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by
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ABSTRACT

The complex Lorenz system is a simplified nonlinear dynamical system, which is

derived from the Navier-Stokes equations that govern a closed thermal convection

loop. The Lorenz system is chaotic for large Rayleigh number. In this chaotic regime,

we implement a linear state feedback controller to stabilize the state trajectory at its

original nontrivial equilibrium. The state variable for feedback is easily measurable.

The system is proved to be globally asymptotically stable with a optimal feedback

gain. The stability bound is improved over the previous result. We also established

globally stability of the adaptively control system, where the system parameters are

unknown. We present numerical simulations to demonstrate the stability, transient

and steady state responses, and the performance of the state feedback controller.
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CHAPTER 1

INTRODUCTION

The Lorenz system [1] has been one of the most celebrated chaotic dynamical sys-

tems and known as a simplied model of several physical systems. The Oberbeck-

Boussineq equations that govern convection fluid flow between two free surfaces main-

taing at constant temperature differences can be reduced to a two-dimensional system.

This natural convection flow develops a regular pattern of convection cells known as

Rayleigh-Benard cells. In 1962, Barry Saltzman [2] derived an infinite set of ordianry

differential equations by expanding the stream function and the departure of temper-

ature in double Fourier series form, with functions of t alone for coefficients. In 1963,

Lorenz [1] truncated, selected three modes and derived a set of three non-linear first

order differential equations, which have bounded solutions and dissipative. There

are many similarities between three dimensional and higher dimensional systems, es-

pecially the properties of conserving energy in the dissipationless limit and lead to

systems that have bounded solutions [3]. Numerous attempts have been made to

control the Lorenz system: adaptive control [4], proportional-plus-integral control [5],

delayed feedback control [6], impulsive control [7] to mention only a few.

The natural convection in a toroidal loop has been studied extensively due to

its wide applications in solar system, thermosyphon, nuclear reactors, geophysical

systems, etc. The fluid flows around the loop, which is placed in vertical plane, is

driven by the buoyancy and gravity due to vertical temperature difference, formed by

heating from below and cooling from above. Experimental works pioneered by Keller

[8], Welander [9] and Creveling et al. [10] confirmed the observation of instability

in single-phase flow. In 1972, Malkus [11] derived Lorenz model in a closed natural

convection loop.

The equations that governs the fluid motion and temperature variation are de-
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scribed as: 



ẋ = σ(−x+ y)

ẏ = rx− y − xz

ż = xy − bz

(1.1)

where the dimensionless parameters r, σ and b are Rayleigh number, Prandtl

number, and geometric parameter (related to the horizontal wavenumber of convec-

tion motion), respectively. For a closed convection loop, the geometric parameter

b = 1, x(t) is the dimensionless circulating velocity of the fluid flow, y(t) is the hor-

izontal dimensionless temperature difference and z(t) is the dimensionless departure

from conductive equilibrium. Fixed points solutions of Lorenz system include the or-

gin C0, and two other nontrivial equilibrium C± = (±
√
b(r − 1),±

√
b(r − 1), r− 1).

Over the last two decades, the Lorenz system has been stablized around the origin,

but not the other equilibrium points. Controlling the systems around the other two

equilibrium points shed a light on adaptive control as well as tracking control problem.

In this thesis, we investigate the flow stability in a toroidal thermosyphon with

heating from below and cooling from above, assuming that the temperature at both

places are constant. In Chapter 1, the derivation of Lorenz system for thermosyphon

is briefly excerpted from Tritton [12]. In Chapter 2, we introduce the linear state

feedback controller into the chaotic Lorenz system, followed by proof of global sta-

bility for k > kG. Also, a local stability analysis is studied based on the eigenvalues

of Jacobian matrices of main and auxiliary equilibrium points. Also, an adaptive

controller is proposed upon the development of linear feedback controller to suppress

chaotic behavior, with a differential equation on the controller gain. In Chapter 3,

we propose the thermally and viscously coupled dual Lorenz system and investigate

their equilibrium, as well as their stability with two added coupling parameters. In

Chapter 4, we employ MATLAB to demonstrate the suppression of chaotic behav-
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ior based on stability analysis of single Lorenz system in previous chapter, and the

synchronization of double Lorenz systems. We provide the MATLAB codes at the

appendix for the purpose of reproducing numerical experiments.



CHAPTER 2

THE MATHEMATICAL MODEL OF NATURAL CONVECTION

LOOP

Following the procedure of Malkus [11] and Tritton [12], we shall very briefly introduce

the derivation of Lorenz system to study the interraction between x, y and z variables.

Figure 2.1: Schematic sketch of a simplified toroidal thermosyphon. Photo courtesy

of MIT OpenCourseWare.

where φ is angular position round the loop, and a is radius of the loop. Assume

that the tube’s inner radius is much smaller than a and external temperature TE varies

linearly with height, TE = T0 − T1 za = T0 + T1 cosφ. Let q and T be the averaged

cross-sectionally velocity and temperature inside the loop. q = q(φ, t), T = T (φ, t). As

in the Rayleigh-Benard problem, we employ Boussineq approximation and therefore

assume ∂ρ
∂t

= 0. Continuity equation yields ∂q
∂φ

= 0, thus the velocity inside the loop

is a function of time q = q(t). The temperature T (φ) could in reality vary with

much complexity, here we assume it depends only on two parameters, T2 and T3:

T −T0 = T2 cosφ+T3 sinφ, where T2 = T2(t) and T3 = T3(t) are half the temperature
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differences of the top and the bottom, and the mid-height, respectively, and are solely

a function of time.

The Navier-Stokes equation for convection yields

∂q

∂t
= − 1

ua

∂p

∂φ
+ gα(T − T0) sinφ− Γq (2.1)

where gα(T − T0) is the buoyancy force and Γ is a generalized friction coefficient,

corresponding to viscous resistance proportional to velocity. Full simplification of the

system leads to

dq

dt
= −Γq +

gαT3
2

(2.2)

The full temperature equation in convection for the cross-sectional average within

the loop is

∂T

∂t
+
q

a

∂T

∂φ
= K(TE − T ) (2.3)

where K is thermal conductivity of the annulus. Proper substitution and separation

of cosφ and sinφ terms give two equations on rate of change of the horizontal and

vertical temperatures

dT3
dt
− qT2

a
= −KT3 (2.4)

dT2
dt

+
qT3
a

= K(T1 − T2) (2.5)

Let T4(t) = T1 − T2(t), and let

x =
q

aK
, y =

gαT3
2aΓK

, z =
gαT4
2aΓK

(2.6)

Define the dimensionless time quantity t′ = tK. Dropping the prime on t to obtain

the Lorenz system with b = 1 for closed natural convection loop. Without any loss

of generality, we will stick with the geometric parameter b instead of assigning a

particular value for this quantity.

It is noticed that high dimensional Lorenz system exists, and the set of equations

(1.1) is truncated after 3 most important modes are selected. For the original and
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full derivation from Navier-Stokes with infinite set of ordinary differential equation,

see [2] and [1], respectively.



CHAPTER 3

STABILITY ANALYSIS OF LINEAR STATE FEEDBACK CONTROL

As we can see in (2.3), the system loses its stability upon the inconsistency of hori-

zontal temperature difference. For the purpose of controlling the system by a linear

feedback controller, let us assume that the dynamical equations of the controlled

Lorenz system are given by





ẋ = σ(−x+ y)

ẏ = rx− y − xz − k(y − y∗)

ż = xy − bz

(3.1)

where y∗ = ±
√
b(r − 1) is the nontrivial equilibrium. Our question is that what

minimal k value will stabilize the system? And for smaller k value, how will the

system behave? We will prove the stability of the translated system case by case; in

order to simplify the process, let c1 =
√
b(r − 1) and c2 = r − 1.

3.1 Translation of the linear feedback control Lorenz system

Before introducing the translated Lorenz systems, we define C0 = (0, 0, 0) to be

the origin of the Lorenz system (3.1), C+ = (
√
b(r − 1),

√
b(r − 1), r − 1) and

C− = (−
√
b(r − 1),−

√
b(r − 1), r − 1) to be the positive and negative nontrivial

equilibrium points of (3.1), respectively.

Case 1: y∗ =
√
b(r − 1).

Before proposing a Lyapunov function, we translate the system with the transfor-

mation x→ x+c1, y → y+c1 and z → z+c2. The translation reserves the dynamical

behavior of Lorenz system, and simplifies the object of interest to the origin. The

system (3.1) becomes
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ẋ = σ(−x+ y)

ẏ = x− y − xz − c1z − ky

ż = xy − bz + c1x+ c1y

(3.2)

If the Lyapunov function is chosen to be

V =
1

2
(x2 + αy2 + αz2) (3.3)

where α = α(r, σ, b) > 0 is a to-be-determined coefficient, then

V̇ = −
[
x y z

]
Q+




x

y

z




(3.4)

where Q+ =




σ −σ+α
2

−α
√
b(r−1)
2

−σ+α
2

α(k + 1) 0

−α
√
b(r−1)
2

0 bα




Case 2: y∗ = −
√
b(r − 1).

Followed by Case 1, we translate the system with the transformation x → x −

c1, y → y − c1 and z → z + c2





ẋ = σ(−x+ y)

ẏ = x− y − xz + c1z − ky

ż = xy − bz − c1x− c1y

(3.5)

and consider the Lyapunov function in (3.3) form, then
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V̇ = −
[
x y z

]
Q−




x

y

z




(3.6)

where Q− =




σ −σ+α
2

α
√
b(r−1)
2

−σ+α
2

α(k + 1) 0

α
√
b(r−1)
2

0 bα




It is straightforward to verify that |Q+| = |Q−| = |Q|. The existence of the

coefficient α > 0 that make Q+ and Q− positive definite concludes the global stability

of the equilibrium.

3.2 Global stability of linear feedback control Lorenz system

Observe that from the second equation in (3.1), the number of equilibrium points

reduce to one - a unique equilibrium y = y∗ = ±
√
b(r − 1) when k > kG = (r − 1)/4

Theorem 3.1. The system (3.1) is globally uniformly asymptotically stable if k > kG.

Proof. Let Q = Q±

where Q± =




σ −σ+α
2

∓α
√
b(r−1)
2

−σ+α
2

α(k + 1) 0

∓α
√
b(r−1)
2

0 bα




Q is positive definite if and only if all the principal minor of Q± have positive

determinants.

|Q1| = σ > 0 (3.7)
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|Q2| =

∣∣∣∣∣∣∣

σ −σ+α
2

−σ+α
2

α(k + 1)

∣∣∣∣∣∣∣
=

4ασk − (α− σ)2

4
> 0 (3.8)

|Q3| =

∣∣∣∣∣∣∣∣∣∣

σ −σ+α
2

∓α
√
b(r−1)
2

−σ+α
2

α(k + 1) 0

∓α
√
b(r−1)
2

0 bα

∣∣∣∣∣∣∣∣∣∣

= −bα
4
{rα2 + kα[(r − 1)α− 4σ] + σ(−2α + σ)} > 0

(3.9)

From (3.8):

k >
(α− σ)2

4ασ
> 0 (3.10)

From (3.9):

0 < (r − 1)α2 + (α− σ)2 < kα[4σ − (r − 1)α]

which means

k >
(r − 1)α2 + (α− σ)2

α[4σ − (r − 1)α]
> 0 (3.11)

and since α > 0, then 4σ − (r − 1)α > 0. This implies α has to be in
(

0, 4σ
r−1

)
. Take

the right hand side quantity of (3.11) subtract this quantity of (3.10):

(r−1)α2+(α−σ)2
α[4σ−(r−1)α] −

(α−σ)2
4ασ

= (r−1)(α+σ)2
4σ[4σ−α(r−1)] > 0 (3.12)

Thus for this range of α, (3.11) implies (3.10). The minimum gain k from (3.11)

is kG, when α = 2σ
r+1

. Let

V =
1

2
{(r + 1)x2 + 2σy2 + 2σz2} (3.13)

Since V (x, y, z) is positive definite, radially unbounded and decrescent, and V̇ (x, y, z)

is negative definite, by LaSalle’s Invariance Theorem, the origin of the translated

system is globally uniformly asymptotically stable [13].
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3.3 Local stability of linear feedback control Lorenz system

The question is that how the sytem behaves once k value drops below kG value? To

answer the question, we compute the Jacobian matrix J of the control Lorenz system

(3.1) is

J =




−σ σ 0

r − z −1− k −x

y x −b




(3.14)

and thus, the characteristic polynomial of J is computed as

p(λ) = λ3 + β2λ
2 + β1λ+ β0 (3.15)

where β0 = σ[x(x+y)+ b(z+k+1−r)], β1 = x2 +(z+k+1−r)σ+ b(σ+k+1),

β2 = σ + b+ 1 + k.

The fact that β2 is always positive implies that the unstable manifold is at most

two-dimensional at every point on the state trajectory in phase space. The discrimi-

nant of the cubic equation is defined as

∆ = −β2
2β

2
1 + 4β3

2β0 + β3
1 − 18β2β1β0 + 27β2

0 (3.16)

The Jacobian matrices for C± in (3.2) and (3.5) are

J± =




−σ σ 0

1 −1− k ∓
√
b(r − 1)

±
√
b(r − 1) ±

√
b(r − 1) −b




(3.17)

It is noted that the determinant of the Jacobian matrix does not change with re-

spect to the translation. Due to the symmetry of Lorenz system, both the equilibrium

points C± share the same characteristic equations
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λ(J−) = λ(J+) = λ3 + λ2(σ + b+ 1 + k) + λ[br + bσ + (σ + b)k] + bσ[2(r − 1) + k]

(3.18)

Pure imaginary solutions occurs if the product of the coefficients of λ2 and λ

equal to the constant term

(σ + b+ 1 + k)[br + bσ + (σ + b)k] = bσ[2(r − 1) + k] (3.19)

Suppose σ > b+ 1, then

kL = 1
2

√
(σ + b+ 1 + br

σ+b
)2 + 4b(σ−b−1)

σ+b
(r − rc)− 1

2
(σ + b+ 1 + br

σ+b
) (3.20)

where rc = σ(σ+b+3)
σ−b−1 is the critical value of r. When kG > k > kL, either all the

eigenvalues of the Jacobian J± have negative real parts or two of them are positive

and one is negative. In fact, numerical simulation shows that the linear state feedback

control Lorenz system (3.1) is stablized for very many intial values. The following

lemma eliminates the second case and establishes the local stability of C±.

Theorem 3.2. For k > kL, C± are either stable foci (0 > Re{λ1,2} > λ3) or stable

nodes (0 > λ1 > λ2 > λ3).

Proof. At C±, βi are

β2 = σ + b+ 1 + k (3.21)

β1 = br + bσ + (σ + b)k (3.22)

β0 = bσ [2(r − 1) + k] (3.23)

General theory [14] suggests that C± are stable foci if and only if β2 > 0 and
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β2β1 > β0 >





β+
0 (β2, β1) > 0, for 0 < β1 ≤ β2

2

3

β2
3

(
β1 − 2β2

2

9

)
, for β1 ≥ β2

2

3

(3.24)

where β±0 = β±0 is defined by the following formula

β±0 =
1

3
β2β1 −

2

27
β3
2 ±

2

27
(β2

2 − 3β1)
3/2 (3.25)

From (3.18), k > kL implies that β2β1 > β0.

C± are stable node if and only β2 > 0 and

0 < β0 <





β+
0 (β2, β1), for 0 < β1 ≤ β2

2

3

β2
3

(
β1 − 2β2

2

9

)
, for β1 ≥ β2

2

3

(3.26)

It is clear that β0 is always positive but unclear how β0 compares to these values.

Either case, the local stability of C± is guaranteed by the negative real parts of all

eigenvalues.

Setting
β2
2

3
− β1 = 0 yields

k2 − (σ + b− 2)k − [3(br + bσ)− (σ + b+ 1)2] = 0 (3.27)

However, for k ∈ (kL, kG), there are two other auxiliary equilibirum generated

by the controller, associated with either C+ or C−. Define P1, P2 to be two auxiliary

equilibrium associated with C+, N1, N2 to be two auxiliary equilibrium associated

with C−. Setting ẋ = ẏ = ż = 0 in (3.2) and (3.5) gives the post-transled coordinates

of P ∗1 , P
∗
2 and N∗1 , N

∗
2 . Note that the coordinates of these auxiliary equilibrium can

be translated back and forth.

P ∗1,2 = P ∗i =
(
−3c1±

√
δ

2
, −3c1±

√
δ

2
,
−3c21+δ∓2c1

√
δ

4b

)
(3.28)
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N∗1,2 = N∗i =
(

3c1±
√
δ

2
, 3c1±

√
δ

2
,
−3c21+δ±2c1

√
δ

4b

)
(3.29)

where δ = c21 − 4bk

The pre-translated coordinates of Pi and Ni can be solved by setting ẋ = ẏ =

ż = 0 in(3.1)

P1,2 = Pi =
(
−c1±

√
δ

2
, −c1±

√
δ

2
,
c21+δ∓2c1

√
δ

4b

)
(3.30)

N1,2 = Ni =
(
c1±
√
δ

2
, c1±

√
δ

2
,
c21+δ±2c1

√
δ

4b

)
(3.31)

It is noted that when k ≥ kG, δ ≤ 0 and by Theorem 3.1, the system is globally

stable.

Theorem 3.3. Suppose kL < k < kG then

(a) P1 is a saddle-focus.

(b) P2 is either a stable focus, a saddle-focus or a sadlle.

Proof. (a). At P1, βi are computed as

β2 = σ + b+ 1 + k (3.32)

β1 = −1
2

[
(b+ σ)

√
(r − 1)(r − 1− 4k) + rσ − σ − b(1 + r + 2σ)

]
(3.33)

β0 =
bσ

2

[
(r − 1− 4k)− 3

√
(r − 1)(r − 1− 4k)

]
(3.34)

Assume r > rc = σ(σ+b+3)
σ−b−1 , and observe that σ(σ+b+3)

σ−b−1 > b+σ+2bσ
σ−b holds for all σ

and b. This implies rσ − σ > b(1 + r + 2σ), and therefore, β1 < 0.
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Suppose that λ1 > λ2 > λ3 are the roots of (3.15). According to Vieta’s formula,

λ1 + λ2 + λ3 = −β2 < 0 (3.35)

λ1λ2 + λ2λ3 + λ3λ1 = β1 < 0 (3.36)

λ1λ2λ3 = −β0 > 0 (3.37)

Consider the discriminant of P1

∆P1 = 27
4
b2σ2

[
−3
√

(r − 1)(−4k + r − 1)− 4k + r − 1
]2

+2bσ
[
−3
√

(r − 1)(−4k + r − 1)− 4k + r − 1
]

(b+ k + σ + 1)3

−1
4
(b+ k + σ + 1)2

[
−(b+ σ)

√
(r − 1)(−4k + r − 1) + b(r + 2σ + 1)− rσ + σ

]2

−9
2
bσ
[
−3
√

(r − 1)(−4k + r − 1)− 4k + r − 1
]

(b+ k + σ + 1)
[
−(b+ σ)

√
(r − 1)(−4k + r − 1) + b(r + 2σ + 1)− rσ + σ

]

+1
2

[
−(b+ σ)

√
(r − 1)(−4k + r − 1) + b(r + 2σ + 1)− rσ + σ

]3

(3.38)

Since the following inequality holds
[
−3
√

(r − 1)(−4k + r − 1)− 4k + r − 1
]
<

0, it follows that ∆P1 < 0 for r > rC , therefore, there are three distinct real eigenval-

ues. This concludes that λ1 > 0 > λ2 > λ3 and completes the proof.

(b) At P2,

β2 = σ + b+ 1 + k (3.39)

β1 = 1
2

[
(b+ σ)

√
(r − 1)(r − 1− 4k) + b(1 + r + 2σ) + σ − rσ)

]
(3.40)

β0 =
bσ

2

[
r − 1− 4k + 3

√
(r − 1)(r − 1− 4k)

]
(3.41)
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Let kS be the unique value that makes β1 = 0. If k < kS, then β1 > 0; if k > kS,

then β1 < 0.

kS = 1
4

{
r − 1− [σ(r−1)−b(1+r+2σ)]2

(b+σ)2(r−1)

}
= b(r+σ)(rσ−bσ−b−σ)

(r−1)(b+σ)2
(3.42)

According to Vieta’s formula,

λ1 + λ2 + λ3 = −β2 < 0 (3.43)

λ1λ2 + λ2λ3 + λ3λ1 =





β1 > 0, if k < kS

β1 ≤ 0, if k ≥ kS

(3.44)

λ1λ2λ3 = −β0 < 0 (3.45)

If k > kS, it follows that λ1 ≥ λ2 > 0 > λ3. General theory [14] states that

Re{λ1,2} > 0 > λ3 if and only

β0 >





β+
0 (β2, β1), for β1 < 0

β2β1, for β1 ≥ 0

(3.46)

Indeed, if kL < k < kS, then there exists a range of k make P2 a stable-focus. So

k have to be greater than kS.

The unstable manifolds W u
P (or W u

N) are composed of the saddle points P (or N)

themselves and two tracjectories that come from P (or N) as t → +∞. The stable

manifold W s
P (or W s

N) is given by the eigenvector corresponding to the smallest nega-

tive characteristic root. The boundedness of the control Lorenz system is established

upon the following theorem

Theorem 3.4. There exists a bounded ellipsoid E, which is the trapping region for

the control Lorenz flow (3.1). ; that is, if a trajectory enters E at sometime, it will
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stay there and never thereafter leaves. In addition, every trajectory will enter E in

finite time.

Proof. Define V = 1
σ
x2 + (y ± c1)

2 + z2 as a Lyapunov function. Then along any

trajectory of (3.2) or (3.5),

V̇ = −[x− (y ± c1
2

)]2 − k(y ∓ c1)2 − b(z − c21
2b

)2 + k+1
4
c21 +

c41
4b

(3.47)

Define F = {V̇ ≥ 0}. F is a bounded region. Pick an arbitrary ε > 0, and let Vmax

be the maximum of V in F and E = {V ≤ Vmax + ε}, then {V } ⊂ E . Outside E ,

V̇ ≤ −δ, for some δ > 0. With an intial condition (x0, y0, z0) outside E , the value of

V (x, y, z) will decrease within finite time, and eventually enter the ellipsoid E . All

trajectories pass inward the ellipsoid E so that the trajectory once within E , it will

stay there forever.

Summarize Lemma 3.3 and Lemma 3.4, we now can conclude the following:

Theorem 3.5. Suppose kG > k > kL, the equilibrium points C± are locally asymp-

totically stable. Its basin of attraction is R3\{W s
P1
∪W s

P2
} or R3\{W s

N1
∪W s

N2
}

3.4 Global stability analysis of adpative control Lorenz system

Consider the system (3.1) with k as a state variable. The feedback control law thus far

requires exact values of r, σ and b. However, determining these values in real life could

be impossible. To overcome these drawbacks, an adaptive technique is employed to

adjust the feedback gain accordingly. The governing equations for the system are
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ẋ = σ(−x+ y)

ẏ = rx− y − xz − k(y − y∗)

ż = xy − bz

k̇ = γ(y − y∗)2

(3.48)

where γ is the adpaptive gain, controlling the speed of the adaptive control

process. The equilibrium are (x∗, y∗, z∗, k∗) = (±
√
b(r − 1),±

√
b(r − 1), r − 1, k∗)

for ∀k∗ ∈ R, and they are unique in the sense of (x, y, z) . Again, we will translate

the system to the two equilibrium points and combine them based on their similarity.

The adaptive control Lorenz system after translation is described by setting x →

x+ c1, y → y + c1, z → z + c1, k → k + kG, the system (3.48):





ẋ = σ(−x+ y)

ẏ = x− y − xz ∓ c1z − (k + kG)y

ż = xy − bz ± c1x± c1y

k̇ = γy2

(3.49)

Based on Theorem 3.1, we proposed the following theorem for adpative global

stablity of the adaptive control Lorenz system (3.48).

Theorem 3.6. The trajectory of the adaptive controlled Lorenz system is globally

uniformly asymptotically stable to the equilibrium (±
√
b(r − 1),±

√
b(r − 1), r−1, k∗)

Proof. If the Lyapunov function is chosen to be

V =
1

2
(x2 + αy2 + αz2 +

1

γ
αk2) (3.50)
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then

V̇ = −
[
x y z

]
Q




x

y

z




(3.51)

where Q =




σ −σ+α
2

∓α
√
b(r−1)
2

−σ+α
2

α(kG + 1) 0

∓α
√
b(r−1)
2

0 bα




By Lemma 1, Lyapunov function of the form (3.50) is positive definite and de-

crescent, and V̇ is negative semidefinite. By Lyapunov theory [15], the equilibrium

point of the system (3.48) is uniformly stable, i.e. x(t), y(t), z(t) ∈ L∞ and k(t) ∈ L∞.

From (3.51), the square of x(t), y(t) and z(t) are integrable with respect to time, i.e.

x(t), y(t), z(t) ∈ L2. By Barbalat’s lemma, for any initial condition, equation 3.1 im-

plies that ẋ(t), ẏ(t), ż(t) ∈ L∞, which in turn implies x(t), y(t) and z(t)→ 0 as t→∞.

This implies the trajectory of the controlled Lorenz system is globally asymptotically

stabilzed to the equilibrium point stated above.



CHAPTER 4

SYNCHRONIZATIONS OF IDENTICAL LORENZ SYSTEM

In this chapter, we investigate the bidirectionally coupled Lorenz loops with the in-

troduction of 2 new parameters: N and µ. Following Jackson [16], we present a model

built upon a ”chain” of vortical fluid cells, each of whose dynamics are described by

(1.1), except that they are coupled together by viscous effects and thermal couplings.

The below model for Rayleigh-Benard turbulence generalizes Lorenz system and as-

sumes that the basic structure of the fluid motion consists of vortices which persist

for a range of r that includes turbulent behavior. The proposed model is presented

in Figure 4.1.

Thus, cell i and i+1 have opposite sign for x(t), whereas i−1 and i+1 cell have

same signs. When xi(t) + xi+1(t) 6= 0, there will be a viscous force at this interface,

which we assume to be µ(xi(t)+xi+1(t)). It is noted that the positive sign takes place

in the coupling because the counter-rotation of adjacent vortices reduces the viscous

force, i.e. if xi(t) > 0, then xi+1(t) < 0 and the velocity difference is xi + xi+1 rather

than xi − xi+1. Also, if there is a temperature difference Ti(t) + Ti+1(t) near φ = π
2
,

there will be a heat exchange, modeled by N
(
Ti(t) + Ti+1(t)

)
, which is proportional

to Ti(t) + Ti+1(t)δ(φ− π
2
)

Figure 4.1: Schematic plot of coupled Lorenz-cell configuration. The arrows indicate

the flow of direction in each cell. Photo courtesy of E. A. Jackson [16] with slight

modification.
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Combined these ideas, we model the 1D horizontal Lorenz ”chain” as





ẋi = σ(yi − xi)− µ(xi+1 + xi−1 + 2xi)

ẏi = rxi − yi − xizi −N(yi+1 + yi−1 + 2yi)

żi = xiyi − bzi

(4.1)

It is noted that µ and N are related to Reynolds and Nusselt in some way,

and therefore, depends on the fluid properties and the system constant σ, r and b;

however, in this work, we will assume that those parameters are constant and will

investigate the stability of the system based on the range of these paramters.

The set of equations governing the bidirectionally coupled Lorenz system are

therefore modeled as





ẋ1 = σ(−x1 + y1)− µ(x1 + x2)

ẏ1 = rx1 − y1 − x1z1 −N(y1 + y2)

ż1 = x1y1 − bz1

ẋ2 = σ(−x2 + y2)− µ(x1 + x2)

ẏ2 = rx2 − y2 − x2z2 −N(y1 + y2)

ż2 = x2y2 − bz2

(4.2)

We present a few analogous lemmas and theorems to a single loop system.

Theorem 4.1. There exists a bounded 6-tupled ellipsoid E2, which is the trapping

region for the bidirectionally coupled Lorenz system flow (4.2). If a trajectory enters

E2 at sometime, it will stay there and never thereafter leaves. In addition, every

trajectory will enter E2 in finite time.

Proof. Since the proof is very similar to Theorem 3.4, we will neglect the technical

details and begin with the Lyapunov function for E2. In this case, consider
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V =
1

2

[ r
σ

(
x21 + x22) + (y21 + y22) + (z1 − 2r)2 + (z2 − 2r)2)

]

Then, along any trajacetory of (4.2),

V̇ = −rµ
σ

(x1+x2)
2−x21−x22−N(y21 +y22)−y21−y22−b(z1−r)2−b(z2−r)2+2br2 (4.3)

Outside E2, V̇ < 0. With an initial condition outside E6, the value of V (xi, yi, zi) will

decrease within finite time, and eventually enter E2.

To establish the synchronization of the bidirectionally coupled Lorenz systems,

let ex = x1 + x2, ey = y1 + y2 and ez = x1 − z2. From (4.2),





ėx = σ(−ex + ey)− 2µex

ėy = rex − ey − (x1z1 + x2z2)− 2Ney

ėz = (x1y1 − x2y2)− bez

(4.4)

Following Theorem 4.1, there exist 3 positive constants s1, s2, s3 such that |xi(t)| ≤

s1 < ∞, |yi(t)| ≤ s2 < ∞, and |zi(t)| ≤ s3 < ∞ hold for all t ≥ 0 and i = 1, 2. The

synchronization of two identical, bidirectionally coupled Lorenz systems is granted

upon the following theorem

Theorem 4.2. Two bidirectionally coupled Lorenz systems under (4.2) are globally

asymptotically synchronized if the following conditions are satisfied:

(i)
(
r +

2µr

σ

)
(2N + 1)−

(
r +

s3
2

)2
> 0 (4.5)

(ii)

b
[(
r +

2µr

σ

)
(2N + 1)− (r +

s3
2

)2
]
− (2N + 1)

(s22
4

)
> 0 (4.6)
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Proof. Let V = 1
2

(
r
σ
e2x + e2y + e2z

)
then

V̇ = −(r + 2rµ
σ

)e2x + 2rexey − e2y − 2Ne2y − ex(z2ey + y2ez)− be2z
≤ −(r + 2rµ

σ
)|ex|2 + 2r|ex||ey| − |ey|2 − 2N |ey|2 + s3|ex||ey|+ s2|ex||ez| − b|ez|2

(4.7)

If the upper bound of V̇ is less than or equal to zero, obviously V̇ ≤ 0. Expressing

(4.7) as matrix form, we have

V̇ ≤ −
[
[|ex| |ey| |ez|]

]



r + 2µr
σ

−
(
r + s3

2

)
− s2

2

−
(
r + s3

2

)
2N + 1 0

− s2
2

0 b







[|ex|

|ey|

|ez|]




(4.8)

The aforementioned condition are sufficient and necessary to make the middle

matrix positive definite, and therefore V̇ < 0 holds. Since V is a positive and descres-

cent function and V̇ is negative semidefinite, we can conclude that the two Lorenz

systems are globally asymptotically synchronized.

Indeed, one can choose s1 = 2br2
rµ
σ
+1

, s2 = 2br2

N+1
, s3 = r(1 +

√
2) for the bounded

trajectory in Theorem 4.1. As such, possible choices of µ and N for the synchroniza-

tion problem are µ = σr2 and N = r. Feasible ranges of these parameters are soon

to be explored in future work.



CHAPTER 5

NUMERICAL SIMULATION BY MATLAB AND DISCUSSION

5.1 Numerical simulation by MATLAB

To validate the theory, we employed MATLAB to simulate Lorenz system with 4th

order Runge - Kutta method in 10 seconds. In the first 5 seconds, the controller is

taken off to demonstrate the chaotic behavior of the system. The linear controller is

activated at t = 5s. The step-size of the simulation is 0.001s and the initial value

is randomly generate by computer. The Lorenz system variables are b = 1, σ = 10,

r = 100; for these values, kG = 24.75000, kS = 9.08173, kL = 3.03914.

Figure 5.1 presents the behavior of the control Lorenz system described in the

set of equations (3.2) on x, y, z axis, respectively. Figure 5.2 presents the deviation

of the flow from the equillibrium desired points C± after the controller is activated.

Figure 5.3 presents a space plot of control Lorenz flow, from t = 0s to t = 10s.

Figure 5.4 presents a zoom-in picture of closed feedback control Lorenz flow; the

equilibrium point C± is plotted as a red star. Figure 5.5 presents the real and imag-

inary part of Jacobian eigenvalues of C+, P1 and P2, respectively with respect to k;

in here, the k gain value varies from 0 to r−1
4

. The simulation results agree with

Lemma 3.2 and Lemma 3.3 up on the calculated kG, kS and kL values.

Figure 5.1 to Figure 5.5 feature the closed feedback control Lorenz system de-

scribed in (3.1) with b = 1, σ = 10, r = 100, k = 10, the space plot and Jacobian

eigenvalues analysis.
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Figure 5.1: Linear feedback control Lorenz system behavior. The controller is acti-

vated at t = 5s. Red lines denote the desired equilibrium point C+.
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Figure 5.2: Deviation of the flow from C+ after the linear controller is activated.
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Figure 5.3: Space plot of closed feedback control Lorenz flow.
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Figure 5.4: Zoom-in space plot after the linear controller is activated. C+ is plotted

as a small red star.
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Figure 5.5: Eigenvalues of Jacobian matrix of C+, P1 and P2, respectively.

Simliarly, Figure 5.6 presents the adaptive control system behavior described by

the set of equation (3.48). Figure 5.7 plots the deviation from the desired equilibrium

point C+ with respect to time. Figure 5.8 and Figure 5.9 provides a space plot of the

adaptive control Lorenz flow. As we observe in Figure 5.6, the k gain value continues

rising until the flow stabilizes at C+.

Figure 5.6 to Figure 5.9 feature the adaptive control Lorenz system described in

(3.48), b = 1, σ = 10, r = 100, γ = 10−2 space plot.
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Figure 5.6: Adaptive control Lorenz system behavior. The controller is activated at

t = 5s. Green line denotes the desired equilibrium point C+.
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Figure 5.7: Deviation of the flow from C+ after the adaptive controller is activated.
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Figure 5.8: Space plot of adaptive control Lorenz flow.
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Figure 5.9: Zoom-in space plot after the adaptive controller is activated. C+ is plotted
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Figure 5.10 shows the transient response of the bidirectionally coupled Lorenz

system, where the initial values for both loops are randomly chosen. The system

constant are σ = 10, b = 1, r = 100. The coupling constants are assumed to be

µ = σ · r, N = r; as such, the necessary conditions revealed in 4.2 are satisfied. The

synchronization numerical results are presented in Figure 5.11; numerical simulations

and theoretical results show good agreement and demonstrate that the two Lorenz

systems have been asymptotically synchronized using the proposed coupling constant

schemes.
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Figure 5.10: Transient response of two bidirectionally coupled Lorenz systems
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Figure 5.11: State response of bidirectionally coupled synchronization.
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5.2 Future work

The results of this thesis point to several directions of future work:

1. Stability of multi-equilibrium of bidirectionally coupled Lorenz systems.

2. Implement a controller or an adaptive controller to either synchronize or drive

the state trajectory to the desired equilibrium point

3. Analysis of coupling constants, such as µ and N .

4. Develop a 1D adjacent coupled Lorenz ”chain”. This has a direct application

in thin film fluid motion with perturbed heat flux.

5. Develop a 2D computational fluid dynamics model with vertical coupling in-

cluded. A possible direction is to use Finite Volume Method, with each cell

now is a single Lorenz system

6. Develop a 3D computational fluid dynamics model and compare the simulation

results with the experimental results.

In the near future, this topic will soon to be revisited for further development.
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Appendix A

MATLAB CODES

In this appendix, MATLAB codes written for numerical simulation are documented.

The structure design of MATLAB codes provide an accessbile way to change the ODE

system if necessary. The codes are sub-divided into 3 main categories:

1. Main program: include options to change system constants, e.g. r, σ, b and

coupling constants, e.g. µ, N . It also presents computational time and plots,

and the cut-off time, as well as the transient time analysis. 3 main program files

are lorsim1.m (feedback control), lorasim1.m (adaptive control) and bidirsim.m

(bidirectionally coupled). The main programs present the highest observable

level of the system.

2. Solvers: are used for time discretized simulation. Inputs include cut-off time

and initial values; solvers repeatedly call the differential equations, which are

built as a function of the current 3D coordinates of the system. This is the

key to uncouple the complex equation from the solvers. Lorenz system solvers

include ftcontrol (feedback control), a1control (adaptive control) and bidir.m

(bidirectionally coupled)

3. ODE functions: are fundamental differential equations of a system, e.g. ẋ, ẏ, ż.

ODE file names are lor**.m, where the first * is any number, and the second *

is a letter.

A.1 Main programs

A.1.1 lorsim1.m
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% This program simulates feedback and tracking control for single loop

% Variables:

% sigma, r, b -- Prandtl number, Rayleigh number, geometric configuration coefficient

% M-File called:

% notif -- used for lorsim1. To distinguish with anotif and lorasim1.m

% where 'a' denotes adaptive control

close all; clear all; home;

global sigma b r h xeq yeq zeq % system constant

global k % controller & coupling

% Debug note: the 1st line in Plot section, fix T+h or T. +h Only if h is divisible by T1 and T2

%% Define global value

sigma=10;

b=1;

r=100;

% interesting values:

rc = sigma*(sigma+b+3)/(sigma-b-1);

kG = (r-1)/4;

kS = b*(r+sigma)*(r*sigma-b-sigma)/( (r-1)*(b+sigma)^2 );

kL = 1/2*sqrt( (sigma+b+1+b*r/(sigma+b))^2+4*b*(sigma-b-1)/(sigma+b)*(r-rc))-1/2*(sigma+b+1*b*r/(sigma+b));

%% k value

k = 10;

%% Equilbirum computation

c1=sqrt( b*(r-1)); c2 = (r-1);

xeq = sqrt(b*(r-1)); yeq=xeq; zeq=r-1;

% Auxiliary equilibrium

delta = c1^2-4*b*k;

P1=[ 1/2*(-c1+sqrt(delta)),1/2*(-c1+sqrt(delta)),1/(4*b)*(c1^2+delta-2*c1*sqrt(delta))];

P2=[ 1/2*(-c1-sqrt(delta)),1/2*(-c1-sqrt(delta)),1/(4*b)*(c1^2+delta+2*c1*sqrt(delta))];

%% Define initial condition & step time, time limit, and neccessary variable

X = rand(1,3)*1e3;

% X=[105 35 -75];

% X = P2-5e-2;

x0=X(1); y0 = X(2); z0 = X(3); % initial value

h=0.001; % time step, step size is reciprocal to intial value or r

T=20; % total tracking time

T1=12; % chaotic transient time T1

T2=T-T1; % controlling time T2

CPU_time=cputime;
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%% Simulation and Controller variables

t1=[0:h:T1];

[x1,y1,z1]=lor3d(X,T1);

n=length(x1);

X=[x1(n) y1(n) z1(n)]; % adjust initial condition

t2=[0:h:T2];

[x2,y2,z2]=ftcontrol(X,T2);

%% Plot

% figure; plot3(x,y,z); grid on;

t=[0:h:T+h]; x=[x1 x2]; y=[y1 y2]; z=[z1 z2]; n=length(t);

figure; scl=1; % feedback control use only

title('Closed feedback control Lorenz system.');

% ymin = mean(x) - sqrt(r)/2; ymax = mean(x) + sqrt(r)/2; % plot rescale

subplot(3,1,1); plot(t,x); grid on; title('x-axis'); hold on; plot(t,xeq*ones(1,n),'r--');

axis([t(1) t(n) xeq-r/scl xeq+r/scl]);

xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,2); plot(t,y); grid on; title('y-axis'); hold on; plot(t,yeq*ones(1,n),'r--');

axis([t(1) t(n) yeq-r/scl yeq+r/scl]);

xlabel('Time (s)'); ylabel('Amplitude');

subplot(3,1,3); plot(t,z); grid on; title('z-axis'); hold on; plot(t,zeq*ones(1,n),'r--');

axis([t(1) t(n) zeq-r/scl zeq+r/scl]);

xlabel('Time (s)'); ylabel('Amplitude');

figure; % performance of controller

title('Deviation from equilibrium points C± of x, y, and z','interpreter','latex');

t=[0:h:T2];

subplot(3,1,1), plot(t,(x2-xeq)); grid on; xlabel('x-axis'); ylabel('Amplitude');

title('Deviation from equilibrium points C± of x, y, and z','interpreter','latex');

subplot(3,1,2), plot(t,(y2-yeq)); grid on; xlabel('y-axis'); ylabel('Amplitude');

subplot(3,1,3), plot(t,(z2-zeq)); grid on; xlabel('z-axis'); ylabel('Amplitude');

% figure; % scl=0.1; % tracking control use only

% % ymin = mean(x) - sqrt(r)/2; ymax = mean(x) + sqrt(r)/2; % plot rescale

% subplot(3,1,1); plot(t,x); grid on; title('x'); hold on; plot(t,xref*ones(1,n),'r--');

% axis([t(1) t(n) xref-r/scl xref+r/scl]);

% subplot(3,1,2); plot(t,y); grid on; title('y'); hold on; plot(t,yref*ones(1,n),'r--');

% axis([t(1) t(n) yref-r/scl yref+r/scl]);
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% subplot(3,1,3); plot(t,z); grid on; title('z'); hold on; plot(t,zref*ones(1,n),'r--');

% axis([t(1) t(n) zref-r/scl zref+r/scl]);

%% post-processing

notif;

jacobian_stable;

A.1.2 lorasim.m

% This program simulates adaptive control for single loop

close all; clear all; home;

global sigma b r h xeq yeq zeq % system constant

global gamma

% Note: the 1st line in Plot section, fix T+h or T. +h Only if h is divisible by T1 and T2

% Function used: a1control lor4k lor2a lorasim1

%% Define global value

sigma=10;

b=1;

r=100;

% interesting values:

rc = sigma*(sigma+b+3)/(sigma-b-1);

kG = (r-1)/4;

kS = b*(r+sigma)*(r*sigma-b-sigma)/( (r-1)*(b+sigma)^2 );

kL = 1/2*sqrt( (sigma+b+1+b*r/(sigma+b))^2+4*b*(sigma-b-1)/(sigma+b)*(r-rc))-1/2*(sigma+b+1*b*r/(sigma+b));

%% Define initial condition & step time, time limit, and neccessary variable

% X=[0 0 0];

X = rand(1,3)*1e3;

% X=1e2* [-0.074350038733783 0.106052075880238 1.125440830802433 0];

x0=X(1); y0 = X(2); z0 = X(3); % initial value

h=0.001; % time step, step size is reciprocal to intial value or r

T=10; % total tracking time

T1=5; % chaotic transient time t1, can't be 0

T2=T-T1; % controlling time t2

CPU_time = cputime;

%% Equilbirum

xeq = sqrt(b*(r-1)); yeq=xeq; zeq=r-1;

%% Simulation and Controller variables
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t1=[0:h:T1];

[x1,y1,z1]=lor3d(X,T1);

gamma=1e-2;

n1=length(x1); k=0; kL=gamma*(r-1)/(2*(r+1));

% k=gamma*(y1(n1)-yeq)^2;

X=[x1(n1) y1(n1) z1(n1) k]; % adjust initial condition

t2=[0:h:T2];

[x2,y2,z2,k2]=a1control(X,T2);

%% Plot

% figure; plot3(x,y,z); grid on;

t=[0:h:T+h]; x=[x1 x2]; y=[y1 y2]; z=[z1 z2]; n=length(t);

k1 = 0*ones(1,n1); k=[k1 k2];

figure; scl=1; % feedback control use only

% ymin = mean(x) - sqrt(r)/2; ymax = mean(x) + sqrt(r)/2; % plot rescale

subplot(3,1,1); plot(t,x); grid on; hold on;

subplot(3,1,1); plot(t,y,'r'); title('x = x(t) and y = y(t)');

hold on; plot(t,yeq*ones(1,n),'g-.'); axis([t(1) t(n) yeq-r/scl yeq+r/scl]); legend('x','y');

xlabel('Time(s)'); ylabel('Amplitude');

subplot(3,1,2); plot(t,z); grid on; title('z = z(t)');

hold on; plot(t,zeq*ones(1,n),'g-.'); axis([t(1) t(n) zeq-r/scl zeq+r/scl]);

xlabel('Time(s)'); ylabel('Amplitude');

subplot(3,1,3); plot(t,k); grid on; title('k = k(t)');

hold on; plot(t, kL*ones(1,n),'g-.');

xlabel('Time(s)'); ylabel('Amplitude');

figure; title('Deviation from equilibrium points C± of x, y, and z','interpreter','latex');

t=[0:h:T2];

subplot(3,1,1), plot(t,(x2-xeq)); grid on; xlabel('x-axis'); ylabel('Amplitude');

title('Deviation from equilibrium points C± of x, y, and z','interpreter','latex');

subplot(3,1,2), plot(t,(y2-yeq)); grid on; xlabel('y-axis'); ylabel('Amplitude');

subplot(3,1,3), plot(t,(z2-zeq)); grid on; xlabel('z-axis'); ylabel('Amplitude');

% figure;

% plot(t,k.*(y-yeq));
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% figure; % performance of controller

% t=[0:h:T2];

% subplot(2,1,1), plot(t,k*(y2-yeq)); title('z eqn controller'); hold on; grid on;

% subplot(2,1,2), plot(t,k*(z2-zeq)); title('y eqn controller'); hold on; grid on;

% figure; % scl=0.1; % tracking control use only

% % ymin = mean(x) - sqrt(r)/2; ymax = mean(x) + sqrt(r)/2; % plot rescale

% subplot(3,1,1); plot(t,x); grid on; title('x'); hold on; plot(t,xref*ones(1,n),'r--');

% axis([t(1) t(n) xref-r/scl xref+r/scl]);

% subplot(3,1,2); plot(t,y); grid on; title('y'); hold on; plot(t,yref*ones(1,n),'r--');

% axis([t(1) t(n) yref-r/scl yref+r/scl]);

% subplot(3,1,3); plot(t,z); grid on; title('z'); hold on; plot(t,zref*ones(1,n),'r--');

% axis([t(1) t(n) zref-r/scl zref+r/scl]);

%% notification

anotif;

A.1.3 bidirsim.m

% This program simulates the classic and controlled Lorenz system in a

% single loop

close all;

clear all;

home;

global sigma b r h mu N

%% Define global value

% sigma -- Prandtl

% r -- Rayleigh

% b -- geometric configuration coefficient

% N -- Nusselt number

sigma=10; b=1; r=100;

mu=sigma*r^2; % mu = sigma*r

N=r;

%% Synchronization check

s1=2*b*r^2/(r*mu/sigma+1);

s2=2*b*r^2/(N+1);

s3=r*(1+sqrt(2));
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check1=(r+2*sigma*r/sigma)*(2*N+1)-(r+s3/2)^2;

check2=b*( (r+2*mu*r/sigma)*(2*N+1)-(r+s3/2)^2)-b*(r+s3/2)^2-(2*N+1)*(s2^2/4);

fprintf('det-2 determinant: %10.5f\n',(r+2*sigma*r/sigma)*(2*N+1)-(r+s3/2)^2);

fprintf('det-3 determinant: %10.5f\n',b*( (r+2*mu*r/sigma)*(2*N+1)-(r+s3/2)^2)-b*(r+s3/2)^2-(2*N+1)*(s2^2/4));

if r>=sigma*(sigma+3+b)/(sigma-1-b) fprintf('\nThe system is unstable.\n');

else fprintf('\nThe system is stable.\n');

end

if check1 < 0 || check2 < 0

fprintf('Synchronization: failed.\n')

else if check1 > 0 && check2 > 0

fprintf('Synchronization: passed.\n');

end

end

%% Define initial condition & step time, time limit, and neccessary variable

% X=[ 25 -20; -15 10; 0 7]; % initial value

X=rand(3,2)*1e3;

[m n] = size(X);

h=0.00001; % time step

T=25; % tracking time

CPU_time=cputime;

%% Simulation and Controller variables

t=[0:h:T];

% [x,y,z]=lor3d(x0,y0,z0,T);

% -- lor_k2.m --

% k=1; % gain -- lor_k2.m

% [x,y,z]=clork2(x0,y0,z0,T,k)

% -- lor_til.m --

% k=0; % ratio of supported heat to heat source -- lortil.m

% SH=k*r; % supported heat, compared to Rayleigh number (sigma) -- lortil.m

% [x,y,z]=clortil(x0,y0,z0,T,SH);

% -- lorcpl2.m --

[x,y,z]=bidir(X,T);

%% Plot

% figure; plot3(x,y,z); grid on;

figure; scale=r;

for i=1:n
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subplot(3,n, i ); plot(t,x(i,:)); grid on; title('x'); axis([0 T -scale +scale]);

subplot(3,n, n+i ); plot(t,y(i,:)); grid on; title('y'); axis([0 T -scale +scale]);

subplot(3,n,2*n+i); plot(t,z(i,:)); grid on; title('z'); axis([0 T z(i,T/h+1)-scale z(i,T/h+1)+scale]);

end

% retitle

subplot(3,2,1), title('x_{1}','FontSize',20);

subplot(3,2,2), title('x_{2}','FontSize',20);

subplot(3,2,3), title('y_{1}','FontSize',20);

subplot(3,2,4), title('y_{2}','FontSize',20);

subplot(3,2,5), title('z_{1}','FontSize',20);

subplot(3,2,6), title('z_{2}','FontSize',20);

figure; % controller performance

title('Deviation from equilibrium points C± of x, y, and z','interpreter','latex');

t=[0:h:T];

subplot(3,1,1), plot(t,(x(1,:)+x(2,:))); grid on; title('e_{x}','FontSize',20);

xlabel('x-axis'); ylabel('Amplitude'); % x1+x2

subplot(3,1,2), plot(t,(y(1,:)+y(2,:))); grid on; title('e_{y}','FontSize',20);

xlabel('y-axis'); ylabel('Amplitude'); % y1+y2

subplot(3,1,3), plot(t,(z(1,:)-z(2,:))); grid on; title('e_{z}','FontSize',20);

xlabel('z-axis'); ylabel('Amplitude'); % z1-z2

%% Post-processing

fprintf('Total simulated time: %10.0f seconds\n', T);

fprintf('Computational time: %10.5f seconds\n', cputime-CPU_time);

fprintf('System constants:\n r = %10.0f\n sigma = %10.0f\n b = %10.0f\n', r,sigma, b );

fprintf('Coupling constants:\n mu = %10.0f\n N = %10.0f\n', mu, N);

A.2 Solvers

A.2.1 ftcontrol.m

function [x,y,z]=ftcontrol(X,T)

% This program simulate feedback and tracking control

% T -- time limit

% h -- step time

global h

% Define initial conditions
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x(1)=X(1);y(1)=X(2); z(1)=X(3);

x0=X(1);y0=X(2);z0=X(3);

k1x(1)=x0; k2x(1)=x0; k3x(1)=x0; k4x(1)=x0;

k1y(1)=y0; k2y(1)=y0; k3y(1)=y0; k4y(1)=y0;

k1z(1)=z0; k2z(1)=z0; k3z(1)=z0; k4z(1)=z0;

for i=1:1:T/h

k1x(i) = h * lor1( x(i), y(i), z(i) );

k1y(i) = h * lor2t( x(i), y(i), z(i) );

k1z(i) = h * lor3t( x(i), y(i), z(i) );

k2x(i) = h * lor1( x(i)+k1x(i)/2, y(i)+k1y(i)/2, z(i)+k1z(i)/2 );

k2y(i) = h * lor2t( x(i)+k1x(i)/2, y(i)+k1y(i)/2, z(i)+k1z(i)/2 );

k2z(i) = h * lor3t( x(i)+k1x(i)/2, y(i)+k1y(i)/2, z(i)+k1z(i)/2 );

k3x(i) = h * lor1( x(i)+k2x(i)/2, y(i)+k2y(i)/2, z(i)+k2z(i)/2 );

k3y(i) = h * lor2t( x(i)+k2x(i)/2, y(i)+k2y(i)/2, z(i)+k2z(i)/2 );

k3z(i) = h * lor3t( x(i)+k2x(i)/2, y(i)+k2y(i)/2, z(i)+k2z(i)/2 );

k4x(i) = h * lor1( x(i)+k3x(i), y(i)+k3y(i), z(i)+k3z(i) );

k4y(i) = h * lor2t( x(i)+k3x(i), y(i)+k3y(i), z(i)+k3z(i) );

k4z(i) = h * lor3t( x(i)+k3x(i), y(i)+k3y(i), z(i)+k3z(i) );

x(i+1) = x(i) + 1/6*( k1x(i) + 2*k2x(i) + 2*k3x(i) + k4x(i) );

y(i+1) = y(i) + 1/6*( k1y(i) + 2*k2y(i) + 2*k3y(i) + k4y(i) );

z(i+1) = z(i) + 1/6*( k1z(i) + 2*k2z(i) + 2*k3z(i) + k4z(i) );

end

end

A.2.2 a1control.m

function [x,y,z,k]=a1control(X,T)

% This program simulate feedback and tracking control

% T -- time limit

% h -- step time

global sigma b r h k xeq yeq zeq

% Define initial conditions

x(1)=X(1);y(1)=X(2); z(1)=X(3); k(1)=X(4);
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x0=X(1);y0=X(2);z0=X(3); k=X(4);

k1x(1)=x0; k2x(1)=x0; k3x(1)=x0; k4x(1)=x0;

k1y(1)=y0; k2y(1)=y0; k3y(1)=y0; k4y(1)=y0;

k1z(1)=z0; k2z(1)=z0; k3z(1)=z0; k4z(1)=z0;

k1k(1)=k ; k2k(1)=k ; k3k(1)=k ; k4k(1)=k ;

for i=1:1:T/h

k1x(i) = h * lor1( x(i), y(i), z(i) );

k1y(i) = h * lor2a( x(i), y(i), z(i), k(i) );

k1z(i) = h * lor3( x(i), y(i), z(i) );

k1k(i) = h * lor4k( x(i), y(i), z(i) );

k2x(i) = h * lor1( x(i)+k1x(i)/2, y(i)+k1y(i)/2, z(i)+k1z(i)/2 );

k2y(i) = h * lor2a( x(i)+k1x(i)/2, y(i)+k1y(i)/2, z(i)+k1z(i)/2, k(i)+k1k(i)/2);

k2z(i) = h * lor3( x(i)+k1x(i)/2, y(i)+k1y(i)/2, z(i)+k1z(i)/2 );

k2k(i) = h * lor4k( x(i)+k1x(i)/2, y(i)+k1y(i)/2, z(i)+k1z(i)/2 );

k3x(i) = h * lor1( x(i)+k2x(i)/2, y(i)+k2y(i)/2, z(i)+k2z(i)/2 );

k3y(i) = h * lor2a( x(i)+k2x(i)/2, y(i)+k2y(i)/2, z(i)+k2z(i)/2, k(i)+k2k(i)/2);

k3z(i) = h * lor3( x(i)+k2x(i)/2, y(i)+k2y(i)/2, z(i)+k2z(i)/2 );

k3k(i) = h * lor4k( x(i)+k2x(i)/2, y(i)+k2y(i)/2, z(i)+k2z(i)/2 );

k4x(i) = h * lor1( x(i)+k3x(i), y(i)+k3y(i), z(i)+k3z(i) );

k4y(i) = h * lor2a( x(i)+k3x(i), y(i)+k3y(i), z(i)+k3z(i), k(i)+k3k(i));

k4z(i) = h * lor3( x(i)+k3x(i), y(i)+k3y(i), z(i)+k3z(i) );

k4k(i) = h * lor4k( x(i)+k3x(i), y(i)+k3y(i), z(i)+k3z(i) );

x(i+1) = x(i) + 1/6*( k1x(i) + 2*k2x(i) + 2*k3x(i) + k4x(i) );

y(i+1) = y(i) + 1/6*( k1y(i) + 2*k2y(i) + 2*k3y(i) + k4y(i) );

z(i+1) = z(i) + 1/6*( k1z(i) + 2*k2z(i) + 2*k3z(i) + k4z(i) );

k(i+1) = k(i) + 1/6*( k1k(i) + 2*k2k(i) + 2*k3k(i) + k4k(i) );

end

end

A.2.3 bidir.m

% This function simulates the bidirectionally coupled loop

% Uncontrolled

function [x,y,z]=bidir(X,T)
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% X -- initial condition

% T -- time limit

% h -- step time

[m,n]=size(X);

if (m==3)==0

return;

end

global h

% Define initial conditions

for i=1:n

x(i,1) = X(1,i); y(i,1) = X(2,i); z(i,1) = X(3,i);

k1x(i,1)=X(1,i); k2x(i,1)=X(1,i); k3x(i,1)=X(1,i); k4x(i,1)=X(1,i);

k1y(i,1)=X(2,i); k2y(i,1)=X(2,i); k3y(i,1)=X(2,i); k4y(i,1)=X(2,i);

k1z(i,1)=X(3,i); k2z(i,1)=X(3,i); k3z(i,1)=X(3,i); k4z(i,1)=X(3,i);

end

% Simulate time sequence

clear i j

for j=1:T/h

% k1x(1,j) = h * lor1( x(1,j), y(1,j), z(1,j) );

k1x(1,j) = h * lor1c( x(1,j), y(1,j), z(1,j), x(2,j) );

k1y(1,j) = h * lor2c( x(1,j), y(1,j), z(1,j), y(2,j) );

k1z(1,j) = h * lor3( x(1,j), y(1,j), z(1,j) );

% k1x(2,j) = h * lor1( x(2,j), y(2,j), z(2,j) );

k1x(2,j) = h * lor1c( x(2,j), y(2,j), z(2,j), x(1,j) );

k1y(2,j) = h * lor2c( x(2,j), y(2,j), z(2,j), y(1,j) );

k1z(2,j) = h * lor3( x(2,j), y(2,j), z(2,j) );

% k2x(1,j) = h * lor1( x(1,j)+k1x(1,j)/2, y(1,j)+k1y(1,j)/2, z(1,j)+k1z(1,j)/2 );

k2x(1,j) = h * lor1c( x(1,j)+k1x(1,j)/2, y(1,j)+k1y(1,j)/2, z(1,j)+k1z(1,j)/2, x(2,j)+ k1x(2,j)/2 );

k2y(1,j) = h * lor2c( x(1,j)+k1x(1,j)/2, y(1,j)+k1y(1,j)/2, z(1,j)+k1z(1,j)/2, y(2,j)+ k1y(2,j)/2 );

k2z(1,j) = h * lor3( x(1,j)+k1x(1,j)/2, y(1,j)+k1y(1,j)/2, z(1,j)+k1z(1,j)/2 );

% k2x(2,j) = h * lor1( x(2,j)+k1x(2,j)/2, y(2,j)+k1y(2,j)/2, z(2,j)+k1z(2,j)/2 );

k2x(2,j) = h * lor1c( x(2,j)+k1x(2,j)/2, y(2,j)+k1y(2,j)/2, z(2,j)+k1z(2,j)/2, x(1,j)+ k1x(1,j)/2 );

k2y(2,j) = h * lor2c( x(2,j)+k1x(2,j)/2, y(2,j)+k1y(2,j)/2, z(2,j)+k1z(2,j)/2, y(1,j)+ k1y(1,j)/2 );

k2z(2,j) = h * lor3( x(2,j)+k1x(2,j)/2, y(2,j)+k1y(2,j)/2, z(2,j)+k1z(2,j)/2 );

% k3x(1,j) = h * lor1( x(1,j)+k2x(1,j)/2, y(1,j)+k2y(1,j)/2, z(1,j)+k2z(1,j)/2 );
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k3x(1,j) = h * lor1c( x(1,j)+k2x(1,j)/2, y(1,j)+k2y(1,j)/2, z(1,j)+k2z(1,j)/2, x(2,j)+ k2x(2,j)/2 );

k3y(1,j) = h * lor2c( x(1,j)+k2x(1,j)/2, y(1,j)+k2y(1,j)/2, z(1,j)+k2z(1,j)/2, y(2,j)+ k2y(2,j)/2 );

k3z(1,j) = h * lor3( x(1,j)+k2x(1,j)/2, y(1,j)+k2y(1,j)/2, z(1,j)+k2z(1,j)/2 );

% k3x(2,j) = h * lor1( x(2,j)+k2x(2,j)/2, y(2,j)+k2y(2,j)/2, z(2,j)+k2z(2,j)/2 );

k3x(2,j) = h * lor1c( x(2,j)+k2x(2,j)/2, y(2,j)+k2y(2,j)/2, z(2,j)+k2z(2,j)/2, x(1,j)+ k2y(1,j)/2 );

k3y(2,j) = h * lor2c( x(2,j)+k2x(2,j)/2, y(2,j)+k2y(2,j)/2, z(2,j)+k2z(2,j)/2, y(1,j)+ k2y(1,j)/2 );

k3z(2,j) = h * lor3( x(2,j)+k2x(2,j)/2, y(2,j)+k2y(2,j)/2, z(2,j)+k2z(2,j)/2 );

% k4x(1,j) = h * lor1( x(1,j)+k3x(1,j), y(1,j)+k3y(1,j), z(1,j)+k3z(1,j) );

k4x(1,j) = h * lor1c( x(1,j)+k3x(1,j), y(1,j)+k3y(1,j), z(1,j)+k3z(1,j), x(2,j)+ k3x(2,j)/2 );

k4y(1,j) = h * lor2c( x(1,j)+k3x(1,j), y(1,j)+k3y(1,j), z(1,j)+k3z(1,j), y(2,j)+ k3y(2,j)/2 );

k4z(1,j) = h * lor3( x(1,j)+k3x(1,j), y(1,j)+k3y(1,j), z(1,j)+k3z(1,j) );

% k4x(2,j) = h * lor1( x(2,j)+k3x(2,j), y(2,j)+k3y(2,j), z(2,j)+k3z(2,j) );

k4x(2,j) = h * lor1c( x(2,j)+k3x(2,j), y(2,j)+k3y(2,j), z(2,j)+k3z(2,j), x(1,j)+ k3x(1,j) );

k4y(2,j) = h * lor2c( x(2,j)+k3x(2,j), y(2,j)+k3y(2,j), z(2,j)+k3z(2,j), y(1,j)+ k3y(1,j) );

k4z(2,j) = h * lor3( x(2,j)+k3x(2,j), y(2,j)+k3y(2,j), z(2,j)+k3z(2,j) );

for i=1:n

x(i,j+1) = ( x(i,j) + (k1x(i,j) + 2*k2x(i,j) + 2*k3x(i,j) + k4x(i,j))/6 );

y(i,j+1) = ( y(i,j) + (k1y(i,j) + 2*k2y(i,j) + 2*k3y(i,j) + k4y(i,j))/6 );

z(i,j+1) = ( z(i,j) + (k1z(i,j) + 2*k2z(i,j) + 2*k3z(i,j) + k4z(i,j))/6 );

end

end

A.3 ODE functions

A.3.1 lor1.m

% This function is the first differential equation from Lorenz system

% Uncoupled

% sigma -- Prandtl number

function xdev = lor1(x,y,z)

global sigma

xdev = sigma * (-x+y);
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A.3.2 lor2.m

% This function is the second differential equation from Lorenz system

% Uncoupled

% r -- Rayleigh number

function ydev = lor2(x,y,z)

global r

ydev = r*x-y-x*z;

A.3.3 lor3.m

% This function is the third differential equation from Lorenz system

% Uncoupled

% b -- geometric configuration coefficient

function zdev = lor3(x,y,z)

global b

zdev = x*y-b*z;
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