 4 vertices (left) and leaf-Leech tree on 4 leaves (right)

Figure A.5: Leech tree on 6 vertices (left) and leaf-Leech tree on 6 leaves (right)

A.2 Almost Leech vs Almost leaf-Leech

In this section, one example which demonstrates relation between almost Leech

and leaf-Leech tree is presented.

Figure A.6: Almost Leech on 4 vertices (left) and almost leaf-Leech on 4 leaves (right)

Appendix B

SECOND APPENDIX

B.1 Examples

In this section, examples for Wiener index, Randić index and concept of majorization

are presented.

Example B.1.1. Wiener index of a tree is calculated by the sum of distances between

all pairs of vertices.

1 1

1

Figure B.1: Tree on 4 vertices

In the tree shown in figure B.1, there are three distance 1 and three distance 2

which is the largest distance in the tree. Thus,

W (T) = 3× 1 + 3× 2 = 9.

Example B.1.2. Suppose two nonincreasing degree sequences π′ = (4, 2, 2, 1, 1, 1, 1)

and π′′ = (4, 3, 1, 1, 1, 1, 1) are given. Comparison for the first and summation of the

first two components in the degree sequences, inequality in (3.2) is satisfied. After

summation of first two components, equality in (3.2) is satisfied to the end. As it is

seen on the figure B.2, π′′ majorizes π′.

v′1

v′2 v′3 v′4 v′5

v′21 v′31

v′′1

v′′2 v′′3 v′′4 v′′5

v′′21 v′′22

Figure B.2: π′ on the left and π′′ on the right

34

Example B.1.3. Randić index of a tree is calculated by the summation of products

of adjacent vertex degrees which is shown in (3.1).

v1

v2

v3 v4

Figure B.3: Tree on 4 vertices

Randić index of the tree shown in figure B.3 is:

R(x) = (deg(v1)× deg(v3)) + (deg(v2)× deg(v3)) + (deg(v3)× deg(v4))

= (1× 3) + (1× 3) + (3× 1)

= 9.

Next, MATLAB code for modified algorithm shown in Section 4.2 i presented.

B.2 MainProgram.m

1 % −−−−−−−−−−−−−−−−−−−−−−−− THE EDGE−SWAP HEURISTIC −−−−−−−−−−−−−−−−−−−−−−−−

2 % Georgia Southern Univers i ty , 2014−2015

3 % Department o f Mathematical Sc i ence s

4 % This program f i nd s Dense Spanning Tree from a given graph .

5 % −−−

6 %% Loading s p e c i a l data s e t s :

7 % load g sma l l 15 . txt

8 % [T adj G] = MST(g sma l l 15) ;

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % load USAirports 332 . txt

11 % [T adj G] = MST(USAirports 332) ;

12

13 % view (biograph (t r i u (adj G) , [] , ’ ShowArrows ’ , ’ o f f ’ , ’ ShowWeights ’ , ’ o f f ’))

14 % view (biograph (t r i u (T) , [] , ’ ShowArrows ’ , ’ o f f ’ , ’ ShowWeights ’ , ’ o f f ’))

15 % i n i t w i e n e r = wiener index (T)

16 % −−−

17 %% Generating and load ing data s e t o f random , undirected , connected graph :

18 % H = rand s t a r l i k e g r aph (15) ;

19 % load MyFile . txt

20 % [T adj G] = MST(MyFile) ;

21 % view (biograph (t r i u (adj G) , [] , ’ ShowArrows ’ , ’ o f f ’ , ’ ShowWeights ’ , ’ o f f ’))

22 % view (biograph (t r i u (T) , [] , ’ ShowArrows ’ , ’ o f f ’ , ’ ShowWeights ’ , ’ o f f ’))

23 % [i n i t w i e n e r D1] = wiener index (T) ;

35

24 %% −−−

25 iter num = 0 ;

26 spar se = 1 ;

27 v i s i t e d edg eu = 0 ;

28 v i s i t e d edg ev = 0 ;

29 swap num = 0 ;

30 counter = 0 ;

31 i n i t d e g s e q = degr ee s eq (T) ;

32 p r e v l a s t w i e n e r = i n i t w i e n e r ;

33

34 whi le spar se > 0

35 iter num = iter num + 1 ;

36

37 % c a l c u l a t e s min (f (e)) and re tu rns l i s t o f the s e l e c t e d edges to be removed

38 [L remove f e min] = findRemovalEdges (T, v i s i t ed edgeu , v i s i t e d edg ev) ;

39

40 T r = T;

41 % choose e∗ = (u∗ , v∗) to be removed

42 u = L remove (1 , 1) ;

43 v = L remove (1 , 2) ;

44

45 % de l e t e s e l e c t e c edge : T r = T\(u∗ , v∗)

46 T r (u , v) = 0 ;

47 T r (v , u) = 0 ;

48

49 % s p l i t t r e e in to two part s

50 % s p l i t func t i on re tu rns two separate l i s t s (two subt r e e s)

51 [T1 T2 l i s t u l i s t v] = s p l i t (T r , u , v) ;

52

53 % c a l c u l a t e s max(g (e)) and re tu rns candidate edges to be added

54 [L add max g] = f ind In s e r t i onEdge s (adj G , T r , l i s t u , l i s t v) ;

55

56 % i f s e l e c t e d edge to be added i s the same with removed edge and

57 % i f the l i s t i n c l ude s another candidate edge to be added :

58 i f (L add (1 ,1) == u) & (L add (1 ,2) == v) & (L add (2 ,1) ˜= 0)

59 u new = L add (2 ,1) ; % choose second edge

60 v new = L add (2 ,2) ;

61 e l s e % otherwise , choose same edge

62 u new = L add (1 ,1) ;

63 v new = L add (1 ,2) ;

64 end

65

66 i f (u new == u)&(v new == v)

67 counter = counter + 1 ;

68 v i s i t e d edg eu = u ;

69 v i s i t e d edg ev = v ;

70 e l s e

71 swap num = swap num + 1 ;

72 v i s i t e d edg eu = 0 ;

73 v i s i t e d edg ev = 0 ;

74 end

75

76 T a = T r ;

77 T a (u new , v new) = 1 ;

36

78 T a (v new , u new) = 1 ;

79

80 l a s t d e g s e q = degre e s eq (T a) ;

81

82 deg sum1 = 0 ;

83 deg sum2 = 0 ;

84 mark = 0 ;

85

86 % i f new r e s u l t i s better , update the t r e e and cont inue .

87 i f (f e min < max g)

88 T = T a ;

89 % show t r e e in each step

90 view (biograph (t r i u (T) , [] , ’ ShowArrows ’ , ’ o f f ’ , ’ ShowWeights ’ , ’ o f f ’)) ;

91

92 % i f nothing changed in terms o f func t i on values , check degree sequences

93 e l s e i f f e min == max g

94 f o r e = 1 : s i z e (T a , 1)

95 deg sum1 = deg sum1 + i n i t d e g s e q (e) ;

96 deg sum2 = deg sum2 + l a s t d e g s e q (e) ;

97

98 % compare degree sequences o f prev ious and current t r e e s in each step

99 % i f new swap makes the degree sequence be t t e r :

100 % (i f degree sequence o f new t r e e major i z e s degree sequences o f

101 % prev ious tree , then make swap)

102 i f deg sum2 > deg sum1

103 mark = 1 ;

104 end

105

106 % i f there i s an equ iva l ence between degree sums , then

107 % keep going to at the end o f the degree sums

108 i f deg sum2 >= deg sum1

109 cont inue ;

110 % i f degree sum isn ’ t a f f e c t e d in a good way , stop swapping .

111 e l s e

112 spar se = 0 ;

113 mark = 0 ;

114 break ;

115 end

116 end

117

118 % i f new swap makes the degree sequence be t t e r (from prev ious i f b lock) :

119 i f mark == 1

120 % make that swap and update the t r e e

121 T = T a ;

122

123 %view (biograph (t r i u (T) , [] , ’ ShowArrows ’ , ’ o f f ’ , ’ ShowWeights ’ , ’ o f f ’)) ;

124 [l a s t w i e n e r D] = wiener index (T) ;

125

126 % i f wiener index o f updated t r e e i s b e t t e r than previous ,

127 % then update wiener index

128 i f l a s t w i e n e r < p r e v l a s t w i e n e r

129 p r e v l a s t w i e n e r = l a s t w i e n e r ;

130 %i f wiener does not change , stop .

131 e l s e i f l a s t w i e n e r == pr ev l a s t w i e n e r

37

132 spar se = 0 ;

133 end

134 end

135

136 % i f new r e s u l t i s not better , stop .

137 e l s e

138 spar se = 0 ;

139 end

140 end

141

142 [l a s t w i e n e r D] = wiener index (T) ;

143

144 di sp (’ i ter num = ’)

145 d i sp (iter num)

146 disp (’ swap num =’)

147 d i sp (swap num)

148 view (biograph (t r i u (T) , [] , ’ ShowArrows ’ , ’ o f f ’ , ’ ShowWeights ’ , ’ o f f ’)) ;

149 d i sp (’ i n i t w i e n e r ’)

150 d i sp (i n i t w i e n e r)

151 d i sp (’ l a s t w i e n e r =’)

152 d i sp (l a s t w i e n e r)

B.3 rand starlike graph.m

1 func t i on [adj G] = rand s t a r l i k e g r aph (n)

2

3 % func t i on [adj G] = rand s t a r l i k e g r aph (n)

4 % This func t i on gene ra t e s data s e t o f random undi rec ted graph

5 % s i n c e we want to have a connected graph ,

6 % 1 s t column and 1 s t row o f the adjacency matrix o f graph inc lude j u s t 1 ’ s

7 % input :

8 % n = s i z e o f the adjacency matrix o f the data s e t to be generated

9 % output :

10 % adj G = adjacency matrix o f generated data s e t

11 % va r i a b l e s :

12 % random = upper t r i a n gu l a r part o f random (n−1)x (n−1) matrix

13 % M = (n−1)x (n−1) matrix whose e lements e i t h e r 1 or 0

14 % A = nx3 matrix . [ver tex vertex weight]

15 % edge i s de f ined by f i r s t two columns and th i rd column shows

16 % weights between v e r t i c e s

17 %−−

18

19 adj G = ze ro s (n , n) ;

20 f i r s t r ow = ones (1 , n) ;

21 f i r s t c o l umn = ones (n , 1) ;

22

23 f i r s t r ow (1) = 0 ;

24 f i r s t c o l umn (1) = 0 ;

25

26 % 1 s t row and 1 s t column inc l ude s 1 s in order to guarantee a connected graph

27 adj G (1 , :) = f i r s t r ow ;

38

28 adj G (: , 1) = f i r s t c o l umn ;

29

30 random = t r i u (rand (n−1)) ;

31 M = random + t r i l (random ’ ,−1) > .5;

32 M(l o g i c a l (eye (s i z e (M)))) = 0 ;

33

34 % r e s t o f the adjacency matrix i n c l ude s randomly generated matrix M

35 adj G (2 : n , 2 : n) = M;

36

37 % counts number o f edges (accord ing to 1 s in the adjacency martix)

38 counter = 0 ;

39 f o r i =1:n

40 f o r j=i : n

41 i f adj G (i , j) == 1

42 counter = counter + 1 ;

43 end

44 end

45 end

46

47 weights = ze ro s (counter , 1) ;

48 i i nd ex = ze ro s (counter , 1) ;

49 j i nd ex = ze ro s (counter , 1) ;

50

51 ind = 0 ;

52 f o r k=1:n

53 f o r l=k : n

54 i f adj G (k , l) == 1

55 ind = ind+1;

56 weights (ind) = rand (1) ;

57 i i nd ex (ind) = k ;

58 j i nd ex (ind) = l ;

59 end

60 end

61 end

62

63 A = [i i nd ex j i nd ex weights] ;

64

65 % wr i t ing in to a text f i l e

66 f i d=fopen (’MyFile . txt ’ , ’w ’) ;

67 formatSpec = ’%i %i %0.2 f \n ’ ;

68 f p r i n t f (f id , formatSpec , A’) ;

69 f c l o s e (f i d) ;

70

71 end

39

B.4 MST.m

1 func t i on [T, adj G] = MST(G)

2

3 % func t i on [T, adj G] = MST(G)

4 % Kruskal a lgor i thm i s used to f i nd minimum spanning t r e e from a given graph

5 % Input :

6 % G = nx3 matrix . 1 s t and 2nd columns de f i n e the edge (2 v e r t i c e s) and

7 % 3rd column shows the weight o f the edge

8 % Output :

9 % T = adjacency matrix o f the minimum spanning t r e e

10 % adj G = adjacency matrix o f the graph

11 % va r i a b l e s :

12 % row = number o f rows o f the given graph matrix G

13 % n = s i z e o f graph matrix

14

15 %−−

16

17 row number = s i z e (G, 1) ;

18

19 % cr ea t e adjacency matrix o f the graph which i s a symmetric matrix

20 % read l i n e by l i n e .

21 f o r i = 1 : row number

22 adj G (G(i , 1) ,G(i , 2)) = 1 ;

23 adj G (G(i , 2) ,G(i , 1)) = 1 ;

24 end

25

26 n = s i z e (adj G , 1) ;

27

28 % so r t G by ascending order accord ing to 3 rd column (inc lud ing weights)

29 G = so r t (G, 3 , ’ ascend ’)

30 v e r t i c e s = ze ro s (1 , n) ;

31 T = ze ro s (n) ;

32

33 f o r i = 1 : row number

34 % check when we i n s e r t edge [i , j] in the graph whether i t has cy c l e

35 i n s e r t ed edg e = G(i , [1 2]) ;

36 [v e r t i c e s , c y c l e] = c y c l e c o n t r o l (v e r t i c e s , i n s e r t ed edg e) ;

37 i f c y c l e == 1

38 G(i , :) = [0 0 0] ;

39 end

40 end

41

42 % Create minimum spanning tree ’ s adjacency matrix

43 f o r i = 1 : row number

44 i f G(i , [1 2]) ˜= [0 0]

45 T(G(i , 1) ,G(i , 2)) = 1 ;

46 T(G(i , 2) ,G(i , 1)) = 1 ;

47 end

48 end

49 end

40

B.5 cycle control.m

1 func t i on [v e r t i c e s , c y c l e] = c y c l e c o n t r o l (v e r t i c e s , i n s e r t ed edg e)

2

3 % Reference : http ://www. mathworks . com/mat labcentra l / f i l e e x chang e /13457− kruskal−algor i thm/ content

//MST Kruskal/ i s c y c l e .m

4 % func t i on [v e r t i c e s , c y c l e] = c y c l e c o n t r o l (v e r t i c e s , i n s e r t ed edg e)

5 % input :

6 % v e r t i c e s = se t o f v e r t i c e s in the graph

7 % in s e r t ed edg e = edge we i n s e r t in graph

8 % output :

9 % v e r t i c e s = The ”new : s e t o f v e r t i c e s

10 % cyc l e = 1 i f the re i s a cyc le , e l s e cy c l e = 0

11 %−−

12

13 g = max(v e r t i c e s)+1;

14 cyc l e = 0 ;

15 n = length (v e r t i c e s) ;

16

17 i f v e r t i c e s (i n s e r t ed edg e (1)) == 0 & v e r t i c e s (i n s e r t ed edg e (2)) == 0

18 v e r t i c e s (i n s e r t ed edg e (1))=g ;

19 v e r t i c e s (i n s e r t ed edg e (2))=g ;

20 e l s e i f v e r t i c e s (i n s e r t ed edg e (1))==0

21 v e r t i c e s (i n s e r t ed edg e (1))=v e r t i c e s (i n s e r t ed edg e (2)) ;

22 e l s e i f v e r t i c e s (i n s e r t ed edg e (2))==0

23 v e r t i c e s (i n s e r t ed edg e (2)) = v e r t i c e s (i n s e r t ed edg e (1)) ;

24 e l s e i f v e r t i c e s (i n s e r t ed edg e (1)) == v e r t i c e s (i n s e r t ed edg e (2)) % check s e l f−cy c l e

25 cy c l e = 1 ;

26 return

27 e l s e

28 m = max(v e r t i c e s (i n s e r t ed edg e (1)) , v e r t i c e s (i n s e r t ed edg e (2))) ;

29 f o r i =1:n

30 i f v e r t i c e s (i)== m

31 v e r t i c e s (i) = min (v e r t i c e s (i n s e r t ed edg e (1)) , v e r t i c e s (i n s e r t ed edg e (2))) ;

32 end

33 end

34 end

B.6 findRemovalEdges.m

1 func t i on [L f e min] = findRemovalEdges (T, v i s i t ed edgeu , v i s i t e d edg ev)

2

3 % func t i on [L f e min] = findRemovalEdges (T, v i s i t ed edgeu , v i s i t e d edg ev)

4 % This func t i on f i nd s cand iate edge (s) to be removed .

5 % inputs :

6 % T = adjacency matrix o f the t r e e

7 % v i s i t e d edg eu = checks i f the edge between u and v i s v i s i t e d be f o r e

8 % v i s i t e d edg ev = checks i f the edge between u and v i s v i s i t e d be f o r e

9 % outputs :

10 % L = l i s t o f candidate edges to be removed

11 % f e min = minimum f (e)

41

12 % va r i a b l e s :

13 % l i s t = nx2 matrix s t o r i n g cand idates

14 % count = counts degree s o f v e r t i c e s

15 % deg = vector which s t o r e s degree o f each vertex

16 % f e min = f (e) = deg u ∗ deg v + deg o f n e i g hbo r s o f u + deg o f n e i g hbo r s o f v

17 % ind = number o f edges which g i v e s minimum f (e)

18 % −−−

19

20 n = s i z e (T, 1) ;

21 deg = ze ro s (n , 1) ;

22 count = 0 ;

23 l i s t = ze ro s (n , 2) ;

24 % f i nd s degree o f each vertex .

25 f o r i = 1 : n

26 f o r j = 1 : n

27 i f T(i , j) == 1

28 count = count +1;

29 end

30 end

31 deg (i) = count ;

32 count = 0 ;

33 end

34 %−−−

35

36 % i n i t i a l i z e f (e)=0 and min (f (e))= t o t a l degree

37 f e = 0 ;

38 f e min = sum(deg) ;

39 ind = 0 ;

40

41 % i f u i s not v i s i t e d be f o r e :

42 i f v i s i t e d edg eu == 0

43 % Looks f o r each connected e=(u , v) and c a l c u l a t e s f (e) .

44 f o r i = 1 : n

45 f o r j = i : n

46 i f T(i , j) == 1 % I f u and v are connected

47 f e = deg (i)∗deg (j) ;

48 f o r k = 1 : n % looks f o r degree o f other ne ighbors o f u

49 i f k ˜= j

50 i f T(i , k) == 1

51 f e = f e + deg (k) ;

52 end

53 end

54 end

55 f o r l = 1 : n % looks f o r degree o f other ne ighbors o f v

56 i f l ˜= i

57 i f T(l , j) == 1

58 f e = f e + deg (l) ;

59 end

60 end

61 end

62 % Check i f the re are two edge having the same min f (e) ! ! !

63 i f f e < f e min % con t r o l s to f i nd min f (e) .

64 ind = 1 ;

65 l i s t = ze ro s (n , 2) ;

42

66 f e min = f e ;

67 l i s t (ind , :) = [i j] ; % coo rd ina t e s o f v e r t i c e s g i v ing min f (e) .

68 e l s e i f f e == f e min

69 ind = ind + 1 ;

70 l i s t (ind , :) = [i j] ;

71 end

72 end

73 end

74 end

75

76 % i f u i s v i s i t e d be f o r e

77 e l s e

78 f o r i = 1 : n % Looks f o r each connected e=(u , v) and c a l c u l a t e s f (e) .

79 f o r j = i : n

80 i f (T(i , j) == 1) & (i ˜= v i s i t e d edg eu) & (j ˜= v i s i t e d edg ev) % I f u and v are

connected

81 f e = deg (i)∗deg (j) ;

82 f o r k = 1 : n % looks f o r degree o f other ne ighbors o f u

83 i f k ˜= j

84 i f T(i , k) == 1

85 f e = f e + deg (k) ;

86 end

87 end

88 end

89 f o r l = 1 : n % looks f o r degree o f other ne ighbors o f v

90 i f l ˜= i

91 i f T(l , j) == 1

92 f e = f e + deg (l) ;

93 end

94 end

95 end

96 % Check i f the re are two edges having the same min f (e) ! ! !

97 i f f e < f e min % con t r o l s to f i nd min f (e) .

98 ind = 1 ;

99 l i s t = ze ro s (n , 2) ;

100 f e min = f e ;

101 l i s t (ind , :) = [i j] ; % coo rd ina t e s o f v e r t i c e s g i v ing min f (e) .

102 e l s e i f f e == f e min

103 ind = ind + 1 ;

104 l i s t (ind , :) = [i j] ;

105 end

106 end

107 end

108 end

109 end

110

111 L = ze ro s (ind , 2) ;

112 f o r m=1: ind

113 L(m, :) = l i s t (m, :) ;

114 end

115 end

43

B.7 split.m

1 func t i on [T1 T2 l i s t u l i s t v] = s p l i t (T r , u , v)

2

3 % func t i on [T1 T2 l i s t u l i s t v] = s p l i t (T, u , v)

4 % This func t i on s p l i t s the t r e e in to two part s

5 % i . e . d e l e t e s the edge that i s chosen to be removed

6

7 % inputs :

8 % T r = adjacency matrix o f t r e e whose edge was de l e t ed

9 % u , v = v e r t i c e s showing the edge chosen to be removed

10 % outputs :

11 % T1 = one part o f the adjacency matrix o f o r i g i n a l t r e e a f t e r removing

12 % T2 = other part o f the adjacency matrix o f o r i g i n a l t r e e a f t e r removing

13 % l i s t u = l i s t o f u and ne ighbors o f u (accord ing to matrix T1)

14 % l i s t v = l i s t o f v and ne ighbors o f v (accord ing to matrix T2)

15 % −−−

16

17 n = s i z e (T r , 1) ;

18 T1 = ze ro s (n , n) ;

19 T2 = ze ro s (n , n) ;

20 l i s t u = ze ro s (n , 1) ;

21 l i s t v = ze ro s (n , 1) ;

22 l i s t u (1) = u ;

23 l i s t v (1) = v ;

24

25 %%% Process f o r l i s t u %%%

26 f l a g = 0 ;

27 ind = 1 ;

28 f o r i = 1 : n−1

29 i f l i s t u (i) == 0

30 break ;

31 e l s e

32 f o r j = 1 : n

33 f l a g = 0 ;

34 i f T r (l i s t u (i) , j) == 1

35 ind = ind + 1 ;

36 f o r k = 1 : n−1

37 i f isempty (f i nd (l i s t u (k) == j))

38 f l a g = 1 ;

39 e l s e

40 f l a g = 0 ;

41 ind = ind − 1 ;

42 break ;

43 end

44 end

45 i f f l a g == 1

46 l i s t u (ind) = j ;

47 f l a g = 0 ;

48 end

49 end

50 end

51 end

44

52 end

53

54 %%% Process f o r l i s t v %%%

55 ind = 1 ;

56 f o r i = 1 : n−1

57 i f l i s t v (i) == 0

58 break ;

59 e l s e

60 f o r j = 1 : n

61 f l a g = 0 ;

62 i f T r (l i s t v (i) , j) == 1

63 ind = ind + 1 ;

64 f o r k = 1 : n−1

65 i f isempty (f i nd (l i s t v (k) == j))

66 f l a g = 1 ;

67 e l s e

68 f l a g = 0 ;

69 ind = ind − 1 ;

70 break ;

71 end

72 end

73 i f f l a g == 1

74 l i s t v (ind) = j ;

75 f l a g = 0 ;

76 end

77 end

78 end

79 end

80 end

81

82 % cons t ruc t ing adjacency matr i ces (T1 , T2) o f two subt r e e s

83 f o r m = 1 : n

84 i f l i s t u (m) ˜= 0

85 T1(l i s t u (m) , 1 : n) = T r (l i s t u (m) , 1 : n) ;

86 end

87 i f l i s t v (m) ˜= 0

88 T2(l i s t v (m) , 1 : n) = T r (l i s t v (m) , 1 : n) ;

89 end

90 end

91 end

B.8 findInsertionEdges.m

1 func t i on [L max g]= f ind In s e r t i onEdge s (adj G , T r , l i s t u , l i s t v)

2

3 % func t i on [L max g]= f ind In s e r t i onEdge (adj G , T, l i s t u , l i s t v)

4 % This func t i on f i nd s candidate edge (s) to be added .

5 % inputs :

6 % adj G = adjacency matrix o f graph

7 % T r = adjacency matrix o f t r e e whose edge was de l e t ed

8 % l i s t u = l i s t o f u and ne ighbors o f u

9 % l i s t v = l i s t o f v and ne ighbors o f v

45

10 % outputs :

11 % L = l i s t o f candidate edges to be added

12 % max g = maximum g (e)

13 % va r i a b l e s :

14 % G dif T = d i f f e r e n c e matrix o f adj G and T r

15 % m g = output o f the g e max () func t i on

16 % = (deg u+1) ∗ (deg v+1) + deg o f n e i g hbo r s o f u + deg o f n e i g hbo r s o f v

17 %−−

18

19 n = s i z e (T r , 1) ;

20 u = l i s t u (1) ;

21 v = l i s t v (1) ;

22

23 G dif T = adj G − T r ;

24

25 m g = 0 ;

26 max g = 0 ;

27 L = ze ro s (n , 2) ;

28 ind = 0 ;

29 u n = 0 ;

30 v n = 0 ;

31 temp = 0 ;

32

33 f o r i = 1 : n

34 i f l i s t u (i) == 0

35 break ;

36 e l s e

37 temp = l i s t u (i) ;

38 f o r j = 1 : n

39 i f G dif T (temp , j) == 1

40 f o r k = 1 : n

41 % check whether u and v i s connected :

42 i f ˜ isempty (f i nd (l i s t v (k) == j))

43 u n = temp ;

44 v n = j ;

45 m g = g e max (T r , u n , v n) ;

46 % con t r o l f o r f i nd i ng max g (e)

47 i f m g > max g

48 ind = 1 ;

49 max g = m g ;

50 L(ind , :) = [u n v n] ;

51 e l s e i f m g == max g

52 ind = ind + 1 ;

53 L(ind , :) = [u n v n] ;

54 end

55 end

56 end

57 end

58 end

59 end

60 end

61 end

46

B.9 g e max.m

1 func t i on max g = g e max (T r , u new , v new)

2

3 % func t i on max g = g e max (T r , u new , v new)

4 % This func t i on he lps f i nd In s e r t i onEdge () func t i on to c a l c u l a t e max(g (e))

5 % inputs :

6 % T r = adjacency matrix o f t r e e whose edge was de l e t ed

7 % u new , v new = v e r t i c e s d e f i n i n g new edge which i s added

8 % outputs :

9 % max g = maximum g (e)

10 % = (deg u+1)∗(deg v+1)+deg o f n e i g hbo r s o f u+deg o f n e i g hbo r s o f v

11 %−−

12

13 n = s i z e (T r , 1) ;

14 deg = ze ro s (n , 1) ;

15 max g = 0 ;

16 count = 0 ;

17

18 % f i nd s degree o f each vertex o f T r .

19 f o r i = 1 : n

20 f o r j = 1 : n

21 i f T r (i , j) == 1

22 count = count +1;

23 end

24 end

25

26 deg (i) = count ;

27 count = 0 ;

28 end

29

30 max g = (deg (u new)+1)∗(deg (v new)+1) ;

31

32 % looks f o r degree o f other ne ighbors o f u

33 f o r k = 1 : n

34 i f T r (u new , k) == 1

35 max g = max g + deg (k) ;

36 end

37 end

38

39 % looks f o r degree o f other ne ighbors o f v

40 f o r l = 1 : n

41 i f T r (v new , l) == 1

42 max g = max g + deg (l) ;

43 end

44 end

45 end

47

B.10 degree seq.m

1 func t i on deg = degr ee s eq (T)

2

3 % func t i on deg = degre e s eq (T)

4 % This func t i on c a l c u l a t e s degree sequences o f a given t r e e T

5 %−−

6 n = s i z e (T, 1) ;

7 deg1 = ze ro s (n , 1) ;

8 count = 0 ;

9 L1 = ze ro s (n , 2) ;

10

11 f o r i = 1 : n % f i nd s degree o f each vertex .

12 f o r j = 1 : n

13 i f T(i , j) == 1

14 count = count +1;

15 end

16 end

17 deg1 (i) = count ;

18 count = 0 ;

19 end

20

21 deg = so r t (deg1 , ’ descend ’) ;

22 end

B.11 wiener index.m

1 func t i on [ind D] = wiener index (T)

2

3 % Reference : K. THILAKAM & A. SUMATHI, HOW TO COMPUTE THE WIENER INDEX OF A

4 % GRAPH USING MATLAB, I n t e r n a t i o na l Journal o f Applied Mathematics &

5 % S t a t i s t i c a l Sc i ence s (IJAMSS) , Vol . 2 , I s su e 5 , Nov 2013 , 143−148

6 %−−

7 % func t i on [ind D] = wiener ind (T)

8 % This func t i on c a l c u l a t e s the Wiener index o f g iven t r e e

9 % input :

10 % T = adjacency matrix o f the t r e e T

11 % outputs :

12 % ind = wiener index o f T

13 % D = di s tance matrix o f T

14 %−−

15 A = T;

16 % conver t s a spar se or f u l l matrix to spar se form by squeez ing out any zero e lements .

17 G = spar se (A) ;

18 % f i nd s a l l the sho r t e s t paths in graph .

19 D = grapha l l s ho r t e s tpa th s (G, ’ d i r e c t ed ’ , f a l s e) ;

20 % c a l c u l a t e s t o t a l d i s t an c e s

21 M = sum(sum(D)) ;

22 % take ha l f o f the t o t a l d i s t ance s i n c e i t i s c a l cu l a t ed f o r ’ d i r ec ted ’

23 ind = M/2;

24 end

	Labeled Trees and Spanning Trees: Computational Discrete Mathematics and Applications
	Recommended Citation

	tmp.1437061759.pdf.Dz6xT

