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ABSTRACT

Phylogenetic tree, and in general, evolutionary network, has found its application well

beyond the biological fields and has even percolated into recent high demanding areas,

such as data mining, and social media chain reactions. An extensive survey of its current

applications are presented here. An attempt has been made to apply the very concept in the

mathematics course curriculum within a degree program. Main features of the tree structure

are identified within the curriculum network. To highlight various key components and to

enhance the visual effect, several diagrams are presented. The combined effect of these

diagrams highlights a curriculum tree structure. The current study can be used as a potential

tool for effective student advisement, student placement within the curriculum, efficient

resource allocation, etc. Future work may encompass detailing and implementing these

applications.
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LIST OF SYMBOLS

A symbol table can be created in various ways. Here are a few:

Tabular environment:

R Real Numbers

C Real Numbers

Z Integers

N Natural Numbers

N0 Natural Numbers including 0

Lp(R) p-integrable functions over R

L(X, Y ) Linear maps from X to Y

rank(T ) Rank of a linear map

Multicols environment:

R Real Numbers

C Real Numbers

Z Integers

N Natural Numbers

N0 Natural Numbers including 0

Lp(R) p-integrable functions over R

L(X, Y ) Linear maps from X to Y

rank(T ) Rank of a linear map

Itemize environment:

• R Real Numbers

• C Real Numbers
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• Z Integers

• N Natural Numbers

• N0 Natural Numbers including 0

• Lp(R) p-integrable functions over R

• L(X, Y ) Linear maps from X to Y

• rank(T ) Rank of a linear map
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND INFORMATION

Simply put, the term Phylogeny refers to the study of evolution. Given a set of points,

most of the time current living species, a phylogenetic tree refers to the “tree of life” that

describes the evolutionary history of all life on Earth. The ultimate goal of any phyloge-

netic analysis is to reconstruct some part of the tree of life, based on the information from

current species. Very often these points corresponding to the current species are called taxa

corresponding to the leaves of the phylogenetic tree.

Two species are related, if they share a recent common ancestor. The species A is

more closely related to B than to C, if the last common ancestor of A and B is more recent

than the last common ancestor of A and C. As an example, humans are more closely related

to mice (last common ancestor about 100 million years ago), than they are to fruit-flies (last

common ancestor 600 million years ago).

Figure 1.1: A phylogenetic tree [60].

Following the motivation of phylogenetic analysis the obvious application of this con-

cept is to, as part of the effort to find out the evolutionary history of your taxa, examine
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how different taxa are related to each other.

In addition to the above mentioned basic information, there are many other ways, both

practical and pure, to use the concept of phylogeny structures.

• Phylogenetic diversity can be measured using phylogenetic trees in conservation bi-

ology (and ecology in general). For this purpose the branches on the evolutionary tree

are drawn to a specific length that was calculated. In general long branches usually

mean that you have basal taxa that are originated earlier, and hence have more infor-

mation on the evolution, and consequently more important to conserve. On the other

hand, very short branches generally implies very new species, possibly the result of

an adaptive radiation.

• Phylogenetic trees are also used in the search for natural products. For example, a

sponge species that produces a useful chemical but also has a serious side effect in

any drug produced from it. It is natural, then, to survey the sponge genus and find

the species most related to it. One can then try out those species to produce similar

drug in order to avoid the side effect.

• In medicine, phylogenetic trees are used to study infectious bacteria and viruses to

trace their evolutionary histories. By examining what trends they have undergone

in their history, one may gain valuable insights into how they have gotten canalised

(i.e. restricted in their biology). If the cell wall contains a very characteristic and

unchanging motif, then that is a potential good target, and you can only see such

conserved motifs using a phylogenetic tree.

• Instead of tracing the evolutionary history of specific species, one may also use phy-

logenetic trees to guide our search for new species. This is usually done by plotting

the phylogenetic tree on a physical map. Similarly for fossil searches, phylogenetic

trees can be used to record when taxa originated and where.
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1.2 SOME FORMAL DEFINITIONS AND TOOLS

In this section we provide some formal definitions and concepts that are useful in our work

later.

A set X is a set of taxa in which each taxon xi represents some species, group, or

individual organism. For example, X = {x1, x2, . . .} might denote a set of mammals,

where x1 represents gorillas, x2 represents seals etc.

A cluster is any subset of X , excluding empty set 0 and the full set X . The topic of

clustering concerns putting similar data points (or taxa, in this case) in the same subgroups,

which is exactly what a phylogenetic tree shows us. Naturally, similar species are closer

to each other in the evolution process, and are grouped together like the above mentioned

mammals.

Sequence alignments

One of the more specific tools/concepts used in comparing species is known as “sequence

alignments”. This is to compare biomolecular sequences, as one of the most fundamen-

tal operations in computational biology (DNA etc). In such studies two DNA or protein

sequences that have a high similarity are called Homologous (i.e., two have evolved from

a common ancestral sequence). To illustrate such an idea one usually write one sequence

above the other and try to maximize the number of similar or identical bases or amino acids

(build proteins).

Spanning tree

Another interesting concept is the spanning trees, formally defined as an acyclic subgraph

that contains all nodes. Intuitively speaking, a spanning tree of a graph or network is the

most efficient way to connect all nodes using existing links from the graph/network.
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Figure 1.2: sequence alignment [62].

Figure 1.3: A spanning tree [61].
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A single graph can have many different spanning trees. When the edges or links are

weighted according to specific applications, it has been of interest to find the spanning tree

with minimum total weight. This is, intuitively, still consistent with the idea of finding

most efficient way of connecting a given graph/network.

A Minimum Spanning tree (MST) of an edge-weighted graph is a spanning tree whose

weight (the sum of the weights of its edges) is less than or equal to the weight of every other

spanning tree.

1.3 EVOLUTIONARY NETWORKS

The phylogenetic tree is a form of evolutionary trees that is “acyclic”, i.e. there is no cycle.

This is under the assumption that every species can only split into two or more species,

but no two or more species can ever “merge” into one. In many practical applications,

however, that is not the case, which leads to so called evolutionary networks, that are

essentially directed graphs in which each node represent some data point and the directed

edges between nodes represent the direction of evolution and the relations between nodes.

Figure 1.4: Evolutionary Network [63].
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Evolutionary network analysis has become an important field of study due to the im-

portance of different kinds of social networks, email networks, biological networks, etc.

It is important to keep up with the changes of any particular network, as all topological

properties and other characteristics develop according to these changes.

Such analysis of networks in general is challenging, and it requires much knowledge

and manipulation of the aforementioned concepts and tools.

1.4 APPLICATION TO MATHEMATICS CURRICULUM

In this thesis we will consider different college mathematics classes as nodes and examine

their relations in terms of prerequisites. For the purpose of the current study, we ignore

the Developmental Mathematics classes that are offered at Georgia Southern University. A

directed edge is established if the starting node is a direct prerequisite of the ending node.

That is, all edges are directed starting from the prerequisite math course node and ending

at the other node.

In particular, we will take a close look at part of the curriculum at Georgia Southern

University. First recall that, Georgia Southern University’s Mathematics department offers

many courses that are not applicable to the Bachelor of Science degree for Mathematics

majors, but are prerequisites of those that are. Such courses include, for instance College

Algebra and Trigonometry. In the corresponding evolution network there will be directed

edges from College Algebra to Trigonometry and Calculus I. The structural properties of

this network will be examined. With the understanding of the network, we propose ways

to develop alternatives to the current assessment approaches.

1.5 SUMMARY

In chapter 2 we will start with a brief survey of evolutionary networks and their applica-

tions. Most of the content there, although not directly related to our study, shed some light
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on how evolutionary networks are applied to achieve various goals.

In Chapter 3 we provide a detailed analysis of the mathematics curriculum, based on

which the “evolutionary network” is constructed and presented.

In Chapter 4 we briefly discuss how one may employ various concepts in phylogenetic

analysis in our network and how to apply them to potential curriculum design.
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CHAPTER 2

EVOLUTION NETWORKS

2.1 OVERVIEW

Networks of evolution arise in a wide variety of applications such as the World Wide Web,

social networks, and communication networks. Generally speaking networks are simply

(directed) graphs that often have weights associated with edges.

The recent popularity of dynamic social networks has led to a significant interest in

the analysis of evolving networks [2]. Various approaches and techniques in such analy-

sis has several applications, such as, trend analysis in social networks [25, 32, 56, 57, 6]

and dynamic link prediction [1, 54, 44, 45]. Networks from practical applications usually

evolve in a wide variety of ways that lead to different kinds of evolution semantics.

Analysis of evolving networks can be generally divided into two distinct categories

that are not necessarily disjoint:

(a) Maintenance Methods; and

(b) Analytical Evolution Analysis.

The community detection problem is an example, which falls into both categories.

Not all networks evolve at the same rate:

• In email networks, transient links are added to the network in a matter of seconds

(corresponding to emails between participant nodes).

• In bibliographic networks, edges are added to the network every few weeks or even

months.

For this reason, the evolution of these networks require different kinds of analysis:
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• Slowly Evolving Networks: These are networks that evolve slowly over time. Con-

sequently the so called snapshot analysis can be used very effectively.

• Streaming Networks: These are networks that are created by transient interactions

such as communication networks. These networks, when represented as graph streams,

typically require real-time analytical methods. Such scenarios could arise in the con-

text of streams of objects, edges [58], or linked data streams [31].

2.2 MODELS

In this section we briefly outline few different time-evolving models. Numerous such mod-

els exist to serve different kinds of graph analysis problems such as clustering, classifica-

tion, influence analysis, and link prediction.

Clustering and Community Detection: One of the earliest methods for evolutionary clus-

tering was proposed in 2006. It balances two important objectives while performing the

online clustering process:

• the newly formed data clusters should accurately reflect the data at the current time

step, and

• the clusters formed at current time step should be closely related to the clusters

formed at previous time step.

The former is known as consistency and the latter is smoothness.

Low Rank Approximation: This model is crucial for identifying the community struc-

tures and anomalies in networks. Like other models, there are different kinds of low rank

approximations such as Singular Value Decomposition (SVD), matrix factorization, CUR

decomposition, Compact Matrix Decomposition (CMD).

Classification: Another type of problem, called node classification, is when the labels of

some of the nodes in an evolving network are known and used to predict the labels of the
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other nodes. The work in [3] proposes a dynamic method for classification of content-based

networks. There, a random-walk based approach is used in which the probability of a node

being visited is used to determine the class label.

Link Prediction: Link prediction is one of the fundamental problems in the analysis of

networks. The link prediction problem simply attempts to determine the links that are most

likely to be added to the network in the future. For instance, the Web and social networks

are continuously evolving over time, with new nodes and links being added or removed

over time.

Tensor Factorization: Tensors are higher order extensions of matrices, data cubes, or

multidimensional arrays. Typically, a time evolving graph is simply a tensor whose first two

dimensions represent an adjacency matrix and the third dimension captures the sequence

of such adjacency matrices representing the evolution of the network. Tensor factorization

is then used in link prediction problems.

2.3 APPLICATIONS

Before applying evolutionary network to our study, in this section we first survey some

of the most well-known applications in this section. We will focus on how the models

are designed rather than the specific details of the methodology for each application. An

overview of the key applications can be found in Table 2.1. For references on the discussion

of different kinds of evolution analysis in the context of different kinds of networks, we

suggest [10] and [24].

World Wide Web

The Web graphs are approximate topology of the Web created by search engines. Such

approximate structures are snapshots used to answer search engine queries. That is, when

keywords that are put in, “Page Rank” are computed from the structure of the Web graph.



20

Domain Work

World Wide Web [21, 22, 24, 40]

Telecommunication Networks [8, 9, 23, 36]

Communication Networks [21, 29]

Road Networks [18, 38]

Recommendations [5, 7, 29, 32, 42, 44, 54]

Social Network Events [6, 16, 35, 43, 46, 47, 53, 59]

Blog Evolution [25, 34, 37, 39]

Computer Systems [12, 30]

News Networks [33, 57]

Bibliographic Networks [15, 20, 28, 50]

Biological Networks [14, 17, 24, 48, 49, 52, 55]

Table 2.1: List of Key Applications of Evolutionary Network Analysis
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It is not difficult to imagine that such a graphical structure continues to evolve over time. A

study of the evolution of different Web ecologies with the use of visual analysis is provided

in [22].

In [40] the authors proposed five similarity schemes for measuring the similarities

among the different graph snapshots, three of which are adapted from existing similarity

measures [19].

Telecommunication and Mobile Networks

Telecommunication and Mobile Networks can be easily modeled by graphs, where the

nodes correspond to participants of particular communications and the edges represent the

interactions between participants or simply network connections. In [36], important fea-

tures of the mobile phone graphs were identified, based on which different ways to model

these features were provided.

The evolution of the interactions in mobile networks often corresponds to important

network events. In [8] the authors observed that important structural properties of the

network could have strong influences on the tie strengths and link persistence between

individuals. In [9], an algorithm that operates on a time-varying network of agents was

proposed. The algorithm is designed to determine anomalous points in time when agents

significantly change their behavior. The problem of finding surprising patterns in the call

duration of mobile phone users is also discussed in [23].

Communication Networks

The study of communication networks is very similar to the previous topic. When a fault

occurs in a communications network, it usually introduces changes in the routing topology

of the network. As a simple example, when an IP router fails, all paths that pass through

this particular router will be rendered useless. Such networks has to “evolve” in order to
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adapt to the occurrence of faults.

The work in [21] uses the regions of correlated spatiotemporal change to identify the

root cause of communication network faults. Likewise, the detection of repeated links

between nodes has also been used [29].

Road Networks

Evolving network analysis is also important for studying road networks. For instance, [38]

models the set of roads as a network and the traffic on the roads as edge weights. Then

the evolution is measured in terms of the edge weights while network maintains the same

structure.

A related problem is that of mining heavy subgraphs in evolving networks [18]. This

is somewhat related to the well-known minimal spanning tree problem. These heavy sub-

graphs are regions in the network where the edge weights are generally very high. It was

shown that finding the heaviest dynamic subgraph is NP-hard [18]. An algorithm MEDEN

is proposed in [18].

Social Networks

There are mainly two types of problems in the study of Social Networks:

• Social network recommendation:

The problem of link prediction [45, 51, 11, 41] is directly applied in social networks

to suggest friends for different users. Such technologies can also be used for product

recommendations in social media networks.

• Social network event detection:

The “events” of interest include unusual tweets, meetings, or changes in trends in

the content of the underlying network. The question of how to detect events was
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examined in [6].

Other Applications

Lastly we briefly mention some other applications:

• Computer systems:

A method for (evolutionary) anomaly detection in computer systems with the use of

analytical modeling is discussed in [30].

• Blog evolution:

In this problem each blog post is a node, and a hyperlink between two blog posts can

be considered an edge.

• News networks:

News networks [57] are, in fact, very similar to blog networks. A significance-driven

framework was proposed in [57].

• Biological networks:

Last but not least, in protein-protein interaction networks [55] and [48], nodes corre-

spond to proteins and edges correspond to interactions between them. The evolution

of such networks has been one of the most studied questions in recent years.
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CHAPTER 3

BUILDING EVOLUTIONARY NETWORK OF MATH CURRICULUM

In this chapter we explore the interconnections (and hence the network) of the curriculum

of an undergraduate student. That is, we consider courses that one has to successfully

go through before earning a degree in a certain major. The curriculum of any Science,

Technology, Engineering and Mathematics (STEM) majors are very structured. Hence,

there is a strong relationship between the course sequence that one has to follow in order

to complete the degree.

In particular, mathematics is a very well established and historic major. So the ‘evo-

lution’ of specific courses is rare, except for the ones that are computer based. On another

note, the courses in mathematics are very well established, at least in the undergraduate

level, which is our current focus. We are interested in the network structure between

courses. Such a structure outlines the possible paths a student could be taking in order

to complete his or her degree, and such structures changes as the student or the academic

advisors continue to make choices along the paths.

3.1 GENERAL INFORMATION

A typical course sequence for a mathematics major is uniquely oriented. As a result, the

links are unidirectional. Therefore, the network is similar in nature tp social network event

detection, or blog evolutions, or news networks.

It is, however, not as dynamic as those three examples, and is easily predictable. From

a student’s perspective, the predictability depends on the success or failure of a student in

a prerequisite class.

Also, our potential network is not comparable to any rapidly evolving network like

modern day’s tweets storm, follow-up blogs or facebook post in social media. The time

scale in our case is discrete (by semesters). Most of the universities has policies of not
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accepting any class taken a certain number of years ago. This limits the size of substructures

in our network that we can allow, a student to follow.

In this chapter we consider a typical mathematics undergraduate curriculum with time

(and financial) limitations. The students are expected to graduate in four years, eight

semesters (excluding summer). The connection between the courses is obvious. One has

to be proficient (grade ”C” or better) in the prerequisite courses in order to be successful in

advanced level courses.

In our network, it is expected that the classes are actually the links, and the nodes

are essentially the real status of the student. In reality we could not designate the statuses

freshmen, sophomore, junior or senior according to the specific courses they have taken.

On the contrary, those designations are reserved for number of credits taken rather than the

real standing of the student in actual curriculum.

Currently, these designations are not quite consistent with the student’s progression

in the actual program. In this current research, therefore, we are NOT going to use these

common designations. Instead, we suggest four different stages of progression based on

the student’s background and they are:

• Pre-beginner (New);

• Beginner;

• Intermediate; and

• Advanced.

This assignment of status will truly reflect the progression of the student within the degree

program. In that respect, this network is analogous to the Road Network.

3.2 NETWORK OF THE MATHEMATICS CURRICULUM

In this section, we lay out a mathematics curriculum map as a network.
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Recalling earlier description, we note that the network analysis in case of course cur-

riculum is considered “static”. The changes do occur, but they are slow enough, so that the

assumption of the “static” network can be justified.

As a case study, we consider the current curriculum of the Bachelor of Science in

mathematics degree program at Georgia Southern University. There are several courses

that mathematics department offers that do not apply to the degree, such as developmental

mathematics courses (below 1000 level), and foundation courses: College Algebra (MATH

1111), Trigonometry (MATH 1112) and Pre-calculus (MATH 1113).

The Mathematics course sequence chart is presented here as network of courses in

Figure 3.1 and Figure 3.2.

The link between the two classes is established based on their relations. That is, if a

course A is a prerequisite of the course B then there is a link from A to B. These links are

established following the curriculum description found in undergraduate catalog. All these

documents are published in the university register’s office website

(catalog.georgiasouthern.edu/undergraduate/science-mathematics/mathematical-sciences).

At the bottom of the network lies the developmental courses, which are invisible to

general students. The starting point may vary depending on the background skill of the

student entering the program. Also, some of the upper-level courses are offered for mathe-

matics education concentration, which are not shown here for simplicity.

Figure 3.1 mainly shows the prerequisite structure up to the elective courses and covers

all required courses. It also includes the courses that will not apply to the degree but needs

to be satisfied in order to start from Calculus I. Figure 3.2 complements Figure 3.1, and

it shows the prerequisite structures for the elective courses. One can combine these two

charts into one. However, for clarity two separate charts have been presented.
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Figure 3.1: Math curriculum structure showing prerequisites until electives.



28

Figure 3.2: Math curriculum structure showing prerequisites only for electives
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3.3 DESCRIPTION OF THE MATHEMATICS CURRICULUM NETWORK

The above network structures show the location of different mathematics courses within the

Mathematics curriculum network. Each block represents one course (with the exception of

developmental courses, below 1000 that are grouped together). Courses are represented

with course numbers and course names. Also the number within the parenthesis indicates

the number of credits. The arrowhead pointed to a block indicates the prerequisite of that

specific course. For example, the arrow originating from Calculus I and ending at Calculus

II indicates that Calculus I is a prerequisite of Calculus II. If there is more than one pre-

requisite, then the prerequisites are joined by a circle (or ellipse) with the course number.

For example, MATH 2243 and Math 2332 are prerequisites for Math 4920 (Undergraduate

Seminar).

Two of the courses are of variable credits: Selected Topics in Math (MATH 5090) and

Directed Study (MATH 4890). Also note, these two do not have any course prerequisite as

such. They all require permission of instructor. Similarly, Senior Research Project (MATH

4930) does not have any course prerequisite but its prerequisite is completion of 15 credit

hours of upper level mathematics, statistics and/or computer science.

Similarly, if there is a choice of prerequisites, then they are joined by an ”OR” circular

block. For example, one has to complete MATH 1112 (Trigonometry) or MATH 1113 (Pre-

calculus)in order to qualify for Calculus I (Figure 3.1) .

In Figure 3.1, the courses that do not apply to the degree but are required to be satisfied

are grouped together at the right hand bottom corner. All the elective courses are grouped

together as well. They are situated at the upper part of Figure 3.1 and Figure 3.2. Also there

are some special grouping within the elective courses as indicated in Figure 3.1. They can

be viewed as subsets of the set of elective courses. For example, there are three elective

courses (MATH 5332, MATH 5335 and MATH 5334) from which one has to choose at

least one. These three courses are grouped together. There are also three courses in the
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elective section (MATH 5234, MATH 3130 and MATH 5136), where a math major with

education specialization has to have. The first subset colored in blue and the second subset

colored in brown. All other elective courses are in yellow box.

3.4 STUDENT STAGES IN THE NETWORK

As mentioned at the beginning of this chapter, there are three distinct landmarks within the

mathematics program:

• ”Beginners” as they are ready to start Calculus I;

• ”Intermediate” as they have completed four beginner-level courses (Calculus I, Cal-

culus II, Elementary Linear Algebra and Math Structure), and are ready to take on

other required courses for the program;

• ‘Advanced’ when they have completed all the required courses and ready to take on

elective courses.

In addition, it can be noted that there are five different stages of a student who just got

admitted in the college has to go through in order to graduate with a mathematics degree.

First of all, we make a distinction here between the college beginners and the math begin-

ners. College beginners are those who just got admitted to the college and math beginners

are those who are ready to take Calculus I. Hence, the first stage at the math program is

the math beginners (not necessarily college freshmen). As can be seen from Figure 3.1,

one has to ultimately satisfy either a combination of college algebra and trigonometry, or

pre-calculus to become a Calculus I ”ready”. The math program begins right at that point.

Referring to the same figure, it can be noted that Calculus I is the very first course

in the sequence. Calculus II, Elementary Linear Algebra and Mathematical Structures

all have only one prerequisite, which is Calculus I. Hence, a student can take Calculus

I and immediately followed by these three courses and it will take a student two semesters,
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one academic year. Following completion of this course sequence a student reaches next

level in the mathematics program, which is intermediate stage. From that point, till a

student completes all the required courses, he/she remains in the intermediate state. Once

they complete four courses (Calculus I, Calculus II, Linear Algebra and Math Structures,

fourteen credits in total) as beginners, four other required courses are accessible to them.

(To access to other two required courses one has to complete Calculus III). Once they

complete all the required named courses, they reach the advanced state within the program.

At that point ONLY the elective courses have to be taken to complete the degree. While

they are taking the elective courses, they remain in the Advanced state within the program.

Once they complete their elective courses, they are ready to graduate. which is the final

landmark. With these stages in mind (pre-beginner, beginner, intermediate and advanced)

a generic tree for mathematics program has been shown in Figure 3.3.

3.5 A BREAK-DOWN OF THE CURRICULUM REQUIREMENTS

3.5.1 PRE-BEGINNER

It can be noted that the number of credits for the beginners level courses is fourteen. There

are six intermediate-level courses totaling eighteen credits. Similarly the total number of

credits for advanced-level courses is eighteen and it can be accomplished by taking six

courses (unless someone take a combination Special Topics and Directed Study to make up

for three credits). Considering this course structure within the Mathematics program three

other figures are created to reveal the details at each stage. Figure 3.4 shows the courses at

the pre-beginner (pre-Math) stage and how it leads to the Calculus I, the very first course

in the beginner stage.
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Figure 3.3: Math course curriculum tree structure using blocks.
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Figure 3.4: Structure for pre-beginner courses leading to Calculus I.
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3.5.2 BEGINNER AND INTERMEDIATE LEVELS

The next diagram, Figure 3.5, shows links between the beginners courses and the intermediate-

level courses.

Figure 3.5: Beginners’ courses leading to intermediate level courses.

3.5.3 ADVANCED LEVEL

Finally, the Figure 3.6 shows the advanced level courses and their link with both beginner

and intermediate-level courses.
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Figure 3.6: Beginners and Intermediate courses leading to advanced level courses.
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3.6 IDENTIFICATION OF KEY COURSES

We are exploring some of the features of the tree structure of mathematics course sequence.

As described earlier, the beginning level courses are very linear. However, when it comes

to the intermediate level, there are several choices. Some of the courses are prerequisites of

more required and elective courses than the others. In this section we identify those courses

as key courses. Table 3.1 shows the list of courses that serve as prerequisites for three or

more higher level courses. Except for two, all other required courses serve as prerequisites

for at least two others courses in the curriculum and they are not listed in the table. Here

“number of PRC” denotes the “number of courses served as Prerequisites for Required

Courses” and “number of PEC” denotes the “number of courses served as Prerequisites for

Elective Courses”. The table also shows the break up between the required and elective

courses. For example, Calculus II is prerequisite of three other required courses and two

other elective courses. Elementary Linear Algebra serves as prerequisite for no other re-

quired course, however, it is prerequisite for nine elective courses. Similarly, Mathematical

Structure is prerequisite for three other required courses and seven other electives courses.

Among intermediate level courses, Calculus III serves as prerequisite for two other required

and three other elective courses. Ordinary Differential Equation serves as a prerequisite for

four other elective courses.

It can be noted that, out of all six intermediate level courses, Ordinary Differential

Equation and Calculus III feature in the table 3.1. Hence, strategically it is advisable to

give priority to those two courses over the other four courses at the intermediate level.
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Courses at the beginners level Number of PRC Number of PEC Total

Calculus I (Math 1441) 3 0 3

Calculus II (Math 2242) 3 2 5

Elementary Linear Algebra (Math 2331) 0 9 9

Mathematical Structures(Math 2332) 3 7 10

Courses at the intermediate level Number of PRC Number of PEC Total

Calculus III (Math 2243) 2 3 5

Ordinary Diff Equation (Math 3230) 0 4 4

Table 3.1: Key courses



38

CHAPTER 4

POTENTIAL APPLICATIONS OF THE CURRICULUM NETWORK

The Mathematics course curriculum network, as described in Chapter 3, has several appli-

cations. In this chapter three of the major applications will be discussed. They are:

• Academic advisement;

• Resource allocation;

• Assessment for Mathematics Skill Level.

The first one is obviously important from a students perspective aspiring at a Mathemat-

ics degree. The second one has lot of significance from an administrators point of view

regarding differential resource allocation for various courses. And the third one would be

significant from the programs assessment standpoint.

We will also briefly discuss some previously surveyed topics and how they can be

applied to the curriculum networks.

4.1 ACADEMIC ADVISEMENT

Students coming into the college considering Mathematics as their degree program need a

guided advisement for the course sequence in order to complete their degree programs in

a time-efficient way. Based on their current Mathematics level skill, they can be assigned

to any of the foundation level classes (college algebra, pre-calculus, trigonometry etc) or

even remedial developmental classes or they can be placed directly into Calculus I or even

Calculus II (if they qualify through their high school curriculum). From that point, until

they graduate, it is important that they complete the courses in a highly sequential manner.

It is strongly recommended that they complete the basic level courses before they move

on to their intermediate level. The same argument can be applied in transitioning from
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intermediate level courses to advanced level courses. Similarly, students specializing in

Mathematics Education or Statistics can be guided accordingly. In previous figures (Fig-

ure 3.1, Figure 3.2, Figure 3.5), Mathematics Education advanced level required courses

are indicated and they are highlighted with brown color. Other Mathematics Education

electives specialization courses are sensitive to the job requirement, high-school, middle-

school etc. Many of the statistics specialization courses start with STAT numbers and out

of scope for this current work, although similar analysis to the one presented here can be

performed for Statistics courses.

4.2 RESOURCE ALLOCATION

In almost all universities, Mathematics departments provide service courses for other ma-

jors. So it is always a challenge to allocate resources for various courses and it is often

heavily dependent on the population of the other majors. For example, most of the engi-

neering majors require calculus sequence, while many of the health science related ma-

jors require basic Statistics course. However, if we narrow down and only look from the

Mathematics major perspective, there are several courses which are in higher demand in

comparison to others. The Table 3.1 shows that Mathematical Structure is prerequisite for

ten other courses and Elementary Linear Algebra is prerequisite for nine other courses in-

cluding electives courses. Those two courses can easily be a ”bottleneck” for graduation.

With that in mind, it is highly recommended that one section of these two courses needs to

be offered only for the Mathematics majors students, depending on the number of students

majoring in Mathematics. On the other hand, the Undergraduate Seminar is not a prereq-

uisite for any course but it is required for graduation. So a student can have at least a few

semesters to take that course while taking other courses to complete the degree.
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4.3 ASSESSMENT FOR MATHEMATICS SKILL LEVEL

Based on the structure developed in the previous chapter, we proposed four mathematics

skill levels:

• pre-beginner;

• beginner;

• intermediate; and

• advanced.

Just as general assessment is a big part of the quality enhancement plan and the de-

velopment of the university, assessment of mathematical maturity will greatly help us with

the placement of students and allocation of resources.

Mathematics assessment test can be conducted at each of the above listed transition

gates:

• pre-beginner to Calculus I;

• beginner to intermediate; and

• intermediate to advanced elective level courses.

These assessment data will be much more useful than the data collected from a single

course or for that matter, assigning the students Freshmen, Sophomore, Junior, Senior lev-

els based solely on their college credits.

4.4 APPLICATION OF SPANNING TREE AND SEQUENCE ALIGNMENT

Earlier in this thesis, among many other useful concepts and approaches are the spanning

trees and sequence alignment. In this section we will briefly explore how they, and other

related mathematical tools, can be used in our application to the curriculum network.
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4.4.1 SPANNING TREES

As mentioned before, the main problem related to spanning trees deals with finding the

spanning tree with minimum total weight. Such weights may be assigned to edges connect-

ing a pair of classes depending on how important and urgent it is, and finding a minimum

spanning tree under such conditions will give us an efficient way of covering all classes.

This is useful when the prerequisites are under exclusive “or” conditions.

Alternatively, one may assume that a student comes into the program (or at certain

point of their academic career) with some credits already earned. We now seek a sub-

structure (not necessarily a spanning tree), in the curriculum network, that contains this

given set of nodes/courses, and another set of “target courses” (that is, the ones required for

the particular degree or concentration). Such sub-structures are called Steiner trees when

they are acyclic.

4.4.2 SEQUENCE ALIGNMENT

As we have seen earlier, sequence alignment is essentially the comparison between two

sequences of entries chosen from a given alphabet. In our case, the set of alphabets is the

collection of available courses.

Suppose, now, that two students with different backgrounds come into the program at

the same time. We will represent each of them with the set of “fundamental courses” (i.e.

the courses that serve as prerequisites for others in the curriculum), ordered from the most

elementary to the most advanced. If a course appears in one student’s transcript but not the

other, we will save the spot and leave an “empty” entry there.

Thus to compare two students’ background we compare the two ordered sequences.

How similar two students are (and whether they can share a similar academic plan in the

future) depends on how “aligned” these two sequences are.
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On the other hand, one may simply construct a standard sequence (corresponding to

the ideal collection of mastered courses) at each phase and compare each student’s back-

ground with those to determine their placement.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE WORK

In this thesis we considered the concept of phyloenetic trees and the more generalized

version, the evolutionary networks. We started with a survey on known problems and

results on these concepts, related mathematical tools, and their applications.

We then attempted to apply this concept to the mathematics curriculum. To do this, we

first examined the relationship between various courses and constructed various diagrams

to present these relationships. These diagrams, when combined, gives us an interesting

evolutionary network to work with.

Based on the network constructed we point out several potential applications, includ-

ing the use of spanning trees, sequence alignments, and related tools.

The theoretical ideas proposed here appear to be sound and the applications presented

seem to be promising. The natural next step is, of course, to try to implement this system in

the decision making of academic advisement, placement of students, resource allocations,

etc.
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