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ABSTRACT

World Health Organization statistics show that cervical cancer is the fourth most frequent

cancer in women with an estimated 530,000 new cases in 2012. Cervical cancer diagno-

sis typically involves liquid based cytology (LBC) followed by a pathologist review. The

accuracy of decision is therefore highly influenced by the expert’s skills and experience, re-

sulting in relatively high false positive and/or false negative rates. Moreover, given the fact

that the data being analyzed is highly dimensional, same reviewer’s decision is inherently

affected by inconsistencies in interpreting the data.

In this study, we use an Artificial Neural Network based model that aims to considerably

reduce experts’ inconsistencies in predicting cervical cancer. We rely on standard machine

learning techniques to train the neural network using six experts’ predictions for cervical

cancer (based on analysis of more than sixty parameters/risk factors) and we produce a

model where the unanimous decision is predicted with very good accuracy.
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CHAPTER 1

INTRODUCTION

Worldwide, according to the World Health Organization fact sheet [26], cervical cancer is

the fourth most frequent cancer in women with an estimated 530,000 new cases in 2012

representing 7.5% of all female cancer deaths. For women living in less developed regions,

cervical cancer is the second most common cancer, with an estimated 445,000 new cases

in 2012 (84% of the new cases worldwide). In 2012, approximately 270,000 women died

from cervical cancer; more than 85% of these deaths occurring in low- and middle-income

countries. Cervical cancer diagnosis typically involves liquid based cytology (LBC) fol-

lowed by a pathologist review. The accuracy of the decision is therefore highly influenced

by the expert’s skills and experience, resulting in relatively high false positive (∼10%) or

false negative rates (∼20%) [23]. Moreover, given the fact that the data being analyzed is

high dimensional, the same reviewer’s decision is inherently affected by inconsistencies in

interpreting the data.

Typically, a few pathologists review a patient’s screening data and present their diag-

nosis. The predictions can be consequently affected by the experts’ ability to process large

amount of information and their own subjectivity. In this study, we create an Artificial Neu-

ral Network (ANN) based model that aims to considerably reduce experts’ inconsistencies

in predicting cervical cancer. We rely on standard machine learning techniques to train the

neural network using six experts’ predictions for cervical cancer (based on analysis of more

than sixty parameters/risk factors) and we produce a model where the unanimous decision

is predicted with very good accuracy. The advantages of using such a model are twofold:

(i) consistent predictions based on data collected during patients screening and (ii) reduced

diagnostics costs by identifying the most important screening parameters and reducing the

number of experts involved in the cancer risk prediction process.
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1.1 WHAT IS CERVICAL CANCER?

Cancer begins when cells in the body start to become out of control. Cells in about any

piece of the body can progress toward becoming cancer and can spread to different zones

of the body.

Cervical growth begins with the cells coating the cervix - the lower portion of the

uterus (womb). This is once in a while called the uterine cervix. The fetus develops in

the body of the uterus (the upper part). The cervix interfaces the body of the uterus to the

vagina (birth channel).

The cervix has two distinct parts and is secured with two unique sorts of cells [1]:

1. The piece of the cervix nearest to the body of the uterus is known as the endocervix

and is secured with glandular cells.

2. The part beside the vagina is the exocervix (or ectocervix) and is canvassed in squa-

mous cells.

These two cell types meet at a place called the transformation zone. The correct area of the

transformation zone changes as you get more established and on the off chance that you

conceive an offspring (Figure 1.1).
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Figure 1.1: Cervical cancer image

Most cervical cancers start in the cells in the transformation zone. These cells do

not abruptly change into cancer. Rather, the ordinary cells of the cervix first progressively

create pre-cancerous changes that transform into cancer. Specialists utilize a few terms

to depict these pre-cancerous changes, including cervical intraepithelial neoplasia (CIN),

squamous intraepithelial lesion (SIL), and dysplasia. These progressions can be recognized

by the Pap test and treated to keep growth from creating.

Even though cervical cancers begin from cells with pre-cancerous changes (pre-cancers),

just a portion of the women with pre-cancerous cells in the cervix will create cancer. It gen-

erally takes quite a long while for cervical pre-cancer to change to cervical cancer, yet it

likewise can occur in under a year. For most women, pre-cancerous cells will leave with

no treatment. All things considered, in some women pre-cancers transform into genuine

(intrusive) cancers. Treating all cervical pre-cancers can anticipate every cervical growth.

Pre-cancerous changes and particular sorts of treatment for pre-cancers are examined in

Cervical Cancer Prevention and Early Detection.
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Cervical cancers and cervical pre-cancers are characterized by what they look like un-

der a microscope. The fundamental kinds of cervical cancers are squamous cell carcinoma

and adenocarcinoma.

• Most (up to 9 out of 10) cervical cancers are squamous cell carcinomas. These

cancers originate from cells in the exocervix and the cancer cells have highlights of

squamous cells under the magnifying lens. Squamous cell carcinomas frequently

start in the transformation zone (where the exocervix joins the endocervix).

• The vast majority of the other cervical cancers are adenocarcinomas. Adenocarcino-

mas are cancers that originate from gland cells. Cervical adenocarcinoma originatea

from the mucus-producing gland cells of the endocervix. Cervical adenocarcinomas

appear to have turned out to be more typical in the previous 20 to 30 years.

• Less usually, cervical cancers have highlights of both squamous cell carcinomas and

adenocarcinomas. These are called adenosquamous carcinomas or blended carcino-

mas.

Albeit almost cervical cancers are either squamous cell carcinomas or adenocarcinomas,

different kinds of cancer likewise can originate in the cervix. These different kinds (for

example; melanoma, sarcoma, and lymphoma) happen normally in different parts of the

body[1].

1.2 THE EXPERIMENTAL DATA

We give a brief description for the experimental data [5] we used for our model. The

complete experimental data set description is given in Appendix A. Our model is created

based on numeric measurements performed on images of histologic specimens from 98

patient’s cervixes. The images were retrieved using three different standard tests: Hinsel-

mann, Schiller, and Green. Each original image was subsequently converted into a black
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Figure 1.2: Image of a histologic specimen of a patient cervix using Hinselmann’s test (left:

original; right: processed)

and white image of the cervix shape and various numerical measurements were performed

on both images (original and processed): cervix area, walls thicknesses, color intensities,

etc.

Hinselmann’s test is based on the first colposcopy experiments performed by Hinsel-

mann as early as 1924 [7]. The method has since evolved and perfected with the contribu-

tion of many researchers. Figure 1.2 shows an image of a histologic specimen of a patient

cervix using Hinselmann’s test.

Schiller’s test or Schiller’s Iodine test [27] is a medical test in which iodine solution

is applied to the cervix in order to diagnose cervical cancer. Schiller’s iodine solution is

applied to the cervix under direct vision. Normal cervical mucosa contains glycogen and

stains brown, whereas abnormal areas, such as early cervical cancer, do not take up the

stain. The abnormal areas can then be examined histologically (or biopsied). In Figure 1.3

we show an image of a histologic specimen retrieved using Schiller’s test.

The Green test consists of the use of simple agents such as acetic acid and iodine

(like in Schiller’s test), together with the use of a green illumination filter, which can high-

light suspicious regions [13]. An image of a histologic specimen of a patient cervix using

Green’s test is shown in Figure 1.4.

The experimental data collected consists of 98 image samples for each method. For
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Figure 1.3: Image of a histologic specimen of a patient cervix using Schiller’s test (left:

original; right: processed)

Figure 1.4: Image of a histologic specimen of a patient cervix using Green’s test (left:

original; right: processed)
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Figure 1.5: Experimental data excerpt (98 samples, 69 variables)

each sample, 62 measurements were performed and the results were stored in three different

files (one file per each method). In addition to the 62 measurements, the opinions (0 = no

risk, 1 = risk of cancer) of six experts were recorded for each data sample. Consequently,

each data set/file contains 98 samples× 69 variables. A data set excerpt (12 samples and

9 variables) is shown in Figure 1.5 (In Hinselmann it has 97 samples).

1.3 THE MODEL

The main objective of this work is to create a mathematical model for predicting cervi-

cal cancer, based on the collected experimental data (including the 6 experts opinions for

each sample). The main assumption we make is that there exists a non-linear relationship

between the 62 variables representing image measurements and the opinions (0 or 1) of

experts:

F : R62 → {0, 1}6 (1.1)

We create an Artificial Neural Network based model and rely on standard machine

learning techniques to train our model using six experts’ predictions for cervical cancer,

based on the analysis of 62 parameters/risk factors. Figure 1.6 shows a general Artificial

Neural Network (ANN) model with one hidden layer and a single output. For simplicity,
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Figure 1.6: An Artificial Neural Network with one hidden layer and a single output
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we show here a model with a single output, but the extension to six outputs (predictions)

follows naturally from this model and it will be presented in detail in Chapter 3. For an

ANN model as in Figure 1.6 with N inputs, one hidden layer with L neurons, and a single

output y, the model is described by:

y : R62 → (0, 1)

y(x1, . . . , xN ;w11, . . . , wNL, z1, . . . , zL, b11, . . . , b1L, b2) =

σ

(
L∑

j=1

zjσ

(
N∑
i=1

wijxi + b1j

)
+ b2

) (1.2)

where N = 62, L will be determined experimentally, and σ() is called the activation

function, which in our model is the sigmoid function:

σ : R→ R, σ(x) =
1

1 + e−x

Using a subset of S samples {(xi1, . . . , xi,62, ei) | i = 1 . . . S} of the experimental data

(where xi1, . . . , xi,62 represent the sample’s measurement values and ei is the experts’ pre-

dictions consensus for the sample), the parametersw11, . . . , wNL, z1, . . . , zL, b11, . . . , b1L, b2

in (1.2) are determined as the optimal solution of the unconstrained optimization problem:

min
S∑

i=1

(−ei log yi − (1− ei) log(1− yi))

(where yi = y(xi1, . . . , xi,62;w11, . . . , wNL, z1, . . . , zL, b11, . . . , b1L, b2))

(1.3)

Finally, we define our ANN prediction model as follows.

Definition 1. For the given experimental data, an ANN model as in (1.2) with parameters

computed using (1.3), we define the cancer risk prediction model:

F̂ : R62 → {0, 1}

F̂ (x1, . . . , xN) =

 1, if y(x1, . . . , xN) ≥ T

0, if y(x1, . . . , xN < T

(1.4)

where T denotes the decision threshold (typically, T = 0.5).
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CHAPTER 2

ARTIFICIAL NEURAL NETWORKS

2.1 HISTORY

In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts wrote a

paper [12] on how neurons might work. In order to describe how neurons in the brain

might work, they modeled a simple neural network using electrical circuits.

In 1949, Donald Hebb wrote The Organization of Behavior, a work which pointed out

the fact that neural pathways are strengthened each time they are used, a concept funda-

mentally essential to the ways in which humans learn. If two nerves fire at the same time,

he argued, the connection between them is enhanced [25]. Deep learning involves train-

ing neural networks with hidden layers, sometimes many levels deep. Frank Rosenblatt

(1928-1971) is widely acknowledged as a pioneer in the training of neural networks, espe-

cially for his development of the perceptron update rule, a provably convergent procedure

for training single layer feedforward networks. He is less widely acknowledged for his

pioneering work with other network architectures, including multi-layer perceptions and

models with connections backwards through the layers, as in recurrent neural nets [15]. In

1986, with multiple layered neural networks in the news, the problem was how to extend

the Widrow-Hoff rule to multiple layers. Three independent groups of researchers, one of

which included David Rumelhart, a former member of Stanford’s psychology department,

came up with similar ideas which are now called backpropagation networks because it dis-

tributes pattern recognition errors throughout the network [19]. Hybrid networks used just

two layers, these back-propagation networks use many. The result is that back-propagation

networks are ”slow learners,” needing possibly thousands of iterations to learn. Now, neu-

ral networks are used in several applications. The fundamental idea behind the nature of

neural networks is that if it works in nature, it must be able to work in computers. The
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future of neural networks, though, lies in the development of hardware. Much like the ad-

vanced chess-playing machines like Deep Blue, fast, efficient neural networks depend on

hardware being specified for its eventual use [25, 21].

2.2 WHAT ARE NEURAL NETWORKS?

An artificial neural network (ANN), often just called a “neural network” (NN), is a mathe-

matical model or computational model based on biological neural networks, in other words,

is an emulation of biological neural system. It consists of an interconnected group of ar-

tificial neurons and processes information using a connectionist approach to computation.

In most cases, an ANN is an adaptive system that changes its structure based on exter-

nal or internal information that flows through the network during the learning phase [22].

An ANN is arranged for a particular application, for example, pattern recognition or data

classification.

2.3 WHY USE NEURAL NETWORKS?

Neural systems, with their striking capacity to get significance from complicated or un-

certain data can be utilized to extricate designs and identify patterns that are too complex

to possibly to be seen by either humans or other computer techniques[2]. A trained neu-

ral network can be thought of as a “specialist” in the classification of data, it has been

given to analyze. This expert would then be able to be utilized to give projections given

new circumstances and reply to “what if” questions. Other advantages include: adaptive

learning, self-Organization, real-Time operation and fault tolerance via redundant informa-

tion coding. Neural networks process data likewise the human brain does. The network is

made from countless interconnected processing components (neurons) working in parallel

to solve of a specific issue. Neural networks learn by example. They can not be modified

to play out a specific task. The examples must be chosen carefully otherwise time is squan-
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dered or much more dreadful the network may work inaccurately. The disadvantage is that

because the network finds out how to solve the issue without anyone else’s input, its task

can be unusual.

Neural networks and regular algorithmic computers are not in rivalry but rather supplement

each other [2].

2.4 TYPES OF CLASSIFICATIONS

There are two different kinds of classification:

1. Binary classification

2. Multiclass classification

In our research, we will use both classifications. ANNs incorporate the two fundamental

components of biological neural nets:

1. Neurons (nodes)

2. Synapses (weights)

Neuron comprises three basic components:

1. Weights

2. Threshold

3. Activation function

A neural network is a collection of neurons with synapses associating them. This collection

is composed of three main parts: the input layer, the hidden layer, and the output layer[14].

We can have “n” number hidden layers which are called multiple hidden layers. Hidden

layers are essential when the neural network needs to comprehend something extremely

convoluted, relevant, or non-self-evident, like image recognition. The term “deep learning”

came from many hidden layers. These layers are known as “hidden” since they are not

visible as a neural network.

The circles represent neurons and lines represent synapses. Where synapses take the input
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and multiply it by a weight. After getting the results from all synapses then we will add

them with the bias terms. At that point, we will apply an activation function.

Figure 2.1: A Neural Network (NN) with one hidden layer.

Basically, training a neural network proceeds by adjusting the weights by repeating

two key steps:

1. Forward propagation

2. Backpropagation

In forward propagation, we calculate the output by applying a set of weights to the input

data. The set of weights is selected randomly for the first forward propagation. Now we

will make a simple example of training a neural network to function as an “XOR (Exclusive

or) operation, explaining each step in the training process.

We will be using as training data the inputs and outputs of the XOR function represented

in the table below.
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Table 2.1: XOR Table

Input Output

0,0 1

0,1 1

1,0 1

1,1 0

Now, we allocate weights to all the synapses. Remember that these weights are cho-

sen randomly (based on Gaussian distribution). Here, we will see how forward propagation

works. To get the first values for the hidden layers, we add the product of the inputs with

their corresponding set of weights and, we add bias term. Suppose two values of input are 1.
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Figure 2.2: Neural Networks with weights and bias.

1 * (- 0.7) +1 * 0.2 + 0.8 = 0.3

1 * (-0.9) + 1 * 0.4 + 0.6 = 0.1

1 * 0.9 + 1 * 0.5 + (-0.5) = 0.9

Then we apply the activation function with the result to get the eventual answer. We will

apply this process to the three nodes of the hidden layer. The goal of the activation function

is to transform the input signal into an output signal which is necessary for neural networks

to model complex non-linear patterns that simpler models may miss.

There are numerous sorts of activation functions such as linear, sigmoid, hyperbolic

tangent:

• Linear: y = x
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• Sigmoid function (logistic): y = 1/
(
1 + e−x

)
• Hyperbolic Tangent: y =

(
1− e−2x

)
/
(
1 + e2x

)
We will use the sigmoid function here. The sigmoid function graph is shown in Figure 2.3.

Figure 2.3: Sigmoid function.

S (0.3) = 0.57

S (0.1) = 0.52

S (0.9) = 0.71

At that point, again we add the product of the hidden layer results with the second set of

weights to get the output and we add this result to second bias term. Then we apply the

activation function with the result to acquire our final output.

0.57 * (-0.7) + 0.52 * 0.3 + 0.71 * (-0.9) + 0.5 = -0.382

S (-0.382) = 0.40564461209

So, our final output is 0.41.

This is the entire process of a Neural Network [14].
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CHAPTER 3

CERVICAL CANCER RISK PREDICTION USING THE ARTIFICIAL NEURAL

NETWORK MODEL

We have informally introduced the problem of cervical cancer risk prediction, described

the data set, and gave a general overview of Artificial Neural Networks. In this chapter

we will formally describe how we plan to use Artificial Neural Networks and the cervical

cancer data to create models for cervical cancer risk predictions.

The chapter is organized as follows. We give an overview of the Statistical Learning/-

Machine Learning general problem of classification in Section 3.1. The formal description

for performing cervical cancer risk prediction using an ANN is given in Section 3.2. In

Section 3.3 we present the concept of generalized weights model for computing the model

inputs contributions to the model prediction error.

3.1 THE CLASSIFICATION PROBLEM

Machine Learning Classification (Supervised learning) is the problem of identifying the

unknown category or class (out of a list of categories or classes) of an observation, given

the known categories (classes) of a set of observations (training dataset). When the decision

is between two classes, we call the problem binary classification. When there are more then

two classes, it is called multiclass classification.

A classifier is a mathematical model (often a function) that takes as input a new ob-

servation and produces as output the predicted class of the observation.

As briefly described in Section 1.3, our goal is to produce a classifier that takes as

input 62 real-valued variables and produces 0 (no risk of cervical cancer) or 1 (risk of

cervical cancer). We are therefore aiming to produce a binary classifier. However, while the

final decision for predicting risk or no risk corresponds to the consensus output variable,

our model will compute a binary decision (0 or 1) for each of the six output variables
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corresponding to the six experts opinions in addition to the consensus result.

Let us first introduce a formal definition for the binary classification problem for the

case of the input variables from the Euclidian space.

Definition 2. [Binary Classification in Euclidian Space] Let S, T ⊆ Rn be finite sets. The

binary classification problem consists in finding a function f : Rn → {−1, 1} such that

f(x) =

 1, if x ∈ S

−1, if x ∈ T

We now formally introduce the problem of cervical cancer risk prediction as a ver-

sion of a binary classification problem. Let us start by introducing some notations. We let

D = [X E] denote the cervical cancer data set, which is vertically partitioned in the sets of

covariates X ⊂ R62 and experts’ (plus consensus’) diagnostics E ∈ {0, 1}7. A seventh pre-

dicted variable, consensus, is computed as a majority voting of the six experts diagnostics

(with positive bias, that is, three 0 votes to three 1 votes meaning 1 = positive). That is, each

element d ∈ D is of form d = [x e], where x ∈ X and e ∈ E. Recall also that diagnostic

0 means no risk of cancer and diagnostic 1 means risk of cancer. For each e ∈ E, each

of the components e = (e1, e2, . . . , e7) corresponds, respectively, to an expert diagnostic:

e1 ∈ {0, 1} is the diagnostic of expert 1, e2 ∈ {0, 1} is the diagnostic of expert 2, etc., with

e7 ∈ {0, 1} being the consensus.

In our work we aim to perform individual binary prediction of each expert diagnostic

(including consensus), taken separately from the others, as well as a global prediction for

all experts at once (including consensus). That is, we will tackle the problem by producing

7 individual models (one for each of the six experts diagnostics plus consensus) and then

one global model that will predict 7 diagnostics at once.

Let us begin by formally defining the individual prediction models.

Definition 3. [Cervical cancer risk prediction with individual models for each expert and
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consensus] The cervical cancer risk prediction with individual models for each expert con-

sists in finding a set of models {Mi |Mi : X→ {0, 1}, i = 1 . . . 7} such that

Mi(x) = ei, ∀[x e] ∈ D, e = (e1, . . . , e7), i = 1 . . . 7

The definition above represents an ideal model scenario: a model that is accurately

mapping all covariates into the correct diagnostics. This is very difficult, if not impossible,

to achieve in practice. The real model is inherently affected by errors, which we would like

to estimate. For practical reasons we would also want to consider a global model capable

of predicting all diagnostics (including the consensus) at once. Such a model is defined as

follows.

Definition 4. [Cervical cancer risk prediction model for all diagnostics] The cervical cancer

risk prediction global model is a mapping:

M : X→ {0, 1}7

where

M(x) = (m1(x), . . . ,m7(x))

and

mi(x) = ei, ∀[x e] ∈ D, e = (e1, . . . , e7), i = 1 . . . 7

Having in mind these prediction models we want to achieve, we proceed next to de-

scribing how we plan to implement them using Artificial Neural Networks and how to

estimate accuracy of the real models.

3.2 THE ARTIFICIAL NEURAL NETWORK MODELS FOR CLASSIFICATION

We implement the models described in Definitions 3 and 4 using Artificial Neural Net-

works with single output (as in Figure 3.1) and with multiple (seven) outputs (as sketched
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Figure 3.1: Artificial Neural Network with single output

in Figure 3.2, but with 7 outputs), respectively. Each such ANN functions as successive

nonlinear transformations that map the input space D ⊂ R62 into the output space (0, 1) and

(0, 1)7, respectively. We notice already a difference from the ideal model: ANNs produce

real values in (0, 1) rather than discrete values in {0, 1}.

Definition 5. [ANN forward step nonlinear transformation] An Artificial Neural Network

forward step nonlinear transformation, from a hidden layer i with Hi neurons (can be the
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Figure 3.2: Artificial Neural Network with multiple outputs
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input layer) to a hidden layer j with Hj neurons (can be the output layer), is a mapping:

hij : RHi → RHj

hij(x) = σHi

(
W T

ij · x
)

where:

x =

 1

x

 , x ∈ RHi is the augmented input variable,

σHi
: RHi → RHi , σHi

(x) = (σ(x1), . . . , σ(xHi
)),

σ : R→ R, σ(x) =
1

1 + e−x
is the sigmoid function, and

Wij ∈ R(Hi+1)×Hj
, Wij =



b1 b2 · · · bj

w11 w12 · · · w1Hj

· · · · · · · · · · · ·

wHi1 wHi2 · · · wHiHj


is the list of ANN parameters

from layer i to layer j (including the bias into layer j).

Now we introduce formally the ANN models, corresponding to the ideal scenarios

introduced in the previous section, as successive ANN forward step nonlinear transforma-

tions.

Definition 6. [ANN models for individual diagnostics predictions] The cervical cancer risk

prediction ANN individual models Ni : R62 → (0, 1), i = 1 . . . 7, are mappings:

R62 RH1 · · · (0, 1)-
hi
0H1 -

hi
H1H2 -

hi
HNh

HNh+1

where Nh ≥ 1 is the number of hidden layers, Hl, l = 1 · · ·Nh, are the number of neurons

per each hidden layer, and hift : RHf → RHt is the ANN forward step nonlinear transfor-

mation from the hidden layer f to the hidden layer t (where f = 0 means the input layer

and t = Nh + 1 means the output layer). The hift transformations are specific to each Ni,

as they are created by solving seven different optimization problems as in (1.3).
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In a similar manner, the ANN model for predicting all diagnostics is defined as fol-

lows.

Definition 7. [ANN model for all diagnostics predictions] The cervical cancer risk ANN

prediction model for all diagnostics is a mapping N : R62 → (0, 1)7:

R62 RH1 · · · (0, 1)7-
h0H1 -

hH1H2 -
hHNh

HNh+1

where Nh ≥ 1 is the number of hidden layers, Hl, l = 1 · · ·Nh, are the number of neurons

per each hidden layer, and hft : RHf → RHt is the ANN forward step nonlinear transfor-

mation from the hidden layer f to the hidden layer t (where f = 0 means the input layer

and t = Nh +1 means the output layer). The hft transformations are created by solving an

optimization problem as in (1.3).

Since the ANN model we create yields outputs in the interval (0, 1), we would like to

convert these output into discrete values 0 or 1 for the diagnostic decision. This is typically

done by choosing a threshold T and all outputs less than T are converted to 0, and all

outputs greater than or equal to T are converted to 1. We call this the ANN decision model

NT of the model N . In all our experiments we use T = 0.5, but one can use different

values and introduce a corresponding bias in the final diagnostic prediction.

With these formal definition we can introduce now a practical way of measuring the

accuracy of the model.

Definition 8. [Accuracy of an ANN model N ] Let N be an ANN model model as in Defi-

nitions 6 or 7, NT its decision model for a given threshold T , and M be the corresponding

ideal model as in Definitions 3 or 4. Let T ⊂ D, the test set, be a sample of the cervical

cancer data. The accuracy of model N with threshold T is computed as:

accuracyT (N) =
|{(x, e) ∈ T : N(x) =M(x)}|

|T|
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In other words, the accuracy of an ANN model N for a given test set T ⊂ D is the

number of times the ANN model N agrees with the corresponding ideal model M over

the total number of samples in T. In Chapter 4 we present numerical values of the model

accuracy in various contexts. We used 10-fold cross-validation to sample D and select the

training set for computing the parameters of each model, and the testing set for computing

the accuracy of the model.

3.3 THE GENERALIZED WEIGHTS

As part of our numerical experiments we computed the generalized weights [9], as mea-

sures of the contributions of input (covariates) to log-odds of the output y:

gwi =

∂

[
log

(
y(x)

1− y(x)

)]
∂xi

This equation represents the effect of the input component (covariate) xi to the log-odds

of the output, over the whole training set used to determine the parameters of the model.

In practice, the distribution of the generalized weights suggests that the covariate has no

or little effect on the output when all generalized weights are zero or very small, or an

important effect if the generalized weights values are large.

For instance, for an ANN with one hidden layer and L neurons with output as in (1.2):

y(x) = σ

(
L∑

j=1

zjσ

(
N∑
i=1

wijxi + b1j

)
+ b2

)

and

σ(s) =
1

1 + e−s

we solve for es in the formula for σ():

σ(s) =
1

1 + e−s
= y(x)
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to obtain:

es =
y(x)

1− y(x)

We take logarithms of both sides:

s = log

(
y(x)

1− y(x)

)
and hence:

log

(
y(x)

1− y(x)

)
=

L∑
j=1

zjσ

(
N∑
i=1

wijxi + b1j

)
+ b2

Then the generalized weight gwi of covariate xi can be computed as:

gwi =

∂

[
log

(
y(x)

1− y(x)

)]
∂xi

=
L∑

j=1

zjσ
′

(
N∑
i=1

wijxi + b1j

)
wij

Finally, by noting that:

σ′(s) = σ(s) (1− σ(s))

we obtain:

gwi =
L∑

j=1

zjσ

(
N∑
i=1

wijxi + b1j

)[
1− σ

(
N∑
i=1

wijxi + b1j

)]
wij (3.1)
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CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

We performed experiments on three different data files [5]: green.csv, hinselmann.csv, and

schiller.csv. Each file consists of 98 samples of numerical data (62 variables) harvested

from images of histologic specimens from 98 patients’ cervixes. Each data file corresponds

to a colposcopy method: Green, Hinselmann, and Schiller, respectively. In our subsequent

experimental results description the indicated experiment method will implicitly identify

the data file used for the respective experiment. In addition to the 62 numerical variable

(predictors), each file contains 6 independent diagnostics from 6 experts (pathologists).

These are binary (predicted) variables with 0 meaning negative (no cancer) and 1 mean-

ing positive (cancer). A seventh predicted variable, consensus, is computed as a majority

voting of the six experts diagnostics (with positive bias, that is, three 0 votes to three 1

votes meaning 1 = positive). The voting bias for positive diagnostic has a clear practical

explanation: a patient would be identified as positive as a preventative measure (and subse-

quently follow up with further investigations, including biopsy), rather than being identified

as negative and possibly let the disease evolve undetected.

The model was implemented in R v3.3.3, running on Windows 10, 64-bit Intel Core

i7 CPU @3.40GHz, 16GB RAM. As our main objective was obtaining the best accuracy

rather than comparing the model performance using different libraries, we only test the

model with the neuralnet package [8].

Our experiments were organized in three major categories:

1. Data analysis. We analyzed the original data (for each method) and identified experts

precision (relative to the majority diagnostic), their positive diagnostics (as a measure

of the positive diagnostic bias), and their agreement with each-other and majority.

2. Model predictions. We implemented the model described in Chapter 3 and performed

fine tuning in order to identify model parameters for best predictions.
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3. Model sensitivity analysis. We performed a generalized weights analysis for the

model parameters, in order to determine the importance of each model parameter for

the model prediction.

These experimental results are reported in the subsequent subsections.

4.1 DATA ANALYSIS EXPERIMENTS

The original data analysis was conducted in three directions: (i) experts diagnostics ac-

curacies, (ii) experts positive diagnostics, and (iii) experts diagnostics agreements with

each-other and consensus. We report the findings below.

I. The accuracy percentages for each expert:

accurracy(Ei) =
# cases expert Ei agrees with consensus

# of all cases
, i = 1, . . . , 6

are reported in Figure 4.1.

II. Figure 4.2 reports the positive cases identification of each expert, relative to the

majority diagnostic:

positive(Ei) =
# of expert Ei positive cases in agreement with consensus

# of consensus positive cases
, i = 1, . . . , 6

III. The experts diagnostics agreements with each-other and consensus are illustrated

in the heatmaps in Figure 4.3.

In each figure, a square color intensity shows mutual agreement/disagreement percent-

ages between all pairs of experts Ei and Ej , where (i, j) are the coordinates of the centers

of squares:

agreement(Ei, Ej) =
# of cases Ei agrees with Ej

# of all cases
, i, j = 1, . . . , 6

Clearly, the diagonal indicates 100% agreement, as it always represents the total agreement

of an experts with himself/herself (agreement(E1, E1), agreement(E2, E2), etc.).



36

Figure 4.1: Experts accuracies relative to majority opinion

4.2 MODEL PREDICTIONS EXPERIMENTS

We implemented ANN prediction models with single and multiple outputs and performed

experiments in order to identify the best prediction models. We organized our experiments

in three groups:

I. ANN models with one output, one model for each expert, respectively, and one model

for the consensus prediction.

II. ANN models with 7 outputs (for predicting 6 experts diagnostics and one consensus

diagnostic).

III. ANN models trained from samples where consensus is decided by majority and pre-

dicting consensus for split decisions (3 zeros and 3 ones).

In each case we identified the best model and run 10 trials, averaging the accuracies in each
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Figure 4.2: Experts positive cases identification (relative to the majority opinion)
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Figure 4.3: Experts diagnostics agreements
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case. The best experimental results are reported below and the complete R code for these

experiments is listed in Annex B.

4.2.1 RISK PREDICTIONS WITH SINGLE ANN MODELS WITH ONE OUTPUT, ONE

MODEL FOR EACH EXPERT AND CONSENSUS

We run the code in Annex B.1 for each of the data file 7 times, once per each of the

six experts plus consensus. From multiple trials we identified the best model architecture

(number of hidden layers and neurons for each layer).

The experimental results are presented for each expert per each data file in Figures

4.4, 4.5, and 4.6 and consensus for all data files in Figure 4.7.

An interesting remark is that the predicted accuracies match, in general, the respective

expert’s accuracy relative to the majority opinion in Figure 4.1.

4.2.2 RISK PREDICTIONS WITH ANN MODEL WITH 7 OUTPUTS

For this experiment we trained one model with a single hidden layer and 8 neurons. We

computed accuracy predictions for all experts and consensus and the results are shown in

Figures 4.8, 4.9,4.10, and 4.11. We found that using a single model is much more difficult

to train and less accurate in practice.

The R code for this experiment is listed in Annex B.2.

4.2.3 RISK PREDICTION WITH ONE ANN MODEL WITH ONE OUTPUT, FOR

CONSENSUS SPLIT DECISIONS

For this experiment we trained one model which learns from consensus when there is a

majority decision (more zeros or more ones) and predicts consensus for experts’ split de-

cision (3 ones, 3 zeros). Interestingly, this experiment easily produced accuracy of over
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[1] "Expert 1"

[1] "Layers: 12, 64"

Predicted

Original 0 1

0 7 4

1 0 9

[1] "Accuracy: 0.8"

[1] "Expert 2"

[1] "Layers: 40, 24"

Predicted

Original 0 1

0 5 4

1 1 10

[1] "Accuracy: 0.75"

[1] "Expert 3"

[1] "Layers: 40, 24, 12"

Predicted

Original 0 1

0 10 1

1 3 6

[1] "Accuracy: 0.8"

[1] "Expert 4"

[1] "Layers: 40, 24, 12"

Predicted

Original 0 1

0 3 1

1 3 13

[1] "Accuracy: 0.8"

[1] "Expert 5"

[1] "Layers: 8, 16, 4"

Predicted

Original 0 1

0 1 0

1 1 18

[1] "Accuracy: 0.95"

[1] "Expert 6"

[1] "Layers: 8, 32, 16"

Predicted

Original 0 1

0 11 0

1 7 2

[1] "Accuracy: 0.65"

Figure 4.4: Experts predictions accuracy (Green)
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[1] "Expert 1"

[1] "Layers: 24, 64"

Predicted

Original 0 1

0 3 2

1 0 15

[1] "Accuracy: 0.9"

[1] "Expert 2"

[1] "Layers: 64, 32, 10"

Predicted

Original 0 1

0 7 2

1 5 6

[1] "Accuracy: 0.65"

[1] "Expert 3"

[1] "Layers: 40, 32, 12"

Predicted

Original 0 1

0 5 2

1 0 13

[1] "Accuracy: 0.9"

[1] "Expert 4"

[1] "Layers: 64, 64, 24"

Predicted

Original 0 1

0 4 0

1 4 12

[1] "Accuracy: 0.8"

[1] "Expert 5"

[1] "Layers: 64, 128, 16, 8"

Predicted

Original 1

0 3

1 17

[1] "Accuracy: 0.85"

[1] "Expert 6"

[1] "Layers: 64, 40, 4"

Predicted

Original 0 1

0 2 3

1 2 13

[1] "Accuracy: 0.75"

Figure 4.5: Experts predictions accuracy (Hinselmann)
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[1] "Expert 1"

[1] "Layers: 256, 64, 32"

Predicted

Original 0 1

0 7 2

1 2 8

[1] "Accuracy: 0.7894"

[1] "Expert 2"

[1] "Layers: 256, 64, 32"

Predicted

Original 0 1

0 1 3

1 1 14

[1] "Accuracy: 0.7894"

[1] "Expert 3"

[1] "Layers: 256, 4"

Predicted

Original 0 1

0 3 2

1 4 10

[1] "Accuracy: 0.6842"

[1] "Expert 4"

[1] "Layers: 64, 8"

Predicted

Original 0 1

0 2 1

1 1 15

[1] "Accuracy: 0.8947"

[1] "Expert 5"

[1] "Layers: 256, 64, 8"

Predicted

Original 0 1

0 0 1

1 1 17

[1] "Accuracy: 0.8947"

[1] "Expert 6"

[1] "Layers: 64, 32, 4"

Predicted

Original 0 1

0 9 0

1 7 3

[1] "Accuracy: 0.6315"

Figure 4.6: Experts predictions accuracy (Schiller)
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[1] "Dataset: green.csv"

[1] "Expert 7"

[1] "Layers: 32, 40"

Predicted

Original 0 1

0 6 0

1 2 12

[1] "Accuracy: 0.9"

[1] "Dataset: hinselmann.csv"

[1] "Expert 7"

[1] "Layers: 64, 32, 14"

Predicted

Original 1

0 3

1 17

[1] "Accuracy: 0.85"

[1] "Dataset: schiller.csv"

[1] "Expert 7"

[1] "Layers: 40, 12"

Predicted

Original 0 1

0 2 2

1 2 13

[1] "Accuracy: 0.7894"

Figure 4.7: Consensus predictions accuracy
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[1] "Expert 1"

Predicted

Original 0 1

0 1 10

1 0 9

[1] "Accuracy: 0.5"

[1] "Expert 2"

Predicted

Original 0 1

0 3 6

1 0 11

[1] "Accuracy: 0.7"

[1] "Expert 3"

Predicted

Original 0 1

0 8 3

1 9 0

[1] "Accuracy: 0.4"

[1] "Expert 4"

Predicted

Original 0 1

0 2 2

1 0 16

[1] "Accuracy: 0.9"

[1] "Expert 5"

Predicted

Original 0 1

0 0 1

1 1 18

[1] "Accuracy: 0.9"

[1] "Expert 6"

Predicted

Original 0 1

0 8 3

1 9 0

[1] "Accuracy: 0.4"

Figure 4.8: Experts predictions accuracy using a single model (one layer, 8 neurons) for all

experts (Green)
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[1] "Expert 1"

Predicted

Original 1

0 5

1 15

[1] "Accuracy: 0.75"

[1] "Expert 2"

Predicted

Original 0 1

0 0 9

1 2 9

[1] "Accuracy: 0.45"

[1] "Expert 3"

Predicted

Original 1

0 7

1 13

[1] "Accuracy: 0.65"

[1] "Expert 4"

Predicted

Original 0 1

0 0 4

1 1 15

[1] "Accuracy: 0.75"

[1] "Expert 5"

Predicted

Original 1

0 3

1 17

[1] "Accuracy: 0.85"

[1] "Expert 6"

Predicted

Original 1

0 5

1 15

[1] "Accuracy: 0.75"

Figure 4.9: Experts predictions accuracy using a single model (one layer, 8 neurons) for all

experts (Hinselmann)
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[1] "Expert 1"

Predicted

Original 0 1

0 2 7

1 3 7

[1] "Accuracy: 0.4736"

[1] "Expert 2"

Predicted

Original 0 1

0 0 4

1 1 14

[1] "Accuracy: 0.7368"

[1] "Expert 3"

Predicted

Original 0 1

0 1 4

1 3 11

[1] "Accuracy: 0.6315"

[1] "Expert 4"

Predicted

Original 1

0 3

1 16

[1] "Accuracy: 0.8421"

[1] "Expert 5"

Predicted

Original 0 1

0 0 1

1 1 17

[1] "Accuracy: 0.8947"

[1] "Expert 6"

Predicted

Original 0

0 9

1 10

[1] "Accuracy: 0.4736"

Figure 4.10: Experts predictions accuracy using a single model (one layer, 8 neurons) for

all experts (Schiller)
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[1] "Dataset: green.csv"

[1] "Expert 7"

Predicted

Original 0 1

0 2 4

1 0 14

[1] "Accuracy: 0.8"

[1] "Dataset: hinselmann.csv"

[1] "Expert 7"

Predicted

Original 1

0 3

1 17

[1] "Accuracy: 0.85"

[1] "Dataset: schiller.csv"

[1] "Expert 7"

Predicted

Original 0 1

0 0 4

1 2 13

[1] "Accuracy: 0.6842"

Figure 4.11: Consensus predictions accuracy using a single model (one layer, 8 neurons)
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[1] "Dataset: green.csv"

[1] "Expert 7"

[1] "Layers: 64, 24"

Predicted

Original 0 1

1 1 10

[1] "Accuracy: 0.9090"

[1] "Dataset: hinselmann.csv"

[1] "Expert 7"

[1] "Layers: 64, 24"

Predicted

Original 1

1 12

[1] "Accuracy: 1"

[1] "Dataset: schiller.csv"

[1] "Expert 7"

[1] "Layers: 64, 32, 4"

Predicted

Original 0 1

1 1 9

[1] "Accuracy: 0.9"

Figure 4.12: Consensus predictions for split decisions

90% for all data files. The experiment falls into the category of “transfer of learning” [6],

in the sense that the model is trained for data where consensus is achieved by majority then

used to predict consensus for split decisions. The results of the experiment are presented in

Figure 4.12.

The R code for this experiment is listed in Annex B.3.

4.3 MODEL SENSITIVITY ANALYSIS

As indicated in (1.3), our ANN model is trained by minimizing the cross-entropy output

error. We consequently perform an analysis of the model effectiveness by computing the

generalized weights [9] for a few features (covariates) and the “consensus” output. Such
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Figure 4.13: Positive influence

generalized weight wi expresses the contribution of the ith corresponding feature xi to the

log-odds of the 7th output (“consensus”):

gwi =

∂

[
log

(
y7(x)

1− y7(x)

)]
∂xi

In some sense, the generalized weight has an interpretation analogous to the corresponding

regression parameter in regression models. The difference is that the generalized weight

depends on all covariates.

We checked the generalized weights for all 62 variables in the case of an ANN model

for all 7 outputs. We used one hidden layer with 8 neurons and computed the generalized

weights for the “consensus” output. Sample plots corresponding to three of the input vari-

ables () are displayed in Figures 4.13, 4.14, and 4.15. In our experiments we did not find any

variable that produced zero variation of the corresponding generalized weight. However,

the examples we show illustrate three different case scenarios we found: (i) Figure 4.13

shows a very strong, positive influence of the “os artifacts area” covariate concentrated in
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Figure 4.14: Negative influence

Figure 4.15: Positive and negative influence
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the neighborhood of zero ; (ii) Figure 4.14 shows a very strong, negative influence of the

“speculum area” covariate concentrated in the neighborhood of zero; and (iii) Figure 4.15

shows both a positive and negative effect of the covariate “rgb cervix r mean minus std”.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Summary of contributions:

• Cervical cancer is one of the most deadly cancers for women worldwide. It may be

expensive to fully diagnose. We present a model that can assist experts to predict the

disease in (i) a consistent and (ii) less expensive manner.

• We use Neural Networks to perform diagnostic predictions on cervical cancer data

• We implemented the model in R and presented experimental results.

• We performed predictions for (i) each expert (out of 6 opinions) and (ii) consensus.

• We used a cross-entropy minimization error method.

• We performed sensitivity measures of each input parameter on the model prediction

error.
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Appendix A

DATA DESCRIPTION

I. Experimental Data Set Source:

https://archive.ics.uci.edu/ml/datasets/Quality+Assessment+of+Digital+Colposcopies

II. Experimental Data Set Information:

• The dataset was acquired and annotated by professional physicians at ’Hospital

Universitario de Caracas’.

• The subjective judgments (target variables) were originally done in an ordinal

manner (poor, fair, good, excellent) and was discretized in two classes (bad,

good).

• Images were randomly sampled from the original colposcopic sequences (videos).

• The original images and the manual segmentations are included in the ’images’

directory.

• The dataset has three modalities (i.e. Hinselmann, Green, Schiller).

• Number of Attributes: 69 (62 predictive attributes, 7 target variables)

• The target variables are expert::X (X in 0,...,5) and consensus.

III. Attribute Information:

1. cervix area: image area with cervix.

2. os area: image area with external os.

3. walls area: image area with vaginal walls.

4. speculum area: image area with the speculum.

5. artifacts area: image area with artifacts.

6. cervix artifacts area: cervix area with the artifacts.
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7. os artifacts area: external os area with the artifacts.

8. walls artifacts area: vaginal walls with the artifacts.

9. speculum artifacts area: speculum area with the artifacts.

10. cervix specularities area: cervix area with the specular reflections.

11. os specularities area: external os area with the specular reflections.

12. walls specularities area: vaginal walls area with the specular reflections.

13. speculum specularities area: speculum area with the specular reflections.

14. specularities area: total area with specular reflections.

15. area h max diff: maximum area differences between the four cervix quadrants.

16. rgb cervix r mean: average color information in the cervix (R channel).

17. rgb cervix r std: stddev color information in the cervix (R channel).

18. rgb cervix r mean minus std: (avg - stddev) color information in the cervix (R

channel).

19. rgb cervix r mean plus std: (avg + stddev) information in the cervix (R chan-

nel).

20. rgb cervix g mean: average color information in the cervix (G channel).

21. rgb cervix g std: stddev color information in the cervix (G channel).

22. rgb cervix g mean minus std: (avg - stddev) color information in the cervix (G

channel).

23. rgb cervix g mean plus std: (avg + stddev) color information in the cervix (G

channel).

24. rgb cervix b mean: average color information in the cervix (B channel).

25. rgb cervix b std: stddev color information in the cervix (B channel).



58

26. rgb cervix b mean minus std: (avg - stddev) color information in the cervix (B

channel).

27. rgb cervix b mean plus std: (avg + stddev) color information in the cervix (B

channel).

28. rgb total r mean: average color information in the image (B channel).

29. rgb total r std: stddev color information in the image (R channel).

30. rgb total r mean minus std: (avg - stddev) color information in the image (R

channel).

31. rgb total r mean plus std: (avg + stddev) color information in the image (R

channel).

32. rgb total g mean: average color information in the image (G channel).

33. rgb total g std: stddev color information in the image (G channel).

34. rgb total g mean minus std: (avg - stddev) color information in the image (G

channel).

35. rgb total g mean plus std: (avg + stddev) color information in the image (G

channel).

36. rgb total b mean: average color information in the image (B channel).

37. rgb total b std: stddev color information in the image (B channel).

38. rgb total b mean minus std: (avg - stddev) color information in the image (B

channel).

39. rgb total b mean plus std: (avg + stddev) color information in the image (B

channel).

40. hsv cervix h mean: average color information in the cervix (H channel).

41. hsv cervix h std: stddev color information in the cervix (H channel).
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42. hsv cervix s mean: average color information in the cervix (S channel).

43. hsv cervix s std: stddev color information in the cervix (S channel).

44. hsv cervix v mean: average color information in the cervix (V channel).

45. hsv cervix v std: stddev color information in the cervix (V channel).

46. hsv total h mean: average color information in the image (H channel).

47. hsv total h std: stddev color information in the image (H channel).

48. hsv total s mean: average color information in the image (S channel).

49. hsv total s std: stddev color information in the image (S channel).

50. hsv total v mean: average color information in the image (V channel).

51. hsv total v std: stddev color information in the image (V channel).

52. fit cervix hull rate: Coverage of the cervix convex hull by the cervix.

53. fit cervix hull total: Image coverage of the cervix convex hull.

54. fit cervix bbox rate: Coverage of the cervix bounding box by the cervix.

55. fit cervix bbox total: Image coverage of the cervix bounding box.

56. fit circle rate: Coverage of the cervix circle by the cervix.

57. fit circle total: Image coverage of the cervix circle.

58. fit ellipse rate: Coverage of the cervix ellipse by the cervix.

59. fit ellipse total: Image coverage of the cervix ellipse.

60. fit ellipse goodness: Goodness of the ellipse fitting.

61. dist to center cervix: Distance between the cervix center and the image center.

62. dist to center os: Distance between the cervical os center and the image center.

63. experts::0: subjective assessment of the Expert 0 (target variable).
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64. experts::1: subjective assessment of the Expert 1 (target variable).

65. experts::2: subjective assessment of the Expert 2 (target variable).

66. experts::3: subjective assessment of the Expert 3 (target variable).

67. experts::4: subjective assessment of the Expert 4 (target variable).

68. experts::5: subjective assessment of the Expert 5 (target variable).

69. consensus: subjective assessment of the consensus (target variable).
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Appendix B

R CODE

B.1 EXPERIMENT 1

# #############################################################

# A r t i f i c i a l Neura l Networks p r e d i c t i o n

# E x p e r i m e n t 1 : Q u a l i t y A s s e s s m e n t o f D i g i t a l C o l p o s c o p i e s

# Data S e t

# T h i s d a t a s e t e x p l o r e s t h e s u b j e c t i v e q u a l i t y a s s e s s m e n t o f

# d i g i t a l c o l p o s c o p i e s .

# The j u d g e m e n t s o f 6 e x p e r t s and t h e i r c o n s e n s u s

# ( m a j o r i t y judgemen t ) are i n c l u d e d .

# E x p e r i m e n t 1 p r e d i c t s t h e c o n s e n s u s o f i n d i v i d u a l

# j u d g e m e n t s ( one a t t h e t i m e ) .

# The c o n s e n s u s p r e d i c t i o n i s per fo rmed i n two ways :

# ( i ) on t h e m a j o r i t y b i n a r y v a l u e 0 or 1 ;

# ( i i ) on a c o n t i n u o u s v a l u e [ 0 , 1 ] computed as t h e

# mean o f t h e s i x e x p e r t s j u d g e m e n t s .

#

# Data S e t I n f o r m a t i o n :

# ∗ The d a t a s e t was a c q u i r e d and a n n o t a t e d by p r o f e s s i o n a l

# p h y s i c i a n s a t ’ H o s p i t a l U n i v e r s i t a r i o de Caracas ’ .

# ∗ The s u b j e c t i v e j u d g m e n t s ( t a r g e t v a r i a b l e s ) were

# o r i g i n a l l y done i n an o r d i n a l manner ( poor , f a i r , good ,

# e x c e l l e n t ) and was d i s c r e t i z e d i n two c l a s s e s ( bad , good ) .

# ∗ Images were randomly sampled from t h e o r i g i n a l c o l p o s c o p i c
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# s e q u e n c e s ( v i d e o s ) .

# ∗ The o r i g i n a l images and t h e manual s e g m e n t a t i o n s are

# i n c l u d e d i n t h e

# ’ images ’ d i r e c t o r y .

# ∗ The d a t a s e t has t h r e e m o d a l i t i e s ( i . e . Hinselmann ,

# Green , S c h i l l e r ) .

# ∗ The t a r g e t v a r i a b l e s are e x p e r t : : X ( X i n 0 , . . . , 5 )

# and c o n s e n s u s .

#

# #########################################################

# s e t memory l i m i t

memory . l i m i t (6410241024∗1024)

SOURCE <− ’ d a t a / DColposcopy / ’

FILE1 <− ’ g r e e n . csv ’

FILE2 <− ’ h i n s e l m a n n . csv ’

FILE3 <− ’ s c h i l l e r . csv ’

f i l e <− FILE3 # t h e da ta f i l e c u r r e n t l y used

d a t a . source<− read . c sv ( p a s t e (SOURCE, f i l e , sep = ’ ’ ) ,

h e a d e r = TRUE)

# add a c o n s e n s u s mean v a l u e : a c o n t i n u o u s v a l u e i n [ 0 , 1 ]

# r e p r e s e n t i n g

# t h e mean o f t h e judgemen t o f a l l e x p e r t s .

d a t a . s o u r c e $ c o n s e n s u c <− rowMeans ( d a t a . source [ , 6 3 : 6 8 ] )
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# s t r ( da ta . s o u r c e )

# n o r m a l i z a t i o n

# Min−Max N o r m a l i z a t i o n

normidx <− 1 :62 # t h e p r e d i c t o r s t o be n o r m a l i z e d

# da ta . s o u r c e [ , normidx]<− ( da ta . s o u r c e [ , normidx]−min

# ( da ta . s o u r c e [ , normidx ] ) ) / ( max ( da ta . s o u r c e [ , normidx ] )

#−min ( da ta . s o u r c e [ , normidx ] ) )

# #######################################################

#

# C re a t e aa ANN and t e s t p r e d i c t i o n ( s )

#

# #######################################################

#Data−p a r t i t i o n

s e e d s <− c ( 1 2 3 , 4721 , 3097 , 5326 , 9271 , 2870 , 6901 ,

7751 , 8292 , 5028)

t f <− 0 . 8 # t h e t r a i n i n g f r a c t i o n ( t y p i c a l l y 80%

t r a i n i n g , 20% t e s t i n g )

t r i a l s <− 1 :10

f o r ( t r i a l in t r i a l s ) {
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s e t . s e ed ( s e e d s [ t r i a l ] )

i n d <− sample ( nrow ( d a t a . source ) , t f ∗ nrow ( d a t a . source ) )

d a t a . t r a i n i n g <− d a t a . source [ ind , ]

d a t a . t e s t i n g <− d a t a . source [− ind , ]

# C re a t e and t r a i n an A r t i f i c i a l Neura l Network w i t h h

# h id de n l a y e r s

l i b r a r y ( n e u r a l n e t )

s e t . s e ed ( 1 2 3 )

#ann p a r a m e t e r s

h <− c ( 6 4 , 1 2 8 , 4 ) # h id de n l a y e r s

d a t a . p r ed <− 1 :62 # t h e p r e d i c t o r s

d a t a . t a r <− 68 # t h e t a r g e t v a r i a b l e ( s )

p f l h s t <− co lnames ( d a t a . source ) [ d a t a . t a r ]

# t h e p r e d i c t i o n f o r m u l a l e f t −hand−s i d e t e r m s

p f r h s t <− co lnames ( d a t a . source ) [ d a t a . p r ed ]

# t h e p r e d i c t i o n f o r m u l a r i g h t−hand−s i d e t e r m s

p f l <− p a s t e ( p f l h s t , c o l l a p s e = ’+ ’ )

p f r <− p a s t e ( p f r h s t , c o l l a p s e = ’+ ’ )

s igmoid = f u n c t i o n ( x ) {

1 / (1 + exp(−x / 2 0 ) )

}

#ann model

ann . f o r m u l a <− as . f o r m u l a ( p a s t e ( p f l , ’ ˜ ’ , p f r ) )

ann . model <− n e u r a l n e t ( ann . fo rmula ,

d a t a = d a t a . t r a i n i n g ,
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h i dd en = h ,

e r r . f c t = ” ce ” ,

# t h r e s h o l d = 0 . 0 1 , # d e f a u l t 0 . 0 1

# s tepmax = 1 e +05 , # d e f a u l t 1 e+05

# rep = 1 , # d e f a u l t 1

# a c t . f c t = s igmoid , # d e f a u l t ” l o g i s t i c ”

l i n e a r . o u t p u t = F )

# p l o t ( ann . model )

# Use t h e ANN model f o r P r e d i c t i o n

ann . o u t p u t<− compute ( ann . model , d a t a . t e s t i n g [ , d a t a . p r ed ] )

# D i s p l a y t h e r e s u l t s

p r i n t ( p a s t e ( ’ D a t a s e t : ’ , f i l e , sep = ’ ’ ) )

# p r i n t ( ’ O r i g i n a l da ta : ’ )

# p r i n t ( da ta . t e s t i n g [ 1 , da ta . t a r ] )

# p r i n t ( ’ P r e d i c t e d da ta : ’ )

# p r i n t ( ann . o u t p u t $ n e t . r e s u l t [ 1 ] )

# Compute and Show t h e c o n f u s i o n m a t r i x

# t h e t a r g e t i n d e x

t <− 1

r e s <− d a t a . f rame ( o r i g = i f e l s e ( d a t a . t e s t i n g [ , d a t a . t a r [ t ] ]

>= 0 . 5 , 1 , 0 ) , p r ed = i f e l s e ( ann . o u t p u t $ n e t . r e s u l t >= 0 . 5 , 1 , 0 ) )

# p r i n t ( p a s t e 0 ( ’ ’ , p f l h s t [ t ] ) )
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p r i n t ( p a s t e 0 ( ’ E x p e r t ’ , ( d a t a . t a r −62) ) )

p r i n t ( p a s t e 0 ( ’ La ye r s : ’ , p a s t e ( h , c o l l a p s e = ’ , ’ ) ) )

p r i n t ( t a b l e ( r e s $ o r i g , r e s $ p r e d , dnn = c ( ” O r i g i n a l ” , ” P r e d i c t e d ” ) ) )

p r i n t ( p a s t e 0 ( ” Accuracy : ” , ( sum ( r e s $ o r i g == r e s $ p r e d ) / nrow ( r e s ) ) ) )

}

# g wp lo t ( ann . model , s e l e c t e d . c o v a r i a t e = 4 , s e l e c t e d . r e s p o n s e = 1)

B.2 EXPERIMENT 2

# #########################################################

# A r t i f i c i a l Neura l Networks p r e d i c t i o n

# E x p e r i m e n t 2 : Q u a l i t y A s s e s s m e n t o f D i g i t a l C o l p o s c o p i e s

# Data S e t

# T h i s d a t a s e t e x p l o r e s t h e s u b j e c t i v e q u a l i t y a s s e s s m e n t

# o f d i g i t a l c o l p o s c o p i e s .

# The j u d g e m e n t s o f 6 e x p e r t s and t h e i r c o n s e n s u s

# ( m a j o r i t y judgemen t ) are i n c l u d e d .

# E x p e r i m e n t 2 p r e d i c t s t h e j u d g e m e n t s f o r a l l e x p e r t s a t

# t h e same t i m e ( u s i n g one model ) .

#

# Data S e t I n f o r m a t i o n :

# ∗ The d a t a s e t was a c q u i r e d and a n n o t a t e d by p r o f e s s i o n a

# p h y s i c i a n s a t ’ H o s p i t a l U n i v e r s i t a r i o de Caracas ’ .

# ∗ The s u b j e c t i v e j u d g m e n t s ( t a r g e t v a r i a b l e s ) were o r i g i n a l l y

# done i n an o r d i n a l manner ( poor , f a i r , good , e x c e l l e n t ) and

# was d i s c r e t i z e d i n two c l a s s e s ( bad , good ) .
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# ∗ Images were randomly sampled from t h e o r i g i n a l c o l p o s c o p i c

# s e q u e n c e s ( v i d e o s ) .

# ∗ The o r i g i n a l images and t h e manual s e g m e n t a t i o n s are i n c l u d e d

# i n t h e ’ images ’ d i r e c t o r y .

# ∗ The d a t a s e t has t h r e e m o d a l i t i e s ( i . e . Hinselmann , Green ,

# S c h i l l e r ) .

# ∗ The t a r g e t v a r i a b l e s are e x p e r t : : X ( X i n 0 , . . . , 5 ) and

# c o n s e n s u s .

#

# #################################################################

# s e t memory l i m i t

memory . l i m i t (6410241024∗1024)

SOURCE <− ’ d a t a / DColposcopy / ’

FILE1 <− ’ g r e e n . csv ’

FILE2 <− ’ h i n s e l m a n n . csv ’

FILE3 <− ’ s c h i l l e r . csv ’

METHOD1 <− ’ Hinselmann ’

METHOD2 <− ’ S c h i l l e r ’

METHOD3 <− ’ Green ’

METHOD <− METHOD2

f i l e <− p a s t e 0 ( t o l o w e r (METHOD) , ’ . csv ’ )

# t h e da ta f i l e c u r r e n t l y used
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d a t a . source<− read . c sv ( p a s t e (SOURCE, f i l e , sep = ’ ’ ) ,

h e a d e r = TRUE)

# s t r ( da ta . s o u r c e )

NCOL <− n c o l ( d a t a . source )

NPRED <− 6 + 1

# ###########################################################

#

# C re a t e aa ANN and t e s t p r e d i c t i o n ( s )

#

# ############################################################

#Data−p a r t i t i o n

s e e d s <− c ( 1 2 3 , 4721 , 3097 , 5326 , 9271 , 2870 , 6901 , 7751 ,

8292 , 5028)

t f <− 0 . 8 # t h e t r a i n i n g f r a c t i o n ( t y p i c a l l y 80%

t r a i n i n g , 20% t e s t i n g )

t r i a l s <− 1 :10

f o r ( t r i a l in t r i a l s ) {

s e t . s e ed ( s e e d s [ t r i a l ] )

i n d <− sample ( nrow ( d a t a . source ) , t f ∗ nrow ( d a t a . source ) )

d a t a . t r a i n i n g <− d a t a . source [ ind , ]
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d a t a . t e s t i n g <− d a t a . source [− ind , ]

# C re a t e and t r a i n an A r t i f i c i a l Neura l Network w i t h h

# h id de n l a y e r s

l i b r a r y ( n e u r a l n e t )

s e t . s e ed ( 1 2 3 )

#ann p a r a m e t e r s

h <− c ( 8 ) # h id de n l a y e r s

d a t a . p r ed <− 1 : (NCOL − NPRED) # t h e p r e d i c t o r s

d a t a . t a r <− (NCOL − NPRED + 1 ) : ( NCOL)

# t h e t a r g e t v a r i a b l e ( s )

p f l h s t <− co lnames ( d a t a . source ) [ d a t a . t a r ]

# t h e p r e d i c t i o n f o r m u l a l e f t −hand−s i d e t e r m s

p f r h s t <− co lnames ( d a t a . source ) [ d a t a . p r ed ]

# t h e p r e d i c t i o n f o r m u l a r i g h t−hand−s i d e t e r m s

p f l <− p a s t e ( p f l h s t , c o l l a p s e = ’+ ’ )

p f r <− p a s t e ( p f r h s t , c o l l a p s e = ’+ ’ )

#ann model

ann . f o r m u l a <− as . f o r m u l a ( p a s t e ( p f l , ’ ˜ ’ , p f r ) )

ann . model <− n e u r a l n e t ( ann . fo rmula ,

d a t a = d a t a . t r a i n i n g ,

h i dd en = h ,

e r r . f c t = ” ce ” ,

t h r e s h o l d = 0 . 0 5 , # d e f a u l t 0 . 0 1

# s tepmax = 1 e +05 , # d e f a u l t 1 e+05

# rep = 1 , # d e f a u l t 1
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l i n e a r . o u t p u t = F )

# p l o t ( ann . model )

# Use t h e ANN model f o r P r e d i c t i o n

ann . o u t p u t<− compute ( ann . model , d a t a . t e s t i n g [ , d a t a . p r ed ] )

# D i s p l a y t h e r e s u l t s

p r i n t ( p a s t e ( ’ D a t a s e t : ’ , f i l e , sep = ’ ’ ) )

# p r i n t ( ’ O r i g i n a l da ta : ’ )

# p r i n t ( da ta . t e s t i n g [ 1 , da ta . t a r ] )

# p r i n t ( ’ P r e d i c t e d da ta : ’ )

# p r i n t ( ann . o u t p u t $ n e t . r e s u l t [ 1 , ] )

# Compute and Show t h e c o n f u s i o n m a t r i x f o r each t a r g e t v a r i a b l e

f o r ( t in 1 : l e n g t h ( d a t a . t a r ) ) {

r e s <− d a t a . f rame ( o r i g = d a t a . t e s t i n g [ , d a t a . t a r [ t ] ] ,

p r ed = i f e l s e ( ann . o u t p u t $ n e t . r e s u l t [ , t ]

>= 0 . 5 , 1 , 0 ) )

p r i n t ( p a s t e 0 ( ’ E x p e r t ’ , t ) )

# p r i n t ( p a s t e 0 ( ’ C o n f u s i o n Tab le f o r ’ , p f l h s t [ t ] ) )

p r i n t ( t a b l e ( r e s $ o r i g , r e s $ p r e d , dnn = c ( ” O r i g i n a l ” ,

” P r e d i c t e d ” ) ) )

p r i n t ( p a s t e 0 ( ” Accuracy : ” , ( sum ( r e s $ o r i g == r e s $ p r e d )

/ nrow ( r e s ) ) ) )

}
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}

B.3 EXPERIMENT 2

# #########################################################

# A r t i f i c i a l Neura l Networks p r e d i c t i o n

# E x p e r i m e n t 2 : Q u a l i t y A s s e s s m e n t o f D i g i t a l C o l p o s c o p i e s

# Data S e t

# T h i s d a t a s e t e x p l o r e s t h e s u b j e c t i v e q u a l i t y a s s e s s m e n t

# o f d i g i t a l c o l p o s c o p i e s .

# The j u d g e m e n t s o f 6 e x p e r t s and t h e i r c o n s e n s u s

# ( m a j o r i t y judgemen t ) are i n c l u d e d .

# E x p e r i m e n t 2 p r e d i c t s t h e j u d g e m e n t s f o r a l l e x p e r t s a t

# t h e same t i m e ( u s i n g one model ) .

#

# Data S e t I n f o r m a t i o n :

# ∗ The d a t a s e t was a c q u i r e d and a n n o t a t e d by p r o f e s s i o n a

# p h y s i c i a n s a t ’ H o s p i t a l U n i v e r s i t a r i o de Caracas ’ .

# ∗ The s u b j e c t i v e j u d g m e n t s ( t a r g e t v a r i a b l e s ) were o r i g i n a l l y

# done i n an o r d i n a l manner ( poor , f a i r , good , e x c e l l e n t ) and

# was d i s c r e t i z e d i n two c l a s s e s ( bad , good ) .

# ∗ Images were randomly sampled from t h e o r i g i n a l c o l p o s c o p i c

# s e q u e n c e s ( v i d e o s ) .

# ∗ The o r i g i n a l images and t h e manual s e g m e n t a t i o n s are i n c l u d e d

# i n t h e ’ images ’ d i r e c t o r y .

# ∗ The d a t a s e t has t h r e e m o d a l i t i e s ( i . e . Hinselmann , Green ,
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# S c h i l l e r ) .

# ∗ The t a r g e t v a r i a b l e s are e x p e r t : : X ( X i n 0 , . . . , 5 ) and

# c o n s e n s u s .

# ################################################################

# s e t memory l i m i t

memory . l i m i t (6410241024∗1024)

SOURCE <− ’ d a t a / DColposcopy / ’

FILE1 <− ’ g r e e n . csv ’

FILE2 <− ’ h i n s e l m a n n . csv ’

FILE3 <− ’ s c h i l l e r . csv ’

f i l e <− FILE3 # t h e da ta f i l e c u r r e n t l y used

d a t a . source<− read . c sv ( p a s t e (SOURCE, f i l e , sep = ’ ’ ) , h e a d e r = TRUE)

# s t r ( da ta . s o u r c e )

# n o r m a l i z a t i o n

# Min−Max N o r m a l i z a t i o n

normidx <− 1 :62 # t h e p r e d i c t o r s t o be n o r m a l i z e d

# da ta . s o u r c e [ , normidx]<− ( da ta . s o u r c e [ , normidx]−min ( da ta . s o u r c e

# [ , normidx ] ) ) / ( max ( da ta . s o u r c e [ , normidx ])−min ( da ta . s o u r c e [ , normidx ] ) )

# #################################################################
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#

# C re a t e aa ANN and t e s t p r e d i c t i o n ( s )

#

# ################################################################

#Data−p a r t i t i o n

s e t . s e ed ( 1 2 3 )

v o t e s <− c ( )

f o r ( r in 1 : nrow ( d a t a . source ) ) {

v o t e s [ r ] <− sum ( d a t a . source [ r , 6 3 : 6 8 ] )

}

i n d <− which ( v o t e s == 3)

d a t a . t r a i n i n g <− d a t a . source [− ind , ]

d a t a . t e s t i n g <− d a t a . source [ ind , ]

# C re a t e and t r a i n an A r t i f i c i a l Neura l Network w i t h h h i dde n l a y e r s

l i b r a r y ( n e u r a l n e t )

s e t . s e ed ( 1 2 3 )

#ann p a r a m e t e r s

h <− c ( 6 4 , 3 2 , 4 ) # h id de n l a y e r s

d a t a . p r ed <− 1 :62 # t h e p r e d i c t o r s
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d a t a . t a r <− 69 # t h e t a r g e t v a r i a b l e ( s )

p f l h s t <− co lnames ( d a t a . source ) [ d a t a . t a r ]

# t h e p r e d i c t i o n f o r m u l a l e f t −hand−s i d e t e r m s

p f r h s t <− co lnames ( d a t a . source ) [ d a t a . p r ed ]

# t h e p r e d i c t i o n f o r m u l a r i g h t−hand−s i d e t e r m s

p f l <− p a s t e ( p f l h s t , c o l l a p s e = ’+ ’ )

p f r <− p a s t e ( p f r h s t , c o l l a p s e = ’+ ’ )

s igmoid = f u n c t i o n ( x ) {

1 / (1 + exp(−x / 2 0 ) )

}

#ann model

ann . f o r m u l a <− as . f o r m u l a ( p a s t e ( p f l , ’ ˜ ’ , p f r ) )

ann . model <− n e u r a l n e t ( ann . fo rmula ,

d a t a = d a t a . t r a i n i n g ,

h i dd en = h ,

e r r . f c t = ” ce ” ,

t h r e s h o l d = 0 . 0 1 , # d e f a u l t 0 . 0 1

s tepmax = 1 e +05 , # d e f a u l t 1 e+05

r e p = 2 , # d e f a u l t 1

# a c t . f c t = s igmoid , # d e f a u l t ” l o g i s t i c ”

l i n e a r . o u t p u t = F )

# p l o t ( ann . model )

# Use t h e ANN model f o r P r e d i c t i o n

ann . o u t p u t<− compute ( ann . model , d a t a . t e s t i n g [ , d a t a . p r ed ] )
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# D i s p l a y t h e r e s u l t s

p r i n t ( p a s t e ( ’ D a t a s e t : ’ , f i l e , sep = ’ ’ ) )

# p r i n t ( ’ O r i g i n a l da ta : ’ )

# p r i n t ( da ta . t e s t i n g [ 1 , da ta . t a r ] )

# p r i n t ( ’ P r e d i c t e d da ta : ’ )

# p r i n t ( ann . o u t p u t $ n e t . r e s u l t [ 1 ] )

# Compute and Show t h e c o n f u s i o n m a t r i x

# t h e t a r g e t i n d e x

t <− 1

r e s <− d a t a . f rame ( o r i g = d a t a . t e s t i n g [ , d a t a . t a r [ t ] ] ,

p r ed = i f e l s e ( ann . o u t p u t $ n e t . r e s u l t

>= 0 . 5 , 1 , 0 ) )

# p r i n t ( p a s t e 0 ( ’ C o n f u s i o n Tab le f o r ’ , p f l h s t [ t ] ) )

p r i n t ( ” E x p e r t 7 ” )

p r i n t ( p a s t e 0 ( ’ L a ye r s : ’ , p a s t e ( h , c o l l a p s e = ’ , ’ ) ) )

p r i n t ( t a b l e ( r e s $ o r i g , r e s $ p r e d , dnn = c ( ” O r i g i n a l ” ,

” P r e d i c t e d ” ) ) )

p r i n t ( p a s t e 0 ( ” Accuracy : ” , ( sum ( r e s $ o r i g == r e s $ p r e d )

/ nrow ( r e s ) ) ) )

# g wp lo t ( ann . model , s e l e c t e d . c o v a r i a t e = 4 ,

# s e l e c t e d . r e s p o n s e = 1)
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